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DIFFERENTIABILITY OF THE VAN DER WAALS
INTERACTION BETWEEN TWO ATOMS

IOANNIS ANAPOLITANOS, MATHIEU LEWIN, AND MATTHIAS ROTH

ABSTRACT. In this work we improve upon previous results on the ex-
pansion of the interaction energy of two atoms. On the one hand we
prove the van der Waals-London’s law, assuming that only one of the
ground state eigenspaces of the atoms is irreducible in an appropriate
sense. On the other hand we prove strict monotonicity of the interaction
energy at large distances and, under more restrictive assumptions, we
provide the leading order of its first two derivatives. The first derivative
is interpreted as the force in Physics. Moreover, the estimates of the
first two derivatives provide a rigorous proof of the monotonicity and
concavity of the interaction energy at large distances.

1. INTRODUCTION AND MAIN RESULT

Atoms and molecules attract each other through van der Waals forces,
which are much weaker than ionic or covalent bonds. These forces have
been discovered by J.D. van der Waals [vdWall vdWa2|] when he was trying
to formulate an equation of state of gases, compatible with experimental
measurements. These forces are universal and play a fundamental role in
quantum chemistry, physics, biology and material sciences. For instance,
their strength is one of the factors that determine the boiling temperature
of liquids. They explain why diamond, consisting of carbon atoms connected
with covalent bonds only, is a much harder material than graphite, which
consists of layers of carbon atoms that attract each other through van der
Waals forces [ChChJoRiYul.

Our goal in this paper is to discuss the differentiability of the interac-
tion energy of two atoms at dissociation and the long range behavior of its
first two derivatives, justifying thereby the long range behavior of the van
der Waals force. We work under the Born-Oppenheimer approximation, in
which the two nuclei are classical particles and the electrons are quantum.

We begin with a mathematical formulation of the problem. We study the
Hamiltonian

H:H(T):H0+I, Hy= Hy+ Hy,, (1.1)
where

M N, 1
=Y (-a,-2 S -
! Z< ' |$z‘|>Jr Z |zg, — 2]

1<k<I<N;
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Here we assume that the first nucleus is at 0 € R3 and the second at req,
where e; = (1,0,0) and r > 0 denotes the distance between the nuclei. The
coordinates x1,...,TN,+N, € R3, are the locations of the electrons, where
N1, Ny are the atomic numbers of the first and second atom, respectively.
The operators Hy, Hs ; describe the individual atoms, and the multiplication
operator I is the interaction between them. The notation Hs, emphasizes
the fact that the nucleus of the second atom is located at a distance r from
the origin. We work in units where the electron charge is —1, the electron
mass is 0.5 and Planck’s constant is A = 1.

In order to take spin and the Fermi statistics into account, we introduce
some orthogonal projections onto appropriate subspaces of

N1+N2

Y:L2<(R3 x {0,...,q—1})N1+N2,<c> ~ Q) LA(R:CY). (12
1

Here ¢ is the number of spin states, hence ¢ = 2 for electrons. The corre-
sponding norm is

o= > /’(I)(xlash-'-7$N1+N273N1+N2)‘2dx1 “+ dT Ny Ny
el0a-1)

Sometimes we write [ds for the sum over spin states for shortness. For
any permutation 7 € Sy, +n, we define the unitary operator 7 on Y which
exchanges the variables of ¥ as follows

(TT(\I,)('Z'17 817 L) 7xN1+N27 SN1+N2)
= \I/(ajwq(l), Sﬂfl(l) ce ,xﬂfl(NH_Nﬂ, Sﬂfl(N1+N2)), (13)
where s1,...,sn,4n, € {0,...,¢ — 1} are the spin variables of the electrons.
Let §; = Sy, ® 1 C Sn,+n, be the subgroup of Sy, 4+, consisting of the
permutations of {1,..., N1}, and S; = 1® Sy, C Sn,+n, be the subgroup of
SN, +N, consisting of the permutations of {N; + 1,..., Ny + Na}. We define,
for j € {1, 2},

1 1
] — ——— —1 7|—CZ—W = _1 7TCZ—’ .
<i N;! Z}( )T, < (N1 + No)! Z (=1
TES; TESN, + Ny

Let us also introduce the operator Hiy := Hp + Hy where Hy = Hjy.
Consider the projected operators onto the appropriate symmetry subspaces

H{ = H9Q,, HY = HyQy, H{y = H12Q: 9>, H*=HQ. (1.4)
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We call

Ej:=mino(Hj), E(r):=mino(H") (1.5)

the corresponding ground state energies. From the Zhislin and HVZ theo-
rems [Zhl, vWil, [Hull, [Sill Le2], these are eigenvalues lying strictly below the
essential spectrum. In particular we have E; < 0. Moreover E(r) < 0 if r
is large enough, see [LiTh|. Because of these properties, it is not important
whether we consider the operators over the whole space Y or over the ap-
propriate anti-symmetric subspaces, since by definition they are equal to 0
outside of these spaces. In this paper we will always work in Y for conve-
nience. Note also that the bottom of the spectrum of HY{, is just Ey + Es.
For i € {1,2} and m € Z with m < N; and N; — m < Ny + N we define

e S G D Y
v Tyl |lzj — k]’

Jj=1 1<j<k<N;—m

which is the Hamiltonian of the ion with atomic number N; and total charge
m. We define E; ,, to be the ground state energy of Hfm =H;,QinY.
It has been proved in [MoSi, Thm. 1.1] (see also [Lel, Thm. 2]) that E(r)
converges at infinity and that the limit is given by

E(c0) = Tli)ngo E(r)= _ymin_ {El,m + E27_m}. (1.6)

In other words, at the dissociation the two atoms are in their ground states
but one still has to optimize over all the ways of distributing the N; + No
electrons among them. The interaction energy of the system is defined by

(W (r) = E(r) - E(c0).| (1.7)

We will explain shortly that W (r) < 0. This means that it costs energy to
separate the atoms, hence the system must be bound at a finite distance
r. Local minima of W(r) determine the equilibrium configurations of the
diatomic molecule.

We now discuss some known properties of the interaction energy W (r).
If the minimum on the right side of (L.0) is attained at some m # 0, then
the two atoms have opposite charges in the dissociation. In this case they
attract each other at infinity and this results in the upper bound

W <-4 <3>

T r

(see, e.g., [Lel]). In particular W(r) < 0 for r large enough. In this paper
we are interested in the case where the minimum on the right side of (L)
is solely attained at m = 0, that is,

B+ By = Ero+ By < min { Byt Byl (1.8)

—N2<m<N;
m#0

It is indeed a famous conjecture that (L)) is satisfied for all Ny, No. See
[AnSi] and references therein for a discussion, including the case of several
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atoms. In this paper (L&) will be an assumption throughout. In particular
we then have

W(?") = E(r) — E1 — EQ.

Under the assumption (L.8)), the van der Waals-London’s law for a system
of two atoms asserts that there exists ¢ > 0 such that

W)= -2 40 <%>HOO. (1.9)

A heuristic explanation was given by London [Lo| in 1937.

One of the first rigorous results in this direction were given by Morgan
and Simon [MoSi|, who proved, for two atoms without spin and with non-
degenerate ground states, that W (r) possesses an asymptotic series in pow-
ers of 1/r. They also mentioned that the 6th order term is to be interpreted
as the van der Waals energy. In 1986, Lieb and Thirring [LiTh] provided an
upper bound of the form

c

W(r) < ~6

for a positive constant ¢ > 0. The upper bound holds without any as-

sumptions and it also applies to systems of several molecules. After these

results, (L) was proven only relatively recently in [AnSi] under a type of
non-degeneracy assumption in the case of a system of several atoms.

