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DIFFERENTIABILITY OF THE VAN DER WAALS

INTERACTION BETWEEN TWO ATOMS

IOANNIS ANAPOLITANOS, MATHIEU LEWIN, AND MATTHIAS ROTH

Abstract. In this work we improve upon previous results on the ex-
pansion of the interaction energy of two atoms. On the one hand we
prove the van der Waals-London’s law, assuming that only one of the
ground state eigenspaces of the atoms is irreducible in an appropriate
sense. On the other hand we prove strict monotonicity of the interaction
energy at large distances and, under more restrictive assumptions, we
provide the leading order of its first two derivatives. The first derivative
is interpreted as the force in Physics. Moreover, the estimates of the
first two derivatives provide a rigorous proof of the monotonicity and
concavity of the interaction energy at large distances.

1. Introduction and main result

Atoms and molecules attract each other through van der Waals forces,
which are much weaker than ionic or covalent bonds. These forces have
been discovered by J.D. van der Waals [vdWa1, vdWa2] when he was trying
to formulate an equation of state of gases, compatible with experimental
measurements. These forces are universal and play a fundamental role in
quantum chemistry, physics, biology and material sciences. For instance,
their strength is one of the factors that determine the boiling temperature
of liquids. They explain why diamond, consisting of carbon atoms connected
with covalent bonds only, is a much harder material than graphite, which
consists of layers of carbon atoms that attract each other through van der
Waals forces [ChChJoRiYu].

Our goal in this paper is to discuss the differentiability of the interac-
tion energy of two atoms at dissociation and the long range behavior of its
first two derivatives, justifying thereby the long range behavior of the van
der Waals force. We work under the Born-Oppenheimer approximation, in
which the two nuclei are classical particles and the electrons are quantum.

We begin with a mathematical formulation of the problem. We study the
Hamiltonian

H = H(r) = H0 + I, H0 = H1 +H2,r, (1.1)

where

H1 =

N1∑

i=1

(
−∆xi −

N1

|xi|

)
+

∑

1≤k<l≤N1

1

|xk − xl|
,

1

http://arxiv.org/abs/1902.06683v1
Christian Knieling




2 I. ANAPOLITANOS, M. LEWIN, AND M. ROTH

H2,r =

N1+N2∑

j=N1+1

(
−∆xj −

N2

|xj − re1|

)
+

∑

N1+1≤m<n≤N1+N2

1

|xm − xn|

and

I =

N1∑

i=1

N1+N2∑

j=N1+1

Iij, Iij =
1

r
−

1

|xi − re1|
−

1

|xj|
+

1

|xi − xj |
.

Here we assume that the first nucleus is at 0 ∈ R3 and the second at re1,
where e1 = (1, 0, 0) and r > 0 denotes the distance between the nuclei. The
coordinates x1, . . . , xN1+N2

∈ R3, are the locations of the electrons, where
N1, N2 are the atomic numbers of the first and second atom, respectively.
The operatorsH1,H2,r describe the individual atoms, and the multiplication
operator I is the interaction between them. The notation H2,r emphasizes
the fact that the nucleus of the second atom is located at a distance r from
the origin. We work in units where the electron charge is −1, the electron
mass is 0.5 and Planck’s constant is ~ = 1.

In order to take spin and the Fermi statistics into account, we introduce
some orthogonal projections onto appropriate subspaces of

Y = L2

((
R
3 × {0, ..., q − 1}

)N1+N2 ,C

)
≃

N1+N2⊗

1

L2
(
R
3,Cq

)
. (1.2)

Here q is the number of spin states, hence q = 2 for electrons. The corre-
sponding norm is

‖Φ‖2Y :=
∑

sj∈{0,...,q−1}

∫
|Φ(x1, s1, ..., xN1+N2

, sN1+N2
)|2dx1 · · · dxN1+N2

.

Sometimes we write
∫
ds for the sum over spin states for shortness. For

any permutation π ∈ SN1+N2
we define the unitary operator Tπ on Y which

exchanges the variables of Ψ as follows

(TπΨ)(x1, s1, . . . , xN1+N2
, sN1+N2

)

= Ψ(xπ−1(1), sπ−1(1) . . . , xπ−1(N1+N2), sπ−1(N1+N2)), (1.3)

where s1, . . . , sN1+N2
∈ {0, ..., q − 1} are the spin variables of the electrons.

Let S1 = SN1
⊗ 1 ⊂ SN1+N2

be the subgroup of SN1+N2
consisting of the

permutations of {1, ..., N1}, and S2 = 1⊗SN2
⊂ SN1+N2

be the subgroup of
SN1+N2

consisting of the permutations of {N1 + 1, ..., N1 +N2}. We define,
for j ∈ {1, 2},

Qj =
1

Nj!

∑

π∈Sj

(−1)πTπ, Q =
1

(N1 +N2)!

∑

π∈SN1+N2

(−1)πTπ.

Let us also introduce the operator H12 := H1 + H2 where H2 = H2,0.
Consider the projected operators onto the appropriate symmetry subspaces

Ha
1 = H1Q1, Ha

2 = H2Q2, Ha
12 = H12Q1Q2, Ha = HQ. (1.4)
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We call
Ej := minσ(Ha

j ), E(r) := minσ(Ha) (1.5)

the corresponding ground state energies. From the Zhislin and HVZ theo-
rems [Zh, vWi, Hu1, Si1, Le2], these are eigenvalues lying strictly below the
essential spectrum. In particular we have Ej < 0. Moreover E(r) < 0 if r
is large enough, see [LiTh]. Because of these properties, it is not important
whether we consider the operators over the whole space Y or over the ap-
propriate anti-symmetric subspaces, since by definition they are equal to 0
outside of these spaces. In this paper we will always work in Y for conve-
nience. Note also that the bottom of the spectrum of Ha

12 is just E1 + E2.
For i ∈ {1, 2} and m ∈ Z with m ≤ Ni and Ni −m ≤ N1 +N2 we define

Hi,m :=

Ni−m∑

j=1

(
−∆xj −

Ni

|xj|

)
+

∑

1≤j<k≤Ni−m

1

|xj − xk|
,

which is the Hamiltonian of the ion with atomic number Ni and total charge
m. We define Ei,m to be the ground state energy of Ha

i,m = Hi,mQ in Y .

It has been proved in [MoSi, Thm. 1.1] (see also [Le1, Thm. 2]) that E(r)
converges at infinity and that the limit is given by

E(∞) := lim
r→∞

E(r) = min
−N2≤m≤N1

{
E1,m + E2,−m

}
. (1.6)

In other words, at the dissociation the two atoms are in their ground states
but one still has to optimize over all the ways of distributing the N1 + N2

electrons among them. The interaction energy of the system is defined by

W (r) = E(r)− E(∞). (1.7)

We will explain shortly that W (r) < 0. This means that it costs energy to
separate the atoms, hence the system must be bound at a finite distance
r. Local minima of W (r) determine the equilibrium configurations of the
diatomic molecule.

We now discuss some known properties of the interaction energy W (r).
If the minimum on the right side of (1.6) is attained at some m 6= 0, then
the two atoms have opposite charges in the dissociation. In this case they
attract each other at infinity and this results in the upper bound

W (r) ≤ −
m2

r
+ o

(
1

r

)

(see, e.g., [Le1]). In particular W (r) < 0 for r large enough. In this paper
we are interested in the case where the minimum on the right side of (1.6)
is solely attained at m = 0, that is,

E1 + E2 = E1,0 + E2,0 < min
−N2≤m≤N1

m6=0

{
E1,m + E2,−m

}
. (1.8)

It is indeed a famous conjecture that (1.8) is satisfied for all N1, N2. See
[AnSi] and references therein for a discussion, including the case of several
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atoms. In this paper (1.8) will be an assumption throughout. In particular
we then have

W (r) = E(r)− E1 − E2.

Under the assumption (1.8), the van der Waals-London’s law for a system
of two atoms asserts that there exists σ > 0 such that

W (r) = −
σ

r6
+O

(
1

r7

)

r→∞

. (1.9)

A heuristic explanation was given by London [Lo] in 1937.
One of the first rigorous results in this direction were given by Morgan

and Simon [MoSi], who proved, for two atoms without spin and with non-
degenerate ground states, that W (r) possesses an asymptotic series in pow-
ers of 1/r. They also mentioned that the 6th order term is to be interpreted
as the van der Waals energy. In 1986, Lieb and Thirring [LiTh] provided an
upper bound of the form

W (r) ≤ −
c

r6

for a positive constant c > 0. The upper bound holds without any as-
sumptions and it also applies to systems of several molecules. After these
results, (1.9) was proven only relatively recently in [AnSi] under a type of
non-degeneracy assumption in the case of a system of several atoms.

The goal of this article is to investigate the expansion of derivatives of
W (r). Our work extends the results in [AnSi] in the case of two atoms in
several directions. In the spinless non-degenerate case we provide estimates
on the first two derivatives of the interaction energy from which monotonicity
and concavity of the interaction energy follows for large r. Then we prove
the van der Waals-London’s law with spin, with the sole assumption that
one of the ground state eigenspaces is irreducible in a sense to be discussed
below. Moreover, with the help of the methods developed in the spinless
case we prove the monotonicity of the interaction energy for large r.

Throughout this work we assume that at least one of the ground state
eigenspaces of the two individual atoms is irreducible, a concept that we
discuss now. The usual method is to introduce a group of spin transfor-
mations (that is, unitary operators acting on L2({0, ..., q − 1}) = Cq), and
to require that the first eigenspace of Ha is irreducible with respect to this
group action. For simplicity we introduce here one group which works for
every N1, N2. But the arguments below work for any other group represen-
tation of the spins, which acts non trivially on fermionic wavefunctions. For
π ∈ Sn, we introduce the operator exchanging only the spin variables:

T̃πΨ(x1, s1, . . . , xn, sn) := Ψ(x1, sπ−1(1), . . . , xn, sπ−1(n)). (1.10)

Similarly, we may introduce the operator which shifts the spins by one unit

FΨ(x1, s1, . . . , xn, sn) := Ψ(x1, s1 + 1, . . . , xn, sn + 1) (1.11)
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where sj + 1 is always understood modulo q. For q = 2, F is just the
operator which flips each spin to its opposite. Note that F commutes with

T̃π for all π, hence these operators generate a finite group of order qN !.

