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Abstract— This publication is devoted to the design of an
interval-based set-membership state estimator that can be
applied to totally observable linear parameter-varying (LPV)
systems. Hereto, a set-inversion procedure to determine state
intervals that are consistent with a sequence of input and output
values as well as two intersections with predicted values are used
to reduce the pessimism of interval arithmetic. A numerical
example illustrates the performance of the method. The benefit
of this method is that it provides an a priori known accuracy
of the result based on the assumption of unknown but bounded
uncertainties.

I. INTRODUCTION

Several approaches to describe uncertainties in a state
estimation framework and to cope with those uncertainties
have been proposed in the past. The majority of the well-
known methods describe the uncertain disturbances as a
result of stochastic processes. While there exist several
approaches to deal with such uncertainties, the Kalman
filter ([1]) and its variations (e.g. [2], [3]) are the most
common ones. Besides of these approaches, set-based tech-
niques have been developed which differ fundamentally from
the aforementioned in the modelling of the uncertainties.
Instead of describing them as a result of stochastic processes,
only the boundedness of the uncertainties is assumed and
different ways to describe the uncertainties are applied, such
as zonotopes ([4]), ellipsoids ([5]), subpavings ([6]) and
intervals ([7]). These set-based approaches are frequently
motivated by safety-critical systems because they provide
guaranteed bounds of the estimates ([8], [9]). According to
[10], these set-based techniques can be roughly divided into
two categories: interval observers (e.g. [11], [12]) that are
based on the classical observer structure and set-membership
estimators (SME) (e.g. [13], [10]) that are based on a
predictor-corrector structure. Compared to interval observers,
SME have a high computational effort due to the two-stage
predictor-corrector structure and the usually applied complex
geometric representation of the sets. A remedy for the high
computational effort of SME is provided in [11] by present-
ing an SME for linear time-invariant systems which is based
on an interval representation of the uncertainties. Another
appreciable property of this approach is the provision of
an a priori determinable accuracy of the estimation result.
However, the practical applicability of the approach is limited
because it does not cover parameters varying with time. This
motivates the publication at hand which is devoted to the
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extension of the approach presented in [11] to LPV systems.
To this, both, the prediction and the correction step, have
to be modified to cover time-variant system matrices while
preserving the reduction of pessimism propagation.
The rest of the publication is organized as follows. Initially,
some mathematical fundamentals including matrix opera-
tions and interval arithmetic fundamentals are presented con-
cisely. Secondly, the so far only textually defined problem is
defined more precisely which is followed by the presentation
of the main results. A numerical example and a conclusion
complete the publication.

II. MATHEMATICAL FUNDAMENTALS

A. Matrix Calculus

Definition 1: 1b,ca is a vertical concatenation of b − c
identity matrices of size a.

Definition 2: The ∞-norm of a matrix A ∈ Rm×n is
defined by

‖A‖∞ := max
1≤i≤m

n∑
j=1

|aij | . (1)

Definition 3: For a matrix A ∈ Rm×n, we define A+ :=
max {0,A} and A− := min {0,A}. The operators max (·)
and min (·) are understood component-wise.

Definition 4: The operator
b∏
i=a

which can be applied to a

matrix Ai ∈ Rn×n with a ∈ Z and b ∈ Z is defined by

b∏
i=a

Ai =

{
AaAa+1 . . .Ab−1Ab ∀a ≤ b
AaAa−1 . . .Ab+1Ab ∀a > b

. (2)

B. Interval Arithmetic

Definition 5: An interval [x] = [x, x] is a connected
subset of R ([14]). Its lower bound x and its upper bound x
are defined by

x = lb ([x]) := sup {a ∈ R ∪ {−∞,∞} | ∀x ∈ [x] , a ≤ x} ,
(3a)

x = ub ([x]) := inf {b ∈ R ∪ {−∞,∞} | ∀x ∈ [x] , x ≤ b} .
(3b)

The set of all real intervals is denoted as IR.
Definition 6: An interval vector [x] = [x,x] ∈ IRn is

defined as the Cartesian product of n intervals:

[x] := [x1]× [x2]× · · · × [xn] . (4)

A possible representation of [x] is

[x] =
(
x1 x2 . . . xn x1 x2 . . . xn

)ᵀ
. (5)



Definition 7: The width w ([x]) of an interval [x] is

w ([x]) := x− x. (6)
Definition 8: The maximum width W ([x]) of an interval

vector [x] is defined by

W ([x]) := max
i∈{1,...,n}

(w ([xi])) . (7)

Definition 9: The interval function [f ] : IRn → IRm is
an inclusion function for f : Rn → Rm if f ([x]) ⊂ [f ] ([x])
for all [x] ∈ IRn.

