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Natural science is not only about proofs but more about the setting and resolution of

problems. Mathematics is just a language that is useful for the setting, the resolutions,

and especially for the proofs. [...]

The research in empirical inference science requires searching for new models of infer-

ence (different from inductive inference, such as inference in Universum environment,

transductive, selective, ad hoc inferences, and so on). They are currently not under the

scope of interest of mathematicians since they do not yet have clear settings and clear

resolutions (this is the main subject of research). Mathematicians will become interested

in this subject later when new settings, new resolutions, and new ideas for proofs are

found.

The goal of the empirical inference discipline is to find these elements of the theory.

Vladimir Vapnik, "Estimation of Dependences Based on Empirical Data", p. 491, 2006.

The idea that solving the inverse problem corresponds to obtaining one ’best’ model

requires revision. All the literature based on this paradigm suggests that solving an

inverse problem consists somehow in ’extracting’ amodel from the data, using techniques

reminiscent of those in signal processing. This is not necessarily the right point of view.

What we should do is to base the inverse problem on a modified version of the popperian

paradigm: data are not to be used to create a model, but, instead, to falsify models.

I suggest that the setting, in principle, for an inverse problem should be as follows: use all

available a priori information to sequentially create models of the system, potentially an

infinite number of them. For each model, solve the forward modelling problem, compare

the predictions to the actual observations and use some criterion to decide if the fit is

acceptable or unacceptable, given the uncertainties in the observations and, perhaps, in

the physical theory being used. The unacceptable models have been falsified, and must

be dropped. The collection of all the models that have not been falsified represent the

solution of the inverse problem.

This concept of passing from a ’prior collection of models’ to a ’posterior collection of

models’ will certainly be acceptable by the lovers of Bayes’ paradigm, as the collections

of models can be seen as samples of a prior probability distribution and samples of

a posterior distribution. It should also please the believers in Popper’s point of view.

Although still far from unanimity, there are quests in this world too difficult to attain.

Albert Tarantola, "Popper, Bayes and the inverse problem", "Nature Physics" 2, 2006.

The reciprocal relationship of epistemology and science is of noteworthy kind. They

are dependent upon each other. Epistemology without contact with science becomes

an empty scheme. Science without epistemology is - insofar as it is thinkable at all -

primitive and muddled. However, no sooner has the epistemologist, who is seeking a

clear system, fought his way through to such a system, than he is inclined to interpret

the thought-content of science in the sense of his system and to reject whatever does

not fit into his system. The scientist, however, cannot afford to carry his striving for

epistemological systematic that far. He accepts gratefully the epistemological conceptual

analysis; but the external conditions, which are set for him by the facts of experience, do

not permit him to let himself be too much restricted in the construction of his conceptual

world by the adherence to an epistemological system. He therefore must appear to the

systematic epistemologist as a type of unscrupulous opportunist: he appears as realist

insofar as he seeks to describe a world independent of the acts of perception; as idealist

insofar as he looks upon the concepts and theories as free inventions of the human

spirit (not logically derivable from what is empirically given); as positivist insofar as he

considers his concepts and theories justified only to the extent to which they furnish a

logical representation of relations among sensory experiences. He may even appear as

Platonist or Pythagorean insofar as he considers the viewpoint of logical simplicity as an

indispensable and effective tool of his research.

Albert Einstein in "Replies to Criticism", "Albert Einstein: Philosopher-Scientist" edited by P. A. Schilpp, 683-684, 1949.
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Abstract

Probabilistic waveform inversion: Quest for the law
by Renat SHIGAPOV

Full-waveform inversion (FWI) is an algorithm (and a part of the measuring procedure in a wide

sense) with the aim to find the governing law of a physical system using the partially measured

physical fields with limited computational resources. A law is a forward theory equipped with the

model parameters and the data parameters. The main characteristic of the law is the realizability

assumption: the law explains all subsets of the measured data parameters and predicts all subsets of

the unmeasured (in the given experiment) data parameters. To find the law, we have to guess a law

(a forward theory and parametrization), measure some data parameters and check the realizability

assumption.

To put it more precisely, I formulate a new probabilistic setting for inverse problems and full-

waveform inversion. Instead of using the Bayes’ theorem, the Tarantola-Valette conjunction or the

principle of maximum entropy based on the prior information for the averaged quantities, I propose

a principle of minimum relative information using the prior information for the non-averaged

quantities. The Tarantola-Valette formula is obtained as a special case under the assumption that

the theoretical and prior measures exist. Using the realizability assumption as a prior information,

the principle of minimum relative information provides the parametric probabilistic solution

with the arbitrary misfit functions. Maximization of the parametric probabilistic solution leads

to a multiobjective minimization problem. All global Pareto optima are the sample points of the

probabilistic solution with the highest values of the volumetric measure. Unfortunately, even a local

multiobjective minimization problem is computationally intractable for FWI with many millions of

model parameters.

To make it computationally attractive for large-scale FWI and to find at least a few local solutions

of the multiobjective minimization problem, I implement the bilevel multiobjective waveform

inversion (BMWI) using a single randomly chosen shot gather at each iteration. BMWI is a stochastic,

nested algorithm with an adaptive parabolic line search and multiscale strategy. The computational

cost per iteration is five forward modellings only. BMWI can worsen some of the single-shot

misfit functions and the different random runs of BMWI converge to different points in the model

manifold. I interpret these inverted models as the sample points of the probabilistic solution. I

estimate the solution, uncertainty and sensitivity using the sample estimates of the mean, standard

deviation and initial deviation of the sample points, respectively. Using the numerical examples

with the Marmousi-2 model, I illustrate the potential of BMWI for automatic uncertainty and

sensitivity analysis with just two-three sample points.

To test the idea with real-world data, I apply stochastic single-shot BMWI in a 2D acoustic

finite-difference approximation to a 2D line of pressure data acquired in a shallow-water river

delta with ocean bottom cables. I use minimal data preprocessing (only a new 3D-to-2D transform

which is strictly valid in a linear-gradient medium), the linear gradient starting models and the

diagonal preconditioners with a negligible regularization. I estimate the theoretical uncertainties

due to the neglected 3D effects using the 3D-to-2D transforms. The uncertainties estimated by the

random sequences of BMWI are higher than the uncertainties related to the 3D-to-2D transforms. I

provide the estimates of the solution, uncertainty and sensitivity using up to fourteen sample points

inverted with the different linear-gradient starting models, the differently 3D-to-2D-transformed

real data sets and the different random sequences of descent directions. The uncertainty of sound

velocities is the lowest in the central semicircle with the radius 3 km equal to half the length of

the ocean bottom cable. The uncertainty of mass densities is the highest in the central semicircle.

The sensitivity of the measuring procedure with respect to sound velocity and mass density is the

highest in the central semicircle representing a footprint of the acquisition geometry. Outside the

central semicircle the parameters are not falsifiable in the specified setting.

Full-waveform inversion is the quest for the unique governing law of the physical system under

study. If the governing law is deterministic and the sample mean, standard deviation and initial

deviation of the sample points represent the insufficient description of the solution, uncertainty

and sensitivity, then the measuring procedure in a wide sense has to be improved.
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Research question
In general we look for a new law by the

following process. First we guess it.

Then we compute the consequences of

the guess to see what would be implied if

this law that we guessed is right. Then

we compare the result of the

computation to nature, with experiment

or experience, compare it directly with

observation, to see if it works. If it

disagrees with experiment it is wrong.

In that simple statement is the key to

science. It does not make any difference

how beautiful your guess is. It does not

make any difference how smart you are,

who made the guess, or what his name is

– if it disagrees with experiment it is

wrong. That is all there is to it.

Richard Feynman, "The character of

physical law"

The goal of physics is to find the law of nature. The goal of geophysics is to find the law of

Earth. The principle of stationary action provides a rule for it: just guess a Lagrangian density

L(f(x),∇xf(x),x) as a function of the fields f(x), its derivatives∇xf(x) and space-time coordinates x
which optimizes the functional of action S =

∫
X L(f(x),∇xf(x),x)

√
det ĝ(x)dx, where ĝ(x) is a metric

tensor of the space-time X. The first variation of action yields the partial differential Euler-Lagrange
equations for the fields. To make them computable, the fields with an infinite number of degrees

of freedom are discretized. The disretized fields lead to the finite number of modelm and data d
parameters. The numerical algorithm which relates the model parameters and the data parameters

is the approximate forward theory1 or forward solver: F(m) = d. If the forward theory and the

1Throughout this work I often call F a forward theory and F−1 an inverse theory because of tradition. Practically, even

the analytical solution of the Euler-Lagrange equations is computed numerically with a finite precision. F is an algorithm.
Its inverse F−1 is an algorithm as well.
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values of parameters are consistent with the observed data, a candidate for the governing law of

the physical system is found.

If we knew the governing law of the physical system "Earth" (the unique forward theory and

the unique values of the model parameters and the data parameters), all secondary problems of

geophysics – for instance, the location of hydrocarbons in exploration geophysics – would be solved.

We are far away from that for at least three reasons.

First, an experimental procedure for any physical system has limitations. The physical fields

are measured only in some points of space-time and never everywhere within a system under

study. The non-injective (not one-to-one) and imprecise inverse theory F−1 is the main source of
uncertainties: the smaller the number of the measured data parameters with respect to the total

number of the data parameters required to describe a physical system, the more combinations of

the parameters and theories can fit the observations.

Second, a physically realizable computational system has limited resources. With limited compu-

tational resources we can find at most only a finite number of combinations of the parameters and

theories which fit the observations at least partially.

Third, the choice of a formal system (rules of inference and axioms) is not unique. We can set

up the problem of finding the governing law of a physical system in many different ways and get

different answers. The notion "solution" differs in probabilistic and deterministic formulations.

Full-waveform inversion is an algorithm (and a part of the measuring procedure in a wide sense)

with the aim to find the governing law of a physical system using the partially measured physical

fields with limited computational resources. The measuring procedure in a wide sense includes the

experimental procedure, the computational and formal systems. Any measurement is inexact and

has to be equipped with information on uncertainty and sensitivity.

This leads to the research question of this work: What are the "solution", "uncertainty" and

"sensitivity" in full-waveform inversion?

In the next two sections I formulate the standard formal systems for solving the inverse prob-

lems (the Tarantola-Valette setting and the principle of maximum entropy) and present a short

introduction into full-waveform inversion. After getting a feeling for the research question, I

formulate the thesis statement.

Probabilistic inverse problems
An inverse problem can be set as: 1) a problem of mathematical optimization in the deterministic

and frequentist interpretations (Aster et al., 2005; Backus and Gilbert, 1968; Kirsch, 1996; Menke,

2018; Parker, 1994; Tikhonov, 1963) and 2) a problem of inference or decision-making in the

Bayesian, Tarantolian and Jaynesian interpretations (Calvetti and Somersalo, 2018; Dashti and

Stuart, 2017; Jaynes, 1984; Kaipio and Somersalo, 2006; Scales and Snieder, 2000; Stuart, 2010;

Tarantola, 2005).

I consider an inverse problem as a measurement (Mosegaard and Tarantola, 2002). Following

Tarantola (2007) I interpret any measuring act as an attempt to obtain information on the position

of the point q, characterized by the quantities (or coordinates) {q1, q2, ...} in the abstract quality
(or parameter) manifold2 Q equipped with the metric tensor g(q) and the volume density v(q) =√

detg(q). The quantities {q1, q2, ...} = {d1, d2, ...,m1,m2, ..} are the coordinates of a point q in
the quality manifold Q, where {d1, d2, ...} are the data quantities and {m1,m2, ...} are the model
quantities. The data quantities {d1, d2, ...} are the coordinates of a point d in the data manifold D.
The model quantities {m1,m2, ...} are the coordinates of a point m in the model manifold M. To
parametrize a physical system means to choose the coordinates in the quality manifold. A forward

theory F is the mapping F(m) = d. An inverse theory F−1 is the inverse mapping F−1(d) = m.
Any measuring procedure starts with a formulation stage (BIPM et al., 2009, 2008): specification

of the input quantities qin, the output quantities qout, the theory relating the quantities qin and
qout and the joint probability distribution over qin. At the calculation stage the propagation of
uncertainty from qin to qout through the theory is performed (BIPM et al., 2008) or the theoretical
information on qin is combined with the prior information on qin in the Tarantola-Valette setting
(Tarantola and Valette, 1982b). The principle of maximum entropy can be used to assign the

probability density to the input quantities.

2Albert Tarantola introduced the terms "physical quantity", "physical quality" and "quality manifold" in Tarantola (2006a).
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The Tarantola-Valette setting
The Tarantola-Valette inverse theory is

not a theory because it’s not falsifiable.

It is a framework.

Andreas Fichtner, personal

communication

At least three versions of the Tarantola-Valette setting exist. The classic formulation (Tarantola,

2005, 1987; Tarantola and Valette, 1982b) is based on conjunction between the theoretical Θ̂(q)
and prior ρ̂(q) measure densities defined over the parameter manifold Q: σ̂(q) = ρ̂(q) ∧ Θ̂(q).
Alternatively, Tarantola formulated the setting using the product of the theoretical Θ(q) and prior
ρ(q) volumetric measures σ(q) = ρ(q)Θ(q) in the Wolfram MathWorld note3 and using intersection
of the volumetric measures in the unfinished book "Mapping of Probabilities" (Tarantola, 2007).

Tarantola and Valette proposed a probabilistic setting for inverse problems without the Bayes’

theorem and conditional probabilities in the seminal paper "Inverse problems = Quest for informa-

tion" (Tarantola and Valette, 1982b). The Bayesian setting is a special case of the Tarantola-Valette

setting if the conditional probabilities are introduced.

I formulate the setting using the measure densities and the volumetric measures4. Following

Tarantola (2007), I call the operation between the measures as "intersection" instead of "conjunc-

tion".

The Tarantola-Valette setting is based on three axioms.

The first axiom specifies an abstract geometric description of a physical system: the parameter

or quality manifold Q. A physical system can be described with a finite number of parameters
(or quantities) and the specific values of these parameters {q1, q2, ...} define the coordinates of a
point q in the abstract parameter manifold Q which has a notion of volume. The metric tensor g(q)
specifies the volume density v(q) =

√
detg(q).

The second axiom introduces a probabilistic description of a physical system or a subjective

degree of knowledge on the state of a physical system. The degree of knowledge on the values of

quantities {q1, q2, ...} can be described using a real, non-negative5 function m̂(q), called a measure
density, or using the volumetric measurem(q). The measure density and the volumetric measure
are related via the volume density m̂(q) = m(q)v(q), so that the measureM(A) of any subset A of Q
is the integralM(A) =

∫
A
m̂(q)dq =

∫
A
m(q)v(q)dq.

The third axiom defines a basic operation between measures. The intersection ∩ of the measure
densities m̂1(q) and m̂2(q) is

m̂1(q) ∩ m̂2(q) =
m̂1(q)m̂2(q)

v(q)
. (1)

The intersection of the corresponding volumetric measuresm1(q) andm2(q) is

m1(q) ∩m2(q) = m1(q)m2(q). (2)

The definitions are consistent:

m̂1(q) ∩ m̂2(q)

v(q)
= m1(q) ∩m2(q) =

m̂1(q)

v(q)

m̂2(q)

v(q)
. (3)

The solution of an inverse problem is the a-posteriori measure density σ̂(q) given by the intersec-
tion of the prior ρ̂(q) and theoretical Θ̂(q)measure densities

σ̂(q) = ρ̂(q) ∩ Θ̂(q) =
ρ̂(q)Θ̂(q)

v(q)
, (4)

3http://mathworld.wolfram.com/InverseProblem.html (last accessed January 4, 2019)
4Tarantola (2005) mentioned that for pedagogical reasons he formulated the setting in terms of the probability densities

only, although for research he preferred to use the volumetric probabilities.
5In Tarantola and Valette (1982b) and Tarantola (2005) the measure density is a positive function. Tarantola (2005) cited

the Radon-Nikodym theorem, but it requires only the non-negative measure densities. In the unfinished book of Tarantola

(2007) the Radon-Nikodym theorem with the non-negative measure densities is used.

http://mathworld.wolfram.com/InverseProblem.html
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FIGURE 1: Schematic illustration: Intersection ∩ of the prior and theoretical volumetric
measures in the Tarantola-Valette setting.
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FIGURE 2: Schematic illustration: Conjunction ∧ of the prior and theoretical volumetric
measures.

or the a-posteriori volumetricmeasure σ(q) given by the intersection of the prior ρ(q) and theoretical
Θ(q) volumetric measures

σ(q) = ρ(q) ∩Θ(q) = ρ(q)Θ(q). (5)

The two equivalent representations of the solution are related by the volume density: σ̂(q) =
σ(q)v(q). The problem is always well-posed: the probabilistic solution exists and is unique and
stable. The formulation is invariant with respect to the change of coordinates.

The a-posteriori measure density σ̂M(m) and the a-posteriori volumetric measure σM(m) defined
over the model manifold can be obtained by integrating the formulas (4) and (5) over the data

manifold D:

σM(m) = ρ(m)L(m), σ̂M(m) = ρ̂(m)L̂(m), (6)

where L(m) and L̂(m) are the likelihood functions.
In contrast to the formula (4) formulated with the volume density v(q), Tarantola used µ(q) =

v(q)/V , where V is the volume of the parameter manifold. The normalized measure density µ(q)
represents null information (Tarantola and Valette, 1982b) and is called the homogeneous measure

density (Mosegaard and Tarantola, 2002). For an infinite volume V the measure density µ(q) is
undefined and Tarantola suggested to use µ(q) ∼ v(q). The uniform volumetric measure is u(q) = 1.
The uniform measure density is û(q) = v(q), which is constant only for a flat quality manifold and
Cartesian coordinates.
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Tarantola used the term "conjunction" for the product of the volumetric measures which does not

have an idempotent property. Figure 1 schematically illustrates the conjunction of a few different

states of information6. In contrast, the logical conjunction and disjunction are idempotent7 x∧x = x
and x∨x = x for any x. Moreover, the choice of conjunction and disjunction8 in the Tarantola-Valette
setting does not respect de Morgan’s laws: x ∧ y = ¬(¬x ∨ ¬y) and x ∨ y = ¬(¬x ∧ ¬y), where ¬ is the
logical negation.

A possible choice of the conjunction and disjunction which respects the idempotent property

and de Morgan’s laws is ∧ = min and ∨ = max. An idempotent conjunction can also be defined
using the square root operation. Then, the a-posteriori measure density σ̂(q) and the a-posteriori
volumetric measure σ(q) have the same simple form

σ̂(q) = ρ̂(q) ∧ Θ̂(q) =

√
ρ̂(q)Θ̂(q), (7)

σ(q) = ρ(q) ∧Θ(q) =
√
ρ(q)Θ(q). (8)

Figure 2 schematically illustrates these formulas. The square root operation preserves the

physical dimension of the volumetric measure in contrast to the intersection operation in the

Tarantola-Valette setting which squares the physical dimension of the volumetric measure.

I present a simple derivation of the formulas (7)-(8) and (4)-(5) in chapter 1 using a new prob-

abilistic setting for inverse problems. I also show a simple modification of the Tarantola-Valette

formula which does not square the physical dimension of the a-posteriori volumetric measure.

The Tarantola-Valette setting does not provide a rule to assign the prior and theoretical measures.

This is the main problem in any probabilistic setting.

The principle of maximum entropy
The principle of maximum entropy is

not an oracle telling which predictions

must be right; it is a rule for inductive

reasoning that tells us which predictions

are most strongly indicated by our

present information.

Edwin T. Jaynes, "Probability theory: The

logic of science"

The principle of maximum entropy proposed by Edwin Thompson Jaynes (1957a,b) is used to

assign the measure densities based on the partial knowledge on the averaged quantities. It can

also be used as an updating rule for the measure densities instead of the Tarantola-Valette setting

and the Bayes’ formula. Shore and Johnson (1980) have shown that the principles of maximum

entropy and maximum relative entropy are the correct methods for inductive inference when new

information is given in terms of expected values. Ulrych and Sacchi (2005) discussed the principle

of maximum entropy with many geophysical examples.

According to the principle of maximum entropy the measure density σ̂(q) or the volumetric
measure σ(q)which represent the current stage of knowledge on the quantity q is the one corre-
sponding to the maximum entropy constrained by the prior information. The prior information

is given as a mathematical expectation of a certain function of q. The constrained optimization
problem is solved using the method of Lagrange multipliers.

