
KARLSRUHE SERIES ON
HUMANOID ROBOTICS

LUKAS SEBASTIAN KAUL

VOL. 05

L.
 S

. K
A

U
L

H
um

an
-In

sp
ire

d
Ba

la
nc

in
g

an
d

Re
co

ve
ry

 S
te

pp
in

g
fo

r H
um

an
oi

d
Ro

bo
ts

05

Human-Inspired Balancing
and Recovery Stepping

for Humanoid Robots

Lukas Sebastian Kaul

Human-Inspired Balancing and
Recovery Stepping for Humanoid Robots

Karlsruhe Series on Humanoid Robotics

Edited by Prof. Dr.-Ing. Tamim Asfour

Vol. 05

Human-Inspired Balancing and
Recovery Stepping for Humanoid Robots

by
Lukas Sebastian Kaul

Print on Demand 2019 – Gedruckt auf FSC-zertifiziertem Papier

ISSN 	2512-0875
ISBN	 978-3-7315-0903-5
DOI	 10.5445/KSP/1000091605

This document – excluding the cover, pictures and graphs – is licensed
under a Creative Commons Attribution-Share Alike 4.0 International License
(CC BY-SA 4.0): https://creativecommons.org/licenses/by-sa/4.0/deed.en

The cover page is licensed under a Creative Commons
Attribution-No Derivatives 4.0 International License (CC BY-ND 4.0):
https://creativecommons.org/licenses/by-nd/4.0/deed.en

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark
of Karlsruhe Institute of Technology.
Reprint using the book cover is not allowed.

www.ksp.kit.edu

Dissertation, Karlsruher Institut für Technologie
KIT-Fakultät für Informatik

Tag der mündlichen Prüfung: 23. Januar 2019
1. Referent: Prof. Dr.-Ing. Tamim Asfour
2. Referent: Prof. Dr.-Ing. Ralf Mikut

Human-Inspired Balancing and Recovery
Stepping for Humanoid Robots

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Lukas Sebastian Kaul

aus Trier

Tag der mündlichen Prüfung: 23. Januar 2019
1. Referent: Prof. Dr.-Ing. Tamim Asfour
2. Referent: Prof. Dr.-Ing. Ralf Mikut

Deutsche Zusammenfassung

Humanoide Robotik ist ein Teilgebiet der Robotik mit dem übergeordneten
Ziel der Schaffung von Robotern, deren sensomotorische und kognitive Fä-
higkeiten denen des Menschen gleichen. Dieses Ziel motiviert sich aus zwei
grundlegenden Überlegungen: Zum einen ist der Großteil der vom Men-
schen geschaffenen oder modifizierten Welt, von Handwerkzeugen bis zu
Treppenhäusern, für die Interaktion mit dem menschlichen Körper ausge-
legt. Roboter, die sich in dieser Welt so flexibel und zielgerichtet bewegen
können wie Menschen und dadurch ein breites Spektrum an nützlichen und
sinnvollen Aufgaben übernehmen können, müssen daher über einen huma-
noiden Körper und über die erforderlichen sensomotorischen und kognitiven
Fähigkeiten verfügen. Zum zweiten erfordert die Nachahmung des Men-
schen im Rahmen der Robotik eine intensive Auseinandersetzung mit den
menschlichen Fähigkeiten aus einer technischen Perspektive heraus. Diese
Betrachtungsweise kann neue Erkenntnisse über den Menschen erbringen
und damit andere, auch nicht technische Forschungsfelder, bereichern.
Eine Fähigkeit von fundamentaler Bedeutung für zweibeinige humanoide
Roboter ist das Wahren der Balance, insbesondere unter dem Einfluss unvor-
hergesehener Stöße, welche reaktive Maßnahmen hierzu erfordern ("Push

Recovery"). Ohne diese Fähigkeit sind humanoide Roboter ungeeignet für
den Einsatz außerhalb von Forschungslaboren oder jenseits von bekann-
ten Umgebungen. Trotz dieser immensen Wichtigkeit und erheblicher For-
schungsanstrengungen im Bereich der humanoiden Robotik ist das Wahren
der Balance unter dem Einfluss von Stößen weiterhin ein hochaktuelles und

i

Deutsche Zusammenfassung

in weiten Teilen ungelöstes Problem. Diesem Problem widmet sich die vor-
liegende Arbeit.
Eine wesentliche Schwierigkeit bei der Entwicklung geeigneter Methoden
ist die Anforderung, entsprechende Balancierbewegungungen sehr schnell
zu erzeugen, da die Zeitspanne zwischen einem Stoß und einem unaus-
weichlichen Sturz des Roboters kurz ist. Da humanoide Roboter gleichzei-
tig vielfältige, rechenintensive Aufgaben erfüllen müssen, ist die verfügbare
Rechenleistung für das Wahren der Balance beschränkt. Daraus ergibt sich
die Erforderlichkeit von Methoden, die bei geringem Rechenaufwand sehr
schnell zu dem gewünschten Roboterverhalten führen.
Der Stand der Forschung beinhaltet zahlreiche Ansätze, die sich dem
Balance-Problem mittels der Lösung komplexer Optimierungsprobleme
zur Laufzeit, innerhalb einer Regelschleife, nähern. Diese Ansätze sind
prinzipiell sehr erfolgversprechend, da sich die Balance entweder als
Zielgröße oder sogar Randbedingung solcher Optimierungsverfahren
formulieren lässt, und damit bei hinreichender Modellgüte und Konvergenz
der Optimierung gewährleistet werden kann. Bedingt durch die hohe Zahl
an kinematischen Freiheitsgraden sowie Einschränkungen und Redun-
danzen sind diese Optimierungsverfahren im Allgemeinen jedoch sehr
rechenaufwändig und widersprechen damit dem Ziel der Entwicklung
effizienter Methoden.
Im Gegensatz dazu legt diese Arbeit besonderen Wert auf Effizienz. Da-
zu wird das zugrundeliegende Problem in drei Teilbereiche aufgeteilt, und
zwar in (1) die sensorische Erfassung von Stößen und die Beurteilung der
momentanen Stabilität des Roboters, (2) das Balancieren durch Ausgleichs-
bewegungen, und (3) das Wiedererlangen der Balance mittels eines Aus-
fallschritts. Bei der Interpretation von Sensordaten zur Stoßerfassung sowie
der Erzeugung von Schrittbewegungen wird dabei das menschliche Vorbild
herangezogen, um effiziente Methoden zu entwickeln. Zur Erzeugung von
Ausgleichsbewegungen wird ein effizientes, lineares Verfahren angewendet,
das mittels systematischer Optimierung von Hyperparametern verbessert

ii

Deutsche Zusammenfassung

und für das komplexe, nichtlineare Ganzkörper-Balancierproblem nutzbar
gemacht wird.
Die Beiträge zu den drei genannten Unterthemen lassen sich wie folgt zu-
sammenfassen:

Erfassung von Stößen und Beurteilung der Stabilität Es wird an
menschlichen Probanden untersucht, wie sich die Richtung und Stärke eines
während des statischen Stehens erfahrenen Stoßes anhand eines am Torso
angebrachten Inertialsensors ermitteln lassen, und entsprechende Methoden
dazu werden eingeführt. Außerdem wird der Frage nachgegangen, wie sich
das menschliche Verhalten (Balancieren oder Ausfallschritt) auf Basis der
Inertialsensordaten prädizieren lässt, um es auf humanoide Roboter über-
tragbar zu machen. Weiterhin wird ein Verfahren vorgestellt und am huma-
noiden Roboter ARMAR-4 validiert, mit dem eine externe Kraft auf den
Roboter an beliebiger Stelle allein anhand der Kraft/Momentensensorik in
den Fußgelenken des Roboters rekonstruiert werden kann. Schließlich wird
anhand eines umfangreichen Satzes menschlicher Bewegungsdaten unter-
sucht, wie ein System mehrerer, am Körper verteilter Inertialsensoren ge-
nutzt werden kann, um die Erforderlichkeit von Balanciermaßnahmen auch
während dynamischer Bewegungen zu erkennen. Die durchgeführten Unter-
suchungen legen nahe, dass schon wenige am Körper verteilte Inertialsenso-
ren eine gute Abschätzung erfahrener Stöße und der momentanen Stabilität
erlauben.

Balancieren durch Ausgleichsbewegungen Methoden zur Verbes-
serung der Erzeugung ausgleichender Ganzkörperbewegungen mittels lokal
optimaler, linearer Zustandsregelung werden untersucht. Dazu wird der
Raum der der Reglersynthese zugrundeliegenden freien Gewichtsparameter
heuristisch eingeschränkt und die verbleibenden Parameter durch ein
gradientenfreies Optimierungsverfahren verbessert, um einen linearen
Balanceregler mit der besten Eignung zu erhalten. Diese Optimierung, in

iii

Deutsche Zusammenfassung

Kombination mit neuen Methoden zur Linearisierung der Bodenkontaktes,
wird auf einem Simulationsmodell des ARMAR-4 Roboters validiert und
führt zu sehr gutem Balancierverhalten unter Einbezug der Robotergelenke
in den Beinen, im Torso und in den Armen.

Reaktive Ausfallschritte Die grundlegenden Fragen zur Erzeugung re-
aktiver Ausfallschritte sind zum einen die Methode der Bewegungserzeu-
gung selbst, und zum anderen die Wahl der Schrittparameter wie Weite,
Richtung und Geschwindigkeit. Im Rahmen der vorliegenden Arbeit wird
ein auf menschlichen Bewegungen basierender Schrittgenerator entwickelt,
der durch die Nutzung dynamischer Bewegungsprimitive im Gelenkwinkel-
raum wesentlich weniger rechenaufwändig ist als vergleichbare Methoden
der Bewegungserzeugung. Mit diesem Generator und einem Simulations-
modell des ARMAR-4 Roboters wird mittels bestärkendem Lernen eine
Abbildung von sensoriell erfassbaren Stoßparametern auf Schrittparameter
gelernt, die über ein weites Spektrum von Stößen zu erfolgreichen Ausfall-
schritten führt.

iv

Acknowledgment

This thesis is the result of my research work at the High Performance Hu-
manoid Technologies Lab (H2T) of the Institute for Anthropomatics and
Robotics (IAR), Karlsruhe Institute of Technology (KIT).
First and foremost I would like to thank my doctoral advisor Prof. Tamim
Asfour for giving me the opportunity to become a „Humanoid“, to conduct
research in the exciting and multi-faceted area of humanoid robotics and
to contribute to many inspiring projects. I am particularly grateful for his
strong support and trust during every phase of my thesis, for his continuous
guidance, and for the great team and working environment he created. I
would also like to extend my gratitude to Prof. Ralf Mikut who kindly co-
supervised this thesis.
The Humanoids group at KIT is an exceptional environment full of bright
and ambitious people whom I proudly call my colleagues and friends. I want
to thank all past and present Humanoids for the inspiring discussions, criti-
cal questions and fruitful feedback, but also for the good times we had du-
ring lunch breaks, lab parties, retreat meetings, at conferences, or even when
just wanting to get something done way past midnight. I would like to par-
ticularly thank Jonas Beil for being a great office mate, for our coffee break
discussions, for the good times playing table tennis in summer (although he
mostly won) and the weekend skiing trips in winter. Nikolaus Vahrenkamp
and Christian Mandery for their guidance during the earlier stages of my
thesis and during our work on the KoroiBot project. Peter Kaiser for the
insightful discussions on robotics research and beyond, and Mirko Wächter
for the help and guidance throughout my thesis, as well as for his contagious

v

Acknowledgment

and seemingly inexhaustible enthusiasm for robotics. Samuel Rader, Pascal
Weiner and Dmitriy Shingarey for the unforgettable times we had during
the year we built ARMAR-6, and all the student assistants who helped us
during this intense time.
I want to thank Robert Zlot for supervising my master’s thesis at CSIRO’s
QCAT (Australia) and introducing me to the world of robotics research.
Without his guidance, trust and enthusiasm I may have never decided to
become a robotics researcher, and his example continues to guide me in
many ways.
During my time at the Humanoids group I had the pleasure to supervise
several student projects myself, and I gratefully acknowledge the contribu-
tions of Laura Steffan, Simon Bäuerle and Johannes Pankert to this thesis.
I want to thank my friends Fabian Sehn and Andreas Trenkle for their fri-
endship from my very first days in Karlsruhe. In particular I want to thank
Alexander Albrecht for the continuous support and reliable friendship, for
the many adventures we had together, from hiking in China and rock clim-
bing in sunny Spain and Italy to traversing alpine glaciers in the freezing
cold, for the countless sessions at the climbing wall, and for the support in
virtually any situation I ever needed him.
Most importantly I want to wholeheartedly thank my parents Helga and
Martin for their guidance and unconditional support, my brother Matthias
for being a mentor and a great friend, and my girlfriend Alice for her pati-
ence and ability to see even the most complicated of matters crystal clear. I
would be nowhere near where I am today without all of you.

Karlsruhe, February 2019 Lukas Kaul

vi

Contents

1 Introduction . 1
1.1 Problem Statement and Contributions 3
1.2 Structure of the Thesis . 7

2 Fundamentals . 9
2.1 Rigid Body Dynamics . 9

2.1.1 Underactuation . 12
2.1.2 Hybrid Dynamics 14
2.1.3 Velocity and Torque Control 15

2.2 Stability and Balance . 17
2.2.1 Static Stability . 17
2.2.2 Dynamic Stability 19
2.2.3 Linear Inverted Pendulum Dynamics 22

2.3 Linear Quadratic Regulators 23
2.4 Dynamic Movement Primitives 25
2.5 Learning Methods . 31

2.5.1 Supervised Learning 33
2.5.2 Reinforcement Learning 35

2.6 Dynamics Simulation . 38

3 Related Work . 41
3.1 Stability Classification . 42

3.1.1 Stability Classification for Humans 43
3.1.2 Stability Classification for Humanoid Robots 44

vii

Contents

3.2 Disturbance Estimation . 45
3.2.1 Using Contact Force Sensors 45
3.2.2 Using Internal Proprioceptive Sensors 46

3.3 Postural Balancing in Place 48
3.3.1 Online Optimization Methods 49
3.3.2 Linear Balancing Control 55

3.4 Balancing by Stepping . 62
3.4.1 Step Location Adjustments 62
3.4.2 Step Time Adjustments 67
3.4.3 Learning How to Step 69
3.4.4 Recovery Stepping with DMPs 70

3.5 Summary . 71

4 Disturbance Estimation and Stability Classification . . . 75
4.1 Push Intensity Estimation with a single IMU 76

4.1.1 Experimental Setup 77
4.1.2 Experimental Protocol 79
4.1.3 Methods and Results 79

4.2 Disturbance Estimation with F/T Sensors 88
4.2.1 Line of Force Action 90
4.2.2 Validation on the ARMAR-4 Humanoid Robot . . . 93

4.3 Dynamic Stability Estimation with Multiple IMUs 97
4.3.1 Methodology . 98
4.3.2 Training and Evaluation on Human Motion Data . . 105
4.3.3 Best Classification System 111

4.4 Summary and Review . 112

5 Whole-Body Postural Balancing 115
5.1 LQR for Whole-Body Balancing 119
5.2 Cost Terms . 120

5.2.1 State Cost . 121

viii

Contents

5.2.2 Actuation Cost . 125
5.3 Linear Contact Models . 126

5.3.1 Clamped . 127
5.3.2 Springs . 127
5.3.3 High Inertia . 128

5.4 Optimization of LQR Design Weights 130
5.4.1 Optimization Cycle 130
5.4.2 Simulated Annealing 131
5.4.3 Parameter Space of the 2D Model 133
5.4.4 Parameter Space of the 3D Model 134
5.4.5 Implementation . 136

5.5 Evaluation in Dynamics Simulation 137
5.5.1 Contact Model . 138
5.5.2 Optimization . 140
5.5.3 Validation on the ARMAR-4 Humanoid Robot Model142

5.6 Summary and Review . 144

6 Recovery Stepping . 147
6.1 Learning Stepping-DMPs from Human Demonstrations . . . 149

6.1.1 Methodology . 149
6.1.2 Human Motion Recordings 151
6.1.3 DMP Representation 155
6.1.4 Parametric Step Motion Generation 156

6.2 Learning Viable Step Parameters 161
6.2.1 Parameter Spaces and Policy Structure 162
6.2.2 Training Procedure 165
6.2.3 Implementation . 173

6.3 Evaluation in Dynamics Simulation 178
6.3.1 Weak Pushes . 180
6.3.2 Strong Pushes . 182
6.3.3 Computational Efficiency 183

ix

Contents

6.4 Summary and Review . 185

7 Conclusion . 189
7.1 Scientific Contribution . 190
7.2 Discussion and Future Work 192

Appendix . 195
A DMP Library . 195
B MMM Framework . 195
C ArmarX . 197
D ARMAR-4 . 198
E Motion Recordings . 200
F Classifier Hyperparameters 203
G Simulated Annealing . 204

List of Figures . 207

List of Tables . 209

List of Algorithms . 211

Acronyms . 213

Bibliography . 235

x

1 Introduction

Robotics is arguably one of the key technologies that will (continue to) have
a transformative impact on society in the 21st century. Robots are, in a
very general sense, machines that can perform certain physical tasks au-
tonomously. Conceiving, designing and building these machines requires
efforts in a variety of technological fields, most notably mechanical engi-
neering, electrical engineering, and computer science. As many applications
of modern robots require highly domain-specific knowledge, be it space or
deep sea exploration, geological research, the automation of medical labo-
ratories or elderly care, robotics often involves in-depth exchange between
roboticists and the respective domain experts. This inherent interdisciplinar-
ity of robotics research makes it a particularly attractive, stimulating, but
also challenging field.
Robotics spans a wide area from application-proven solutions that have been
in use for decades, such as part-handling in industrial car manufacturing, to
areas of fundamental research that continuously push the boundaries of what
is possible.

Humanoid Robotics One of the most captivating areas of fundamental
robotics research might be the field of humanoid robotics. Humanoid robots
are machines that strive to, at least partially, mimic the human body in its
dimensions as well as in its sensorimotor and cognitive capabilities.
From a mere technological point of view, building humanoid robots is mo-
tivated by their prospective universal applicability, as well as by the enor-
mous challenge that the imitation of the human body represents, oftentimes

1

1 Introduction

forcing engineers and researchers to leave the beaten track and follow highly
innovative approaches. The cultural world has not been designed with robots
in mind, it has been optimized to be used by humans, possessing a human
body with all its unique capabilities and constraints. If robots are to be-
come truly flexible and universally applicable, they need to be able to inter-
act with this world (and the people in it) just the way humans do, and this
requires a human-like body and human-like capabilities. This is the core
hypothesis that underlies humanoid robotics. There is no known alternative
to humanoids for robots that combine human capabilities such as climbing
stairs, working with tools, seamlessly interacting with people and helping
the elderly in their daily activities, just to list a few illustrative examples.
The current state of robotic technology, however, is still far from realizing
this vision.
The applications in which robots are successfully deployed typically consist
of a well-defined task and little variation. Mowing the lawn, vacuuming
the floor and repetitive material handling are amongst the few areas where
commercial robots currently excel, and these robots are all different and
specialized for their one task. This illustrates the large gap between the
state of the art in robotics and the vision of truly humanoid robots, and gives
one an idea of the research efforts that still lie ahead.
Another, less technical aspect of the motivation for humanoid robotics re-
search is its use to serve to satisfy the inherent human desire to better un-
derstand the human body and its capabilities. The human body is the core
inspiration for humanoid robotics, which is why researchers aim at under-
standing the human skills, in order to re-implement them on a humanoid
robot. This process almost inevitably leads to a deep appreciation of the
human capabilities, which far exceed all current technical solutions in their
generality. While specific robots might be more precise, or able to move
faster, or stronger, and some cognitive algorithms might be better at catego-
rizing images or playing board games, the entirety of skills and capabilities
enabled by the human body and brain are technologically unmatched.

2

1.1 Problem Statement and Contributions

Methodological Principles The challenges of closing the gap between
what is currently technologically possible and realizing the vision of human-
like robots is too large to address it all at once. One of the core principles
underlying humanoid robotics research is therefore to investigate a certain
skill, be it motor or cognitive, in isolation, and then, eventually, integrate
these skills into an overall humanoid system.
Finding methods that are efficient in terms of the use of computational re-
sources is especially important in humanoid robotics, as humanoids will
have to possess and make use of a large number of skills (e. g. visual scene
understanding, motion planning, and human-robot interaction) simultane-
ously. If these skills are not implemented in an efficient way, the fundamen-
tally restricted on-board resources that allow the robot to act autonomously
will quickly become a limiting factor, even with the advent of more and
more powerful computation hardware. While efficiency is an important
requirement in the majority of technical applications, it is a principle of
paramount importance in humanoid robotics due to the high number of skills
these robots are envisioned to possess, and due to the real-time constraints
imposed by tasks such as dynamic locomotion.
Since the human is a direct role model for all the skills humanoid robots
are envisioned to one day have, exploiting the human expertise is another
common principle in humanoid robotics research.

1.1 Problem Statement and Contributions

Among the many capabilities that are required from humanoid robots, many
are applicable to other robots as well, such as navigation, visual scene un-
derstanding, or grasping and manipulation. However, a few are, at least cur-
rently, unique to humanoids. Amongst these very humanoid-specific fields
is the challenge of balancing on two legs. Although proven to be possible
and highly useful by the human example, its technological challenges have
yet prevented bipedal locomotion from seeing widespread use in robotics.

3

1 Introduction

Instead, robots largely rely on wheels, or four or more legs, and bipedalism
has remained a domain of few research groups focusing on humanoids. The
work presented in this thesis represents a contribution to this area. More
concretely, it tries to find new ways of answering the following question:

What does a bipedal humanoid robot need to perceive and to do in order to

regain its balance after a forceful push?

In doing so it follows the above stated principles. It considers the problem
of push recovery in isolation, as a building block for humanoid capabilities
that will incrementally lead to ever more capable humanoid robots. It con-
siders the human role model as a reference for decision making and motion
generation and proposes a new method to transfer the human balancing ex-
pertise to humanoid robots. And lastly, it explicitly focuses on methods that
can be implemented in an efficient manner, prioritizing efficiency over per-
formance in order to find methods that can eventually find their application
on humanoid robots that have to fulfill many concurrent tasks with limited
computational resources.
In the context of bipedal humanoid robotics, balancing and push recovery
is a particularly interesting topic because of its fundamental importance for
the application of these machines in real-world scenarios. Disturbances will
inevitably occur, be it from colliding with moving obstacles, getting into
contact with people in crowded spaces or even from strong winds and other
environmental influences in disaster scenarios. Given that the risk of dam-
age to the robot and even its surroundings in case of a fall is high, the robot,
just like a person, needs to be able to avoid those falls. It seems unlikely
that humanoid robots that lack the capability to flexibly and efficiently react
to balance disturbances will be suited for any appreciable real-world appli-
cation.

4

1.1 Problem Statement and Contributions

However, detecting when balance recovery actions are required, choosing
the correct strategy for balancing and then executing it in an efficient man-
ner is a technologically challenging problem. The robot (1) has to infer
from the abundance of sensory information, and despite the infinite amount
of possible states it can be in, that its current state requires active balance re-
covery. It then needs to decide whether balance can be maintained by means
of (2) coordinated whole-body motions in place, or if the situation requires
(3) taking a step. Given the uni-lateral ground contact, the nonlinear, highly
coupled nature of the robot’s hybrid dynamics, its kinematic redundancy
and the constraints on its state and its actions, generating appropriate mo-
tions efficiently is difficult.
This thesis contributes to the three above mentioned fields by investigating
efficient methods for the decision-making from internal sensors, investigat-
ing improvements to highly efficient whole-body postural balancing meth-
ods, and proposing a novel method for efficient recovery step generation,
leveraging human examples and simulation-based reinforcement learning.

Disturbance Estimation and Stability Classification The first
contribution of this thesis is concerned with extracting the necessary
information for reactive stepping in order to recover balance from a small
number of internal sensors, i. e. answering the questions of when to step
and where to step. To this end, studies with a human subject show that a
small number of body-mounted inertial sensors can be an effective sensor
setup in this context. Building on this result, a comprehensive study on
stability classification with body-worn sensors based on a large dataset of
human motion recordings is conducted, showing that stable states can be
differentiated from unstable ones (i. e. states that require recovery action) by
means of body-worn inertial sensors and supervised learning. Additionally,
a method for extracting detailed information about a received push solely
from a robot’s fore/torque sensors in the ankles is presented.

5

1 Introduction

Whole-Body Postural Balancing The second contribution of this the-
sis is concerned with performing balancing motions in the case when step-
ping is not required, with a strong focus on computational efficiency at
runtime. The underlying hypothesis is that the balancing problem, despite
the nonlinear robot dynamics, can be addressed successfully and efficiently
with a linear balance controller when the differences between the linear
model and the real robot are accounted for by means of hyperparameter
optimization and novel ways of ground contact linearization. This hypoth-
esis is systematically evaluated using a planar humanoid robot model and
several thousand simulated push recovery experiments as part of an opti-
mization cycle. The results are reproduced on a simulation model of the
ARMAR-4 robot and the method is shown to be able to produce highly suc-
cessful whole-body balancing motions, enabling the robot to mitigate frontal
pushes.

Recovery Stepping The third contribution of this thesis is a novel
method to generate recovery stepping motions to regain the robot’s balance
after a push that would otherwise lead to a fall. The proposed method
leverages human motion recordings of push recovery steps by representing
them as motion primitives on the joint level and encapsulating them in a
highly efficient parametric stepping motion generator. Using systematically
generated data from dynamics simulations of the ARMAR-4 robot, a
mapping from push parameters that can be obtained with the robot’s own
sensors to the appropriate step parameters as input to the motion generator
is learned. The entire system, consisting of the learned parameter mapping
(policy) and the motion generator, is evaluated in a physics simulation en-
vironment and demonstrated to enable the ARMAR-4 robot to successfully
recover from a wide range of pushes from different directions by means of
reactive stepping.

6

1.2 Structure of the Thesis

1.2 Structure of the Thesis

This thesis is divided into seven chapters. After a general introduction to the
topic, the core research questions and a general overview over the individual
contributions in Chapter 1, an overview over the foundational concepts and
methods that underlie the presented work is presented in Chapter 2. Chap-
ter 3 presents a structured overview over related research in the three main
areas covered by this thesis and explains the relation of the presented work
to the current state of the art.
The following three chapters contain the main contributions of the thesis. In
Chapter 4, the topic of stability estimation with body-mounted inertial sen-
sors as well as disturbance estimation with the robot’s internal force sensors
is addressed. In Chapter 5, ways to optimize linear whole-body balance con-
trollers by means of novel linearized ground contact models and iterative,
simulation-based hyperparameter optimization are presented. A data-driven
stepping motion generator based on motion primitives and a simulation-
based learning method for its application to the ARMAR-4 robot are pre-
sented in Chapter 6. As these three contributions represent individual build-
ing blocks for the balancing and push recovery system of humanoid robots,
each chapter includes an individual evaluation of the presented method.
Finally, Chapter 7 concludes the thesis with a summary and a discussion of
the obtained results, as well as ideas for future research to address questions
that remain unanswered or were newly raised by the presented work.

7

2 Fundamentals

The aim of this thesis is to contribute to the field of push recovery and dy-
namic stability of bipedal humanoid robots. To set the stage for the work
presented in the later chapters, this chapter will briefly introduce core theo-
retical concepts as well as key methodological building blocks and tools. In
Section 2.1, the fundamental concepts of Rigid Body Dynamics, i. e. the for-
mal description of the motion of rigid bodies under the influence of forces
and moments, will be introduced. After this general description, Section 2.2
will narrow the focus on the core concepts of static and dynamic Stability in
the context of bipedal robots.
The subsequent sections introduce important tools that will be used in the
presented work, starting with Linear Quadratic Regulators in Section 2.3, a
concept used extensively in Chapter 5, and proceeding with a short descrip-
tion of Dynamic Movement Primitives in Section 2.4 that constitute a key
method enabling the work presented in Chapter 6. Learning methods, i. e.
techniques to fit input/output relations to given training data that are used in
various parts throughout this thesis, are introduced in Section 2.5. Lastly,
Section 2.6 highlights a few important robotics related aspects of Dynam-

ics Simulation, an important tool for the work described in Chapter 5 and
Chapter 6.

2.1 Rigid Body Dynamics

Rigid bodies are physical bodies that always keep their initial shape and
mass distribution. All kinematic and dynamic models used throughout this

9

2 Fundamentals

connected by joints, an assumption that is found in almost all literature on
balancing and push recovery of humanoids.
The dynamics of a rigid body describe the evolution of its position x(t)

and orientation φ(t) under the influences of forces f (t) and moments m(t)1.
Rigid bodies possess the important dynamic quantities linear momentum p

and angular momentum L, both of which are conserved quantities and only
changed by the forces and moments acting on the body with

d p
dt

= f (t) (2.1)

and
dL
dt

= m(t) (2.2)

The linear velocity ẋ of a rigid body is directly proportional to its linear
momentum p, with the inverse of its total mass m being the proportionality
factor such that

ẋ(t) =
1
m

p(t). (2.3)

Similarly, the rotational velocity ω of a rigid body is directly proportional
to its angular momentum L with the inverse of its moment of inertia I being
the proportionality factor such that

ω(t) =
1
I

L(t). (2.4)

Note that the moment of inertia in general depends on the axis about which
the body rotates.

Planar equations of motion of a rigid body Based on these few
preliminaries one can obtain the equations of motion of a rigid body that

1 Forces and moments are in fact the only influences that determine the evolution of a body’s
motion.

10

thesis will be based on the assumption that a robot consists of rigid bodies

2.1 Rigid Body Dynamics

describe the connection between its motion (i. e. linear and angular accel-
eration) and the forces and moments acting on it, which are generally time
dependent:

mẍ(t) = f (t) (2.5)

Iω̇(t) = m(t) (2.6)

If f (t) and m(t) are known, double-integration of these equations yields
the position and orientation trajectories x(t) and ϕ(t) as the solution of the
equations of motion. A common way of organizing the equations of motion
is to have all terms caused by the body’s own motion (such as the inertial
terms above) on the left side, and all external forces such as contact forces
or gravity on the right side.

3D equations of motion of a system of rigid bodies A humanoid
robot is usually modeled as a system of rigid bodies (called links), connected
by joints. The most common joint type used in robots is the rotational joint,
whose state can be described by the joint angle θ . Advancing from the de-
scription of a single rigid body’s planar motion to the 3D motion of a system

of rigid bodies such as a humanoid significantly increases complexity. The
fundamental concepts outlined above still apply, but need to be extended
and new concepts need to be introduced. A complete derivation of the equa-
tions of motion is out of scope for this section. The aim is rather to equip
the reader with an intuitive understanding of the terms involved.
A powerful concept in multibody dynamics is that of generalized forces and
generalized coordinates that allows to express the two equations 2.5 and 2.6
in one. As it is common in the robotics literature, the generalized coordi-
nates describing linear and angular displacements will be denoted as vector
q, and the generalized forces describing forces and moments f. Expressing
equations 2.5 and 2.6 with generalized coordinates and forces, extending
them to 3D and to a system of rigid bodies connected by joints described by

11

2 Fundamentals

generalized coordinates q and actuated by joint torques τ yields the basic
dynamic description of a robot2

H(q)q̈+C(q, q̇) = B(q, q̇)τ +Φ(q)T
λ , (2.7)

a matrix equation that describes the equilibrium of generalized forces. H(q)
is the inertia matrix that depends on the system’s configuration q and maps
generalized accelerations q̈ to generalized forces. C(q, q̇) is a matrix con-
taining all forces that depend on the generalized coordinates and veloci-
ties, namely the Coriolis forces and gravity. B(q, q̇) maps the joint actuator
torques τ to generalized forces, and Φ(q) maps all external forces λ (e. g.
ground contact forces) to generalized forces3. Note that B(q, q̇) is the iden-
tity for a fully actuated system.

2.1.1 Underactuation

A humanoid robot with n actuated joints, in contrast to an industrial robot
arm, is not fixed at one position but is free to move and change its pose in
the world. It therefore has n+6 Degrees of Freedom (DoF), namely all its
joint positions and the position and orientation of its base frame. The six
degrees of freedom describing the general motion of the robot’s base frame
are not directly driven by actuators but influenced by the overall movement
of the robot. Since the motion of the base frame is not actuated, the entire
system is underactuated, meaning that it does not have direct control over
all its DoFs. A common term for underactuated mechanical systems with
base frames that are free to move is the notion of floating base systems.
Figure 2.1 visualizes the six unactuated DoFs of a humanoid robot’s floating
base.

2 Notation based on [Featherstone 2008](Equation 1.1) with extensions adapted from [Kuin-
dersma et al. 2014].

3 Φ(q) in this context is referred to as the Contact Jacobian.

12

2.1 Rigid Body Dynamics

Figure 2.1: The six unactuated degrees of freedom (or virtual DoFs) of a humanoid robot’s
floating base frame make the entire system underactuated (taken from [Mistry et al.
2010], © 2010 IEEE).