The goal of this article is to investigate the expansion of derivatives of
W (r). Our work extends the results in [AnSi| in the case of two atoms in
several directions. In the spinless non-degenerate case we provide estimates
on the first two derivatives of the interaction energy from which monotonicity
and concavity of the interaction energy follows for large r. Then we prove
the van der Waals-London’s law with spin, with the sole assumption that
one of the ground state eigenspaces is irreducible in a sense to be discussed
below. Moreover, with the help of the methods developed in the spinless
case we prove the monotonicity of the interaction energy for large r.

Throughout this work we assume that at least one of the ground state
eigenspaces of the two individual atoms is irreducible, a concept that we
discuss now. The usual method is to introduce a group of spin transfor-
mations (that is, unitary operators acting on L2({0,...,q — 1}) = C%), and
to require that the first eigenspace of H® is irreducible with respect to this
group action. For simplicity we introduce here one group which works for
every N1, No. But the arguments below work for any other group represen-
tation of the spins, which acts non trivially on fermionic wavefunctions. For
m € S, we introduce the operator exchanging only the spin variables:

TVW\I/(:EL STy Ty Sn) 1= W(T1,85-1(1)s -+ + s Ty Sp-1(n))- (1.10)
Similarly, we may introduce the operator which shifts the spins by one unit

FU(21,81,--sTn,Sn) := V(x1,81+1,..., 20,8, + 1) (1.11)
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where s; + 1 is always understood modulo ¢q. For ¢ = 2, F is just the
operator which flips each spin to its opposite. Note that F commutes with
ir for all 7, hence these operators generate a finite group of order gN!.
If ¥ is a ground state of H® then so is FPT. U for any m € Sy and any
p €{0,...,q — 1}, since H* is does not depend on the spin variables.

Definition 1 (Irreducibility of ground state eigenspace). The ground state
eigenspace Gy, of H! is called irreducible if {0} and G, are its only invariant
subspaces under the spin shift F and all the spin permutations Ty for all
TeS N -

Equivalently, the eigenspace is spanned by any ground state ¥ and its spin
transformations FPT, ¥ with p € {0,...,¢ — 1} and 7 € Sy. In particular,
the ground state is unique up to spin appropriate rearrangements. In the
case without spin, ¢ = 1, the irreducibility condition simply means that
dim(Gg) = 1, that is, the eigenvalue is simple. With spin 1/2 (¢ = 2),
the irreducibility assumption is verified in some natural physical situations
which we discuss in Remarks [6] and [7] below. For Nj = 1 the ground state
eigenspace is always of dimension ¢, by Perron-Frobenius theory [ReSid]
Sec. XIII.12]. The corresponding space is then always irreducible, due to
the action of the shift F.

If G}, is the ground state eigenspace of H}! then HY, has the ground state
eigenspace G1 ® G9. We further define

7J- -—_
Hil2 T Hil2(1 - PG1®G2)7
where Pg,¢q, denotes the orthogonal projection onto G; ® G2. Since the
ground state energy E(co) = Ej + Es is in the discrete spectrum of H{, and

since F(00) < 0, there exists ¢ > 0 such that Hfﬁl — E(00) > ¢ on the whole

space Y. As a consequence, the resolvent Ris := (H féL — E(c0))™! is well
defined, bounded and positive on the entire space Y. We now introduce

N1 Ni1+N3

F . amen) =Y > fi (1.12)

i=1 j=N1+1

where fi; = z; - zj — 3(2; - e1)(2; - e1) is the dipole-dipole energy. We finally
consider the number

= U, Ri5 fU). 1.13
o Wﬁzgl?gfzﬁ 12f¥) (1.13)

We recall that any ground state in (; € G; is exponentially decaying,
[el1a%¢;|| 12 < oo, for all a with, |a| <2, (1.14)

see for example [CoTh]. It follows that the function f¥ is in L? for any
U € G1 ® Gy and thus o is finite. Using that (f¥, Ri;f¥) = ||(R1l2)%f\lf\|2
one can prove that o > 0, see |An, Section 3|, and |[AnLe, Section 2.2] for
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the more general case of two molecules. The following theorem was proved
in [AnSi).

Theorem 2 (van der Waals law in the irreducible case [AnSi]). Assume
([LR). For j =1,2, we also assume that the ground state eigenspace of HY
is irreducible (Definition[d]). Then there exist positive constants D1, Do such
that for all v > Dy we have

Dy

_’]"7‘

g
76

'W(r) + (1.15)

Remark 3 (Lennard-Jones). The limit (LID) justifies the replacement of
W (r) by the Lennard-Jones potential cr=12 — dr~C at infinity. The highly
repulsive part r~12 is itself purely empirical. The Lennard-Jones potential
was initially introduced to infer an appropriate law of dependence of the
viscosity of a gas on the temperature [Jol] and to study the equation of
state of gases [Jo2].

Theorem [2] justifies the long-range part of W but does not provide the
monotonicity nor the concavity of W (r) for large r. The inequality (LIS
does not exclude the possibility that W(r) oscillates for large r, and in
particular it does not exclude existence of local minima for large r. Since
W'(r) is interpreted as the van der Waals force, it is of course important to
give its large-r behavior as well.

Our results help in addressing these issues and give a more detailed de-
scription of the long range behavior of the interaction energy. The first
theorem provides the leading order of the first two derivatives of W(r), in
the case without spin ¢ = 1. In the second theorem spin is taken into ac-
count and the van der Waals-London’s law is proven with the irreducibility
assumption on only one of the two atoms. Moreover the strict monotonicity
of W(r) is proven for r > 1, but no exact expansion of the derivatives is
obtained.

Theorem 4 (Spinless case). Let ¢ = 1 (no spin). Assume (L8) and that
the ground state eigenspaces of HY', j = 1,2 are both non-degenerate. Then
there exist positive constants Dy, Dy such that for all r > D1 we have

g D2 / 60 D2 " 420 D2
(1.16)

Theorem 5 (Case with spin). Let ¢ > 1. Assume (L8]) and that one of the

two ground state eigenspaces of HY is irreducible. Then there exist positive

constants D1, Dy such that for all r > Dy we have
Do

i ’,"7 .

g
76

W (r)+ (1.17)

Moreover, W (r) is strictly increasing for r large enough.
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Remark 6. If we do not take the fermionic statistics into account (which
corresponds to ¢ = N), the non-degeneracy assumption of the ground
state eigenspaces is always satisfied, by Perron-Frobenius theory [ReSi4l,
Sec. XII1.12]. Then a result similar to Theorem @ holds.

Remark 7. The condition (L8] is known to hold when both atoms are
hydrogens, that is, Ny = No = 1 [Anl [AnSi, [FrGrRiSe]. In addition, the
ground state eigenspace of the Hy molecule is a singlet state for all » > 0
when q=2, hence it is non-degenerate. We conclude that (I.16) holds for
the Hy molecule.

For the helium atom N; = 2 with spin (¢ = 2), the ground state is a
singlet state and hence it is therefore non-degenerate. We see that, under
the assumption (L.8]), the conclusions of Theorem [B hold for a hydrogen or
helium atom interacting with any other atom.

Remark 8. The irreducibility assumption and the neglected spin in part
of our work are unsatisfactory. Unfortunately we have been unable to drop
these conditions. The technical reason is that the Feshbach map, which we
introduce and use below, is a matrix that is not necessarily a multiple of
the identity if there are degeneracies. Its lowest eigenvalue is therefore not
necessarily smooth, due to possible crossings. For this reason without the
non-degeneracy assumption we were not even able to prove the differentia-
bility of W (r). Note that to prove the monotonicity of W (r) in Theorem
we proceed in a way that does not involve smoothness of W (r), adapting an
argument from [AnLe].

Remark 9. In the spinless case ¢ = 1, it is known that W(r) is a real-
analytic function of r in the non-degenerate case [CoSe, [Hu2]. Further-
more, by [MoSi] W (r) can be expanded as an infinite power series in r—1,
which is however usually not convergent [GrGrHaSi]. The asymptotic ex-
pansion of W (r) together with the information that W(r) is analytic does
not immediately provide an information on W’(r). For example the func-
tion e~ sin(e®") is analytic, has 0 as an asymptotic series at infinity, but

its derivative is O(1).