The famous Tarantolian "null information" µ(q) proportional to the volume density v(q) was
introduced by Jaynes in 1963 as "a state of total ignorance" to make the Shannon’s definition of

6Some people say that the problem of "non-idempontent conjunction" in the Tarantola-Valette setting does not exist,

because the rule of Tarantola and Valette cannot be used to combine the redundant or identical states of information. The

logic of these people is based on the following quote from Tarantola and Valette (1982b): "The conjunction, as defined above,

must be used to combine two states of information only if these states of information have been obtained independently, as

for example, for two independent physical measurements on a given set of parameters, or for combining experimental and

theoretical information". However, the notions "independent" and "non-identical" are not the same.
7The principle of idempotence was first introduced into logic by Gottfried Wilhelm Leibniz (Gabbay et al., 2012).
8Tarantola (2005) introduced the disjunction as m̂1(q) ∨ m̂2(q) = 1

2
(m̂1(q) + m̂2(q)) and m1(q) ∨ m2(q) = 1

2
(m1(q) +

m2(q)).
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entropy invariant under the change of variables (Jaynes, 1963). Because of the lack of invariance,

the classic Shannon’s definition of entropy cannot be used for the continuous case.

The entropy is a mathematical expectation of the information I(σ(q)) = − log σ(q) contained in
σ(q):

H(σ) = −
∫
Q
v(q)σ(q) log σ(q)dq, (9)

where v(q) is the volume density and σ(q) is the volumetric measure.
The entropy of the measure density σ̂(q) is

H(σ̂) = −
∫
Q
σ̂(q) log

σ̂(q)

v(q)
dq. (10)

The two definitions of entropy are consistent, i.e., H(σ) = H(σ̂), because the volumetric measure
and the measure density are related σ̂(q) = v(q)σ(q).
If we know about a quantity q that some functions fi(q) have the mathematical expectations∫

Q fi(q)σ̂(q)dq = Fi with i = 1, .., N and the measure density is normalized
∫
Q σ̂(q)dq = 1, then the

principle of maximum entropy leads to the measure density in the exponential form

σ̂(q) =
v(q)

Z(λ1, ..., λN )
exp (λ1f1(q) + ...+ λNfN (q)) , (11)

with the partition function

Z(λ1, ..., λN ) =

∫
Q
v(q) exp (λ1f1(q) + ...+ λNfN (q)) dq, (12)

and the values of parameters λk defined from the equations

Fk =
∂Z(λ1, ..., λN )

∂λk
, k = 1, .., N. (13)

The principle of maximum entropy leads to the exponential family of probability distributions.

The exponential form of σ̂(q) is a basis to formulate the Bayes’ theorem in the infinite dimensional
setting as shown by Stuart (2010) and Dashti and Stuart (2017).

The formulas (9) and (10) contain the logarithms of dimensional quantities. To get rid of that,

the principle of maximum entropy can be replaced by the principle of maximum relative entropy

for the the volumetric measure σ(q) with respect to the uniform volumetric measure u(q):

H(σ) = −
∫
Q
v(q)σ(q) log

σ(q)

u(q)
dq, (14)

and for the measure density σ̂(q) with respect to the uniform measure density û(q):

H(σ̂) = −
∫
Q
σ̂(q) log

σ̂(q)

û(q)
dq. (15)

In chapter 1 I introduce a new principle – the principle of minimum relative information – to

assign the measure densities using the prior information for the non-averaged quantities.

Sampling a sample and the sample points
The Tarantola-Valette formulas (4), (5) and (6) provide a simple probabilistic setting for inverse

problems. The prior volumetric measures can be assigned using the principle of maximum entropy

or using some assumptions about the symmetry of the problem. The probabilistic solution of an

inverse problem is the a-posteriori volumetric measure σM(m) over the model manifoldM or the
a-posteriori volumetric measure σ(q) over the quality manifold Q.
In full-waveform inversion applications the number of dimensions of the model manifoldM is

106 − 108 and is continuing to grow. Due to the limited computational resources we cannot define
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Measure density A sample of 10 points A sample of 100 points A sample of 1000 points

FIGURE 3: Sampling a two-modal measure density with 10, 100 and 1000 sample points.

an arbitrarily dense grid of points in M and for every point m compute the value of σM(m). The
systematic sampling is computationally infeasible in large-dimensional spaces.

Instead, the a-posteriori measure density can be sampled by the finite, relatively small number

of sample points so that the number of the sample points in any sub-volume divided by the total

number of the sample points is proportional to the measure of this sub-volume. A sample is a set

of the sample points9. Figure 3 shows a two-modal 2D measure density sampled with 10, 100 and

1000 sample points. An algorithm performing sampling is called the sampler, sampling algorithm

or sampling method. The choice of a sampler depends on the available computational resources.

If sampling is performed, the solution of an inverse problem is a collection of models, the sample

points of the a-posteriori measure density. Instead of plotting the mean values, Tarantola suggested

to plot all sample points. He called it the movie strategy (Tarantola, 2005).

If the a-posteriori measure density is sampled with N sample points {m1, ...,mN} inM, then the
sample mean is

〈m〉 =
1

N

N∑
k=1

mk. (16)

The sample covariance matrix is

〈C〉 =
1

N − 1

N∑
k=1

(mk − 〈m〉)(mk − 〈m〉)>. (17)

The sample standard deviation is

V =

√√√√ 1

N − 1

N∑
k=1

(mk − 〈m〉)2, (18)

where the operations are understood in a component-wise sense.

If the computation of σM(m) at any point m in M is inexpensive (not the case in this work), a
random (Monte Carlo) method can be used to generate the samples of σM(m). The standard Monte
Carlo samplers are the Metropolis-Hastings algorithm (Hastings, 1970; Metropolis et al., 1953) and

the Gibbs sampler (Geman and Geman, 1984). If the computation of derivatives of σM(m) at any
pointm inM is inexpensive (not the case in this work), a Hamiltonian Monte Carlo method speeds
up the sampling (Duane et al., 1987; Neal, 2011). Keilis-Borok and Yanovskaja (1967) and Press

(1968) are the first examples of the Monte Carlo methods in geophysical inverse problems. The

modern references in the geophysical context are (Mosegaard and Tarantola, 1995) and (Sambridge

and Mosegaard, 2002).

9The relevant debate between Albert Tarantola and his colleagues about the notions "sam-

ple", "sample point" and "equiprobable sample points" can be found on Tarantola’s web-page:

http://www.ipgp.fr/~tarantola/Files/Professional/Diverse/SamplePoints (last accessed January 4, 2019). Tarantola

defined the "random point", "independent random point", "sample point" and "independent sample point". Then, a sample is

a collection of independent sample points. In this work I avoid to define the notions "random point" and "independent

random point". I prefer to define the "sample points" as the points whose number in any sub-volume divided by the total

number of the sample points is proportional to the measure of this sub-volume. The choice of a sampler – random or

deterministic – is irrelevant with this definition.

http://www.ipgp.fr/~tarantola/Files/Professional/Diverse/SamplePoints/
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For conceptual understanding of the first chapter in this work, it is sufficient to focus on one

of the simplest sampling algorithms – the rejection method. The rejection sampler generates the

sample points {q1,q2, ...} of the uniform volumetric measure u(q) = 1. The sample point qk is
accepted with the probability σ(qk)/max(σ(q)), where max(σ(q)) denotes the maximum value of
the volumetric measure σ(q) in Q. All accepted points are the sample points of σ(q).
According to Tarantola (2005), the main problems in random sampling of the probability den-

sities in a large-dimensional space are 1) locating the regions of significant probability and 2)

sampling the regions densely enough.

Tarantola (2006b) suggested to replace the verification of the models by falsification of the models

in inverse problems. He suggested to use the following setting: to create various models (possibly

an infinite number of them) and to use the data to falsify the models using some criterionwhich

was not specified in the paper.

In his unfinished book Tarantola (2007) clarified the criterion in the section "The Bayes-Popper

problem". He related the criterion to the Tarantola-Valette setting: all models that have been

generated as the sample points of the prior volumetric measure ρ(m), but have not been accepted
as the sample points of the theoretical volumetric measure Θ(F(m)), have been falsified (Tarantola,
2007, p. 38).

In chapter 2 I show that a stochastic, nested algorithm applied to the subsets of the data can be

used to locate the regions of significant probability by inverting the subsets of model parameters (at

least in the context of marine seismic experiments with ocean bottom cables).

Full-waveform inversion
To set up the problem of FWI, we guess a forward theory F and a finite number of parameters
q = {m,d} describing the physical system under study and measure some data parameters do.
In a deterministic setting FWI is formulated as a minimization of a misfit function between the

measured do and modelled Fo(m) data parameters:

min `(Fo(m),do), (19)

where ` is an arbitrary (possibly regularized) misfit.
The corresponding a-posteriori volumetric measure is

σM(m) = exp(−α`(Fo(m),do)), (20)

where α is an arbitrary positive parameter. The minimization problem (19) corresponds to the
maximization of the volumetric measure (20).

The non-linear minimization problem (19) is solved using any local optimization algorithm

(Nocedal and Wright, 1999) with an initial guessm0:

mk+1 = mk + αkδmk(`(Fo(mk),do)), k = 0, 1, ..., N − 1, (21)

where k is the number of iteration, αk is a step length at the k-th iteration, δmk = δmk(`(Fo(mk),do))
is a descent direction at the k-th iteration and N is the total number of iterations specified by a
certain stopping criterion.

Geometrically speaking, the single run of FWI is a sequence of points {m0, ...,mN} in the model
manifold M and the move from the point mk to the point mk+1 is performed along a descent

direction δmk times the value of a step length αk (k = 0, ..., N − 1). The performance of an FWI
algorithm depends on the initial guess m0, the descent directions {δm0, ..., δmN−1} and the step
lengths {α0, ..., αN−1}. The final model parametersmN are interpreted as an estimate of the solution.

The history of FWI (see Figure10 4, the monograph by Fichtner (2011) and the reviews by

Virieux and Operto (2009) and Virieux et al. (2017)) has started in the 1980-s with three seminal

contributions made by Albert Tarantola and his collaborators11. First, they presented a probabilistic

10The figure is dramatically subjective, very incomplete and, unfortunately, imprecise.
11This view on the history of FWI differs from the one which starts from the works presented by 1) Bamberger et al. (1982)

where the inversion of the normal incidence seismograms was formulated as the optimal control problem based on the

theory of Lions (1968) and 2) Lailly (1983) where the seismic inverse problem was formulated as a sequence of before stack

migrations.
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FIGURE 4: A brief history of full-waveform inversion.

setting for inverse problems with an imprecisely known theory (Tarantola and Valette, 1982b).

Second, they formulated the solution of non-linear inverse problems using the generalized least

squares criterion under the assumption of Gaussian probability distributions (Tarantola and Valette,

1982a). Third, Tarantola presented three classic papers on FWI in acoustic (Tarantola, 1984), elastic

(Tarantola, 1986) and anisotropic viscoelastic media (Tarantola, 1988) where he explained how the

gradient of a misfit function can be computed with only two forward modellings per shot gather.

The method of computing the gradient of a misfit function without the Fréchet derivatives is called

the adjoint-state method12 (Chavent, 1974; Plessix, 2006; Tromp et al., 2005).

Gauthier et al. (1986) showed the first ever numerical implementation of FWI using the time-

domain finite-difference code presented earlier by Jean Virieux (1984). Another early synthetic

examples of FWI are presented by Mora (1988, 1987). The first applications to real data are (Crase

et al., 1990; Crase et al., 1992; Pica et al., 1990). The significant development of FWI in 1990-s is due

to Gerhard Pratt: the shift into the frequency domain, a matrix-vector formulation, reduction of

the computational cost and application to laboratory and cross-hole data (Pratt, 1990, 1999; Pratt

and Shipp, 1999; Pratt and Worthington, 1990; Pratt et al., 1998, 1996). Bunks et al. (1995) proposed

the multiscale strategy. Brenders and Pratt (2007a,b) presented a successful reconstruction in a

blind test. The first examples of 3D FWI are shown by Ben-Hadj-Ali et al. (2008), Fichtner et al.

(2009), Plessix (2009), and Warner et al. (2008). The multiparameter aspects of FWI are discussed by

Plessix et al. (2013) and Operto et al. (2013). Brossier et al. (2009) and Sears et al. (2008) applied

elastic FWI to field data. The anisotropic FWI is presented by Alkhalifah (2014), Köhn et al. (2015),

Plessix and Cao (2011), and Warner et al. (2013). The viscoacoustic (Askan et al., 2007; Kamei and

Pratt, 2013; Malinowski et al., 2011; Yang et al., 2018a) and viscoelastic (Brossier, 2011; Charara

et al., 2000; Yang et al., 2016a) FWI are challenging due to almost unavoidable cross-talks between

sound velocity and attenuation coefficient (Hak and Mulder, 2010, 2011; Mulder and Hak, 2009).

The truncated-Newton FWI is implemented by Lei et al. (2018), Métivier et al. (2014), and Yang

et al. (2018a). The regularized FWI is shown by Asnaashari et al. (2013) and Guitton (2012). The

memory-reduced FWI is based on a few ideas: the wavefields can be compressed (Boehm et al.,

2016; Sun and Fu, 2013), recomputed from the snapshots-checkpoints (Komatitsch et al., 2016;

Symes, 2007) and reverse-propagated from the saved boundary values (Clapp, 2008; Dussaud et al.,

2008). These ideas can be combined (Yang et al., 2016b). The extended waveform inversion is

discussed by Symes (2015, 2017). The spatial scale of FWI applications varies between a few mm

and cm in medical imaging (Agudo et al., 2018; Goncharsky et al., 2014; Pratt, 2018; Pratt et al., 2007)

and the hundreds of km in the project on a multiscale collaborative Earth model (Afanasiev et al.,

2016; Fichtner et al., 2018).

12In the nuclear reactor calculations the closely related perturbation method with the forward and adjoint operators

was developed in 1953-1956 by Marchuk (1959). Gurii Ivanovich Marchuk was the last president of the Soviet Academy of

Sciences and is famous for his contributions to the numerical methods and the perturbation methods with adjoint operators.

His most relevant for FWI-community monographs are Marchuk (1995) and Marchuk et al. (1996).
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Fundamental problems and no free lunch
Full-waveform inversion suffers from two fundamental problems. The first one is the lack of

priors about the problem in a wide sense: imprecise knowledge of the forward theory F , inade-
quate parametrization q, limitations of the experimental procedure hidden in the observed data
parameters do

13 and poor initial knowledge of the values of model parameters m0. The second

fundamental problem is the lack of computational resources which limits the choice of a forward

solver, parametrization and the method of mathematical optimization. If the computational re-

sources are unlimited, a brute force approach provides the theories and model parameters which

fit the observed data parameters with any desired accuracy.

The "no-free-lunch" theorem (Wolpert and Macready, 1997, 1995) in a finite-dimensional space

and for the algorithms which do not visit (sample) the same point more than once can be stated

as: all algorithms for searching an extremum of a misfit function perform exactly the same when

averaged over all possible misfit functions. In the context of FWI this implies that for any FWI

algorithm there exist a pathological setting where the algorithm fails and another algorithm will

outperform it in this setting. The choice of an FWI-algorithm should be adapted to the problem, i.e.,

to a physical system under study and to the measuring procedure including the computational and

formal systems.

Any challenge in FWI is a consequence of the lack of priors about the problem and the lack of

computational resources. For example, cycle skipping: like any local optimization algorithm, FWI

gets trapped in a local minimum if the forward solver F evaluated with an initial estimate of the
model parametersm0 does not predict the measured wavefields do within half a wave-cycle. To
reduce the effect of cycle skipping, the multiscale strategy, non-`2 misfits and extended inversion
are used. Themultiscale strategy is the inversion of the low-frequency data first and then inversion

of the higher-frequency data. It helps if the low-frequency components of the data are measured in

the experiment (Bunks et al., 1995; Fichtner et al., 2013). In the controlled-source experiments the

low frequency components of the data are either damaged by noise or absent due to technological

limits (ten Kroode et al., 2013). The non-`2 misfits include the envelope misfit (Bozdağ et al., 2011;
Fichtner et al., 2008; Wu et al., 2014), the Wasserstein or Kantorovich-Rubinstein norms (Engquist

and Froese, 2014; Lellmann et al., 2014; Métivier et al., 2016a,b; Métivier et al., 2018; Yang and

Engquist, 2018; Yang et al., 2018b) and the correlation-, convolution- and deconvolution-based

misfits (Luo and Sava, 2011; van Leeuwen and Mulder, 2010). The non-physical extension of the

physical fields in space, time and in space-time andmodifications of the misfit functions to minimize

the difference between the non-physical and physical fields are developed by Biondi and Almomin

(2014, 2013), Fu and Symes (2017a,b), Huang et al. (2017, 2018a,b), Symes (2008, 2009), van Leeuwen

and Herrmann (2013b), Warner and Guasch (2016), and Zhu and Fomel (2016).

Another challenge is the resolution of FWI which depends on the quality of the descent directions

related to the number and spatial distribution of the sources and receivers. Increasing resolution

and decreasing computational cost of FWI are conflicting tasks. The resolution of FWI is limited by

half a wavelength in the presence of many sources and receivers. The computational cost of FWI is

proportional to the number of shot gathers and can be reduced using the stochastic simultaneous

sources (Castellanos et al., 2015; Guitton and Diaz, 2012; Krebs et al., 2009; Moghaddam et al., 2013;

van Leeuwen et al., 2011) and hybrid deterministic-stochastic shot-subsampling methods (Fried-

lander and Schmidt, 2012; Li et al., 2012; van Leeuwen and Herrmann, 2013a). The simultaneous

sources reduce the resolution of FWI due to the cross-talks between different shot gathers.

In chapters 2 and 3 I show that a stochastic, nested algorithm with a single randomly chosen

shot gather per iteration is a simple alternative to the algorithms mentioned above.

Solution, uncertainty and sensitivity
Until recently the main focus in FWI was to find one best-fit model without any uncertainty analysis.

A few criteria were used to falsify the model: 1) Comparison of the time-domain (Brenders and

Pratt, 2007b; Ravaut et al., 2004) and frequency-domain (Bleibinhaus et al., 2009; Malinowski et al.,

2011) seismograms. 2) Consistency of the source time functions corresponding to the different shot

gathers (Gao et al., 2007; Kamei and Pratt, 2013; Smithyman et al., 2009). 3) Overlay of the inverted

models by the 3D depth migrated results (Plessix et al., 2013). 4) Comparison of a 1D velocity profile

13The data parameters do are measured in the limited number of space-time points and never everywhere within a

physical system under study.
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from the final velocity model with the sonic log data (Malinowski et al., 2011; Takougang and

Calvert, 2011). 5) Re-migration with a new velocity model (Plessix et al., 2012). 6) Flatness of the

common-image gathers (Plessix et al., 2012). 7) Consistency of the inverted velocity model with the

prior geological information (Kamei and Pratt, 2013).

The uncertainty analysis in FWI is just at the initial stage of development and can be performed

using the parameterized and low-rank approximations of the Hessian operator (Bui-Thanh et al.,

2013; Fichtner and Trampert, 2011a,b), random probing (Fichtner and van Leeuwen, 2015) and

ensemble transform Kalman filters (Thurin et al., 2017a; Thurin et al., 2017b). Lim (2016) used the

randomized maximum likelihood sampler for the acoustic equation with less than 103 parameters.
Fang (2018) and Fang et al. (2018) sampled the local Gaussian approximation of the posterior

distribution for the acoustic equation with less than 105 parameters. A review on uncertainty
analysis in tomography is given by Rawlinson et al. (2014) and Osypov et al. (2013).

The sensitivity analysis in FWI is often understood as the trade-off analysis between the different

parameter classes by showing the scattered amplitudes (radiation patterns) from the different

diffractors (Alkhalifah and Plessix, 2014; Gholami et al., 2013; Kazei and Alkhalifah, 2018). I give a

different definition of sensitivity in chapter 2.

In chapters 2 and 3 I show how the stochastic single-shot FWI algorithm estimates the solution

and uncertainty and sensitivity of the measuring procedure. The number of unknown parameters

is more than 106 in chapter 2 and is more than 107 in chapter 3.

Thesis statement
The goal of full-waveform inversion is to find the unique governing law of the physical system under

study. The idea of uniqueness of the governing law was essential for the development of modern

science14. What is the main characteristic of the law? It is the realizability assumption15: the law

explains all subsets of the measured data parameters and predicts all subsets of the unmeasured

(in the given experiment) data parameters.