If Ψ is a ground state of Ha then so is FpT̃πΨ for any π ∈ SN and any
p ∈ {0, ..., q − 1}, since Ha is does not depend on the spin variables.

Definition 1 (Irreducibility of ground state eigenspace). The ground state
eigenspace Gk of Ha

k is called irreducible if {0} and Gk are its only invariant

subspaces under the spin shift F and all the spin permutations T̃π for all
π ∈ SNj

.

Equivalently, the eigenspace is spanned by any ground state Ψ and its spin

transformations FpT̃πΨ with p ∈ {0, ..., q − 1} and π ∈ SN . In particular,
the ground state is unique up to spin appropriate rearrangements. In the
case without spin, q = 1, the irreducibility condition simply means that
dim(Gk) = 1, that is, the eigenvalue is simple. With spin 1/2 (q = 2),
the irreducibility assumption is verified in some natural physical situations
which we discuss in Remarks 6 and 7 below. For Nk = 1 the ground state
eigenspace is always of dimension q, by Perron-Frobenius theory [ReSi4,
Sec. XIII.12]. The corresponding space is then always irreducible, due to
the action of the shift F .

If Gk is the ground state eigenspace of Ha
k then Ha

12 has the ground state
eigenspace G1 ⊗G2. We further define

Ha,⊥
12 := Ha

12(1− PG1⊗G2
),

where PG1⊗G2
denotes the orthogonal projection onto G1 ⊗ G2. Since the

ground state energy E(∞) = E1+E2 is in the discrete spectrum of Ha
12 and

since E(∞) < 0, there exists c > 0 such that Ha,⊥
12 −E(∞) ≥ c on the whole

space Y . As a consequence, the resolvent R⊥
12 := (Ha,⊥

12 − E(∞))−1 is well
defined, bounded and positive on the entire space Y . We now introduce

f(z1, . . . , zN1+N2
) :=

N1∑

i=1

N1+N2∑

j=N1+1

fij, (1.12)

where fij = zi · zj − 3(zi · e1)(zj · e1) is the dipole-dipole energy. We finally
consider the number

σ := max
Ψ∈G1⊗G2

‖Ψ‖=1

〈fΨ, R⊥
12fΨ〉. (1.13)

We recall that any ground state in ζj ∈ Gj is exponentially decaying,

‖ed|x|∂αζj‖L2 <∞, for all α with, |α| ≤ 2, (1.14)

see for example [CoTh]. It follows that the function fΨ is in L2 for any

Ψ ∈ G1 ⊗G2 and thus σ is finite. Using that 〈fΨ, R⊥
12fΨ〉 = ‖(R⊥

12)
1

2 fΨ‖2

one can prove that σ > 0, see [An, Section 3], and [AnLe, Section 2.2] for
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the more general case of two molecules. The following theorem was proved
in [AnSi].

Theorem 2 (van der Waals law in the irreducible case [AnSi]). Assume
(1.8). For j = 1, 2, we also assume that the ground state eigenspace of Ha

j

is irreducible (Definition 1). Then there exist positive constants D1,D2 such
that for all r ≥ D1 we have ∣∣∣∣W (r) +

σ

r6

∣∣∣∣ ≤
D2

r7
. (1.15)

Remark 3 (Lennard-Jones). The limit (1.15) justifies the replacement of
W (r) by the Lennard-Jones potential cr−12 − dr−6 at infinity. The highly
repulsive part r−12 is itself purely empirical. The Lennard-Jones potential
was initially introduced to infer an appropriate law of dependence of the
viscosity of a gas on the temperature [Jo1] and to study the equation of
state of gases [Jo2].

Theorem 2 justifies the long-range part of W but does not provide the
monotonicity nor the concavity of W (r) for large r. The inequality (1.15)
does not exclude the possibility that W (r) oscillates for large r, and in
particular it does not exclude existence of local minima for large r. Since
W ′(r) is interpreted as the van der Waals force, it is of course important to
give its large-r behavior as well.

Our results help in addressing these issues and give a more detailed de-
scription of the long range behavior of the interaction energy. The first
theorem provides the leading order of the first two derivatives of W (r), in
the case without spin q = 1. In the second theorem spin is taken into ac-
count and the van der Waals-London’s law is proven with the irreducibility
assumption on only one of the two atoms. Moreover the strict monotonicity
of W (r) is proven for r ≫ 1, but no exact expansion of the derivatives is
obtained.

Theorem 4 (Spinless case). Let q = 1 (no spin). Assume (1.8) and that
the ground state eigenspaces of Ha

j , j = 1, 2 are both non-degenerate. Then
there exist positive constants D1,D2 such that for all r ≥ D1 we have
∣∣∣∣W (r) +

σ

r6

∣∣∣∣ ≤
D2

r7
,

∣∣∣∣W
′(r)−

6σ

r7

∣∣∣∣ ≤
D2

r8
,

∣∣∣∣W
′′(r) +

42σ

r8

∣∣∣∣ ≤
D2

r9
.

(1.16)

Theorem 5 (Case with spin). Let q ≥ 1. Assume (1.8) and that one of the
two ground state eigenspaces of Ha

j is irreducible. Then there exist positive
constants D1,D2 such that for all r ≥ D1 we have

∣∣∣∣W (r) +
σ

r6

∣∣∣∣ ≤
D2

r7
. (1.17)

Moreover, W (r) is strictly increasing for r large enough.
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Remark 6. If we do not take the fermionic statistics into account (which
corresponds to q = N), the non-degeneracy assumption of the ground
state eigenspaces is always satisfied, by Perron-Frobenius theory [ReSi4,
Sec. XIII.12]. Then a result similar to Theorem 4 holds.

Remark 7. The condition (1.8) is known to hold when both atoms are
hydrogens, that is, N1 = N2 = 1 [An, AnSi, FrGrRiSe]. In addition, the
ground state eigenspace of the H2 molecule is a singlet state for all r > 0
when q=2, hence it is non-degenerate. We conclude that (1.16) holds for
the H2 molecule.

For the helium atom Nj = 2 with spin (q = 2), the ground state is a
singlet state and hence it is therefore non-degenerate. We see that, under
the assumption (1.8), the conclusions of Theorem 5 hold for a hydrogen or
helium atom interacting with any other atom.

Remark 8. The irreducibility assumption and the neglected spin in part
of our work are unsatisfactory. Unfortunately we have been unable to drop
these conditions. The technical reason is that the Feshbach map, which we
introduce and use below, is a matrix that is not necessarily a multiple of
the identity if there are degeneracies. Its lowest eigenvalue is therefore not
necessarily smooth, due to possible crossings. For this reason without the
non-degeneracy assumption we were not even able to prove the differentia-
bility of W (r). Note that to prove the monotonicity of W (r) in Theorem 5
we proceed in a way that does not involve smoothness of W (r), adapting an
argument from [AnLe].

Remark 9. In the spinless case q = 1, it is known that W (r) is a real-
analytic function of r in the non-degenerate case [CoSe, Hu2]. Further-
more, by [MoSi] W (r) can be expanded as an infinite power series in r−1,
which is however usually not convergent [GrGrHaSi]. The asymptotic ex-
pansion of W (r) together with the information that W (r) is analytic does
not immediately provide an information on W ′(r). For example the func-
tion e−ar sin(ear) is analytic, has 0 as an asymptotic series at infinity, but
its derivative is O(1).

Remark 10. An estimate on W ′(r) similar to that in (1.16) has already
been proved in [Le1, Section 3.3.3] for the case of two molecules with dipole
moments. It was indeed mentioned for the first time in [Le1] that only the
non-degeneracy of one of the two ground states is sufficient.

Remark 11. The method used for proving Theorem 4 was recently adapted
in [AnLe] in order to study the compactness of molecular paths between two
local minima of the interaction energy, in the case of two rigid molecules.

Notation. For two functions f, g of r > 0, with g real valued, we say that
f = O(g), if f is a continuous function of r and there exist constants C,D
such that if r ≥ C then ‖f(r)‖ ≤ D|g(r)|. If f takes its values in L2 or in
the algebra of bounded operators B(L2) on L2, then the continuity and the
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inequality are understood in terms of the respective norms. We also write

f = Omd (g) if f = O(g) and dkf

drk
= O(d

kg

drk
) for all k ≤ m. In particular, if

g = 1
rn

with n an integer, then f = Omd (g) means that ‖ dk

drk
f(r)‖ ≤ Cr−n−k

for all k ≤ m. Thus in our notation the estimates of Theorems 4 can be
summarized as W (r) = −σr−6 +O2

d(r
−7).

Acknowledgements. I.A. is grateful to Volker Bach for suggesting part of
this problem and to Dirk Hundertmark for discussions at an early stage of
the work and for a suggestion that led to the proof of the important equa-
tions (3.16), (3.17). All authors are grateful to Semjon Wugalter for useful
remarks which have led us to include the spin into account. This project
has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant
agreement MDFT No 725528 of M.L.). The research of I.A. was supported
by the German Science Foundation under Grant No. CRC 1173.

2. The Feshbach map

2.1. Definition of the Feshbach map. Let P be an orthogonal projection
on Y (the space defined in (1.2)), with RanP ⊂ QY ∩ D(Ha). Let also
P⊥ = 1−P and Ha,⊥ := P⊥HaP⊥, where we recall that Ha was defined in
(1.4). Assume that there exists C > 0 such that

Ha,⊥ − E(r) ≥ C. (2.1)

Then E(r) is an eigenvalue of the Feshbach map FP (E(r)), where

FP (λ) = (PHP − PHP⊥(Ha,⊥ − λ)−1P⊥HP )|RanP . (2.2)

Equation (2.2) tells us that finding the ground state energy E(r) reduces to
solving a nonlinear fixed point problem on the range of P . The proof is well
known, see for example [BaFrSi] and [AnLe, Sec. 2.3], but for convenience
of the reader we sketch it here.