Lemma 1: Given an interval vector [x] = [x,x], x ∈ Rn
with x ∈ [x] and A ∈ Rm×n. Then

A+ · x+A− · x ≤ A · x ≤ A+ · x+A− · x (8)

holds under consideration of definition 3 ([15]).
Remark 1: For further informations on interval arithmetic

besides of this short overview, the reader is referred to [14].

III. PROBLEM STATEMENT

Let a discrete-time LPV system be given by

xk+1 =

=:Ak︷ ︸︸ ︷
A (θk)xk +

=:Bk︷ ︸︸ ︷
B (θk)uk +

=:Ek︷ ︸︸ ︷
E (θk)dk, (9a)

yk = C (θk)︸ ︷︷ ︸
=:Ck

xk +D (θk)︸ ︷︷ ︸
=:Dk

uk + F (θk)︸ ︷︷ ︸
=:F k

vk (9b)

with the state vector xk ∈ Rn, the input vector uk ∈ Rnu ,
the output vector yk ∈ Rny and the parameter vector
θk ∈ Rnθ . The vectors dk ∈ Rnd and vk ∈ Rnv are dis-
turbances influencing the state vector and the output vector,
respectively. The system matrices Ak, Bk, Ek, Ck, Dk

and F k are real-valued matrices of proper sizes. Before, the
problem to be solved is presented in detail, five assumptions
on system (9) are stated. The first assumption states that at
runtime of the state estimator to be developed, the time-
variant parameters are exactly known at every time step
k whereas a priori only a time-invariant interval vector is
known (assumption 2). The third assumption contains the
statement that the only information given for the disturbances
are time-invariant interval vectors while assumption 4 is the
easily fulfillable assumption that an bounded interval for the
initial state of (9) is known. An assumption on observability
finishes this section.

Assumption 1: The parameter vector θk and hence the
system matrices are exactly known at every time step k.

Assumption 2: For the a priori (cf. assumption 1) un-
known parameter vector θk, there exists an a priori known
time-invariant bounded interval vector [θ] with

θk ∈ [θ] = [θ,θ] ∀k ≥ 0. (10)
Assumption 3: For the unknown time-variant disturbance

vectors dk and vk, there exist a priori known time-invariant
bounded interval vectors [d] and [v] with

dk ∈ [d,d] ∀k ≥ 0, (11a)
vk ∈ [v,v] ∀k ≥ 0. (11b)

Assumption 4: There exists a known bounded interval
vector [x0] for which x0 ∈ [x0] holds.

Assumption 5: System (9) is totally observable (cf. Defi-
nition 2 in [16]).
The aim of the paper at hand is to develop a set-membership
state estimator that computes a bounded interval [xk] guar-
anteeing

xk ∈ [xk] ∀k ∈ {1, . . . , N} (12)

with N being the number of considered time steps. More-
over, we seek for an a priori known maximum interval width
W ([xk]) that can be upper bounded by a positive and real-
valued constant c for k ≥ n− 1, i.e.

W ([xk]]) ≤ c ∀k ∈ {n− 1, . . . , N} . (13)

IV. MAIN RESULT

As typical for SME, the presented approach consists of a
prediction step and a correction step. In the following two
subsections, the basic principles of these steps are presented.
Afterwards, the final algorithm is presented.