The thesis statement is simple: To find the governing law, guess a law (a forward solver and

parametrization), measure some data parameters and check the realizability assumption. The rest

of this work is nothing more than explanation of this idea in some details.

In chapter 1 I formulate a new probabilistic setting for inverse problems and full-waveform

inversion. I propose a principle of minimum relative information using the prior information

for the non-averaged quantities. Using the realizability assumption as a prior information, the

principle of minimum relative information gives the parametric probabilistic solution with the

arbitrary misfit functions. Maximization of the parametric probabilistic solution leads to a multiob-

jective minimization problem. All global Pareto optima are the sample points of the probabilistic

solution with the highest values of the volumetric measure. However, even a local multiobjective

minimization problem is computationally intractable for FWI with 106 − 108 model parameters.
In chapter 2 I implement the bilevel multiobjective waveform inversion using a single randomly

chosen shot gather at each iteration. The different random sequences of descent directions in

BMWI converge to different points in the model manifold. I interpret these inverted points as the

sample points of the probabilistic solution. I estimate the solution, uncertainty and sensitivity using

the sample estimates of the mean, standard deviation and initial deviation of the sample points,

respectively.

In chapter 3 I apply the stochastic single-shot BMWI in a 2D acoustic finite-difference approx-

imation to the real-world pressure data acquired in a marine experiment with ocean bottom

cables. I provide the estimates of the solution, uncertainty and sensitivity using different linear-

gradient starting models, two differently 3D-to-2D-transformed real data sets and different random

sequences of descent directions.

14Ari Ben-Menahem (2009) has written in his "Historical Encyclopedia of Natural and Mathematical Sciences": "The main

postulate of science is the unity of nature: nature is one; and therefore, science is one. Finally, the fact that simultaneous

discoveries have been made by different groups of workers, in different settings, organizations and nations, demonstrate

thatmankind is one: one mankind through one science is unfolding the mysteries of one nature."
15The realizability assumption in the statistical learning theory (Shalev-Shwartz and Ben-David, 2014) is formulated for

the averaged quantity: the mathematical expectation of the loss function is zero.
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1.1 Introduction
I present a new probabilistic setting for inverse problems and full-waveform inversion1. I do not

use the Tarantola-Valette setting or a Bayesian framework or the integral principle of maximum

entropy based on the prior information for the averaged quantities.

I propose the principle of minimum relative information based on the prior information for

the non-averaged quantities. The Tarantola-Valette setting can be obtained as a special case under

the assumption that the prior and theoretical measures exist. Using the realizability assumption

as a prior information, the principle of minimum relative information leads to the parametrized

volumetric measure over the model manifold with arbitrary parameters and arbitrary misfits.

Maximization of the obtained volumetric measure leads to a multiobjective minimization problem

with arbitrary misfits.

The formal system developed here as any other formal system is non-falsifiable in the Popperian

sense. But it is very simple, reduces to the well-known settings in special cases and provides a

useful tool for uncertainty analysis used in chapters 2 and 3 with synthetic and real-world data.

1.2 Description of a system under study
The system under study is a physical system and measuring procedure in a wide sense. A physical

system is a region of space-time governed by the unique law of physics, i.e., the forward theory F
equipped with the finite number of model m and data d parameters. The measuring procedure
includes the experimental procedure as well as the computational and formal systems. A computa-

tional system is a region of space-time with an ability to compute according to the law of physics. A

formal system is a set of symbols, grammar, axioms and rules of inference.

The starting point for both probabilistic and deterministic inverse problems is a geometric

description of a physical system under study.

1I was inspired by Tarantola (2005), Vapnik (2013) and Jaynes (2003).
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1.2.1 Geometric description: physical qualities and quantities
The field-theoretical formalism is a simple and elegant tool to study the physical systems. To describe

a physical system, a vector field f(x) as a function of space-time coordinates x is introduced. The
principle of stationary action provides a rule to find the governing law of the physical system. We

have to guess the Lagrangian density L(f(x),∇xf(x),x) which optimizes the functional of action

S =

∫
X
L(f(x),∇xf(x),x)

√
det ĝ(x)dx, (1.1)

where ĝ(x) is a metric tensor of the space-time X.
The first variation of action yields the partial differential Euler-Lagrange equations for the field:

∂L
∂fk
− ∂

∂xl

(
∂L
∂fk,l

)
= 0, k = 1, ..., Nf , l = 1, ..., Nx, (1.2)

whereNf is the number of scalar components of the vector field,Nx = 4 is the number of dimensions

of space-time X, the derivatives of the field fk,l = ∂fk
∂xl
are treated as the independent variables and

the summation over the repeated index l is assumed.
Any continuous symmetry of the Lagrangian density L is related to a conservation law (Noether,

1918). If the Lagrangian density is invariant with respect to time translation, the energy is con-

served. The invariance of the Lagrangian density under spatial translation leads to conservation

of momentum. If the Lagrangian density is invariant under angular rotation about an axis, the

angular momentum about the same axis is conserved.

To compute the Euler-Lagrange equations, the field is discretized. Then, the physical system

is described using the finite number of model m and data d quantities. The forward theory is a
numerical algorithm which relates the model and data quantities: F(m) = d. The inverse theory
F−1 is a numerical algorithm which relates the data and model quantities: F−1(d) = m.
The study of a physical system can be further divided into four steps.

1) Parametrization (problem statement): Discovery of a set of physical quantities {q1, q2, ...} charac-
terizing the system under study. These quantities are the coordinates of a point q in the abstract qual-
ity manifold Q equipped with a metric tensor g(q). The quantities {q1, q2, ...} = {m1,m2, ..., d1, d2, ...}
consist of the model {m1,m2, ...} and data {d1, d2, ...} quantities. The model {m1,m2, ...} and data
{d1, d2, ...} quantities are the coordinates of the pointsm and d in the modelM and data Dmanifolds,
respectively.

2) Learning (problem of induction): Discovery of the forward theory F which maps the model
quantities into the data quantities: F(m) = d, and discovery of the inverse theory F−1 which maps
the data quantities into the model quantities: F−1(d) = m.
3)Modelling (forward problem): Computing the data quantities d for the given model quantities

m and forward theory F : F(m) = d.
4) Inversion (inverse problem): Inferring the model quantitiesm for the given data quantities d

using the inverse theory F−1: F−1(d) = m.
According to Tarantola (2005), the goal of parametrization is to discover 1) theminimal set of

parameters describing a physical system and 2) the least-dimensional quality manifold. This is a

long-term goal. Keeping in mind an extended full-waveform inversion, it might be practically useful

to consider a higher dimensional, extended quality manifold Qe with more quantities qe required to
describe it.

The quality manifold Q is a metric manifold and has a notion of volume. The volume of any
sub-volume A of Q:

V (A) =

∫
A

dV (1.3)

is independent of a particular choice of a coordinate system overQ. If some coordinates {q1, q2, ..., qn}
are chosen, the volume element is

dV = v(q)dq1dq2...dqn, (1.4)
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where the volume density v(q) in the given coordinates is equal to the square root of the determinant
of the metric tensor g(q):

v(q) =
√

detg(q). (1.5)

The squared distance between the point q with coordinates {q1, q2, ...} and the point with coordi-
nates {q1 + dq1, q2 + dq2, ...} is

ds2 = gij(q)dqidqj , (1.6)

where the summation over the repeated indexes is assumed.

1.2.2 Probabilistic description: measures, information and entropy
"My greatest concern was what to call it.

I thought of calling it ’information,’ but

the word was overly used, so I decided

to call it ’uncertainty.’ When I discussed

it with John von Neumann, he had a

better idea. Von Neumann told me, ’You

should call it entropy, for two reasons.

In the first place your uncertainty

function has been used in statistical

mechanics under that name, so it

already has a name. In the second place,

and more important, no one knows what

entropy really is, so in a debate you will

always have the advantage.’ "

Claude E. Shannon to Myron Tribus

(Tribus and McIrvine, 1971)

Any state of information or subjective degree of believe about the values of the physical quanti-

ties q can be described using the measure, the measure density and the volumetric measure over
the quality manifold Q.
The finite-dimensional quality manifold Q has subsets. A measure over the quality manifold Q

is a non-negative real-valued functionM(A) of any subset A of Q which satisfies two axioms:

1. M(∅) = 0, where ∅ is the empty set.

2. For disjoint subsets A1, A2, ...: M(
⋃
j Aj) = ΣjM(Aj), where

⋃
denotes the union.

The measureM can be zero only where the volume measure V is zero, i.e., the measureM is

absolutely continuous with respect to the volume measure V , where V (A) =
∫
A
dV =

∫
A
v(q)dq.

For any measureM there exists a non-negative2 function m̂(q), called the measure density, and
for any subset A of Q

M(A) =

∫
A

m̂(q)dq. (1.7)

The volumetric measure ism(q) and for any subset A of Q:

M(A) =

∫
A

m(q)v(x)dq. (1.8)

The measure density and the volumetric measure are related via the volume density: m̂(q) =
v(q)m(q). The measure is a dimensionless function. The volumetric measure and the measure
density have physical dimensions.

2Due to the Radon-Nykodim theorem (Tarantola, 2007).
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Apart from the absolutely continuous measures, there exist so-called singular measures. The

state of perfect knowledge on quantity q corresponds to the singular measure. In this case we
definitely know that q = qt. The singular measure density is:

ĥ(q) = δ(q;qt). (1.9)

The singular volumetric measure is

h(q) =
δ(q;qt)

v(q)
. (1.10)

The singular measure is

H(A) =

{
1, qt ⊂ A,
0, qt 6⊂ A.

(1.11)

The state of total ignorance (also known as the reference state of information, null information

or homogeneous state of information) is the uniform volumetric measure:

u(q) = 1. (1.12)

The uniform measure density is

û(q) = v(q), (1.13)

which is not necessarily constant.

The uniform measure of any subset A of Q

U(A) =

∫
A

u(q)v(q)dq =

∫
A

û(q)dq (1.14)

is equal to the volume of the subset A, but it is a dimensionless quantity.
The information (also known as surprisal and self-information) contained in the volumetric

measure σ(q) is

I(σ(q)) = − log σ(q). (1.15)

To simplify the rest of this chapter, I assume that σ(q) ∈ [0, 1] for any q ∈ Q. Then I(σ(q)) ≥ 0 for
any σ(q) and the minimal information is the null information I = 0 corresponding to the uniform
measure u(q) = 1 and the uniform measure density û(q) = v(q).
The information contained in the measure density σ̂(q) is

I(σ̂(q)) = − log
σ̂(q)

v(q)
. (1.16)

The definitions satisfy the equality I(σ(q)) = I(σ̂(q)), but contain the logarithms of a dimensional
quantity.

The entropy is a mathematical expectation of the information

S(σ) =

∫
v(q)σ(q)I(σ(q))dq = −

∫
v(q)σ(q) log σ(q)dq, (1.17)

or equivalently:

S(σ̂) =

∫
σ̂(q)I(σ̂(q))dq = −

∫
σ̂(q) log

σ̂(q)

v(q)
dq. (1.18)
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To get rid of the problem with the logarithms of a dimensional quantity, consider the relative

information contained in σ(q) with respect to u(q):

I(σ(q), u(q)) = − log
σ(q)

u(q)
. (1.19)

The relative information contained in σ̂(q) with respect to û(q) is

I(σ̂(q), û(q)) = − log
σ̂(q)

û(q)
. (1.20)

The relative entropy is a mathematical expectation of relative information:

S(σ, u) =

∫
v(q)σ(q)I(σ(q), u(q))dq = −

∫
v(q)σ(q) log

σ(q)

u(q)
dq, (1.21)

or

S(σ̂, û) =

∫
σ̂(q)I(σ̂(q), û(q))dq = −

∫
σ̂(q) log

σ̂(q)

û(q)
dq. (1.22)

The definitions of relative entropy contain the logarithms of a dimensionless quantity and

S(σ, u) = S(σ̂, û).

1.3 The principle of minimum relative information
The state of information about the values of the physical quantities q is described by the volumetric
measure σ(q) and the measure density σ̂(q) defined over the quality manifold Q. The principle of
maximum entropy provides a rule to assign a measure density using the prior information on the

averaged quantities.

It might happen that only information on a certain non-averaged function of quantity is avail-

able. For this case I propose the principle of minimum relative information: the current state

of knowledge about the values of the physical quantities q corresponds to the minimum relative
information constrained by prior information on the quantity.

Next, I consider two cases. First, the prior information is given in the form of an arbitrary vector

function of quantity. Second, the prior information is given in the form of the two volumetric

measures over the quality manifold, i.e., the prior and theoretical volumetric measures.

1.3.1 The non-averaged value of a vector function of quantity is known
First, I showwhat happens if, instead of the principle ofminimum relative information, the principle

of minimum information is used. The information I(σ(q)) constrained by the prior information
f(q) = a, where f is an arbitrary vector function of q and a is a constant vector, has to be minimal.
The method of Lagrange multipliers gives for any q ∈ Q:

I(σ(q)) + w>(a− f(q)) = 0, (1.23)

with

σ(q) = e−w
>f(q)+w>a, (1.24)

or

I(σ̂(q)) + w>(a− f(q)) = 0, (1.25)

with

σ̂(q) = e−w
>f(q)+w>a. (1.26)
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These formulas cannot be correct because of the improper physical dimensions caused by the

definition of information containing the logarithm of a dimensional quantity.

The principle of minimum relative information solves the problem. The relative informa-

tion I(σ(q), u(q)) constrained by prior information has to be minimal. The method of Lagrange
multipliers gives for any q ∈ Q:

I(σ(q), u(q)) + w>(a− f(q)) = 0, (1.27)

with

σ(q)

u(q)
= e−w

>f(q)+w>a, (1.28)

or

I(σ̂(q), û(q)) + w>(a− f(q)) = 0, (1.29)

with

σ̂(q)

û(q)
= e−w

>f(q)+w>a, (1.30)

where no partition function is involved in contrast to formula (11) in the introduction given by the

principle of maximum entropy with prior information on the averaged quantity. The left and right

sides in formulas (1.28) and (1.30) are dimensionless.

Assume the scalar function f(q) is equal to the energy E(q) or Hamiltonian H(q) of the system.
The principle of minimum relative information constrained by the condition of zero energy or zero

Hamiltonian leads to:

σ(q)

u(q)
=
σ̂(q)

û(q)
= e−wE(q) = e−wH(q). (1.31)

If w = (kBT )−1, where kB is the Boltzmann constant and T denotes the temperature, formula
(1.31) is the starting point for the simulated annealing algorithm (Geman and Geman, 1984; Kirk-

patrick et al., 1983) and for the Hamiltonian Monte Carlo methods (Fichtner et al., 2019; Neal,

2011).

1.3.2 The theoretical and prior measures exist
As previously, I show what happens if, instead of the principle of minimum relative information,

the principle of minimum information is used. The principle of minimum information leads to the

Tarantola-Vallete setting under a very simple constraint. It is sufficient to assume the existence of

the theoretical Θ and prior ρ volumetric measures. The method of Lagrange multipliers gives for
any q ∈ Q

I(σ(q))− w1I(Θ(q))− w2I(ρ(q)) = 0. (1.32)

Then

σ(q) = Θw1(q)ρw2(q) (1.33)

and

σ̂(q) =
Θ̂w1(q)ρ̂w2(q)

vw1+w2−1(q)
, (1.34)

where the choice of weights w1 and w2 is required to specify the setting.

The Tarantola-Valette setting is a consequence of additivity of information with the equal weights

w1 = w2 = 1:

σ(q) = Θ(q)ρ(q) (1.35)
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and

σ̂(q) =
Θ̂(q)ρ̂(q)

v(q)
. (1.36)

The principle of minimum relative information leads to the slightly different formulas under the

same assumptions. The method of Lagrange multipliers gives for any q ∈ Q:

I(σ(q), u(q))− w1I(Θ(q), u(q))− w2I(ρ(q), u(q)) = 0, (1.37)

with

σ(q) =
Θw1(q)ρw2(q)

uw1+w2−1(q)
(1.38)

and

σ̂(q) =
Θ̂w1(q)ρ̂w2(q)

ûw1+w2−1(q)
. (1.39)

The Tarantola-Valette setting corresponds to the equal weights w1 = w2 = 1:

σ(q) =
Θ(q)ρ(q)

u(q)
(1.40)

and

σ̂(q) =
Θ̂(q)ρ̂(q)

û(q)
. (1.41)

The original formula (5) in the introduction for the a-posteriori volumetric measure in the

Tarantola-Valette setting squares the physical dimension of the volumetric measure. The principle

of minimum information with the incorrect logarithms of a dimensional quantity leads to the

original formula.

The principle of minimum relative information solves the problem: the physical dimensions of

the left and right sides in equation (1.40) are the same. The formulas (1.35) and (1.40) do not differ

quantitatively, because u(q) = 1.
The choice of weights w1 + w2 = 1 provides an alternative setting with an interesting interpreta-

tion. The identical states of information Θ(q) = ρ(q) are combined without the change of the state
of information σ(q) = Θ(q) = ρ(q). In general, if w1 + w2 = 1, then

σ(q) = Θw1(q)ρw2(q) (1.42)

and

σ̂(q) = Θ̂w1(q)ρ̂w2(q). (1.43)

In the introduction to this work I proposed to use a square root operation for the idempotent

conjunction ∧ as a consequence of the formulas (1.42) and (1.43).
The principle of minimum relative information always leads to the same formulas for the

volumetric measure normalized by the uniform volumetric measure and for the measure density

normalized by the uniform measure density because

σ(q)

u(q)
=
σ̂(q)

û(q)
. (1.44)

1.4 Quest for the law
The goal of full-waveform inversion is to find the unique governing law of a physical system under

study. I assume the unique governing law exists: there exists the ideal description of a physical
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system and measuring procedure with the finite set of parameters q̂ = {m̂, d̂} and the forward
theory F̂ .
My research hypothesis is the realizability assumption: the law F̂(m̂) explains all subsets of the

measured data parameters d̂o and predicts all subsets of the unmeasured (in the given experiment)
data parameters d̂u, so that F̂(m̂) = d̂, where d̂ = {d̂o, d̂u}.
To find the law, I guess a forward theory Fp and a finite set of parameters qp = {mp,dp}, measure

some of the data parameters do and check the research hypothesis.
To assign the volumetric measure over the model manifold, I use the principle of minimum

relative information constrained by the realizability assumption. Maximization of the obtained

volumetric measure leads to a multiobjective minimization problem with arbitrary misfits.

1.4.1 Realizability assumption: the law predicts all subsets of the data pa-rameters
If the forward theory Fp(m) explains any subset of the measured data parameters do and predicts
any subset of the unmeasured (in the given experiment) data parameters du which form dp = {do,du},
then the point dp in D and the point Fp(m) in D are identical. For any choice of a metric ` the identity
of indiscernibles holds:

`(dp,Fp(m)) = 0 ⇔ dp = F(m). (1.45)

If the data manifold D has Nd dimensions, there exist 2Nd − 1 non-empty subsets of the data
quantities {d1, ..., dNd} which specify the coordinates of the 2Nd − 1 points dkp (k = 1, ..., 2Nd − 1) in

the corresponding 2Nd − 1 data sub-manifolds Dk (k = 1, ..., 2Nd − 1).
For any choice of a metric ` the 2Nd − 1 equalities `(dkp,Fkp (m)) = 0 have to be satisfied. The

principle of minimum relative information constrained by these equalities leads to

σ(m,w)

u(m)
=
σ̂(m,w)

û(m)
= e
−
Nα∑
k=1

wk`(d
k
p,F

k
p (m))

, Nα = 2Nd − 1, (1.46)

where Nα is the number of non-empty subsets of the data quantities. In contrast to the principle of
maximum entropy, where the parameters w can be obtained by differentiating the logarithm of
the partition function (formula (13) in the introduction), the parameters w in formula (1.46) can be
arbitrary.

Instead of using the misfits between all data parameters dp, formula (1.46) can be reduced to
the misfits between the measured data parameters do = {d1, ..., dNo} and Fo(m), where No is the
number of the measured data parameters:

σ(m,w)

u(m)
=
σ̂(m,w)

û(m)
= e
−
Nβ∑
k=1

wk`(d
k
o ,F

k
o (m))

, Nβ = 2No − 1. (1.47)

The realizability assumption leads to the volumetric measure σ(m,w) parametrized with the
arbitrary w = {w1, w2, ...} and arbitrary misfits `. For any fixed parameters w and misfits ` formula
(1.47) can be used to sample the solution in the specified setting.