Let ψ be a ground state of Ha and write E = E(r). Then (Ha−E)ψ = 0.
This gives that P⊥(Ha − E)ψ = 0. Therefore writing ψ = Pψ + P⊥ψ, we
obtain that

P⊥(Ha − E)P⊥ψ = −P⊥(Ha − E)Pψ = −P⊥HPψ,

where in the last step we used that P⊥Pψ = 0 and that HaP = HP . Thus,
using that, due to (2.1), (Ha,⊥ − E) is invertible we obtain that

P⊥ψ = −P⊥(Ha,⊥ − E)−1P⊥HPψ. (2.3)

Multiplying both sides with PH we find

PHP⊥ψ = −PHP⊥(Ha,⊥ − E)−1P⊥HPψ.

Using P⊥ = 1−P on the left hand side of the last equation and PHψ = EPψ
it follows that

EPψ = PHPψ − PHP⊥(Ha,⊥ − E)−1P⊥HPψ.
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We next observe that Pψ 6= 0, otherwise the right hand side of (2.3) would
be zero and this would give that P⊥ψ is also zero, contradicting that ψ 6= 0.
It therefore follows that E is an eigenvalue of the Feshbach map.

2.2. Choice of the projection P in the spinless case. Let χ1 : R
3 → R

be a spherically symmetric C∞ function supported in the ball B(0, 16) and

equal to 1 in the ball B(0, 17) with 0 ≤ χ1 ≤ 1. Our goal is to compute
the derivative W ′(r). To do this we analyze W (r) for r near some r0.
Note that it is convenient to cut the ground state off. The cut-off must be r
dependent when we want to study the asymptotic behaviour as r → ∞. This
would however introduce extra terms when we differentiate with respect to r,
something which we would like to avoid. Therefore, to study the interaction
energy near r we choose a r0 ∈ R with r0 < r < r0 + 1 and we define

φj
(
x1, . . . , xNj

)
:= cj




Nj∏

i=1

χ1

(
xi
r0

)
 ζj

(
x1, . . . , xNj

)
, (2.4)

so that the cut-off does not change when we vary r a little bit and where
cj > 0 is chosen so that ‖φj‖L2 = 1.

We further introduce the resolvent

R :=
(
P⊥
0 H

a,⊥
0 P⊥

0 − E(∞)
)−1

, (2.5)

where
Ha,⊥

0 = P⊥
0 Q1Q2H0P

⊥
0 ,

with H0 defined in (1.1) and

P0 := |φ1 ⊗ φ2,r〉〈φ1 ⊗ φ2,r|. (2.6)

Here φj,r(x1, . . . , xNj
) := φj(x1 − re1, . . . , xNj

− re1) is the cut-off ground
state ζj with the nucleus placed at re1. This simplifies our analysis consid-
erably, since the cut-off ensures that φ1 ⊗ φ2,r and Tπφ1 ⊗ φ2,r have disjoint
supports if π /∈ S1×S2. Here S1×S2 is the subgroup of SN1+N2

leaving the
sets {1, . . . , N1} and {N1 + 1, . . . , N1 +N2} invariant.

We further define

χ (x1, . . . , xN1+N2
) :=

N1∏

i=1

(
χ1

(
6xi
7r0

)) N1+N2∏

j=N1+1

(
χ1

(
6(xj − re1)

7r0

))
.

The dilation that we applied by multiplying with 6
7 ensures that for r large

enough {
χ = 1 on supp(φ1 ⊗ φ2,r),

χTπ(φ1 ⊗ φ2,r) = 0, ∀π ∈ SN1+N2
\S1 × S2.

(2.7)

In the rest of the paper we will always assume without explicitly men-
tioning it that r is large enough. We choose

P =
1

‖Qψ‖2
|Qψ〉〈Qψ|, (2.8)
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where

ψ :=
ψ0

‖ψ0‖
, with ψ0 := φ1 ⊗ φ2,r − χRIφ1 ⊗ φ2,r. (2.9)

Note that

supp(ψ) ∩ supp(Tπψ) = ∅, ∀π ∈ SN1+N2
\S1 × S2, (2.10)

so ψ and Tπψ are orthogonal, when π /∈ (S1 × S2). Moreover,

ψ = (−1)πTπψ, ∀π ∈ S1 × S2. (2.11)

In [An], see also [AnSi], it was shown that (1.8) implies that there exist
C, c > 0, such that if r > c then
(
1−

|Q(φ1 ⊗ φ2,r)〉〈Q(φ1 ⊗ φ2,r)|

‖Q(φ1 ⊗ φ2,r)‖2

)
Ha

(
1−

|Q(φ1 ⊗ φ2,r)〉〈Q(φ1 ⊗ φ2,r)|

‖Q(φ1 ⊗ φ2,r)‖2

)

≥ C + E(r).

Moreover, Ha,⊥ := P⊥HaP⊥ is a perturbation of
(
1−

|Q(φ1 ⊗ φ2,r)〉〈Q(φ1 ⊗ φ2,r)|

‖Q(φ1 ⊗ φ2,r)‖2

)
Ha

(
1−

|Q(φ1 ⊗ φ2,r)〉〈Q(φ1 ⊗ φ2,r)|

‖Q(φ1 ⊗ φ2,r)‖2

)
,

of the order O(r−3) since ‖χRIφ1 ⊗ φ2,r‖H2 = O(r−3). Therefore, the
following lemma holds.

Lemma 12. With the above choice of P in (2.8), the assumption (1.8)
implies that there exist C, c > 0 such that if r ≥ c then

Ha,⊥ − E(r) ≥ C. (2.12)

3. Proof of Theorem 4

In this section we prove Theorem 4. We first observe that due to (2.8),
(2.10) and (2.11)

PHP =
1

‖Qψ‖2
〈Qψ,HQψ〉P = 〈ψ,Hψ〉P, (3.1)

where we have also used that H is a local operator.
Since E(r) is the ground state energy of Ha, it is also an eigenvalue of

the Feshbach map FP (E(r)). Therefore, recalling that P has rank 1 we find
E(r) = 1

‖Qψ‖2
〈Qψ,FP (E(r))Qψ〉. As a consequence, using (3.1) we find

G(r,E(r)) = 0, (3.2)

where

G(r,E) = E − 〈ψ,Hψ〉 +A, (3.3)

and

A = A(r,E) :=
1

‖Qψ‖2

〈
P⊥HQψ,

(
Ha,⊥ − E

)−1
P⊥HQψ

〉
. (3.4)
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We will prove that G(r,E) is twice continuously differentiable near E(r) and
we will apply the implicit function theorem to obtain information about the
first two derivatives of E(r).

3.1. Estimate of 〈ψ,Hψ〉. We will now prove that

〈ψ,Hψ〉 = E(∞)−
σ

r6
+O∞

d

(
1

r7

)
. (3.5)

Let zi = xi, zj = xj − re1 for i = {1, . . . , N1} and j = {N1+1 . . . , N1+N2},
respectively. The variables zi are the relative coordinates of the electrons
with respect to the nuclei. Below we add a tilde in the notation to indicate
that we work in the variables zi. We define

ψ̃(z1, . . . , zN1+N2
) = ψ(z1, . . . , zN1

, zN1+1 + re1, . . . , zN1+N2
+ re1), (3.6)

and

H̃ = H̃0 + Ĩr, (3.7)

with

H̃0 =

N1∑

i=1

(
−∆zi −

N1

|zi|

)
+

∑

1≤k<l≤N1

(
1

|zk − zl|

)

+

N1+N2∑

j=N1+1

(
−∆zj −

N2

|zj |

)
+

∑

N1+1≤m<n≤N1+N2

(
1

|zm − zn|

)
,

Ĩr =

N1∑

i=1

N1+N2∑

j=N1+1

Ĩij,r, Ĩij,r =
1

r
+

1

| − zi + re1 + zj |
−

1

|re1 + zj |
−

1

|re1 − zi|
.

(3.8)
It then follows that

〈ψ, (H − E(∞))ψ〉 = 〈ψ̃, (H̃ − E(∞))ψ̃〉. (3.9)

Note that ψ̃ = ‖ψ̃0‖
−1ψ̃0, where

ψ̃0 = φ1 ⊗ φ2 − χ̃R̃Ĩrφ1 ⊗ φ2, (3.10)

with

χ̃(z1, . . . , zN1+N2
) = χ(z1, . . . , zN1

, zN1+1 + re1, . . . , zN1+N2
+ re1)

and

R̃ = (P̃⊥
0 H̃0P̃

⊥
0 − E(∞))−1, P̃0 = |φ1 ⊗ φ2〉〈φ1 ⊗ φ2|. (3.11)

Therefore, from (3.9) and (3.10) we find

〈ψ, (H − E(∞))ψ〉 =
1

‖ψ̃0‖2
(L1 + L2 + L3), (3.12)
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where

L1 = 〈φ1 ⊗ φ2, (H̃ − E(∞))φ1 ⊗ φ2〉,

L2 = −2Re〈χ̃R̃Ĩrφ1 ⊗ φ2, (H̃ − E(∞))φ1 ⊗ φ2〉,

L3 = 〈χ̃R̃Ĩrφ1 ⊗ φ2, (H̃ − E(∞))χ̃R̃Ĩrφ1 ⊗ φ2〉.

Note that (2.7) implies that

χ̃ = 1 on supp(φ1 ⊗ φ2), (3.13)

and therefore

L2 = −2Re〈R̃Ĩrφ1 ⊗ φ2, (H̃ − E(∞))φ1 ⊗ φ2〉. (3.14)

In L1, L2, L3 the only r-dependence is in the term Ĩr, as the cut-off of the
ground states is r-independent, see (2.4). We next prove a lemma whose
statements we will repeatedly need throughout the proof. Before we state it
we note that Newton’s theorem [LiLo, Sec. 9.7] implies [An, Lem. 5.1] that

〈
φ1 ⊗ φ2, Ĩrφ1 ⊗ φ2

〉
= 0. (3.15)

Lemma 13. Let f be as in (1.12). Then
(
Ĩr −

1

r3
f

)
φ1 ⊗ φ2 = O∞

d

(
1

r4

)
(3.16)

and ∥∥∥∥
dα

drα
χ̃Ĩr

∥∥∥∥
L∞

= O

(
1

rα+1

)
, (3.17)

for all α ≥ 0. Moreover

H̃0φ1 ⊗ φ2 = E(∞)φ1 ⊗ φ2 +O∞
d (e−cr) for some c > 0 (3.18)

and (
H̃ − E(∞)

)
ψ̃ = O∞

d

(
1

r4

)
. (3.19)

Proof. We first prove (3.16). Note that we do not have to deal with the

singularities of Ĩr as they are away from the support of φ1 ⊗ φ2. Using

Taylor’s theorem we obtain that for all z ∈ R3, r > 0 with |z| ≤ |r|
2 we have

1

|re1 − z|
=

1

r
+
z · e1
r2

+
3(z · e1)

2 − |z|2

2r3
+ g(z, r) (3.20)

where

g(z, r) =

∫ 1

0
ds1

∫ s1

0
ds2

∫ s2

0
ds3

15(z · ̂(re1 − s3z))
3 − 9(z · ̂(re1 − s3z))|z|2)

|re1 − s3z|4
.