Describing the dynamics of underactuated floating base systems requires
modifications to Equation 2.7 since the term B(q, q̇)τ contains zeros for
the six unactuated joints. One way is to interpret B as a selection matrix
S that selects the actuated joints from the vector of joint torques τ with
S = [In×n 0n×6], as for example noted in [Mistry et al. 2010]. Another
way is to split the dynamics (Equation 2.7) into two parts, an actuated part
(subscript a) and a floating base part (subscript f)4:

H f q̈+C f = Φ
T
f λ (2.8)

Haq̈+Ca = Baτ +Φ
T
a λ (2.9)

4 Notation based on [Featherstone 2008](Equation 9.11) with extensions adapted from [Kuin-
dersma et al. 2014].

13

2 Fundamentals

This notation can be especially useful when the dynamics are incorporated
in the formulation of an optimization problem, as will be exemplified in
Section 3.3.1.
A comprehensive way of deriving the dynamics of floating base systems
with a focus on arbitrary parameterization (e. g. changing contact situa-
tions) with simulation-based applications to humanoids has been described
in [Bouyarmane and Kheddar 2012].

2.1.2 Hybrid Dynamics

Humanoid robots pose special requirements on their description as multi-
body dynamic systems not only due to the fact that they are underactuated,
but also due to their dynamics being inherently hybrid. A hybrid system
in this case refers to a system whose dynamics are governed by different
equations of motions at different times, with discrete transitions in between.
"A hybrid dynamical system can thus be regarded as a set of dynamical sys-

tems together with their initial and final states, so that every time a certain

final state is reached, a jump occurs. Hence, a jump represents a transition

to a (generally different) initial state appurtenant to a (generally different)

dynamical system from the set." [Karer and Škrjanc 2012]
For humanoids, these ’jumps’ arise from making and breaking contact be-
tween the end-effectors and the environment, e. g. between the feet and the
ground during walking. An exhaustive taxonomy of contact poses for the
human and humanoid body that also distinguishes between planar (unilat-
eral) and hold (multilateral) contacts, each of which constitutes a different
dynamical system, is presented in [Borras and Asfour 2015]. Since contacts
pose kinematic and dynamic constraints, they are regarded in the derivation
of most components of the equations of motion (see Equation 2.7), and an
altered contact situation requires altered equations of motion. Examples of
different contact situations encountered by humanoid robots are depicted
in Figure 2.2. The hybrid nature of the dynamics make bipedal humanoid

14

2.1 Rigid Body Dynamics

motion generation an especially challenging problem for Model Predictive
Controllers (MPC) (e. g. [Ishihara and Morimoto 2015; Griffin and Leonessa
2016]), since the model changes happen at potentially unknown times.

Figure 2.2: A humanoid robot is a floating base system (as opposed to fixed base) with hybrid
dynamics due to changing contact situations (taken from [Bouyarmane and Khed-
dar 2012], © 2012 IEEE).

2.1.3 Velocity and Torque Control

The rigid body dynamics of a humanoid robot (see Equation 2.7) that un-
derlie the majority of robot control approaches is formulated in the space
of generalized forces. These generalized forces translate to torques on the
robot joint level. Many stabilizing balancing controllers that influence the
robot dynamics in a desired way are therefore naturally formulated in the
torque domain, and their computed outputs are joint torques. However, it
is technologically challenging to design and build a physical robot whose
actuators readily accept and are able to execute torque commands. This is
predominantly due to high cost and complexity of in-actuator torque sens-
ing (two recent approaches are compared in [Kashiri et al. 2017]) and the
required high control bandwidth for precise and stable torque control of a
stiff multi-body mechanism with ground contacts. It is therefore a relatively

15

2 Fundamentals

recent development that full-body humanoid robots with torque control ca-
pabilities such as KIT’s ARMAR-4 [Asfour et al. 2013], DLR’s Toro [En-
glsberger et al. 2014b], NASA’s Valkyrie [Radford et al. 2015] or the Boston
Dynamics Atlas [Boston Dynamics 2018] have become available.

(a) HRP-2 (b) TORO (c) ARMAR-4

Figure 2.3: (a) The velocity-controlled HRP-2 (taken from [Kaneko et al. 2004], © 2004 IEEE),
(b) the torque-controlled TORO (adapted from [Englsberger et al. 2014b],
© 2014 IEEE) and (c) the torque-controlled ARMAR-4 humanoid robot.

In contrast, the majority of humanoid robots to date rely on velocity control
on the joint level, where the high-level controller can command desired
velocities that will be enforced by high-gain PD or PID servo controllers.
Prominent examples for full-body velocity-controlled humanoids are the
HRP robots developed within the Japanese Humanoid Robotics Project
(HRP) [Hirukawa et al. 2004]. Especially HRP-2 [Kaneko et al. 2004] and
HRP-4 [Kaneko et al. 2011] have had significant impact on the research on
humanoid locomotion and balancing as hardware platforms for validation
experiments. This type of robots typically requires a computational middle-
layer between the balance control, operating on the dynamics in the torque

16

2.2 Stability and Balance

domain, and the low-level controllers, relying on joint velocity commands,
to translate desired torques to desired velocities. This bridge can be built
by computational forward dynamics that computes the joint accelerations
which would arise from a set of desired joint torques. Time-integration
of these accelerations yield the desired velocities that are issued to the
joint-level servo controllers. For the purpose of walking and balancing,
more specialized schemes with lower computational demands have been
introduced such as the ’Posture/Force control layer’ described in [Kajita
et al. 2010] that achieves desired foot contact forces by a damping control
law implemented on the velocity-controlled HRP-2 robot. Figure 2.3 shows
the HRP-2 as an example for velocity-controlled humanoids and the TORO
and ARMAR-4 as examples for torque-controlled humanoid robots.

2.2 Stability and Balance

To formalize the goal of enabling robots to maintain their balance under
nominal conditions and to regain their stability under the influence of exter-
nal disturbances, it is necessary to define the term stability in the context of
bipedal systems and to discuss its different aspects and implications.

2.2.1 Static Stability

By definition, the state of a mechanical system is statically stable when the
velocity and all its derivatives are zero, meaning that the system is at rest
and the equilibria of forces and moments do not require any non-zero ac-
celerations. This state can, without external influence, persist infinitely. A
statically stable state therefore satisfies the conditions

n

∑
i=1

fi +G = 0 (2.10)

17

2 Fundamentals

and
n

∑
i=1

fi× ci +G× rCoM = 0 (2.11)

where n is the number of ground contacts, fi and ci are the contact forces
and locations, G is the overall gravitational force and rCoM is the location
of the center of mass (see Equation 2.12). For a humanoid robot standing
on the ground, static stability requires it to be at rest and have the vertical
floor projection of the center of mass within the boundaries of the support
polygon.
Since static stability forbids the movement of a robot, this concept has little
applicability to mobile robotics. It is instead often synonymously used with
the term quasi-static stability, describing a state-trajectory in which veloc-
ities are small and the effects of accelerations are negligible. Quasi-static
walking is thus a slow walking motion in which the center of mass is above
the support polygon at all times and accelerations are negligible. Conse-
quently, the motion can be paused at any time, without compromising sta-
bility. In contrast, this is in general not true for walking in the dynamically
stable regime where pausing the motion induces unplanned accelerations
that disturb the robot’s dynamic stability. Despite this added complexity
and risk, dynamic motion is prevalent in many biological system, such as in
humans.
The terms Center of Mass and Support Polygon will be briefly clarified in
the following sections.

Center of Mass

A robot’s center of mass, commonly abbreviated as CoM, is the spatially
weighted sum of the masses of all its mechanical components (links) com-
puted as

CoM =
1
M

n

∑
i=1

miri (2.12)

18

2.2 Stability and Balance

where M is the overall mass, n is the number of mechanical components
considered and mi and ri are the masses and locations of the individual com-
ponents, respectively.
The CoM plays an important role in stability considerations and often, to-
gether with the overall mass, even serves as a (heavily) simplified surrogate
model for the entire robot, such that only its location, velocity and accel-
eration are considered instead of those of the individual robot components.
Commonly used simplified dynamic models such as the linear inverted pen-
dulum in its 2D formulation [Kajita and Tani 1991] and 3D extension [Ka-
jita et al. 2001], its extension by a flywheel to include angular momentum
(which a point mass located at the CoM alone cannot possess) [Pratt et al.
2006] or the cart-table model originally proposed in [Kajita et al. 2003] are
based on CoM-centered considerations and simplifications.

Support Polygon

The support polygon of a legged system is the convex hull of all its ground
contacts. It is one of the most important geometric concepts in stability
considerations, where the area of the support polygon as well as its centroid
and its edges might be of interest. In most applications, the support polygon
is assumed to be oriented horizontally. In the case of uneven terrain, the
support polygon can be defined as the horizontal projection of the actual
contact pattern [McGhee and Iswandhi 1979].

2.2.2 Dynamic Stability

For modern approaches in legged robotics research, requiring static stability
is far too restricting, as it forbids dynamic motions and thereby the exploita-
tion of a robot’s full capacity. Push-recovery, which is the core problem of
this thesis, is almost always a dynamic action as the external disturbance
in form of a push generally induces a non-negligible acceleration. While
the definition of static stability provided in Section 2.2.1 is very intuitive,

19

2 Fundamentals

defining dynamic stability is more involved. The concept of a Zero Mo-

ment Point has gained significant importance and applicability in the field
of legged robots and will be briefly introduced in the following section.

Zero Moment Point

The Zero Moment Point, commonly abbreviated as ZMP, is in some sense
the dynamic equivalent of the floor projection of the CoM, taking into ac-
count dynamic forces caused by accelerations and inertia. It was initially
introduced under the name ZMP in the context of legged robotic research by
Vukobratović and Stepanenko in the early 1970s [Vukobratović and Stepa-
nenko 1972] while the underlying ideas and formulation were presented as
early as the late 1960s [Vukobratović and Juričić 1969]. An overview over
the evolution and applications of the ZMP formalism within the 35 years
after its initial formulation is provided by the original authors in [Vukobra-
tović and Borovac 2004].
Every force acting on the robot, either caused by external contacts, gravity
or inertia, induces a moment around any point on the ground. If there ex-
ists a point on the ground where all horizontal components of these ground
reaction moments τGR|h cancel out and hence the net horizontal moment is
zero, this point is called the Zero Moment Point rZMP with

τGR(rZMP)|h = 0. (2.13)

If the ZMP is located within the support polygon of the legged system, the
system is said to be dynamically stable, i. e. it fulfills the ZMP-criterion for
dynamic stability. In this case, the ZMP coincides with the Center of Pres-
sure (abbreviated CoP), the point on the ground through which the force vec-
tor resulting from the ground contact forces passes. The authors in [Vuko-
bratović and Borovac 2004] clarify that a ZMP outside the support polygon,
i. e. not coinciding with the CoP (then called the fictitious ZMP or FZMP)
indicates a disturbance, and that its "distance from the foot edge represents

20

2.2 Stability and Balance

the intensity of the perturbation". Such a perturbation does not necessarily
indicate dynamic instability, rendering the ZMP-criterion a sufficient, but
not a necessary criterion for dynamic stability, as summarized in [Diehl and
Mombaur 2006](p.305).
If the CoP can be measured during motion execution, e. g. with a 6-axis
F/T sensor in the robot’s ankles, it can be used as a feedback signal for
a balancing controller. In a simple balancing controller, the position of the
ZMP can be directly influenced using the robot’s ankle torques, even though
the limited size of the feet severely limits the application of ankle torque-
based dynamic balance control in practice.
Based on Equation 2.13 and following the derivation in [Popovic et al. 2005]
the horizontal position of the ZMP for a flat ground can be computed from
the robot kinematics and dynamics as follows:

ZMPx =
∑

n
i=i {ri×mi(ai−g)+ [d(Iiωi)/dt]}Y

M(Z̈CoM +g)
(2.14)

ZMPx =
∑

n
i=i {ri×mi(ai−g)+ [d(Iiωi)/dt]}X

M(Z̈CoM +g)
(2.15)

where n is the number of rigid links in the robot’s body, ri and mi are those
links’ position vectors and masses, ai are the linear accelerations of all links,
g is the gravitational acceleration and Ii and ωi are the inertia tensors and
rotational velocities of all links. M is the robots overall mass and Z̈CoM is
the height of the CoM. Using this formulation, the ZMP can be computed
during a robot’s motion and used to assess and verify its dynamic stability.
If kinematic and dynamic measurements are available, this formulation can
also be used to compute the ZMP and therefore assess the dynamic stability
of a robot or human body in motion.
Another important application of the ZMP formalism is dynamically sta-
ble motion planning, and there exists a significant body of work that de-
scribes the ZMP-based generation and execution of walking motions. e. g.
[Huang et al. 2001; Kajita et al. 2010]. In this case, a set of future foot steps

21

2 Fundamentals

is initially provided. A ZMP-trajectory is then generated that connects all
these footsteps in their temporal order. Using conceptual tools such as the
cart-table model, the ZMP-trajectory can be converted to a CoM trajectory
based on which the actual walking motion can be synthesized and stabi-
lized [Kajita et al. 2003]. Figure 2.4 shows a planned footstep pattern, a
(measured) ZMP-trajectory as well as the synthesized and controlled CoM-
trajectory for a walking experiment.

Figure 2.4: Planned footsteps as well as measured ZMP- and CoM-trajectory during a walking
experiment with a biped robot (taken from [Kajita et al. 2006], © 2006 IEEE).

2.2.3 Linear Inverted Pendulum Dynamics

It has oftentimes proven useful to use simplified models for the rigid body
dynamics rather than the complex dynamics of a humanoid robot for con-
troller synthesis and analysis. One of the most fundamental surrogate dy-
namics models is the Linear Inverted Pendulum (LIPM). The conceptual
LIPM consists of a massless telescopic leg with a point-mass representing

22

2.3 Linear Quadratic Regulators

the robot’s CoM at the hip, depicted in Figure 3.7(a). The telescopic leg
ensures that the hip stays at a constant height at all times, which leads to the
following one-dimensional equation of motion

ẍ =
g
z0

x (2.16)

where x is the horizontal position of the CoM, g is the gravitational acceler-
ation and z0 is the constant hip height. Note that this is a linear differential
equation, hence the name LIPM.
The LIPM has been a pivotal concept for many works in humanoid walk-
ing and balance control, and extensions that capture more aspects of the
robot dynamics while maintaining its conceptual simplicity will be briefly
described in Section 3.4.

2.3 Linear Quadratic Regulators

Linear Quadratic Regulators (LQR) are a subfield of optimal control theory
for linear systems. An LQR state-feedback controller controls a dynamical
system (described by a set of linear equations of motion) optimally, in the
sense that it minimizes a quadratic cost functional. The linear system in
state space formulation takes on the form

ẋ(t) = Ax(t)+Bu(t) (2.17)

y(t) = Cx(t)+Du(t) (2.18)

and is characterized by the four time-invariant coefficient matrices A, B,
C and D. To drive the system to its desired state, a linear state-feedback
controller produces an output signal u(t) proportional to the system state
x(t) with feedback gain matrix K:

u(t) = Kx(t) (2.19)

23

2 Fundamentals

Generally, x(t) in the state-feedback Equation 2.19 denotes the state error,
i. e. the deviation x0−xact of the actual state xact from the initial state (of
linearization) x0. This error is denoted x only for brevity.
The LQR method is essentially a formalism to algorithmically find the en-
tries of the feedback matrix K that makes the controller optimal under a
problem-specific cost, considering the system’s open loop dynamics char-
acterized by A and B. For the infinite horizon LQR formulation5 the cost J

to be minimized is formulated as the integral

J =
∫

∞

0
(x(t)T Qx(t)+u(t)T Ru(t))dt. (2.20)

The cost function within this integral is quadratic in the state error x(t) and
in the controller output u(t), meaning that an LQR controller simultaneously
aims at minimizing both, the state error and the control input. The cost on
the state error is influenced by the weight matrix Q which will be called
the state cost matrix, and the cost on the output is influenced by the control

cost matrix R. A controller minimizing Equation 2.20 with a symmetric
positive semi-definite weight matrix Q and symmetric positive definite R
can be found by solving the resulting algebraic Riccati equation and is guar-
anteed to stabilize the underlying linear system. With the LQR formalism,
the design choices are thus shifted from the gain matrix K (which is found
algorithmically) to the weight matrices Q and R. The space of entries of
Q and R forms the design weight space of the controller. A more in-depth
introduction to LQ regulators is provided e. g. in [Boyd and Barratt 1991]
and [Anderson and Moore 2007].
Designing a controller in the design weight space rather than directly de-
signing the state-feedback gains can have several advantages for multi-DoF
systems with coupled dynamics, such as humanoid robots with multiple

5 There also exist finite horizon formulations that consider a terminal cost term which can be
omitted in the infinite horizon case.

24

2.4 Dynamic Movement Primitives

actuated joints. For one, the appropriate control action ui(t) for joint i typi-
cally depends on multiple (if not all) entries in the state vector. Those inter-
DoF couplings are generally non-intuitive and encoded in the off-diagonal
elements of K. In contrast, the entries of the design weight matrices can
be interpreted intuitively: Entries in Q penalize deviations from the desired
state and entries in R penalize the action of a specific actuator. Any objective
that can be represented as a linear combination of states can be encoded in
Q to turn the controller into a task-specific one6. Furthermore, designing the
cost matrices and deriving the feedback matrix K with the LQR-formalism
by solving the Ricatti equation is guaranteed to produce a stable controller,
a guarantee that can generally not be given for any directly designed K.

2.4 Dynamic Movement Primitives

Describing complex whole-body motions of humans, animals and robots
in a mathematically elegant and concise way is an active area of research
in the biomechanics, the neuroscience and the robotics communities. One
approach that has gained popularity in all of these fields is to regard com-
plex motions such as walking or reaching as being constructed out of tem-
porarily concatenated movement primitives7. The existence of movement
primitives in biological systems has been experimentally studied in frogs in
[Giszter et al. 1993] and mathematically formalized using virtual force fields
in [Mussa-Ivaldi 1997]. The concept of movement primitives has resonated
with roboticists, as it can greatly simplify the generation and adaptation of
complex movements.

6 Balance control objectives for whole-body LQR can be found in [Mason et al. 2014] and
[Mason et al. 2016] and will be detailed in Chapter 5.

7 Periodic movements (such as walking) can be encoded with a single periodic movement
primitive, and there even exist techniques to encode a periodic movement and its initial
transient in a single primitive [Ernesti et al. 2012]. However, only discrete DMPs without
periodic characteristics are utilized in this thesis.

25

2 Fundamentals

One of the formalizations of movement primitives that has gained a cer-
tain prevalence in robotic application is the concept of Dynamic Movement

Primitives (DMPs) which is based on methods for trajectory representa-
tion as the solution to a forced nonlinear differential equation presented in
[Ijspeert et al. 2002] and [Ijspeert et al. 2003]. The term DMP was intro-
duced in [Schaal 2006] and updated and exemplified in [Ijspeert et al. 2013].
The notation used in this chapter is taken from this latter publication. A
DMP is essentially a one-dimensional trajectory approximator. In the con-
text of motion generation, this dimension can, for example, be the angle of
one of the robot’s joints. DMPs have a number of desirable properties which
make them popular for motion representation:

• The trajectory is guaranteed to end up in the specified goal, indepen-
dent of the characteristics of the path it is taking.

• Changing the goal and the execution speed of the trajectory is possible
and computationally efficient.

• The qualitative appearance of the trajectory is preserved even if the
goal and the execution speed are changed.

• Coupling multiple DMPs to encode e. g. the coordinated motion of
multiple joints is straightforward.

Formal definition

The underlying idea of DMPs is to encode a trajectory y(t) as the solution to
a differential equation. This differential equation represents a forced linear
dynamical system with point attractor dynamics8:

τ ÿ = αz(βz(g− y)− ẏ)+ f (2.21)

8 The physical equivalent of this point attractor can be thought of as a damped spring-mass
system.

26

2.4 Dynamic Movement Primitives

This system is called the transformation system with positive constants αz

and βz, scaling factor τ , the eventual goal state g and the forcing term f

(note that time dependencies of y and f are omitted in the notation). In
the literature, the transformation system is often written in its first-order
notation with the newly introduced variable z:

τ ż = αz(βz(g− y)− z)+ f (2.22)

τ ẏ = z (2.23)

To obtain an time-independent system, the evolution of the transformation
system is controlled by the phase variable x, that in turn is the solution to
another linear differential equation:

τ ẋ =−αxx (2.24)

This system, monotonically converging to zero with positive constant αx, is
called the canonical system.
The key to encoding arbitrary trajectories in the evolution of the transfor-
mation system is to appropriately shape the forcing term f that, by directly
influencing the acceleration of the transformation system, indirectly influ-
ences its trajectory. In DMPs, the forcing term is represented by a superpo-
sition of weighted Gaussian kernel functions Ψ(x) with

Ψi(x) = exp
(
− 1

2σ2
i
(x− ci)

2
)
, (2.25)

where ci and σi are the center and the width of each kernel. The trajectory
is thus ultimately encoded in the number and parameters of these Gaussian
kernels.
To encode the forcing term in N Gaussian kernels Ψi and obtain the de-
sired temporal and spatial scaling properties listed above, the forcing term
is formalized as

27

2 Fundamentals

f (x) =
∑

N
i=1 Ψi(x)wi

∑
N
i=1 Ψi(x)

x(g− y0). (2.26)

Figure 2.5 shows an example input trajectory (blue) and three different
DMPs with weight vectors w optimized to reproduce it, obtained using the
H2T DMP library (see Section A of the appendix). The presented DMPs dif-
fer only in the number of kernel functions and, consequently, in the weights
of the kernels. As one would expect, a higher number of kernels enables the
DMP to reproduce the input trajectory more accurately. Especially the two
sharp bends in the center of the original trajectory are difficult to capture
for the Gaussian kernel-based DMPs, and only the DMP using 500 kernels
(dark purple) can capture the shape of this section at least qualitatively.

Figure 2.5: Dynamical Movement Primitive reproductions of a trajectory using different num-
bers of Gaussian kernel functions. It can be seen that a higher number of kernels
enables the DMP to reproduce the original trajectory more accurately. The data for
this graph was produced using the H2T DMP library.

The fact that DMPs are better suited to reproduce smooth rather than jerky
trajectories is arguably not a significant shortcoming in the context of encod-
ing and imitating human motions, as humans have been observed to strongly
prefer minimal jerk motions (at least in the unconstrained case) [Flash and
Hogan 1985].

28

2.4 Dynamic Movement Primitives

Shaping and adapting DMPs

The goal of choosing the parameters y0, g and wi is to let the transformation
system y(t) follow a demonstrated trajectory yd(t) as closely as possible.
The weight parameters wi are responsible for the qualitative shape of the
trajectory, whereas y0 (the start-point of the trajectory), g (the end-point of
the trajectory) and τ (the temporal scaling factor of the canonical system)
can flexibly adapt the trajectory to new high-level requirements.

Shaping Given an input trajectory as a triplet (yd(t), ẏd(t), ÿd(t)), first
y0, g and τ are chosen to match this trajectory. Finding the weight parame-
ters wi then amounts to an optimization problem with the aim of minimiz-
ing the difference between the demonstrated trajectory and that reproduced
by the DMP. While virtually any optimization technique could be used for
this problem, the authors in [Ijspeert et al. 2013] strongly advocate the use
of locally weighted regression for several reasons, including its „very fast

one-shot learning procedure“, meaning that learning the parameters can be
achieved in a non-iterative process. By learning wi for multiple demonstra-
tions and averaging over the obtained parameters, learning from multiple
demonstration trajectories yd,i can be achieved in an easy manner, a prop-
erty that is especially interesting for learning from human demonstrations.
A method to include information about the style of the motion into an at-
tractor landscape rather than a single transformation system was introduced
in [Matsubara et al. 2011].

Adapting Once the weight coefficients wi are learned, the DMP can re-
produce the qualitative shape of the demonstrated trajectory to the extent
that the chosen number of kernel function N allows. If this trajectory de-
scribes a motion, e. g. the path of an end-effector or a joint trajectory, it can
be regarded and used as a motion pattern or primitive. The power of the
DMP formulation is revealed when the learned motion primitive is to be

29

2 Fundamentals

applied to a similar task, characterized by the same overall motion charac-
teristic and shape but different execution speed, start- and end-point (such as
stepping to a slightly different location). One can simply change y0, g and
scale τ to match the new requirements. Solving the transformation system
by means of forward integration yields a new trajectory that fulfills the new
requirements.

DMPs for multiple DoFs

A single DMP encodes a 1-dimensional trajectory. To encode a multidi-
mensional trajectory, e. g. a 6D end-effector trajectory, six individual DMPs
are needed, one for each DoF. In this case it is critical to coordinate the
produced trajectories in order to retain the overall motion characteristics.
One way of achieving this is to have individual transformation systems and
nonlinear forcing terms for each DoF but only one shared canonical sys-
tem, meaning that all transformation systems evolve depending on the same
phase variable x. This coupling mechanism results in a dynamical system
for multiple DoFs.
When using DMPs to generate end-effector (i. e. task space) motions, it re-
mains necessary to calculate the corresponding joint angle trajectories using
an inverse kinematics (IK) solver. This process can cause significant com-
putational overhead, especially when the IK is subject to constraints, such as
the fixed position of the stance foot during a step. However, since a DMP’s
dimensionality only depends on the number of transformation systems and
forcing terms, they can equally well be used directly in the joint space of a
robot. In this case an IK solution is only necessary to convert a task-space
goal into goals for the joint-level DMPs, and no computation other than the
forward integration of the transformation systems is needed subsequently.

30

2.5 Learning Methods

2.5 Learning Methods

In the classical approach to computational problem solving, the human pro-
grammer has to specify the solution to a problem as a sequence of condi-
tional instructions, a control law, or any other algorithmic representation.
Broadly speaking, the premise of machine learning is to automate as much
as possible of the process of finding a computational solution to a problem
by taking the human designer out of the loop and replacing it by what might
synonymously be called learning, training or optimization. While the learn-
ing algorithm is still specified by the programmer, a single learning method
can potentially generalize to a large number of problems, albeit at the cost
of requiring large amounts or training data for each individual problem. A
popular way to implement learning of an arbitrary Input/Output relation is to
use a very generic class of models for this relation, such as Artificial Neural
Networks (ANN) or Hidden Markov Models (HMM), and optimize them to
solve the problem at hand based on available training data. To this end, the
training data needs to contain examples of Input/Output pairs of the relation-
ship to be learned. In the learning process, a set of free model parameters
are optimized, whereas hyperparameters of the model (e. g. the number of
layers in an ANN or the number of states in a HMM) are mostly pre-defined
by the human designer9. The algorithm for training the model is called the
learning method. As machine learning is concerned with finding optimal
parameters for a model, it is closely related to, and shares many methods
and terms with, the field of optimization.
While machine learning is a broad and currently extraordinarily active line
of research with numerous rapidly evolving branches, one can distinguish
machine learning methods based on the origin of the data that is used to
train the model:

9 Hyperparameters can also be optimized automatically. Several methods are presented in
[Bergstra et al. 2011].

31

2 Fundamentals

1. Suitable training data might be readily available for the learning
method in the form or labeled pairs of input and correct/desirable
output. Training a model to predict the output for new input data
on such labeled training data constitutes the problem of supervised

learning. A comprehensive introduction into this topic in general
and into deep learning in particular is provided in [Goodfellow et al.
2016].

2. In a different setting, where the goal is to learn the optimal behavior
of an agent (e. g. a robot), none or very limited training data might be
available. In this case, the agent needs to interact with the environ-
ment to generate more training data (experience), not obtaining labels
but receiving rewards depending on the success of its actions. This
setting constitutes the problem of reinforcement learning. A com-
prehensive introduction to reinforcement learning with a focus on the
special requirements imposed by the application to robotics is pro-
vided in [Kober et al. 2013].

Both areas have different fields of application and requirements, e. g. sample
efficiency in the case of reinforcement learning for robotics where experi-
ments on actual hardware are expensive. In contrast, supervised methods
widely used in the computer vision domain typically have access to vast
amounts of labeled training data.

3. The third major field of machine learning, unsupervised learning, is
concerned with extracting information from raw data without neither
labels nor feedback through interaction. Typical problems are clus-
tering of data to identify some underlying structure or, anomaly de-
tection in a stream of data. In this thesis, methods of unsupervised
learning will not be used and the field is mentioned here only for the
sake of completeness. An overview over common methods in unsu-
pervised learning is provided in [Hastie et al. 2009].

32

2.5 Learning Methods

Figure 2.6: Schematic depiction of a fully connected neural network used for supervised learn-
ing. The dark blue neurons form the input layer to which the data is fed. The light
blue neurons form the hidden layer, and the orange neurons form the output layer
from which the result is computed. The green circles are bias units. All edges trans-
port a scalar value x and have a weight w (labels omitted for legibility). Hidden and
output neurons compute a nonlinear function f of the weighted sum of their input
x, i. e. of the scalar product of x and w represented as vectors.

These three sub-fields provide a common yet very rough structuring of the
vast field of machine learning research, and many branches at lower and
higher levels of abstraction as well as intermediate approaches (e. g. semi-
supervised learning) exist. The following subsections give a more detailed
account of selected aspects of supervised learning, which plays a key role
for stability estimation in Chapter 4, and of reinforcement learning, which
will be used to find suitable step parameters in Chapter 6.

2.5.1 Supervised Learning

Supervised learning is concerned with automatically finding an initially un-
known functional mapping from an input to an output. For example, the
input might be an image of a hand-written digit and the output might be the
number this digit is representing. Finding this mapping is achieved by learn-
ing from labeled training examples that constitute tuples of input and outputs

33

2 Fundamentals

(both of which might be multidimensional), e. g. an image of the digit 5 with
the semantic label five. The outputs might belong to discrete classes, as in
the example of digit recognition. In this case, the supervised learning aims
to solve a classification problem. The output can also be continuous, e. g.
when predicting a temperature that cannot be directly measured from other
sensory information, in which case the specific problem is a regression.
Currently, a large part of supervised learning approaches rely on ANNs as
very generic models for the function to be learned. A feed-forward neural
network consists of layers of computational neurons: An input layer, an
output layer and any number of hidden layers in between (see Figure 2.6).
The number of hidden layers and the number of neurons in the hidden layers
are design choices.
The data processing within a feed-forward neural network is implemented as
follows: The input layers feed the input data to all neurons of the subsequent
hidden layer. Each neuron performs a nonlinear function on the weighted
sum of all its inputs and a bias, and then feeds its output to the neurons of
the next layer. The type of nonlinear function used in the neurons is a high-
level design choice, with the hyperbolic tangent or the rectified linear unit
(ReLU, [Nair and Hinton 2010]) being popular choices. The output of the
last layer is converted into a label (for classification) or a continuous number
(for regression).
Training these networks amounts to tuning the weights in the weighted sum-
mation that takes place within the neurons. For training on labeled training
data, input of a training example is fed to the input layer of the network and
the output is computed. From the computed output and the ground-truth la-
bel of the training sample, an error, or loss is derived. The gradient of this
loss with respect to all weights is then computed in a backward-pass through
the network with backpropagation. Using stochastic gradient descent (or an-
other optimization technique), all weights are tuned in a way that decreases
the training loss.

34

2.5 Learning Methods

Supervised learning with deep neural networks (DNN), i. e. neural networks
that have many hidden layers, is called Deep Learning. Deep learning has
recently proven to be highly successful for many applications, provided that
a large amount of training data is available. A discussion of achievements
and limitations of deep learning in robotics with a focus on visual data pro-
cessing is presented in [Sünderhauf et al. 2018]. In the context of push
recovery, supervised learning has been used for stability estimation and fall
prediction (see Section 3.1.1), to which this thesis also contributes. How-
ever, for motion generation and control, (deep) reinforcement learning cur-
rently seems to be the more promising approach.

2.5.2 Reinforcement Learning

In the setting of reinforcement learning (RL), an agent gets to interact with
an environment through its actions and receives rewards for the results of
these interactions. The agent and the environment are both characterized
by their states which are partially or entirely observable by the agent. The
agent essentially learns by trial-and-error how to achieve a given goal with
the set of actions it can perform (see Figure 2.7). More formally, the goal
of reinforcement learning is for the agent to find a mapping of its state to an
action that maximizes the sum of all rewards it will gain in the future. This
mapping is called the policy and is commonly denoted as

a = π(s) (2.27)

with a being the action, π the policy and s the observable agent state10. A
comprehensive introduction to reinforcement learning is given in [Sutton
and Barto 1998]. Reinforcement learning methods that directly find an ex-
plicit policy π are called policy-based reinforcement learning. In contrast,

10 This represents a deterministic policy. Probabilistic policies that model a probability distri-
bution of a set of actions over the state space are another common approach.

