Integral energy budgets in turbulent channels with and without drag reduction

Davide Gatti, M. Quadrio, Y. Hasegawa
B. Frohnapfel and A. Cimarelli
Today’s goal

“how do dissipation and production of turbulent kinetic energy relate to turbulent friction drag?”
Today’s goal

“how do dissipation and production of turbulent kinetic energy relate to turbulent friction drag?”

Reynolds decomposition
\[u = \langle u \rangle + u' \]

turbulent ϵ + mean ϕ
dissipation rate

Π_p
pumping power

turbulent production
Today’s goal

“how do dissipation and production of turbulent kinetic energy relate to turbulent friction drag in drag-reduced flows?”

Seemingly trivial, nontrivial problem!

Example turbulent dissipation in drag-reduced flow:

- Ricco et al., JFM (2012): it increases
- Agostini, et al., JFM14: it decreases
Constant Power Input (CPI)
Constant Power Input (CPI)

Definitions and characteristic quantities

- Total power Π_t is kept constant: $\Pi_t = \Pi_p + \Pi_c$
 - Control power $\Pi_c = \gamma \Pi_t$
 - Pumping power $\Pi_p = (1 - \gamma) \Pi_t$

- „Drag reduction“ increases flow rate: $U_b/U_{b,0} > 1$

- A power-based velocity scale:
 $$U_\Pi = \sqrt{\frac{\Pi_t h}{3\mu}}$$

 “The Stokes flow minimizes the power consumption for given flow rate”
 Bewley (JFM, 2009), Fukagata et al. (Physica D, 2009)

- A power-based Reynolds number:
 $$Re_\Pi = \frac{U_\Pi h}{\nu}$$
 Hasegawa, Frohnapfel, Quadrio (JFM, 2009)
The wind of turbulence
The “wind decomposition” of turbulence
A triple decomposition with analytical advantages Eckhardt et al, JFM 2007

\[u = \langle u \rangle + u' \]
The “wind decomposition” of turbulence
A triple decomposition with analytical advantages Eckhardt et al, JFM 2007

\[u = U_\ell + U_\Delta + u' \]
Production and mean dissipation

Mean dissipation decouples!

\[P = P_\ell + P_\Delta \]

\[\phi = \phi_\ell + \phi_\Delta + \phi_\ell_\Delta \]
Analytical derivations
A fair amount of cumbersome algebra

[This page intentionally left blank.]

D. Gatti et al., J. Fluid Mech. (submitted)
The new description

pumping power Π_p

MKE

TKE
The new description

Davide Gatti – Energy transfer rates in turbulent channels with drag reduction

- laminar dissipation \(\phi_\ell \)
- laminar production \(P_\ell \)
- pumping power \(\Pi_p \)

MKE \rightarrow TKE
The new description

pumping power Π_p

laminar dissipation ϕ_{ℓ}

control power Π_c

MKE

laminar production P_{ℓ}

TKE
The new description

- Pumping power Π_p
- Laminar dissipation ϕ_ℓ
- Control power Π_c
- Laminar production \mathcal{P}_ℓ
- Production by deviation $-\mathcal{P}_\Delta$
- Turbulent dissipation ϵ

Davide Gatti – Energy transfer rates in turbulent channels with drag reduction
The new description

pumping power Π_p

laminar dissipation ϕ_ℓ

control power Π_c

MKE

laminar production \mathcal{P}_ℓ

dissipation by deviation $\phi_\Delta = -\mathcal{P}_\Delta$

production by deviation $-\mathcal{P}_\Delta$

TKE

turbulent dissipation ϵ

Davide Gatti – Energy transfer rates in turbulent channels with drag reduction
Two integrals of the turbulent shear stress

Via FIK-like derivations, it is discovered that α and β parametrize all the fluxes

$$\alpha = \int_0^1 (1 - y)r(y)\,dy$$

$$\beta = \int_0^1 r^2(y)\,dy \geq 3\alpha^2$$

E.g.

$$P_\Delta = -\phi_\Delta = Re_\Pi(3\alpha^2 - \beta^2) \leq 0$$
Key results
Every flux has a physical meaning

- ϕ_ℓ is the best way to dissipate pumping power
- P_ℓ is the fraction of pumping power wasted to produce turbulence
 - it decreases when control is successful
 - it can be negative as $P_\ell \sim \alpha$
- ϕ_Δ is the penalty for not being laminar
- $\phi_\Delta + \epsilon$ is the fraction of total power wasted by turbulence
 - it cannot be negative
A drag reduction model

- Control effect parametrized through ΔB

> applicable to:

- riblets and roughness
- superhydrophobic surfaces
- spanwise wall forcing
- some feedback controls
A drag reduction model

- Control effect parametrized through ΔB
- CPI constraint $3\text{Re}_\Pi^2 (1 - \gamma) = \text{Re}_\tau^2 \text{Re}_B$

![Graphs showing drag-reduced and natural conditions](image)
How do dissipations change with control?

Back to our initial question
How do dissipations change with control?

Back to our initial question
How do dissipations change with control?

Back to our initial question

\[\nu_w = -\nu(x, y_s, z, t) \]
How do dissipations change with control?

Back to our initial question
Conclusion and outlook

- “Wind” decomposition and CPI introduced
- Theoretical framework for the flow control problem from energy perspective…
- …relevant also for uncontrolled flows: FIK-like identity for ϵ
- Optimal control theory: better choice of cost function
- Development of drag-reduction-aware RANS turbulence models
- CPI-enabled scale-energy analysis of drag reduced flows
European Drag Reduction and Flow Control Meeting

Bad Herrenalb (near Karlsruhe, Germany)

26—29 March 2019
European Drag Reduction and Flow Control Meeting

Topics:
- all laminar and turbulent drag reduction
- flow & noise control studies

Attended by all major scientists in the field

Young contributors are invited to submit abstracts

Conference fee ~ 400€ including accommodation!

More info: www.edrfcm.science
THANKS
for your kind attention!

for questions, complaints, ideas:
davide.gatti@kit.edu