For example, σ(m,w) can be sampled by the rejection algorithm for the parameters
∑Nβ
k=1 wk � 1

with an arbitrary misfit `. If the samples of the uniform volumetric measure u(m) are generated,
then the rejection algorithm accepts with the probability one as the sample points those points inM
which correspond to the zero misfits. The points inM corresponding to the non-zero misfit `(m)
are accepted with the negligible probability e−w`(m), where w � 1 and `(m) > 0. If all points are
rejected, i.e., if there does not exist even a single pointmo in the model manifold which satisfies

the realizability assumption Fo(mo) = do, then the theory, the model parameters and the data

parameters are inconsistent. In this case the choice of parameters w can be relaxed
∑Nβ
k=1 wk = 1,

then the rejection algorithm accepts the points in the model manifold which are partially consistent

with the theory and observations. In the worse case of zero parameters wk = 0 for k = 1, ..., Nβ

(
∑Nβ
k=1 wk = 0), the volumetric measure σ(m,w) is equal to the uniform volumetric measure u(m),

i.e., the prior information on the theory Fo and observations do is ignored.



Chapter 1. Probabilistic setting 20

If only two data parameters d1o and d
2
o are measured, there exist three non-empty subsets of

the data parameters: {d1o}, {d2o} and {d1o, d2o}. Excluding for simplicity the subset {d1o, d2o}, the para-
metric volumetric measure is σ(m,w) = u(m) exp

(
−w1`(d

1
o,Fo(m))− w2`(d

2
o,Fo(m))

)
. Figure 1.1

schematically illustrates the 2D parametric volumetric measure σ(m,w) for different values of
the weights w1 and w2. If the weights are decreasing simultaneously w1 = w2 → 0, the para-
metric volumetric measure σ(m,w) is becoming more and more uniform u(m). If the weights
are increasing simultaneously w1 = w2 → +∞, the parametric volumetric measure σ(m,w) is
becoming more and more singular. If w1 + w2 = 1, the parametric volumetric measure σ(m,w)
varies from σ(m, w1 = 1, w2 = 0) = u(m) exp

(
−`(d1o,Fo(m)))

)
through σ(m, w1 = 0.5, w2 = 0.5) =

u(m) exp
(
−0.5`(d1o,Fo(m))− 0.5`(d2o,Fo(m))

)
to σ(m, w1 = 0, w2 = 1) = u(m) exp

(
−`(d2o,Fo(m))

)
.

Only if `(d1o,Fo(m)) = `(d2o,Fo(m)) for all m in M, the parametric volumetric measure σ(m,w)
is independent of the choice of parameters w1 and w2 satisfying w1 + w2 = 1.
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FIGURE 1.1: Schematic illustration of the 2D parametric volumetric measure σ(m,w) =
u(m) exp

(
−w1`(d

1
o,Fo(m))− w2`(d

2
o,Fo(m))

)
for different weights w1 and w2.

Entropy, risk and empirical risk minimization
The parametrized relative entropy of σ̂ over the model manifoldM is

S(σ̂, û,w) =

∫
M
û(m)

Nβ∑
k=1

wk`(d
k
o ,Fko (m))e

−
Nβ∑
k=1

wk`(d
k
o ,F

k
o (m))

dm. (1.48)

Formula (1.48) is nothing but a mathematical expectation of the weighted misfit `(w,m) =∑Nβ
k=1 wk`(d

k
o ,Fko (m)):

R(w) =

∫
M
`(w,m)dσ̂(w,m), dσ̂(m,w) = û(m)e−`(w,m)dm, (1.49)

known as the risk function in statistical learning theory (Shalev-Shwartz and Ben-David, 2014).
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The principle of minimum relative information constrained by the realizability assumption

leads to the same expression for the relative entropy and the risk function: S(σ̂, û,w) = R(w).
The risk function (1.49) can be approximated by the empirical risk:

R̂(w) =

Nα∑
k=1

wk`(d
k
p,Fkp (mk)), Nα = 2Nd − 1, (1.50)

wheremk are the sample points of σ̂(m).
The empirical risk minimization with wk = 1/Nα (k = 1, ..., Nα) is the main inductive principle

for learning a theory Fp in the statistical learning theory (Vapnik, 2006, 1992, 2013).

1.4.2 Deterministic criterion: multiobjective optimization
Maximization of the parametrized volumetric measure (1.46) leads to the scalarized multiobjective

minimization problem with the arbitrary misfits

`(m,w) =

Nα∑
k=1

wk`(d
k
p,Fkp (m)), Nα = 2Nd − 1. (1.51)

Many solution concepts exist in non-linear multiobjective optimization (Deb, 2001; Miettinen,

1999). I specify only the non-dominated and strictly-dominated optima.

Non-dominated solutions: mo is a Pareto optimum (efficient or non-dominated point) of a

multiobjective misfit ` = {`1, ..., `Nα} if there does not exist another point ma such that `i(m
a) ≤

`i(m
o) for all i = 1, ..., Nα and `j(m

a) < `j(m
o) for at least one index j = 1, ..., Nα, i.e., there does not

exist another pointma which improves at least one misfit without worsening all the other misfits.

Strictly-dominated solutions: mo
k (k = 1, ..., Nα) is a strictly-dominated optimum of the k-th misfit

`k if there does not exist another modelm
a such that `k(ma) < `k(mo), i.e., every misfit function is

considered individually.

If the definitions are specified in the whole model manifold M, an optimum is global. If the
definitions are specified only in a small neighbourhood ofmo, an optimum is local.

The non-dominated points inM are the points with the highest values of the volumetric measure
(1.47). The global (or local) Pareto optima of the multiobjective minimization problem (1.51) are the

sample points of σ(m,w) in the regions with the highest (or locally highest) values of the volumetric
measure σ(m,w).
If the misfits are conflicting, i.e., the theory, the model parameters and the data parameters are

inconsistent, there does not exist a point in the model manifoldM, so that all misfits become zero
simultaneously. In this case many non-dominated and many strictly-dominated optima exist.

If the misfits are non-conflicting, i.e., the theory, the model parameters and the data parameters

are consistent, all misfits can be zero simultaneously at least at one point of the model manifoldM.

1.5 Solution and uncertainty
If σ(m,w) is sampled, the sample mean and sample covariance matrix (or standard deviation) are
the estimates of the solution and its uncertainty. If N pointsmk (k = 1, ..., N ) inM are sampled, their
sample mean is

〈m〉 =
1

N

N∑
k=1

mk, (1.52)

and their sample covariance matrix is

〈C〉 =
1

(N − 1)

N∑
k=1

(mk − 〈m〉)(mk − 〈m〉)>. (1.53)
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The sample standard deviation is

V =

√√√√ 1

N − 1

N∑
k=1

(mk − 〈m〉)2, (1.54)

where the operations are understood in a component-wise sense.

If the governing law of a physical system is deterministic and the sample mean and sample

covariance matrix (or standard deviation) do not provide an adequate description of the solution

and its uncertainty (for example, if σ(m,w) is multimodal), then the measuring procedure has to be
improved. For the multimodal σ(m,w) the sample points can be divided into the clusters of points
and in each cluster the sample mean and sample standard deviation can be estimated.

The regions corresponding to the significant values of the volumetric measure σ(m,w) can be
sampled by solving the global multiobjective minimization problem (1.47). Unfortunately, it is

computationally intractable. Even solving the local multiobjective minimization problem with

106 − 108 unknown parameters in FWI is computationally expensive.
In chapters 2 and 3 I show that it is sometimes sufficient to find just two-three arbitrary optima of

the local multiobjective minimization problem. Their sample mean and sample standard deviation

are the computationally inexpensive estimates of the solution and uncertainty.

1.6 Summary
I proposed a new probabilistic setting for inverse problems and full-waveform inversion based on

the principle of minimum relative information. In contrast to the principle of maximum entropy,

the prior information is given for non-averaged quantities.

I formulated the quest for the governing law of a physical system using the principle of minimum

relative information and the realizability assumption. According to the realizability assumption,

the governing law explains all subsets of the measured data parameters and predicts all subsets of

the unmeasured (in the given experiment) data parameters. This leads to the parametrized family

of the volumetric measures with the arbitrary parameters w and arbitrary misfits `.
Maximization of the parametric volumetric measure leads to a multiobjective minimization

problem with arbitrary misfits. If the misfits are conflicting, they cannot be zero simultaneously at

any point of the model manifold. Then the theory, the model parameters and the data parameters

are inconsistent and there exist many Pareto optimal solutions which sample the estimate of the

solution and uncertainty in the specified setting. If the misfits are non-conflicting, they can be zero

simultaneously at least at one point of the model manifold. Then the theory, the model parameters

and the data parameters are consistent and the points in the model manifold, corresponding to the

zero misfits, sample the estimate of the solution and uncertainty in the specified setting.

In chapter 2 I illustrate these ideas with the 2D acoustic wave equation for the Marmousi-2

model. In chapter 3 I apply these ideas to real-field data acquired in a marine seismic experiment.
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2.1 Introduction
Under the realizability assumption for any guessed forward theory Fp and parametrization q =
{m,d}, the solution of an inverse problem is the parametric volumetric measure σ(m,w). Maxi-
mization of σ(m,w) leads to a multiobjective minimization problem.
In this chapter I present a simple algorithm of full-waveform inversion in the context of marine

exploration experiments to sample at least a few points in the model manifold according to σ(m,w)
by partially solving the multiobjective minimization problem.

First, I specify the physical system under study: a marine exploration experiment with ocean

bottom cables. Neglecting many phenomena in real Earth, the physical system is described with the

2D time-domain acoustic wave equation solved using a time-domain finite-difference algorithm.

Next, I describe a stochastic single-shot bilevel multiobjective waveform inversion algorithm

(BMWI). As the estimates of the solution and uncertainty I use the samplemean and sample standard

deviation of the model parameters inverted with the different randomized BMWI algorithms. To

estimate the sensitivity of the measuring procedure, I average the initial deviation of the inverted

models over the different starting models.

To test the algorithm, I present a few numerical experiments and provide the sample estimates

of the mean values, standard deviation and initial deviation of the model parameters inverted by

the stochastic single-shot BMWI.

2.2 Setting
2.2.1 Physical system, experimental procedure and continuous description
The main goal of marine seismic exploration experiments is to locate hydrocarbons. The physical

system under study is a 3D marine exploration experiment with ocean bottom cables. The region of

interest here is a part of the Earth which is less than 15× 15× 10 km (x× y × z) in size. An ocean
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bottom cable is around 5-10 km long and contains 4-component receivers every 12.5-50 meters

(usually 25 m) which record 6-12 s (usually 9 s) of data with sampling 1-2 ms. 4-component data

contain 3 components of the vector of particle velocities v(x, t) (or its time derivative) and scalar
pressure p(x, t), where x and t are the space and time coordinates. During an experiment 10-50
cables are placed at the bottom of the ocean at depths 100-5000 m with inter-cable spacing around

100-500 m. Both cable deployment and source shooting are usually performed by a seismic vessel

of length 50-150 m. The air-gun sources are towed behind the seismic vessel and excite air bubbles

in water. A single source contains 3-5 gun strings with 10-20 air-guns in each array with spacing

between air-guns 2-10 m. A single source contains many air-guns and can cover the area 100-500m2.

Each air-gun has approximately cylindrical shape with the length 0.3− 1 m, diameter 0.2− 0.3 m and
weight 20− 100 kg. If the spatial scale of air-guns (roughly 30 m) is relatively small in comparison
with the wavelengths of sound fields, the set of air-guns can be modelled as a spatial point source.

The source directivity function depends entirely on the setup of the gun array: it can be spherical

at low frequencies (less than 20 − 30 Hz) and ellipsoidal at higher frequencies with the shortest
semi-axis in the direction perpendicular to the shot line in the plane of the ocean surface. The

source time function is not known and is usually repeatable for different shots. The recorded data

at frequencies below 3 Hz and above 100 Hz is often noisy and not reliable. The marine exploration
experiment is performed during one or even several months. During that time multi-stage quality

control of the data is performed. Many factors can affect the quality of the data: weather conditions,

other vessels around (fishing activity or other acquisition), ocean fauna (in particular, mammals),

problems with sources and receivers. The raw data contain Ns shot gathers with Nr traces, where
Ns is the number of shots and Nr denotes the number of receivers. The shot gather or seismogram
contains the direct, reflected, refracted and guided waves caused by the spatial variations of elastic

properties of the Earth. To be more precise, the boundaries of the physical system under study

are not known: the system is open and interacts with the other systems. The imperfections of

instruments (receivers and sources) can be sometimes described mathematically, but usually they

are simply neglected.

To describe the experiment above, I use a 2D1 linear isotropic acoustic equation2 with the

spatially-variable sound velocity V (x) and mass density ρ(x), where x ∈ R2

∂2p(x, t)

∂t2
− V 2(x)ρ(x)

∂

∂xk

(
1

ρ(x)

∂p(x, t)

∂xk

)
= s(x, t), (2.1)

where pressure p = p(x, t) is a space- and time-dependent field, s = s(x, t) is the space-time source
of disturbances and the summation over the repeated index k = 1, 2 is assumed.
The forward problem (2.1) is complemented by initial and boundary conditions. The causal

initial condition is p(x, t) = ∂p(x,t)
∂t = 0 for all x at t ≤ 0. At the top of a model a free-surface condition

is assumed: p(xf , t) = 0 for all times at xf corresponding to the free surface. At the left, right and
bottom boundaries the non-reflecting conditions are assumed to mimic a semi-infinite medium.

2.2.2 Numerical forward modeling: time-domain finite differences
To solve the problem (2.1) numerically, consider an equivalent system of the three first-order

equations:

∂vk
∂t

= − 1

ρ(x)

∂p

∂xk
, k = 1, 2, (2.2)

∂p

∂t
= −V 2(x)ρ(x)

∂vk
∂xk

+ ŝ(x, t), (2.3)

where ŝ(x, t) =
∫
s(x, t)dtwith a source term s(x, t) from equation (2.1). The equations (2.2)-(2.3) are

solved using a standard explicit staggered-grid finite-difference method (Virieux, 1986, 1984). The

time axis tn is discretized with n = 1 : Nt and regular spacing dt. The spatial coordinates xl and zk
are discretized with l = 1 : Nx and k = 1 : Nz and spacings dx = dz = dh. The second-order in time
and eight-order in space finite-difference operators are used with the truncation error O(dt2, dh8).

13D FWI of OBC-data is also feasible (Borisov and Singh, 2015; Operto et al., 2015), but is beyond the scope of this work.
2The corresponding Lagrangian density can be found in Ben-Menahem and Singh (1981).
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The accuracy and convergence of the finite-difference algorithm depends strongly on the choice

of dt, dh and the Courant number C = V dt
dh . To keep the grid dispersion minimal, the following

inequality must be satisfied:

dh ≤ Vmin
5fmax

, (2.4)

where Vmin denotes the minimal value of sound velocity in the whole grid and fmax denotes the
maximal frequency content of the fields propagating in the medium.

To avoid instability of the finite-difference algorithm, the temporal sampling must satisfy the

inequality:

dt ≤ 1680dh

2161
√

2Vmax
, (2.5)

where Vmax denotes the maximal value of sound velocity at the whole grid and the specific factors
are related to the choice of the 2 × 8 order Taylor finite-difference operators (Köhn, 2011). The
inequality (2.5) is called the Courant-Friedrichs-Lewy criterion.

To speed the performance of the algorithm, a parallelization by domain decomposition is used

(Bohlen, 2002; Köhn, 2011; Kurzmann, 2012). The CPUs communicate using the Message Passing

Interface (MPI).

At the top of a computational domain the free-surface condition is implemented using the mirror-

ing technique (Levander, 1988). At the left, right and bottom boundaries the unsplit convolutional

perfectly matched layers proposed by Komatitsch and Martin (2007) are used.

As soon as the set of model parametersm (discretized sound velocity V (x) and mass density ρ(x))
and the discretized source term s(x, t) are specified, the data parameters d (discretized pressure
field p(x, t) and particle velocities v1(x, t) and v2(x, t)) can be computed in the whole computational
domain corresponding to the discretized space-time region of interest. The discretized source term

s is not measured in the experiment and can be interpreted as either a part of the data parameters
d or a part of the model parametersm.
For any model parametersm the forward solver F computes the data parameters d:

F(m) = d. (2.6)

The modelled data parameters d can be compared with the observed parameters do using an
arbitrary misfit function `. If the misfit is zero, our guess F(m) is a candidate for the law of the
physical system under study.

If the difference between the data parameters is not zero for any non-empty subset of the data,

then the guessed law is not the law. To falsify F(m), it is already sufficient to falsify it at any subset
of the data.

2.2.3 Stochastic inversion: bilevel multiobjective waveform inversion
Maximization of the probabilistic parametrized solution (1.46) is equivalent to a multiobjective

minimization problem (1.51). If the source time functions s are considered as model parameters,
then the multiobjective problem (1.51) can be reformulated as a bilevel multiobjective problem

with the two types of model parameters s andm: Fo(m, s) = do.
I formulate the bilevel multiobjective waveform inversion (BMWI) as a bilevel multiobjective

least-squares problem (Bard, 1998; Dempe, 2002; Eichfelder, 2010):

min
m,s∈so

`22(do,Fo(m, s)), (2.7)

so = arg min `22(do,Fo(m, s)), (2.8)

where the multiobjective misfit function `22(do,Fo(m, s)) = {`22(d1
o,Fo(m, s1)), ..., `22(dNso ,Fo(m, sNs))}

is formed by the Ns single-shot misfit functions `
2
2(dko ,Fo(m, sk)) (k = 1, ..., Ns) and Ns is the number

of shot gathers.
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The upper-level multiobjective problem (2.7) with respect to s andm has to be optimized only
for those s which optimize the lower-level multiobjective problem (2.8). In other words, we have to
invert form only with the optimal source time functions so.
The corresponding scalarized problem with linear weights is

min
m,s∈so

`(do,Fo(m, s),w) =

Ns∑
k=1

wk`
2
2(dko ,Fo(m, sk)), (2.9)

so = arg min

(
`22(Fo(m, s),w)) =

Ns∑
k=1

wk`
2
2(dko ,m, sk)

)
, (2.10)

where the weighting parameters {w1, ..., wNs} are non-negative and w 6= 0. This scalarized prob-
lem is still the non-linear multiobjective minimization problem (1.51) with respect to the model

parametersm, but considered only for the optimal values of the source time functions.
I use only a single randomly chosen shot gather at each iteration. This reduces the cost of

computing a descent direction and the cross-talks between the different shot gathers appearing

during the summation of gradients of a misfit function. Choosing a single k-th shot gather per
iteration means setting to zero the weights wj corresponding to all other shot gathers j 6= k. I like
the following interpretation of the weight wk: the local parabolic approximation of a step length α
is the estimate of the weight wk.
I use the nested (bilevel) iterative algorithm

mk+1 = mk + αkδk(mk, sk+1), sk+1 = arg min `22(mk, sk), (2.11)

where δk = δk(mk, sk+1) is a descent direction at the k-th iteration and αk is a step length. The initial
modelm0 and the initial source time function s0 are required to start the algorithm. The lower-level
linear least-squares problem (2.8) is solved in the frequency domain for s1 usingm0 and s0 with
a negligible regularization (Pratt, 1999). A solution for the upper-level non-linear least-squares

problem (2.7) is updated bym1 = m0 + α0δ0(m0, s1) using the time-domain wavefields filtered with
a band-pass filter in the frequency domain.

The descent direction δk(mk, sk+1) is a preconditioned gradient of the misfit corresponding to
a single randomly chosen shot gather. The gradient is computed using the adjoint-state method

(Plessix, 2006) and preconditioned by the inverse of the diagonal approximation of the pseudo-

Hessian (Shin et al., 2001) with a negligible regularization. The step length α is estimated using an
adaptive parabolic line search algorithm (Kurzmann, 2012). The described algorithm resembles

the variable projection algorithm for the separable least-squares problem (Golub and Pereyra,

2003, 1973) introduced into the geophysical context by van Leeuwen and Mulder (2009). The key

differences with my work are the single shot gather at each iteration, the adaptive parabolic step

length estimation and the multiscale strategy.