35

2 Fundamentals

value-based reinforcement learning methods model a state-value function
for a given policy over the agent’s state space that represents the expected
future reward for being in a particular state s and operating under a policy
π:

Vπ(s) = E(R|s) (2.28)

where E denotes the expectation of all future rewards R. Similarly, an
action-value function can be defined for a given policy over the agent’s state-
action space, representing the expected future reward for taking a particular
action a in state s, referred to as the Q-function:

Qπ(s,a) = E(R|s,a). (2.29)

Value function based methods offer deeper theoretical insights and even
optimality guarantees if the setting the agent operates in is modeled as a
Markov process, but have proven to be challenging in the application to
problems with the high number of dimensions typically found in robotics
[Kober et al. 2013]. Both the policy and the value function can be modeled
using deep neural networks (see Section 2.5.1). The resulting methods be-
long to the field of deep reinforcement learning, which has achieved some
remarkable successes such as surpassing the performance of human players
in computer games [Mnih et al. 2015], beating world-class human players
at complex board games [Silver et al. 2016], or realizing controlled in-hand
object manipulation with a robotic hand [Andrychowicz et al. 2018].
To improve a policy π(s), an agent has to interact with the environment. The
environment will provide the agent with a scalar reward signal for its action,
and the agent can then update the policy according to this feedback. As the
agent’s goal is to maximize future rewards, it is driven to improve its policy
by trying out new actions on previously seen states. This aspect of reinforce-
ment learning is called exploration. However, out of the same motivation,
the agent is driven to apply its current policy when it knows that it will lead

36

2.5 Learning Methods

to some reward, no matter if that reward is optimal or not. This part, ap-
plying a known policy that will lead to some (likely sub-optimal) reward,
is called exploitation. Balancing exploration and exploitation is an intrin-
sic dilemma in reinforcement learning and has been extensively researched,
with ε-greedy and Softmax being two of the more popular algorithms to ad-
dress it (a brief introduction to both is given in [Tokic and Palm 2011]).
Probabilistic policies, as opposed to deterministic policies outlined in Equa-
tion 2.27, can be used to provide an intrinsic motivation for the agent to
explore new strategies.

Figure 2.7: Schematic depiction of the reinforcement learning setting: The agent applies a pol-
icy to the current state (consisting of its own and the state of the environment) to
compute an action a which it uses to influence the environment. The environment
updates its state sE accordingly and provides some reward feedback r to the agent
that it can use to update its policy. Note that time-step indices were left out for
legibility.

Many problems in robot control can be formulated as reinforcement learning
problems. However, due to the difficulties of gathering sufficient training
data on real robots, especially in the domain of balance control and push
recovery where a failed trial can lead to substantial damage, the majority of
these studies is confined to simulation.

37

2 Fundamentals

2.6 Dynamics Simulation

Both the evaluation of control methods as well as iterative learning methods
to find suitable controllers, such as reinforcement learning, rely on robot
experiments. Experiments on actual robot hardware are expensive due to
availability constraints, necessary robot maintenance, the risk of damage
and the fact that they can only take place in real-time, which can make them
very time consuming. It is therefore often favorable to perform experiments
in a simulation environment that does not suffer from these disadvantages,
and that can be sped-up or even parallelized to gather much more data than
experimenting in the real world would allow.
For the results acquired in simulation to be useful it is necessary that the
simulation environment accurately represents the real-world physics and the
robot dynamics. This is achieved by the use of an accurate robot model and a
dedicated physics engine. The engine solves the numerical equations of mo-
tion, respecting constraints, external forces and contact effects. In essence,
simulation engines solve the dynamic equations of motion of a multibody
dynamic system by numerical forward integration. These equations are gen-
erally not altered on making and breaking contacts to account for the hybrid
nature of the system. Instead, contacts are individually modeled as forces
arising from local spring-damper systems, where the spring provides the
repulsive contact force and the damper provides friction and ensures numer-
ical stability.
Most physics engines currently used for robotics were initially designed for
physically plausible motion generation in 3D-games or virtual reality ap-
plications. Their design focus therefore lies more on plausibility, compu-
tational efficiency and numerical stability rather than on accuracy or repro-
ducibility. However, by tuning the engines’ parameters, they can be adjusted
to deliver highly accurate simulation results that are suitable for robotics re-
search. The most important parameter that determines the trade-off between
accuracy and computation speed is the size of the integration timestep. The

38

2.6 Dynamics Simulation

smaller this timestep the more computations are performed per time interval
(i. e. the slower the simulation runs), but the higher the physical accuracy
will be (see Figure 2.8).

Figure 2.8: Conceptual depiction of the influence of the integration timestep on the trade-off
between physical accuracy and simulation speed in physics simulations (taken from
[Erez et al. 2015], © 2015 IEEE).

A number of recent works in the literature have evaluated the suitability of
commonly used physics engines for robotics research in terms of accuracy,
repeatability and predictability. In [Erez et al. 2015], the authors compare
five physics engines, including Bullet [bulletphysics 2018] which is the en-
gine used in this thesis and MuJoCo [Todorov 2018], the engine developed
by the authors themselves11 against a number of performance criteria. They
conclude that all tested engines are capable of delivering good results over a
wide variety of applications, as long as their parameters are tuned appropri-
ately, and sufficiently small integration timesteps are used. In [Chung and
Pollard 2016], the authors examine four simulation engines, also including

11 MuJoCo has recently gained large popularity as a simulator for research on robotic rein-
forcement learning.

39

2 Fundamentals

Bullet and MuJoCo, on benchmark tests designed to quantify predictabil-
ity. They define predictability as the ability to produce plausible changes of
the simulation results in response to small changes in the initial conditions
(e. g. rolling farther when pushed a bit harder). Their work comes to a sim-
ilar conclusion as Erez et al., assessing all four tested engines as capable of
producing plausible results as long as the parameters are tuned in favor of
physical accuracy. Both works include the Bullet physics engine, which is
consistently assessed as a viable option for physically accurate robot simu-
lation. The Bullet engine is integrated into the ArmarX software framework
(see Section C of the appendix) and will be used for extensive simulation-
based learning and evaluation in this thesis.
The second tool for simulated experiments that will be used in this thesis is
the proprietary Matlab/Simulink dynamics simulation environment SimMe-

chanics [MathWorks 2018]. SimMechanics was specifically designed for
physically accurate simulations of multibody systems and has the ability to
chose both the most suitable solver and integration timestep automatically
to ensure high simulation accuracy.

40

3 Related Work

This thesis is a contribution to the wide research area of humanoid robot
balancing. The following chapter aims at giving a structured overview over
this area and at showing where the subsequently presented work expands it.
The structure of this overview is aligned with the three main contribution
of this thesis, i. e. stability classification and disturbance estimation, pos-

tural whole-body balancing, and recovery stepping. In Section 3.1, works
from the literature on humanoid robotics and human movement sciences are
presented that address the problem of deciding whether a robot or human
is currently stable, unstable, or falling. These methods are based on either
external or internal sensors, and use specifically engineered features or ma-
chine learning to assess the current state of stability.
In close relation to stability estimation, Section 3.2 gives an overview of
methods for disturbance estimation for humanoid robots, i. e. ways for the
robot to measure or infer where, in which direction, and how strongly it
was pushed. This body of work is broadly categorized into the two classes
of methods that either directly rely on contact force sensors or on internal
force and torque sensing.
Balancing as reaction to a push can be achieved either by balancing in place
or by taking a step. In Section 3.3, methods for stabilizing a robot with-
out initiating a step, either around a predefined pose or along a predefined
motion, are presented. These methods are divided into those that are based
on computationally expensive online optimization on the one hand, and on
efficient yet less versatile linear controllers on the other.

41

3 Related Work

Methods for stepping for push recovery are summarized in Section 3.4.
These methods can be classified into those that adjust preplanned steps of a
walking pattern by altering the step location or the step timing (be it by engi-
neered controllers or through learning methods), and into those that consider
push recovery the sole purpose of the step and freely decide where and how
to step.
A concluding summary of this overview is presented in Section 3.5.

3.1 Stability Classification

Estimating the current stability of a bipedal system is a crucial component of
effective balance and push recovery mechanisms. Stability estimation can
be implemented as a process that outputs a continuous feedback signal to a
balance controller, such as the Zero Moment Point (ZMP). It can also be im-
plemented as a classifier that maps the current observable state of the system
to a discrete signal, for example to indicate that a change of control policy
is needed [Yi et al. 2011a], that a fall is inevitable and damage-minimizing
measures have to be taken [Kalyanakrishnan and Goswami 2010] (see Fig-
ure 3.1), or that a fall has already occurred [Zigel et al. 2009]. In the case
that a fall is inevitable, the research question becomes how to minimize
damage caused by the impact. A study on leveraging motion capture data
from human trials for motion generation aimed at reducing impact forces
has recently been presented in [Ding et al. 2018].
Since this work is of high relevance both in the context of humanoid robotics
as well as in the context of human movement science with applications to
wearable robots and elderly care, a broad body of work has been established
in both communities, and similar concepts have emerged under different
names.

42

3.1 Stability Classification

Figure 3.1: Stability estimation and classification gives the robot the ability to distinguish be-
tween different states of (in-) stability, for example to let it know when to brace
for an inevitable fall. Reproduced from [Kalyanakrishnan and Goswami 2010],
© 2010 AAAI (www.aaai.org).

3.1.1 Stability Classification for Humans

In the context of biomechanics, human stability estimation is of special im-
portance to improve fall prevention by assistive devices such as (partial)
exo-skeletons, and to accelerate post-fall treatment of elderly or otherwise
weakened patients. This work can be split into methods based on mea-
surements by external sensors such as cameras, acoustic microphones or
floor vibration sensors, and methods based on body-worn sensors such as
accelerometers, gyroscopes or inertial measurement units (IMUs).
Methods based on external sensors such as vibration sensors [Zigel et al.
2009] or cameras [Stone and Skubic 2015] are typically confined to con-
trolled and appropriately sensorized indoor environments and thus do not
translate well to real-world robotic applications. Methods based on the data
of body-worn sensors on the other hand are very similar in their require-
ments to robotic applications, especially when they make use of IMUs that
are easy to integrate and readily found on many humanoid robots. These
works generally focus on detecting an inevitable fall as early as possible
and can be subdivided by the type and number of sensors they consider,
and by the complexity of the action classifier. For the use with accelerom-
eters, it was shown that even conceptually simple and intuitive features like

43

3 Related Work

threshold violations of the absolute acceleration can be used to reliably in-
fer the occurrence of a fall [Doughty et al. 2000; Karantonis et al. 2006].
However, triggering the fall-signal based on acceleration peaks that are high
enough to prevent excessive false positives only happens when either a very
significant disturbance was applied or a fall has already occurred, rendering
this approach impractical for the purpose of fall prevention.
Features in the sensor signals that are detectable with significant lead-time
prior to a fall are much more subtle and can more successfully be captured
by data-driven machine learning models such as Support Vector Machines
(SVM) [Zhang et al. 2006], Decision Trees [Ojetola et al. 2011], k-Nearest
Neighbor (kNN) [Erdogan et al. 2010] or Hidden Markov Models (HMM)
[Tong et al. 2013].

3.1.2 Stability Classification for Humanoid Robots

In robotic applications there is typically more internal sensor data available
than in the previously described context of human motion monitoring. In
addition, the motion plan of the robot can be known to a stability estimator
and thus be used to differentiate between planned motions and disturbances.
Based on this insight, the authors in [Kalyanakrishnan and Goswami 2010]
train a rule-based machine learning system to identify whether a dynamic
robot state belongs to either the classes Balanced, Falling or Fallen. They
train and validate their approach on simulated data form an ’Asimo-like’
robot and are able to detect upcoming falls with at least 700 ms of lead
time. A similar classification had previously been proposed in [Wieber
2008], where the author defines a ’Viability Kernel’ formed by all states
from which a stable state can be reached by the robot’s control system. If
the current robot state is outside this kernel, a fall is inevitable.
In applications where frequent falls are to be expected, such as in small hu-
manoid soccer robots, stability estimation, fall prediction and damage pre-

vention when falling are especially important. [Moya et al. 2015] address

44

3.2 Disturbance Estimation

this problem by fusing torso attitude sensing and joint-level position sens-
ing into a combined stability signal on which they perform thresholding to
quickly detect states that will lead to a fall, enabling the robot to trigger a
bracing routine. A similar approach that senses the discrepancy between
attitude sensors attached to a walking robot and attitude predictions of a
feed-forward model had previously been introduced by [Renner and Behnke
2006]. In their work, the authors use the magnitude of this discrepancy to
trigger one of two fall avoidance strategies, either slowing down the gait or
completely stopping the robot.

3.2 Disturbance Estimation

For effective push recovery strategies on humanoid robots, the robot often-
times needs to be aware of the disturbance itself, i. e. the external forces it
is subjected to. Estimating these disturbances is therefore an important ca-
pability in the context of active balance control, and has consequently been
addressed by the scientific community working on humanoid robots1. The
estimation of the external force includes its magnitude, its spatial direction
and the point on the robot’s body where it is applied.

3.2.1 Using Contact Force Sensors

The most straight-forward way to identify contact forces and force appli-
cation points along the robot structure is by means of force sensors, sensor
arrays or even tactile skin on the outside of the robot. Advanced examples
of such sensor systems include the tactile skin developed for the iCub hu-
manoid robot [Cannata et al. 2008] and the HEX-O-SKIN [Mittendorfer and
Cheng 2011]. While these distributed sensors can directly measure the mag-
nitude and application point of the contact force, they only measure the force

1 It should be noted that passivity based balancing approaches such as the one reported in
[Hyon et al. 2007] do not require an estimate of the external contact force.

45

3 Related Work

component normal to the robot’s body and therefore cannot be used to de-
termine the actual direction of the contact force. For higher-level cognition,
such as the awareness of the robot’s immediate surroundings (the periper-

sonal space), distributed contact sensors can be conceptually coupled with
information from cameras [Roncone et al. 2015].
Sensors that can resolve the 3D force direction include the camera-based
approaches proposed in [Kolker et al. 2016], the optical tactile sensors pro-
posed in [Yamaguchi and Atkeson 2016] or the optical sensor array pre-
sented in [De Maria et al. 2012]. Due to the use of cameras and optical
components, sensors of this type are generally too large to be used along
the outside of a humanoid robot, and their applications are restricted to
highly specific use-cases such as tactile sensing in custom, non-humanoid
end-effectors. 3D force resolution can also be achieved with magnetometer-
based sensors such as the ones proposed in [Tomo et al. 2016], where mag-
nets embedded into an elastic material (e. g. silicone) allow the magnetome-
ters to resolve the material’s spatial, force-induced deformation. All these
3D measuring methods have the drawback of complicated calibration pro-
cesses due to the non-linear deformation behavior of the elastic materials in-
volved. Generally, using arrays of tactile sensors on the outside of a robot for
contact force estimation has the disadvantage of requiring additional hard-
ware, necessitating additional wiring and increasing overall cost and weight
of the robot.

3.2.2 Using Internal Proprioceptive Sensors

To mitigate the problems that come with additional sensing, it has been
proposed to estimate external contacts between the robot and its environ-
ment with the use of internal proprioceptive sensing alone, most commonly
with joint torque sensors [Haddadin et al. 2017; Manuelli and Tedrake
2016]. Using the internal joint torque sensors alleviates the need for
contact-specific sensing. However, using internal torque sensors raises a

46

3.2 Disturbance Estimation

number of additional methodological challenges: Firstly, even under ideal
conditions, the exact point of force application cannot be reconstructed,
only the line in space it acts along (the line of force action). It is therefore
necessary to resort to methods based on a geometric robot model to
project the line of force action onto the robot’s surface and handle the
arising ambiguities, which in itself poses several interesting questions.
Alternatively, exteroceptive sensing can be used to identify the force
application point, which has been implemented for a single robot arm using
an externally mounted RGB-D camera in [Magrini et al. 2014]. Secondly,
the force application point needs to lie sufficiently far away from the
robot’s ground contact point, i. e. with enough (six) torque-sensing joints
between the application point and the ground to allow reconstruction of
the force action line. In other cases, or in singular configurations even if
the aforementioned criterion is fulfilled, reconstruction of the force action
line becomes impossible. Adding 6 DoF force/torque sensors (F/T sensors)
along the kinematic structure of the robot can under certain conditions
alleviate these problems, as has been recently shown in [Vorndamme et al.
2017]. Internal F/T sensors can also be used to estimate the internal joint
torques in the absence of joint torque sensors [Fumagalli et al. 2010] and
for computing external contact wrenches if the force application point is
known [Ivaldi et al. 2011].
Thirdly, the internal joint torque and F/T sensors do not only measure the
effects of an external contact from which the contact force can be recon-
structed, but also the effects caused by gravity and, in the case of non-static
situations, the dynamic forces acting on the robot. In order to accurately
compute the external forces, the internal measurements have to be compen-
sated for those effects. Several ways of achieving this compensation have
been proposed, ranging from early works that directly observe the motor
currents to identify unexpected contacts for assuring safe human-robot coex-
istence [Suita et al. 1995] to residual-based methods leveraging the concept
of generalized momentum [De Luca and Mattone 2003, 2005]. An extension

47

3 Related Work

to this approach for floating base systems (such as humanoid robots) was re-
cently presented in [Flacco et al. 2016].
Lastly, contact estimation can rely on measuring the contact forces and mo-
ments between the robot and its surroundings alone, as has been shown e. g.
in simulation for a simple fixed-base manipulator in [Ott and Nakamura
2009]. The work presented in this thesis extends this idea to the double
contact situation for the application in humanoid robots.

3.3 Postural Balancing in Place

A popular classification of balancing actions is the subdivision into three
strategies, namely the Ankle Strategy (i. e. using the ankle joints to adjust
the CoP location), the Hip Strategy (i. e. bending the hip to generate angu-
lar momentum) and the Stepping Strategy when the ankle or hip strategy
are not sufficient. Figure 3.2 depicts a small robot exemplarily executing
the ankle and hip strategies. These three terms were initially introduced in
the biomechanics literature in [Horak and Nashner 1986] and adopted in
the robotics community, e. g. in [Stephens 2007; Hyon et al. 2009; Yi et al.
2011b]. However, researchers both from the biomechanics community as
well as from the robotics community have noted that the ankle and hip strat-
egy of balancing are fundamentally combined both in the human postural
control and in modern robot control algorithms [Hyon et al. 2009; Hettich
et al. 2014]. The method developed in this thesis also includes the torso
and shoulder joints in the balancing, without explicitly treating the different
joints individually. All balancing approaches that do not involve taking a
step, regardless of the exact joints they are using, will therefore be summa-
rized under the term Postural Balancing in Place.
Balancing in place requires that the foot contact state does not change dur-
ing the balancing action, i. e. none of the feet breaks its ground contact.
This requires the balance control to be realized as compensatory motion of
the entire body, dynamically changing the body posture. Balancing in place

48

3.3 Postural Balancing in Place

is therefore also referred to as Whole-Body Balancing [Henze et al. 2016]
or Postural Balancing [Hyon et al. 2009]. As the method developed in this
thesis involves all major body joints, i. e. the legs, the torso and the shoul-
der in the postural balancing process, it will be referred to as Whole-Body

Postural Balancing.

(a) Ankle Strategy (b) Hip Strategy

Figure 3.2: A DARwin-OP humanoid robot reacting to a push from the front by (a) actuating
its ankle joints (ankle strategy) and (b) bending its hip (hip strategy). Adapted from
[Hyon et al. 2009], © 2009 IEEE.

3.3.1 Online Optimization Methods

A powerful way of addressing the postural balancing problem that has re-
ceived significant attention in humanoid robotics research over the past years
is the formalization of balancing as constrained optimization problem. The
different goals of postural balancing, e. g. maintaining a certain body pose
and staying within a ZMP-based stability margins, are encoded in the cost
function. Constraints arise from physical limitations of the robot (e. g. on
the joint angles, torques and velocities and from self-collision avoidance) as
well as from the ground contact, where the interaction forces need to remain
within the friction cone to avoid slipping of the feet.
Optimization based balance controllers have the ability to generalize well
over a wide range of the state space of the robot and are thus suitable to
stabilize complex motions. They are therefore often coupled with capable
(oftentimes also optimization based) off-line motion planners that generate

49

3 Related Work

a whole-body trajectory, subject to the same above mentioned constraints
that is then executed and stabilized online by the motion controller (e. g.
[Feng et al. 2013; Kuindersma et al. 2016]). As such, the applicability of
optimization-based motion controllers reaches beyond balancing in place,
and they are more generally applied to stabilizing pre-computed trajectories.
However, since these methods do not have the ability to initiate and execute
a step and the problem of balancing in place is essentially a sup-problem of
trajectory stabilization, these methods will be covered in this section.
Both motion planners and motion controllers that rely on model-based op-
timization are necessarily based on kinematic and dynamic models of the
robot. All of these models lie on a spectrum of simplified abstractions that
spans from simple and highly abstract to complex and accurate. On this
spectrum, the LIPM (see Figure 3.7) model with its point mass at the hip
and massless leg represents the far end on the simplification side, whereas a
detailed multi-body robot model with equations of motions that contain all
DoFs of the robot represents the other, highly complex end.

Motion Generation Taking into account both the full kinematics and
the full dynamics model of the humanoid robot for motion generation can
naturally produce highly accurate results, but can come at the cost of very
long computation times, especially when applied to highly dynamic mo-
tions. [Mombaur 2009] and [Posa et al. 2014] are examples of this ap-
proach, and computation times on the order of an hour for finding an op-
timal periodic running motion with a Sequential Quadratic Program (SQP)
were reported in the latter. The majority of recent robotic applications of
optimization based motion generation are therefore located somewhere be-
tween the two extremes of model abstraction, aiming at striking a balance
between the ability to leverage as much of the robot’s physical capabilities
as possible on the one hand and computational tractability on the other. In
[Kuindersma et al. 2016], the authors describe a whole-body motion gener-
ator that takes into account the detailed kinematics of the robot to be able

50

3.3 Postural Balancing in Place

to fulfill the challenging tasks of the DARPA Robotics Challenge [Pratt and
Manzo 2013] but reduces the dynamics to the mere total linear and angular
momenta of the robot, controlled by the interaction forces between the robot
and the environment, similar to the approach in [Feng et al. 2013] (see Fig-
ure 3.3). This approach is shown to be sufficiently accurate for locomotion
tasks, but the simplification of the dynamics to the total momenta makes it
impossible for the planner to reason about the internal torques applied at the
joint level. The authors of [Kuindersma et al. 2016] argue that this can either
be mitigated by using a very strong robot (like the Boston Dynamics Atlas),
or by feeding the solution as a seed into a subsequent trajectory optimization
process that in turn reasons over the full dynamics and considers limitations
on the joint level.

Figure 3.3: A simulated Atlas robot walking over uneven terrain under torque-based QP con-
trol, following a previously generated trajectory (taken from [Feng et al. 2013],
© 2013 IEEE).

A motion generation technique that solves the inverse dynamics under mul-
tiple unilateral contact constraints inside a hierarchical optimization was
introduced in [Saab et al. 2013], and it has been proposed that the same

51

3 Related Work

method could be used as real-time controller if the computation time could
somehow be decreased and sensor feedback could be included.

Motion Control Optimization based motion control formulated as
Quadratic Program (QP) is currently one of the most prominent whole-body
control techniques for humanoid robots. The goal of a QP is to minimize a
quadratic cost defined over the system state and the outputs of the QP under
a set of linear equality and inequality constraints. The objectives encoded
either in the cost or the constraints of the optimization can be viewed as
tasks that the QP is designed to accomplish, and deciding which task to
include in the cost and which to include in the constraints is a choice left to
the designer. An interpretation often found in the related robotic literature
that can help to address this design choice is the idea of a hierarchy: The
objectives of the cost function are subject to optimization, the QP will ’try
its best’ to meet them. In contrast, the constraints must be met or otherwise
the QP inevitably fails. In this two-level hierarchy, the tasks encoded as
constraints therefore have higher priority than the ones encoded in the cost
function. It is further common to include a set of slack variables η in the
equality constraints to somewhat ’soften’ them, increasing the solution
space for the QP and the chances to find a viable solution. In this case,
the slack variables η are included in the cost function, ensuring that they
remain small and the equality constraints are not violated drastically. This
addition of slack variables in the equality constraints leads to a hierarchical
order among them, with the inequality constraints (without slack variables)
taking priority over the equality constraints (with slack variables) [Kanoun
et al. 2009], ultimately leading to a three-level hierarchical optimization
with the levels in decreasing priority:

1. Inequality Constraints (no slack variables)

2. Equality Constraints (with slack variables)

3. Components of the Cost Function (optimization objectives)

52

3.3 Postural Balancing in Place

Example QP To illustrate the complexity of a dynamic balancing QP in
the joint acceleration domain with torque constraints (in contrast to the lin-
ear control approach in the torque domain pursued in Chapter 5), the respec-
tive work presented in [Kuindersma et al. 2014] will be addressed here in
more detail. The optimization problem in [Kuindersma et al. 2014], required
to be solved at high frequencies at runtime, is posed as follows:

minimize
q̈,β ,λ ,η

V (x̄, ū, t)+wq̈||q̈des− q̈||2 + ε ∑
i j

β
2
i j + ||η ||2 (3.1)

subject to

H f q̈+C f = Φ
T
f λ (3.2)

Jq̈+ J̇q̇ =−αJq̇+η (3.3)

B−1
a (Haq̈+Ca−Φ

T
a λ) ∈ [τmin,τmax] (3.4)

∀ j={1...Nc}λ j =
Nd

∑
i=1

βi jvi j (3.5)

∀i jβi j ≥ 0 (3.6)

η ∈ [ηmin,ηmax]. (3.7)

V is a cost function representing a ZMP feedback controller based on the
CoM dynamics and therefore encodes the dynamic balancing objective. The
second term in the objective, wq̈||q̈des− q̈||2, encodes the trajectory tracking
of the controller with q̈ being the end-effector accelerations. The desired
acceleration q̈des can be derived from a reference trajectory, e. g. by a PD
control law. βi j are the coefficients that form the ground contact forces as
linear combinations of the edges of a polyhedral friction cone approxima-
tion (see Equation 3.5). The third term (with normalizing coefficient ε)
therefore aims at minimizing the contact forces. The last term’s objective is
to minimize the slack variables in 3.3.

53

3 Related Work

Constraints 3.2 and 3.4 ensure consistency with the actuated and underactu-
ated parts of the robot dynamics and enforce the adherence to joint torque
limits. Constraints 3.3, 3.5 and 3.6 are dedicated to the foot contacts and
enforce that all contact forces comply to friction constraints (3.5), that the
robot does not aim to pull on the ground and thus respects the unilateral
nature of the contact (3.6), and that any slipping motion is damped (3.3).
Lastly, the bounds of the slack variables to limit the possible violation of
3.3 are enforced in 3.7.
Efficient solvers for this class of problems are a research topic in their own
right.

Applications In one of the early works in which QP optimization was
applied to postural balancing, the authors set up the QP in the joint accel-
eration space [Kudoh et al. 2002]. The objective of the optimization is to
minimize the joint acceleration vector θ̈ and to maximize the horizontal
component of the CoM acceleration s̈y that drives the CoM back to the cen-
ter of the support polygon. The cost to be minimized thus takes on the form

θ̈
TCθ θ̈ − s̈y, (3.8)

where Cθ is a weighting term. Note that s̈y is a function of the joint an-
gles, velocities and accelerations. The constraints considered in this work
are the physical limitations of the robot on the joint level (upper and lower
boundaries on θ , θ̇ , θ̈), CoM acceleration boundaries, a symmetry con-
straint on the leg motions, and, to ensure dynamic stability, a constraint on
the ZMP location that forces it to remain within the boundaries of the sup-
port polygon. Since the optimization does operate on joint acceleration, nei-
ther limitations on the joint torques nor on the ground interaction forces are
considered. However, a simulation based evaluation shows successful push
recovery behavior and a qualitative similarity to human recovery motions.

54

3.3 Postural Balancing in Place

In [Feng et al. 2013] the authors describe their combined motion planning
and trajectory control framework that was used for their entry in the DARPA
Virtual Robotics Challenge [Agüero et al. 2015]. After planning the motion
with a Differential Dynamic Programming method (DDP, [Jacobson and
Mayne 1970]) that reasons about the point mass abstraction of the robot
dynamics, they use a QP-based motion controller to generate the torque
commands for the robot joints. In contrast to the earlier work by Kudoh
et al. they formulate the optimization in the torque-domain, enabling direct
application to the torque controlled Atlas robot. The equations of motion act
as equality constraints on the optimization and ensure dynamic feasibility of
the QP solution. Torque limits in the joints and friction restrictions on the
feet act as inequality constraints to prevent torque saturation of the joints
and slipping of the robot’s feet. In this formulation of the QP, the horizontal
friction restrictions can be efficiently formulated as

|Fx,y| ≤ µFz (3.9)

without the polyhedral approximation to the friction cone used in e. g.
[Koolen et al. 2016; Kuindersma et al. 2014] (see Equation 3.5).
QP-based approaches operating on simplified dynamics models were also
successfully applied to humanoid robots competing in the DARPA Robotics
Challenge (e. g. [Johnson et al. 2015]).

3.3.2 Linear Balancing Control

Due to the generally non-linear hybrid dynamics discussed in Chapter 2,
whole-body balance control of humanoid robots does not naturally lend it-
self to the application of linear control theory. However, since linear con-
trol methods are well studied, well understood and typically have much
lower computational demands than non-linear and/or optimization based
control such as QP-based methods, significant efforts have been made in
the robotics literature to apply linear control to the non-linear problem of

55

3 Related Work

humanoid balancing. The work presented in Chapter 5 of this thesis is based
on this premise and expands this line of work.

Linear CoM and ZMP tracking

In [Kajita et al. 2010], the authors proposed and demonstrated a linear
tracking controller for the CoM and ZMP position of the LIPM (see
Section 2.2.3) on the position-controlled HRP4-C humanoid robot that
stabilizes a walking trajectory and shows robustness against uneven ground,
using the LIPM as a linear surrogate for the non-linear robot dynamics. To
achieve balance control, they split the control problem into three sub-parts:
A ’Body posture controller’ that maintains the upright posture of the
robot and ensures that only minimal changes of the CoM-height occur. A
’Floor reaction force controller’ to control the location of the center of
pressure within the support polygon (a similar problem that was addresses
for torque-controlled robots in [Hyon 2009]) which provides the control
action for the higher level ’Linear Inverted Pendulum tracking’ controller.
Splitting the complex control problem of walking stabilization into smaller
subproblems is one way of making it amenable to comparatively simple
linear controllers2. This tracking controller is formulated as a linear state
feedback controller with a static gain matrix K, and the state being the
position x and velocity ẋ of the CoM as well as the position of the center
of pressure p. The output u of the controller is the desired position of the
center of pressure denoted pd∗:

u = pd∗ = K(xd− x)+ pd . (3.10)

The pre-computed motion provides reference values for all three state vari-
ables, and the feedback gain matrix K together with a feedforward pass of

2 This divide and conquer approach is in noteworthy contrast to the methods described in
paragraph 3.3.1 that aim at capturing the entire problem in one comprehensive optimization,
at the cost of higher complexity and typically much higher computational cost per timestep.

56

3.3 Postural Balancing in Place

pd turns them into reference values for the floor reaction force controller
(see Figure 3.4).

Figure 3.4: Block diagram of a linear control scheme for walking stabilization. x denotes the
horizontal position of the CoM and p that of the center of pressure. The dashed
box represents the robot together with the Body posture and Floor reaction force
controllers (taken from [Kajita et al. 2010], © 2010 IEEE).

LQR Balancing

LQR controllers are a control concept for linear time-invariant (LTI) sys-
tems that can be represented in linear state-space form according to Equa-
tion 2.17 and Equation 2.18, as introduced in Section 2.3. The dynamics of a
humanoid robot do not naturally fall into the LTI category, as they are non-
linear and, due to the hybrid nature of the dynamics, can be time-variant.
Applying LQR-methods to the problem of humanoid balancing is therefore
not straight-forward, and there broadly exist two approaches to mitigate this
apparent incompatibility: One is to use a fundamentally linear abstraction
of the robot dynamics (such as the Linear Inverted Pendulum) and design
an LQR-controller for that case, possibly embedding it in a higher-level
controller such as a QP-optimization that generates full-body control com-
mands. The other approach is to linearize the entire, non-simplified dynam-
ics of the full robot (including the ground contacts) and design a linear LQR
controller for that case. Both approaches are active areas of research.

57

3 Related Work

LQR for reduced models Based on the popular Linear Inverted Pendu-
lum model, the centroidal dynamics of a humanoid robot can be formulated
as a linear differential equation constituting an LTI system. This system can
be stabilized by a standard LQR controller. The controller generates force
commands that need to be applied to the CoM in order to track a desired
CoM-trajectory, which in turn is designed to let the ZMP follow a specific
trajectory that ensures dynamic stability.
Due to the inevitable gap between the LIPM and the actual robot dynamics,
additional measures need to be taken in order for this method to result in
a successful balancing controller. In [Kajita et al. 2003] the authors com-
bine a LIPM-based centroidal LQR state feedback controller with a feed-
forward preview controller [Sheridan 1966] and an integral controller for
the CoM position tracking error to dynamically stabilize a walking trajec-
tory. In [Kuindersma et al. 2014], the authors embed the LQR formulation
within the higher-level QP-controller to encode the balancing objective and
let the QP compute joint commands that fulfill them. They use a linear
time-varying form of the LIPM and specify a cost function similar to Equa-
tion 2.20, but for the finite time case and without implicit constraints on
the control inputs (i. e. R = 0). They then embed the resulting solution of
the Riccati equation in the objective function of a whole-body QP which is
thereby enabled to obey the objective of the balancing LQR while minimiz-
ing the control input (i. e. actuator torque).