Remark 10. An estimate on W/(r) similar to that in (II6) has already
been proved in [Lell Section 3.3.3] for the case of two molecules with dipole
moments. It was indeed mentioned for the first time in [Lel] that only the
non-degeneracy of one of the two ground states is sufficient.

Remark 11. The method used for proving Theorem [ was recently adapted
in [AnLe] in order to study the compactness of molecular paths between two
local minima of the interaction energy, in the case of two rigid molecules.

Notation. For two functions f,g of r > 0, with g real valued, we say that
f =0(g), if f is a continuous function of r and there exist constants C, D
such that if » > C then ||f(r)|| < D|g(r)|. If f takes its values in L? or in
the algebra of bounded operators B(L?) on L?, then the continuity and the



8 I. ANAPOLITANOS, M. LEWIN, AND M. ROTH

inequality are understood in terms of the respective norms. We also write

. dk dk . .
f=05(g) if f =O(g) and W{ = O(Wg) for all k < mk In particular, if
g = 2 with n an integer, then f = O7'(g) means that Hi—kf(r)ﬂ < Crnk
for all £ < m. Thus in our notation the estimates of Theorems [ can be
summarized as W(r) = —or=% 4+ O2(r™7).

Acknowledgements. [.A. is grateful to Volker Bach for suggesting part of
this problem and to Dirk Hundertmark for discussions at an early stage of
the work and for a suggestion that led to the proof of the important equa-
tions (3.16]), (BI7). All authors are grateful to Semjon Wugalter for useful
remarks which have led us to include the spin into account. This project
has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant
agreement MDFT No 725528 of M.L.). The research of I.A. was supported
by the German Science Foundation under Grant No. CRC 1173.

2. THE FESHBACH MAP

2.1. Definition of the Feshbach map. Let P be an orthogonal projection
on Y (the space defined in (L2))), with Ran P € QY N D(H?). Let also
PL =1—Pand H%! := PLH*PL where we recall that H* was defined in
(). Assume that there exists C' > 0 such that

H% — E(r) > C. (2.1)
Then E(r) is an eigenvalue of the Feshbach map Fp(E(r)), where
Fp(\) = (PHP — PHP(H%* — \)"'PYHP)|Ran p- (2.2)

Equation (22) tells us that finding the ground state energy F(r) reduces to
solving a nonlinear fixed point problem on the range of P. The proof is well
known, see for example [BaFrSi| and [AnLe, Sec. 2.3], but for convenience
of the reader we sketch it here.

Let 1 be a ground state of H* and write E = E(r). Then (H®— E)y = 0.
This gives that PL(H® — E)y = 0. Therefore writing ¢ = Py + P, we
obtain that

PL(H® — E)Pty = —PL(H* — E)Py) = —PLHPv,
where in the last step we used that PPy = 0 and that H*P = HP. Thus,
using that, due to (Z1)), (H»* — E) is invertible we obtain that

Pty = —PLHH> — E)"'PLHPY. (2.3)
Multiplying both sides with PH we find
PHPY+ = —PHP+(H*' — E)"'PLHP1.

Using P+ = 1—P on the left hand side of the last equation and PHv = EP1)
it follows that

EPy = PHPY — PHP+(H%+ — E)"'PLHPy.
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We next observe that Py # 0, otherwise the right hand side of (2.3]) would
be zero and this would give that P14 is also zero, contradicting that ¢ # 0.
It therefore follows that F is an eigenvalue of the Feshbach map.

2.2. Choice of the projection P in the spinless case. Let x; : R? - R
be a spherically symmetric C* function supported in the ball B(0, %) and
equal to 1 in the ball B(0, %) with 0 < x1 < 1. Our goal is to compute
the derivative W’(r). To do this we analyze W (r) for r near some ry.
Note that it is convenient to cut the ground state off. The cut-off must be r
dependent when we want to study the asymptotic behaviour as r — oco. This
would however introduce extra terms when we differentiate with respect to r,
something which we would like to avoid. Therefore, to study the interaction
energy near r we choose a ryp € R with rg < r <79+ 1 and we define

N; ‘
(bj(xl,...,a;Nj)::cj Hxl<f—;> Cj(azl,...,xNj), (2.4)
i=1

so that the cut-off does not change when we vary r a little bit and where
¢; > 0 is chosen so that |¢;]/;2 = 1.
We further introduce the resolvent

-1
R:= (PoizﬂlgvﬂﬂoL - E(oo)> : (2.5)

where
Hy™ = P Q1 Q2 Ho Py
with Hy defined in (LI]) and

Py = |1 @ ¢2,) (01 @ ol (2.6)

Here ¢;.(71,...,7N;) = ¢j(v1 —re1,...,xn; — rep) is the cut-off ground
state (; with the nucleus placed at re;. This simplifies our analysis consid-
erably, since the cut-off ensures that ¢; ® ¢o, and T ¢1 ® @2, have disjoint
supports if 7 ¢ S; X Sa. Here §; x Sy is the subgroup of Sy, 4+, leaving the
sets {1,..., N1} and {N; +1,..., Ny + Ny} invariant.

We further define

X (T TN N,) = ﬁ <x1 (?_f;)) NﬁN2 (Xl <6("Eﬂ77;0rel)>> :

i=1 j=N1+1
The dilation that we applied by multiplying with g ensures that for r large
enough

{ x =1 on supp(¢1 @ ¢a), (2.7)

XTW(qbl ® ¢2,r) = 0, Vr e SN1+N2\51 X 52.

In the rest of the paper we will always assume without explicitly men-
tioning it that r is large enough. We choose

1

P = W@ZDMQTZJL (2.8)
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where
= Tl Wit G = 01 G0~ XRIG 9 0 (20)
Note that
supp(¢)) N supp(Trtp) = 0, V€ SN, 4N, \S1 X S, (2.10)
so ¢ and Tyt are orthogonal, when 7 ¢ (S1 X S2). Moreover,
= (=1)"Tr1, Ve S x Sa. (2.11)

In [An], see also [AnSi|, it was shown that (L.8]) implies that there exist
C,c > 0, such that if r > ¢ then

1Q(¢1 ® ¢2.,)) (D1 ® P2r)|\ 110 [ |21 ® $2,1))(Q(¢1 @ o)
(1 T 10001 © dan) P > " (1 12061 © do )P >
> C + E(r).

Moreover, H*+ := P-H®PL is a perturbation of
(1- 1200002 0 0 02 gy 10161 20101 0020
[Q(¢1 @ 2,2 1Q(¢1 ® a2 ’

of the order O(r=3) since ||[xRI¢1 ® ¢o,|gz = O(r=3). Therefore, the
following lemma holds.

Lemma 12. With the above choice of P in (23]), the assumption (L8]
implies that there exist C,c > 0 such that if r > ¢ then

H* — E(r)>C. (2.12)

3. PROOF OF THEOREM [4]

In this section we prove Theorem [l We first observe that due to (2.8)),

(ZI0) and (2II)
1
PHP = ——
1Q¢]12
where we have also used that H is a local operator.
Since E(r) is the ground state energy of H®, it is also an eigenvalue of
the Feshbach map Fp(E(r)). Therefore, recalling that P has rank 1 we find

E(r) = W(Qd}, Fp(E(r))Qy). As a consequence, using ([B.I]) we find
G(r,E(r)) =0, (3.2)

(QY, HQY)P = (¢, H) P, 3.1)

where

G(r,E)=FE — (¢, HY) + A, (3.3)
and

1

A= A(rE) = Tz <PLHQ1/), (H@vL - E)_1 PiHQ¢> . (34)
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We will prove that G(r, E) is twice continuously differentiable near E(r) and
we will apply the implicit function theorem to obtain information about the
first two derivatives of E(r).

