

Inner-outer layer interaction in drag-reduced turbulent channels

Davide Gatti, Marion Cormier Alexander Stroh, Bettina Frohnapfel

16.9.2016

11th European Fluid Mechanics Conference, Sevilla, Spain

www.kit.edu

Background

active wall-based turbulent skin-friction drag reduction: is it possible at large values of *Re*?

YES sizeable amount of drag reduction can be achieved at high *Re* (Gatti & Quadrio, JFM 2016)

6070

 10^{3}

 10^2

 y^{+}

Background

active wall-based turbulent skin-friction drag reduction: is it possible at large values of *Re*?

- sizeable amount of drag reduction can be achieved at high *Re* YES (Gatti & Quadrio, JFM 2016)
- NO turbulent large-scale structures
 - carry large amount of Reynolds shear stress
 - can not be affected by wall-based control

h

Goal

turbulent drag reduction as mean to assess

How do large scale structures interact with the near-wall turbulence?

today's actual goal

Is a particular realization of large-scale structures affected by wall-based flow control?

> in particular: is the near-wall "footprint" affected by the control?

Model control strategy

Streamwise-travelling wave of spanwise wall velocity

Quadrio, Ricco & Viotti, JFM 2009

Large scales?

Today's definition:

long meandering streamise velocity fluctuations, very long compared to the underlying small-scale fluctuations, as observed in wall-parallel planes.

adapted from Hutchins & Marusic, JFM, 2007

- not Galilean invariant, thus... •
- Reynolds decomposition to be used with care in structural analysis Kwon, Hutchins, Monty, JFM, 2016

Eduction strategy:

two-dimensional Huang-Hilbert Empirical Mode Decomposition

Huang et al., Proc. R. Soc. A, 1998 Agostini & Leschziner, PoF, 2014

- no filter lengthscales to be defined a priori ●
- "structures" do not necessarily have compact support • in Fourier space

Empirical Mode Decomposition

IMF_i are Intrinsic Mode Functions

•
$$\overline{IMF_i} = 0$$

function shape not known a priori •

Eduction results (1)

streamwise-velocity at $y^+ = 15$ (wall-parallel planes)

Eduction results (2)

Eduction results (3)

Footprint onto skin-friction

correlation between τ_{LS} and u'_{LS} at different channel heights

Footprint onto skin-friction

correlation between τ_{LS} and u'_{LS} at different channel heights

Conclusions

Two dimensional Empirical Mode Decomposition arbitrary yet useful method to separate large scales can be applied to three-dimensional flow data

Three dimensional topology of large scales long regions of positive and negative fluctuations alternates in the spanwise direction with spacing $\lambda_z \approx 1000$

Wall-based drag reduction and large-scale structures the correlation between large scale streamwise velocity and wall shear fluctuations is modified beyond the buffer layer

Outlook

Streamwise velocity fluctuation are one (not Galilean invariant) symptom of large scale structures. Other exists: connected regions of -uv, vortex packets

Give the structure a dynamics

spatio-temporal correlation

track temporal evolution of large scales

Deepen the description of the present qualitative observation what causes the two-point correlation to change?

THANKS for your kind attention!

for questions, complaints, ideas:

davide.gatti@kit.edu

Eduction results (3)

