

Karlsruhe Institute of Technology

Karlsruhe Institute of Technology Institute for Neutron Physics and Reactor Technology (INR) 76344, Eggenstein-Leopoldshafen, Germany gaetano.bongiovi@kit.edu

Advancements in the HELIAS 5-B breeding blanket structural analysis

G. Bongioví¹, A. Häußler¹ and the W7-X team

¹Karlsruhe Institute of Technology, INR, Germany

Within the framework of EUROfusion consortium, the work package S2 aims at developing the HELIcal-axis Advanced Stellarator (HELIAS) as a possible long-term alternative to a tokamak DEMO. Researches are currently ongoing at KIT in order to attain a preliminary design of the HELIAS 5-B breeding blanket (BB), taking into account as initial input the design experience acquired in the pre-conceptual design phase of the tokamak DEMO BB. To this end, the Helium-Cooled Pebble Bed (HCPB) and the Water Cooled Lithium Lead (WCLL) BB concepts have been considered, focusing on the investigation of the suitability of their main structural features to the stellarator geometry. In this regard, possible design constraints coming from the Remote Maintenance have to be fulfilled in order to better orient the blanket segmentation. In the present work, a more sophisticated assessment of the BB modules structural behavior has been performed. Attention has been also paid to the refinement of the numerical models so far adopted, investigating the impact of the major assumptions, such as Vacuum Vessel temperature and equivalent Young's Modulus, on the obtained results. To this purpose, dedicated parametric assessment has been carried out and discussed in this work.

3				5		20	0.040	0.000	1171.470	2.000	0.701	+20.270	20.170	
	BSS					3-4	-10.363	4.303	141.5%	-11.192	1.510	113.5%	-64.9%	
					4-5	-3.715	8.031	316.2%	-4.703	6.340	234.8%	-21.1%	Total	
	Vinn VV sh	vield VV c	out 4			5-1	-2.598	2.249	186.6%	-1.390	2.203	258.5%	-2.0%	
		z				<u>Ring 8</u> – minimum residual gaps [mm]								
5		3				Segment	LC+Cold VV	LC+Hot VV	Δ%	MC+Cold VV	MC+Hot VV	Δ%	∆% Hot V\	V
		Ding	[ten]	Dina		1-2	-6.621	4.503	168.0%	-6.264	2.388	138.1%	-47.0%	
				Ring 8		2-3	-12.514	1.037	108.3%	-14.342	-2.976	79.2%	-387.0%	
ructural materials:		НСРВ	WCLL	НСРВ	WCLL	4-5	-1.168	7.635	753.4%	-1.631	6.081	472.8%	-20.3%	
 AISI 316 for VV Eurofer for BB components W for FW armor (not considered in the E sensitivity study) 	Ring 1	17.4	39.8	27.0	54.7				-	•			-	
	Ring 2	18.6	43.8	25.2	56.0									
	Ring 3	19.9	45.7	30.4	63.3		Total diarda							
	Ring 4	18.8	50.0	17.8	47.4			illing Max						
	Ring 5	17.4 38.9 16.9 43.9 0,066976 0,062849												
							0,05 0,05 0,05 0,04 0,04 0,04 0,03 0,03	8722 4594 0467 634 2213 3086 3959 Min		MC+Hot VV s	Ring 8 scenario – Segr)verlapping	ment 2-3	Ring 1	

Whole 72° sector development and BB-VV attachments design

Equivalent densities assumed Gravity load along Z direction Uniform temperatures for FW, BZ, BSS and VV • Components mechanically tied

Y**------**

Displacement along Z prevented

Symmetry along local toroidal direction

Conclusion

Structural calculations of the most representative BB rings have been performed adopting detailed homogenized FEM models. The quite promising outcomes encourage the follow-up of the activity aimed at assessing a whole BB sector, which extends for 72° toroidally. Moreover, since a strong influence of the VV temperature on the BB structural performances has been found out, the development of an attachment system devoted to connect BB and VV is crucial, together with the design of the BB segments internal components, to more realistically assess the HELIAS 5-B BB thermomechanical behavior. Lastly, the RM-BB interface should be defined.

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

KIT – The Research University in the Helmholtz Association