3.1. Estimate of (¢, Hy). We will now prove that

(0. H6) = Bloe) - 5+ 05 (7). (35

Let z; = xj,zj = xj—reg fori ={1,...,N1} and j = {N1+1..., N + Nao},
respectively. The variables z; are the relative coordinates of the electrons
with respect to the nuclei. Below we add a tilde in the notation to indicate
that we work in the variables z;. We define

(21, 2N V) = (21, 2N 2N 1 T 2NN, FTer),  (3.6)
and
H=Hy+1, (3.7)
with
Ny
~ N1 1
B=3 (-2~ ¥ (z=o)
i=1 B 1<k<I<N; |2k — 21
N1+N2
N- 1
> (‘A“‘ﬁ>+ 2 <|z —z|>’
j=N1+1 J N1+1<m<n<Ni+Na m n
N1 Ni1+N2
~ ~ ~ 1 1 1 1
I = Tjm Tje=-+ - - .
' ZZ:;]':%;+1 YT e =i trer gl ren+ 2] Jrer — 2
(3.8)
It then follows that
(¥, (H — E(c0))y) = (¢, (H — E(c0))y). (3.9)
Note that ¥ = ||tho||~ %o, where
Yo = ¢1 @ dpg — XRI,¢1 @ o, (3.10)
with
%(Zlv ceey ZN1+N2) = X(Zl7 <3 ZN1yRN1+1 + T€l,.++y ZN1+N> + 7'61)
and
R = (P-HoFj — E(c0)) ™!, Py = |¢1 @ da) (1 @ oa. (3.11)

Therefore, from ([B.9) and B.I0) we find

(¥, (H = E(c0))y) =

||1; H2 (L1 + Lo + Lg), (3.12)
0
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where
Ly = (¢ @ ¢o, (H — E(0)) 1 @ o),
Ly = —2Re(YRI¢1 ® ¢, (H — E(c0))¢1 ® ),
Ly = (XRI¢1 @ ¢, (H — E(00))XRI 1 ® o).
Note that (2.7) implies that
X =1 on supp(¢1 @ ¢2), (3.13)

and therefore
Ly = —2Re(RI,¢1 @ ¢, (H — E(c0)) 1 © bo). (3.14)

In Ly, Lo, L3 the only r-dependence is in the term fr, as the cut-off of the
ground states is r-independent, see (2.4)). We next prove a lemma whose
statements we will repeatedly need throughout the proof. Before we state it
we note that Newton’s theorem [LiLo, Sec. 9.7] implies [An, Lem. 5.1] that

<<251 ® ¢, 1 @ ¢2> = 0. (3.15)
Lemma 13. Let f be as in (LI12). Then
~ 1 1
<Ir - ﬁf) 1@ 2 =OF <ﬁ> (3.16)
and
d* _~ 1
H%;vaL =()<Fg3>, (3.17)

for all o > 0. Moreover
Hod1 @ ¢ = E(00)d1 @ ¢ + OF (e") for some ¢ > 0 (3.18)
and

(F - B(e)) 4 = OF (%) . (3.19)

Proof. We first prove (3.16). Note that we do not have to deal with the
singularities of I, as they are away from the support of ¢; ® ¢. Using
Taylor’s theorem we obtain that for all z € R3,r > 0 with |2| < |g—| we have

1 1 z-er  3(z-e1)?®— |2
2T 3.20
lrey —z| + r2 + 23 +9(z7) (3.20)
where
! o 2 15(z- (reg — 532))3 — 9(z - (req — s 2
e R A A e
0 0 0 |rer — s32]

(3.21)
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Using (3:20) together with (8:8)) and (LI2) one can show that

~ 1
(IT _ ﬁf)(bl (029 ¢2(21, cee 7ZN1+N2)
N1 Ni1+N2

:Z Z (9(zi,7) + 9(=25,7) — 9z — 2;,7)) 1 @ Pa.

i=1 j=N1+1

Using the last equality and (24]) we arrive at

d* | ~ 1
e [([r - ﬁf)tﬁl ® ¢2} (2151 2N +N2)
N1 Ni1+N2 de
=3 Y g (o) b a5 = gl 5.0) [ r 0 0n
i=1 j=Ni+1

for every integer v > 0. But applying the dominated convergence theorem
we obtain that

[i—aa(g(zi,r) +9(=2j,7) = g(zi — Zﬂ))] Pr1@¢2=0 <r4%>

where the exponential decay of ¢, namely (LI4)), is needed for establishing
BI). It follows that

d* | ~ 1 1
dT—a |:(IT - ﬁf)(ﬁl ®¢2:| =0 <7’4+O‘> )

so that we arrive at (3.10).
The estimate ([B.I7) can be proven in a similar manner. The only differ-
ence is that instead of (3.20) and (B:2I]) we use

1 1! 1 — 5,
1 +/ zlrei=s2),
lrey —z| 0 |rer —s12)?

In order to prove (B.18]) we observe that
—2VXV(G ® &) — AX(G ® ¢2)
IX(G1 ® )l

Since VY is supported O(r) far from the nuclei of the atoms, using (LI4])
and ([3.22)) we find that

I(Ho — E(00))¢1 @ allgn = O(e™).

Since moreover, if we vary r on the left hand side the latter does not change,

we arrive at (B.I8]).
We now prove [B.19). From (B7)) we obtain that

(Ho — E(00))$1 ® ¢ =

(3.22)

(H — E(c0))tho = (Ho — E(00))d1 ® ¢ — (Ho — E(00))XRI¢1 © ¢
+ I¢1 @ g — LXRL¢1 @ dg.  (3.23)
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Therefore using (3.16]), (317) and B.I8]) we find

2] 7 7P ~pT ¥ 1
(H — E(c0))tbg = —(HoPy- — E(00))XRI,¢1 @ ¢ + I.¢1 @ g + OF <ﬁ> ,
(3.24)
where we recall that Py was defined in B.I1), and we have also used that

r¢1 ® ¢2 = PO r(ﬁl ® ¢2, see (B.10), and that [PO,XR] = 0. Since XR =
RX + (X, R] we find using the equality

(HyPj- — E(¢))R =1+ PyHoP;R =1+ O (e™°"), (3.25)
that
(HoPy- — E(00))XRI¢1 ® ¢ = XI;¢1 @ ¢3
+ (HoBgt — E(c0))[X, Rl ¢1 @ o + OF(e77).  (3.26)
From (B.I3]) we obtain that
XLr1 @ by = Ld1 © . (3.27)
Using (3:24)), (3:26) and (B.27)) we infer

(1~ B(o))fo = ~(FuFif ~ B(oc) P[5, Fol P Rloon .00+ 05 7).

Since [, ﬁo]ﬁ =0 (7’_1) is constant in a neighborhood of rg, we arrive with

the help of (310) at

~ ~ 1
(H — E(00))Yo = OF° <ﬁ> . (3.28)
Using (B3.10) and (B.16) we obtain that
- 1
Il = 1+05 (). (3.20)

where we have used the orthogonality of the two summands on the right

hand side of (3.10). Using (3:29) and (3.28]) we conclude the proof of (B:I:QI)

hence of Lemma [I31

We next estimate Ly, Lo, Lg. Using (3.7)), (B.15) and (3:I8]) we find that

L; =0 (e"), for some ¢ > 0. (3.30)
Now we want to show that
1 ~ 1
Ly = <25 (/61 @ 6, Bf 1 ® ) + OF <ﬁ> | (3.31)
Using B.7) and BI4]) we find

Ly = =211 ® d2, RI,61 © ) — 2Re(RIé1 @ ¢a, (Ho — E(00))é1 © 2)-
Further using (3.16]) and (B.I8]) we can show that

Ly = —2(I,¢1 ® ¢, RI, b1 @ o) + OF (e™°").
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To arrive at (B:31]), it remains for us to prove that

- - 1 - 1
{Ir01 ® p2, RI;¢1 @ 62) — —5(fo1® b2, Rf 1 @ ¢2) = OF <ﬁ> - (3.32)
Indeed, observe that the left hand side of ([8.32)) can be split into

(I ¢1 @ ¢y — Tigcﬁl ® ¢, RI,¢1 © o) + <r—'§¢1 ® ¢, R(I¢1 & ¢h — Tigcﬁl ® P2)).