(3.21)
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Using (3.20) together with (3.8) and (1.12) one can show that

(Ĩr −
1

r3
f)φ1 ⊗ φ2(z1, . . . , zN1+N2

)

=

N1∑

i=1

N1+N2∑

j=N1+1

(g(zi, r) + g(−zj , r)− g(zi − zj , r))φ1 ⊗ φ2.

Using the last equality and (2.4) we arrive at

dα

drα

[
(Ĩr −

1

r3
f)φ1 ⊗ φ2

]
(z1, . . . , zN1+N2

)

=

N1∑

i=1

N1+N2∑

j=N1+1

[
dα

drα

(
g(zi, r) + g(−zj , r)− g(zi − zj , r)

)]
φ1 ⊗ φ2,

for every integer α ≥ 0. But applying the dominated convergence theorem
we obtain that[

dα

drα
(
g(zi, r) + g(−zj , r)− g(zi − zj , r)

)]
φ1 ⊗ φ2 = O

(
1

r4+α

)

where the exponential decay of ζ, namely (1.14), is needed for establishing
(3.1). It follows that

dα

drα

[
(Ĩr −

1

r3
f)φ1 ⊗ φ2

]
= O

(
1

r4+α

)
,

so that we arrive at (3.16).
The estimate (3.17) can be proven in a similar manner. The only differ-

ence is that instead of (3.20) and (3.21) we use

1

|re1 − z|
=

1

r
+

∫ 1

0

z · ̂(re1 − s1z)

|re1 − s1z|2
ds1.

In order to prove (3.18) we observe that

(H̃0 − E(∞))φ1 ⊗ φ2 =
−2∇χ̃∇(ζ1 ⊗ ζ2)−∆χ̃(ζ1 ⊗ ζ2)

‖χ̃(ζ1 ⊗ ζ2)‖
. (3.22)

Since ∇χ̃ is supported O(r) far from the nuclei of the atoms, using (1.14)
and (3.22) we find that

‖(H̃0 − E(∞))φ1 ⊗ φ2‖H1 = O(e−cr).

Since moreover, if we vary r on the left hand side the latter does not change,
we arrive at (3.18).

We now prove (3.19). From (3.7) we obtain that

(H̃ − E(∞))ψ̃0 = (H̃0 − E(∞))φ1 ⊗ φ2 − (H̃0 − E(∞))χ̃R̃Ĩrφ1 ⊗ φ2

+ Ĩrφ1 ⊗ φ2 − Ĩrχ̃R̃Ĩrφ1 ⊗ φ2. (3.23)
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Therefore using (3.16), (3.17) and (3.18) we find

(H̃ − E(∞))ψ̃0 = −(H̃0P̃
⊥
0 − E(∞))χ̃R̃Ĩrφ1 ⊗ φ2 + Ĩrφ1 ⊗ φ2 +O∞

d

(
1

r4

)
,

(3.24)

where we recall that P̃0 was defined in (3.11), and we have also used that

Ĩrφ1 ⊗ φ2 = P̃⊥
0 Ĩrφ1 ⊗ φ2, see (3.15), and that [P̃0, χ̃R̃] = 0. Since χ̃R̃ =

R̃χ̃+ [χ̃, R̃] we find using the equality

(H̃0P̃
⊥
0 − E(∞))R̃ = 1 + P̃0H̃0P̃

⊥
0 R̃ = 1 +O∞

d (e−cr), (3.25)

that

(H̃0P̃
⊥
0 − E(∞))χ̃R̃Ĩrφ1 ⊗ φ2 = χ̃Ĩrφ1 ⊗ φ2

+ (H̃0P̃
⊥
0 − E(∞))[χ̃, R̃]Ĩrφ1 ⊗ φ2 +O∞

d (e−cr). (3.26)

From (3.13) we obtain that

χ̃Ĩrφ1 ⊗ φ2 = Ĩrφ1 ⊗ φ2. (3.27)

Using (3.24), (3.26) and (3.27) we infer

(H̃ −E(∞))ψ̃0 = −(H̃0P̃
⊥
0 −E(∞))R̃P̃⊥

0 [χ̃, H̃0]P̃
⊥
0 R̃Ĩrφ1⊗φ2+O

∞
d

(
1

r4

)
.

Since [χ̃, H̃0]R̃ = O
(
r−1
)
is constant in a neighborhood of r0, we arrive with

the help of (3.16) at

(H̃ − E(∞))ψ̃0 = O∞
d

(
1

r4

)
. (3.28)

Using (3.10) and (3.16) we obtain that

‖ψ̃0‖
2 = 1 +O∞

d

(
1

r6

)
, (3.29)

where we have used the orthogonality of the two summands on the right
hand side of (3.10). Using (3.29) and (3.28) we conclude the proof of (3.19)
hence of Lemma 13. �

We next estimate L1, L2, L3. Using (3.7), (3.15) and (3.18) we find that

L1 = O∞
d (e−cr), for some c > 0. (3.30)

Now we want to show that

L2 = −2
1

r6
〈fφ1 ⊗ φ2, R̃fφ1 ⊗ φ2〉+O∞

d

(
1

r7

)
. (3.31)

Using (3.7) and (3.14) we find

L2 = −2〈Ĩrφ1 ⊗ φ2, R̃Ĩrφ1 ⊗ φ2〉 − 2Re〈R̃Ĩrφ1 ⊗ φ2, (H̃0 −E(∞))φ1 ⊗ φ2〉.

Further using (3.16) and (3.18) we can show that

L2 = −2〈Ĩrφ1 ⊗ φ2, R̃Ĩrφ1 ⊗ φ2〉+O∞
d (e−cr).
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To arrive at (3.31), it remains for us to prove that

〈Ĩrφ1 ⊗ φ2, R̃Ĩrφ1 ⊗ φ2〉 −
1

r6
〈fφ1 ⊗ φ2, R̃fφ1 ⊗ φ2〉 = O∞

d

(
1

r7

)
. (3.32)

Indeed, observe that the left hand side of (3.32) can be split into

〈Ĩrφ1⊗φ2−
f

r3
φ1⊗φ2, R̃Ĩrφ1⊗φ2〉+ 〈

f

r3
φ1⊗φ2, R̃(Ĩrφ1⊗φ2−

f

r3
φ1⊗φ2)〉.

Using (3.16), the estimate (3.32) follows and therefore we obtain (3.31).
We now estimate L3. With the help of Leibniz rule for the kinetic part

of H̃ and (3.7), we obtain

L3 = L31 + L32 + L33, (3.33)

where

L31 = 〈χ̃R̃Ĩrφ1 ⊗ φ2, χ̃(H̃0 − E(∞))R̃Ĩrφ1 ⊗ φ2〉,

L32 = 〈χ̃R̃Ĩrφ1 ⊗ φ2, Ĩrχ̃R̃Ĩrφ1 ⊗ φ2〉 − 〈χ̃R̃Ĩrφ1 ⊗ φ2, (∆χ̃)R̃Ĩrφ1 ⊗ φ2〉,

L33 = −2〈χ̃R̃Ĩrφ1 ⊗ φ2,∇χ̃ · ∇R̃Ĩrφ1 ⊗ φ2〉.

Observe that (3.15) gives Ĩrφ1 ⊗ φ2 = P̃⊥
0 Ĩrφ1 ⊗ φ2 and moreover P̃⊥

0 com-

mutes with R̃ and χ̃, because of (3.11) and (3.13), respectively. Thus, H̃0

can be replaced by P̃⊥
0 H̃0P̃

⊥
0 . It follows that

L31 = 〈χ̃R̃Ĩrφ1 ⊗ φ2, χ̃Ĩrφ1 ⊗ φ2〉,

where we have also used that (P̃⊥
0 H̃0P̃

⊥
0 − E(∞))R̃ = 1. Using (3.13) once

more we find that

L31 = 〈Ĩrφ1 ⊗ φ2, R̃Ĩrφ1 ⊗ φ2〉.

Hence with (3.32) we come to the conclusion that

L31 =
1

r6
〈fφ1 ⊗ φ2, R̃fφ1 ⊗ φ2〉+O∞

d

(
1

r7

)
. (3.34)

Observe now that
|∇χ̃| ≤

c

r
, |∆χ̃| ≤

c

r2
, (3.35)

Using (3.16), (3.17) and (3.35) we find that

L32 = O∞
d

(
1

r7

)
, L33 = O∞

d

(
1

r7

)
,

where we have also used that ∇R̃ is bounded. Together with (3.33), (3.34)
we find that

L3 =
1

r6
〈fφ1 ⊗ φ2, R̃fφ1 ⊗ φ2〉+O∞

d

(
1

r7

)
. (3.36)

From (3.30), (3.31) and (3.36) we find

L1 + L2 + L3 = −
1

r6
〈fφ1 ⊗ φ2, R̃fφ1 ⊗ φ2〉+O∞

d

(
1

r7

)
.
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It is known (see for example [An, Proof of Lemma 5.6]) that

〈fφ1 ⊗ φ2, R̃fφ1 ⊗ φ2〉 = σ +O(e−cr),

and since the left hand side is r-independent, we find

〈fφ1 ⊗ φ2, R̃fφ1 ⊗ φ2〉 = σ +O∞
d (e−cr).