A. Prediction Step

The prediction step is based on the relation between the
state xs at time step s and the state xk at time step k with
k > s which is given by using (9) as

xp k =

(
k−1∏
i=s

Ai

)
xs

+

k∑
i=s+1

(A−1k
(

i∏
z=k

Az

))1−δ(i−k)

Bi−1ui−1


+

k∑
i=s+1

(A−1k
(

i∏
z=k

Az

))1−δ(i−k)

Ei−1di−1

 (14)

containing the Dirac delta function δ (z). The superscript p is
used to highlight the result as a prediction. Extending (14) to
uncertain states described by interval vectors and by applying
(11a) yields

[xk]
p

=

(
k−1∏
i=s

Ai

)
[xs]

+

k∑
i=s+1

(A−1k
(

i∏
z=k

Az

))1−δ(i−k)

Bi−1ui−1


+

k∑
i=s+1

(A−1k
(

i∏
z=k

Az

))1−δ(i−k)

Ei−1 [d]

 . (15)

The right side of this equation (15) is an inclusion function
for (14).

Remark 2: This direct computation of [xk]
p based on

[xs], [d] and ui with i ∈ {s, . . . , k − 1} avoids the wrapping
effect that would occur in the case of a multiple evaluation
of an inclusion function for (9a).

Remark 3: Although (15) implies that Ak has to be
nonsingular, this is not the case because A−1k always appears
within the expression AkA

−1
k = I .



B. Correction Step

If the system (9) it totally observable, its state at time step
k can be computed by using at least n− 1 future input and
output values ([16]) by

[xk]
o

= O−1(k:k+n−1)

(
y(k:k+n−1)

−Ou(k:k+n−1)u(k:k+n−1)

−Od(k:k+n−1)
[
d(k:k+n−2)

]
−Ov(k:k+n−1)

[
v(k:k+n−1)

])
(16)

wherein the superscript o highlights that the resulting interval
vector can be calculated due to the observability of the
system. This equation is an inclusion function for the well-
known function to determine xk from future input and
output values which has been extended to LPV systems
under consideration of the interval vectors [v] and [d] . The
matrices and vectors in (16) are given by

O(k:k+n−1) =


Ck

Ck+1Ak

Ck+2Ak+1Ak

...
Ck+n−1Ak+n−2Ak+n−3 . . .Ak

 , (17)

(18), (19),

Ov(k:k+n−1) =


F k 0 0 . . . 0
0 F k+1 0 . . . 0
0 0 F k+2 . . . 0
0 0 0 . . . F k+n−1

 ,

(20)

y(k:k+n−1) =


yk
yk+1

yk+2
...

yk+n−1

 , (21)

u(k:k+n−1) =


uk
uk+1

uk+2

...
uk+n−1

 , (22)

[
d(k:k+n−2)

]
= 1n,1nd [d] (23)

and [
v(k:k+n−2)

]
= 1n,0nv [v] . (24)

As stated in [11], the interval vector [xk]
o that can be

computed for k ≥ n − 1 can be used to improve the result
of the prediction [xk]

p by intersecting both interval vectors:

[xk]
c

= [xk]
p ∩ [xk]

o
. (25)

Now, all the basic relations needed to define the complete
algorithm are given. In the next subsection, these basic
relations are combined to present the interval set-membership
state estimation algorithm.

C. Interval Set-Membership State Estimation Algorithm

Algorithm 1 illustrates the entire SME. The first for-
loop of this algorithm contains the prediction of the initial
interval vector [x0] for the first n− 1 time steps. A further
improvement of the state enclosure based on (16) is not
possible for these steps due to the missing future values for
the input and the output. For k ≥ n, these future input and
output values are known for a time step j = k − (n− 1)
which motivates the initial time shift in the second for-
loop. Afterwards, (16) is evaluated for j and its result is
intersected with a prediction for this time step that has
been calculated in a previous iteration of this for-loop or
the first for-loop, respectively. The resulting interval vector
[xj ]
c

=
[
xk−(n−1)

]c
for the time step lying n − 1 steps

in the past is then predicted to the current time step k by
evaluating (15) resulting in [xk]

cp . Finally, the result of a
one step prediction of the result of the previous iteration or
the first for-loop is calculated and intersected with [xk]

cp .

Ou(k:k+n−1)

=


Dk 0 . . . 0 0

Ck+1Bk Dk+1 . . . 0 0
Ck+2Ak+1Bk Ck+2Dk+1 . . . 0 0

...
...