Full dynamics LQR Other than using LQR for designing stabilizing
balancing controllers for the linear LIP model, one can linearize the entire
full-body dynamics of a humanoid robot and design an LQR for this lin-
earized system. This concept, called ’Full Dynamics LQR’, was proposed
and validated both in simulation and in a robotic push recovery experiment
on a hydraulically actuated humanoid robot in [Mason et al. 2014]. The au-
thors considered the case for a torque-controlled humanoid robot in double
support, both while standing and while performing a squatting motion. The

58

3.3 Postural Balancing in Place

controller was designed for the dynamics that were linearized around the
standing position (see Figure 3.5). However, it was noted that the very same
controller could be used for stably tracking the squatting trajectory with-
out re-linearization of the dynamics at any other point, despite the deviation
from the state of linearizaion3. The authors also noted that push recovery
performance of the Full Dynamics LQR was comparable to that of much
more intricate control schemes that take the time-varying non-linearities of
the dynamics into account.

Figure 3.5: Simulation results of full dynamics LQR control for recovery from a 15 Ns push in
dynamics simulation (taken from [Mason et al. 2014], © 2014 IEEE).

The authors extended this line of work in [Mason et al. 2016] in order to
address the question of how far the functionality of the LQR controller
extends from the original state of linearization. The key result from this
work was that for the considered tasks (balancing and walking), only one
re-linearization per contact state is necessary. In fact, no performance gain
was measurable for higher numbers of linearizations. Each linearization
constitutes a linear model in the sense of hybrid dynamics: One model

3 This is in contrast to LQR-controllers using iterative re-linearizations (iLQR).

59

3 Related Work

represents the double contact case, one the right foot contact and one the left
foot contact case. Those three models and the resulting three optimal LQR
controllers were sufficient to stabilize a walking trajectory while the con-
tact switching was enabled by smoothly transitioning from one controller to
another.

Periodic LQR updates One of the questions that arises when using
LQR control for linearized non-linear systems is how well the controller
generalizes beyond the state of linearization. Although it is reported in [Ma-
son et al. 2014] and [Mason et al. 2016] that the used controller for the task
of whole-body balancing generalized well without further measures, this is
in general not to be expected. A common method to cope with the grow-
ing gap between the linear model and the real system as it moves through
the state space is the iterative re-linerization of the changing dynamics and
the re-synthesis of a new gain matrix [Bryson 1999; Li and Todorov 2004].
This intuitive approach shows very good performance over a large part of the
state space, since it is not tied to the initial state of linearization. The down-
side is a significant computational demand, depending on the frequency of
the update. Another way of periodically updating the linear controller is
by means of Differential Dynamic Programming, a technique that has been
shown to be real-time capable in a simulation of a 36 DoF humanoid [Tassa
et al. 2014].

Optimization-based LQR tuning A different way of mitigating the
gap between the linear model and a non-linear system is to systematically
tune the LQR for the envisioned application. Since the LQR formalism au-
tomatically finds the entries of the feedback gain matrix K, the tuning takes
place in the weight space spanned by entries of the matrices Q and R of
the cost function (design weights) introduced in Equation 2.20. The pro-
cess of tuning is generally an iterative one, with the aim of finding design
weights that lead to a controller that minimizes the actual cost or maximizes

60

3.3 Postural Balancing in Place

a performance measure in a specific evaluation experiment. For the case
of non-linear balancing systems, it has been shown in [Trimpe et al. 2014]
that stochastic parameter optimization can lead to LQR controllers that suc-
cessfully stabilize a double inverted pendulum after iterative tuning. Further
extending this work, Entropy Search is used as an optimizer in [Marco et al.
2016] to tune an LQR controller for stabilizing an inverted pendulum with-
out the need for periodic re-linearization. The authors here use a parametric
description of the design weights to lower the dimensionality of the search
space. They perform successive trials on the actual plant, consisting of a
humanoid robot balancing an inverted pendulum (see Figure 3.6), to update
the controller using global optimization. As Entropy Search formulates an
explicit belief of the cost function as Gaussian Process, taking into account
all previous experiments, the authors argue that such an approach yields
good controllers faster (i. e. after lower numbers of experiments) than the
technique proposed in [Trimpe et al. 2014].

Figure 3.6: The humanoid robot Apollo balancing two different inverted pendulums using
weight-optimized LQR control (taken from [Marco et al. 2016], © 2016 IEEE).

61

3 Related Work

3.4 Balancing by Stepping

If a push disturbance to a legged robot exceeds a certain level of intensity,
the only way to compensate this disturbance and remain upright is to take
a step, as a new foot location can allow for different, more effective ground
reaction forces. All methods for balancing that rely on stepping to change
the foot location will be summarized here under the term Balancing by Step-

ping.

3.4.1 Step Location Adjustments

A step that is suited to let the robot regain static stability after a push dis-
turbance is called a capture step, and the point on the floor the robot has to
place its foot is called a capture point.
"A Capture Point is a point on the ground where the robot can step to in

order to bring itself to a complete stop." [Pratt et al. 2006]
In general it is difficult to accurately determine when to step, where to step
an how to step for a humanoid robot due to the high number of DoFs and the
coupled dynamics of the robot’s limbs. Principled approaches to the ques-
tion of how to determine a suitable capture point have therefore only been
developed for simplified dynamic models and then heuristically amended
for their application on more complex models or robots.
The initial formulation presented in [Pratt et al. 2006] is based on the Linear
Inverted Pendulum Model (LIPM, see Section 2.2.3 and Figure 3.7(a)). Fol-
lowing their derivation based on the requirement of zero orbital energy one
can formulate a point on the floor where, for a given horizontal CoM veloc-
ity ẋ, the LIPM (i. e. the robot) has to position its foot in order for the CoM
to come to rest over exactly this location. This point is called the capture
point with coordinate xcapture defined as

xcapture = ẋ
√

z0

g
(3.11)

62

3.4 Balancing by Stepping

with the constant CoM height z0 and the gravity acceleration g. For xcapture

to be the capture point it is required that the change of contact from the cur-
rent foot location x to xcapture happens instantaneously, which has motivated
subsequent works in this area to call it Instantaneous Capture Point (ICP),
e. g. in [Koolen et al. 2012]. Different names for the same concept have
emerged in the related literature, such as the Extrapolated Center of Mass in
[Hof 2008] after its derivation was introduced in the biomechanical context
in [Hof et al. 2005], as well as the Divergent Component of Motion (DCM)
in [Takenaka et al. 2009], which has later been extend into a 3D formulation
in [Englsberger et al. 2015].

(a) LIPM (b) LIPM with flywheel

Figure 3.7: (a) The standard Linear Inverted Pendulum Model (LIPM, taken from [Englsberger
et al. 2011], © 2011 IEEE) and (b) the Linear Inverted Pendulum Plus Flywheel
model, incorporating centroidal angular momentum (taken from [Pratt et al. 2006],
© 2006 IEEE).

In their work from 2006, Pratt et al. extend the fundamental LIPM by a
flywheel at the hip, enabling the model to incorporate angular momentum
around the CoM (i. e. centroidal angular momentum). The authors call this
model Linear Inverted Pendulum Plus Flywheel Model, depicted in Fig-
ure 3.7(b). The ability to generate angular momentum enables this model to
better approximate the dynamics of a real robot, and it expands the capture

63

3 Related Work

point formulated in Equation 3.11 to a convex capture region containing an
infinite number of capture points. The relation between the capture region
and the support polygon can serve as a basis to determine if the robot needs
to step. When taking the specific kinematic constraints of the robot into ac-
count, it can also be decided whether one step is sufficient or multiple steps
need to be taken to place the CoP within the capture region. Those three
different cases (no step, one step, multiple steps) are depicted in Figure 3.8.

(a) Capture region and Support poly-
gon overlapping

(b) Capture region outside the sup-
port polygon but partially inside the
leg’s kinematic workspace

(c) Capture region outside the legs’
kinematic workspace

Figure 3.8: Different locations of the capture region (green) for which the robot has to (a) take
no step, (b) take one step, (c) take multiple steps (adapted from [Pratt et al. 2006],
© 2006 IEEE).

The model assumptions and conceptual simplifications considered in the
LIPM model as well as the instantaneous switch of contact locations as-
sumed in the derivation of the ICP make it challenging to apply this concept

64

3.4 Balancing by Stepping

directly to real robots. In [Rebula et al. 2007], the authors have attempted
to bridge the gap between model-based calculation and the dynamics simu-
lation of a simple bipedal robot with distributed mass by a sampling-based
learning method. They learn state-dependent offsets to the model-based cap-
ture point and show that this significantly improves push recovery perfor-
mance for a robot with segmented legs and an upper body (see Figure 3.9).
[Pratt et al. 2012] present a capture point based push recovery method for
the humanoid robot M2V2 (that resembles the simulation model used in
[Rebula et al. 2007]), which shows good performance for balance recovery
when pushed from a statically stable initial pose. The relatively large feet
of the robot with respect to the step size, together with the actuated ankles,
enable their push recovery controller to account for the model errors in the
capture point computation.

Figure 3.9: A simulated humanoid robot reacting to a push from the front by stepping before
(left) and after (right) learning adaptations to the Capture Point. Before learning,
the robot steps too far and the recovery fails. After learning, the robot successfully
recovers. Temporal order of the images from left to right, top to bottom (taken from
[Rebula et al. 2007], © 2007 IEEE).

Since walking for a number of n steps can be interpreted as n-step push
recovery with a sequence of n capture steps, the concept of capture points
has found numerous applications in the area of humanoid walking control.

65

3 Related Work

Stepping into a capture point by definition lets the robot come to a full stop.
However, a slightly shorter step lets the robot maintain or even increase its
walking speed, while taking a longer step eventually lets the robot reverse its
walking direction. Based on these considerations, a 2D walking controller
with velocity control capabilities can be derived. As the connection between
push recovery and walking controllers is so close, some of the above men-
tioned papers include contributions in both fields [Koolen et al. 2012; Pratt
et al. 2012] or even entirely focus on walking control or walking trajectory
generation [Englsberger et al. 2011, 2014a, 2015].
One way of achieving stable walking control via step location selection is
by Model Predictive Control (MPC). In [Diedam et al. 2008] and [Herdt
et al. 2010] the authors describe a linear MPC scheme based on the LIPM
dynamics. The authors demonstrate how the control scheme presented in
[Kajita et al. 2003], that was used for walking generation along pre-defined
footsteps, can be used more generally for online adaptation of the footsteps
during walking in order to satisfy the ZMP stability criterion. While the
authors do not explicitly mention the capture point, the ZMP-based opti-
mization in the MPC implicitly computes effectively the same quantity, but
taking into account the actual (yet still simplified) system dynamics. In con-
trast, the MPC step location controller presented in [Griffin and Leonessa
2016] directly operates on the DCM dynamics to optimize step locations.
The MPC is formulated as a quadratic program (see Section 3.3.1) that con-
siders kinematic reachability constraints as well as desired foot rotations.
Although a successful evaluation was performed in simulation, the authors
acknowledge that their method is not always able to find feasible solutions
due to the computational demand, and is therefore not ready to be applied
to a real robot.

66

3.4 Balancing by Stepping

3.4.2 Step Time Adjustments

In the balance control approaches outlined in Section 3.4.1 the step location
is adjusted, whereas the step timing, i. e. the duration of the step, is kept
constant. An alternative approach is to modify the step timing and follow
the pre-planned footsteps of the nominal walking trajectory, or to adjust step
timing and step locations simultaneously.

Figure 3.10: An Atlas humanoid robot reacting to a lateral push by quickly stepping to the side
(taken from [Griffin et al. 2017], © 2017 IEEE).

In [Griffin et al. 2017], the authors argue that by adjusting the step tim-
ing, the necessary adjustments to the step location can be significantly de-
creased and validate this hypothesis through experiments on an Atlas hu-
manoid robot (see Figure 3.10). Step timing adjustment is especially bene-
ficial when the goal is to follow a pre-defined stepping trajectory under the
influence of disturbances. The authors point out that adjustments to the step
timing alone are only effective when the planned step direction and the cur-
rent ICP trajectory coincide (for example when the robot is pushed forward

67

3 Related Work

while stepping forward), presenting a limitation to practical applications. In
general it is therefore necessary to adjust both, step timing and step location.
In [Kryczka et al. 2015] the authors develop a control framework that inte-
grates with a walking trajectory generator and simultaneously optimizes the
step location and step timing (’gait pattern regeneration’) to enable walking
motions that are robust to push disturbances. The non-linear gait pattern
optimization takes less than 40 ms, which is sufficiently fast for the targeted
application. The found trajectory is tracked with a ZMP-based CoM feed-
back controller. Their approach and implementation are validated through
experiments on the COMAN humanoid robot [Tsagarakis et al. 2013]. Re-
lated to the work presented in [Herdt et al. 2010], the authors of [Aftab et al.
2012] show an extended MPC controller to include the ankle, hip and step-
ping strategy in one unified non-linear optimization. In contrast to previous
works, step timing adjustments are considered and implicitly handled by
the optimization that minimizes a cost function containing the constrained
linear swing foot acceleration.
A conceptually similar approach of optimizing both step location and step
time simultaneously is presented in [Khadiv et al. 2016]. In contrast to the
other methods, the authors consider the linearized CoM dynamics of the
LIPM as the basis for the optimization rather then the non-linear robot dy-
namics, allowing them to use fast convex linear optimization techniques.
Stable walking is achieved by specifying a desired offset between the DCM
and the CoM at the end of each step. They compare the performance of their
technique to the one detailed in [Herdt et al. 2010] which does not include
step timing optimization and find significant stability improvements on the
task of stabilizing a 3D LIPM walking under lateral disturbances. Success-
ful simulation results for the Athena humanoid robot with unactuated ankle
joints walking and enduring a lateral push are also presented, indicating that
step time adjustment is suited for addressing the special requirements of this
class of robots that cannot exert moments at the ground contact.

68

3.4 Balancing by Stepping

3.4.3 Learning How to Step

To overcome the gap between the LIPM-based capture point concept and
the application to real robots with their kinematic constraints and complex
dynamics, machine learning and reinforcement learning in particular, can be
used.

Figure 3.11: A simulated small humanoid robot applying push recovery methods that were op-
timized using reinforcement learning (taken from [Yi et al. 2011a],© 2011 IEEE).

In [Yi et al. 2011a] the authors use simulation-based stochastic policy gra-
dient reinforcement learning to optimize a highly pre-structured controller
for whole-body balancing of a small humanoid robot (see Figure 3.11). In
[Levine and Koltun 2014] the authors simulate a simple 2D bipedal walking
robot and use direct policy search reinforcement learning to let it learn how
to walk under disturbances. Their algorithm develops a variety of success-
ful push recovery strategies that enable the simulated robot to recover from
strong lateral pushes.

69

3 Related Work

Recent examples of simulation-based applications of reinforcement learn-
ing to dynamic biped locomotion include the work presented by [Peng et al.
2017] that uses deep reinforcement learning to realize walking controllers
that show a certain robustness to pushes, albeit relying on very large
amounts of simulated training data. A follow-up study presented in [Peng
et al. 2018] combines a similar method with input from human motion
capture to let a humanoid robot mimic highly dynamic human motions in a
dynamics simulation.
The work that will be presented in Chapter 6 is in line with these works, as it
uses input from motion capture and policy gradient reinforcement learning
to turn produce viable stepping motions for push recovery.

3.4.4 Recovery Stepping with DMPs

The previously described methods were mostly concerned with finding ap-
propriate step parameters in terms of step location and step execution time.
The question remains how to generate stepping motions that realize these
parametric requirements. One way of addressing this question is to use para-
metric motion generators based on Dynamics Movement Primitives (DMPs,
see Section 2.4).

Figure 3.12: Validation experiments of a recovery step encoded as task-space DMP on a PKU-
HR5 kid-sized humanoid robot (taken from [Luo et al. 2015], © 2015 IEEE).

70

3.5 Summary

Once a trajectory is encoded as a DMP, adaptation of the start and goal po-
sitions as well as of the execution speed can be achieved in a very efficient
manner by changing the according high-level parameters and integrating
over the dynamics of the transformation system. DMP-encoded trajectory
representations are therefore well-suited for high-dimensional motion gen-
eration in time-critical applications, such as stepping for push recovery of
humanoid robots. Some initial research into this direction has been pre-
sented in [Luo et al. 2015]. The authors encode a recovery stepping foot
trajectory as DMP and conceive a simple control law that adapts the step
length proportionally to the push intensity. They consider pushes only in
the frontal direction and do not provide details on how they tune their con-
trol law. The motion is encoded as a foot trajectory in the task-space, and
hence it remains necessary in their approach to explicitly compute joint an-
gles for each time step by solving the Inverse Kinematics (IK) problem,
not exploiting the potential of direct joint-level trajectory encoding. One of
their validation experiments conducted on a PKU-HR5 robot is shown in
Figure 3.12. While the approach appears to be promising and is reported to
be successful, a number of interesting aspects remain unclear and a quanti-
tative evaluation is not presented.
The work presented in Chapter 6 will bring together reinforcement learning
for estimating correct step parameters and joint-level DMPs for efficient
motion generation.

3.5 Summary

This chapter gave an overview of the most relevant literature in the three
sub-fields where this thesis contributes to humanoid balancing and push re-
covery. The presented literature review contains the works this thesis builds
on as well as alternative, competing and complementary approaches. A vi-
sual overview over the presented concepts and methods that summarize the

71

3 Related Work

related literature for each of the three areas is presented in Figure 3.13, Fig-
ure 3.14 and Figure 3.15.
Figure 3.13 summarizes the literature on stability classification and distur-
bance estimation. Stability classification can be categorized into methods
relying on external sensors (e. g. cameras or microphones) or on internal
sensors (e. g. IMUs). To find and evaluate descriptive features for the current
state of stability in the internal sensor data, either heuristics (e. g. threshold-
ing) or data-driven learning methods (e. g. neural networks) can be applied.
The work presented in this thesis falls into the latter category. A similar
categorization an be applied to method for disturbance estimation, where
common methods either rely on contact force sensors (e. g. sensorized skin)
or internal sensors. Methods based on data from internal sensors either em-
ploy joint torque sensors, IMUs or F/T sensors. This thesis will focus on
leveraging IMUs and F/T sensors.

Figure 3.13: Structured summary of the reviewed methods for stability classification for hu-
mans and humanoid robots as well as for disturbance (i. e. push force) estimation
on humanoid robots. Areas in which this thesis contributes are highlighted in
green (see Chapter 4).

72

3.5 Summary

Figure 3.14 presents an overview over the related literature on postural bal-
ancing, where the main division is into methods that perform computation-
ally expensive online optimization and methods that leverage efficient linear
control theory. Online optimization methods can be divided into model pre-
dictive control (MPC) and quadratic programming (QP) approaches, and QP
formulations can be further divided by considering whether the optimization
is formulated in the acceleration or torque domain. Linear control methods
on the other hand are either based on simplified or even inherently linear
dynamics models (such as the point mass abstraction or the Linear Inverted
Pendulum), or on a locally linearized full dynamics model. Controlling the
linearized dynamics model can either be achieved with a linear quadratic
regulator (LQR) using naive weight terms in the cost function, or by sys-
tematically optimizing the LQR-weights for the balancing task. This thesis
investigates the latter approach.

Figure 3.14: Structured summary of the reviewed methods for balancing in place (postural bal-
ancing). The area in which this thesis contributes is highlighted in green (see
Chapter 5).

73

3 Related Work

The related work on balancing by stepping is summarized in Figure 3.15 and
can be subdivided into approaches that make adjustments to steps of a nom-
inal pre-palnned walking pattern by altering the step location or the step
time, and into approaches that consider recovery stepping from an initial
standing pose. The two main questions for recovery stepping from standing
are how to efficiently generate the motion, and how to find the right step pa-
rameters for a specific disturbance. One way to address motion generation
is by making use of Dynamic Movement Primitives (DMPs) that can either
be applied in the task space (Cartesian DMPs) or on the joint level, allevi-
ating the computational requirements associated with iteratively solving the
Inverse Kinematics (IK) problem. The parameters of the recovery step (e. g.
step location and step duration) can either be determined heuristically or
by data-driven learning methods. This thesis proposes the use of joint-level
DMPs for parametric motion generation, and reinforcement learning (RL)
for finding appropriate step parameters w. r. t. the push.

Figure 3.15: Structured summary of the reviewed methods for push recovery by stepping. Ar-
eas in which this thesis contributes are highlighted in green (see Chapter 6).

74

4 Disturbance Estimation and
Stability Classification

Every form of closed-loop control requires feedback from the control sys-
tem to estimate the current system state. This information, together with the
desired system state, allows a controller to compute the appropriate control
action. State, however, is a term that is used in a variety of contexts and with
varying meanings. In [Rotella et al. 2014], the authors give an introduction
to state estimation in mobile robotics in general, and explain how state es-
timation for humanoid robots is a special case, due to the hybrid system
dynamics and geometric constraints in the foot contact.
A humanoid robot’s state in the sense of classical control theory contains
the spatial orientation, position and velocity of its floating base together
with its joint angles and velocities. This state description can be referred to
as the low-level state. This form of state information is typically required for
continuous control tasks such as whole-body balancing. The measurement
of each of the quantities in the low-level state on a real humanoid robot is
a challenging task, and a large amount of research work has been carried
out to identify and address this challenge. The joint angle measurement for
example can be adversely affected by actuator backlash, and feed-forward
computation of end-effector poses can be impeded by the robot’s elasticity.
Both of these problems have been reported for the Atlas humanoid in [John-
son et al. 2015] and were addressed with computational elasticity compen-
sation and backlash estimation. In [Rotella et al. 2016], the authors explore
how the estimation of joint velocities can be improved by adding IMUs to
each robot link in order to mitigate differentiation noise that arises when

75

4 Disturbance Estimation and Stability Classification

computing the joint velocities from position encoders alone. In contrast to
real hardware, simulated environments provide accurate information about
the robot’s low-level state.
Discontinuous control decisions on the other hand might rely on other state
representations. In the context of this thesis, such discontinuous decisions
are whether to take a step, and how to perform this step. Answering these
questions calls for more specific, higher-level descriptors of the robot state.
This work therefore aims at finding descriptors for the disturbance (i. e.
push) the robot is subjected to, and the degree of its current dynamic stabil-
ity, facilitating fast and informed decision making about whether and were
to step. To circumvent some of the difficulties that come with traditional
state estimation and to make the proposed methods more generic (i. e. ap-
plicable to a wide range of systems, including robots and wearable assistive
devices such as robotic exoskeletons), a focus is put on a reduction of the
number of sensors that are used. High-level state estimation with few sen-
sors is a field far less researched than low-level state estimation, and even
simulators cannot readily provide the desired information.
The methods introudced in Section 4.1 and Section 4.2 focus on the static

case, in which a human or humanoid robot is initially at rest, relying on a
single IMU or internal F/T sensors for disturbance estimation, respectively.
In Section 4.3, an IMU based method for classifying the dynamic stability
while in dynamic motion will be developed. Parts of the methods for dis-
turbance estimation and stability classification have been published in [Kaul
and Asfour 2016] and [Steffan et al. 2017].

4.1 Push Intensity Estimation with a single IMU

People are extremely adept at reacting to various kinds of disturbances with-
out falling over. To this end they employ a range of balancing strategies that
can be categorized into those that require taking a step, and those that are
performed in place, i. e. without changing the foot placement. Being both

76

4.1 Push Intensity Estimation with a single IMU

very capable at push recovery and physically similar to humanoid robots,
the human role model is a grounded source of inspiration for methods of
humanoid push recovery. By equipping a human subject with a single body-
worn IMU, subjecting it to pushes and analyzing the push as well as the
human’s reaction, the work presented in this section aims at validating the
hypothesis that

1. the occurrence of a push (push detection)

2. the need to take a step (strategy selection)

3. and the direction of push (push direction)

can all be inferred from a minimal body-worn sensor setup. It thereby lays
the foundation for subsequent work presented in this chapter that exploits
this hypothesis.

4.1.1 Experimental Setup

The core of the experimental setup is a human subject equipped with a body-
worn IMU sensor attached to the torso1. The torso is the part of the human
body that most closely resembles the CoM prevalent in many simplified
dynamics models for humanoid robots. It is furthermore comparatively easy
to attach an IMU to the torso both on a humanoid robot as well as on a
human body. These reasons led to the choice of this sensor location.
The IMU measures the spatial acceleration along its own coordinate axes.
It furthermore computes its absolute spatial orientation (aligned with grav-
ity and Magnetic North) by additionally using its integrated gyroscope and
magnetometer, which also enables it to compute the gravity-compensated
acceleration. This 3-dimensional gravity-compensated acceleration vector

1 In some of the experiments, the subject was also wearing a light-absorbing suit with reflective
markers for optical motion capture (see Figure 4.1(a)). However, the collected motion data
was not used in the study presented in this chapter, only the data from the IMU.

77

4 Disturbance Estimation and Stability Classification

is the sensory output used in the presented study. The subject and the loca-
tion of the IMU are shown in Figure 4.1(a).

(a) Human subject with
IMU attached to the torso

(b) Sensorized push device

Figure 4.1: Human subject equipped with a body-worn IMU sensor (orange) attached to the
torso (a) and a sensorized device to measure the applied push force (b) (taken from
[Kaul and Asfour 2016], © 2016 VDE).

For this study, a research-grade xSens MTi IMU was used, but low-cost con-
sumer grade sensors provide equivalent functionality for this application.
The IMU generates the data from which the strategy (stepping or no step-
ping), the direction of the applied push and its magnitude are to be recon-
structed. The reaction of the subject provides the ground truth for the appro-
priate strategy. The person applying the pushes is doing so along one of four
pre-specified directions (from the front, the back, the left or the right), which
is recorded and forms the ground truth for the direction. A force-measuring
device is used to apply these pushes in order to record the applied push force
and provide ground truth data for the correlation of force and acceleration
signals. This custom-made device accurately measures the force transmitted
between the person who pushes and the subject that is being pushed, using
a 1D load-cell, a 14 Bit ADC and a wireless connection to a laptop PC for

78

4.1 Push Intensity Estimation with a single IMU

data collection (see Figure 4.1(b)). Table 4.1 summarizes the collected data
and data collection methods used during the trials.

4.1.2 Experimental Protocol

The aim of the experiments is to collect a dataset that contains information
about the push, the subject’s reaction to it, and the IMU data. Since any
experiment that involves a human subject is susceptible to variances in the
outcome caused by unpredictable influences on the human behavior, an ex-
perimental protocol was devised to standardize the experiments and to make
them as reproducible as possible: At the beginning of each experiment, the
subject wearing the IMU is instructed to stand upright with feet in parallel
and placed at shoulder-width, eyes closed (see Figure 4.1(a)). It is further
instructed to take a recovery step only when necessary, and to resort to pos-
tural in-place balancing whenever possible. After a waiting time, which is
randomized to avoid premature reactions, the second person pushes the sub-
ject at shoulder height either from the front, the back, the right or the left
side, provoking a push recovery reaction. The strategy chosen by the sub-
ject in reaction to the push (stepping or no stepping) is noted. During the
entire experiment, the gravity-compensated linear torso acceleration mea-
sured by the IMU as well as the push force measured by the push device are
synchronously recorded at a rate of 100 Hz.
Overall, 78 experimental trials were conducted with a single subject, cov-
ering reactions to pushes of a wide variety of intensities and from all four
directions.

4.1.3 Methods and Results

This section will introduce the methods used to validate the initial hypothe-
ses regarding push detection, strategy selection and push direction, and re-
port on the obtained results.

79

4 Disturbance Estimation and Stability Classification

Information Measurement
Modality

Data

Push force Force-sensing push
device (see Fig-
ure 4.1(b))

Continuous stream of 1D
force information, sampled
at 100 Hz

Push direction Predefined Label: Right, Left, Front,
Back

Torso acceler-
ation

Body-worn IMU (see
Figure 4.1(a))

Gravity-compensated linear
acceleration, sampled at
100 Hz

Strategy Observed Label: Stepping/no stepping
(binary)

Table 4.1: Sensing modalities and recorded data during single-IMU human push recovery trials.

Push Detection The most intuitive sensor modality for push detection
is the push force itself. However, the push force at arbitrary locations is
difficult to measure by a robot (or human assistive device) and was therefore
measured during the experiments with an external sensorized tool. The first
part of the initial hypothesis thus states that a push can be detected using a
single body-mounted IMU, measuring the absolute linear torso acceleration.
In the early stages of the push, the push force and the torso acceleration show
very close correspondence in accordance with the proportionality

f = ma (4.1)

of the force f and the acceleration a governed by the subject’s mass m.
This correspondence, prevalent in all of the recorded trials, can be seen

80

4.1 Push Intensity Estimation with a single IMU

exemplary in Figure 4.2 in the section between the dashed vertical lines2.
The only notable qualitative difference between the signals in this stage is a
higher level of noise in the acceleration measurement.

Figure 4.2: Push force (blue) and absolute torso acceleration (green) during an experiment in
which the human subject, initially standing at rest, is pushed from the back and
performs a recovery step in reaction to the push. Force and acceleration are highly
correlated at the beginning of the push (between the dashed lines). The red rect-
angle visualizes the window-based push detector (adapted from [Kaul and Asfour
2016], © 2016 VDE).

In later stages of the trial, when the human begins to react, its motions intro-
duce additional accelerations that make the acceleration signal deviate from
the vanishing push force.

2 The scaling of force values in the original publication was falsely denoted as 0.1N. The
figure printed here was corrected.

81

4 Disturbance Estimation and Stability Classification

Since an acceleration-derived method for push detection should work
equally well for pushes from all directions, the 3-dimensional gravity-
compensated acceleration vector

a = (ax,ay,az)
T

is expressed by means of its scalar magnitude

a =
√

a2
x +a2

y +a2
z

to yield a direction-invariant feature.
From this initial correspondence between torso acceleration and push force
it can be concluded that the absolute torso acceleration is an equally good
signal for detecting the onset of a push disturbance. The most straight-
forward way of detecting a push based on this feature is to constantly com-
pare it against a certain threshold. However, as the acceleration magnitude
exhibits significant noise during a typical trial, this would require a com-
paratively high threshold value to avoid false positives, which in turn would
delay the detection of the push.
A better detector was derived by using a sliding window with fixed window
size n, containing the most recent and the last n− 1 acceleration magni-
tude samples. The difference between the largest and the smallest value
within this window becomes the detection feature, and a push is detected
by comparing this difference against a fixed reference threshold3. The free
parameters in this detector are the window size n and the threshold d. By

3 Considering that all experiments start with the subject at rest, the push detector also requires
that the largest acceleration occurs after the smallest. Occurrences that do not fulfill this
requirement are considered noise.

82

4.1 Push Intensity Estimation with a single IMU

systematically testing possible combinations of n and d on the entire dataset,
it was found that the set

(n,d) = (5,0.4m/s2),

i. e. a sliding window of sample size 5 (corresponding to a time span of
50 ms) and an acceleration difference of 0.4m/s2 correctly identifies all be-
ginnings of pushes without false positives. An example of a detecting sliding
window is depicted as red rectangle in Figure 4.2.
These parameters were fitted to the dataset of 78 recorded push trials to
initially validate the hypothesis that an external push can be quickly and
reliably detected with a single body-worn IMU.

Strategy Selection Once a push is detected, the primary questions is
whether or not a recovery step has to be performed. The hypothesis states
that this question can be answered from a single body-mounted IMU by
extracting a measure of push intensity. High push intensities are expected
to result in the subject performing a recovery step, whereas low intensities
would result in in-place postural balancing. Similar to the considerations
of a direction invariant feature for push detection, the same input (absolute
torso acceleration) can be used for intensity estimation. While an intuitive
feature would be the the peak acceleration, acceleration evolutions like the
one depicted in Figure 4.2 show that it can take as much as 0.5 s for this
peak to occur after the beginning of the push. Waiting for this peak to occur
would thus substantially delay the reaction.
To address the challenge of early push detection, a different indicating
feature of the push intensity that can be evaluated earlier on is proposed
here, namely the slope with which the torso acceleration increases (i. e. the
torso jerk). However, as the acceleration is already a noise-afflicted signal,
numerical differentiation increases the noise level even further, making
a sample-wise jerk calculation based on finite differences an unsuitable

83

4 Disturbance Estimation and Stability Classification

option. Instead, a linear approximation to the acceleration can be computed
for the first m samples and the slope of the resulting regression model can
serve as a time-averaged estimate of the jerk. This process is illustrated in
Figure 4.3. In the implementation used for this study, the parameters of the
linear approximation were found by least squares linear regression. The
regression is based on the earliest sample in the push detection window and
the subsequent m−1 absolute acceleration samples.

Figure 4.3: Torso acceleration (red) and its numerical derivative (blue) for one of the human
trials. As the jerk itself is highly noise-afflicted, the slope of the linear regres-
sion to the acceleration (green) over the first 180 ms after the onset of the push
serves as scalar push intensity estimate (adapted from [Kaul and Asfour 2016],
© 2016 VDE).

Choosing a small value for m makes the jerk estimation faster, but more
susceptible to noise in the acceleration signal. A large m makes the estima-
tion more robust to the signal noise but increases the delay. Different values
for m in the range from 5 samples (i. e. 50 ms of data) to 20 samples (i. e.
200 ms of data) were tested for their ability to generate a jerk estimate that

84

4.1 Push Intensity Estimation with a single IMU

correctly divides the trials into two halves, namely the trials in which the
human subject took a step, and those in which it resorted to balancing in
place.