To implement the algorithm, I modified the code developed by Köhn (2011) using some parts

from the code developed by Kurzmann (2012). I use the multiscale strategy using the following

frequency-domain filter: F (f) = (1 − cos(π(f − f1)/(f2 − f1)))/2 for f ∈ [f1, f2], F (f) = 1 − (1 −
cos(π(f − f3)/(f4 − f3)))/2) for f ∈ [f4, f3], F (f) = 1 for f ∈ [f2, f3], F (f) = 0 for f < f1 and f > f4,
where f1, f2, f3 and f4 are the corner frequencies of the filter F (f). In all experiments I set f1 = 1 Hz
and f2 = f3 = f4/2. I convert the time-domain data to the frequency domain using the fast Fourier
transform. I generate the (pseudo-)random sequences of descent directions with the standard

random number generator in C language. The random sequence can be repeated if the same seed is

used.

The computational cost of one nested iteration is five forward modellings only: the source time

function inversion requires one modelling, two modellings are needed to compute the gradient of a

misfit function and the parabolic step length estimation needs two more modellings.

As a stopping criterion I use the maximum run-time proportional to the number of iterations.

2.2.4 Sample estimates of the solution, uncertainty and sensitivity
Due to limited computational resources finding all Pareto optima of the local non-linear multi-

objective minimization problem is impossible in FWI applications with many millions of model

parameters and the today’s computational resources. Even the evaluation of the data misfit for
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the whole data set and checking the optimality conditions are computationally expensive. I will

nowhere in this work check the Pareto optimality. This is expensive and not necessary at all for

pragmatic uncertainty analysis.

Instead, I invert just a few "sample points" inM using the different random sequences of descent
directions in BMWI. If the number of iterations is sufficient to reach a local Pareto front3, then the

inverted models are the sample points of the probabilistic solution (1.46) with the locally highest

values of the volumetric measure. The sample mean and sample standard deviation of these sample

points can be used as the estimates of the solution and uncertainty for the given initial guess and

the given computational resources.

For any initial modelmi the sample mean of the inverted modelsmi
k (k = 1, ..., N , where N is

the total number of the inverted models) is 〈mi〉

〈mi〉 =
1

N

N∑
k=1

mi
k (2.12)

and its mean over the different initial modelsmi (i = 1, ..., Ni)

〈m〉 =
1

NiN

Ni∑
i=1

N∑
k=1

mi
k. (2.13)

To estimate the uncertainty, I calculate the sample standard deviation of the inverted models

with respect to the mean value

Vi =

√√√√ 1

N − 1

N∑
k=1

(mi
k − 〈mi〉)2, (2.14)

and its mean over the different initial modelsmi (i = 1, ..., Ni)

〈V〉 =

√√√√ 1

Ni(N − 1)

Ni∑
i=1

N∑
k=1

(mi
k − 〈mi〉)2, (2.15)

where the operations are understood in a component-wise sense.

To estimate the sensitivity of the measuring procedure, I calculate the sample initial deviation of

the inverted models with respect to the initial modelmi

Si =

√√√√ 1

N

N∑
k=1

(mi
k −mi)2, (2.16)

and its mean over the different initial modelsmi (i = 1, ..., Ni)

〈S〉 =

√√√√ 1

NiN

Ni∑
i=1

N∑
k=1

(mi
k −mi)2, (2.17)

where the operations are understood in a component-wise sense. The Bessel’s correction
N
N−1 is not

required for the sample estimate of the sensitivity.

The multiparameter aspect of FWI is beyond the scope of this work. I estimate only the variances

and ignore the covariances.

2.3 Solution, uncertainty and sensitivity
To estimate the solution, uncertainty and sensitivity with the stochastic single-shot BMWI, I per-

formed a few numerical experiments with the slightly modified Marmousi-2 model (Martin et al.,

3Pareto front is a region in the misfit domain corresponding to the Pareto optima.
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2006): the sound velocity V of the Marmousi-2 model is set to 1250 m/s if V < 1250 m/s as shown
at Figure 2.1. The mass density is spatially homogeneous: ρ = 1000 kg/m3. I generated the pseudo-

observed data using the following wavelet s(t) = 0.75fc sin3(π(t+ td)), if t ∈ [td, td + 1/fc], and s(t) = 0
for all other times, where fc = 11 Hz is the center frequency and td = 0.5 s is a time shift. As an
initial source wavelet in inversion I used s(t) with fc = f3 (the fourth corner frequency of the
band-pass filter) and td = 0 s. In all experiments I set the corner frequencies of the filter to f1 = 1
Hz and f2 = f3 = f4/2. The minimal value of f4 = 4 Hz.

2 4 6 8 10 12 14 16
X, km
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3D
ep

th
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FIGURE 2.1: The model parameters of sound velocity used in the numerical experiments

to generate the pseudo-observed data (Martin et al., 2006).

The spatial grid is 350× 1700 points with a spatial sampling of 10 m, i.e., 3.5× 17 km in size, except
of the experiment in the last subsection where the grid is 500× 1700 points. The recording time is 9
s. The time sampling is 1 ms. I used 12 points as absorbing boundaries.
In the majority of my experiments I used 26 point pressure sources placed at 20m depth between

x = 1 km and x = 16 km with spacing 4s = 600 m and 231 point receivers located at 450 m depth
between x = 0.75 km and x = 16.25 km with spacing4r = 50 m.
When I studied the effect of a lack of observations, I used 16 and 6 point pressure sources placed

at 20 m depth and 121 receivers located at 450 m depth between x = 5.5 km and x = 11.5 km with
the spacing4r = 50 m.
Smoothing and tapers are not applied to the descent directions. Regularization of the precondi-

tioned gradients is negligible with a regularization parameter ε = 10−10.

2.3.1 Inverting the subsets of the model parameters with `2-norms and cycleskipping
I use the stochastic single-shot BMWI to invert the different subsets of the model parameters with

different starting models. I show a few simple examples and highlight the correspondence between

the model and misfit domains.

The convergence of a misfit function evaluated for the whole dataset is rarely shown because

the misfit is always converging if the initial setting is properly chosen. I suggest to show the misfit

values evaluated for the different subsets of the data. Figure 2.2 shows the first 5 iterations of

BMWI in two complementary ways. I used the linear gradient starting model of sound velocity

V1 = 1.25 + 0.57z km/s.
The left sub-figure in Figure 2.2 shows the values of the single-shot misfit functions over the

iterations at different frequency stages (here only the first stage with a maximum frequency of 4

Hz is shown). The length of the black bold line is equal to the decrease of a misfit function during
the parabolic step length estimation: its upper edge corresponds to the value of a misfit function

evaluated after the source time function inversion, the white dot corresponds to the misfit value

evaluated for the model perturbed over the descent direction times the value of an adaptive step

length, and the lower edge (if it does not coincide with the white dot) corresponds to the misfit value

evaluated for the model perturbed over the descent direction times twice the value of the adaptive

step length. If the lower edge of a black bold line coincides with the white dot, the third value of a

misfit is bigger than or equal to the second value of a misfit during the parabolic line search.

The right sub-figure in Figure 2.2 shows the values of the misfits as functions of the shot number.

The size of the dot depends on the number of iterations after which the misfit was evaluated: the

dot corresponding to the misfit value evaluated at the first iteration has the smallest size and the

dot corresponding to the misfit value evaluated at the last iteration has the biggest size.
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FIGURE 2.2: Single-shot `22-misfits: the first 5 iterations with the initial model V1 =
1.25 + 0.57z km/s at the lowest frequency stage with a maximum frequency of 4 Hz.

The single-shot misfit plots in Figure 2.2 provide information about the values of the misfit

functions evaluated at different frequency stages, for different subsets of the data and at different

iterations. These values have to be consistently low if the guessed law F(m) predicts the observed
data do. The fit of seismograms is never shown for all shots because it requires a lot of space, but
the single-shot misfits (or even the misfits evaluated for smaller subsets of the data) can always be

easily shown as illustrated in the following examples.

I run the single-shot BMWI with the two different linear-gradient starting models: V1 = 1.25 +
0.57z km/s and V2 = 1.25 + 0.71z km/s. Figures 2.3a and 2.4a show the initial model, the inverted
model after 880 iterations with two multiscale cycles, and their relative difference. BMWI does

not introduce artefacts everywhere in the model domain and recovers the sound velocity of water.

Figures 2.3b and 2.4b show the single-shot misfit functions. The initial model with a lower gradient

α = 0.57 s−1 of sound velocity leads to consistently lower values of the misfits in the left part of the
computational domain. The initial model with a higher gradient α = 0.71 s−1 of sound velocity leads
to the consistently lower values of the misfits in the right part of the computational domain. The

shot gathers with the higher values of the misfits are located in the areas with the artefacts in the

water layer.

A new starting model was created using the two previously inverted models, see Figure 2.5a.

I cut the left side of the model shown in Figure 2.3a and the right side of the model shown in

Figure 2.4a and combined them without any smoothing. The strong contrast between the left and

rights parts of the model can be seen in the center of the inverted model. The result of inversion is

satisfactory and the single-shot misfits shown in Figure 2.5b have consistently lower values (less

than 0.2) than the misfits shown in Figures 2.3b and 2.4b.

The previous test was repeated with a smoothed version of the initial model as shown in Figure

2.6. I applied a mean filter over a square of size 0.1× 0.1 km. The results of these two experiments
(Figures 2.5 and 2.6), performed with the same random sequences of the descent directions, are

comparable. The strong artificial contrast in the center of the inverted model disappeared because

of the smoothing of the starting model.

The single-shot misfit plots can be used to compare the guessed laws directly in the misfit domain

because they are sensitive even to small variations of the starting model. I ran the single-shot

BMWI with three slightly different starting models obtained by smoothing the true model using a

mean filter over rectangles of size 0.5× 6 km, 0.5× 6.5 km and 0.5× 7 km, respectively. Visually, the
difference between the starting models is negligible (Figures 2.7a, 2.8a and 2.9a). The single-shot

misfit plots (Figures 2.7b, 2.8b and 2.9b) provide a better measure of the quality of the inverted
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FIGURE 2.3: 880 BMWI iterations in the model and misfit domains. The initial model is

V1 = 1.25 + 0.57z km/s. (a) Model domain. (b) Misfit domain.
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FIGURE 2.4: 880 BMWI iterations in the model and misfit domains. The initial model is

V2 = 1.25 + 0.71z km/s. (a) Model domain. (b) Misfit domain.

results: the misfits shown in Figure 2.7b have consistently lower values than those in Figures 2.8b

and 2.9b. The artefacts in the water layer (Figure 2.9a) are located in the same area as the shot

gathers with comparatively high values of misfits shown in Figure 2.9b.

The stochastic single-shot BMWI does not create artefacts everywhere in the model domain.

Different subsets of the model parameters can be inverted with the different starting models. The

subsets of the model parameters corresponding to the consistently lower values of the misfit func-

tions evaluated for the different subsets of the data during the stochastic BMWI can be combined

and smoothed. The obtained model can be used as a new starting model. Comparison of the guessed

laws can be performed directly in the misfit domain using the same random sequence of descent

directions in BMWI.

2.3.2 Difference between the poor and good initial guesses in the model do-main
I have shown that the single-shot misfit functions can be used for indirect evaluation of the quality

of the starting and inverted models. In this subsection I move the analysis entirely into the model

domain without looking at the misfit domain.
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FIGURE 2.5: 880 BMWI iterations in the model and misfit domains. The left part of the

initial model is the left part of the inverted model in Figure 2.3a. The right part of the

initial model is the right part of the inverted model in Figure 2.4a. (a) Model domain.

(b) Misfit domain.
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FIGURE 2.6: 880 BMWI iterations in the model and misfit domains. The initial model is

the initial model shown in Figure 2.5 smoothed with a mean filter over a square of size

0.1× 0.1 km. (a) Model domain. (b) Misfit domain.

The different random sequences of the stochastic single-shot BMWI, started from the same

initial modelm1, provide a set of the inverted models {m1
1,m

1
2, ...}. The sample mean and sample

standard deviation of {m1
1,m

1
2, ...} are the estimates of the solution and uncertainty for the initial

guess F(m1). To illustrate this, I performed numerical experiments with smooth and linear gradient
starting models.

A smooth starting model. The inverted model shown in Figure 2.5a is smoothed with a mean

filter over a square of size 0.1 × 0.1 km and used as a starting model. Figure 2.10 shows the
sample estimates of the mean value, standard deviation and initial deviation of the 2, 3, 5 and

10 models inverted by 880 BMWI iterations. Even only two BMWI runs are sufficient to estimate

the relative uncertainty of the model parameters. The highest values (roughly 150 m/s) of the
standard deviation and the highest values (roughly 1 km/s) of the initial deviation in the left part at
the bottom of the model correspond to the worst resolved area. The standard deviation at depths

greater than 2 km reaches 100 m/s. Increasing the number of sample points smooths the sample
estimates of the uncertainty. The estimate of the solution and uncertainty depends on the number

of performed BMWI iterations as shown in Figure 2.11. The more iterations are performed, the

lower the uncertainty of the model parameters in the upper part of the computational domain.
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FIGURE 2.7: 880 BMWI iterations in the model and misfit domains. The initial model

is the true model smoothed with a mean filter over a rectangle of size 0.5× 6 km. (a)
Model domain. (b) Misfit domain.
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FIGURE 2.8: 880 BMWI iterations in the model and misfit domains. The initial model is

the true model smoothed with a mean filter over a rectangle of size 0.5× 6.5 km. (a)
Model domain. (b) Misfit domain.

The second multiscale cycle has also decreased the standard deviation in the upper part of the

computational domain.

A linear gradient starting model. I used V2 = 1.25 + 0.71z km/s as a starting model. The sample
estimates of the mean value, standard deviation and initial deviation of the 2, 3, 5 and 10 models

inverted by 880 BMWI iterations are shown in Figure 2.12. The uncertainties of parameters inverted

from a linear gradient starting model are much higher than in the previous case with a smooth

starting model. The standard deviation reaches the values 0.5 km/s and the initial deviation is as
high as 1-1.5 km/s at depths greater than 2 km. The area with relatively low uncertainty – the upper
right corner of the model – is localized. Even two runs of the stochastic BMWI are sufficient to

estimate the relative uncertainties of the model parameters. The sample estimates of the solution

and uncertainty depend on the number of performed BMWI iterations as shown in Figure 2.13. The

second multiscale cycle improved the right part of the mean model and decreased the standard

deviation in the upper right part of the model.

The closer the starting model to an optimum, the lower the uncertainty of the model parameters

inverted by BMWI. The examples here suggest that even two different runs of the stochastic single-

shot BMWI can be sufficient to estimate the uncertainty of the inverted model parameters. Even if

the initial model is far away from an optimum, it can be possible to localise at least a subset of the
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FIGURE 2.9: 880 BMWI iterations in the model and misfit domains. The initial model

is the true model smoothed with a mean filter over a rectangle of size 0.5× 7 km. (a)
Model domain. (b) Misfit domain.

model parameters with relatively low uncertainty as shown in Figures 2.12 and 2.13.

2.3.3 Lack of the measured parameters
The performance of FWI depends on the measuring procedure in a wide sense. The stochastic

single-shot BMWI can be used to estimate the uncertainty related to the lack of the observed data.

To illustrate this, I performed a few experiments with 26, 16 and 6 sources and with 15.5 km and 6
km long OBCs4 using three different random sequences of BMWI. The starting model is the true
model smoothed with a mean filter over a rectangle of size 0.5× 6 km.
Figure 2.14 shows the sample estimates of the mean value, standard deviation and initial

deviation of the three inverted models after 880 BMWI iterations for the different numbers of shots

and receivers. The highest quality of the mean value and the lowest uncertainty correspond to the

unrealistic acquisition geometry with 26 sources and 231 receivers (Figure 2.14a). The standard

deviation reaches 0.3-0.4 km/s at depths greater than 2 km. In the more realistic experiment with 6
km long OBC, 121 receivers and 26 sources the sensitivity of the measuring procedure dramatically
decreased in areas which are not covered by the line of receivers (Figure 2.14b). The standard

deviation is minimal in the central semicircle with the radius 3 km equal to half length of the
OBC representing the footprint of the acquisition geometry. The quality of the mean value of

sound velocity in the central semicircle is comparable to the quality of the same parameters in the

experiment with 231 receivers.

With 16 sources and 231 receivers the estimate of the mean value of model parameters is

comparable with the corresponding estimate in the experiment with 26 sources and 231 receivers.

The standard deviation reaches 0.5 km/s in the areas with high contrast of sound velocity at depths
greater than 2 km. Reducing the length of the OBC to 6 km decreased the sensitivity of the measuring
procedure and increased the uncertainty of the model parameters outside the central semicircle.

The quality of the mean value of the model parameters in the central semicircle is slightly reduced

in comparison to the experiment with 231 receivers.

The lowest quality of the mean value corresponds to the worst acquisition geometry with 6

sources, shown in Figures 2.14e and 2.14f. Perhaps the case most interesting and most difficult for

interpretation is the uncertainty estimate in the experiment with 6 sources and 121 receivers.

First and unexpectedly, the values of the standard deviation in the left part of the model in

Figure 2.14f are lower than the corresponding values in the experiment with the 16 sources and 121

receivers shown in Figure 2.14d. The artefacts in the left part of the mean model in Figure 2.14d

are stronger than the artefacts in Figure 2.14f.

4OBC is an ocean bottom cable.
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(a) 2 sample points.
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(b) 3 sample points.
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(c) 5 sample points.
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(d) 10 sample points.

FIGURE 2.10: Sample estimates of the solution, uncertainty and sensitivity for the

different number of sample points obtained after 880 BMWI iterations. The starting

model is shown in Figure 2.6.

Second and also unexpectedly, the values of the standard deviation in the upper left part of the

model in Figure 2.14f are lower than the corresponding values in the experiment with 6 sources

and 231 receivers shown in Figure 2.14e. I give an interpretation of these experiments by analysing

the decrease of the single-shot misfit functions.

A small change of an arbitrary misfit function `k (k = 1, ..., Ns) due to a small change of the model
m in the direction αδm can be linearly5 approximated as

`k(m + αδm)− `k(m) ≈ α ∂`k
∂mj

δmj , k = 1, ..., Ns, (2.18)

where the summation over j = 1, ..., Nm (Nm is the number of model parameters) is assumed
and the descent direction δm = −P∂`n

∂m is estimated using the n-th shot gather (n = 1, ..., Ns), the
preconditioning matrix P is the inverse of the diagonal approximation of the pseudo-Hessian. If
P is a positive semi-definite matrix, then its square root exists: P = PsPs, where Ps is a positive
semi-definite matrix. Then, the change of the misfit (2.18) is equal to −αCkn, where Ckn is the kn-th
component of the cross-sensitivity matrix C, i.e., the Gram matrix of dot products constructed on
the gradients of the single-shot misfit functions preconditioned by Ps:

Ckn = P ljs P
li
s

∂`k
∂mj

∂`n
∂mi

, (2.19)

where the summation over l, j, i = 1, ..., Nm is assumed. If Ckn > 0, the value of the misfit is
decreased. The two preconditioned single-shot gradients for the same set of receivers are positively

5The Taylor’s expansion up to the quadratic term with the perfect preconditioning matrix P equal to the inverse Hessian
does not change the analysis.
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(a) 110 iterations.
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(b) 220 iterations.
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(c) 440 iterations.
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(d) 880 iterations.

FIGURE 2.11: Sample estimates of the solution, uncertainty and sensitivity using three

sample points obtained after different number of BMWI iterations. The starting model

is shown in Figure 2.6.

correlated if the distance between the sources is less than half a wavelength. If Ckn = 0, the misfit is
unchanged, which means that the k-th misfit function is insensitive with respect to the gradient
estimated using the n-th shot gather. If Ckn < 0, the value of the misfit is increased. The two
preconditioned single-shot gradients for the same set of receivers are negatively correlated if the

distance between the sources is less than the wavelength and more than half the wavelength. For

larger distances between the sources, the values of Ckn can take arbitrary values depending on
various factors.

The single-shot BMWI worsens the k-th misfit if Ckn < 0. If the sources and receivers are sparsely
distributed, the cross-sensitivity matrix becomes diagonally dominant and the worsening of the

misfits is reduced. In other words, the inversion results in Figure 2.14f are not better, they were

just less worsened in comparison with the results in Figures 2.14d and 2.14e. This, perhaps, is at

least a partial explanation of the observed results.