...
...

...
Ck+n−1Ak+n−2 . . .Ak+1Bk Ck+n−1Ak+n−2 . . .Ak+2Bk+1 . . . Ck+n−1Bk+n−2 Dk+n−1

 (18)

Od(k:k+n−1)

=


0 0 . . . 0

Ck+1Ek 0 . . . 0
Ck+2Ak+1Ek Ck+2Ek+1 . . . 0

...
...

...
...

Ck+n−1Ak+n−2 . . .Ak+1Ek Ck+n−1Ak+n−2 . . .Ak+2Ek+1 . . . Ck+n−1Ek+n−2

 (19)



for k := 1 to k := n− 1 do

[xk]
p :=

(
0∏

i=k−1

Ai

)
[x0]

+

k∑
i=1

(A−1k
(

i∏
z=k

Az

))1−δ(i−k)

. . .

Bi−1ui−1


+

k∑
i=1

(A−1k
(

i∏
z=k

Az

))1−δ(i−k)

Ei−1 [d]


(26a)

[xk] := [xk]
p (26b)

end
for k := n to k := N do

j := k − (n− 1) (26c)

[xj ]
o := O−1(j:j+n−1)

(
y(j:j+n−1)

−Ou(j:j+n−1)u(j:j+n−1)

−Od(j:j+n−1)1
n,1
nd

[d]

−Ov(j:j+n−1)1
n,0
nv [v]

)
(26d)

[xj ]
c := [xj ]

p ∩ [xj ]
o (26e)

[xk]
cp :=

(
j∏

i=k−1

Ai

)
[xj ]
c

+

k∑
i=j+1

(A−1k
(

i∏
z=k

Az

))1−δ(i−k)

. . .

Bi−1ui−1


+

k∑
i=j+1

(A−1k
(

i∏
z=k

Az

))1−δ(i−k)

Ei−1 [d]


(26f)

[xk]
p := Ak−1 [xk−1] +Bk−1uk−1 +Ek−1 [d]

(26g)

[xk] := [xk]
cp ∩ [xk]

p (26h)

end
Algorithm 1: Interval set-membership state estimation

In figure 1, an overview of algorithm 1 for k ≥ n is
displayed. The calculations at time step k are given in the
green box while the necessary input, output and parameter
values are depicted by the yellow box. Additionally, the
results of the calculations at time steps k− n+1 and k− 1
that are used at time step k are displayed in the brown boxes.
However, for the sake of brevity, the calculations at these
time step are not depicted in detail. To see how the relevant
variables are calculated, they are highlighted in the same
color in the calculations at time step k.

Time step k

Inputs, outputs and parameters for the time steps
k − n + 1 to k

Calculations for time step k − n + 1

Calculation of [xk−n+1]o with
data from previous time steps

Intersection with [xk−n+1]p cal-
culated at time step k − n + 1

Result: [xk−n+1]c

Calculations for time step k

Prediction of [xk−n+1]c to time
step k

Intersection with [xk]p predicted
from the last time step k − 1
Result: [xk]

Calculations for time step k

Prediction of [xk−n+1]c to time
step k

Intersection with [xk]p predicted
from the last time step k − 1

Result: [xk]

Time step
k − n + 1...

...

[xk−n+1]p

Time step
k − 1...

[xk−1]

Fig. 1. Visualization of algorithm 1 for k ≥ n

Based on this algorithm, we can can now state the central
proposition of this publication.

Proposition 1: If assumptions 1 to 5 hold, then algo-
rithm 1 provides interval vectors [xk], k ∈ {1, 2, . . . , N}
with the following properties:

• The state of system (9) is always included in [xk], i.e.

xk ∈ [xk] ∀k ≥ 0. (27)

• For k ≥ n, the width of the elements of the interval
vector [xk] is smaller than



W ([xk]) ≤ max
θk∈[θ]

(
‖
k−n+1∏
i=k−1

Ai‖∞

)
· . . .

max
θk∈[θ]

(
‖O−1(k−n+1:k)Od(k−n+1:k)1

n,1
nd
‖∞
)
·W ([d])

+ max
θk∈[θ]

(
‖
k−n+1∏
i=k−1

Ai‖∞

)
· . . .

max
θk∈[θ]

(
‖O−1(k−n+1:k)Ov(k−n+1:k)1

n,0
nv ‖∞

)
·W ([v])

+ max
θk∈[θ]

‖ k∑
i=k−n+2

(A−1k
(

i∏
z=k

Az

))1−δ(i−k)

. . .