Figure 4.4: All 78 human push recovery trials colored by the observed strategy, with the push
direction, the estimated push intensity (jerk) and the optimal decision boundaries
for the respective push direction based on jerk approximation over 180 ms (adapted
from [Kaul and Asfour 2016], © 2016 VDE).

The push intensity that can be endured by a human or humanoid robot with-
out having to take a step varies with the direction of the push. The width
of the stance leads to a higher inherent resilience against pushes from the
side, whereas the limited length of the feet limits resilience against pushes
from the back and the front. To account for this, different optimal decision
boundaries between stepping and no-stepping with respect to the estimated
torso jerk were allowed for the four directions front, back, left and right
(with left and right having the same value due to symmetry considerations).
On the reference dataset of 78 trials, m = 18 (i. e. 180 ms of IMU-data) is
the parameter that results in a jerk (i. e. push intensity) estimate with the

85

4 Disturbance Estimation and Stability Classification

best ability to divide the trials into those that involved stepping and those in
which the human resorted to balancing in place. Figure 4.4 illustrates that
division by depicting all trials colored by the actual recovery strategy along
with the direction of the push and the intensity, estimated over the first 18
acceleration samples, corresponding to the first 180 ms after the push was
detected. With the optimal decision boundaries, 79% of the recovery strate-
gies in all trials could be classified correctly. Table 4.2 presents the detailed
results split into the four directions.

Push Direction Strategy Prediction Accuracy

Front 14 out of 18 (78%)

Left and Right 33 out of 40 (83%)

Back 15 out of 20 (75%)

Overall 62 out of 78 (79%)

Table 4.2: Correct recovery strategy prediction from a single IMU.

This analysis reveals that the proposed method of push intensity estimation
by approximating the torso jerk has the potential to predict the recovery
strategy that a human would use, and hence the strategy a robot should use.
This substantiates the hypothesis that a minimal set of body-worn IMU sen-
sors are a viable method for estimating the applied disturbance. However,
the obtained training accuracy of 79% and the distribution of trials in Fig-
ure 4.4 suggest that even an ideal method might not be able to perfectly
predict the human’s reaction. There certainly exists a range of push intensi-
ties in which both reactions, stepping and no stepping, are feasible reactions.
Additional considerations like energy expenditure, concerns about the sta-
bility of the ground, or spatial constraints might be deciding factors in those
cases.

86

4.1 Push Intensity Estimation with a single IMU

Push Direction The direction of the push determines the direction of
the recovery step, should one be necessary, where e. g. a push from the left
necessitates a step to the right, and vice versa. Since the direction is a very
important parameter for generating and executing a step, it is necessary for
a humanoid robot or an assistive exoskeleton to be aware of the direction
in which it was pushed as early on as possible. Given the initial close cor-
respondence of the push force and the body acceleration observable in Fig-
ure 4.2, grounded in Equation 4.1, the force direction can be inferred from
the torso acceleration vector. Since the push direction is a purely horizontal
quantity, it is sufficient to consider the two horizontal acceleration com-
ponents ax and ay. Computing the resulting direction dh of the horizontal
body acceleration ah from these two vector components can, in principle, be
achieved by element-wise evaluation of the two-argument arctangent

dh = atan2(ax,ay). (4.2)

However, due to the noise in the raw acceleration signals, this form of di-
rection computation is also highly noisy. In order to generate a more robust
direction estimate, a similar technique to the one used for push intensity
estimation is proposed here: The jerk of the horizontal acceleration compo-
nents can be found as the slope of their linear regression lines, and instead of
computing the direction from the noise-afflicted acceleration measurements,
it can be computed from these regression-based scalar jerk estimates ȧxr and
ȧyr:

dh = atan2(ȧxr, ȧyr). (4.3)

Using the same 18 acceleration samples that are used for the intensity es-
timation, a reliable classification into the four directions front, back, right,
and left can be achieved. This result is visualized in Figure 4.5.
These findings substantiate the third part of the hypothesis, namely that the
direction of an applied push disturbance can be estimated from a small num-
ber of body-mounted IMU sensors (in this case even from a single one).

87

4 Disturbance Estimation and Stability Classification

Figure 4.5: All 78 human trials, colored by the actual direction of the applied push, along
with the estimated push intensity and push direction estimate computed with Equa-
tion 4.3 (adapted from [Kaul and Asfour 2016], © 2016 VDE).

4.2 Disturbance Estimation with F/T Sensors

As it was shown in Section 4.1, even a single IMU mounted at the torso of
a human can reveal substantial information about the occurrence, the inten-
sity and the direction of a push that requires push recovery. Body mounted
inertial sensors are an appealing sensor modality, as they can be easily in-
tegrated both in humanoid robots and in wearable assistive devices for the
augmentation of human locomotion. However, the previously presented re-
sults also indicate a remaining level of uncertainty in the parameters of the
push, which makes it still challenging for a push recovery controller to gen-
erate the optimal recovery action. This motivates the consideration of an
additional sensor modality for disturbance estimation that improves those
estimations.

88

4.2 Disturbance Estimation with F/T Sensors

Figure 4.6: Detailed view of the F/T sensors of ARMAR-4. The sensors are the highlighted
cylindrical elements mounted between the feet and the ankle joints.

A type of sensor that can be used for this purpose and that is commonly
found in full-size humanoid robots such as the ARMAR-4 are 6 DoF
force/torque sensors (F/T sensors in short) mounted between each foot and
the ankle joints (see Figure 4.6). With two of these sensors (one at each
foot), the robot is able to perceive the forces and torques that act between
its body and the ground, which constitute the six elements of the contact
wrench wc with

wc = [(f x
c , f y

c , f z
c)

T ,(mx
c,m

y
c,m

z
c)

T]

In the case of ground contact wrenches, the torque is commonly referred
to as moment. In the static case, the forces and moments measured by
the sensors are the sum of gravity-induced effects and external forces, i. e.
pushes. After subtracting the effects of gravity from the sensor signal, the
force measurements can therefore be regarded as reflections of the external

89

4 Disturbance Estimation and Stability Classification

push forces, and similar methods to those introduced in Section 4.1 can be
applied.
In addition to the force, F/T sensors also provide a measurement of the
ground reaction moment. With the force and moment combined, additional
information, namely the line in space along which the external force acts,
can be computed.

4.2.1 Line of Force Action

If the 3D force vector and the 3D moment vector in the interaction point
between the static robot and the ground are known, if gravity-induced effects
are known and can be subtracted, and if the assumption holds that only one
external force other than the ground interaction forces is acting on the robot,
then the line along which this force is acting (the line of force action) can be
computed. This line encodes the direction of the force and every possible
force application point in 3D space.

Single Ground Contact The line of push force action can be deter-
mined by solving the fundamental relation between the contact moment mc,
the contact force fc and the force application point r f

mc = r f × fc (4.4)

for the force application point, yielding

r f =−[Fc]
+
×mc. (4.5)

90

4.2 Disturbance Estimation with F/T Sensors

[Fc]× is the skew-symmetric matrix representation of the cross product ×fc

(see [Featherstone 2008], Table A.2) with

[Fc]× =


0 f z

c − f y
c

− f z
c 0 f x

c

f y
c − f x

c 0

 ,

and [Fc]
+
× is its Moore-Penrose pseudo-inverse (see [Ben-Israel and Greville

2003]).
Since one has to resort to pseudo-inversion to solve Equation 4.4, it is im-
possible to retrieve the exact application point. Instead, Equation 4.5 yields
the point on the line of force action that is closest to the sensor location4.
The entire line of force action, consisting of all points r f a, can then be de-
scribed parametrically, using the measured force vector fc and the point r f

in
r f a(λ) = r f +λ |fc| (4.6)

with a scalar parameter λ ∈ R.

Extension to Dual Contacts In the case of a humanoid robot with two
feet and hence two ground contacts, the resulting virtual contact wrench
components mv and fv in a virtual contact frame Fv first need to be com-
puted from the individual sensor readings. Assuming a flat ground and co-
planarity of the feet, the transformation between the two foot frames F1

and F2 can be described with three parameters, namely a 2D displacement
vector in the horizontal ground plane and a rotation around the vertical axis.
While any point could be chosen as location of the virtual sensor frame Fv,
a reasonable choice that is both intuitive and computationally advantageous

4 All spatial computations for the single contact case are implicitly expressed in the coordinate
frame of the F/T sensor.

91

4 Disturbance Estimation and Stability Classification

is the mid-point on the connection of the two foot frames. Under these pre-
conditions, expressing the two contact wrenches in the virtual frame can be
formulated as a two-step process: First, the y-axes of frames F1 and F2 are
aligned with the line connecting the feet by rotating them around the vertical
z-axis by suitable angles ϕ1 and ϕ2, respectively. These rotations lead to the
aligned foot frames F1,ϕ1 with the contact wrench

w1,ϕ1
= [(f x

1,ϕ1
, f y

1,ϕ1
, f z

1,ϕ1
)T ,(mx

1,ϕ1
,my

1,ϕ1
,mz

1,ϕ1
)T]

and F2,ϕ2 with the contact wrench

w2,ϕ2
= [(f x

2,ϕ2
, f y

2,ϕ2
, f z

2,ϕ2
)T ,(mx

2,ϕ2
,my

2,ϕ2
,mz

2,ϕ2
)T].

With the scalar foot distance d f as parameter, the virtual contact wrench

wv = [fv,mv] (4.7)

can be derived by computing its two components fv and mv as

fv = f1,ϕ1 + f2,ϕ2 (4.8)

and
mv =

d f

2
(fT

1,ϕ1
S f − fT

2,ϕ2
S f)+mT

1,ϕ1
Sm +mT

2,ϕ2
Sm, (4.9)

where

S f =


0 0 1

0 0 0

1 0 0

 , Sm =


0 0 0

1 0 0

0 0 0


are R3×3 geometric selection matrices that have particularly simple struc-
tures thanks to the location of the virtual sensor frame. Figure 4.7 visualizes
the described transformations.

92

4.2 Disturbance Estimation with F/T Sensors

Figure 4.7: Visualization of the coordinate transformation for the dual contact case. Red and
blue axis denote the actual sensor-aligned coordinate frames F1 and F2 in which
F/T-measurements are taken. Those measurements are rotated by ϕ1,2 and sub-
sequently translated into the virtual sensor frame Fv at the center point between
the two feet. The virtual wrench wv in Fv is then computed by Equation 4.8 and
Equation 4.9 and used as input for the force action line computation.

With the so obtained virtual contact wrench (Equation 4.7), the methodol-
ogy for the single contact case using Equation 4.5 and Equation 4.6 can be
applied to compute the line of push force action.
The following section will show how this method can be used to enable the
humanoid robot ARMAR-4 to sense the line of force action of an external
contact at an arbitrary point along its body.

4.2.2 Validation on the ARMAR-4 Humanoid Robot

In order to validate the presented dual contact extension of the compu-
tation of the line of force action, experiments with the ARMAR-4 robot
were carried out. This constitutes an advancement over the related litera-
ture, where similar methods have been proposed for humanoid robots but
remained purely theoretical or confined to simulation. In the here presented
experiments, the robot stood on both feet and was pushed at various loca-
tions with the sensorized push tool depicted in Figure 4.1(b). The readings
of the ankle F/T sensors were simultaneously recorded. Using Equation 4.8

93

4 Disturbance Estimation and Stability Classification

and Equation 4.9, the gravity-compensated force and torque components of
the virtual wrench at the midpoint between the feet were computed. Fig-
ure 4.8 shows the six elements of the virtual wrench, as well as the total
force measured by the F/T sensors (red). The externally applied force mea-
sured by the push tool is shown in blue. The close correlation of these two
curves serves as a validation of the correct functioning of the measurement
setup as well as the data processing.

20 30 40 50 60 70 80 90 100 110
Time [s]

-40

-30

-20

-10

0

10

20

30

40

50

F
or

ce
 [N

],
T

or
qu

e
[N

m
]

f
v,x

f
v,y

f
v,z

m
v,x

m
v,y

m
v,z

f
grf

 (internal)

f
push

 (external)

Threshold

Figure 4.8: Virtual wrench force fv (fv,x, fv,y, fv,z) and moment mv (mv,x, mv,y, mv,z) together
with the absolute ground reaction force (internal) and measured push force (exter-
nal).

An external contact is assumed when the total gravity-compensated ground
contact force exceeds a magnitude of 12 N (dashed horizontal line in Fig-
ure 4.8). For the seven time intervals where this criterion was met, the lines
of force action were computed for every sample of ankle-F/T measurements.
Figure 4.9 shows the resulting bundles of force action lines, colored by the

94

4.2 Disturbance Estimation with F/T Sensors

time of their occurrence as overlays over a 3D-model of the ARMAR-4
robot. The correspondingly colored spheres represent the ground truth push
locations, and the red points found on every line mark the solutions of Equa-
tion 4.5.

Figure 4.9: Lines of force action computed from the virtual contact wrenches shown in Fig-
ure 4.8, visualized on a model of ARMAR-4 together with the actual force applica-
tion points, colored by time.

To validate the online capability of the method it was implemented in the
ArmarX robot control framework (see Section C of the appendix) and exe-
cuted on the ARMAR-4 robot in real-time for live visualization. Figure 4.10

95

4 Disturbance Estimation and Stability Classification

shows images of the running system, where the robot is (1) pushed against
the ankle and (2) pulled down on its right arm, with the visualization of the
force lines in the background.

Figure 4.10: Validation experiment on the ARMAR-4, demonstrating online force line compu-
tation from ankle F/T sensors using Equation 4.6 for a push against the ankle (left)
and a pull on the right arm (right).

The close correspondences of the computed line and the actual force appli-
cation point in this experiment validate the method and show that, using the
proposed computation, the line of force action of an external contact can be
computed online from the measured foot contact wrenches in a dual contact
configuration.

96

4.3 Dynamic Stability Estimation with Multiple IMUs

4.3 Dynamic Stability Estimation with Multiple
IMUs

It was shown in Section 4.1 that a single body-worn inertial sensor can pro-
vide sufficient information for detecting a push, and serve as an indicator for
whether a recovery step is necessary or not. This holds for a human subject
initially standing still and was achieved by thresholding the estimated push
intensity, adjusting the threshold according to the push direction.
The following section builds on these findings and is concerned with the
exploration of novel methods for the case of a human or humanoid that
is pushed while in motion. This problem, detecting dynamic instability
from body mounted IMUs while executing dynamic motions, is significantly
more involved due to the fact that the motion itself causes non-negligible
IMU measurements that cannot be filtered out by direct thresholding.
While the work presented here is based on the hypothesis that a small num-
ber of inertial sensors can convey the information necessary to distinguish
between dynamically stable and unstable states, it is neither assumed that
one IMU is sufficient nor that thresholding on a one-dimensional feature
will lead to satisfactory results. This work will therefore resort to super-
vised machine learning and will systematically investigate the number of
sensors, their placement along the body and the type of classifier that leads
to the best possible classification results. Trained on data acquired in hu-
man trials, the envisioned classifier predicts for every instant of the motion
whether it is dynamically stable or unstable. Stable states in the training data
of human motion recordings are the instants after which the human contin-
ues its motion normally, whereas dynamically unstable states are identified
by subsequent active recovery actions such as side-stepping. A system like
this, effectively representing the expert knowledge of humans with respect
to the question whether a dedicated recovery action is necessary, will be use-
ful for humanoid robots or assistive exoskeletons by helping to answer the
same question. An overview over the envisioned system with the research

97

4 Disturbance Estimation and Stability Classification

questions to be answered is depicted in Figure 4.11. By limiting the system
to a small number of easy to install sensors, applicability to a wide range of
systems is facilitated.

Figure 4.11: The aim is to find a classification system that maps data from a small number
of body mounted IMUs to the binary state of dynamic stability. Such a system,
trained on human expertise, can enable humanoid robots and wearable assistive
devices to initiate balance recovery actions when necessary.

4.3.1 Methodology

For the training of different classifiers and comparison of their performance,
suitable training data needs to be provided. Training the classification sys-
tem on data that does not contain falls but only disturbed situations that the
human subject could successfully recover from ensures that the resulting
classifier is useful for fall prevention, and not a mere fall detector. Train-
ing on a dataset that includes recordings in which the disturbance occurred
amidst dynamic locomotion assures that the classifiers learn to classify sta-
bility in diverse dynamic situations, and not implicitly learn to simply apply
thresholding to the raw accelerations.

98

4.3 Dynamic Stability Estimation with Multiple IMUs

Data Preparation

The data used for training originates from the KIT Whole-Body Human
Motion Database5, a large collection of human motion data acquired us-
ing high-precision optical motion capture based on a set of 51 strategically
placed reflective markers on the human body6 [Mandery et al. 2016]. The
motion data in this database is consistently represented in the Master Motor

Map (MMM) data format7 that represents motions as consecutive motion
frames, sampled at 100 Hz. Each frame contains the 6 DoF pose (position
and orientation) of the pelvis along with all individual joint angles.
The data in the database contains neither features in form of IMU measure-
ments nor labels providing stability information, both of which are neces-
sary for training IMU-based classifiers that can predict whether the state
represented by a frame is unstable and thus necessitates active push recov-
ery. These features and labels need to therefore be added by means of com-
putational data augmentation.

Emulated IMUs Each IMU sensor mounted on the body provides a 9D
signal, containing the 3D linear acceleration, 3D angular velocity and 3D
orientation (obtained by means of sensor fusion)8. These sensor modali-
ties need to be computationally emulated to augment the motion data and
prepare it for the purpose of training the envisioned classification systems.
From the infinite number of possible sensor locations along the human body,
the 51 optical marker positions that constitute the MMM marker set were
chosen. With the application of wearable assistive devices in mind, 17 sen-
sor locations that were deemed impractical in daily activities because they
would be difficult to integrate or to hide (such as on the head, the toes or

5 https://motion-database.humanoids.kit.edu/
6 https://motion-database.humanoids.kit.edu/marker_set/
7 https://mmm.humanoids.kit.edu/dataformat.html
8 Integrated IMU sensors typically provide 3-axis magnetometer signals in addition, which are

not explicitly considered in this study.

99

https://motion-database.humanoids.kit.edu/
https://motion-database.humanoids.kit.edu/marker_set/
https://mmm.humanoids.kit.edu/dataformat.html

4 Disturbance Estimation and Stability Classification

the fingers) were excluded from the study, leaving 34 sensor locations for
further investigation. Figure 4.12 shows all 51 optical marker positions, in-
cluding the 34 positions of the emulated IMUs.

Figure 4.12: All 51 optical marker positions of the standard MMM marker set. Only these
with a numerical label (highlighted in orange) were considered as locations for
emulated IMUs (adapted from [Steffan et al. 2017], © 2017 IEEE).

The MMM motion files contain the pelvis (base) orientation and angular po-
sition of each joint. From this data and the kinematic description included
in each MMM file, each link’s orientation, as it would be measured by an
actual IMU, can be computed with methods provided by the Simox toolbox
[Vahrenkamp et al. 2013]. Obtaining the angular velocities and linear accel-
erations requires time differentiation and double time differentiation of the
data, respectively. As numerical differentiation of the position-based data
introduces significant noise, the derivatives are computed differently: To
this end, the joint position data is represented by differentiable piece-wise
cubic splines, and the local derivatives are computed analytically. This leads

100

4.3 Dynamic Stability Estimation with Multiple IMUs

to significantly smoother rotational velocity and linear acceleration signals
that were found to closely resemble those provided by real sensors. The
computed emulated IMU-data is stored along the initial motion data and
serves as the set of features associated with each motion frame for training
the classifiers.

Labels Besides the features in form of emulated IMU data, training the
different classifiers further requires labels associated with each motion
frame. The binary label should represent a notion of stability, divided into
two classes:

• Dynamically Stable: From the motion frame in question, the mo-
tion continues without noticeable changes to the initial intent, i. e. no
dedicated push recovery effort is necessary.

• Dynamically Unstable: From the motion frame in question, the mo-
tion continues with a noticeable balance recovery effort, i. e. the cur-
rent state necessitates dedicated measures of push recovery.

Different indicators of dynamic stability that can be derived from the body’s
kinematic and dynamic properties as well as from its base and joint veloc-
ities and accelerations were introduced in Chapter 2. The indicator that is
most widely used is the ZMP, which can be calculated from data available in
any original MMM motion file after computing the links’ accelerations, us-
ing Equation 2.14 and Equation 2.15. As long as the ZMP is located within
the support polygon (SP), the current state is guaranteed to be dynamically
stable. This condition is commonly referred to as the ZMP-criterion. How-
ever, this geometric correlation only constitutes a sufficient criterion for dy-
namic stability, but not a necessary one. As such it is of great use for motion
planning and control, but not for assessing highly adept motions of humans,
which regularly violate this condition despite being dynamically stable. In
fact, analyzing the motion recordings selected for training revealed that this
strict criterion can be violated even during normal human walking.

101

4 Disturbance Estimation and Stability Classification

To reliably assess the stability of highly dynamic whole-body motions, a
novel ZMP-based criterion was devised that represents a relative measure
of how much the ZMP criterion is violated. The underlying idea is that the
violation, i. e. the distance between the current ZMP and the outer edge of
the support polygon, must be viewed in relation to the size of the support
polygon.

Figure 4.13: Exemplification of the ZMP-Ratio in a dynamically stable dual contact situation.
Yellow dots mark contact points between the ground and the edges of the feet. The
cyan line represents the outer boarder of the support polygon. The red dashed line
is defined by the ZMP and the centroid of the support polygon. The ZMP-Ratio
(Equation 4.10) in this case is smaller than one, indicating that the ZMP-criterion
is fulfilled (adapted from [Steffan 2017]).

The size is expressed by the distance between the centroid of the support
polygon and its edge, measured along the line that connects the centroid and
the ZMP. This ratio, called the ZMP-Ratio, can be expressed as the fraction

ZMP-Ratio =
Distance(SP-Centoid, ZMP)

Distance(SP-Centroid, SP-Border)
(4.10)

102

4.3 Dynamic Stability Estimation with Multiple IMUs

where SP stands for the support polygon and SP-Border for the intersec-
tion of the support polygon and the line between its centroid and the ZMP.
Figure 4.13 visualizes the construction of the ZMP-Ratio.
A ZMP-Ratio that is smaller than 1 indicates that the ZMP lies inside the
support polygon, in which case the ZMP-criterion is met and the sufficient
condition for dynamic stability is fulfilled. A ZMP-Ratio greater than one
indicates a violation of the ZMP-criterion and a potential dynamically un-
stable body configuration. The hypothesis that there exists a threshold value
for the ZMP-Ratio that leads to the desired classification is the basis for the
automated labeling process of each individual motion frame.

Algorithm 1 Automatic Labeling

Require:
F – MMM-file containing the frames f to be labeled
ts – ZMP-Ratio stability threshold
addLabel() – Adds a label to a motion frame in F

1: function GENERATELABELS(F , ts)
2: for each f in F do
3: compute ZMP . Zero Moment Point
4: compute SP-Centroid . Support Polygon
5: compute SP-Border
6: compute ZMP-Ratio
7: if ZMP-Ratio ≤ ts then
8: f .addLabel(stable)
9: else

10: f .addLabel(unstable)
11: end if
12: end for
13: return F
14: end function

For each frame, the current support polygon is computed as the convex hull
around the intersections of the feet and the ground plane based on the posi-
tion data. Based on the velocity and acceleration data, the current ZMP is

103

4 Disturbance Estimation and Stability Classification

computed using Equation 2.14 and Equation 2.15. The resulting ZMP-Ratio
is computed from these two intermediate results and translated into a binary
label by comparing against a heuristically determined threshold value. This
process is iteratively executed for all frames in each motion file, and the re-
spective label is stored together with each frame. Algorithm 1 summarizes
the labeling procedure.

Classification System

The design of the classification system that assigns a binary stability label to
each motion instant consists of two parts, namely the sensor setup (number
and locations) and the classifier.

Sensor Setup With respect to the optimal sensor setup, the two ques-
tions that need to be answered are

1. How many IMU sensors need to be placed along the body to collect
sufficient data?

2. Where should these sensors be placed?

In the presented study the number of sensors ns is constrained to

1≤ ns ≤ 6,ns ∈ N (4.11)

due to practicality considerations, accounting for cost, ease of use and sys-
tem complexity in a later application of an actual system with real sensors.
The possible sensor locations are the 34 selected positions (that coincide
with a subset of the MMM optical marker set) depicted in Figure 4.12.
In order to identify the best sensor setup within this search space, an ex-
haustive search over all possible sensor setups is conducted by training the
classifiers in question on the input data resulting from every setup. To this

104

4.3 Dynamic Stability Estimation with Multiple IMUs

end, one dataset for each possible combination of the number of sensors and
the sensor locations is constructed, resulting in

6

∑
i=1

(
34
i

)
= 1,676,115 (4.12)

individual sets of input data.

Classifiers With respect to the classifiers, the question to answer is
which classification technique is best suited for the problem of predicting
instability (i. e. the need for recovery action) from IMU data. Six common
classifier types were investigated:

1. Naive Bayes (NB)

2. k-Nearest Neighbors (kNN)

3. Bagged k-Nearest Neighbors (Bagged-kNN)

4. Perceptron

5. Neural Network (NN)

6. Support Vector Machine (SVM)

The standard implementations of these classifiers from the scikit-learn li-
brary for Python [Pedregosa et al. 2011] were used. The essential hyperpa-
rameters of the classifiers are listed in Section F of the appendix.

4.3.2 Training and Evaluation on Human Motion Data

For the evaluation of different classifiers and sensor arrangements, 50 mo-
tion recordings consisting of nearly 30,000 motion frames were selected as
training data. All these recordings contain push disturbances that provoke
active push recovery. All motion files used for the evaluation are available
in the KIT Whole-Body Human Motion Database and are listed in Section E
of the appendix.

105

4 Disturbance Estimation and Stability Classification

ZMP-Ratio Threshold Analysis of the motion data of these 50 motion
trials revealed that the ZMP-Ratio indeed separates the human motions into
the classes Dynamically Stable and Dynamically Unstable as defined above.
In regular, visibly intended and undisturbed motions, the ZMP-Ratio re-
mains generally smaller than 2.5. In contrast, in moments in which a sig-
nificant disturbance (i. e. a push) occur and the subject has to change the
initially planned motion to mitigate the disturbance, ZMP-Ratios (signif-
icantly) greater than 2.5 occur. Figure 4.14 visualizes these relations for
every 10th frame of a motion in which the human subject walked forward,
was pushed from the left and then continued to walk towards the intended
goal.

Figure 4.14: Top view of the support polygon (yellow), its centroid (green), the ZMP (red)
and the intersection (blue) of the line (dashed red) defined by the ZMP and the
centroid with the support polygon for every 10th frame of a motion in which the
human subject walked forward, was pushed from the left and then continued to
walk. Scale in meters (adapted from [Steffan et al. 2017], © 2017 IEEE).

Shown are the boundaries of the support polygon in yellow, its centroid as
green dot, the current ZMP as red dot and the connection of the ZMP and the

106

4.3 Dynamic Stability Estimation with Multiple IMUs

centroid as dashed red line. The intersection of this line and the boundary
of the support polygon is marked with a blue dot. It is clearly visible that
the ZMP leaves the support polygon and therefore the ZMP-Ratio becomes
large during the time of the push, indicating that push recovery is necessary.

Classification System To find the best classification system consisting
of the sensor arrangement (number of sensors and sensor locations) and the
type of classifier, the performances of all possible combinations of the data
from 1,676,115 different sensor arrangements and the six classifiers were
compared. Evaluation of all systems was performed by means of stratified
four-fold cross validation, a common evaluation metric in the related litera-
ture, as pointed out by [Jordao et al. 2018] in their survey on human activity
recognition based on wearable sensor data. The reported results are the av-
erage results of the four validation sets.

Evaluation Metrics The annotated motion data has a strong bias to-
wards the ’Stable’ class, as the incidents of pushes and subsequent bal-
ance recovery only represent a small fraction of the recorded motion frames.
This bias undermines the validity of the classification accuracy a (see Equa-
tion 4.13)9 as a meaningful performance indicator, since a system that only
predicts the label ’Stable’ regardless of the input data achieves a high accu-
racy, despite its obvious flaw.

a =
#CorrrectPredictions

#AllPredictions
(4.13)

A better suited performance indicator for binary classifiers on biased data is
the F1-score that takes precision and recall into account.

9 Here and in the following, the symbol # is used as shorthand for ’number of’.

107

4 Disturbance Estimation and Stability Classification

Precision p is the fraction of true positives (i. e. correctly identified insta-
bilities) over all frames classified as positives, be it true or false. It thus
indicates how trustworthy a positive classification is:

p =
#TruePositives

#TruePositives+#FalsePositives
(4.14)

Recall r is the fraction of true positives over all instabilities, detected or not
(true positives and false negatives) that were correctly classified as such. It
therefore indicates how reliable the classifier is.

r =
#TruePositives

#TruePositives+#FalseNegatives
(4.15)

The F1-score finally is the harmonic mean of precision and recall, computed
as

F1 = 2
p · r

p+ r
. (4.16)

An ideal binary classifier achieves an F1 score of 100%, whereas the worst
possible system achieves an F1 score of 0%.

Results Table 4.3 presents the best obtained results for each of the six
types of classifiers and each of the six investigated numbers of sensors in
terms of the F1-score, along with the underlying sensor placements. The
last row gives the result for the respective classifier when trained on all 9
channels of all 34 emulated sensors, i. e. on 306 features.

Discussion The obtained results presented in Table 4.3, reveal a number
of notable observations. Most interestingly, more sensors do no automati-
cally lead to better classification results. In fact, the baseline result obtained
by utilizing all 34 sensor locations is surpassed by the results obtained from
a classifier operating on the single best sensor in the cases for the kNN, the
Bagged-kNN and the Neural Net classifiers. The kNN-classifier for exam-
ple reaches an F1-score of 64% when trained on all 34 sensors, but reaches

108

4.3 Dynamic Stability Estimation with Multiple IMUs

#
Se

ns
or

s
N

ai
ve

B
ay

es
k

N
ea

re
st

N
ei

gh
bo

rs
N

ea
re

st
N

ei
gh

bo
rs

Pe
rc

ep
tr

on
N

eu
ra

lN
et

SV
M

B
ag

ge
d

1
67

%
68

%
70

%
63

%
70

%
55

%

40
17

32
33

38
34

2
67

%
75

%
76

%
70

%
77

%
67

%

14
,4

0
34

,4
0

0,
36

32
,5

1
24

,3
6

33
,4

3

3
70

%
76

%
79

%
73

%
80

%
73

%

39
,4

0,
43

33
,3

8,
40

10
,1

6,
44

17
,3

2,
43

1,
40

,4
7

21
,4

1,
47

4
70

%
75

%
80

%
76

%
80

%
74

%

1,
2,

41
,4

6
0,

15
,3

8,
39

29
,3

4,
37

,4
4

22
,2

5,
33

,4
3

0,
39

,4
0,

46
10

,1
4,

43
,4

7

5
70

%
78

%
81

%
76

%
81

%
76

%

14
,3

2,
40

,4
1,

51
16

,3
4,

39
,4

0,
44

0,
43

,3
6,

37
,3

9
15

,2
4,

36
,4

4,
45

23
,3

8,
39

,4
6,

51
14

,2
1,

29
,3

9,
47

6
70

%
77

%
81

%
73

%
82

%
76

%

15
,3

3,
39

,4
0,

41
,5

1
29

,3
4,

37
,3

9,
40

,4
4

29
,3

3,
34

,3
6,

38
,4

3
0,

1,
24

,3
3,

36
,4

1
1,

2,
23

,4
1,

46
,4

7
10

,1
5,

21
,3

9,
40

,4
6

34
(a

ll)
66

%
64

%
66

%
61

%
63

%
66

%

Ta
bl

e
4.

3:
C

la
ss

ifi
ca

tio
n

re
su

lts
(F

1-
sc

or
e

in
fo

ur
-f

ol
d

cr
os

s-
va

lid
at

io
n)

of
th

e
36

cl
as

si
fic

at
io

n
sy

st
em

s
as

co
m

bi
na

tio
ns

of
cl

as
si

fic
at

io
n

m
et

ho
d

(c
ol

um
n)

an
d

nu
m

be
ro

fu
se

d
IM

U
se

ns
or

s
(r

ow
)t

ha
tl

ea
d

to
th

e
be

st
F 1

-s
co

re
s

am
on

g
al

lp
os

si
bl

e
sy

st
em

s
w

ith
th

e
sa

m
e

nu
m

be
ro

f
se

ns
or

s.
E

ac
h

ce
ll

no
te

s
th

e
se

ns
or

po
si

tio
ns

(s
ee

Fi
gu

re
4.

