Inner-outer layer interaction in drag-reduced turbulent channels

Davide Gatti, Marion Cormier
Alexander Stroh, Bettina Frohnapfel

Background

active wall-based turbulent skin-friction drag reduction: is it possible at large values of Re?

YES sizeable amount of drag reduction can be achieved at high Re (Gatti & Quadrio, JFM 2016)

$$\Delta B = \frac{2}{\sqrt{C_{f,0}}} \left[(1 - R)^{0.5} - 1 \right] - \frac{1}{2\kappa} \ln(1 - R)$$
Background

active wall-based turbulent skin-friction drag reduction: is it possible at large values of Re?

YES sizeable amount of drag reduction can be achieved at high Re
(Gatti & Quadrio, JFM 2016)

NO turbulent large-scale structures
- carry large amount of Reynolds shear stress
- can not be affected by wall-based control
Goal

turbulent drag reduction as mean to assess

How do large scale structures interact with the near-wall turbulence?

today’s actual goal

Is a particular realization of large-scale structures affected by wall-based flow control?

in particular: is the near-wall “footprint” affected by the control?
Model control strategy

Streamwise-travelling wave of spanwise wall velocity

\[w_w = A \sin(\omega t - \kappa x x) \]

Constant Pressure Gradient

\[Re_\tau = 1000 \]
\[\frac{U_b}{U_{b,ref}} = 1.17 \]
\[R = 1 - \frac{C_f}{C_{f,ref}} = 26.4\% \pm 0.6\% \]

Quadrio, Ricco & Viotti, JFM 2009
Large scales?

Today’s definition:

long meandering streamwise velocity fluctuations,
very long compared to the underlying small-scale fluctuations,
as observed in wall-parallel planes.

adapted from Hutchins & Marusic, JFM, 2007

- not Galilean invariant, thus…
- Reynolds decomposition to be used with care
 in structural analysis
 Kwon, Hutchins, Monty, JFM, 2016

Eduction strategy:

two-dimensional Huang-Hilbert Empirical Mode Decomposition

Agostini & Leschziner, PoF, 2014

- no filter lengthscales to be defined a priori
- “structures” do not necessarily have compact support
 in Fourier space
\(u(x, z) = \sum_{i=1}^{n} IMF_i + res_n \)

\(u(x, z) = u_{SS} + u_{LS} \)

\(u_{LS} = \langle u \rangle + u'_{LS} \)

IMF are Intrinsic Mode Functions

- \(\overline{IMF_i} = 0 \)
- function shape not known a priori
Eduction results (1)

streamwise-velocity at $y^+ = 15$ (wall-parallel planes)
Eduction results (2)
Eduction results (3)
Three dimensional structure

isosurface at

$$u'_{LS} = \pm \max(u'_{rms})/4$$
Footprint onto skin-friction

correlation between τ_{LS} and u'_{LS} at different channel heights
Footprint onto skin-friction

correlation between τ_{LS} and u'_{LS} at different channel heights
Conclusions

- Two dimensional Empirical Mode Decomposition
 arbitrary yet useful method to separate large scales
 can be applied to three-dimensional flow data

- Three dimensional topology of large scales
 long regions of positive and negative fluctuations
 alternates in the spanwise direction with spacing $\lambda_z \approx 1000$

- Wall-based drag reduction and large-scale structures
 the correlation between large scale streamwise velocity
 and wall shear fluctuations is modified beyond
 the buffer layer
Outlook

Streamwise velocity fluctuation are one (not Galilean invariant) symptom of large scale structures. Other exists:

- connected regions of $-uv$, vortex packets

Give the structure a dynamics

- spatio-temporal correlation
- track temporal evolution of large scales

Deepen the description of the present qualitative observation

- what causes the two-point correlation to change?
THANKS
for your kind attention!

for questions, complaints, ideas:
davide.gatti@kit.edu
Eduction results (3)