Ei−1

‖∞
 ·W ([d]) . (28)

Proof: The proof of proposition 1 is divided into two
parts. Initially, (27) is proven to apply and afterwards (28)
is proven to be valid.
To prove (27), the time steps k ≤ n− 1 and the time steps
k ≥ n are analysed separately.
From (15) follows that (26a) is simply an inclusion function
for (14) with xs = x0. Hence, taking into account assump-
tion 3 yields (27) to be true for k ≤ n− 1.
For k ≥ n, the state vector at a past time step j defined in
(26c) can be computed by (16). Due to the fact that (16)
respectively (26d) is an inclusion function for the equation
to compute the state of an LPV system from future input
and output values, its result is an overapproximation and
thus includes the real state vector. The intersection of the
resulting interval vector with the previous result of the for-
loop or the first for-loop, respectively, in (26e) is not violating
the inclusion property but improving the result with regard
to the interval width if the rest of the proof for k ≥ n turns
out well which shall be discussed a bit more in detail. For
k ≤ 2 (n− 1), [xj ]

p is calculated by (26a) which has been
already been proven to yield a valid result. Hence, if the
rest of the algorithm, i.e. (26f), (26g) and (26h) is proven to
guarantee (27), it is also proven that (26e) provides a result
including xj for all k. Thus, we proceed with the analysis
of (26f) which is an inclusion function for the recursive
evaluation of (9). Obviously the validity of this equation is
thus given for the same reasons as explained for (26a). The
following equation (26g) is an inclusion function for (9a), i.e.
a one step prediction of the previous result of the for-loop or
the first for-loop, respectively. Therefore, it can be concluded
that if the previous result is including xk, then (26g) contains
xk as well. As already explained in the context of (26e),
xk ∈ [xk] has already been proven for k ≤ n− 1. Hence, if
the last remaining equation to be analysed (26h) is proven
to guarantee (27), then (26g) provides a valid estimate for
all k. Because of (26h) only discarding inconsistent values
from the interval vectors [xk]

cp and [xk]
p , the proof of (27)

is completed.
The proof of (28) is based on the neglection of (26h) and the
intersection (26e) by using [xj ]

c
= [xj ]

o . This means that
an overapproximation of the maximum interval width of the

interval vector [xk] is calculated based on the assumption
that the estimation is solely calculated based on future input
and output values. Hence, (29) follows.

[xk] ⊆ [xk]
cp

⊆

(
k−n+1∏
i=k−1

Ai

)
O−1(k−n+1:k)

(
y(k−n+1:k)

−Ou(k−n+1:k)u(k−n+1:k) −Od(k−n+1:k)1
n,1
nd

[d]

−Ov(k−n+1:k)1
n,0
nv [v]

)
+

k∑
i=k−n+2

((
A−1k

(
i∏

z=k

Az

))1−δ(i−k)

. . .

Bi−1ui−1

)

+

k∑
i=k−n+2

(A−1k
(

i∏
z=k

Az

))1−δ(i−k)

Ei−1 [d]


(29)

In the following calculation of the interval width w ([xk]),
the terms highlighted in (29) do not contribute to the inter-
val width because they do not include any interval-valued
quantities. This leads to

w ([xk]) ≤ ub (αk)− lb (αk) + ub (βk)− lb (βk) (30)

with

αk =

(
k−n+1∏
i=k−1

Ai

)
O−1(k−n+1:k) . . .

(
−Od(k−n+1:k)1

n,1
nd

[d]−Ov(k−n+1:k)1
n,0
nv [v]

)
,

(31a)

βk =

k∑
i=k−n+2

(A−1k
(

i∏
z=k

Az

))1−δ(i−k)

. . .