2.3.4 Averaging over the starting models
So far I focused on the uncertainties and sensitivities estimated with the same starting model and

with different random sequences of BMWI. Here I illustrate that the averaging of the sample points

inverted from the different starting models also provides the estimates of the uncertainty and

sensitivity even with the same random sequence of descent directions in BMWI. Moreover, the

different starting models are even necessary to estimate the sensitivity of the measuring procedure.

In exploration-scale FWI even the boundaries of the physical system under study are unknown.

The choice of a computational domain and parametrization is non-unique and is constrained by

the available computational resources. If the computational resources are sufficient, I would even
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(a) 2 sample points.
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(b) 3 sample points.
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(c) 5 sample points.
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(d) 10 sample points.

FIGURE 2.12: Sample estimates of the solution, uncertainty and sensitivity for the

different numbers of sample points obtained after 880 BMWI iterations. The linear

gradient starting model is V2 = 1.25 + 0.71z km/s.

recommend to invert the data in the extended computational domain because in this case the

uncertainty and sensitivity plots are almost not affected by the boundaries.

I performed BMWI experiments in a computational domain extended to 5 km depth with three
slightly different linear gradient starting models as shown in Figure 2.15a. Figures 2.15b-2.15f

show the sample estimates of the mean value, standard deviation and initial deviation of the

model parameters inverted by 55, 110, 220, 440 and 880 BMWI iterations. I used the same random

sequences of descent directions: the initial models are the only difference between the BMWI runs.

The areas close to the computational boundaries have the lowest sensitivity. Even 55 single-shot

BMWI iterations provide the estimates of the uncertainty and sensitivity comparable with those

obtained after 880 iterations: the footprint of acquisition geometry is already visible.

The quality of the mean value of the model parameters inverted after 440 and 880 BMWI

iterations is excellent in the central semicircle where the corresponding standard deviation is low.

The second multiscale cycle (between 440 and 880 BMWI iterations) decreased the uncertainty in

the central semicircle, but increased the uncertainty outside the central semicircle.

2.4 Discussion: Higher resolution at lower computational cost?
A descent direction in FWI is a preconditioned gradient of a misfit function. In a homogeneous

medium with sound velocity V and in the far-field of the Green’s functions the gradient of a misfit
∇m`(m(x)) with respect to the model parametersm is a truncated Fourier series (Sirgue and Pratt,
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(a) 110 iterations.

2 4 6 8 10 12 14 16

1

2

3

M
ea

n

2

3

4

2 4 6 8 10 12 14 16

1

2

3S
t. 

de
vi

at
io

n

0

0.2

0.4

2 4 6 8 10 12 14 16
X, km

1

2

3In
. d

ev
ia

tio
n

0

0.5

1

1.5

Z, km km/s

(b) 220 iterations.
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(c) 440 iterations.
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(d) 880 iterations.

FIGURE 2.13: Sample estimates of the solution, uncertainty and sensitivity using three

sample points obtained after different numbers of BMWI iterations. The linear gradient

starting model is V2 = 1.25 + 0.71z km/s.

2004; Virieux and Operto, 2009):

∇m`(m(x)) = −ω2
∑
ω

∑
s

∑
r

<
(

exp

(
− iω
V

(ŝ + r̂) · x
)
4 d(r, s)

)
, (2.20)

where i denotes the imaginary unit, ω = 2πf is the angular frequency, ŝ and r̂ are the unit vectors in
the incident propagation direction and in the inverse scattering direction, respectively, and4d(r, s)
are the data residuals.

The Nyquist-Shannon sampling theorem gives rough estimates for the maximum source 4s
and receiver4r spacing as half the wavelength λ = V

f . Consequently, to avoid aliasing, at higher

frequencies more sources and receivers are required. To suppress aliasing, a descent direction is

often smoothed using various filters. Let NA = 24
λmin

= 24fmax
Vmin

be the sparseness of the data with

4 = max(4s,4r), then in successful FWI applications the sparseness NA does not usually exceed 20
if the smoothing of descent directions is used (Bleibinhaus et al., 2009).

Consider again the results inverted by the single-shot stochastic BMWI presented in Figure 2.14.

I did not smooth the descent directions. In the experiments with 16 and 6 sources the sparseness

is equal to NA = 32 and NA = 80, respectively. These values are computed with 4s because in
the experiments with 231 and 121 receivers 4s > 4r. On the one side, the standard deviation is
different in the experiments with 231 and 121 receivers. Perhaps, the sparseness of the data is

not necessarily a proper measure of the resolution limits. On the other side, the high values of

sparseness NA = 32 and NA = 80 in the experiments with 16 and 6 sources and 231 receivers look
promising given the quality of the results in the experiment with 16 sources.
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In contrast to formula (2.20), in the single-shot stochastic BMWI the gradient of a misfit function

with respect to the model parameters is a truncated Fourier series without the sum over the shots:

∇m`(m(x)) = −ω2
∑
ω

∑
r

<
(

exp

(
− iω
V

(ŝ + r̂) · x
)
4 d(r, s)

)
. (2.21)

Does it mean that the source sampling can be arbitrary? No, the source-related aliasing is

removed from a descent direction, but not excluded from the inverse problem, because the cross-

talks appear during the iterations and depend on the choice of a sequence of descent directions. I

observed the wave-like artefacts at the bottom of the Marmousi model, when instead of a random

sequence of descent directions I used a regular sequence {1, ..., Ns, 1, .., Ns, 1...}.

2.5 Summary
To make probabilistic waveform inversion computationally attractive, I implemented the stochastic

single-shot bilevel multiobjective waveform inversion (BMWI). The main aspects of BMWI are the

variable projections, randomly chosen single shot gather at each iteration, adaptive parabolic line

search and multiscale strategy.

Instead of choosing many samples of the prior uniform distribution over the model manifold,

a few simple linear-gradient starting models can be used to reconstruct the subsets of the model

parameters with relatively small uncertainty. The subsets of the model parameters with relatively

small uncertainty can be combined into a new starting model. Inverting the data using a new

starting model with the different random sequences of BMWI leads to different inverted models, i.e.,

the sample points of the probabilistic solution. The sample mean and sample standard deviation of

these models are the estimates of the solution and uncertainty. The initial deviation of the inverted

models averaged over the different starting models is the estimate of sensitivity of the measuring

procedure.

In chapter 3 I apply the stochastic single-shot BMWI to a real OBC data set acquired in a shallow-

water river delta.
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(a) 26 sources and 231 receivers in 15.5 km OBC.
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(b) 26 sources and 121 receivers in 6 km OBC.
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(c) 16 sources and 231 receivers in 15.5 km OBC.
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(d) 16 sources and 121 receivers in 6 km OBC.
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(e) 6 sources and 231 receivers in 15.5 km OBC.
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(f) 6 sources and 121 receivers in 6 km OBC.

FIGURE 2.14: Sample estimates of the solution, uncertainty and sensitivity using three

sample points obtained after 880 BMWI iterations for different number of sources

and receivers. The initial model is the true model smoothed with the mean filter over

the rectangle 0.5× 6 km. The red stars denote the sources. The white dots denote the
receivers.
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(a) Initial sound velocities.
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(b) Sample estimates after 55 BMWI iterations.

5 10 15

1
2
3
4
5

M
ea

n

2

3

4

5 10 15

1
2
3
4
5

S
t. 

de
vi

at
io

n

0

0.2

0.4

2 4 6 8 10 12 14 16
X, km

1
2
3
4
5

In
. d

ev
ia

tio
n

0

0.5

1

1.5

Z, km km/s

(c) Sample estimates after 110 BMWI iterations.
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(d) Sample estimates after 220 BMWI iterations.
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(e) Sample estimates after 440 BMWI iterations.
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(f) Sample estimates after 880 BMWI iterations.

FIGURE 2.15: Sample estimates of the solution, uncertainty and sensitivity using three

sample points inverted by the different number of BMWI iterations from the three

different linear gradient starting models. The computational domain is extended up to

5 km depth. 26 sources and 121 receivers in the 6 km long OBC are used.
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3.1 Introduction
In this chapter I estimate the governing law of a physical system using field data acquired during

a marine seismic experiment with ocean bottom cables. The experiment was performed in a

shallow-water river delta by an unspecified company.

I use the stochastic single-shot bilevel multiobjective waveform inversion (BMWI) in a 2D

acoustic isotropic finite-difference approximation as described in chapter 2. I perform minimal

data preprocessing (only a new 3D-to-2D transform) and use minimal prior information (the linear

gradient starting models).

With a reasonable computational cost I reconstruct subsurface models which are partially

consistent with the observed data. The inverted models sample the probabilistic solution in the

specified setting. As the estimate of the solution, uncertainty and sensitivity, I compute the sample

estimates of the mean value, standard deviation and initial deviation of the model parameters

inverted by the stochastic single-shot BMWI.

The structure of this chapter is as follows. First, I specify the setting and present a new 3D-to-2D

transform strictly valid for a linear gradient acoustic medium. Then, I estimate the theoretical

uncertainties due to the neglected 3D effects by inverting the data 3D-to-2D transformed with

different values of the velocity gradient. Next, I estimate the uncertainties using the different

random sequences of descent directions in BMWI. My final estimates of the solution, uncertainty

and sensitivity are the averages over the different starting models, different random sequences and

different 3D-to-2D transforms.

I do not give any geological interpretation of the results. This is beyond the scope of my work.

3.2 Setting
The system under study is a physical system including a measuring procedure (experimental,

numerical, technical, computational, algorithmic and formal aspects). Many aspects of the physical

system and the measuring procedure are either unknown or have not been provided by the

acquisition company.
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3.2.1 OBC experiment in a shallow-water river delta
The physical system under study is a seismic marine experiment with ocean bottom cables per-

formed in a shallow-water river delta. The physical system is open and the boundaries of the system

are unknown. Only relative coordinates of the sources and receivers are known as illustrated in

Figure 3.1.

0 2 4 6 8 10 12
X, km

FIGURE 3.1: The acquisition geometry. The red circles denote the sources. The black line

denotes the ocean bottom cable. The boundaries of the physical system are unknown.

I had only a 2D line (6 s long) of the full 3D OBC data set (9 s long) available with a time sampling
of 2ms. The raw data set contains 61 shot gathers acquired with air-guns at around 5-6m depth and
240 hydrophones at a tilted sea floor. The receiver depths are 120-140 m. The receiver spacing is 25
m. The sources covered a range of 12 km. The length of the OBC is 6 km. The known parameters of
acquisition are summarized in Table 3.1.

Parameter Value
Number of shots 61Shot depth 5-6mShot point interval 200mNumber of hydrophones 240Hydrophone depth 122m - 146mHydrophone interval 25mProfile length 12 kmOffsets 118m - 8993mRecord length 6 sSample interval 2msUsable frequency range 3Hz - 230Hz

TABLE 3.1: Parameters of the acquisition geometry.

The physical system is modelled by the 2D acoustic isotropic wave equation discretized by the

time-domain finite-difference algorithm as described in chapter 2. Many physical processes in

the real Earth are neglected, but for the given limited amount of observed data – a 2D line of the

pressure seismograms – it is computationally unreasonable to use a 3D forward solver.

3.2.2 Minimal data preprocessing: a 3D-to-2D transform only
Figure 3.2 shows a few examples of the raw far-offset shot gathers. The shot gather 55 is, perhaps,

the worst one but I use it in the inversion as well. Figure 3.3 shows a few examples of the raw

near-offset shot gathers. The near-offset data have higher signal-to-noise ratio in comparison with

the far-offset data. The one trace in each shot gather is dead.

Muting, denoising, offset- and time-windowing are not used. I use only spline interpolation to

change the data sampling when it is necessary for the finite-difference approximation of the wave

equation. The single dead trace in each shot gather is not used.

The conventional FWI applied to this data set fails with a linear gradient starting model. The

previous attempts to estimate a subsurface model with this data set were performed using a con-

ventional FWI algorithm with a very smooth starting model obtained via a traveltime tomography

and the mass density model estimated via Gardner’s empirical relation (Habelitz, 2017; Kunert et al.,

2016; Kunert, 2015).

To take into account 3D effects in a computationally efficient way, I apply a 3D-to-2D transform

to field data. Under the assumption of a translational symmetry of the physical system along the
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FIGURE 3.2: The raw far-offset shot gathers of pressure data. One trace is dead.
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FIGURE 3.3: The raw near-offset shot gathers of pressure data. One trace is dead.

y-axis, a 3D-to-2D transform of the 3D pressure field p3(x, 0, z, t) into the 2D pressure field p2(x, z, t)
is the time-domain convolution integral p2(x, z, t) =

∫
p3(x, 0, z, t− τ)F (τ)dτ with a kernel F (τ) that

depends on the model parameters of a medium.

The exact time-domain kernel in a homogeneous acoustic medium is given by (Forbriger et al.,

2014):

Fh =
2V τ0H(τ)√
τ (τ + 2τ0)

, (3.1)

where τ0 = r
V , V is the sound speed, r is the source-receiver distance and H denotes the Heaviside

function. The standard time-domain 3D-to-2D transform as "a multiplication with
√
t and convo-

lution with

√
1
t " (Crase et al., 1990; Pica et al., 1990) is a special case of the exact kernel (3.1) for

τ � 2τ0.
I derived the kernel Fg for a 3D-to-2D transform in a linear gradient medium V (z) = V0 +αz with

the sound velocity V0 at zero depth z = 0 and velocity gradient α:

Fg =
α
√
ẑẑ0 sinh(ατ0)H(τ)√

sinh(ατ2 ) sinh
(
α(τ+τ0)

2

) , (3.2)

where τ0 = 1
α acosh

(
x2+ẑ2+ẑ20

2ẑẑ0

)
, ẑ = z + V0

α , x and z are the coordinates of a receiver, x0 = 0 and z0

are the coordinates of the source, sinh denotes the hyperbolic sine and acosh denotes the inverse
hyperbolic cosine. Formula (3.2) is obtained by integrating the well-known analytic solution for

a 3D linear-gradient medium (Kuvshinov and Mulder, 2006; Pekeris, 1946) over the y-axis and by
changing the variable of integration from y to τ . The kernel Fg reduces to Fh, if α goes to zero.
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3.2.3 Bilevel multiobjective waveform inversion
The stochastic single-shot BMWI is applied to the data set. Figure 3.4 shows the data fit at the initial

stage of inversion using the linear gradient starting models for sound velocity V = 1500 + 0.6z m/s
and mass density ρ = 1000 + 0.6z kg/m3: at iteration 13 for shot 52 and at iteration 15 for shot 8. The

field data below 3 Hz are noisy and not reliable.

Shot 52 at iteration 13
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Shot 8 at iteration 15

0

2

4

O
bs

er
ve

d

0

2

4

M
od

el
le

d

2 4 6

0

2

4

R
es

id
ua

l
-1 0 1

Amplitude

2 4 6
Offset, km

-1 0 1

Phase

2

4

2

4

2 4 6

2

4

- - /2 0 /2

t, s f, Hzf, Hz

FIGURE 3.4: The data fit at the lowest frequency stage of BMWI. The field data below 3

Hz are noisy and not reliable. Note, the same colorbar in the range [-1,1] is used for the

frequency-domain amplitudes and frequency-domain residual amplitudes, although

the frequency-domain amplitudes vary only in the range [0,1].

The initial source wavelet is s(t) = 0.75fc sin3(π(t + td)) if t ∈ [td, td + 1/fc], and s(t) = 0 for all
other times, where fc is the center frequency and td is a time shift. I used a free-surface boundary
condition at the top of the computational domain and absorbing layers at the left, right and bottom

of the computational domain simulated by 11 grid points.

The forward modelled pressure fields are saved in memory only at every 10-th time sample and

at every 2-nd point in x- and z-direction.

3.3 Solution, uncertainty and sensitivity
3.3.1 Updating the linear gradient starting models
In the following examples I used only 57 shot gathers (the shot gathers 1, 2, 60 and 61 are not used),

a computational grid of 800 × 2400 points corresponding to 4 × 12 km, spatial interval of 5 m and
the time sampling 0.0007 s. To avoid numerical dispersion and instability of the finite-difference
algorithm, the upper and lower limits for sound velocity are set to Vmax = 3900 m/s and Vmin = 1000
m/s.
I performed four experiments with the linear gradient starting models: V1 = 1300 + 0.65z m/s,

V2 = 1500 + 0.6z m/s, V3 = 1700 + 0.55z m/s and V4 = 1800 + 0.525z m/s, where z is in m. I keep
the same mass density ρ = 1000 + 0.6z kg/m3 in each experiment. In all examples the maximum

value of sound velocity is equal to the upper limit of sound velocity in the computational domain

Vmax = 3900 m/s.
Figures 3.5a, 3.6a, 3.7a and 3.8a show the inverted models after 100 BMWI iterations. If unrealis-

tic high- or low-velocity artefacts arise at the top of the model during the initial stages of inversion

as shown at Figures 3.5a and 3.8a, then the initial estimate of the governing law is falsified and it

does not make any sense to continue inversion.

Figures 3.5b, 3.6b, 3.7b and 3.8b show the corresponding single-shot misfit plots for 450 iterations.

In Figure 3.5b the misfit values evaluated at different frequency stages and different shot gathers

vary in the range 0.25-0.9, i.e., the misfits are conflicting. The misfit values for the shot gathers

16-29 have consistently lower values than the other misfit functions. Figures 3.6b and 3.7b are

the examples of a good choice of a starting model. The misfit values of the data in the frequency

range between 3 and 14 Hz are consistently low. At lower and higher frequencies the values of
the misfits are higher which means that the estimate of the governing law is inconsistent with the
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(a) After 100 BMWI iterations.
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FIGURE 3.5: The model and misfit domains. The initial model is V1 = 1300 + 0.65z m/s.
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(a) After 100 BMWI iterations.
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FIGURE 3.6: The model and misfit domains. The initial model is V2 = 1500 + 0.6z m/s.
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FIGURE 3.7: The model and misfit domains. The initial model is V3 = 1700 + 0.55z m/s.
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FIGURE 3.8: The model and misfit domains. The initial model is V4 = 1800 + 0.525z m/s.

observed data. Figure 3.8b shows a result of a poor choice of the starting model. The misfits are

highly conflicting and the algorithm diverges.

The plots in the model and misfit domains are complementary. The large misfit values for the

shot gathers 30-37 in Figure 3.5b correspond to the artefacts in the model domain between 6 and 8

km in Figure 3.5a. The large misfit values for the shot gathers 12 and 46 in Figure 3.6b correspond
to the artefacts at the top of the model at 3 and 9 km (the edges of the OBC).
The stochastic single-shot BMWI, started with the sound velocities V2 = 1500 + 0.6z m/s and

V3 = 1700 + 0.55z m/s, improved the data fit in the frequency range 3-14 Hz. I use these starting
models for further uncertainty analysis.

3.3.2 The neglected 3D effects estimated by the 3D-to-2D transforms
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FIGURE 3.9: Sample estimates of the solution, uncertainty and sensitivity after 980

BMWI iterations of the data 3D-to-2D-converted with α = 0.001, 0.1, 0.3, 0.5, 0.7, 0.9 and
1.1 s−1

. The full computational domain is shown.



Chapter 3. Real data example 47

To estimate the theoretical uncertainties due to neglected 3D effects in a 2D forward solver, I ap-

plied the stochastic single-shot BMWI to the data sets converted with different 3D-to-2D transforms

using formula (3.2) with various values of the velocity gradient α.
I ran the same random sequence of descent directions in the stochastic single-shot BMWI for the

seven data sets 3D-to-2D-transformed with α = 0.001, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.1 s−1 using the linear
gradient starting models V = 1500 + 0.6z m/s and ρ = 1000 + 0.6z kg/m3.
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(a) 2 sample points: α = 0.001 and 0.7 s−1
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(b) 3 sample points: α = 0.001, 0.5 and 0.7 s−1
.
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(c) 5 sample points: α = 0.001, 0.3, 0.5, 0.7 and 0.9 s−1
.
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(d) 7 sample points: α = 0.001, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.1 s−1
.

FIGURE 3.10: Sample estimates of the solution, uncertainty and sensitivity using the

sound velocities inverted by 980 BMWI iterations of the data 3D-to-2D-converted with

different α. A part of the computational domain is shown.

Figure 3.9 shows the sample estimates of the solution, uncertainty and sensitivity for the sound

velocity and mass density in the full computational domain. I used 980 single-shot BMWI iterations

and all seven data sets. In the water layer the parameters have the highest uncertainty with the

values of the standard deviation up to 40-110 m/s for sound velocity (roughly 3-7 % of the sound
velocity in water) and up to 30-50 kg/m3 for mass density (roughly 5% of the mass density of water).
In the rest of the computational domain the standard deviation does not exceed 10-20m/s for sound
velocity and 10-20 kg/m3 for mass density.