Using (B.16)), the estimate (3.32]) follows and therefore we obtain (3.31)).
We now estimate Ls. With the help of Leibniz rule for the kinetic part

of H and (B.7), we obtain
L3 = Lsy + Lsy + Lss, (3.33)
where
Ly = (XRI¢1 & ¢, X(Ho — E(00)) RI¢1 @ ¢3),
Lsy = (XRI.¢1 ® ¢, LXRIL¢1 ® ¢2) — (XRI,¢1 @ 2, (AX)RL¢1 ® ¢2),
Ly = —2(XRI;¢1 © ¢2, VX - VRI,$1 © ¢2).

Observe that ([B.I5]) gives fr¢1 ® g = ﬁorfr(;ﬁl ® ¢ and moreover ﬁOL com-
mutes with R and Y, because of (3.1I) and (3.13)), respectively. Thus, Ho
can be replaced by POLHOPOL. It follows that

L31 = (XRI¢1 ® o, XI,d1 @ ¢a),

where we have also used that (ﬁ&ﬁoﬁ(f — E(<))R = 1. Using @I3) once
more we find that

Ly = (I¢1 ® ¢2, RI.¢1 @ ).
Hence with (3.32]) we come to the conclusion that
1 ~ 1
L1 = —5(fd1® ¢2, Rf $1 ® d2) + OF <ﬁ> : (3.34)

Observe now that c c

Using (B.16]), (3.I7) and (335) we find that

1 1
L3y = OF° <ﬁ> ; L33 = OF° (ﬁ) ,

where we have also used that VR is bounded. Together with (3:33), ([3:34)
we find that

Ly = T_l6<f¢1 ® g2, Rf 1 @ ¢a) + OF° <7l7> : (3.36)
From (3.30), (331)) and (336) we find

Li+Ly+Ls= —:—6<f¢1 ® pa, Rf 1 @ o) + OF <;17> :
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It is known (see for example |[Anl Proof of Lemma 5.6]) that

(fé1 @ b2, Rf 1 ® do) = 0+ Oe™ "),
and since the left hand side is r-independent, we find

(fo1® ¢, Rf$1 @ d2) = 0 + OF (7).
We conclude that

o w1

From (812), (329) and (B37) we arrive at (B.0)).

3.2. Nonlinear term. We now focus on the nonlinear term A defined in
B4). To apply the implicit function theorem we first fix F near E(r), such
that

|E — E(r)] < T—C7 for some ¢ > 0, (3.38)

and we investigate the partial derivatives of A with respect to r. Below we
will write d% for expressions that do not depend on E but only on r.

Since P+ Qi = 0 we find

_ 1 Lo _ al _ 2\ ' plipr_
A__HQ¢H2<}’(H' Exag)gw,(H E) P EXaﬂ)Q¢>.
(3.39)
Our goal is to prove that
1 o 1
A=0 <7’_8> , ﬁA =0 <7’_9> , for a € {1,2}. (3.40)

Using that P is a projection commuting with H%* and Q is a projection
commuting with H, P+ and H**, we find

_ 1 _ Bl ol _ 2\ plig_ 50
From the fact that 08 (0l
1 _ —
S To T PR
and that
(Qu, (H — E(00))Qu) = (3, (H — E(c0))3) || Q¢|1?,
we find
A=-B+C,
with B = M (¢, (H — E(0))), and
C = m«f] — B(oo)), (H™: — B)"L(H - B(c0))Qu). (341
In the definition of B,
M = —((H — (o)), (H** — E)"'Qu). (3.42)

Qv |2
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We now estimate B. Due to (3.5]) we have

o1
B =M Oy <r_6> . (3.43)
We will show that
o0 1
ﬁM =0 (F) , for a € {0,1, 2}. (3.44)
To this end we will prove that
o 1
& H — Bloo)y =0 (74) . forac{01},  (3.45)
and d d 1
1
_ — T2 — = —_— . 4
1= 8) b~ Beoyw =0 () (3.46)
An elementary computation gives that
(H — B(o0))p = ((H - E(=0))¥) , (3.47)
where
(@) (1, ..y TNy +N,) = P(T1, . TNy, TN 41 — T€1y .o, TN 4Ny, — T€1).

(3.48)
The following two lemmata are going to be useful

Lemma 14. Let a,b € R with a < b. We consider ® : (a,b) — L? differen-
tiable with ®(r) € HY(R3MN+N2)) for gll r € (a,b) and

7=(0,...,0,—1,0,0,—1,0,0,...,—1,0,0)".
——
3N times Notimes
Then 7.®(.) : (a,b) — L? is differentiable and
d
o (1 ®(r)) = (T V) (7 ®(r)) + 7 (P'(1)) . (3.49)

Proof. To prove (3.49]) we first observe that

. Trah®(r + h) — 7,.9(r)
im
h—0 h

. d(r+h) — o(r Trih — Tr
SN LR
Since 7, is strongly continuous in h we have that
O(r+h) — d(r)
h

Moreover, since the momentum operator is the generator of translations and
®(r) € H' we find

. Tr4+h — Tp N
}lzl—>InO +T<I>(T) = (U-V) (19(r)),

in the L?-sense. Hence we have proved (3.49). O

= 7.9 (r).

lim 7,4,
hoo T
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Lemma 15.

| — E(0)) il = O <i> |

Proof. We start with estimating some terms of the right hand side of (3.23)).

Using ([8:22]) and (II4) we find that
(o~ E(c)dr @ 6o = 0(e™), (3.50)
because the support of the derivatives of X is far from the center of the

atoms. Since Y1, = O (1), see BI7), and V(xI,) =0 (%2), using (B.16]) it
follows that

LXRL1 G 6o | =0 <r—14> : (3.51)

where due to the presence of the resolvent R it is enough that Hfr¢1 ®¢2| 2 =

O(r=3). Using 323)), (3:50) and (3.51) we obtain

(H — E(00)) = I;¢1 ® ¢ — (Ho — E(00)) X RI;$1 @ ¢2+ Oppn <r—14> , (3.52)

with the self-explanatory notation Og1. This gives with the help of Leibniz’
rule

(H — E(c0))y = I¢1 @ do — X(Ho — E(00))RI¢1 @ ¢o

. . 1
+2VYX - VRI, ¢1 @ ¢p2 + AXYRI¢1 @ ¢p2 + Oppn (74) :

From (B13) and (3:28) we find that
X(Ho — E(00))RI¢1 @ ¢ = L1 ® ¢ + PoyHo P RI,¢1 ® .

It follows that

(H — E(0))) = Py HoPy R, 61 ® ¢2 + 2VX - VRI $1 © 2

+ AXYRIL.¢1 @ ¢2 + O (%) .
Since ]Boﬁoﬁ(f = Py(Ho — E(oo))ﬁOL, we find using (BI8]) that
PyHoPi- = O(e™"),  VPBRHyB; = O(e™ ). (3.53)

This concludes the proof of Lemma O

We now continue with the proofs of ([3.45]) and (B.46). Using (3.19) and

(BZ7) together with Lemma [ for ® = (H — E(c0))t, Lemma [I5 and the
translation invariance of the L? and H' norms we arrive at (3.43]).



VAN DER WAALS INTERACTION BETWEEN TWO ATOMS 19
To prove (B.46]) observe that from Lemma [I4] and (3.47) we have

(1= )42 (H — (o)) = (1~ A) 3 (7 V)(H ~ E(oo))

e (0= 2y H (- BeT) ).

=

~3(7-V)

Thus, using the boundedness and translation invariance of (1 — A)

and (3.43]), we find that
d _
5(1 —A)

Using (8:19]) we obtain that

(- a4 ((F - Beo)d)
| L0e):

(-2 (i - Beend) ) =0 ().
This proves (315).