We conclude that

(L1 + L2 + L3) = −
σ

r6
+O∞

d

(
1

r7

)
. (3.37)

From (3.12), (3.29) and (3.37) we arrive at (3.5).

3.2. Nonlinear term. We now focus on the nonlinear term A defined in
(3.4). To apply the implicit function theorem we first fix E near E(r), such
that

|E − E(r)| <
c

r7
for some c > 0, (3.38)

and we investigate the partial derivatives of A with respect to r. Below we
will write d

dr
for expressions that do not depend on E but only on r.

Since P⊥Qψ = 0 we find

A =
1

‖Qψ‖2

〈
P⊥(H − E(∞))Qψ,

(
Ha,⊥ − E

)−1
P⊥(H − E(∞))Qψ

〉
.

(3.39)
Our goal is to prove that

A = O

(
1

r8

)
,

∂α

∂rα
A = O

(
1

r9

)
, for α ∈ {1, 2}. (3.40)

Using that P⊥ is a projection commuting with Ha,⊥ and Q is a projection
commuting with H,P⊥ and Ha,⊥, we find

A =
1

‖Qψ‖2

〈
(H − E(∞))ψ,

(
Ha,⊥ − E

)−1
P⊥(H − E(∞))Qψ

〉
.

From the fact that

P⊥ = 1−
|Qψ〉〈Qψ|

‖Qψ‖2
,

and that

〈Qψ, (H − E(∞))Qψ〉 = 〈ψ, (H − E(∞))ψ〉‖Qψ‖2 ,

we find
A = −B + C,

with B =M〈ψ, (H − E(∞))ψ〉, and

C =
1

‖Qψ‖2
〈(H − E(∞))ψ, (Ha,⊥ − E)−1(H − E(∞))Qψ〉. (3.41)

In the definition of B,

M =
1

‖Qψ‖2
〈(H − E(∞))ψ, (Ha,⊥ − E)−1Qψ〉. (3.42)
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We now estimate B. Due to (3.5) we have

B =M O∞
d

(
1

r6

)
. (3.43)

We will show that

∂α

∂rα
M = O

(
1

r4

)
, for α ∈ {0, 1, 2}. (3.44)

To this end we will prove that

dα

drα
(H − E(∞))ψ = O

(
1

r4

)
, for α ∈ {0, 1}, (3.45)

and
d

dr
(1−∆)−

1

2
d

dr
(H − E(∞))ψ = O

(
1

r4

)
. (3.46)

An elementary computation gives that

(H − E(∞))ψ = τr

(
(H̃ − E(∞))ψ̃

)
, (3.47)

where

(τrΦ)(x1, . . . , xN1+N2
) := Φ(x1, . . . , xN1

, xN1+1 − re1, . . . , xN1+N2
− re1).

(3.48)
The following two lemmata are going to be useful

Lemma 14. Let a, b ∈ R with a < b. We consider Φ : (a, b) → L2 differen-

tiable with Φ(r) ∈ H1(R3(N1+N2)) for all r ∈ (a, b) and

~v = (0, . . . , 0︸ ︷︷ ︸
3N1times

,−1, 0, 0,−1, 0, 0, . . . ,−1, 0, 0︸ ︷︷ ︸
N2times

)⊤.

Then τ.Φ(.) : (a, b) → L2 is differentiable and

d

dr
(τrΦ(r)) = (~v · ∇) (τrΦ(r)) + τr

(
Φ′(r)

)
. (3.49)

Proof. To prove (3.49) we first observe that

lim
h→0

τr+hΦ(r + h)− τrΦ(r)

h

= lim
h→0

(
τr+h

Φ(r + h)− Φ(r)

h
+
τr+h − τr

h
Φ(r)

)
.

Since τr+h is strongly continuous in h we have that

lim
h→0

τr+h
Φ(r + h)− Φ(r)

h
= τrΦ

′(r).

Moreover, since the momentum operator is the generator of translations and
Φ(r) ∈ H1 we find

lim
h→0

τr+h − τr
h

Φ(r) = (~v · ∇) (τrΦ(r)) ,

in the L2-sense. Hence we have proved (3.49). �
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Lemma 15.

‖(H̃ − E(∞))ψ̃‖H1 = O

(
1

r4

)
.

Proof. We start with estimating some terms of the right hand side of (3.23).
Using (3.22) and (1.14) we find that

∥∥∥(H̃0 − E(∞))φ1 ⊗ φ2

∥∥∥
H1

= O(e−cr), (3.50)

because the support of the derivatives of χ̃ is far from the center of the

atoms. Since χ̃Ĩr = O
(
1
r

)
, see (3.17), and ∇(χ̃Ĩr) = O

(
1
r2

)
, using (3.16) it

follows that
∥∥∥Ĩrχ̃R̃Ĩrφ1 ⊗ φ2

∥∥∥
H1

= O

(
1

r4

)
, (3.51)

where due to the presence of the resolvent R̃ it is enough that ‖Ĩrφ1⊗φ2‖L2 =
O(r−3). Using (3.23), (3.50) and (3.51) we obtain

(H̃−E(∞))ψ̃ = Ĩrφ1⊗φ2− (H̃0−E(∞))χ̃R̃Ĩrφ1⊗φ2+OH1

(
1

r4

)
, (3.52)

with the self-explanatory notation OH1 . This gives with the help of Leibniz’
rule

(H̃ − E(∞))ψ̃ = Ĩrφ1 ⊗ φ2 − χ̃(H̃0 − E(∞))R̃Ĩrφ1 ⊗ φ2

+ 2∇χ̃ · ∇R̃Ĩrφ1 ⊗ φ2 +∆χ̃R̃Ĩrφ1 ⊗ φ2 +OH1

(
1

r4

)
.

From (3.13) and (3.25) we find that

χ̃(H̃0 − E(∞))R̃Ĩrφ1 ⊗ φ2 = Ĩrφ1 ⊗ φ2 + P̃0H̃0P̃
⊥
0 R̃Ĩrφ1 ⊗ φ2.

It follows that

(H̃ − E(∞))ψ̃ = −P̃0H̃0P̃
⊥
0 R̃Ĩrφ1 ⊗ φ2 + 2∇χ̃ · ∇R̃Ĩrφ1 ⊗ φ2

+∆χ̃R̃Ĩrφ1 ⊗ φ2 +OH1

(
1

r4

)
.

Since P̃0H̃0P̃
⊥
0 = P̃0(H̃0 − E(∞))P̃⊥

0 , we find using (3.18) that

P̃0H̃0P̃
⊥
0 = O(e−cr), ∇P̃0H̃0P̃

⊥
0 = O(e−cr). (3.53)

This concludes the proof of Lemma 15. �

We now continue with the proofs of (3.45) and (3.46). Using (3.19) and

(3.47) together with Lemma 14 for Φ = (H̃ − E(∞))ψ̃, Lemma 15 and the
translation invariance of the L2 and H1 norms we arrive at (3.45).
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To prove (3.46) observe that from Lemma 14 and (3.47) we have

(1−∆)−
1

2
d

dr
(H − E(∞))ψ = (1−∆)−

1

2 (~v · ∇)((H − E(∞))ψ

+ τr

(
(1−∆)−

1

2
d

dr

(
(H̃ − E(∞))ψ̃

))
,

Thus, using the boundedness and translation invariance of (1−∆)−
1

2 (~v ·∇)
and (3.45), we find that

d

dr
(1−∆)−

1

2 (~v · ∇)(H −E(∞))ψ = O

(
1

r4

)
.

Using (3.19) we obtain that
∥∥∥∥(1−∆)−

1

2
d

dr

(
(H̃ − E(∞))ψ̃

)∥∥∥∥
H1

= O

(
1

r5

)

and ∥∥∥∥
d2

dr2

(
(H̃ −E(∞))ψ̃

)∥∥∥∥
L2

= O

(
1

r6

)
.

Thus we can apply Lemma 14 for Φ(r) = (1 − ∆)−
1

2
d
dr
(H̃ − E(∞))ψ̃ and

find that

d

dr
τr

(
(1−∆)−

1

2
d

dr

(
(H̃ − E(∞))ψ̃

))
= O

(
1

r5

)
.

This proves (3.46).

Using that ψ = τrψ̃ and the r-independence of ψ̃, we can apply Lemma

14 for Φ = ψ̃ and find that

dα

drα
ψ = τr

(
(~v · ∇)αψ̃

)
= O (1) for α ∈ {0, 1, 2}.

In fact this can be done without Lemma 14 using that the momentum op-
erator is the generator of translations. In a similar manner we find that

dα

drα
Tπψ = O (1) , α ∈ {0, 1, 2}

dα

drα
(H−E(∞))Tπψ = O

(
1

r4

)
, α ∈ {0, 1}.

d

dr
(1−∆)−

1

2
d

dr
(H − E(∞))Tπψ = O

(
1

r4

)
.

Thus, from the definition of Q, we obtain

dα

drα
Qψ = O(1), α ∈ {0, 1, 2} (3.54)

and
dα

drα
Q(H − E(∞))ψ = O

(
1

r4

)
, for α ∈ {0, 1}, (3.55)

as well as
d

dr
(1−∆)−

1

2
d

dr
Q(H − E(∞))ψ = O

(
1

r4

)
. (3.56)
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We now continue with estimating M , defined in (3.42). We note that

M = O

(
1

r4

)
, (3.57)

because

‖(H − E(∞))ψ‖ = ‖(H̃ − E(∞))ψ̃‖
(3.19)
= O

(
1

r4

)
, (3.58)

and
1

‖Qψ‖2
=

(
N1 +N2

N1

)
. (3.59)

Using (3.45) and (3.54) we find that

∂

∂r
M = O

(
1

r4

)
+

1

‖Qψ‖2
〈(H − E(∞))ψ,

[
∂

∂r
(Ha,⊥ − E)−1

]
Qψ〉. (3.60)

Writing the difference quotients for the partial derivative of the resolvent
and using the second resolvent formula it follows that
[
∂

∂r

(
Ha,⊥ − E

)−1
]
Q =

(
Ha,⊥ − E

)−1
(
d

dr
(P⊥HP⊥)

)(
Ha,⊥ − E

)−1
Q,

(3.61)
where we have also used that the orthogonal projection Q commutes with
Ha,⊥. We now observe that
∥∥∥∥(1−∆)−

1

2

(
d

dr
(P⊥HP⊥)

)
(1−∆)−

1

2

∥∥∥∥
B(L2)

=

∥∥∥∥(1−∆)−
1

2

(
−
dP

dr
HP⊥ + P⊥dH

dr
P⊥ − P⊥H

dP

dr

)
(1−∆)−

1

2

∥∥∥∥
B(L2)

.