Ei−1 [d]

 . (31b)

By applying (7) and (10), an overapproximation of the
interval width is

W ([xk]) ≤ max
θk∈[θ]

((
‖
k−n+1∏
i=k−1

Ai‖∞

)
·W

(
O−1(k−n+1:k) . . .

(
−Od(k−n+1:k)1

n,1
nd

[d]−Ov(k−n+1:k)1
n,0
nv [v]

) ))

+ max
θk∈[θ]

‖ k∑
i=k−n+2

(
A−1k

(
i∏

z=k

Az

))1−δ(i−k)

. . .

Ei−1‖∞ ·W ([d])

 (32a)



≤ max
θk∈[θ]

((
‖
k−n+1∏
i=k−1

Ai‖∞

)
· ‖O−1(k−n+1:k) . . .

Od(k−n+1:k)1
n,1
nd
‖∞

)
·W ([d])

+ max
θk∈[θ]

((
‖
k−n+1∏
i=k−1

Ai‖∞

)
· ‖O−1(k−n+1:k) . . .

Ov(k−n+1:k)1
n,0
nv ‖∞

)
·W ([v])

+ max
θk∈[θ]

‖ k∑
i=k−n+2

(
A−1k

(
i∏

z=k

Az

))1−δ(i−k)

. . .

Ei−1‖∞

 ·W ([d]) (32b)

As the product of two positive functions can be maximized
by maximizing each function separately, (32b) leads to (28).

V. NUMERICAL EXAMPLE

To demonstrate the effectiveness of the method, it is
applied to a numerical example defined by

Ak =

(
−0.4 1.2 + θk
0 0.8

)
, (33a)

B =E =

(
0.1
0.2

)
, (33b)

C =
(
−0.5 1

)
, (33c)

D =F = 0.4. (33d)

A. Scenario

The initial value x0 of (9) is chosen as xᵀ
0 =

(
1 2

)
and the input is chosen as uk = sin

(
4π k

10000

)
. θk is a time-

variant parameter with θk = sin
(
2π k

10000

)
. The disturbances

are defined as constants with v = 0.1 and d = 0.3. For the
uncertain quantities, the only a priori known information is
xᵀ
0 ∈

(
[0.5, 1.5] [1.5, 2.5]

)
, θk ∈ [−1, 1], v ∈ [0, 0.2] and

d ∈ [0.2, 0.4].
Finally, due to the fact that the rank of the observability
matrix (

C
CAk

)
=

(
− 1

2 1
1
5

1
5 −

1
2θk

)
(34)

is equal to 2 for all θk ∈ [−1, 1], algorithm 1 can be applied.

B. Simulation Results

The simulation results that are obtained with the scenario
defined in the previous subsection are depicted in figure 2.
It can be seen that the real state values drawn with the
black solid line are always bounded by the upper bound
(blue dashed line) and the lower bound (red dash dotted
line) of the estimation. The maximum interval width of [x1]
is 1.62 and the maximum interval width of [x2] is 1.0. A
comparison with the result of (28) which is 7.008 shows
that the a priori known bound of the interval width is in the

same range. Hence, the numerical simulation supports the
theoretical results presented in proposition 1.

0 1 2
−1.5

0

3

steps/104

x
1

0 1 2
−1

0

2.5

steps/104
x
2

Fig. 2. Result of algorithm 1 for the example (blue dashed: upper bound of
the estimation, red dash dotted: lower bound of the estimation, black solid:
real value)

VI. CONCLUSION

Inspired by [11], the main contribution of this publication
is the extension of an interval set-membership state
estimation algorithm to LPV systems. In contrast to existing
set-membership state estimation techniques for LPV
systems, the presented approach can guarantee an a priori
computable accuracy of the interval estimation. A possible
benefit of this a priori information is that in a fault diagnosis
environment, statements concerning the detectability of
faults can be made a priori. A numerical simulation has
shown that the method provides reasonable interval widths
of the estimates even for a comparatively high uncertainty
of the disturbances influencing the state vector and the
output vector defined by ±100 % and ±33.3 % of the true
values, respectively.
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