Using that ¢ = Tr{/; and the r-independence of {/;, we can apply Lemma
[[4] for ® = ¢ and find that

=1 (@-9)%) =0)  forac{0,1,2}.

In fact this can be done without Lemma [I4] using that the momentum op-
erator is the generator of translations. In a similar manner we find that
dOé da

dr—aTW¢ =0(1), a€{0,1,2} dr—a(H—E(oo))Tﬂ/) =0 (%) , a€{0,1}.

(NI

(7 9)(H - B0y =0 ()

and
(- B

find that

d i d 1
(1= A)7 3= (H = B(00)) I = O <ﬁ> .

Thus, from the definition of Q, we obtain

[N

%Qw =0(1), ae{0,1,2} (3.54)
and N
C%Q(H — E(c0))y =0 (7;4) , for a €{0,1}, (3.55)
as well as
L - ay Lo - Beo)p =0 <i> (3.56)
dT( dr o rd ] :
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We now continue with estimating M, defined in (3.:42)). We note that

M=0 <Ti4> , (3.57)
because
It~ BeoNl = I - Bee)d] T o (%), @ss)
and
#: <N1—|—N2> (3.59)
1912 Ny ) '
Using (3.45) and ([B3.54)) we find that
8 1 g a,l -1
5 =0 () + 1o — Bl | 5L~ £ | Qu). (360

Writing the difference quotients for the partial derivative of the resolvent
and using the second resolvent formula it follows that

(=) o= (o) (e - 8)
(3.61)

where we have also used that the orthogonal projection @ commutes with
H%L. We now observe that

[NIES

Ha —A)2 (d%(PlHPL)> (1—A)"

B(L?)

dpP dH ar
=lla-a)yz (-“HPr+ PL=pt P ) (1-A) 2
dr dr dr B(L?)
(3.62)
Moreover using (I.I]) and the definition of I, we find
dH NiNs
—— = B, :
o 2 + (3.63)
where
B — Ng:NZ No(zj —rer) - e
Lo mral
and therefore due to Hardy’s inequality
dH
H(l — AT (1—A)E = 0(1). (3.64)
Note that arguing as in the proof of ([3.54]) we obtain that
H— (1—A)z = 0(1). (3.65)
B(L?)
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Due to the —A form boundedness of H, uniformly in r, it follows from

B52), B5) and (B65) that
H(1 —A)2 <j (PlHPl)> (1—A)2

r

=0(1).
B(L2)

Since moreover —A is H+ form bounded, uniformly for large r, we find that

H(1 ~A)3Q (H%L - E)_§ = 0(1).
L2
From (B.61]), we find that
9 —1
[E (HavL - E) ] Q= 0(1). (3.66)
Using [3.58)), (3:59), (B:60) and (B:66) we find
oM 1

If we try to differentiate %—Af with respect to r we run into the problem that
65712{ is not in Llloc. To remedy this we write the difference quotient for ‘il—f
and perform changes of variables so that we do not have to differentiate Cil—fj.
To this end using (3.45), (3:46) and (B54]) we can argue similarly as in the

proof of ([B.67)) to find

M 1
o =0()

+ 9 <(H — E(c0))y, (H¥: — E)_lPL—dHPL(H“’L — E)_1Q1/1> .
or dr
This can be rewritten as
O*M 1 0 dH
Gz =0 <—4> T ar <‘I>’ %‘I’> ’ (3.68)

where
o — pt <H“’l - E>_1 Q(H — E(c0))¢ and ¥ = P+ (H“’l - E>_1 QY

both belong to H 2. Note that we could add Q in the definition of ® be-
cause Q is an orthogonal projection commuting with P+, H%+, H, d—f. Using

B54), (3:55), [B.65) and (B.66]) we find that

o« 1 o« 1
gt =0():  aer=0()

for v € {0,1}. We arrive at
> x11> . (3.69)

M 1 , 1 /(dH dH
o ”(74)*%%@%(%

dr

r+h
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Observe that by (3.63)) it is enough to prove that

BB\ (1

Indeed a simple change of variables gives
(@, Bryn¥) = (1 ®, By ¥),
where ~, is defined by

YY(T1,y ..o TN +N,) = Y(z1 + her, ..., TN +N, + her).
Thus
Jiy <(I) Br—l—hh >:}l <'7h<1> d wh\I'> + i <(I) B, w>
= ((—@ - V), B,T) + <<I>,Br(—w V)T (3.71)
where
w=(-1,0,0,—1,0,0,...,—1,0,0),
Ni+Ny times

and we used that the momentum operator is the generator of translations.
Since [|¥||z2 = O(1) and ||®||2 = O (2) we can apply Hardy’s inequality

to the right hand side of (B.71]) to arrive at ([B.70). From (3.69)), (3:63]) and
B10) we obtain

O’ M 1

=)

Together with ([B.57) and (B.67)) we arrive at ([3.44]). Using (B8.43]) and (B.44))
we find that
0°B < 1

ore ri0
To estimate the term C' defined in (3.41]) we will introduce a new cut-off
function. Let

X(21, .. TN N,) = iljjh <<g> )JNllj:f_:[inXl << >2 <i_é - :_061>> )

) for a € {0, 1, 2}. (3.72)

(3.73)
This dilation ensures that
X =1 on supp(v)),
W) (3.74)
XTr =0 for all 7 € Sny4+n,\S1 X Sa.

From (B41)), 3359) and B74]) we have

C= (Nl ;lNz) ((H = B(oo)). X (H™— ) (H — B(s<))Q0).

Since
X (H@vL _ E)_l = RX + [X (H“vl - E>_1 - RX} ,
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with R defined in (25]) and by (874]) and the locality of H

X(H — B(00)) Qb =~ (H — (o))
")
We find
C=0C,+ CQ, (3.75)
where
C1 = ((H — E(c0))¢, R(H — E(00))¢)
and

Cy = <<H — B(o0)), [X (gt - E)
By the same change of variables as in section [B.1] we have
Cr = ((H - B(o0))b, R(H — E(o0)))

and therefore by ([8.19) and the r-independence of R, when r varies a little
bit, we find that

- rx] (- B 0u ).

o (1
To estimate Co observe that (2.5]) and (2.6]) imply that
[X (H-B) - RX} o)

~R [(Hg’l ~ B(oo))X — X(H®L - E)] o) (HavL - E) )

R [POLHOPOLX — XP'HP' +(E - E(oo))X] o) <H‘”’L - E) ,

(3.77)

where in the last step we used that the projection Q commutes with P+, H+,

and that Q1, Qs commute with POL, Hjy and the equality 91929 = O holds,

to omit the Q1, Qs, Q that appear in the definitions of Hg’l, H®%+ respec-
tively. We now claim that

XPYHPQ =P XHP;Q, (3.78)

where qu; = 1—[){(¢|. Indeed from ([B.74)) it follows that X Qv = X1)||Qv||?,
which together with (28] and the fact that the projection Q@ commutes with
H and Pt gives

XPtHP'Q=XPyHP'Q=P; XHPQ

where in the last step we used that Xv¢ = 1, see (B.74]). Due to (B4
and the locality of H we have that X H Qi = X H||Q1||? and thus we can
repeat the argument to arrive at (3.78]).

Due to (B.74]) X commutes with Py and thus

PtHyP-X = P-HoX Py
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Together with (B77) and B.18) we find
-1
[X (a-B) - RX] Q

_R [POLHOXPOL ~ PLXHP} + (E - E(oo))X] (H“’l - E)_l Q.
Observe that
Py HoX Py — Py XHP) = (Py — Py))HoX Py-
+ Py (HoX — XH)Pi" + Py XH(Py — Py). (3.79)
Thus, we obtain

Cy = Ca1 + Oy + Coz + Coy,
where

Cor = ((H — E(o<))t, R(E — B(o0)) X (H** — B)™"(H — (o)) Qu),

Cao = ((H — B(o0)), R ((Py — Po)HoX Byt ) QUH™* — E)™"(H ~ E(c0)) Qu),
( ). R (PFXH(Py = Py)) QUH™ = B)™ (H — E(c)) Qv),

Caa = ((H — E(00))p, R (P (HoX = XH)F") (H* = E)™(H — B()) Q).