The large values of the initial deviation at the bottom of the model in Figure 3.9 is an indication

that the chosen computational domain is too small. The large values of the initial deviation of

sound velocity and the artefacts in the water layer at the edges of the OBC in Figure 3.9 are related
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to the 3D-to-2D transform of the data. This becomes clear later in the experiments in a larger

computational domain with the two data sets 3D-to-2D transformed differently.

Figures 3.10 and 3.11 show the sample estimates of the solution, uncertainty and sensitivity of

the sound velocity and mass density for different numbers of the sample points obtained after 980

BMWI iterations of the data converted with the different 3D-to-2D transforms. To improve visibility,

I show only a part of the computational domain. The estimates of uncertainty are smoother for the

larger number of sample points. The parameters in the water layer have the highest uncertainty

independent of the number of the sample points. The estimates of the solution and sensitivity are

repeatable for any number of sample points.
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(a) 2 sample points: α = 0.001 and 0.7 s−1
.
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(b) 3 sample points: α = 0.001, 0.5 and 0.7 s−1
.
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(c) 5 sample points: α = 0.001, 0.3, 0.5, 0.7 and 0.9 s−1
.
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(d) 7 sample points: α = 0.001, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.1 s−1
.

FIGURE 3.11: Sample estimates of the solution, uncertainty and sensitivity using the

mass densities inverted by 980 BMWI iterations of the data 3D-to-2D-converted with

different α. A part of the computational domain is shown.

The spatially localised perturbations of sound velocity at depths 0.2-0.3 km have values as low
as 1.1 km/s. A few spatially localised layers of sound velocity at depths 0.6-0.7 km have values less
than 1.5 km/s. The strong contrast of mass density is reconstructed at the bottom of the water layer.
At 0.6 km depth the layer with relatively low values (≈ 1300 kg/m3) of mass density is inverted.

To get a rough estimate of the uncertainty related to the neglected 3D effects, the two sample

points inverted by the stochastic single-shot BMWI are sufficient. For example, the data set can
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be 3D-to-2D-transformed with α → 0 s−1, which is applicable for the direct arrivals in the water,
and with α ≈ 0.55− 0.6 s−1 corresponding to the estimated velocity gradient of the medium (see the
previous subsection), which is appropriate for the diving waves. In the last subsection I perform

these experiments in a larger computational domain with different starting models.

3.3.3 Random sequences of descent directions
To estimate the solution, uncertainty and sensitivity using the sample points inverted by different

random sequences of descent directions in the stochastic single-shot BMWI, I used the field data

3D-to-2D-converted with α = 0.55 s−1 and the linear-gradient starting models V = 1500 + 0.6z m/s
and ρ = 1000 + 0.6z kg/m3.
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FIGURE 3.12: The sample estimates of the solution, uncertainty and sensitivity after 980

BMWI iterations with seven different random sequences of descent directions. The

full computational domain is shown.

Figure 3.12 shows the sample estimates of the solution, uncertainty and sensitivity of the sound

velocity and mass density inverted by 980 single-shot BMWI iterations with seven different random

sequences of descent directions. The standard deviation (roughly 50-60 m/s for sound velocity and
50-60 kg/m3 for mass density) estimated using the different random sequences of descent directions

is higher than the standard deviation (roughly 10-20 m/s for sound velocity and 10-20 kg/m3 for

mass density) estimated using the different 3D-to-2D transformed field data sets computed with the

same stochastic algorithm. The parameters with the highest uncertainty correspond to the water

layer and to the bottom of the computational domain. The high uncertainty and high sensitivity of

the parameters at the bottom of the model in Figure 3.12 is an indication of the small size of the

computational domain.

The dependence of the sample estimates of the solution, uncertainty and sensitivity on the

number of sample points is shown in Figures 3.13 and 3.14 for sound velocity and mass density,

respectively. The larger the number of sample points, the lower the value of the strong perturbations

in the standard deviation and the higher the value of the background standard deviation for both

sound velocity and mass density. Increasing the number of sample points decreases the standard

deviation in the lower parts of the computational domain. The values of the standard deviation

in the upper part of the computational domain are relatively high independent of the number of

sample points, for both sound velocity and mass density. The standard deviation in the water layer

exceeds 100 m/s for sound velocity and 70 kg/m3 for mass density.

Due to the relatively small uncertainties, the estimates of the solution and sensitivity are repeat-

able for any number of sample points and similar to those obtained previously with the data sets

3D-to-2D transformed with various values of the velocity gradient α.
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(a) 2 sample points.
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(b) 3 sample points
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(c) 5 sample points.
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(d) 7 sample points.

FIGURE 3.13: Sample estimates of the solution, uncertainty and sensitivity of sound

velocity using different numbers of sample points inverted by 980 BMWI iterations. A

part of the computational domain is shown.

The initial deviation of sound velocity clearly shows the high-contrast areas and faults. The

sensitivity estimate, given by the initial deviation of the estimated models with respect to the

starting model, is a non-linear image of the subsurface in contrast to a linear image provided by a

seismic reverse-time migration.

Three sample points are sufficient to get an estimate of the uncertainty using different runs of

the stochastic single-shot BMWI. If the computational resources are very limited, just two different

runs of BMWI can be used to get a rough estimate of the uncertainty.

The uncertainties estimated by the different random runs of BMWI are higher than the un-

certainties estimated by the same random sequence of BMWI iterations applied to the data sets

3D-to-2D-transformed with different values of the velocity gradient α.

3.3.4 Averaging over the starting models
To obtain more reliable estimates of the solution, uncertainty and sensitivity, I averaged the results

over the different starting models, the different 3D-to-2D transforms and the different random

sequences of descent directions in BMWI.
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(a) 2 sample points.
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(b) 3 sample points
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(c) 5 sample points.
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(d) 7 sample points.

FIGURE 3.14: Sample estimates of the solution, uncertainty and sensitivity of mass

density using the different number of sample points inverted by 980 BMWI iterations.

A part of the computational domain is shown.

I used all 61 shot gathers, an increased computational grid of 1200× 3000 points corresponding
to 6× 15 km, a spatial interval of 5 m and the time sampling 0.0005 s. To avoid numerical dispersion
and instability of the finite-difference algorithm, the upper and lower limits for sound velocity are

set to Vmax = 5300 m/s and Vmin = 1000 m/s, respectively.
Seven different linear gradient starting models are given in Table 3.2. All starting models have

the same value of the gradient equal to 0.575 s−1 for sound velocity and to 0.575 kg/m−4 for mass
density. The sound velocity models Vk and Vk+1 (k = 1, ..., 6) differ by 50 m/s at any fixed depth. The
mass density models ρk and ρk+1 (k = 1, ..., 6) differ by 150 kg/m3 at any fixed depth.

The raw pressure seismograms were 3D-to-2D-transformed with the kernel 1) Fh strictly valid
for a homogeneous medium with the sound velocity 1500 m/s, and 2) Fg strictly valid for the linear
gradient medium with the sound velocity 1500 m/s at zero depth and the gradient α = 0.575 s−1.
Figures 3.15 and 3.16 show the inverted sample points and the sample estimates of the solution,

uncertainty and sensitivity using the two data sets 3D-to-2D-transformed with the kernels Fh and
Fg, respectively. The sample points of sound velocity and mass density are inverted by different
random sequences of 980 single-shot BMWI iterations using the different starting models described
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Sound velocity, m/s Mass density, kg/m3

V1 = V8 = 1450 + 0.575z ρ1 = ρ8 = 850 + 0.575z

V2 = V9 = 1500 + 0.575z ρ2 = ρ9 = 1000 + 0.575z

V3 = V10 = 1550 + 0.575z ρ3 = ρ10 = 1150 + 0.575z

V4 = V11 = 1600 + 0.575z ρ4 = ρ11 = 1300 + 0.575z

V5 = V12 = 1650 + 0.575z ρ5 = ρ12 = 1450 + 0.575z

V6 = V13 = 1700 + 0.575z ρ6 = ρ13 = 1600 + 0.575z

V7 = V14 = 1750 + 0.575z ρ7 = ρ14 = 1750 + 0.575z

TABLE 3.2: The linear gradient starting models of sound velocity and mass density.

in Table 3.2. The sample points of sound velocity are repeatable in a central semicircle with a

radius of 3 km. The sample points of mass density are very different. The estimates of mass density
are poor. The standard deviation reaches 400-600 kg/m3 even in the central semicircle where the

sensitivity of the measuring procedure with respect to mass density is the highest.

The footprint of the acquisition geometry – the central semicircle with a radius of 3 km equals
half the length of the OBC – is sharply visible in the plots of the standard and initial deviations in

Figures 3.15 and 3.16. We have seen a similar pattern in chapter 2 with the Marmousi-2 model

for the 6 km-long OBC. The uncertainty of sound velocity is the lowest in the central semicircle.
The uncertainty of mass density is the highest in the central semicircle. The sensitivity of the

measuring procedure with respect to both sound velocity and mass density is the highest in the

central semicircle.

Inversion of the data 3D-to-2D transformed with the kernel Fg strictly valid in a linear-gradient
medium leads to higher values of the standard deviation in the central semicircle in comparison to

the values of the standard deviation corresponding to the models inverted from the data 3D-to-2D

transformed with the kernel Fh strictly valid in a homogeneous medium. The sample points of
sound velocity in the case of Fg contain many artefacts in the water layer.
Figure 3.17 shows the sample estimates of the solution, uncertainty and sensitivity using 14,

7 and 3 sample points from Figures 3.15 and 3.16. In all three cases the sample estimates are

comparable.

Figure 3.18 shows the sample estimates of the solution, uncertainty and sensitivity using the

two sample points from Figures 3.15 and 3.16. The sample estimates, based on two sample points,

depend strongly on the choice of the sample points. But the footprint of the acquisition geometry is

still visible.

Figures 3.19 and 3.20 are the zoomed versions of Figures 3.15, 3.16, 3.17 and 3.18. The mean

values of sound velocity are repeatable for any number of sample points. The mean values of mass

density are repeatable if the number of sample points is more than two.

Figure 3.21 shows the averaged normalized and non-normalized relative differences between

the inverted and the initial sound velocities using all 14 sample points from Figures 3.15 and 3.16.

These averaged relative differences are a kind of non-linear structural image of the subsurface in

contrast to the linear images obtained by reverse-time migration algorithms. The faults and the

low-velocity anomalies are clearly visible.

In this subsection I obtained the estimates of the solution, uncertainty and sensitivity averaged

over seven linear-gradient starting models, different random sequences of descent directions in

BMWI and using the field data 3D-to-2D-transformed with two different kernels Fh and Fg. Using
the 2D acoustic finite-difference forward solver, I have shown that the measuring procedure is

sensitive to the parameters of sound velocity and mass density in the central semicircle of radius 3

km. The parameters outside the central semicircle are not falsifiable within the specified setting.
The uncertainty of sound velocity is as low as 50 m/s in the central semicircle. The uncertainty of
mass density is as high as 300-600 kg/m3 in the central semicircle.
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3.4 Summary
I have estimated the governing law of a physical system using a field OBC data set acquired in a

shallow-water river delta by an unspecified company. I used the minimal prior information (the

linear gradient starting models) and minimal data preprocessing (only a 3D-to-2D transform). I

used a 2D acoustic finite-difference forward solver, 980 stochastic single-shot BMWI iterations, the

field data set 3D-to-2D-transformed with different kernels, different linear-gradient starting models

and different random sequences of descent directions.

The inverted model parameters are interpreted as the sample points of the probabilistic solution

to the problem. I estimated the sample mean, standard deviation and initial deviation of the sample

points. These sample estimates of the model parameters for the chosen forward solver are the

estimates of the solution, uncertainty and sensitivity.

I have shown that the measuring procedure is sensitive to the parameters of sound velocity and

mass density in the central semicircle of radius 3 km. The parameters outside the central semicircle
are not falsifiable in the specified setting. The standard deviation of sound velocities in the central

semicircle is, on average, 50 m/s.



Chapter 3. Real data example 54

Sound velocity

2 4

1
2
3
4

V
1

1.5
2
2.5
3
3.5

2 4

1
2
3
4

V
2

1.5
2
2.5
3
3.5

2 4

1
2
3
4

V
3

1.5
2
2.5
3
3.5

2 4

1
2
3
4

V
4

1.5
2
2.5
3
3.5

2 4

1
2
3
4

V
5

1.5
2
2.5
3
3.5

2 4

1
2
3
4

V
6

1.5
2
2.5
3
3.5

2 4 6 8 10
X, km

1
2
3
4

V
7

1.5
2
2.5
3
3.5

Z, km V, km/s
Mass density

2 4

1
2
3
4

1

1000

2000

3000

2 4

1
2
3
4

2

1000

2000

3000

2 4

1
2
3
4

3

1000

2000

3000

2 4

1
2
3
4

4

1000

2000

3000

2 4

1
2
3
4

5
1000

2000

3000

2 4

1
2
3
4

6

1000

2000

3000

2 4 6 8 10
X, km

1
2
3
4

7

1000

2000

3000

Z, km

Sound velocity

2 4 6 8 10

1

2

3

4

M
ea

n

1.5
2
2.5
3
3.5

2 4 6 8 10
X, km

1

2

3

4S
t. 

de
vi

at
io

n

0.05

0.1

0.15

0.2

2 4 6 8 10
X, km

1

2

3

4In
. d

ev
ia

tio
n

0.1

0.2

0.3

0.4

Z, km V, km/s Mass density

2 4 6 8 10

1

2

3

4

M
ea

n

1000

2000

3000

2 4 6 8 10
X, km

1

2

3

4S
t. 

de
vi

at
io

n

200

400

600

2 4 6 8 10
X, km

1

2

3

4In
. d

ev
ia

tio
n

200

400

600

Z, km

FIGURE 3.15: Sample estimates of the solution, uncertainty and sensitivity using the

sample points 1-7 inverted by different sequences of 980 BMWI iterations applied to

the data 3D-to-2D transformed with the kernel Fh.
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FIGURE 3.16: Sample estimates of the solution, uncertainty and sensitivity using the

sample points 8-14 inverted by different sequences of 980 BMWI iterations applied to

the data 3D-to-2D transformed with the kernel Fg and α = 0.575 s−1
.
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(a) 14 sample points: 1-st to 7-th from Figure 3.15 and 8-th to 14-th from Figure 3.16.
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(b) 7 sample points: 1-st, 3-rd, 5-th and 7-th from Figure 3.15 and 9-th, 11-th and 13-th from Figure 3.16.
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(c) 3 sample points: 2-nd and 6-th from Figure 3.15 and 11-th from Figure 3.16.

FIGURE 3.17: Sample estimates of the solution, uncertainty and sensitivity using differ-

ent numbers of sample points from Figures 3.15 and 3.16.
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(a) 2 sample points: 3-rd from Figure 3.15 and 13-th from Figure 3.16.
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(b) 2 sample points: 4-th from Figure 3.15 and 14-th from Figure 3.16.
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(c) 2 sample points: 5-th from Figure 3.15 and 14-th from Figure 3.16.

FIGURE 3.18: Sample estimates of the solution, uncertainty and sensitivity using two

sample points from Figures 3.15 and 3.16.
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(a) 14 sample points: 1-st to 7-th from Figure 3.15 and 8-th to 14-th from Figure 3.16.
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(b) 7 sample points: 1-st to 7-th from Figure 3.15.
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(c) 7 sample points: 8-th to 14-th from Figure 3.16.

FIGURE 3.19: Sample estimates of the solution, uncertainty and sensitivity. A part of the

computational domain is shown.
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(a) 7 sample points: 1-st, 3-rd, 5-th and 7-th from Figure 3.15 and 9-th, 11-th and 13-th from Figure 3.16.
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(b) 3 sample points: 2-nd and 6-th from Figure 3.15 and 11-th from Figure 3.16.
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(c) 2 sample points: 4-th from Figure 3.15 and 14-th from Figure 3.16.

FIGURE 3.20: Sample estimates of the solution, uncertainty and sensitivity. A part of the

computational domain is shown.
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FIGURE 3.21: The averaged normalized and non-normalized relative differences be-

tween the inverted and the initial sound velocities. All N = 14 sample points of sound
velocity were used. Vk denotes the k-th inverted model. V

i
k denotes the k-th starting

model.
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Conclusions
I proposed a new definition of full-waveform inversion as an algorithm (and a part of the measuring

procedure in a wide sense) with the aim to find the governing law of a physical system using the

partially measured physical fields with limited computational resources. This definition clearly sets

the goal and outlines the key problem: the limitations of the measuring procedure. The measuring

procedure in a wide sense includes the experimental procedure, the computational and formal

systems.

The thesis statement was: "To find the governing law, guess a law (a forward solver and

parametrization), measure some data parameters and check the realizability assumption." The

realizability assumption is: the law explains all subsets of the measured data parameters and

predicts all subsets of the unmeasured (in the given experiment) data parameters.

The Bayes’ theorem, the Tarantola-Valette setting and the principle of maximum entropy using

the prior information for the averaged quantities do not allow to formalize the realizability assump-

tion. I proposed a very simple formal system: the principle of minimum relative information using

the prior information for non-averaged quantities.

The principle of minimum relative information constrained by the realizability assumption

leads to the parametric probabilistic solution (volumetric measure)

σ(m,w) = u(m) exp

− Nβ∑
k=1

wk`(d
k
o ,Fko (m))


where w are the arbitrary parameters, ` is an arbitrary misfit function and Nβ is the number of
non-empty subsets of the measured data parameters. In contrast to the Bayes’ theorem and the

Tarantola-Valette setting, the parametric solution here is not well-posed: the different values of

parameters and different misfits lead to different solutions. However, at the pointsm of the model
manifoldM where the realizability assumption holds, the solution σ(m,w) does not depend on the
choice of parameters w and misfits `.
For any fixed parameters w and misfits `, guessed theory F and chosen parametrization q the

volumetric measure σ(m,w) is the solution of the Tarantolian Bayes-Popper problem with minimal
prior information (Tarantola, 2007, 2006b). All sample points generated from the uniform prior

measure u(m) which have not been accepted when considering the exponential term coming from
the realizability assumption, have been falsified.

Maximization of the parametric probabilistic solution σ(m,w) leads to a multiobjective mini-
mization problem

`(m,w) =

Nβ∑
k=1

wk`(d
k
o ,Fko (m)),

where the weighting parametersw andmisfits ` are arbitrary. At the pointsm of the model manifold
M, where the realizability assumption holds, the misfit `(m,w) is zero independently of the choice of
the parameters w and misfits `. At those points the theory, the model parameters and the measured
data parameters are consistent.

If the misfits are conflicting, i.e., the theory, the model parameters and the measured data

parameters are inconsistent, the solution of the multiobjective problem is the Pareto optimal set

formed by the Pareto optima for which there does not exist another point in the model manifold

improving at least one misfit without worsening all the other misfits. The Pareto optima are the

points in the model manifold corresponding to the highest values of the parametric probabilistic

solution σ(m,w).
The research question of this work was: "What are the solution, uncertainty and sensitivity in

full-waveform inversion?" To set the problem of FWI, we guess a theory F , parametrization q, misfit
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`, initial model parametersmi and measure some data parameters do. In this setting I suggest to
solve at least partially a local multiobjective minimization problem. The local Pareto optima are the

sample points of the parametric volumetric measure σ(m,w). The answer to the research question
is: The estimates of the "solution", "uncertainty" and "sensitivity" in FWI are the sample mean,

standard deviation and initial deviation of the sample points inverted by the local multiobjective

FWI. I would perhaps be criticized for the mean values by Albert Tarantola (a proponent of "the

movie strategy"), but I think that if our goal is to find the unique governing law of a physical system

under study, then the averaged simplified description of the solution should be sufficient. Because

if it is an insufficient description for the deterministic governing law, then the measuring procedure

does not allow to find the unique governing law and has to be improved.

In accordance with the no-free-lunch theorems an FWI algorithm has to be adapted to the

problem under study, i.e., to a physical system equipped with a measuring procedure. At least in

the context of marine exploration experiments the stochastic single-shot bilevel multiobjective

waveform inversion (BMWI) performs well with the simplest `2-norm and linear gradient starting
models and does not create artefacts everywhere in the model domain even under cycle-skipped

conditions. This allows to invert different subsets of the model parameters using different starting

models. The algorithm is easily implementable and easily parallelizable over the different random

runs and by domain decomposition. The main ingredients of the algorithm are the single randomly

chosen shot gather per iteration, variable projections, an adaptive parabolic line search, a multiscale

strategy and diagonal preconditioning of the gradient by the pseudo-Hessian with a negligible

regularization.