(3.62)

Moreover using (1.1) and the definition of I, we find

dH

dr
= −

N1N2

r2
+Br, (3.63)

where

Br =

N1+N2∑

j=1

N2(xj − re1) · e1
|xj − re1|3

,

and therefore due to Hardy’s inequality
∥∥∥∥(1−∆)−

1

2
dH

dr
(1−∆)−

1

2

∥∥∥∥
B(L2)

= O(1). (3.64)

Note that arguing as in the proof of (3.54) we obtain that
∥∥∥∥
dP

dr
(1−∆)

1

2

∥∥∥∥
B(L2)

= O(1). (3.65)
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Due to the −∆ form boundedness of H, uniformly in r, it follows from
(3.62), (3.64) and (3.65) that

∥∥∥∥(1−∆)−
1

2

(
d

dr
(P⊥HP⊥)

)
(1−∆)−

1

2

∥∥∥∥
B(L2)

= O(1).

Since moreover −∆ is H⊥ form bounded, uniformly for large r, we find that
∥∥∥∥(1−∆)

1

2Q
(
Ha,⊥ − E

)− 1

2

∥∥∥∥
L2

= O(1).

From (3.61), we find that
[
∂

∂r

(
Ha,⊥ − E

)−1
]
Q = O(1). (3.66)

Using (3.58), (3.59), (3.60) and (3.66) we find

∂M

∂r
= O

(
1

r4

)
. (3.67)

If we try to differentiate ∂M
∂r

with respect to r we run into the problem that
d2H
dr2

is not in L1
loc. To remedy this we write the difference quotient for dH

dr

and perform changes of variables so that we do not have to differentiate dH
dr

.
To this end using (3.45), (3.46) and (3.54) we can argue similarly as in the
proof of (3.67) to find

∂2M

∂r2
= O

(
1

r4

)

+
∂

∂r

〈
(H −E(∞))ψ, (Ha,⊥ − E)−1P⊥dH

dr
P⊥(Ha,⊥ − E)−1Qψ

〉
.

This can be rewritten as

∂2M

∂r2
= O

(
1

r4

)
+

∂

∂r

〈
Φ,
dH

dr
Ψ

〉
, (3.68)

where

Φ = P⊥
(
Ha,⊥ − E

)−1
Q (H − E(∞))ψ and Ψ = P⊥

(
Ha,⊥ − E

)−1
Qψ

both belong to H2. Note that we could add Q in the definition of Φ be-
causeQ is an orthogonal projection commuting with P⊥,Ha,⊥,H, dH

dr
. Using

(3.54), (3.55), (3.65) and (3.66) we find that

∂α

∂rα
Φ = O

(
1

r4

)
,

∂α

∂rα
Ψ = O

(
1

r4

)

for α ∈ {0, 1}. We arrive at

∂2M

∂r2
= O

(
1

r4

)
+ lim
h→0

〈
Φ,

1

h

(
dH

dr

∣∣∣∣
r+h

−
dH

dr

∣∣∣∣
r

)
Ψ

〉
. (3.69)
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Observe that by (3.63) it is enough to prove that

lim
h→0

〈
Φ,
Br+h −Br

h
Ψ

〉
= O

(
1

r4

)
. (3.70)

Indeed a simple change of variables gives

〈Φ, Br+hΨ〉 = 〈γhΦ, BrγhΨ〉 ,

where γh is defined by

γhψ(x1, . . . , xN1+N2
) = ψ(x1 + he1, . . . , xN1+N2

+ he1).

Thus

lim
h→0

〈
Φ,
Br+h −Br

h
Ψ

〉
= lim

h→0

〈
γhΦ− Φ

h
,BrγhΨ

〉
+ lim
h→0

〈
Φ, Br

γhΨ−Ψ

h

〉

= 〈(−~w · ∇)Φ, BrΨ〉+ 〈Φ, Br(−~w · ∇)Ψ〉 (3.71)

where

~w = (−1, 0, 0,−1, 0, 0, . . . ,−1, 0, 0)︸ ︷︷ ︸
N1+N2 times

,

and we used that the momentum operator is the generator of translations.
Since ‖Ψ‖H2 = O(1) and ‖Φ‖H2 = O

(
1
r4

)
we can apply Hardy’s inequality

to the right hand side of (3.71) to arrive at (3.70). From (3.69), (3.63) and
(3.70) we obtain

∂2M

∂r2
= O

(
1

r4

)
.

Together with (3.57) and (3.67) we arrive at (3.44). Using (3.43) and (3.44)
we find that

∂αB

∂rα
= O

(
1

r10

)
for α ∈ {0, 1, 2}. (3.72)

To estimate the term C defined in (3.41) we will introduce a new cut-off
function. Let

X(x1, . . . , xN1+N2
) =

N1∏

i=1

χ1

((
6

7

)2 xi
r0

)
N1+N2∏

j=N1+1

χ1

((
6

7

)2(xj
r0

−
r

r0
e1

))
.

(3.73)
This dilation ensures that{

X = 1 on supp(ψ),

XTπψ = 0 for all π ∈ SN1+N2
\S1 × S2.

(3.74)

From (3.41), (3.59) and (3.74) we have

C =

(
N1 +N2

N1

)
〈 (H − E(∞))ψ,X

(
Ha,⊥ − E

)−1
(H −E(∞))Qψ〉.

Since

X
(
Ha,⊥ − E

)−1
= RX +

[
X
(
Ha,⊥ −E

)−1
−RX

]
,
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with R defined in (2.5) and by (3.74) and the locality of H

X(H − E(∞))Qψ =
1(

N1+N2

N1

)(H −E(∞))ψ,

We find
C = C1 + C2, (3.75)

where
C1 = 〈(H − E(∞))ψ,R(H − E(∞))ψ〉

and

C2 =

〈
(H − E(∞))ψ,

[
X
(
Ha,⊥ − E

)−1
−RX

]
(H − E(∞))Qψ

〉
.

By the same change of variables as in section 3.1 we have

C1 =
〈
(H̃ − E(∞))ψ̃, R̃(H̃ − E(∞))ψ̃

〉
,

and therefore by (3.19) and the r-independence of R̃, when r varies a little
bit, we find that

C1 = O∞
d

(
1

r8

)
. (3.76)

To estimate C2 observe that (2.5) and (2.6) imply that
[
X
(
Ha,⊥ − E

)−1
−RX

]
Q

= R
[
(Ha,⊥

0 − E(∞))X −X(Ha,⊥ − E)
]
Q
(
Ha,⊥ − E

)−1

= R
[
P⊥
0 H0P

⊥
0 X −XP⊥HP⊥ + (E − E(∞))X

]
Q
(
Ha,⊥ − E

)−1
,

(3.77)

where in the last step we used that the projection Q commutes with P⊥,H⊥,
and that Q1,Q2 commute with P⊥

0 ,H0 and the equality Q1Q2Q = Q holds,

to omit the Q1,Q2,Q that appear in the definitions of Ha,⊥
0 ,Ha,⊥, respec-

tively. We now claim that

XP⊥HP⊥Q = P⊥
ψ XHP

⊥
ψ Q, (3.78)

where P⊥
ψ = 1−|ψ〉〈ψ|. Indeed from (3.74) it follows thatXQψ = Xψ‖Qψ‖2,

which together with (2.8) and the fact that the projection Q commutes with
H and P⊥ gives

XP⊥HP⊥Q = XP⊥
ψ HP

⊥Q = P⊥
ψ XHP

⊥Q

where in the last step we used that Xψ = ψ, see (3.74). Due to (3.74)
and the locality of H we have that XHQψ = XHψ‖Qψ‖2 and thus we can
repeat the argument to arrive at (3.78).

Due to (3.74) X commutes with P0 and thus

P⊥
0 H0P

⊥
0 X = P⊥

0 H0XP
⊥
0 .
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Together with (3.77) and (3.78) we find
[
X
(
Ha,⊥ − E

)−1
−RX

]
Q

= R
[
P⊥
0 H0XP

⊥
0 − P⊥

ψ XHP
⊥
ψ + (E −E(∞))X

] (
Ha,⊥ − E

)−1
Q.

Observe that

P⊥
0 H0XP

⊥
0 − P⊥

ψ XHP
⊥
ψ = (Pψ − P0)H0XP

⊥
0

+ P⊥
ψ (H0X −XH)P⊥

0 + P⊥
ψ XH(Pψ − P0). (3.79)

Thus, we obtain
C2 = C21 + C22 + C23 + C24,

where

C21 = 〈(H − E(∞))ψ,R(E − E(∞))X(Ha,⊥ − E)−1(H − E(∞))Qψ〉,

C22 = 〈(H − E(∞))ψ,R
(
(Pψ − P0)H0XP

⊥
0

)
Q(Ha,⊥ − E)−1(H −E(∞))Qψ〉,

C23 = 〈(H − E(∞))ψ,R
(
P⊥
ψ XH(Pψ − P0)

)
Q(Ha,⊥ − E)−1(H − E(∞))Qψ〉,

C24 = 〈(H − E(∞))ψ,R
(
P⊥
ψ (H0X −XH)P⊥

0

)
(Ha,⊥ − E)−1(H − E(∞))Qψ〉.

We first estimate C21. By (3.38) and (1.15) we have

∂α

∂rα
(E − E(∞)) = O

(
1

r6

)

for α ∈ {0, 1, 2}. Furthermore one can verify that ∂αr X = O(r−α) for α ∈
{0, 1, 2}. Using (3.55) and (3.56) we can argue similarly as in the proof of
(3.44) to arrive at

∂α

∂rα
C21 = O

(
1

r14

)
for α ∈ {0, 1, 2}. (3.80)

Note that differentiating the term having dR
dr

can be similarly handled as

differentiating the term containing ∂
∂r
(Ha,⊥ − E)−1 in the proof of (3.44).