We first estimate Cy;. By (3.38) and (LI3]) we have

(B - E(o0)) = 0 ()

for a € {0,1,2}. Furthermore one can verify that 02X = O(r~®) for a €
{0,1,2}. Using (3.50) and (3.56) we can argue similarly as in the proof of

B44) to arrive at

o 1
8—‘1021 O (m) for o c {0, 1, 2} (380)

Note that differentiating the term having can be similarly handled as
differentiating the term containing 5 (H & L E)~! in the proof of (3.44).
We next estimate Cyyq. Observe that
HoyX —XH=-IX-[AX]=-IX—-(AX)—-2VX -V,

and thus by the previous estimate on 0% X and the fact that X is supported
O(r) far from the singularities of I we have

da” 1 1

dre (HoX — XH) = O< a+1> +O< a+1> Vv
for a € {0,1,2}. Using the (H%*+ — F) boundedness of QV we can argue
again as in the proof of (3.80) to conclude that

. 1

9%Cas _ 0 <

5o 7’_9> for a € {0,1, 2}. (3.81)

Cys = ((H — E(o0
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We now estimate Cqy. Observe that

Py — Po=|fr) (] + o1 @ ¢2,r) (frl, (3.82)
where, by (2.9),

1 XRI¢1®¢2T

frim = @ar= | ——— — 1] 61 @ o, + LD P2

o (Hon? > T e

1 XRI$1 @ ¢o

= Tr ~ —1)¢1® ¢y + —=——
' [(Hwouz ) ST

It follows from Lemma [I4 together with (B.16]) and (B.29) that

d* 1
gt =9 <—3>
for v € {0, 1,2} and thus by (3.82)
d* 1
Since X =1 on supp ¢y and supp ¢1 ® ¢z, we have
Cas = ((H—E(o0)), R (P — Fo)HoPyt ) QUH™" — B) ™' (H — E(0)) Q¢).

Thus using (3.82)
Coo = Co21 + Ca2,

where

Coo1 = ((H — E(00))¥, Rf,) (1, HyPy-Q(H™* — E) ™' (H — E(c0)) Q)
and
Cazz = ((H—E(00))¥, Rp1 @) fr, HoPy Q(H " — E) ™ (H — E(0)) Qi)).

We now estimate Cyo1. Using the change of variables of Section [3.1] we find
Com = ((H — E(00))yh, Rfy) (¢, HoPg- Q(H* — E)™(H — E(00)) Q).

But by (3.16)
~ 1 XRI, 61 ® o1
fr:<~ 2_1>¢1®¢2+%12¢2:Od <—3>
[0l 10l r
and it follows using ([3.19) that

O = OF (7 ) (0 Hoi-QUH™ — E)(H — B()) v

Because of the boundedness of HoPy-Q(H%+ — E)~! we can differentiate 1
twice. Note that in %0221 the term containing % appears. To differentiate
this term we argue as in the proof of (3.2]). With these additional observa-
tions we can argue as in the proof of ([3.80) to find that 9%C = O(r~1)
for all a € {0,1,2}. Similarly we can show that 0%Cag = O(r~!1) for all

a € {0,1,2}. Thus we arrive at 9%Cas = O(r~") and 9%Ca3 = O(r~!!) and
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obtain 9%Cy = O(r~?), for all @ € {0, 1,2}. Together with ([3.75) and (B3.76)

we conclude that
1 o 1

for a € {1,2} and hence arrive at (3.40]).

3.3. Conclusion of the proof of Theorem [d We now apply the implicit
function theorem in (3.3)) to estimate the derivatives of E(r), which coincide

with that of W (r). From (3.3), (3.3), (3.:40), we find
o) _ 0 oy (1)

or r7 8
for E as in ((338). Since % (H¥+ — E)_1 = (H®*+ — E)_2, using (B.3)),
(339), B58) we obtain that

WOE) 1 o(L) 0

for E close to E(r). Thus G has continuous partial derivatives of first
order and is continuously differentiable in a neighborhood of the curve
(r,E(r)),r € (ro — d,r0 + d) for some 6 > 0. Since ([B2) also holds we
can apply the implicit function theorem to conclude that if r is large enough
then E(r) is differentiable and

0rG(r, E(r))

OpG(r,E(r))
We can conclude the proof of the estimate on W’(r) in Theorem [ In fact
with the argument providing Equation (33]) it follows that

oy (3).

and since % (H‘17l — E) 2 _9 (H‘17l — E) =3 we obtain that
0*G(r, E(r 1
20 _ (1)

W)= B'(r) =

OE? 8
Hence we can differentiate the right hand side of (3.3]) and we obtain the
estimate on W”(r) stated in Theorem [ O

4. PROOF OF THEOREM

In this section we provide a proof of Theorem [Bl To handle the spin we
need to introduce further notations. Let G, be the ground state eigenspace
of H}! and define the approximate cut-off ground state eigenspace

N;
Xy
G =1 [ <—0> $:6EGChy,
i=1
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where 7y is the same as in ([24). Let {¢, : n = 1,...,dim(G1)} be an

orthonormal basis of G , and {1;7;; :m =1,...,dim(Gz2)} be an orthonormal
basis of G5 ,. We further define
g = on @ Ym — xRIvn @ Y = Kpn @ P, (4'1)

where K = (1 — xRI) and

Y (X1, .. TNy) = Um(T1 —Ter, ..., xN, —Ter) = (Tothm) (21, ..., TN,),

with R is defined as in (2.5]) with the difference that Py is the orthogonal pro-
jection onto G'1, ® 7.G2 . Finally, we define II as the orthogonal projection
onto

span{QU"™| n=1,...,dim(G;), m=1,...,dim(Gy)}.

We assume without loss of generality that the second atom has an irre-
ducible ground state eigenspace. We will prove the following lemma, which
will help us to adapt the arguments of Section Bl in the present setting. To
this end we define the operator Ilo to be the orthogonal projection onto
7,G2,. Recall that Y is defined in (L.2]).

Lemma 16. Let A be a self-adjoint operator on'Y acting only on the position
variables and whose domain contains G, ® 7,Ga,. Then the operator S :
7.G2,r — 7.Go, defined through the sesquilinear form

<¢m175¢m2> = <q)1 & wmpA@Q & wm2>7

with ®1, P9 € G, is a multiple of the identity. The same statement holds
if 7.Ga, is replaced by Go .

Proof. The operator S is explicitly given by S¢ = (1,12 All,P, ® )4,
where ()1 indicates that the integration for the inner product is taken only
with respect to the coordinates of the first atom. One can verify that S*i =
(Dy, [T ATIo P ® 10)1. We write now S as a linear combination of two self-
adjoint operators on 7G5, namely

S+ ST S-St
T2 T2

Since A acts only on the position variables, it follows that the two self-
adjoint operators B, C' commute with 75 for all permutations 7 € Sy, and
with the spin shift . Thus, due to the irreducibility of the ground state
eigenspace of the second atom, the operators B and C have to be multiples
of the identity on 7,G2,. Indeed, since e.g. B is symmetric and bounded
on 7,Ga,, there exists an eigenvector f € 7,.G2, so that Bf = Af. Since

S =: B+ (1.

moreover B commutes with T and F, we find that ker(B — )) is invariant
under the group of spin transformations. The irreducibility implies that
ker(B—\) = Ga,, that is, B is a multiple of the identity. The same argument
for C' gives that S is as well a (complex) multiple of the identity. O
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Arguing as [AnSi|, see also [MoSi|, it follows that there exist ¢,C such
that if » > ¢ then
gt — E(r) > C > 0. (4.2)

Thus we can apply as in the spinless case the Feshbach map

Fu(\) = (IHI — DHIT(H* — )~ I HTD)

Ran Il ’

where H%+ = I+ HTI* and it follows that E = E(r) is an eigenvalue of
Fi(E). Moreover, arguing as in the proof of ([BI9) we can show that

1
[gzaiEe <—4> .
r
It therefore follows that
1
E =mino (IIHII|gz,, ) + O <ﬁ> .