My experience with BMWI applied to a field data set – a 2D line of pressure data acquired in

a shallow-water river delta with ocean bottom cables – convinced me that the chosen definitions

for the estimates of the solution, uncertainty and sensitivity are reasonable. These estimates of

the uncertainty and sensitivity are non-linear and non-quadratic and sharply highlight a footprint

of the acquisition geometry related to the 6 km long ocean bottom cable. Although a very simple
idea, the averaging over the different starting models provides indeed more reliable estimates of

the solution, uncertainty and sensitivity. The repeatable values of sound velocity in the central

semicircle inverted using seven different linear gradient starting models, two differently 3D-to-

2D-transformed field data sets and fourteen different random sequences of descent directions,

demonstrate the potential of BMWI in a simplified setting. The further studies on BMWI will clarify

its domain of applicability.
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[134] Plessix, R.-É., Milcik, P., Rynja, H., Stopin, A., Matson, K., and Abri, S. “Multiparameter full-

waveform inversion: Marine and land examples”. In: The Leading Edge 32.9 (2013), pp. 1030–

1038. DOI: 10.1190/tle32091030.1.
[135] Pratt, R. G. “Inverse Theory Applied to Multi-Source Cross-Hole Tomography. Part 2: Elastic

wave-equation method”. In: Geophysical Prospecting 38.3 (1990), pp. 311–329. DOI: 10.1111/
j.1365-2478.1990.tb01847.x.

[136] Pratt, R. G. “Medical ultrasound tomography: lessons from exploration geophysics”. In: Pro-

ceedings of the International Workshop on Medical Ultrasound Tomography: 1.-3. Nov. 2017,

Speyer, Germany. KIT Scientific Publishing. 2018, p. 65. DOI: 10.5445/KSP/1000071328.
[137] Pratt, R. G. “Seismic waveform inversion in the frequency domain, Part 1: Theory and

verification in a physical scale model”. In: Geophysics 64.3 (1999), pp. 888–901. DOI: 10.
1190/1.1444597.

[138] Pratt, R. G. and Shipp, R. M. “Seismic waveform inversion in the frequency domain, Part 2:

Fault delineation in sediments using crosshole data”. In: Geophysics 64.3 (1999), pp. 902–914.

DOI: 10.1190/1.1444598.
[139] Pratt, R. G. and Worthington, M. H. “Inverse Theory Applied to Multi-Source Cross-Hole

Tomography. Part 1: Acoustic Wave-Equation Method”. In: Geophysical Prospecting 38.3

(1990), pp. 287–310. DOI: 10.1111/j.1365-2478.1990.tb01846.x.
[140] Pratt, R. G., Shin, C., and Hick, G. “Gauss–Newton and full Newton methods in frequency–

space seismic waveform inversion”. In: Geophysical Journal International 133.2 (1998),

pp. 341–362. DOI: 10.1046/j.1365-246X.1998.00498.x.
[141] Pratt, R. G., Huang, L., Duric, N., and Littrup, P. “Sound-speed and attenuation imaging of

breast tissue using waveform tomography of transmission ultrasound data”. In: Proceedings

SPIE 6510, Medical Imaging: Physics of Medical Imaging. 2007. DOI: 10.1117/12.708789.
[142] Pratt, R. G., Song, Z.-M., Williamson, P., and Warner, M. “Two-dimensional velocity models

from wide-angle seismic data by wavefield inversion”. In: Geophysical Journal International

124.2 (1996), pp. 323–340. DOI: 10.1111/j.1365-246X.1996.tb07023.x.
[143] Press, F. “Earth models obtained by Monte Carlo Inversion”. In: Journal of Geophysical

Research 73.16 (1968), pp. 5223–5234. DOI: 10.1029/JB073i016p05223.

http://dx.doi.org/10.1111/1365-2478.12058
http://dx.doi.org/10.1111/1365-2478.12058
https://press.princeton.edu/titles/5527.html
https://press.princeton.edu/titles/5527.html
http://dx.doi.org/10.1121/1.1916366
http://dx.doi.org/10.1190/1.1442836
http://dx.doi.org/10.1190/1.1442836
http://dx.doi.org/10.1111/j.1365-246X.2006.02978.x
http://dx.doi.org/10.1190/1.3211198
http://dx.doi.org/10.1111/j.1365-246X.2011.04957.x
http://dx.doi.org/10.1111/j.1365-2478.2011.01036.x
http://dx.doi.org/10.1111/j.1365-2478.2011.01036.x
http://dx.doi.org/10.1190/tle32091030.1
http://dx.doi.org/10.1111/j.1365-2478.1990.tb01847.x
http://dx.doi.org/10.1111/j.1365-2478.1990.tb01847.x
http://dx.doi.org/10.5445/KSP/1000071328
http://dx.doi.org/10.1190/1.1444597
http://dx.doi.org/10.1190/1.1444597
http://dx.doi.org/10.1190/1.1444598
http://dx.doi.org/10.1111/j.1365-2478.1990.tb01846.x
http://dx.doi.org/10.1046/j.1365-246X.1998.00498.x
http://dx.doi.org/10.1117/12.708789
http://dx.doi.org/10.1111/j.1365-246X.1996.tb07023.x
http://dx.doi.org/10.1029/JB073i016p05223


BIBLIOGRAPHY 71

[144] Ravaut, C., Operto, S., Improta, L., Virieux, J., Herrero, A., and Dell’Aversana, P. “Multiscale

imaging of complex structures from multifold wide-aperture seismic data by frequency-

domain full-waveform tomography: application to a thrust belt”. In: Geophysical Journal

International 159.3 (2004), p. 1032. DOI: 10.1111/j.1365-246X.2004.02442.x.
[145] Rawlinson, N., Fichtner, A., Sambridge, M., and Young, M. K. “Chapter One – Seismic To-

mography and the Assessment of Uncertainty”. In: ed. by R. Dmowska. Vol. 55. Advances in

Geophysics. Elsevier, 2014, pp. 1 –76. DOI: 10.1016/bs.agph.2014.08.001.
[146] Sambridge, M. and Mosegaard, K. “Monte Carlo methods in geophysical inverse problems”.

In: Reviews of Geophysics 40.3 (2002), pp. 3–1–3–29. DOI: 10.1029/2000RG000089.
[147] Scales, J. A. and Snieder, R. “The anatomy of inverse problems”. In: Geophysics 65.6 (2000),

pp. 1708–1710. DOI: 10.1190/geo2000-0001.1.
[148] Sears, T., Singh, S., and Barton, P. “Elastic full waveform inversion of multi-component OBC

seismic data”. In: Geophysical Prospecting 56.6 (2008), pp. 843–862. DOI: 10.1111/j.1365-
2478.2008.00692.x.

[149] Shalev-Shwartz, S. and Ben-David, S. Understanding Machine Learning: From Theory to

Algorithms. New York: Cambridge University Press, 2014. ISBN: 1107057132, 9781107057135.

DOI: 10.1017/CBO9781107298019.
[150] Shin, C., Jang, S., and Min, D.-J. “Improved amplitude preservation for prestack depth

migration by inverse scattering theory”. In: Geophysical Prospecting 49.5 (2001), pp. 592–606.

DOI: 10.1046/j.1365-2478.2001.00279.x.
[151] Shore, J. and Johnson, R. “Axiomatic derivation of the principle of maximum entropy and

the principle of minimum cross-entropy”. In: IEEE Transactions on Information Theory 26.1

(1980), pp. 26–37. DOI: 10.1109/TIT.1980.1056144.
[152] Sirgue, L. and Pratt, R. G. “Efficient waveform inversion and imaging: A strategy for selecting

temporal frequencies”. In: Geophysics 69.1 (2004), pp. 231–248. DOI: 10.1190/1.1649391.
[153] Smithyman, B., Pratt, R. G., Hayles, J., and Wittebolle, R. “Detecting near-surface objects

with seismic waveform tomography”. In: Geophysics 74.6 (2009), WCC119–WCC127. DOI:

10.1190/1.3223313.
[154] Stuart, A. M. “Inverse problems: A Bayesian perspective”. In: Acta Numerica 19 (2010),

451–559. DOI: 10.1017/S0962492910000061.
[155] Sun, W. and Fu, L.-Y. “Two effective approaches to reduce data storage in reverse time

migration”. In: Computers & Geosciences 56 (2013), pp. 69 –75. DOI: 10.1016/j.cageo.2013.
03.013.

[156] Symes, W. W. “Algorithmic aspects of extended waveform inversion”. In: 77th EAGE Confer-

ence and Exhibition - Workshops. 2015. DOI: 10.3997/2214-4609.201413492.
[157] Symes, W. W. “Extended Waveform Inversion”. In: 79th EAGE Conference and Exhibition -

Workshops. 2017. DOI: 10.3997/2214-4609.201701711.
[158] Symes,W.W. “Migration velocity analysis andwaveform inversion”. In:Geophysical Prospect-

ing 56.6 (2008), pp. 765–790. DOI: 10.1111/j.1365-2478.2008.00698.x.
[159] Symes, W. W. “Reverse time migration with optimal checkpointing”. In: Geophysics 72.5

(2007), SM213–SM221. DOI: 10.1190/1.2742686.
[160] Symes, W. W. “The seismic reflection inverse problem”. In: Inverse Problems 25.12 (2009),

p. 123008. DOI: 10.1088/0266-5611/25/12/123008.
[161] Takougang, E. M. T. and Calvert, A. J. “Application of waveform tomography to marine

seismic reflection data from the Queen Charlotte Basin of western Canada”. In: Geophysics

76.2 (2011), B55–B70. DOI: 10.1190/1.3553478.
[162] Tarantola, A. “A strategy for nonlinear elastic inversion of seismic reflection data”. In:

Geophysics 51.10 (1986), pp. 1893–1903. DOI: 10.1190/1.1442046.
[163] Tarantola, A. Elements for physics: quantities, qualities, and intrinsic theories. Springer Science

& Business Media, 2006. DOI: 10.1007/978-3-540-31107-2.
[164] Tarantola, A. Inverse problem theory and methods for model parameter estimation. Vol. 89.

SIAM, 2005. DOI: 10.1137/1.9780898717921.

http://dx.doi.org/10.1111/j.1365-246X.2004.02442.x
http://dx.doi.org/10.1016/bs.agph.2014.08.001
http://dx.doi.org/10.1029/2000RG000089
http://dx.doi.org/10.1190/geo2000-0001.1
http://dx.doi.org/10.1111/j.1365-2478.2008.00692.x
http://dx.doi.org/10.1111/j.1365-2478.2008.00692.x
http://dx.doi.org/10.1017/CBO9781107298019
http://dx.doi.org/10.1046/j.1365-2478.2001.00279.x
http://dx.doi.org/10.1109/TIT.1980.1056144
http://dx.doi.org/10.1190/1.1649391
http://dx.doi.org/10.1190/1.3223313
http://dx.doi.org/10.1017/S0962492910000061
http://dx.doi.org/10.1016/j.cageo.2013.03.013
http://dx.doi.org/10.1016/j.cageo.2013.03.013
http://dx.doi.org/10.3997/2214-4609.201413492
http://dx.doi.org/10.3997/2214-4609.201701711
http://dx.doi.org/10.1111/j.1365-2478.2008.00698.x
http://dx.doi.org/10.1190/1.2742686
http://dx.doi.org/10.1088/0266-5611/25/12/123008
http://dx.doi.org/10.1190/1.3553478
http://dx.doi.org/10.1190/1.1442046
http://dx.doi.org/10.1007/978-3-540-31107-2
http://dx.doi.org/10.1137/1.9780898717921


BIBLIOGRAPHY 72

[165] Tarantola, A. Inverse problem theory: Methods for data fitting andmodel parameter estimation.

1st ed. Vol. 613. Available at http://www.ipgp.fr/~tarantola/Files/Professional/
Papers_PDF/InverseProblemTheory.pdf. 1987.

[166] Tarantola, A. “Inversion of seismic reflection data in the acoustic approximation”. In: Geo-

physics 49.8 (1984), pp. 1259–1266. DOI: 10.1190/1.1441754.
[167] Tarantola, A.Mapping of Probabilities: Theory for the Interpretation of Uncertain Physical

Measurements (unfinished book). Available at http://www.ipgp.fr/~tarantola/Files/
Professional/Books/MappingOfProbabilities.pdf. 2007.

[168] Tarantola, A. “Popper, Bayes and the inverse problem”. In: Nature physics 2.8 (2006), pp. 492–

494. DOI: 10.1038/nphys375.
[169] Tarantola, A. “Theoretical background for the inversion of seismic waveforms including

elasticity and attenuation”. In: Pure and Applied Geophysics 128.1-2 (1988), pp. 365–399. DOI:

10.1007/BF01772605.
[170] Tarantola, A. and Valette, B. “Generalized nonlinear inverse problems solved using the

least squares criterion”. In: Reviews of Geophysics 20.2 (1982), pp. 219–232. DOI: 10.1029/
RG020i002p00219.

[171] Tarantola, A. and Valette, B. “Inverse problems = Quest for information”. In: Journal of

Geophysics (1982). Available at http://www.ipgp.jussieu.fr/~tarantola/Files/
Professional/Papers_PDF/IP_QI_original.pdf., pp. 159–170.

[172] ten Kroode, F., Bergler, S., Corsten, C., de Maag, J. W., Strijbos, F., and Tijhof, H. “Broadband

seismic data – The importance of low frequencies”. In: Geophysics 78.2 (2013), WA3–WA14.

DOI: 10.1190/geo2012-0294.1.
[173] Thurin, J, Brossier, R, and Métivier, L. “Ensemble-based uncertainty estimation in full

waveform inversion”. In: 79th EAGE Conference and Exhibition. 2017. DOI: 10.3997/2214-
4609.201701007.

[174] Thurin, J., Brossier, R., andMétivier, L. “An ensemble-transformKalman filter: Full-waveform

inversion scheme for uncertainty estimation”. In: SEG Technical Program Expanded Abstracts.

2017, pp. 1307–1313. DOI: 10.1190/segam2017-17733053.1.
[175] Tikhonov, A. N. “On the solution of ill-posed problems and the method of regularization”.

In: Doklady Akademii Nauk. Vol. 151. 3. Available at http://www.mathnet.ru/links/
9afd901ed0d325bbe16fed7cb09150f5/dan28329.pdf. Soviet Academy of Sciences. 1963,
pp. 501–504.

[176] Tribus, M. and McIrvine, E. C. “Energy and information”. In: Scientific American 225.3 (1971),

pp. 179–190. DOI: 10.1038/scientificamerican0971-179.
[177] Tromp, J., Tape, C., and Liu, Q. “Seismic tomography, adjoint methods, time reversal and

banana-doughnut kernels”. In: Geophysical Journal International 160.1 (2005), pp. 195–216.

DOI: 10.1111/j.1365-246X.2004.02453.x.
[178] Ulrych, T. and Sacchi, M. Information-Based Inversion and Processing with Applications.

Handbook of Geophysical Exploration: Seismic Exploration. Elsevier Science, 2005. ISBN:

9780080461342. DOI: 10.1016/s0950-1401(05)x8001-6.
[179] van Leeuwen, T. and Herrmann, F. J. “Fast waveform inversion without source-encoding”. In:

Geophysical Prospecting 61 (2013), pp. 10–19. DOI: 10.1111/j.1365-2478.2012.01096.x.
[180] van Leeuwen, T. and Herrmann, F. J. “Mitigating local minima in full-waveform inversion by

expanding the search space”. In: Geophysical Journal International 195.1 (2013), pp. 661–667.

DOI: 10.1093/gji/ggt258.
[181] van Leeuwen, T. and Mulder, W. A. “A correlation-based misfit criterion for wave-equation

traveltime tomography”. In: Geophysical Journal International 182.3 (2010), pp. 1383–1394.

DOI: 10.1111/j.1365-246X.2010.04681.x.
[182] van Leeuwen, T. and Mulder, W. A. “A variable projection method for waveform inversion”.

In: 71st EAGE Conference and Exhibition incorporating SPE EUROPEC. 2009. DOI: 10.3997/
2214-4609.201400381.

http://www.ipgp.fr/~tarantola/Files/Professional/Papers_PDF/InverseProblemTheory.pdf
http://www.ipgp.fr/~tarantola/Files/Professional/Papers_PDF/InverseProblemTheory.pdf
http://dx.doi.org/10.1190/1.1441754
http://www.ipgp.fr/~tarantola/Files/Professional/Books/MappingOfProbabilities.pdf
http://www.ipgp.fr/~tarantola/Files/Professional/Books/MappingOfProbabilities.pdf
http://dx.doi.org/10.1038/nphys375
http://dx.doi.org/10.1007/BF01772605
http://dx.doi.org/10.1029/RG020i002p00219
http://dx.doi.org/10.1029/RG020i002p00219
http://www.ipgp.jussieu.fr/~tarantola/Files/Professional/Papers_PDF/IP_QI_original.pdf
http://www.ipgp.jussieu.fr/~tarantola/Files/Professional/Papers_PDF/IP_QI_original.pdf
http://dx.doi.org/10.1190/geo2012-0294.1
http://dx.doi.org/10.3997/2214-4609.201701007
http://dx.doi.org/10.3997/2214-4609.201701007
http://dx.doi.org/10.1190/segam2017-17733053.1
http://www.mathnet.ru/links/9afd901ed0d325bbe16fed7cb09150f5/dan28329.pdf
http://www.mathnet.ru/links/9afd901ed0d325bbe16fed7cb09150f5/dan28329.pdf
http://dx.doi.org/10.1038/scientificamerican0971-179
http://dx.doi.org/10.1111/j.1365-246X.2004.02453.x
http://dx.doi.org/10.1016/s0950-1401(05)x8001-6
http://dx.doi.org/10.1111/j.1365-2478.2012.01096.x
http://dx.doi.org/10.1093/gji/ggt258
http://dx.doi.org/10.1111/j.1365-246X.2010.04681.x
http://dx.doi.org/10.3997/2214-4609.201400381
http://dx.doi.org/10.3997/2214-4609.201400381


BIBLIOGRAPHY 73

[183] van Leeuwen, T., Aravkin, A. Y., and Herrmann, F. J. “Seismic Waveform Inversion by

Stochastic Optimization”. In: International Journal of Geophysics (2011), pp. 1 –18. DOI:

10.1155/2011/689041.
[184] Vapnik, V. Estimation of dependences based on empirical data. Springer Science & Business

Media, 2006. DOI: 10.1007/0-387-34239-7.
[185] Vapnik, V. “Principles of risk minimization for learning theory”. In: Advances in Neural

Information Processing Systems. Available at https://pdfs.semanticscholar.org/
9642/a175637a400b425f0ac0cb6a2b067cc8fe6b.pdf. 1992, pp. 831–838.

[186] Vapnik, V. The nature of statistical learning theory. Springer Science & Business Media, 2013.

DOI: 10.1007/978-1-4757-3264-1.
[187] Virieux, J. “P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference

method”. In: Geophysics 51.4 (1986), pp. 889–901. DOI: 10.1190/1.1442147.
[188] Virieux, J. “SH-wave propagation in heterogeneous media: Velocity-stress finite-difference

method”. In: Geophysics 49.11 (1984), pp. 1933–1942. DOI: 10.1190/1.1441605.
[189] Virieux, J. and Operto, S. “An overview of full-waveform inversion in exploration geophysics”.

In: Geophysics 74.6 (2009), WCC1–WCC26. DOI: 10.1190/1.3238367.
[190] Virieux, J., Asnaashari, A., Brossier, R., Métivier, L., Ribodetti, A., and Zhou, W. “An intro-

duction to full waveform inversion”. In: Encyclopedia of Exploration Geophysics. Society of

Exploration Geophysicists, 2017. DOI: 10.1190/1.9781560803027.entry6.
[191] Warner, M. and Guasch, L. “Adaptive waveform inversion: Theory”. In: Geophysics 81.6

(2016), R429–R445. DOI: 10.1190/geo2015-0387.1.
[192] Warner, M., Ratcliffe, A., Nangoo, T., Morgan, J., Umpleby, A., Shah, N., Vinje, V., Štekl, I.,
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