12
fo

r
re

fe
re

nc
e)

to
ge

th
er

w
ith

th
e

ac
hi

ev
ed

F 1
-s

co
re

.
T

he
re

su
lt

fo
r

ea
ch

cl
as

si
fic

at
io

n
m

et
ho

d
op

er
at

in
g

on
al

l3
4

se
ns

or
s

is
gi

ve
n

in
th

e
la

st
ro

w
as

a
ba

se
lin

e.
N

ot
e

th
at

th
e

nu
m

be
rs

de
no

te
m

ar
ke

rp
os

iti
on

in
de

xe
s

of
th

e
M

M
M

re
fe

re
nc

e
m

ar
ke

r
se

t(
th

at
tr

an
sl

at
e

to
em

ul
at

ed
IM

U
po

si
tio

ns
)

an
d

th
us

ca
n

be
hi

gh
er

th
an

th
e

nu
m

be
r

of
34

se
ns

or
s.

T
he

re
d

an
d

gr
ee

n
ce

lls
co

rr
es

po
nd

to
th

e
re

d
an

d
gr

ee
n

se
ns

or
po

si
tio

ns
de

pi
ct

ed
in

Fi
gu

re
4.

15
.T

ab
le

ad
ap

te
d

fr
om

[S
te

ff
an

et
al

.2
01

7]
,©

20
17

IE
E

E
.

109

4 Disturbance Estimation and Stability Classification

an even better result of 68% when trained on the single best sensor alone.
Most of the classification systems show a relatively steep increase in perfor-
mance when adding a second and a third sensor, exemplified by the SVM
that improves from an F1-score of 55% in the single sensor case to 73%
when used with three sensors. For more than three sensors, performance
often stagnates or even decreases, exemplified by the Bayes classifier that
performs equally well at an F1-score of 70% for 3, 4, 5 and 6 sensors. Only
the Neural Net shows an improvement of one percentage point for the step
from five to six sensors, with all other classifiers either stagnating or even
degrading in performance during this step. An explanation for this observa-
tion could be what is commonly referred to as the Curse of Dimensionality.
As the number of features increases the feature space exponentially expands,
necessitating an ever larger amount of training data to appropriately fit high-
dimensional models. The training data eventually becomes too sparse, and
model performance decreases. This emphasizes the need for rigorous fea-
ture selection, as it was carried out in this study.
Another interesting observation is that the information about dynamic sta-
bility conveyed in the sensor signals is not cumulative, but a property of the
specific combination of sensors used. That is to say that the optimal set of
n sensors is in general not a subset of the optimal set of n+m sensors. An
example for this is the Bagged-kNN classifier, for which the best single sen-
sor configuration consists of a sensor at position 32. However, this sensor
position is not included in any of the other optimal configurations with 2,
3, 4, 5, or 6 sensors. This indicates that, while it is time consuming, an ex-
haustive search over all possible configurations must be performed in order
to find the optimal system. Simply searching for the best sensor to add to an
already evaluated setup is not likely to lead to the best performing system.
It is furthermore noteworthy that the questions of the absolute best (i. e.
most informative) sensor location cannot be answered in isolation, only in
conjunction with the classification algorithm being used. All of the six clas-
sifiers ’choose’ a different sensor for the single sensor setup, even located

110

4.3 Dynamic Stability Estimation with Multiple IMUs

on different body parts. While the Bayes and the kNN classifier choose
a sensor on the leg, the neural network chooses one on the torso, and the
remaining three choose a sensor on the arm.

4.3.3 Best Classification System

Of all the classification systems that were investigated, the neural network
with access to six sensors at locations 1, 2, 23, 41, 46 and 47 performs
the best with an F1-score of 82%. Notably, and in congruence with the
observations stated above, reducing the number of sensors down to three
(replacing the four sensors at locations 2, 23, 41 and 46 by a single sensor
at location 40) leads ot a performance drop of only two percentage points
down to 80% (which is still the overall third best performance).

Figure 4.15: Sensor placements (large blue dots) for the best classification system based on a
neural network classifier operating on the data of six sensors (green circles), and
for the best setup with only three sensors (red circles), also based on a neural
network (adapted from [Steffan et al. 2017], © 2017 IEEE).

111

4 Disturbance Estimation and Stability Classification

This allows the conclusion that the neural network is the best suited classi-
fication algorithm for this task, and that even with as little as three sensors,
results almost en par with the overall best system can be achieved. The sen-
sor placements for both systems (six sensors and three sensors) are depicted
in Figure 4.15.
With the reduced system, the dynamic stability can be assessed virtually
instantly (at 100 Hz), well before a fall is inevitable. Inference of the neural
network model with three sensors takes an average of 1.45 ms on an Intel

Core i7 CPU.

4.4 Summary and Review

This chapter introduced and validated the hypothesis that the first step in re-
acting to external disturbances, namely the perception of those disturbances
and the resulting instable state, can be achieved with a small set of sensors.
The proposed sensor setups are more specific than those commonly used
for humanoid state estimation, and the proposed methods are fast. View-
ing the human capabilities for balancing and push recovery as a remarkable
and valuable source of information and inspiration for research of humanoid
balance motivates the utilization of data captured in human push recovery
trials.
First, it was shown that even a single, body-mounted inertial sensor (IMU)
can be sufficient to sense the occurrence, the direction and the intensity of a
push that an initially standing human is subjected to, and methods therefore
were presented. It was shown that the perceived push intensity can indicate
which strategy the human will choose to mitigate the push, i. e. either bal-
ancing in place or taking a recovery step. This insight can be leveraged for
humanoid push recovery.
Secondly, a method was presented that enables a humanoid robot, equipped
with F/T sensors in its ankle joints, to perceive the action line of a force that
is exerted on arbitrary locations along its body. This extends the previously

112

4.4 Summary and Review

developed IMU-based capabilities to perceive the direction of the force, and
hence can enable a robot to react more efficiently. The proposed method
was validated on the ARMAR-4 humanoid robot. The IMU-based method
and the F/T sensor-based method can be regarded as complementary: While
a gravity-compensated acceleration signal can only be obtained in dynamic
situations, the correct force line estimation relies on the assumption that
dynamic effects are negligible. A combination of both methods is therefore
a promising approach for detecting both, dynamic and static disturbances.
Lastly, building on the insights gained in the first part, a study on using
supervised machine learning techniques for building a system that detects
the necessity of push recovery actions from body worn inertial sensors even
during dynamic locomotion was presented. This investigation was based
on 50 recordings of human locomotion that were disturbed in a way that
required significant recovery actions, but did not lead to falls. An exhaus-
tive search to identify the ideal number of sensors, their ideal placement
and the most suitable classification algorithm was conducted. The results
indicate that a neural network with access to the data of only three inertial
sensors on the human body can detect situations in which a human initiates
active push recovery actions. A system like this, trained on human expert
knowledge, together with disturbance estimation methods described earlier,
can help humanoid robots and wearable assistive devices (such as robotic
exoskeletons) to initiate successful push recovery actions when necessary,
with minimal computational demands.
A notable feature of the presented classification method is the fact that it
treats every frame individually. Future work could explore the possibility
to operate on a window of a certain number of consecutive frames instead,
potentially degrading the reaction time but increasing the overall F1-score,
as individual outliers could be detected and corrected.

113

5 Whole-Body Postural Balancing

Balancing in place by dynamically changing the body pose without taking
a step, i. e. Postural Balancing, is the preferred human reaction to compara-
tively weak pushes. There are several advantages of postural balancing that
motivates its priority over stepping. These advantages are valid for humans,
for wearable assistive devices and for humanoid robot applications:

• Postural balancing takes place on footholds that are already known
and proven to be stable, eliminating the risk of stepping on possibly
unstable footholds (e. g. when traversing debris).

• Postural balancing can be performed in confined areas (e. g. close to
a wall), where footholds required for stepping might not be available.

• The mechanical stress on the system (human or humanoid) associated
with postural balancing is lower compared to the impact of a step.

This chapter therefore investigates the problem of robotic postural balancing
and contributes to the ongoing research on how to devise an efficient (i. e.
computationally light-weight) controller that can stabilize a humanoid robot
after a push disturbance by generating whole-body motions. Many state-of-
the-art methods address the postural balancing problem by generating joint
torques for the humanoid robot by means of non-linear online optimization,
formulated as a quadratic program (QP) that minimizes some notion of in-
stability (see Section 3.3). While these methods are promising, their reliance
on very accurate robot models and on the availability of powerful on-board
computation hardware to solve a high-dimensional QP in real-time at high
frequencies can be a significant hindrance to their application.

115

5 Whole-Body Postural Balancing

To alleviate the problematic need for powerful computational resources, at-
tempts have been made to use linear optimal control theory for whole-body
postural balancing, specifically linear quadratic regulators (LQR), notably in
[Mason et al. 2014] and [Mason et al. 2016]. An LQR for whole-body bal-
ancing can be optimized offline and then executed on the robot in a real-time
control loop. Since executing an LQR at runtime essentially only requires to
perform a single matrix multiplication at each time step, the computation re-
quired is vastly smaller than in the aforementioned methods based on online
optimization (see Section 2.3). This dramatic reduction in computational
complexity is what makes this approach so interesting. However, applying
linear control methods to whole-body postural balancing is not trivial, since
the equations of motion of a humanoid robot are non-linear. When the robot
is in ground contact its motion is unilaterally constrained (i. e. it can push
but not pull on the ground), which is another fundamentally non-linear char-
acteristic that needs to be reflected in the equations of motion. Horizontal
stiction and friction forces in the ground contact also add to the overall non-
linearity. While linearizing the unconstrained equations of motions around
a nominal posture is straight-forward, finding a suitable linear model for
the ground contact constraints that is sufficiently descriptive for the synthe-
sis of capable linear balance controllers is still an open problem and has not
been thoroughly addressed in the literature. The first main research question
addressed in this chapter is therefore

1. Can a better linear ground contact model for the derivation of a
whole-body balancing LQR improve its performance?

Once a linear model for the robot dynamics and ground contacts is formu-
lated, the LQR method with weight matrices Q and R can be used to derive
the state-feedback matrix K (see Equation 2.19 and Equation 2.20). This
state-feedback controller with feedback gain K will be locally optimal for
the linearized model, but not necessarily for the real, non-linear robot dy-
namics. To tune this controller in a way that makes it successfully applicable

116

5 Whole-Body Postural Balancing

to the non-linear control problem one can systematically manipulate the en-
tries of the design weight matrices Q and R in the design phase of the con-
troller. This concept of weight-optimized LQR was described in the context
of robotics by [Trimpe et al. 2014] and demonstrated on a low-dimensional
robotic application (balancing a non-linear inverted pendulum) in [Marco
et al. 2016]. In this thesis, it will be investigated whether this general ap-
proach can be used to optimize the design weights of a postural balancing
LQR synthesized for a linear model that can then be applied to an accurately
simulated, non-linear robot model. The second main research questions is
therefore

2. Can the design matrices Q and R be systematically optimized to im-
prove the performance of the resulting LQR postural balance con-
troller for a non-linear simulated robot?

Eventually, both questions will be addressed in parallel by optimizing Q
and R for different ground contact models. The final goal is to derive a
linear balance controller that can stabilize the simulated ARMAR-4 robot by
utilizing its entire body, i. e. the legs, the torso and the arms (see Figure 5.1).
Table 5.1 summarizes the challenges of LQR balancing control. Dedicated
contact modeling and weight optimization are envisioned to mitigate these
challenges.

Benefits Challenges

Highly efficient

• Only locally optimal due to linearization

• No explicit constraint handling

• No explicit consideration of the floating base

Table 5.1: The main benefit and the main challenges in applying linear balance control with the
LQR method to the problem of whole-body balancing.

117

5 Whole-Body Postural Balancing

Figure 5.1: Preview of the intended result of the method presented in this chapter: The
ARMAR-4 robot performing coordinated postural balancing motions with its legs,
arms and torso to recover its balance after a frontal push (adapted from [Bäuerle
et al. 2018], © 2018 IEEE).

The simulation-based evaluation embedded in the proposed optimization cy-
cle requires a high number of trials in a physically consistent dynamics sim-
ulation. Due to small integration timesteps these simulations are very time-
consuming, especially for robot models with a high number of DoFs (such
as ARMAR-4 with 63 DoF in total). The proposed methods are therefore
initially developed and evaluated using a simplified 2D humanoid model
with only three DoFs (ankle, knee, hip) to make simulation and optimiza-
tion more tractable (see Figure 5.8).
Based on the results obtained from the simplified model, the method is then
generalized to 3D and a dual ground contact situation, and extended to take
into account the possibility of swinging the arms. This extension is applied
to the ARMAR-4 robot model and validated in simulated experiments. Parts

118

5.1 LQR for Whole-Body Balancing

of the Simulated Annealing based LQR weight optimization for whole-body
balancing have been presented in [Bäuerle et al. 2018].

5.1 LQR for Whole-Body Balancing

Designing an LQR controller for a robot with m DoFs and n state variables
(i. e. joint angles and velocities) requires three inputs:

1. A linear state space representation of the open-loop system dynamics

in the form of the two matrices A ∈ Rn×n and B ∈ Rm×m (see Equa-
tion 2.17)

2. The state cost matrix Q ∈ Rn×n to penalize the deviation from the
desired system state

3. The control weight matrix R ∈ Rm×m to penalize the control action

In the case of a humanoid robot as an underactuated system, the state vector
x ∈ Rn×1 contains the positions and velocities of the k actuated DoFs of its
joints and the v unactuated DoFs of the floating base.
For the here considered simplified 2D model with m = 6 DoFs (k = 3 actu-
ated joints and v = 3, i. e. position and orientation of the floating base), the
dimensionality n of the state vector x becomes

n = 2m = 12. (5.1)

These relations are visualized in Figure 5.2. With n = 12 even in this sim-
plified case, Q has 144 and R has 36 entries to be optimized. The quadratic
growth of the number of entries of the weight matrices in the number of
states lets optimizing the design weights of an LQR quickly become in-
tractable. A common simplification is therefore to only take the diagonal

entries of Q and R into account, the number of which is only linearly de-
pendent on the number of states (see e. g. [Bryson and Ho 1975], [Lewis

119

5 Whole-Body Postural Balancing

et al. 2012]). The off-diagonal elements remain zero in this case. Since
this simplification significantly reduces flexibility in the controller design
process, the next sections will introduce a method how physically mean-
ingful (w. r. t. balancing) off-diagonal elements of Q can be constructed as
diagonal elements in subspaces of Q.

Figure 5.2: Composition of the state vector x of the simplified planar humanoid model with
three actuated DoFs (hip, knee, ankle) and three unactuated DoFs of the floating
base. Note that the hip is an actuated DOF, but the global orientation of the floating
base that coincides with the hip is unactuated.

5.2 Cost Terms

The generic LQR cost with weight matrices Q and R is given in Equa-
tion 2.20. One of the underlying ideas of this chapter is that the gap between
an LQ-controller and the physical, non-linear plant can be bridged by opti-
mizing the entries of Q and R. This section will specify which entries are
optimized and how they are chosen.

120

5.2 Cost Terms

5.2.1 State Cost

The standard LQR-formulation with diagonal state cost matrix Q is generic
in the sense that it directly penalizes the deviation from a desired system
state x, but no task-specific linear combinations of these deviations. For
a mechanical system such as a balancing humanoid robot, the state x con-
tains the joint positions q and velocities q̇ = 0 of a nominal stable pose (see
Figure 5.2).
However, penalizing the individual state-deviations does not directly incen-
tivize the resulting controller to balance the robot, as long as no notion of
stability is encoded in the structure of the state cost matrix (and hence in
the objective of the controller). To reduce the dimensionality of the prob-
lem but still allow the optimization to find a capable balancing controller, a
small number of additional, highly balancing-specific terms are added to Q.
These additional terms lead to a pre-structured cost matrix Q that is better
suited to produce balancing controllers than a mere diagonal, but has less
entries and can hence be optimized more efficiently than the complete Q.
The idea behind creating such task-specific cost terms is that any quantity
that can be represented as a linear combination of the state variables can be
penalized by a task-specific diagonal cost matrix [Mason et al. 2014]. To
this end, a transformation matrix T ∈ Rk×n transforms the system state into
a more task specific quantity, which is penalized by a task-specific diagonal
cost matrix Qt ∈ Rk×k and transformed back into the space of Rn×n of the
state cost matrices by TT :

J =
∫

∞

0
(x(t)T (TT QtT)x(t)+u(t)T Ru(t))dt (5.2)

Using this method, task specific costs can be introduced by means of phys-
ically meaningful entries on the diagonals of the task-specific weight ma-
trices Qt rather than by means of off-diagonal entries in Q itself. As the
resulting weight matrices are all elements of Rn×n they can be summed to

121

5 Whole-Body Postural Balancing

form a final overall cost matrix Q f , including a nominal cost matrix Q and
an arbitrary number p of task-specific cost-terms Qi such that

Q f = Q+TT
1 Qt,1T1 + ...+TT

p Qt,pTp p ∈ N (5.3)

In the work presented here, two such task-specific cost terms are added,
namely on the deviation of the position of the CoM and on the overall angu-
lar momentum, following the suggestion of an LQR-momentum controller

brought forward in [Mason et al. 2014]. The resulting final cost matrix Q f

thus incorporates the pose cost Q0, the CoM cost Q1 and the angular mo-

mentum cost Q2 matrices such that

Q f = Q0 +Q1 +Q2. (5.4)

The following sections will elaborate on these three components of Q f .

Pose Cost

The diagonal elements of Q0 that penalize deviations from the nominal state
(q and q̇) will be called the pose cost. A cost term exclusively associated
with the joint velocities q̇ is already included in the angular momentum
cost (see Equation 5.7). The velocity-related entries of the pose cost will
therefore not be part of the optimization and remain at a constant value of 1.
Only the pose cost entries associated with q will be part of the optimization,
and Q0 is thus defined by the m entries of the diagonal pose weight matrix
QP and structured as follows:

Q0 =

QP 0

0 diag(1) ∈ Rm×m

 ∈ Rn×n (5.5)

122

5.2 Cost Terms

CoM Cost

The position of the CoM is an important quantity in the context of humanoid
balancing. If the robot is at rest, positioning the CoM over the support poly-
gon ensures static stability. The CoM position is therefore added as an ob-
jective to the proposed controller in terms of a weight matrix that penalizes
any horizontal deviation of the CoM from the center of the support polygon
(or, in the 2D case, from the center of the foot). The initial state x0 of the
robot is chosen such that the CoM of the resulting pose lies directly over
the center of the support polygon, and the deviation from this positions is
penalized. The position rCoM of the CoM can be computed by multiplying
the first m elements of the state vector x (the configuration vector q) and the
respective kinematic transformation matrix TCoM(q) as

rCoM = TCoM(q)q. (5.6)

Since TCoM(q) is in general non-linearly dependent on q, the constant trans-
formation matrix TCoM(q0) formed at the pose of the nominal state x0 is
used, making this transformation only locally correct. The position of the
CoM can, once computed with Equation 5.6, be weighted in the cost func-
tion by the diagonal elements of the CoM weight matrix QCoM to form a
weight matrix Q1 with

Q1 =

TT
CoM(q0)QCoMTCoM(q0) 0

0 0

 ∈ Rn×n (5.7)

Angular Momentum Cost

Angular momentum, commonly denoted with the letter L, is a dynamic
quantity of mechanical systems that can be intuitively understood as the
product of the moment of inertia and the angular velocity of a rigid body (see
Equation 2.4). Including the objective of minimizing the angular momentum

123

5 Whole-Body Postural Balancing

into balance control is motivated by the finding that the ground reaction
forces exerted by humans during dynamic walking can largely be explained
by a zero angular momentum hypothesis [Herr and Popovic 2008], imply-
ing that regulating the angular momentum to 0 is beneficial for human and
humanoid balancing. This insight has already been applied to whole-body
humanoid balancing, e. g. in [Lee and Goswami 2012].
In contrast to the CoM position, the angular momentum is dependent on the
specific reference point it is computed for. In the case of a balancing system,
a meaningful and commonly used reference point for the angular momen-
tum is the system’s overall CoM, in which case the angular momentum is
referred to as the centroidal momentum and can be computed from the sys-
tem state by multiplication with the centroidal momentum matrix AG:
„The centroidal momentum of a humanoid robot is the sum of the individual

link momenta, after projecting each to the robot’s Center of Mass (CoM).

Centroidal momentum is a linear function of the robot’s generalized veloc-

ities and the Centroidal Momentum Matrix is the matrix form of this func-

tion.“[Orin and Goswami 2008].
The vector q̇ of generalized velocities is the second half of the state vector
x, and with the relationship described in [Orin and Goswami 2008], the
angular momentum can be computed as

LCoM = AG(q)q̇. (5.8)

Analogously to TCoM(q), the non-linear dependency of AG on q is elim-
inated by using the constant centroidal momentum matrix AG(q0) of the
nominal pose x0, and the cost of non-zero angular momentum can be ex-
pressed by the diagonal elements of a dedicated weight matrix QL. Un-
der the above-mentioned linearization, the cost term Q2 in the overall LQR

124

5.2 Cost Terms

optimization criterion related to the angular momentum is independent of
the joint positions and can consequently be expressed as

Q2 =

0 0

0 AT
G(q0)QLAG(q0)

 ∈ Rn×n (5.9)

5.2.2 Actuation Cost

The diagonal elements of R result in a direct penalization of the control ef-
fort exerted on the respective joint. For a system like the ARMAR-4 model
where every joint is individually actuated and there is no actuation coupling,
the off-diagonal elements of R can generally be left zero and only the diag-
onal elements that directly penalize the actuation need to be considered.
Thus, the actuation weight matrix R becomes

R = diag(ri) ∈ Rm×m, i = 1...m (5.10)

with ri being subject to optimization.

Note on Floating-Base Systems It should be noted that the LQR de-
sign method is intended for fully actuated systems, and that the controller
will produce control actions for the unactuated DoFs of the floating base
(i. e. forces and torques), which the underactuated robot cannot exert. This,
in addition to the non-linearity of the robot, is a structural mismatch between
the controller and the real system that needs to be addressed by weight opti-
mization. The diagonal of the matrix R contains elements that are in charge
of appropriately penalizing these physically infeasible control actions.

Note on Constraints The LQR formalism, in contrast to control meth-
ods based on online optimization such as MPC or constrained QPs, is not
able to directly take into account constraints on the state or the control. In

125

5 Whole-Body Postural Balancing

the case of humanoid postural balancing, state constraints are the angle and
velocity limits of the joints, and control limits are the maximum joint torques
that can be provided by the robot’s actuators. When designing the LQR,
these constraints can only implicitly be taken into account by weighting the
state deviation and control effort appropriately. During controller evalua-
tion, the control action can be limited to the maximum admissible level, and
it can be validated whether the state constraints are observed.

5.3 Linear Contact Models

The work presented in this chapter is based on the hypothesis that the devi-
ation between the physical ground contact and any linearized representation
thereof in the linear model of the robot dynamics (i. e. the equations of mo-
tion) significantly influences controller performance. This motivates a thor-
ough investigation of different ground contact models and their influence
on the resulting controller performance. To this end, two contact models
that are novel in the context of linear balancing controllers are introduced,
namely Springs and High Inertia, and compared to the established Clamped

model of a rigid coupling between the robot and the ground (see Figure 5.3).

(a) Clamped (b) Springs (c) High
Inertia

Figure 5.3: Three different ground contact modeling approaches: (a) clamped to the ground, (b)
springs and (c) high foot inertia (adapted from [Bäuerle et al. 2018], © 2018 IEEE).

126

5.3 Linear Contact Models

These models are used exclusively in the design phase of the balancing con-
troller. All evaluation experiments are conducted in a simulated setup in
which the ground contact is modeled in a non-linear manner, or, to put it in
a more illustrative way: The controllers are designed in three different linear
worlds, but evaluated in the same non-linear world.

5.3.1 Clamped

As the feet of the robot do not change their position during postural balanc-
ing, a common representation of the ground contact is a fixed connection
to the ground, i. e. a strict pose constraint on each foot that does not allow
it to move with respect to the world frame. This model will be referred
to as the clamped contact model (see Figure 5.3(a)). While conceptually
simple, this model has the significant disadvantage that the robot can ex-
ert arbitrarily large forces and moments on the ground that are not reflected
in the state vector, and can thus not be prevented by any of the state cost
terms. This incites the balancing controller to predominantly make use of
the ankle strategy1 (see Section 3.3), which is sufficient in the case of arbi-
trarily high possible moments between the feet and the ground, as opposed
to whole-body motions including the legs, hips and arms to compensate
the disturbance which are necessary in reality. This effect can be seen in
Figure 3.5 taken from the work of [Mason et al. 2014], where the overall
body-configuration remains largely the same during push recovery, while
balancing is mainly achieved by relying on the ankle strategy.

5.3.2 Springs

Replacing the stiff coupling between the foot and the ground, i. e. the rigid
pose constraint, by linear elastic elements (springs) can mitigate some of the
problems resulting from the clamped contact model. A linear spring with a

1 i. e. relying on the ankle joints and keeping the rest of the body stiff

127

5 Whole-Body Postural Balancing

given stiffness ci is added between the world frame and the foot for every
translational and rotational DoF, resulting in three springs for the planar 2D
case (see Figure 5.3(b)) and six springs per foot for the 3D case. The springs
simply add additional generalized forces fi to the equations of motion by
means of

fi = ciAt,i(q0−q) (5.11)

for the case of translational DoFs, where the matrices At,i transform de-
viations from generalized coordinates to foot coordinates and q0 are the
coordinates of the nominal pose around which the dynamics are linearized.
The springs thereby introduce a linear relationship between the forces and
moments at the ground contact, which are not part of the robot state, and
the generalized robot coordinates, which are part of the robot state. By
penalizing the foot rotation (which does not exist in the clamped contact
formulation) in the state costs, the ankle torque or the moment that the robot
exerts on the ground can be penalized implicitly, and thus the controller can
be incentivized to limit this moment. A similar consideration goes into the
translational DoFs. By allowing the foot to translate, state cost terms can be
found that penalize this translation and hence limit horizontal forces, which
is crucial in the real-world to stay within friction limits and avoid slippage.
Ultimately, the non-rigid contact formulation introduces some, albeit im-
plicit, information about the contact forces and torques into the controller
design process that can be exploited (in the optimization process described
later) by finding state and actuation cost terms that result in a controller that
will keep those forces and moments sufficiently small.

5.3.3 High Inertia

Alongside the hypothesized benefits of the linear spring-based contact
model, there are two main disadvantages associated with it:

• Each spring is characterized by its stiffness ci, adding three additional
stiffness parameters to the model in the 2D case and six additional

128

5.3 Linear Contact Models

stiffness parameters per foot in the 3D case that enlarge the parameter
space for the optimization described in Section 5.4.

• Modeling springs for the foot deviations as described in Equation 5.11
requires providing the linearized explicit matrices At,i, which adds
complexity to the equations of motion.

Another linear ground model is therefore proposed that, although being
more abstract, has similar virtues as the spring model and is arguably more
elegant and easier to implement. It only consists of an artificially inflated
mass of the foot, schematically depicted in Figure 5.3(c). This method of
representing the ground contact will be called the High Inertia model, as
the increased mass results in high inertial forces and moments at and around
the feet, which can be viewed as an emulation of the actual ground reac-
tion forces and moments. In addition to providing emulated contact forces
and moments, this formulation still allows the feet to rotate and translate
in space (similar to the spring model), providing a relation between exerted
forces and moments on the one hand and state deviations on the other. These
deviations in the state vector can be penalized by the state cost term. This
model only requires the adaptation of one scalar parameter in the equations
of motion, namely the foot mass. Moreover, it is hypothesized that any
sufficiently high mass (on the order of the overall nominal2 robot mass) is
an appropriate choice, and hence the mass parameter does not need to be
included in the optimization.
In contrast to the spring model, the relationship between generalized forces
and displacements however is not as intuitive, as deviations only occur over
time caused by the force-induced accelerations.
Since the high inertia model is not able to reproduce any static forces that
can act to compensate gravity, a constant vertical force fg acting at the center
of the foot and equating to the gravitational force caused by the overall robot

2 nominal meaning without additional foot mass

129

5 Whole-Body Postural Balancing

mass mr and the gravitational acceleration g is added to the equations of
motion with

fg = mrg. (5.12)

This contact emulation is simple and elegant, and can very easily be
extended to multiple ground contacts by increasing the respective contact
links’ masses and distributing the gravity-compensating force fg over those
links.

5.4 Optimization of LQR Design Weights

The main hypothesis of the work presented in this chapter is that the per-
formance of an LQR balance controller with the task-specific cost terms
described in Section 5.2 can be improved by systematically optimizing the
entries of these cost terms. The target for which parameters are optimized
is the simulated robot’s resilience against frontal pushes, expressed by the
transmitted impulse p, measured in Ns. Since every optimization cycle re-
quires the run of at least one evaluation experiment in a dynamics simulator,
the optimization is very time consuming. The evaluation of the proposed
methods is therefore carried out by making use of the planar 2D robot model
with 3 actuated DoFs rather than using the much more complex 3D model
of the ARMAR-4 robot, which will be used for later validation.

5.4.1 Optimization Cycle

Starting with a random initial distribution of the free parameters of the LQR
weight matrices, a full state feedback LQR controller (i. e. a gain matrix K)
is synthesized by solving the discrete algebraic Ricatti equation (DARE),
symbolized by the top box in Figure 5.4 (’LQR controller synthesis’). This
process is dependent on the type of contact model used, as the contact model
is reflected in the linearized robot model used for controller synthesis. In the
next phase of the optimization cycle, the newly found controller is evaluated.

130

5.4 Optimization of LQR Design Weights

This is achieved through iterative simulated experiments, in which the sim-
ulated robot is pushed with increasing intensity until it falls over, depicted
in the right box of Figure 5.4. This evaluation is independent of the con-
tact model, i. e. the same, non-linear simulation is used to evaluate each
controller independently of the contact model that underlies its synthesis.
The maximum push intensity that the simulated robot is able to withstand is
considered the controller performance. This performance measure, together
with the weight parameters that define the controller, are then fed to the opti-
mizer (left box in Figure 5.4), which generates a new set of design weights,
i. e. entries of the cost matrices. This cycle repeats until the optimization
converges or a pre-defined maximum number of iterations is executed.

Figure 5.4: Iterative LQR weight parameter optimization through Simulated Annealing and
simulation-based evaluation.

By far the most computation time within this cycle is needed for the iterative
simulation-based evaluation experiments, which is why a simplified robot
model that can be simulated faster significantly speeds up this optimization.

5.4.2 Simulated Annealing

The mapping from the weight parameters of the LQR synthesis to controller
performance for which the optimization shall find the global optimum is un-
known, and so is its gradient. This necessitates a gradient-free, sampling

131

5 Whole-Body Postural Balancing

based optimization technique to generate new weight parameter candidates
in the optimization cycle. The fact that evaluating these candidates in the dy-
namics simulation is expensive adds the requirement of sample-efficiency.
A number of techniques to address this class of problems exists3. In this
work, Simulated Annealing was chosen as it satisfies all aforementioned cri-
teria.
Simulated Annealing is a meta-heuristic for the generation of new candi-
date solutions, given previous candidate solutions and their performance (or
cost). Its functioning is inspired by the behavior of molecules in metal-
lurgical heat-treatment processes (annealing), or more precisely during the
cool-down phases of these processes. This behavior is governed by a de-
creasing temperature parameter. Simulated Annealing as an optimization
procedure can be summarized by the following two steps:

1. For a given initial candidate solution W (a set of LQR weights in the
presented case), the performance p (i. e. the maximum withstandable
push) is sampled.

2. Repeat until termination with decreasing temperature T :

a) A new solution candidate Wnew in the neighborhood of the last
candidate is chosen and evaluated.

b) If the new candidate Wnew results in better performance pnew

than its predecessor W , Wnew replaces W . If Wnew also leads
to the best performance seen so far, it is saved as Wopt . If it re-
sults in worse performance than W , it only replaces W with a
certain probability ε < 1 that depends on its performance pnew,

3 e. g. Genetic Algorithms, Particle Swarm Optimization or Pattern Search, to name a few
alternatives

132

5.4 Optimization of LQR Design Weights

the performance p of the previous candidate W and the current
temperature T such that the acceptance probability ε is

ε = exp
(

pnew− p
T

)
. (5.13)

Pseudocode for the implementation of Simulated Annealing for LQR weight
optimization is given in Algorithm A.4 in the appendix.
The essence of Simulated Annealing is captured in Equation 5.13. Note that
εn is only computed when p > pnew and hence the argument of the expo-
nential function is always negative, confining the acceptance probability to
the range 0 ≤ ε ≤ 1. At an initially high temperature, ε is close to 1, and
Simulated Annealing resembles a random walk, focusing on exploration of
the solution space, virtually accepting every new solution candidate, be it
better or worse than the previous one. This behavior ensures avoiding stag-
nation in local optima. As the temperature decreases so does ε , and the
procedure becomes greedier, until it eventually resembles the hill-climbing
meta-heuristic, only accepting candidate solutions that actually improve per-
formance, ensuring convergence towards an optimum.
As with other gradient-free, stochastic optimization techniques, Simulated
Annealing is not guaranteed to find the global optimum. However, starting
from a high temperature and decreasing it slowly makes it less likely to
prematurely end up in a local optimum (like purely greedy hill-climbing
would).