We next estimate C24. Observe that

H0X −XH = −IX − [∆,X] = −IX − (∆X)− 2∇X · ∇,

and thus by the previous estimate on ∂αrX and the fact that X is supported
O(r) far from the singularities of I we have

dα

drα
(H0X −XH) = O

(
1

rα+1

)
+O

(
1

rα+1

)
· ∇

for α ∈ {0, 1, 2}. Using the (Ha,⊥ − E) boundedness of Q∇ we can argue
again as in the proof of (3.80) to conclude that

∂αC24

∂rα
= O

(
1

r9

)
for α ∈ {0, 1, 2}. (3.81)
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We now estimate C22. Observe that

Pψ − P0 = |fr〉〈ψ| + |φ1 ⊗ φ2,r〉〈fr|, (3.82)

where, by (2.9),

fr := ψ − φ1 ⊗ φ2,r =

(
1

‖ψ̃0‖2
− 1

)
φ1 ⊗ φ2,r +

χRIφ1 ⊗ φ2,r

‖ψ̃0‖2

= τr

[(
1

‖ψ̃0‖2
− 1

)
φ1 ⊗ φ2 +

χ̃R̃Ĩrφ1 ⊗ φ2

‖ψ̃0‖2

]
.

It follows from Lemma 14 together with (3.16) and (3.29) that

dα

drα
fr = O

(
1

r3

)

for α ∈ {0, 1, 2} and thus by (3.82)

dα

drα
(Pψ − P0) = O

(
1

r3

)
, α ∈ {0, 1, 2}. (3.83)

Since X = 1 on suppψ0 and suppφ1 ⊗ φ2,r we have

C22 = 〈(H−E(∞))ψ,R
(
(Pψ − P0)H0P

⊥
0

)
Q(Ha,⊥−E)−1(H−E(∞))Qψ〉.

Thus using (3.82)
C22 = C221 + C222,

where

C221 = 〈(H − E(∞))ψ,Rfr〉〈ψ,H0P
⊥
0 Q(Ha,⊥ −E)−1(H − E(∞))Qψ〉

and

C222 = 〈(H−E(∞))ψ,Rφ1⊗φ2,r〉〈fr,H0P
⊥
0 Q(Ha,⊥−E)−1(H−E(∞))Qψ〉.

We now estimate C221. Using the change of variables of Section 3.1 we find

C221 = 〈(H̃ − E(∞))ψ̃, R̃f̃r〉〈ψ,H0P
⊥
0 Q(Ha,⊥ − E)−1(H − E(∞))Qψ〉.

But by (3.16)

f̃r =

(
1

‖ψ̃0‖2
− 1

)
φ1 ⊗ φ2 +

χ̃R̃Ĩrφ1 ⊗ φ2

‖ψ̃0‖2
= O∞

d

(
1

r3

)

and it follows using (3.19) that

C221 = O∞
d

(
1

r7

)
〈ψ,H0P

⊥
0 Q(Ha,⊥ − E)−1(H − E(∞))Qψ〉.

Because of the boundedness of H0P
⊥
0 Q(Ha,⊥ −E)−1 we can differentiate ψ

twice. Note that in ∂
∂r
C221 the term containing dH0

dr
appears. To differentiate

this term we argue as in the proof of (3.2). With these additional observa-
tions we can argue as in the proof of (3.80) to find that ∂αr C221 = O(r−11)
for all α ∈ {0, 1, 2}. Similarly we can show that ∂αr C222 = O(r−11) for all
α ∈ {0, 1, 2}. Thus we arrive at ∂αr C22 = O(r−11) and ∂αr C23 = O(r−11) and
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obtain ∂αr C2 = O(r−9), for all α ∈ {0, 1, 2}. Together with (3.75) and (3.76)
we conclude that

C = O

(
1

r8

)
,

∂α

∂rα
C = O

(
1

r9

)
(3.84)

for α ∈ {1, 2} and hence arrive at (3.40).

3.3. Conclusion of the proof of Theorem 4. We now apply the implicit
function theorem in (3.3) to estimate the derivatives of E(r), which coincide
with that of W (r). From (3.3), (3.5), (3.40), we find

∂G(r,E)

∂r
= −

6σ

r7
+O1

d

(
1

r8

)

for E as in (3.38). Since ∂
∂E

(
Ha,⊥ − E

)−1
=
(
Ha,⊥ − E

)−2
, using (3.3),

(3.39), (3.58) we obtain that

∂G(r,E)

∂E
= 1 +O

(
1

r8

)
6= 0.

for E close to E(r). Thus G has continuous partial derivatives of first
order and is continuously differentiable in a neighborhood of the curve
(r,E(r)), r ∈ (r0 − δ, r0 + δ) for some δ > 0. Since (3.2) also holds we
can apply the implicit function theorem to conclude that if r is large enough
then E(r) is differentiable and

W ′(r) = E′(r) = −
∂rG(r,E(r))

∂EG(r,E(r))
.

We can conclude the proof of the estimate on W ′(r) in Theorem 4. In fact
with the argument providing Equation (3.3) it follows that

∂2G(r,E(r))

∂r∂E
= O1

d

(
1

r8

)
.

and since ∂
∂E

(
Ha,⊥ − E

)−2
= 2

(
Ha,⊥ − E

)−3
we obtain that

∂2G(r,E(r))

∂E2
= O1

d

(
1

r8

)
.

Hence we can differentiate the right hand side of (3.3) and we obtain the
estimate on W ′′(r) stated in Theorem 4. �

4. Proof of Theorem 5

In this section we provide a proof of Theorem 5. To handle the spin we
need to introduce further notations. Let Gk be the ground state eigenspace
of Ha

k and define the approximate cut-off ground state eigenspace

Gk,r :=





Nj∏

i=1

χ1

(
xi
r0

)
φ : φ ∈ Gk



 ,
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where r0 is the same as in (2.4). Let {ϕn : n = 1, . . . ,dim(G1)} be an

orthonormal basis ofG1,r and {ψ̃m : m = 1, . . . ,dim(G2)} be an orthonormal
basis of G2,r. We further define

Ψnm := ϕn ⊗ ψm − χRIϕn ⊗ ψm = Kϕn ⊗ ψm , (4.1)

where K = (1− χRI) and

ψm(x1, . . . , xN2
) = ψ̃m(x1 − re1, . . . , xN2

− re1) =: (τrψ̃m)(x1, . . . , xN2
),

with R is defined as in (2.5) with the difference that P0 is the orthogonal pro-
jection onto G1,r⊗ τrG2,r. Finally, we define Π as the orthogonal projection
onto

span{QΨnm | n = 1, . . . ,dim(G1), m = 1, . . . ,dim(G2)}.

We assume without loss of generality that the second atom has an irre-
ducible ground state eigenspace. We will prove the following lemma, which
will help us to adapt the arguments of Section 3 in the present setting. To
this end we define the operator Π2 to be the orthogonal projection onto
τrG2,r. Recall that Y is defined in (1.2).

Lemma 16. Let A be a self-adjoint operator on Y acting only on the position
variables and whose domain contains G1,r ⊗ τrG2,r. Then the operator S :
τrG2,r → τrG2,r defined through the sesquilinear form

〈ψm1
, Sψm2

〉 = 〈Φ1 ⊗ ψm1
, AΦ2 ⊗ ψm2

〉,

with Φ1,Φ2 ∈ G1,r, is a multiple of the identity. The same statement holds
if τrG2,r is replaced by G2,r.

Proof. The operator S is explicitly given by Sψ = 〈Φ1,Π2AΠ2Φ2 ⊗ ψ〉1,
where 〈·〉1 indicates that the integration for the inner product is taken only
with respect to the coordinates of the first atom. One can verify that S∗ψ =
〈Φ2,Π2AΠ2Φ1 ⊗ ψ〉1. We write now S as a linear combination of two self-
adjoint operators on τrG2,r namely

S =
S + S∗

2
− i

iS − iS∗

2
=: B + Ci.

Since A acts only on the position variables, it follows that the two self-

adjoint operators B,C commute with T̃π for all permutations π ∈ SN2
and

with the spin shift F . Thus, due to the irreducibility of the ground state
eigenspace of the second atom, the operators B and C have to be multiples
of the identity on τrG2,r. Indeed, since e.g. B is symmetric and bounded
on τrG2,r, there exists an eigenvector f ∈ τrG2,r so that Bf = λf . Since

moreover B commutes with T̃π and F , we find that ker(B − λ) is invariant
under the group of spin transformations. The irreducibility implies that
ker(B−λ) = G2,r, that is, B is a multiple of the identity. The same argument
for C gives that S is as well a (complex) multiple of the identity. �
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Arguing as [AnSi], see also [MoSi], it follows that there exist c, C such
that if r ≥ c then

Π⊥HaΠ⊥ −E(r) ≥ C > 0. (4.2)

Thus we can apply as in the spinless case the Feshbach map

FΠ(λ) =
(
ΠHΠ−ΠHΠ⊥(Ha,⊥ − λ)−1Π⊥HΠ

)∣∣∣
RanΠ

,

where Ha,⊥ = Π⊥HaΠ⊥ and it follows that E = E(r) is an eigenvalue of
FΠ(E). Moreover, arguing as in the proof of (3.19) we can show that

∥∥∥Π⊥HΠ
∥∥∥ ≤ O

(
1

r4

)
.

It therefore follows that

E = minσ (ΠHΠ|RanΠ) +O

(
1

r8

)
.

Let Ψ ∈ RanΠ be a minimizer of 〈Φ,ΠHΠΦ〉, Φ ∈ RanΠ, ‖Φ‖ = 1. Then

E = 〈Ψ,HΨ〉+O

(
1

r8

)
,

and

Ψ =
QΨ0

‖QΨ0‖
, where Ψ0 =

dim(G2)∑

m=1

KΦm ⊗ ψm (4.3)

for some Φm ∈ G1,r such that
∑dim(G2)

m=1 ‖Φm‖
2 = 1. So arguing as in (3.1)

we find

E − E(∞) =
1

‖Ψ0‖2
〈Ψ0, (H − E(∞))Ψ0〉+O

(
1

r8

)
,

which together with Lemma 16 for A = K∗(H −E(∞))K gives that

E−E(∞) =
1

‖Ψ0‖2

dim(G2)∑

m=1

〈Φm⊗ψm,K
∗ (H −E(∞))KΦm⊗ψm〉+O

(
1

r8

)
.