Let ¥ € Ranll be a minimizer of (&, IIHII®), & € Ranll, ||®| = 1. Then

E=(V,HU) 4+ 0 <Tl8>

and
dim(G2)
QU
U=_——_ where ¥y = K, ® Y, (4.3)
10w 2
for some ®,,, € Gy, such that Z:Eng) |®]|? = 1. So arguing as in (B.1))
we find

B~ B(o<) = o (Vo ( = B() o) + 0 (%) |

which together with Lemma [I6] for A = K*(H — E(c0))K gives that

dim(G2)
1 A 1
B-B(o0) = 15 mZ::l (B @ oy K* (H — B(00)) K8y @ihy) +O <78> ,

(4.4)
We are going to prove that

(Prn @ m, K7 (H — E(00)) K@y © thin)
_ O @ R @ Un) <i>  (45)

76 r7

This can be done as in the proof of ([B.5]) with the help of (3I12]), (3:30),
B31), (330). The only things which are not a priori clear are that

and that N N L .
P(J;_M@GQ,T.[T’(I)m QY = [Py @ Y. (47)
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We will now prove (40) and (47) can be similarly proven. Using Lemma
we find

dim(Ga2)
— . — 1 — —
qu myIT’cI)m m/ = 1.~ N q)m naIr(I)m n/-. 4.8
(P @ 1) ® n) = GG ; (Bm @ @ ). (48)
We will now prove that
dim(G2) L N
Z (P ® Yy [ @i, @ Yh) = 0. (4.9)
n=1
Indeed we have that
dim(G2) L N
D (P @ P, [Py, @ ) = (B, VD), (4.10)
n=1
where
V(xl,. .. ,le)
dim(G2) _ N
-y /Ir (@1r s 2N s) |Gl (Nt -3 TNy ) ANt -
n=1
dim(G2

) N
= Z /Z[g (a;l, v ,le,xN1+j) WJnP (a:N1+1, ‘e ,LZ'N1+N2) de1+1 e
n=1 j=1
with

N1
1 1 Ny Ny
Io(x1,...,xN,,T) = o B e
ol v ) iZ:;<|7‘€1+33—$i| |7"6’1—$z‘|> [rev +a| © o

Therefore, we find

V(z1,...,zNy) :/Io (x1,...,zN,, ) p(x)de,

where p is the electron density of the second atom given by

dim(Gz) N.

1 L[~
p(w):m Z Z/]1/1”]2(a;l,...,xj_l,a;,a;j+1,...,xN2)

n=1 j=1

where all the variables are integrated with the exception of z. Note that
1y, is an orthonormal basis of G ,. It is well known that p(z) is spherically
symmetric, see for example [AnSi|. Thus applying Newton’s theorem we
find that V(xi,...,2n,) vanishes on the support of ®,,, which together

with (410) implies ([£9). From (48)) and ([4£.9) we arrive at (4.6]) and (L7
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can be similarly proven. Thus (@3] holds. From (435]) we find

dim(G2)
D> (D ® g, K* (H — E(00)) K@y @ )
m=1

di

m(G2)
- _ Z <fq>m®¢mnyq>m®¢m>+O<l>'

76 r7

m=1
Since ¥ given by (A3]) minimizes the quadratic form of (&, H®) for ||®| =
1,® € RanIl, we obtain with Lemma [I6 and (LI3]) that
dim(G2) o 1
>0 (B K (H — B(00) K &) = =5 +0 (5 ) (41)

m=1

With the help of Lemma [[6 we see that ||¥o||? = Zdlm(G2 K@, @ thm||%,
as the the functions on the right hand side are orthogonal to each other.

Thus since zdlm(Gz |®,]|? = 1 we can prove similarly as ([3.29) that
2 e 1
|To]|* =1+ O3 5 ) (4.12)
Using @4)), (1)) and {I2)), we arrive at (LI7).

It thus remains to show that W (r) or equivalently E(r) is strictly increas-
ing for large r, which we do next.

Lemma 17 (Monotonicity). There exists a d > 0 such that E(r) is strictly
increasing on [d, o).

Proof. Here we adapt ideas of Section 3 in [AnLe]. There the situation was
different, a system of two molecules that can be rotated was considered, but
it was assumed that both of them have irreducible ground state eigenspaces.
Let ¥, ||Q\I/ T be an eigenvector to the eigenvalue F(s) of the Feshbach

map Fri(E(s)) for distance s, with ¥ defined similarly as in ([£3]). Let

_Qrr—sVo_
HQTT—S\PO” ’
where 7 is given by (3.48]) and define

D(r) :== (¥, H,W,) — N(r), (4.13)

v, =

where
N(r) = (¥, HTH%(H;*I’J_ - E(s))_lnﬂ_Hr\I’ﬁ

and we wrote Il to emphasize the dependence of the projection II on r.
Note that W, is in the range of the projection II,. for the Feshbach map but
it is not necessarily eigenfunction to the eigenvalue E(r) of the Feshbach
map Fig, (r). However, it can be used as a test function. We also emphasize
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the fact that E(s) does not change in the definition of N (r) when r changes,
which helps a lot the analysis. Arguing as in (3.I]) and (3.9]) we find that

(U, HyWy) = oy (Wo, Hy W),
o]

which with the help of (43]) and Lemma [16] becomes

dim(G2)

ST (@ @ Y, K H Ky, @ 1),

m=1

1

<\I"r7 Hr\Ilr> =TT 10
[Wol?

where K = 1 — YRI,. Thus, since Edim(G2) @2 = 1 and (@I2) holds, we

m=1

can argue as in the proof of (B8.5]) to show that
o o1

To estimate N(r) we observe that
N(r) = (I (Hy = B(c0) ¥y, (H = E(s)) ' (Hy — E(00)) W, ).
Since by (4.3) it follows that

dim(G2) Q
(Hy — BE(00))¥, = Y it (H — E(00)) K@y @ thyn,
2. TQu]
using ([4.12) and arguing for each of the summands as in the proof of (B.55])

we find

i (H, — E(c0))¥,. =0 !
dra> " N5 = r4

for a = 0,1. Arguing as in the proofs of ([3.54]) and (3.66) we find, respec-

tively, that

d |
S =0(1)

and

et E<s>>—1] 0= 0(1).

dr
d® 1

for a = 0,1. It thus follows from (4I3)), (4I4)) and (£I5) that D(r) is
strictly increasing, when r is big enough. From this it follows that E(r)
is strictly increasing for r large enough. Indeed, assume that s,r are large
enough with r < s and

We arrive at

E(r) > E(s). (4.16)
From this assumption it follows, with the help of the second resolvent for-
mula and (£2]), that

—(Hy = B(s))™' = —(Hy — B(r)™". (4.17)



32 I. ANAPOLITANOS, M. LEWIN, AND M. ROTH

Using (£I7)) we observe that
D(r) =(V,,H,V,) — <\PT7HTHTJ’_(HTJ’_ - E(s))_lnﬂ_Hr\I’H
> (U, Hy W) — (Y, Ho DL (Hy — E(r) 7' H W) > E(r), (4.18)

where the last inequality follows from the fact that E(r) is the minimum of
the spectrum of the Feshbach map Fi, (E(r)). Since moreover E(s) = D(s)
it follows from (4.16]) and ([4.18) that

D(r) =z D(s),

contradicting the fact that D is strictly increasing for large r. O
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