5.4.3 Parameter Space of the 2D Model

The design weights of the balancing controller, which form the free param-
eters in the optimization, are the state cost Q described in Section 5.2.1 and
the actuation cost R described in Section 5.2.2. The planar 2D model with
k = 3 and m = 6 and an overall mass of 7.8kg has three unactuated DoFs
of the floating base and three actuated joints. This leads to six entries in the

133

5 Whole-Body Postural Balancing

state vector that define the pose q and hence six entries along the diagonal
of the pose cost Qp (see also Figure 5.2 for clarification). The planar posi-
tion of the CoM can be described by two spatial coordinates and hence the
CoM cost QCoM has two entries on its diagonal. The angular momentum
only exists around one axis, turning the angular momentum cost QL into a
scalar parameter. The three actuated DoFs afford an actuation cost matrix
R with three entries on the diagonal. Overall, the LQR design weight space
consists of 15 parameters that will be optimized. The optimization will be
carried out in the same manner for all three contact models described earlier.
In addition, the stiffness parameters in the spring contact model are also
parameters to be optimized, leading to an 18-dimensional space of free pa-
rameters in the case of the spring contact formulation. Table 5.2 lists all free
parameters, their type and their dimensionality.

Type Name #Parameters

State cost

Posture Qp 6

CoM position QCoM 2

Momentum QL 1

Actuation cost R 6

(Contact) (ci) (3)

15 (18)

Table 5.2: The 15 free parameters in the LQR optimization for the planar 2D model (see Sec-
tion 5.2 for further explanations). The stiffness parameters are only part of the opti-
mization when the spring contact model is considered, leading to 18 free parameters
in this case.

5.4.4 Parameter Space of the 3D Model

Only accounting for the legs, the torso, the shoulder and the arms (i. e. the
major joints), the ARMAR-4 robot with an overall mass of 73.9 kg has 30

134

5.4 Optimization of LQR Design Weights

actuated and six unactuted DoFs, as opposed to 3 actuated and 3 unactuated
DoFs in the 2D planar model. Owing to the exponential increase of possi-
ble parameter combinations with the number of DoFs of the robot and the
significant evaluation time due to more complex simulation, it is therefore
necessary to reduce the size of the parameter space of the 3D model. This is
to ensure that the optimization converges within a feasible timeframe (on the
order of weeks on a standard Intel Core i7 CPU). The necessary dimension-
ality reduction of the parameter space is achieved by applying the following
four heuristics:

1. Model reduction: Only a subset of the 30 major DoFs of the robot is
chosen to take part in the balancing motions. These are the six DoFs
per leg, two DoFs of the torso, and two DoFs per shoulder that enable
arm swing, totaling 18 actuated DoFs and the 6 unactuated DoFs of
the floating base.

2. Symmetry exploitation: Taking advantage of the robot’s symmetry
about the sagittal plane, identical state and actuation weights are cho-
sen for the left and right instances of a joint, e. g. both knees share the
same weight parameters.

3. Consolidation: Several joints are grouped and share the same weight
parameters based on their semantic similarity. Concretely, all three
joints of a hip share the same state and actuation cost parameters, as
do the six DoFs of the floating base.

4. Cost Simplification: Although the controller for the 2D model in-
cludes the angular momentum in the cost term, it is omitted in the cost
formulation of the 3D model, eliminating three dimensions from the
parameter space. This is partially motivated by [Mason et al. 2014],
who found that controllers with and without taking the angular mo-
mentum into account show similar performance. The CoM position
is only considered in the frontal and vertical direction. Furthermore,

135

5 Whole-Body Postural Balancing

only the high inertia contact model with constant feet masses is con-
sidered, eliminating the spring parameters from the parameter space.

Applying those heuristics leads to a 20-dimensional parameter space for the
3D model, the entries of which are detailed in Table 5.3.

Type Name #Parameters #Free parameters

State cost
Posture Qp 24 9

CoM Position QCoM 2 2

Actuation cost R 24 9

20

Table 5.3: The 20 free parameters in the controller optimization for the 3D ARMAR-4 model.
The number of parameters is reduced by means of model reduction and simplifica-
tion, and the number of resulting free parameters is further reduced by consolidating
joints and exploiting the robot’s symmetry.

5.4.5 Implementation

The entire optimization cycle depicted in Figure 5.4 was implemented in
MATLAB/Simulink, with the dynamics simulation experiments being exe-
cuted in the SimMechanics simulation environment. Once the equations
of motion are set up and linearized around a stable initial pose, the state
feedback balance control gain matrix K can be obtained by handing the pa-
rameter matrices A and B of the open loop dynamics together with the LQR
weight matrices Q and R to the MATLAB lqr()-routine.
The evaluation of the controller with state feedback K is then carried out in
the dynamics simulation, in which pushes are iteratively increased for each
successive experiment until the simulated robot falls. The pushes are applied
from the front at hip height, and implemented as a rectangular force profile
with a force duration of 500 ms for the planar model and 250 ms for the 3D
model. Figure 5.8 shows several snapshots of the simulation visualization of
the planar robot. The strongest push the root could withstand is returned to

136

5.5 Evaluation in Dynamics Simulation

the Simulated Annealing procedure, implemented in MATLAB, to generate
the next set of design weights to be evaluated.

Non-linear Contact Model for Evaluation The ground contact model
in the Simulink simulation is implemented by means of unilateral springs
(105 N

m) and dampers (104 Ns
m) in the vertical direction and viscous friction

(1.5 · 103 Ns
m) in the horizontal direction. Springs and dampers are attached

to the corners of the model’s feet, resulting in two force application points
on the 2D model and four application points per foot for the 3D model. The
vertical damped springs are only active and exclusively pushing the robot
up when the respective point on the foot is below the ground level, mimick-
ing the stiffness of the floor and the robot’s soles. The horizontal viscous
damping is also only active when the respective point on the foot has ground
contact (i. e. is below the floor surface), mimicking the actual contact fric-
tion. The parameters of the ground model are chosen such that a stiff contact
behavior with no visible slip is achieved, and stable and reproducible sim-
ulation results can be obtained. Simulink automatically choses sufficiently
small simulation timesteps well below 1µs to ensure that the simulation is
reproducible even in the presence of very stiff contacts.

5.5 Evaluation in Dynamics Simulation

The goal of the evaluation is to address the two initial main questions, i. e.
to show whether the linear ground contact abstraction has an influence on
the controller performance, and whether the proposed parameter optimiza-
tion cycle can successfully improve balance performance. The quantitative
evaluation is based on the planar 2D model, as it is a sufficient platform
that captures the non-linear robot dynamics and the ground contact, while
allowing for much faster data generation than the 3D model. A similar op-
timization process, over the parameter space described in Section 5.4.4, is
subsequently carried out to validate the feasibility of the approach for the

137

5 Whole-Body Postural Balancing

more complex 3D model of the ARMAR-4 robot and to assess the qualita-
tive characteristics of the resulting balancing motions.

5.5.1 Contact Model

The first question to answer is whether the contact formulation incorporated
in the linearized robot model affects the balance controller performance.

Setup To evaluate the effects of the contact model on the balancing per-
formance in an isolated manner, the optimization cycle depicted in Fig-
ure 5.4 is modified to incorporate fully randomized design weight gener-
ation instead of the Simulated Annealing optimizer, essentially swapping
the Simulated Annealing meta-heuristic for a Random Walk through the pa-
rameter space. The same set of randomized parameters is used to synthesize
and evaluate a controller for each of the three contact models. The controller
performance is not fed back to the parameter generator, but saved for later
analysis. This process is schematically depicted in Figure 5.5.

Figure 5.5: Automated data generation process for isolated contact model evaluation.

138

5.5 Evaluation in Dynamics Simulation

Results Overall, 10,000 random parameter sets for the 2D model were
generated and the resulting controllers were evaluated, requiring 30,000 it-
erative simulated experiments. Figure 5.6 shows a histogram of the balanc-
ing performance for the obtained controllers resulting from the three contact
model types (10,000 controllers per contact model), where only controllers
that could withstand pushes of 3.5 Ns or more are taken into account. Shown
are the numbers of controllers for each contact model that achieve a cer-
tain performance in terms of the maximum push they can withstand, where
higher numbers for stronger pushes indicate a better contact model. Without
active balance control, the model falls from a push of as little as 1 Ns.

Figure 5.6: Results after 10,000 runs of the performance data generation process with random
weight parameters depicted in Figure 5.5. Shown are the numbers of controllers
with a certain performance (performance occurrences) for the three contact models
clamped (blue), springs (orange) and high inertia (gray) (adapted from [Bäuerle
2018]).

The histogram shows distinct differences between the capability of the con-
tact model types to produce good controllers. The spring contact model
produces controllers that perform better in the non-linear simulation envi-
ronment for stronger pushes than the other two contact models. For the
strongest considered pushes of 5 Ns, spring model based controllers are in

139

5 Whole-Body Postural Balancing

fact the only ones that can stabilize the robot, with controllers based on the
clamped model already entirely failing at pushes of 4.5 Ns.
From this analysis it can be concluded that the contact model considered in
the linearized open loop dynamics has in fact an influence on the controller
performance in the non-linear evaluation, and that other models than the
clamped contact model used in the literature lead to better balancing con-
trollers. This is true for both novel contact models considered here, where
the spring contact model leads to the best results, followed by the high iner-
tia contact model.

5.5.2 Optimization

The second main question to answer in this chapter is whether systematic
optimization of the weight parameters, as opposed to choosing them ran-
domly as in Section 5.5.1, can lead to improved controller performance.
To answer this question, the optimization cycle with Simulated Annealing
depicted in Figure 5.4 was run for 10,000 times, for each of the three con-
tact models. The evolution of the current best performance values over the
course of the optimization is shown in Figure 5.7 (note that the horizontal
axis is scaled logarithmically).
It can be seen that for all three contact models, the performance of the cur-
rent best controller improves continuously throughout the optimization pro-
cess. The majority of the improvements are made early on in the optimiza-
tion, with the steepest performance gain during the first 100 iterations, i. e.
in the first 1% of the iterations. While the results continuously improve,
the performance gain slows down significantly during the remainder of the
optimization process.
The final performance after 10,000 iterations of Simulated Annealing is
higher in all three contact model cases than after random parameter sam-
pling by at least 10% (see Table 5.4).

140

5.5 Evaluation in Dynamics Simulation

Figure 5.7: Current best performance (measured by the impulse in Ns of the applied push)
of the balance controllers based on the three investigated contact models over the
course of 10,000 steps of weight parameter optimization with Simulated Annealing
(adapted from [Bäuerle 2018]; see also Figure 5.4).

Model Random Simulated Annealing Improvement

Clamped 4.0 4.5 12.5%

Springs 5.0 5.5 10%

High Inertia 4.5 5.0 11.1%

Table 5.4: Maximum balance controller performance measured in Ns of the applied frontal
push after 10,000 iterations of random parameter selection, and after 10,000 itera-
tions of Simulated Annealing (SA) optimization for all three contact models. The
rightmost column shows the improvement achieved with SA over random parameter
selection.

This leads to the conclusion that the application of systematic parameter
optimization with Simulated Annealing is in fact a successful method to im-
prove the overall push recovery performance of LQR balance controllers, in-
dependent of the underlying linear contact model. These results are further-
more consistent with the results obtained from purely randomized parameter
sampling, as both methods reveal the influence of the contact model on the
overall performance, and show the same ascending order in performance

141

5 Whole-Body Postural Balancing

from the clamped model to the spring model. Figure 5.8 shows a visual-
ization of one of the simulated experiments with the four-link 2D model
executed during simulated controller evaluation in the optimization cycle.

Figure 5.8: The planar 2D model reacting to a frontal push under whole-body LQR control.
Depicted is a sequence of motion frames, temporally spaced 0.2 s apart. The robot
bends its torso backward to compensate the induced angular momentum, and moves
its hip forward to regulate the position of the CoM (taken from [Bäuerle et al. 2018],
© 2018 IEEE).

5.5.3 Validation on the ARMAR-4 Humanoid Robot Model

The two main questions of this chapter, i. e. whether the performance of
a whole-body LQR balance controller can be improved with novel linear
contact models and by systematic optimization of the design weights, were
already answered by evaluation on the planar robot model. Given the suc-
cess of these methods, the modeling and parameter optimization procedure
was additionally carried out to validate their applicability to the more com-
plex 3D robot model of the ARMAR-4 robot. This allows for a qualitative
assessment of the generated motion characteristics and also a more direct

142

5.5 Evaluation in Dynamics Simulation

comparisons to related works in the literature. To achieve results in a rea-
sonable time despite the much more demanding simulation, care was taken
to reduce the number of free parameters of the optimization. Resulting from
this objective, noteworthy differences between the optimization procedure
for the 2D and the 3D model are the exclusion of the angular momentum
from the cost term and the sole investigation of the high inertia contact
model. The parameters that are optimized in this case are listed in Table 5.3.
Similarly to the 2D case, 10,000 iterations of the Simulated Annealing based
optimization cycle were run. The internal evaluation scheme was enhanced
to use an adaptive step-width of the applied pushes, initially using a coarse
step width of 2.5 Ns and a fine-grained iterative impulse reduction in steps
of 0.5 Ns from the first failed attempt.
Despite the much longer optimization time for the simulation as compared to
the 2D model (roughly three weeks on an Intel Core i7 CPU), the process of
finding a successful linear balance controller for the non-linear ARMAR-4
simulation model was successful. The resulting final balance controller can
stabilize the ARMAR-4 model under the influence of push disturbances, uti-
lizing all 18 joints specified in Section 5.4.4 (legs, torso, shoulders) and thus
generating whole-body motions. Figure 5.9(a) shows a motion sequence of
the ARMAR-4 simulation under the best controller, reacting to a frontal
push. Similar to the 2D model, the robot initially bends its torso backwards
and moves the hips forward. In addition, it quickly swings its arms back-
wards, generating an inertial force that pushes its body forward.
The employment of this whole-body strategy, rather than just relying on the
ankle strategy to shift the CoP within the support polygon, is both a virtue of
the employed contact model and the parameter optimization. The wholistic-
ity of the generated motions sets this method apart from related works that
use linear control for balancing (e. g. Figure 3.5). The maximum push im-
pulse that the ARMAR-4 model can withstand using this controller amounts
to 29 Ns, almost twice as much as the highest value for which successful

143

5 Whole-Body Postural Balancing

tests in simulation of a full-body Sarcos humanoid are reported in [Mason
et al. 2014] that use full-body LQR without weight optimization4.
Lastly, the exact same controller used to create the balancing behavior
shown in Figure 5.9(a) can be used to stabilize a squatting motion, in which
the deviation from a time-varying state xdes(t) rather than from the initial
point of linearization x0 (see Equation 2.19) is amplified by the gain matrix
K to compute the joint torques. Even with the knees bent and therefore with
the joint positions in the legs far from their initial point of linearization, the
controller can successfully keep the robot balanced. Successive frames of
this balance-controlled squatting motion are depicted in Figure 5.9(b).

(a) The simulated ARMAR-4 reacting to a frontal push under LQR whole-body control

(b) The simulated ARMAR-4 performing a squatting motion under LQR whole-body control

Figure 5.9: Validation of the proposed weight-optimized LQR balance controller on the full
ARMAR-4 model, performing balance recovery after a frontal push and a balanced
squatting motion, despite deviating substantially from the initial state of lineariza-
tion (taken from [Bäuerle et al. 2018], © 2018 IEEE).

5.6 Summary and Review

This chapter addressed the questions whether a linear and locally optimal
postural balance controller that simultaneously takes into account multiple

4 It should be noted that the two results were not acquired with the same simulation model
(albeit both with models of full-size humanoids), and hence certain care must be taken when
directly comparing the results merely based on the whithstood impulse.

144

5.6 Summary and Review

major joints of the robot’s body can be improved by alternative ways of
formalizing the ground contact in the linearized robot dynamics, and by
optimizing the weights in the cost term via an iterative process. Quantitative
evaluation of the proposed methods was conducted on a simplified planar
humanoid simulation model, and the feasibility of the found methods was
validated by applying them to the ARMAR-4 robot model.

Contact Models Two novel ground contact abstractions for the synthe-
sis of linear balance controllers were proposed, namely a spring model and a
high inertia model. Both of them were evaluated against the standard, rigidly
constrained contact model which they outperformed, leading to more capa-
ble balance controllers. In these evaluations, the spring model led to the
overall best results.

Optimization Using simulated annealing in an iterative optimization
process to find suitable weight parameters for balance controllers consis-
tently led to better performance across all investigated contact formulations
than an equal number of randomly chosen parameter samples. Simulated
annealing found good weight parameters after as little as 100 iterations, and
kept improving until the optimization was terminated after 10,000 cycles.

Validation on the ARMAR-4 Model Applying controller synthesis
based on the high inertia method (chosen for its virtue of a lower number of
free parameters) and weight optimization with simulated annealing, a linear
whole-body balance controller could be derived for ARMAR-4 that shows
better performance than previously published work from the literature
while creating human-like balancing motions, most notably making use of
arm-swing and torso bending.

145

6 Recovery Stepping

It was shown in Chapter 4 that different disturbances afford different reac-
tions in humans to recover stability, and that these reactions can be grouped
into the two classes of those that do not involve taking a step (see Chap-
ter 5) and those that do require taking a step. This chapter is concerned with
the latter class of reactions, i. e. dynamic recovery stepping. The method
that will be presented is based on the execution of parametric step motion
primitives and will be implemented on the velocity control level, as opposed
to the balancing method described in Chapter 5 that was formulated on the
torque control level.
The goal of the work presented in this chapter is the development of a
method that lets the humanoid robot ARMAR-4 efficiently generate and
execute a recovery step, bringing it back to a stable state after being pushed.
This goal is pursued by addressing the following two questions:

1. How can recovery steps efficiently be generated, taking into account
the kinematic complexity, capabilities and limitations of a humanoid
robot?

2. How to find the right parameters for such a recovery step in order for
it to be successful?

Figure 6.1 exemplifies the envisioned capabilities.
The motion generation is based on human motions that are recorded in a
motion capture environment, following the hypothesis that leveraging the
advanced stepping capabilities of humans for humanoid push recovery can

147

6 Recovery Stepping

substantially alleviate the computational burden of motion generation, lead-
ing to motions that are grounded in the refined experience of human sub-
jects. The motions will be encoded as joint-level dynamic movement prim-
itives (DMPs) to enable flexible adaptation to different disturbances.
As the human subject and the robot have different kinematic and dynamic
properties, some essential parameters of the recorded motions need to be
adapted during execution for successful push recovery on the robot. Iden-
tifying these adaptations and appropriate, disturbance-specific parameteri-
zations will be addressed by means of simulation-based learning. The final
system will be evaluated in a dynamics simulation of the ARMAR-4 robot.
Parts of the motion generation and learning based step parameter adaption
have been presented in [Pankert et al. 2018].

(a) Strong push while stand-
ing

(b) Capture step (c) Stably standing after
successful recovery

Figure 6.1: The goal of this chapter is to develop a method that lets the ARMAR-4 robot ef-
ficiently take a recovery step in order to regain balance after being pushed. The
images exemplify such a push recovery stepping sequence. The red arrow indicates
the push force. The support polygon is shown in light green.

148

6.1 Learning Stepping-DMPs from Human Demonstrations

6.1 Learning Stepping-DMPs from Human
Demonstrations

Traditionally, the generation of end-effector motions for robots (such as
a foot motion for stepping) is addressed in the task space, i. e. in the 6-
dimensional space of end-effector poses. After defining the start and the end
point of the motion, the entire trajectory is generated, e. g. by means of con-
strained path planning, or by adding additional via points for interpolation.
Once the end-effector trajectory is generated in form of a list of 6D poses
that encode the evolution of the end-effector’s position and orientation, this
list needs to be converted to a list of joint angles that can be commanded to
the robot’s control system. An example of this class of approaches, taking
advantage of the possibility to directly incorporate task-space constraints
into the motion plan, is presented in [Behnisch et al. 2010]. The down-
side of task space motion planning is that solving the inverse kinematic
(IK) problem typically requires significant computational resources when
the number of DoFs is high, kinematic redundancies need to be resolved
and task-specific constraints need to be respected. All of these complicating
elements are present in the problem of generating humanoid step trajecto-
ries: The kinematic chain that spans from the stance foot to the swing foot in
the case of ARMAR-4 has a total of 12 DoFs (six per leg), presenting a sig-
nificant kinematic redundancy that calls for a heuristic approach to choose
among the infinite number of IK solutions. Task specific constraints such as
keeping an upright upper-body posture also need to be fulfilled.

6.1.1 Methodology

In order to alleviate the computational burden that arises from solving the
resulting IK-problem under real-time constraints, and to avoid the problem
of redundancy resolution, this thesis proposes to learn parametric step tra-
jectories from human motion data. If the demonstrated motions are learned

149

6 Recovery Stepping

directly on the joint level, then the need to solve a series of IK-problems
vanishes. Learning from human demonstrations has the advantage that the
original motions are already compliant with task-space constraints such as
the occurrence of self-collisions, and that there is thus no need to check for
violations of these constraints prior to execution on the robot.
However, to be able to react to a wide variety of pushes, a wide variety
of different stepping motions is necessary, and it is infeasible to have one
demonstration for every possible step. It is therefore necessary to learn an
adaptive representation of the steps that can be influenced with a small set of
parameters, chosen according to the needs of the specific disturbance. The
parameters that will be considered in the following are:

1. The final step position (2D)

2. The duration of the first half step, i. e. the time between breaking1 and
making contact of the first foot, exemplarily depicted in Figure 6.1(a)
and Figure 6.1(b)

3. The duration of the second half step, i. e. the time between breaking
and making contact of the second foot, exemplarily depicted in Fig-
ure 6.1(b) and Figure 6.1(c)

A method that lends itself to addressing these requirements is the represen-
tation of demonstrated motions as joint-level DMPs (see Section 2.4), with
one set of synchronized DMPs for each half-step. A half-step denotes the
motion from lifting up and putting down one foot, and a full step recovery
consists of two half steps (see Figure 6.1). DMPs have an explicit timing
parameter that can readily be used to adapt the duration of each of the half-
steps. In contrast, the final step position cannot be directly manipulated
when the motion is encoded in form of joint level DMPs. Computing the

1 Breaking contact denotes the moment when the foot is lifted from the ground. Making
contact denotes the moment when the foot comes into ground contact.

150

6.1 Learning Stepping-DMPs from Human Demonstrations

final goal for all joint-level DMPs thus still requires one solution of the IK
problem that translates the final foot position from the 6D Cartesian space
to the final joint positions. However, computing one IK-solution, scaling
the DMPs and solving the canonical and transformation systems to gener-
ate joint trajectories is computationally cheaper than computing dozens or
hundreds of IK solutions for the entire foot trajectory.

6.1.2 Human Motion Recordings

The human motion recordings that serve as the basis for recovery step learn-
ing were collected in the H2T’s motion capture environment following the
standard procedure of the Master Motor Map (MMM) data collection pro-
cess [Mandery et al. 2016]2. The experimental setup was in large parts
identical to the setup described in Section 4.1.1 and the trials were con-
ducted in a similar fashion to the ones described in Section 4.1.2: During
the experiments, a human subject wearing a motion tracking suit with re-
flective markers is initially standing still in a neutral pose, with the feet at
shoulder width and the arms hanging down. It is then pushed at shoulder
height by another human, at a level of intensity that requires the subject to
take a step in order to mitigate the push and regain balance. In addition to
the overall subject motion, the torso accelerations and the applied push force
profile are measured with a torso mounted IMU on the subject and a force
measuring push device (see Figure 4.1).
To allow the stepping motion primitives (DMPs) to generalize over the en-
tire feasible space of push parameters, different stepping motions were col-
lected, varying both in the length (denoting the distance between the sub-
ject’s CoM before and after step recovery) and the direction of the step.
These two parameters were varied according to a polar coordinate grid with
angle increments of 30° and step lengths of 30 cm and 50 cm. Additionally,

2 https://motion-database.humanoids.kit.edu/

151

https://motion-database.humanoids.kit.edu/

6 Recovery Stepping

steps with step lengths of 80 cm to the front and the back as reactions to
very hard pushes, and 30 cm and 50 cm steps at angles of 45° and 135°
were recorded. All parameter combinations for which stepping motions
were recorded are listed in Table 6.1.

0° 30° 45° 60° 90° 120° 135° 150° 180°

30cm X X X X X X X X X

50cm X X X X X X X X X

80cm X - - - - - - - X

Table 6.1: List of combinations of step directions (angles in degrees) and step lengths for which
recovery steps were recorded in the human motion capture experiments. Since mo-
tions into the other half-plane can be generated computationally by mirroring at the
subject’s sagittal plane, motions in the parameter space from 180° to 360° were not
recorded.

Provoking these steps requires the person that exerts the push to do this
in the right direction and at the right level of intensity. To help guide the
experiments, the above described grid was visibly marked on the laboratory
floor, and the subject performing the step was positioned at its center at the
beginning of each trial. To minimize the experimental effort, steps were only
recorded into one half-plane of the grid, as the kinematics of the human body
and of the ARMAR-4 robot are symmetric with respect to the sagittal plane,
and thus motions can be mirrored at the sagittal plane to obtain stepping
motions into the opposing half-plane. Figure 6.2 depicts an experiment in
which the subject is pushed at a 90° angle and performs a step, after which
its CoM comes to rest 30cm from its initial position.
All motions that were recorded in these experiments (three trials for each
parameter combination) are available from the KIT Whole-Body Human
Motion Database under subject-ID #17213.

3 https://motion-database.humanoids.kit.edu/list/motions/?subj
ects=1721

152

https://motion-database.humanoids.kit.edu/list/motions/?subjects=1721
https://motion-database.humanoids.kit.edu/list/motions/?subjects=1721

6.1 Learning Stepping-DMPs from Human Demonstrations

Figure 6.2: An example trial of the motion data collection process to learn robotic stepping
motions from human demonstration. The human subject is pushed from the side
(90°) and takes a 30 cm step to recover its balance. The order of the images is from
left to right and top to bottom. Temporal spacing is 200 ms (taken from [Pankert
2018]).

Motion Conversion

The collected human motion data needs to undergo two steps of further data
processing before it can be used for step recovery learning: It needs to be
converted to robot specific motions, taking into account the ARMAR-4’s
kinematics, and the converted motions need to be represented as joint-level
DMPs.
The motion conversion is necessary since the kinematics of the human body
and the ARMAR-4 are not identical. In the MMM data format, the recorded
motions are stored as sequences of joint angles. However, due to kinematic
differences, there exists no trivial mapping from human joint angle trajecto-
ries to a given robot. To address this problem, the MMM framework offers
optimization-based, target-specific motion converters that can bridge the gap
between different kinematic structures [Terlemez 2017]. The underlying

153

6 Recovery Stepping

idea of the conversion is that the overall appearance of the motion shall be
preserved, and that the joint-angle trajectories of the target kinematic struc-
ture (ARMAR-4 in the here presented case) are generated from this crite-
rion. Formally, this is achieved by optimizing the target joint angles such
that semantically similar locations of the original (human) and target (robot)
move in a similar way, i. e. have a minimal distance when overlaying the two
structures. Figure 6.3 shows four frames of an exemplary stepping motion
conversion (see also Figure A.1).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.3: Example frames of the ARMAR-4 motion (e)-(h) that results from the kinematic
human-to-robot conversion process of a recorded step to the right, represented on
the normalized MMM reference model (a)-(d). Temporal order from left to right,
with 330ms temporal spacing (adapted from [Pankert 2018]).

These locations are created by equipping the motion target with ’virtual
markers’ that semantically correspond to the optical motion tracking mark-
ers attached to the human subject (e. g. a virtual marker on the knee of the

154

6.1 Learning Stepping-DMPs from Human Demonstrations

robot model corresponds to an optical marker on the human knee), and each
motion frame of the target is generated by finding joint angles that minimize
the sum of squared distances between corresponding pairs of real and vir-
tual markers. The converter that converts motions from the generic MMM
reference model to the ARMAR-4 is part of the MMMTools package4.

6.1.3 DMP Representation

The last step of data processing is to represent the converted motions as
sets of joint level DMPs. It proved useful to split the stepping trajectories
into two parts, the first and the second half step. The first half step will
be called the capture step, in accordance with the use of this term in the
related literature. The main reason for this split is the ability to individually
scale the execution times of each half step. Another reason is to enable a
simple ankle control for the stance and swing foot that benefit from this
split, which is crucial for successful stepping (see paragraph 6.1.4). After
the capture step, one of the robot’s feet is still at its initial position while
the other is placed at the capture location (see Figure 6.1(b)). While this
configuration in itself could be statically stable and represent the end of
the recovery action, this work aims at producing a motion that brings the
robot back into its original configuration. A second half step therefore has
to follow. Since this step recovers the initial configuration of the robot (i. e.
standing with parallel feet, see Figure 6.1(c)), this motion will be called the
recovery step.
For training appropriate DMPs, the two segments forming the capture step
and the recovery step have to be identified within the motion recordings
and isolated. In this work, the timestamps of the beginning of the cap-
ture step, the transition from capture to recovery step and the end of the
recovery step are identified by manual inspection of the recordings. Joint

4 https://gitlab.com/mastermotormap/mmmtools

155

https://gitlab.com/mastermotormap/mmmtools

6 Recovery Stepping

level DMPs for each interval, with 100 Gaussian kernel functions per joint,
are then trained separately with locally weighted Gaussian regression, us-
ing the DMP-library (see Section A of the appendix). Each set of joint
angle DMPs for each interval contains a transformation system for each
joint and a shared canonical system to ensure time synchronization between
the individual joints. Note that only 14 robot joints were considered in the
DMP representation of the stepping motions, namely the 12 DoFs of the
two legs (excluding the toes) as well as the torso pitch and the torso yaw
joint (see Figure A.3 of the appendix for reference). The remaining joints
(essentially the arms and the neck) remain in their neutral positions during
DMP-generated motion execution.
After this process, the DMPs can be used to produce parametric stepping
motions by passing a list of sampling times (at intervals of 10ms) to the
canonical system, computing its respective list of outputs x and subsequent
synchronous numerical integration of the transformation systems to produce
joint angle trajectories. The required inputs for this process are the initial
joint configuration, the intermediate capture configuration and the final joint
configurations, as well as the two temporal scaling factors for the two parts
of the motion.

6.1.4 Parametric Step Motion Generation

An efficient, self-contained, DMP-based parametric step trajectory gener-
ator was implemented with the building-blocks described previously. The
developed trajectory generator takes a small set of six high-level step param-
eters and generates trajectories for each of the 14 joints that are involved in
the stepping motion. The six input parameters belonging to the three light
blue boxes on top of Figure 6.4 are:

156

6.1 Learning Stepping-DMPs from Human Demonstrations

• Step Target

1. Step Angle φ1: The direction in which the step should be per-
formed. Straight ahead refers to 0°, with increasing angles in
the clockwise direction

2. Step Length d1: The horizontal distance between the centroid
of the support polygon in the initial configuration and in the final
configuration

• Trajectory Selection

3. Selection Angle φ2: Direction parameter to select the original
sets of DMPs

4. Selection Length d2: Step length parameter to select the origi-
nal sets of DMPs

• Execution Times

5. Capture Step Duration τ1: The duration of the first half step
(capture step) that represents the transition from the initial con-
figuration to the capture configuration

6. Recovery Step Duration τ2: The duration of the second half
step (recovery step) that represents the transition from the cap-
ture configuration to the final configuration

From the step target, the foot position of the capture configuration is com-
puted. A single constrained IK-problem is subsequently solved that gener-
ates leg and torso joint angles that correspond to a robot configuration with
the first foot at the initial location and the second foot at the desired capture
configuration. A constraint is added to enforce an upright orientation of the
upper body. The trajectory selection parameters serve to choose the original
DMPs that are modified to produce the desired step, based on the corre-
sponding parameters of their underlying motion recordings. Each initially
recorded trajectory can be represented on a polar grid (see colored points in

157

6 Recovery Stepping

Figure 6.5), occupying a cell on this grid (represented by the dashed black
lines).

Figure 6.4: The DMP-based parametric step trajectory generator. Provided with parameters for
trajectory selection, step target and execution speeds as well as the current robot
configuration it efficiently generates stepping trajectories by rolling out DMPs for
the captures and the recovery step that are based on recorded human motion data.

The trajectory selection parameters define a point on this grid that belongs to
one of the cells, and the original trajectory in the same cell is chosen. Intu-
itively, the step target parameters could be used for the same purpose. How-
ever, this has proved to be problematic for the parameter learning process
described later due to discontinuities at the cell boundaries. Allowing the
learned policy to choose the underlying motion recording and step target in-
dividually avoids such problems, stabilizing the learning process. After the
underlying motion recording is identified, the respective DMPs are selected
and their start- and end-configurations are adapted as described above.
The execution time parameters are used to determine the temporal scaling
of the DMPs, such that their execution times match the desired durations.

158

6.1 Learning Stepping-DMPs from Human Demonstrations

With this information, the two DMPs are rolled out and the joint trajectories
are generated.

Figure 6.5: Top view of the polar grid containing the 20 step locations of all recorded human
stepping motions (yellow, orange and red dots) and the decision boundaries for
DMP selection based on the trajectory selection parameters (dashed black lines).