(4.4)
We are going to prove that

〈Φm ⊗ ψm,K
∗ (H − E(∞))KΦm ⊗ ψm〉

= −
〈fΦm ⊗ ψ̃m, R̃fΦm ⊗ ψ̃m〉

r6
+O

(
1

r7

)
. (4.5)

This can be done as in the proof of (3.5) with the help of (3.12), (3.30),
(3.31), (3.36). The only things which are not a priori clear are that

〈Φm ⊗ ψ̃n, ĨrΦm ⊗ ψ̃n〉 = 0, (4.6)

and that

P̃⊥
G1,r⊗G2,r

ĨrΦm ⊗ ψ̃n = ĨrΦm ⊗ ψ̃n. (4.7)
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We will now prove (4.6) and (4.7) can be similarly proven. Using Lemma
16 we find

〈Φm ⊗ ψ̃m, ĨrΦm ⊗ ψ̃m〉 =
1

dim(G2)

dim(G2)∑

n=1

〈Φm ⊗ ψ̃n, ĨrΦm ⊗ ψ̃n〉. (4.8)

We will now prove that

dim(G2)∑

n=1

〈Φm ⊗ ψ̃n, ĨrΦm ⊗ ψ̃n〉 = 0. (4.9)

Indeed we have that

dim(G2)∑

n=1

〈Φm ⊗ ψ̃n, ĨrΦm ⊗ ψ̃n〉 = 〈Φm, V Φm〉, (4.10)

where

V (x1, . . . , xN1
)

=

dim(G2)∑

n=1

∫
Ĩr (x1, . . . , xN1+N2

) |ψ̃n|
2 (xN1+1, . . . , xN1+N2

) dxN1+1 . . .

=

dim(G2)∑

n=1

∫ N2∑

j=1

I0 (x1, . . . , xN1
, xN1+j) |ψ̃n|

2 (xN1+1, . . . , xN1+N2
) dxN1+1 . . . ,

with

I0(x1, . . . , xN1
, x) =

N1∑

i=1

(
1

|re1 + x− xi|
−

1

|re1 − xi|

)
−

N1

|re1 + x|
+
N1

r
.

Therefore, we find

V (x1, . . . , xN1
) =

∫
I0 (x1, . . . , xN1

, x) ρ(x)dx,

where ρ is the electron density of the second atom given by

ρ(x) =
1

dim(G2)

dim(G2)∑

n=1

N2∑

j=1

∫
|ψ̃n|

2 (x1, . . . , xj−1, x, xj+1, . . . , xN2
)

where all the variables are integrated with the exception of x. Note that

ψ̃n is an orthonormal basis of G2,r. It is well known that ρ(x) is spherically
symmetric, see for example [AnSi]. Thus applying Newton’s theorem we
find that V (x1, . . . , xN1

) vanishes on the support of Φm, which together
with (4.10) implies (4.9). From (4.8) and (4.9) we arrive at (4.6) and (4.7)
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can be similarly proven. Thus (4.5) holds. From (4.5) we find

dim(G2)∑

m=1

〈Φm ⊗ ψm,K
∗ (H −E(∞))KΦm ⊗ ψm〉

= −

dim(G2)∑

m=1

〈fΦm ⊗ ψm, RfΦm ⊗ ψm〉

r6
+O

(
1

r7

)
.

Since Ψ given by (4.3) minimizes the quadratic form of 〈Φ,HΦ〉 for ‖Φ‖ =
1,Φ ∈ RanΠ, we obtain with Lemma 16 and (1.13) that

dim(G2)∑

m=1

〈Φm ⊗ ψm,K
∗ (H − E(∞))KΦm ⊗ ψm〉 = −

σ

r6
+O

(
1

r7

)
. (4.11)

With the help of Lemma 16 we see that ‖Ψ0‖
2 =

∑dim(G2)
m=1 ‖KΦm ⊗ ψm‖

2,
as the the functions on the right hand side are orthogonal to each other.

Thus since
∑dim(G2)

m=1 ‖Φm‖
2 = 1 we can prove similarly as (3.29) that

‖Ψ0‖
2 = 1 +O∞

d

(
1

r6

)
. (4.12)

Using (4.4), (4.11) and (4.12), we arrive at (1.17).
It thus remains to show thatW (r) or equivalently E(r) is strictly increas-

ing for large r, which we do next.

Lemma 17 (Monotonicity). There exists a d > 0 such that E(r) is strictly
increasing on [d,∞).

Proof. Here we adapt ideas of Section 3 in [AnLe]. There the situation was
different, a system of two molecules that can be rotated was considered, but
it was assumed that both of them have irreducible ground state eigenspaces.
Let Ψs =

QΨ0

‖QΨ0‖
, be an eigenvector to the eigenvalue E(s) of the Feshbach

map FΠ(E(s)) for distance s, with Ψ0 defined similarly as in (4.3). Let

Ψr =
Qτr−sΨ0

‖Qτr−sΨ0‖
,

where τ is given by (3.48) and define

D(r) := 〈Ψr,HrΨr〉 −N(r), (4.13)

where

N(r) := 〈Ψr,HrΠ
⊥
r (H

a,⊥
r − E(s))−1Π⊥

r HrΨr〉

and we wrote Πr to emphasize the dependence of the projection Π on r.
Note that Ψr is in the range of the projection Πr for the Feshbach map but
it is not necessarily eigenfunction to the eigenvalue E(r) of the Feshbach
map FΠr(r). However, it can be used as a test function. We also emphasize
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the fact that E(s) does not change in the definition of N(r) when r changes,
which helps a lot the analysis. Arguing as in (3.1) and (3.9) we find that

〈Ψr,HrΨr〉 =
1

‖Ψ0‖2
〈Ψ̃0, H̃rΨ̃0〉,

which with the help of (4.3) and Lemma 16 becomes

〈Ψr,HrΨr〉 =
1

‖Ψ0‖2

dim(G2)∑

m=1

〈Φm ⊗ ψ̃m, K̃∗H̃rK̃Φm ⊗ ψ̃m〉,

where K̃ = 1− χ̃R̃Ĩr. Thus, since
∑dim(G2)

m=1 ‖Φm‖
2 = 1 and (4.12) holds, we

can argue as in the proof of (3.5) to show that

〈Ψr,HrΨr〉 = E(∞)−
σ

r6
+O∞

d

(
1

r7

)
. (4.14)

To estimate N(r) we observe that

N(r) = 〈Π⊥
r (Hr − E(∞))Ψr, (H

a,⊥
r − E(s))−1Π⊥

r (Hr −E(∞))Ψr〉.

Since by (4.3) it follows that

(Hr − E(∞))Ψr =

dim(G2)∑

m=1

Q

‖QΨ0‖
(H − E(∞))KΦm ⊗ ψm,

using (4.12) and arguing for each of the summands as in the proof of (3.55)
we find

da

dra
(Hr − E(∞))Ψr = O

(
1

r4

)

for a = 0, 1. Arguing as in the proofs of (3.54) and (3.66) we find, respec-
tively, that

d

dr
Π⊥
r = O(1)

and [
d

dr
(Ha,⊥

r − E(s))−1

]
Q = O(1).

We arrive at
da

dra
N = O

(
1

r8

)
(4.15)

for a = 0, 1. It thus follows from (4.13), (4.14) and (4.15) that D(r) is
strictly increasing, when r is big enough. From this it follows that E(r)
is strictly increasing for r large enough. Indeed, assume that s, r are large
enough with r < s and

E(r) ≥ E(s). (4.16)

From this assumption it follows, with the help of the second resolvent for-
mula and (4.2), that

− (H⊥
r − E(s))−1 ≥ −(H⊥

r − E(r))−1. (4.17)
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Using (4.17) we observe that

D(r) = 〈Ψr,HrΨr〉 − 〈Ψr,HrΠ
⊥
r (H

⊥
r − E(s))−1Π⊥

r HrΨr〉

≥ 〈Ψr,HrΨr〉 − 〈Ψr,HrΠ
⊥
r (H

⊥
r − E(r))−1Π⊥

r HrΨr〉 ≥ E(r), (4.18)

where the last inequality follows from the fact that E(r) is the minimum of
the spectrum of the Feshbach map FΠr(E(r)). Since moreover E(s) = D(s)
it follows from (4.16) and (4.18) that

D(r) ≥ D(s),

contradicting the fact that D is strictly increasing for large r. �
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[FrGrRiSe] J. Fröhlich, G.M. Graf, J.-M. Richard and M. Seifert: Proof of stability of the

hydrogen molecule. Phys. Rev. Lett., 71, No.9, 30 1332-1334 (1993).
[GrGrHaSi] S. Graffi, V. Grecchi, E. Harrell, H. Silverstone: The 1/R expansion for H+

2 :
Analyticity, summability, and asymptotics Annals of Physics, 165, 441 - 483
(1985).

[Hu1] W. Hunziker: On the spectra of Schrödinger Multiparticle Hamiltonians. Helv.

Phys. Acta 39, 451-462 (1966).
[Hu2] W. Hunziker: Distortion analyticity and molecular resonance curves. Ann. Inst.

Henri Poincare 45, 339-358 (1986).
[HuSi] W. Hunziker and I.M. Sigal: The quantum N−body problem. J. Math. Phys.

41 No.6, 3448-3510 (2000).
[Jo1] J.E. Jones: On the Determination of Molecular Fields. I. From the Variation

of the Viscosity of a Gas with Temperature. Proc. R. Soc. Lond. A 106(738),
441-462 (1924).

http://arxiv.org/abs/1809.06110


VAN DER WAALS INTERACTION BETWEEN TWO ATOMS 33

[Jo2] J.E. Jones: On the Determination of Molecular Fields. II. From the Equation of
State of a Gas. Proc. R. Soc. Lond. A 106(738), 463-477 (1924).

[Le1] M. Lewin: A Mountain Pass for reacting molecules. Ann. Henri Poincaré 5
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