Initial, Intermediate and Final Configuration The initial configura-

tion (light gray box in Figure 6.4) influences the scaling of the capture step
DMP. It is not a selectable input parameter, instead it is always chosen as the
current robot configuration to ensure a seamless transition from the current
robot state to the stepping motion. In the simulation-based trials, the initial
configuration is always the same and computed from the initial poses of all
recorded human trials. To this end, the joint angles from all recorded initial
configurations are averaged to obtain a reference initial configuration. To
ensure a symmetric configuration with respect to the robot’s sagittal plane,

159

6 Recovery Stepping

the averaged joint angle configuration for the left leg is identically used for
the right leg.
Due to imprecisions in the motion capture of the feet, the orientation of the
feet in the converted motions is not parallel to the ground. As this is neces-
sary for a stable stance, the feet orientations are corrected to align with the
ground by computing corrective offsets to the ankle joints. Lastly, the ini-
tial configuration is required to be statically stable, as the (simulated) robot
would otherwise tip over before a push has even occurred. This is achieved
by adjusting the pitch angles of the ankle joints such that the robot’s CoM
lies above the center of the support polygon. This joint angle configuration
is used both as initial configuration of he capture step and as the final config-
uration of the recovery step, since both share the same set of requirements.
The intermediate (capture) configuration is much more specific to each step-
ping motion and depends on the step length and the direction of the step. It
therefore remains largely unchanged from the recorded configuration, with
the exception of the ankle joints being aligned in parallel with the ground.
The final configuration is the same symmetric, statically stable average of
the recorded initial configuration that also forms the initial configuration. It
is not an input parameter, but a fixed component of the generator itself.

Ankle Joint Control To prevent the robot from rolling over one edge of
its capture foot after this foot touches the floor, the orientation of the capture
foot is set to be parallel to the ground in the capture configuration, and the
target angles for the ankle joints are computed accordingly. The orientations
of both, the swing foot and the stance foot, need to be controlled during the
entire stepping process, as the foot orientations from the motion recordings
are potentially infeasible. If not taken into account, this can result in unde-
sired ground contact of the swing foot during step motion execution. To this
end, a simple controller was devised and integrated into the motion gener-
ator and constantly aligns the current swing foot with the ground, ensuring
sufficient clearance between the ground and each part of the foot. The stance

160

6.2 Learning Viable Step Parameters

foot is separately driven such that its orientation changes linearly over time
from the initial to the target orientation. These specific controllers for the
ankle joints of the swing and stance feet override the joint controller that
aims at tracking the DMP trajectory.

6.2 Learning Viable Step Parameters

The previously described parametric motion generator is one of the two
building blocks for fast, human-inspired recovery stepping, and constitutes
the proposed answer to the question of how to efficiently generate stepping
motions for a humanoid robot.

Figure 6.6: Context of the individual components presented in this chapter, namely the Stepping
Policy and the Step Trajectory Generator in the red box. Push Identification is the
subject of Chapter 4, and Push Recovery is the ultimate goal (adapted from [Pankert
et al. 2018], © 2018 IEEE).

161

6 Recovery Stepping

The second question stated at the beginning of this chapter is how to find the
appropriate stepping parameters for a given push disturbance. As already
stated in Chapter 4, the appropriate reaction to a push is strongly correlated
to its direction and intensity (as it can be observed in humans). Further it
was shown that these parameters can be inferred from body worn sensors or
from the robot’s internal sensors. Therefore, a link needs to be established
between those measurable push parameters and the step parameters that,
when fed to the step trajectory generator, produce a stepping motion that
leads to successful push recovery. This link can be regarded as a mapping
from push parameters p to step parameters s. The remainder of this section
will develop a solution to the problem of finding this mapping by framing
it as a reinforcement learning problem, and learning the policy s = π(p).
The entire pipeline, from estimating the push parameters as investigated in
Chapter 4 to successful recovery stepping, via step parameter computation
by the policy π and trajectory generation via the DMP-based motion gener-
ator, is depicted in Figure 6.6.

6.2.1 Parameter Spaces and Policy Structure

Input Parameters Motivated by the results presented in Chapter 4, a
2 D vector of push parameters p is chosen to capture the necessary infor-
mation about he push that the robot needs to react to, and thus as input to
the policy that produces the adequate step parameters. These parameters are
the direction of the push (push angle) and the intensity of the push (push

impulse).
The push angle captures the horizontal direction of the applied force, as it is
depicted in Figure 6.5. It is assumed that the push force does not have any
significant vertical component that needs to be taken into account.
The second defining parameter of the push disturbance is the push inten-
sity. No standardized methodology has yet been established in the related
literature to reproducibly specify the push intensity applied in push recovery

162

6.2 Learning Viable Step Parameters

experiments. Common approaches are to report on the force profile or the
overall transmitted impulse to a (simulated) robot, i. e. the time integral of
the applied force

∫
t f (t)dt. Push recovery is significantly more challeng-

ing for a very light robot subjected to the same transmitted impulse than
for a much heavier one, since the resulting acceleration a from a push with
impulse p is directly dependent on the robot’s mass m with a = p/m. To
foster comparability amongst different robots, push intensities are defined
in this chapter by means of the specific impulse pn, i. e. the transmitted total
impulse pt normalized by the robot’s mass m:

pn =
pt

m
(6.1)

The unit of the specific impulse is Ns
kg which can be simplified to m

s . How-
ever, to enhance clarity, the more intuitive notation of Ns

kg will be used for
the unit of the specific impulse. If in the remainder of this chapter a push
impulse p without index is used for brevity it refers to the specific impulse
pn. The input vector to the stepping policy thus becomes

p =

 push angle θ

push intensity pn

 ∈ R2 (6.2)

Output Parameters The output parameters of the policy π(p) are the in-
put parameters s of the step trajectory generator, and hence a 6-dimensional
vector containing the step angle, the step length, the selection angle, the

163

6 Recovery Stepping

selection length, and the the durations of the two half steps. The output
vector s is therefore

s =



step angle φ1

step length d1

selection angle φ2

selection length d2

capture step duration τ1

recovery step duration τ2


∈ R6 (6.3)

Policy Structure Mapping from the push parameters p ∈ R2 to the step
parameters s ∈ R6 requires a policy of the form

s = π(p) ∈ R2→ R6.

Since this mapping will later be learned in an iterative process, the policy
representation needs to be parametric. While there exist a number of pos-
sible candidates for such parametric representations, artificial neural net-
works have recently been shown to be a very promising general purpose
template for highly non-linear relationships. Inspired by these successes a
neural network will be used in the presented work. The problem at hand is
comparatively low-dimensional, thanks to the trajectory generator requiring
only a small set of parameters. This motivates the use of a small neural net-
work that can be efficiently trained on a small amount of training examples,
in contrast to a deep neural network with millions of free parameters that
are common in other contemporary research on data-driven motion genera-
tion (e. g. [Peng et al. 2017]), typically requiring vast amounts of simulated
training data.

164

6.2 Learning Viable Step Parameters

Here, a neural network with a single hidden layer and ten hidden units will
be used. Note that although the output is 6-dimensional, the output layer
has only five activation functions, as it was found feasible to keep a constant
capture step duration scaling of 1, thus always choosing τ1 of the original
trajectory. Figure 6.7 shows a visualization of the network structure, pro-
duced by MATLAB’s Neural Network toolbox in which the network was
implemented.

Figure 6.7: Schematic depiction of the policy π(p) implemented as neural network with one
hidden layer and 10 hidden units. Numbers denote dimensions. W symbolizes
the weights and b stands for the biases. Graphs symbolize the activation functions
(adapted from [Pankert 2018]).

6.2.2 Training Procedure

Training the above described policy is performed entirely in simulation,
since dynamic stepping experiments are very costly on actual robotic hard-
ware as they involve a high risk of damage to the robot. The training is
framed as a reinforcement learning problem: The simulated ARMAR-4
robot acts as the agent, which has access to the parameters of the push
that it is subjected to. These parameters are made readily available in the
simulated setup and constitute the state5. The agent acts by choosing step
parameters according to the push parameters, following the learned policy

5 On the real robot, push parameter estimation, e. g. with internal IMUs or ankle F/T sensors,
based on the methods described in Chapter 4, would be required.

165

6 Recovery Stepping

that was pre-trained on a small initial set of successful parameter combina-
tions provided (either found manually or originating from the demonstration
experiments). The step trajectory generator turns these step parameters into
a stepping motion (capture step and recovery step) which are then executed.
The success of the stepping action is evaluated, and parameter combinations
p and s that lead to successful push recovery are added to a list of all pos-

itive examples L and their success indicators R. After a certain number of
experiments (episodes) are performed, the policy is updated by training on
the current list of positive examples.

Algorithm 2 Learning a policy that maps push parameters to step parame-
ters (adapted from [Pankert et al. 2018], © 2018 IEEE).
Require:

L0 – Initial set of training examples
N – Number of training iterations
TRAIN(L,R) – Optimize the policy on training data
EXPLORE(L,successRate) – Generate new pushes for testing
PUSHRECOVERYTESTING(L) – Policy roll-out

1: function LEARNSTEPPARAMETERS(L0)
2: R0← PUSHRECOVERYTESTING(L0)
3: successRate← 1
4: for i← 1 . . .N do
5: πi← TRAIN(Li−1,Ri−1)
6: {p̃1, . . . , p̃10}← EXPLORE(Li−1,successRate) . Algorithm 3
7: L̃←{(p̃1,πi(p̃1)),(p̃2,πi(p̃2)), . . . ,(p̃10,πi(p̃10))}
8: R̃← PUSHRECOVERYTESTING(L̃) . Evaluation
9: successRate←MEAN(R̃.success)

10: L+← L̃ where (R̃.success = true)
11: R+← R̃ where (R̃.success = true)
12: Li←{Li−1,L+}
13: Ri←{Ri−1,R+}
14: end for
15: π f inal ← TRAIN(LN ,RN)
16: return π f inal
17: end function

166

6.2 Learning Viable Step Parameters

Throughout this process, outlined in Algorithm 2, the policy is expected to
improve as more and more positive examples are found via rolling out the
improving policy, which in turn can be improved by training on this growing
list of positive examples. Critical aspects of this procedure are how to find
the initial set of parameters to train on, how to select a set of new push
parameters for the next iteration of policy evaluation episodes, and how to
evaluate the outcome of these policy roll-outs. These aspects will be detailed
in the following paragraphs.

Initial Parameter Set The 8-dimensional space that includes the com-
binations of push and step parameters is so large that it is very tedious to
manually find feasible parameter combinations leading to successful push
recovery steps. Suitable parameter sets were therefore primarily inferred
from the human motion recordings of successful stepping motions. How-
ever, it became evident that choosing the same push and step parameters that
could be observed in the human experiments do not lead to successful trials
in the ARMAR-4 dynamic simulation. The generated steps were too short,
and the robot tipped over in all cases. The reason for this discrepancy might
be that humans employ the entire range of push recovery actions, including
ankle and hip strategies prior to and during stepping, whereas the simulated
robot exclusively resorts to stepping and therefore needs to take longer steps.
Successful parameter sets were obtained by reducing the push impulse from
the impulse measured in the experiments by factors ranging from 0.25 to
0.8, depending on the push direction. Two sets of initial positive example
parameter sets derived from the human experiments by reducing the push
impulse are listed in Table 6.2.
Initial examples of hard pushes which require very large steps were found
entirely manually by means of trial and error, since no suitable parameter
examples were available from the human motion capture trials.

167

6 Recovery Stepping

p s

θ [°] p [Ns/kg] φ1 [°] d1 [mm] φ2 [°] d2 [mm] τ1 [ms] τ2 [ms]

90 0.125 75 619 90 510 450 450

180 0.124 152 392 180 300 600 400

Table 6.2: Two example parameter sets for pre-training the stepping policy, based on the human
motion recordings and reduced push impulse.

Experiment Selection An important part in the learning process is to
efficiently generate a large number of positive training examples that cover
a wide range of the input space of the policy, i. e. the 2-dimensional space
spanned by the push parameters p. This space will be called the p-space,
for short. Prior to every iteration of experimental data generation, a list of
p-values is generated that define the applied pushes in these experiments,
and thereby the experiments in their entirety (since the motion generation is
deterministically dependent on the push parameters). These parameters thus
need to be chosen in a way that balances both the goal of creating positive
examples of successful push recovery trials, and the goal of exploring new
areas of the p-space. These goals are inherently contradictory, as successful
experiments are more likely to result from parameter sets for which the pol-
icy has already been trained (i. e. for which the knowledge of the policy can
be exploited) than for new areas of the p-space that still have to be explored.
To address this challenge, a method was devised that adaptively adjusts the
trade-off between exploitation and exploration depending on the success rate
of the experiments in the last iteration. The underlying idea is that explo-
ration should be emphasized if the previous success rate was high, indicating
that the policy is well adapted to the already known areas of the p-space. If
the previous success rate was low, more training in the already known area
of the p-space is necessary, and thus exploration should be inhibited. To
realize this, the sample generation algorithm initially creates n new random
parameter pairs (points) in the p-space. For each new point, the distance (in

168

6.2 Learning Viable Step Parameters

normalized dimensions) to its nearest neighbor of already existing positive
samples is computed. Only the new point with the largest distance is added
to the final list of new samples, and all others are discarded. This process is
repeated until the desired number of new samples was generated and added
to the list. Depending on n, which ranges from

0 < n < N,n ∈ N, (6.4)

(where N denotes the number of already existing samples) this process is
more exploitative or more exploratory. If n = 1, the newly generated ran-
dom sample is definitely added to the final list, resulting in a purely random
list of new parameters. These points are likely to lie at least partially in al-
ready explored parts of the p-space, resulting in exploitative behavior (see
Figure 6.8(a)).

(a) Exploitation (b) Exploration

Figure 6.8: Generation of new training parameters (blue) in a section of the p-space populated
with already explored points (red). Shown are random sampling (a) and specifically
targeting of unexplored areas (b) (adapted from [Pankert 2018]).

If n > 1, the chosen sample with the highest nearest neighbor distance is
likely to be relatively distant from all existing samples. A large n will there-
fore generate samples generally far from the already existing ones, resulting
in exploration (see Figure 6.8(b)). To control n, it is linearly scaled within its
limits by the success rate of the last iteration’s experiments. The experiment

169

6 Recovery Stepping

selection algorithm (Explore) is outlined in Algorithm 3. The two edge cases
for maximum exploitation (previous success rate was 0) and maximum ex-
ploration (previous success rate was 1) are exemplified on synthetic data in
Figure 6.8. A list of 10 push parameters with the generated step parameters
for one instantiation of the policy is shown in Table 6.3.

p s = πi(p)

θ [°] p [Ns/kg] φ1 [°] d1 [mm] φ2 [°] d2 [mm] τ1 [ms] τ2 [ms]

66.665 0.14338 54.693 547.07 642.08 76.193 506.44 447.36

132.160 0.12123 112.47 109.47 538.22 88.134 469.04 596.21

31.834 0.15287 33.001 540.92 647.40 29.792 477.5 784.96

47.758 0.15018 46.992 494.77 642.41 38.227 494.53 626.35

40.279 0.10506 20.207 403.61 586.69 28.001 574.54 611.09

15.750 0.12689 31.142 322.36 596.25 10.137 521.25 721.54

32.511 0.07816 30.729 397.16 546.39 48.126 587.68 622.71

130.170 0.10292 107.78 148.79 549.65 86.428 470.16 579.50

118.91 0.10590 87.156 338.96 599.50 77.974 477.14 515.20

112.920 0.07624 80.77 395.78 613.03 76.945 481.36 493.62

Table 6.3: Ten exemplary sets of generated push parameters and the respective step parameters,
generated with a specific instance πi of the mapping policy.

This list is provided to the simulation based policy evaluation that will be
described in more detail later.
The devised method represents an on-policy learning scheme, since the step
parameters for newly generated push parameters are chosen by following
the current, deterministic policy. On-policy schemes are less effective at
extrapolating from the initial examples, but typically more sample-efficient
at interpolating than off-policy schemes.

Evaluation After a single experimental trial (i. e. an episode) with a given
set of push parameters operating under the current policy is finished, the
result needs to be evaluated in order to generate new training data. The

170

6.2 Learning Viable Step Parameters

evaluation assigns two attributes to the tested set of parameters (p,s): A
binary label indicating the general success of the trial, and a continuous

error that is used to weigh the resulting positive samples in the learning
process.

Algorithm 3 Generation of push parameters for next policy roll-out experi-
ments (adapted from [Pankert 2018]).
Require:

L – List of successful push parameters and their success
numSamples – Required number of samples to produce
succRate – Success rate of last policy roll-out
NNDIST(sample,L) – Distance from sample to nearest neighbor in L

1: function EXPLORE(L,numSamples,succRate)
2: N← SIZE(L)
3: numRandomSamples← ROUND(succRate ·N)
4: r← RANGE(L)
5: s← RANDOM(numRandomSamples)
6: randomSamples← SCALE2RANGE(s,r)
7: for sample in randomSamples do
8: distances(sample)← NNDIST(sample,L)
9: end for

10: newSample← sample with MAX(distances)
11: if numSamples = 1 then
12: return newSample
13: else
14: e← EXPLORE({L,newSample},numSamples−1,succRate)
15: return {newSample,e}
16: end if
17: end function

The general success is determined 3s of simulated time after the push was
applied, by the angle between the robot’s vertical axis and the global vertical
axis. If this angle exceeds 60°, the robot is considered fallen and the trial
a failure, and the underlying parameter combination is discarded. In any

171

6 Recovery Stepping

other case the trial is considered successful and the parameter combination
is added to the list of positive examples for policy optimization.
The MATLAB implementation of the neural network accepts individual
weights to the training examples to influence their effect on the trained
model, where a higher weight increases the sample’s effect on the final pol-
icy. Two weighting terms are used to increase the weights of those positive
training samples that (1) lead to better push recovery performance and that
(2) lie in relatively unexplored regions of the p-space. Push recovery per-
formance is measured 3s after the application of the push by means of a
slight variation of the Stopping Energy Estopping, a dimensionless quantity
for the assessment of push recovery experiments initially introduced in [Re-
bula et al. 2007]. It is defined over the CoM velocity vCoM and the horizontal
distance |~x| between the CoM and the centroid of the support polygon as

Estopping :=
1
2

v2
CoM +

1
2

g
l
|~x|2 (6.5)

and increases for higher distances |~x| and higher velocities vCoM . It becomes
0 when the CoM is located exactly over the centroid of the support polygon
and the CoM is at rest, in which case the robot is also statically stable. It
is positive in all other cases. From this quantity, a sample weight Ws(p,s)
is computed by applying the negated logarithmic function and MinMax-
scaling.

Ws(p,s) = MinMax(−log(Estopping(p,s))). (6.6)

The negated logarithm ensures that large Stopping Energies result in small
weights, and vice versa. MinMax-scaling normalizes its input x,xmin ≤ x≤
xmax to the range from 0 to 1 by applying

MinMax(x) =
x− xmin

xmax− xmin
.

172

6.2 Learning Viable Step Parameters

The second weighting term is designed to improve policy generalization
over the p-space. If the positive examples are distributed unevenly over the
p-space, with areas of high and areas of low density, the policy is likely to
overfit to the areas with higher sample density, and perform poorly in that
of lower density. Samples from lower density areas are therefore endowed
with a larger weight to prevent this overfitting and foster generalization. The
inverse density is approximated by the Euclidean distance dnn of a parame-
ter to its nearest neighbor in the p-space, and turned into a training weight
Wd(b) by MinMax-scaling:

Wd(p) = MinMax(dnn(p)) (6.7)

The sum of these two error terms forms the total sample weight Wt for a pos-
itive training example, which is used to scale the influence of this example
on the trained model:

Wt(p,s) =Ws(p,s)+Wd(p) (6.8)

6.2.3 Implementation

The implementation of the entire system needed for learning a valid stepping
policy, schematically depicted in Figure 6.6, was realized partially in the Ar-
marX software framework (see Section C of the appendix), and partially in
MATLAB. While the parametric motion generator, the push provider and
the dynamic robot simulator are part of ArmarX (see Figure 6.10), the pol-
icy itself as well as the generation of push parameters for the next experi-
ments described in paragraph 6.2.2 and the learning process were realized
in MATLAB. A fully automated loop for running successive experiments
and policy updates was implemented by letting the two parts (ArmarX and
MATLAB) communicate via the file system. This implementation was pre-
viously described in [Pankert 2018].

173

6 Recovery Stepping

Simulator The underlying engine of the ArmarX dynamic simulator
is the Bullet physics engine [bulletphysics 2018]. Bullet is primarily a
gaming engine, and with its default parametrization prioritizes real-time
computation over physical accuracy and reproducibility, e. g. simulation
step-sizes are dynamically increased when the computational load of the
host machine is high. In contrast to gaming applications, the presented
research relies on reproducible behavior in order for the learning method
to be grounded in sensible simulation results. Physical accuracy is further
required to make the results obtained in simulation a meaningful basis for
future applications on real robotic hardware. The simulation time step was
therefore reduced and fixed at 0.5 ms, which is sufficiently small to generate
reproducible simulations even in the presence of stiff ground contacts,
which are one of the major sources of simulator instabilities (see [Chung
and Pollard 2016]). The simulator publishes the current status of the
simulation and accepts motor commands every 10 ms, i. e. after running 20
internal simulation steps. This outer interval was chosen since the original
human motions are recorded at a frame rate of 100 Hz, and the motions
computed by the DMP-based motion generator are of the same temporal
resolution6. It is therefore not necessary to interact with the simulator at
higher frequencies.
Running the simulator at such small time steps on the deployed simulation
machine (Intel Core-i7 CPU with four cores and 32 GB of RAM) slowed
the simulation down to below real time. All other ArmarX components that
interact with the simulator were therefore required to run synchronously to
the simulated time rather than taking the system clock for time reference.

Push Provider The push provider applies the required push in the spec-
ified direction and with the specified impulse to the pelvis of the simulated

6 This is implementation-specific. In principle, DMPs can provide arbitrary temporal resolu-
tion.

174

6.2 Learning Viable Step Parameters

robot. Since the push impulse alone does not specify the force profile, a
specific force profile (i. e. shape and duration) needs to be selected. To find
a feasible shape and duration, the force profiles recorded during the human
push recovery trials were analyzed. These force recordings revealed the
approximate shape of isosceles triangles and had similar durations on the
order of 500 ms, independent of their intensity (see Figure 6.9).

Figure 6.9: Multiple exemplary force profiles of pushes of different intensities, recorded during
human push recovery trials. They are approximated in simulation by isosceles tri-
angular profiles with a 500ms base width and variable height (taken from [Pankert
et al. 2018], © 2018 IEEE).

The force profile generated by the push provider is therefore implemented
in the shape of an isosceles triangle, with a push duration dp = 500ms and
a variable height Fmax that depends on the required normalized impulse pn

and the robot mass mr such that

Fmax =
2pnmr

dp
. (6.9)

Evaluation Unit The Evaluation Unit is an ArmarX component that de-
termines the result of a simulated recovery stepping trial by means of the

175

6 Recovery Stepping

binary criterion of standing upright, and by the continuous Stopping Energy,
as detailed in Section 6.2.2. Evaluation results of successive trials are writ-
ten to a result file that is passed to the optimizer which trains the stepping
policy based on all available data.

Automated Training Cycle An ArmarX scenario was created that, in
conjunction with a MATLAB script, automatically generates experience
data and trains the stepping policy. This is an iterative process with iter-
ation index i.

Figure 6.10: The PushRecoveryTesting ArmarX statechart used for automatic simulation-based
experience data generation. A MATLAB script invokes the statechart which then
performs all the simulation trials described in the task file and writes the results to
a result file which is used for policy optimization.

• The MATLAB script initially generates a set of push parameters pi

and executes the current policy πi for each of these parameters to
obtain the associated step parameters si. The list of push and step
parameters is written to a file. Since every combination of p and s
defines a simulated experiment and hence a task for the simulator,
these files are called task files. Table 6.3 shows the content of such a
task file. The script then starts the ArmarX scenario via the respective
system call. The functionalities of the scenario are implemented as a
statechart and form an inner loop, depicted in Figure 6.10.

176

6.2 Learning Viable Step Parameters

– The statechart starts in the InitializationState, in which the sim-
ulated robot is spawned in its initial, statically stable pose. After
2 s of simulated time for the robot to settle into a static state, the
transition into the ReadTaskState is triggered.

– ReadTaskState reads the previously generated task file, parses
the first line and passes the push and step parameters to the Push-

State.

– PushState applies the specified push to the robot and queries
the motion generator to produce the capture and recovery steps,
which are executed by the simulated robot. The transition to the
WriteTaskResultState is then triggered and invokes the Evalua-
tion Unit 3 s of simulated time after the push was applied.

– WriteTaskResultState computes the results and appends them to
a result file. The statechart then transitions back to the Initiliza-

tionState and this inner loop repeats until all experiments en-
coded in the task file are conducted.

• Once all experiments are conducted and evaluated, the MATLAB
script terminates the ArmarX scenario and updates the policy by train-
ing (optimizing) the neural network on all generated results, including
the latest ones, using backpropagation and Levenberg-Marquardt op-
timization.

The cycle then repeats with the incremented index i+1.

177

6 Recovery Stepping

6.3 Evaluation in Dynamics Simulation

For evaluating the effectiveness of the above described training cycle it was
executed 500 times, generating 500 iteratively improved mappings from
push parameters to step parameters π1 to π500. To accommodate the on-
policy nature of the proposed learning process, the space of push parameters
that were chosen for future experiments was confined to the minimal rect-
angular area of the p-space that contains the initial training examples. This
results in the policy being trained to interpolate between the initial positive
samples. After 500 training iterations with 10 experiments each, i. e. af-
ter 5,000 simulated push recovery experiments7, the final policy π500 was
evaluated on a 10× 10 grid spanned over the investigated subset of the p-
space. For each of these 100 points in the p-space the step parameters were
computed with π500 and the resulting experiments were conducted in the
simulator. The success rate of all 100 evaluation experiments is computed
from the resulting binary success indicator described in paragraph 6.2.2 and
used as the evaluation metric for the policy. Figure 6.11 shows various suc-
cessful evaluation experiments for pushes from various directions and of
various intensities.

7 As the simulation is running slower than real-time (see paragraph 6.2.3), each push exper-
iments takes around 15 s to run, equating to proximately 21 h of simulation time for 5000
trials.

178

6.3 Evaluation in Dynamics Simulation

(a) Initial pose (b) Capture step towards
front right

(c) Final stable pose

(d) Initial pose (e) Capture step towards
back left

(f) Final stable pose

(g) Initial pose (h) Capture step towards the
right

(i) Final stable pose

(j) Initial pose (k) Capture step towards the
back

(l) Final stable pose

Figure 6.11: Multiple successful evaluation experiments for pushes from different directions
and of different intensities. Pictures show the initial pose before the push is applied
(left), the robot pose after the capture step in reaction to the push (middle) and after
the recovery step that restores the initial pose (right). The green area is the current
support polygon.

179

6 Recovery Stepping

This evaluation method is conducted for two different sets of initial data,
each defining a different p-area for the evaluation: The first initial dataset is
derived from the human experiments and covers a range of comparatively
weak pushes. Purely synthetic combinations for push and step parameters
with stronger pushes similar to the pushes measured in the human exper-
iments form the second initial dataset, for which the training procedure is
independently evaluated.

6.3.1 Weak Pushes

The first set of initial training data consists of 18 combinations of push and
step parameters derived from the human experiments. Only nine of these
combinations resulted in successful push recovery. The other nine did not
lead to successful recovery (i. e. the binary criterion was not fulfilled), but
the Stopping Energy was low and the robot was able to perform both capture
and recovery steps before falling, indicating that they were comparatively
good, albeit failed, attempts. These parameter combinations were therefore
included in the initial dataset to boost the early training but erased from the
list of positive examples after 50 training iterations to not deteriorate the
final result. The ranges of the push parameters (push angle and impulse) in
this dataset were

θ ∈ [0°,180°] (6.10)

p ∈ [0.075Ns/kg,0.15Ns/kg] (6.11)

which define the rectangular area of the p-space for which the policy was
trained. These pushes are weak in comparison to the pushes applied dur-
ing human motion trials. Note that the training for pushes in the range of
[0°,180°] is sufficient for omni-directional push recovery, as the method
is taking advantage of the robot’s symmetry (e. g. once it ’knows’ how to
mitigate a push from the right, it can mitigate the same push from the left).

180

6.3 Evaluation in Dynamics Simulation

Over the course of 500 training iterations, the p-space was sampled 5,000
times with different policies for creating the respective step parameters. In
Figure 6.12, all 5,000 samples are depicted. Each of these samples is associ-
ated with a set of 6-dimensional step parameters generated by the respective
policy, which are not shown in the figure.

Figure 6.12: 5,000 evaluated samples in the p-space after 500 training iterations. Blue cir-
cles denote successful trials, red crosses denote unsuccessful trials (adapted from
[Pankert et al. 2018], © 2018 IEEE).

The final policy π500,weak was trained on all the successful datapoints, i. e.
the blue dots in Figure 6.12 and their associated step parameters. It was eval-
uated on 100 points evenly spread in the investigated portion of the p-space
by generating step parameters for those 100 push parameters, generating
stepping motions and performing the resulting experiments in the dynam-
ics simulator. These tests resulted in an overall success rate of 75%. Fig-
ure 6.13 shows the evaluation grid with the successful and failed evaluation
experiments.
A disproportionately large number of failed trials are located in the upper
right corner with relatively large push impulses and push angles, visible
both in Figure 6.12 and in Figure 6.13. This shows that the data genera-
tion procedure was not able to generate positive training examples for these

181

6 Recovery Stepping

pushes, and hence the final policy could not learn how to successfully react
to them.

Figure 6.13: Grid-based evaluation of push recovery for comparatively weak pushes after 500
iterations of simulation-based policy improvement. Blue dots denote pushes for
which π500,weak generates step parameters that lead to successful push recovery.
Red crosses denote pushes for which the generated steps fail to recover the robot
(adapted from [Pankert et al. 2018], © 2018 IEEE).

6.3.2 Strong Pushes

The second set of initial training examples consists of only five purely syn-
thetic pairs of push and step parameters, for which successful push recovery
was achieved in simulation. These parameters are confined to an area of the
p-space with high push intensities and large push angles, characteristics for
which the final policy evaluated in Section 6.3.1 was the least successful.
This setup aims at investigating whether a higher density of training exam-
ples helps the learning process find a policy that can interpolate better in this
seemingly difficult area. The parameter ranges of this dataset are

θ ∈ [130°,180°] (6.12)

p ∈ [0.2Ns/kg,0.3Ns/kg]. (6.13)

182

6.3 Evaluation in Dynamics Simulation

The push impulse range of [0.2Ns/kg,0.3Ns/kg] was chosen to resemble
the pushes recorded in the human push experiments, where the mean of of
push impulses was 0.277Ns/kg.
The grid-based evaluation was performed twice, once after 200 and once
after 500 training iterations to evaluate the progress of the learning proce-
dure. After 200 iterations, π200,strong was evaluated and led to an overall
success rate of 69%. After 500 training iterations, π500,strong achieves suc-
cessful push recovery on 89% of the same evaluation grid (see Figure 6.14).
This indicates that the procedure is able to learn push recovery stepping for
arbitrary areas of the space of push-parameters, provided sufficient initial
examples, and also shows that the procedure improves the policy with in-
creased number of training iterations, as expected.

Figure 6.14: Grid-based evaluation of push recovery for strong pushes after 500 iterations
of simulation-based policy improvement. Blue dots denote pushes for which
π500,strong generates step parameters that lead to successful push recovery. Red
crosses denote pushes for which the generated steps fail to recover the robot
(adapted from [Pankert et al. 2018], © 2018 IEEE).

6.3.3 Computational Efficiency

One of the reasons for using coupled joint-level DMPs rather than traditional
task-space motion generation and calculating successive solutions of the in-
verse kinematic (IK) problem were the hypothesized lower computational

183

6 Recovery Stepping

demands of the DMP-based approach. To validate this hypothesis, the com-
putation times of both approaches were directly compared.

DMP For each time step of the DMP joint trajectories, the canonical sys-
tem must be integrated by one time step to acquire the next value of the
phase variable x, and subsequently all 14 transformation systems need to
be integrated to this new value of x. Both is done by means of forward-
integrating with the explicit Euler method (Euler 1-Step).

Constrained IK Advancing the joint trajectories with the IK-based ap-
proach once a new position and orientation of the swing foot is required
necessitates the solution of a constrained, 14-dimensional IK problem. The
constraints apply to the fixed pose of the stance foot and to the upright ori-
entation of the torso. The IK-solver is initialized with the whole-body pose
from the previous time step.

Results

Ten randomly picked successive steps were chosen from 12 different step-
ping trajectories both for the DMP-based and the IK-based method. The
mean execution times of these ten successive steps are presented as t in
Table 6.4. The overall mean of these t-values t as well as their standard
deviation σt are presented as evaluation metrics.
The measurements reveal an, on average, more than ten times faster com-
putation time of the DMP-based method. The standard deviation time is
also significantly smaller. Both properties (low execution time, small stan-
dard deviation) are favorable in real-time applications such as reactive push
recovery.

184

6.4 Summary and Review

TConstrainedIK [µs] TEuler 1−Step [µs]

t t σt t t σt

1198

2507 2590

185

195 27

6244 185

314 186

5300 189

532 184

738 189

1259 191

6376 279

329 191

5960 189

577 187

1260 188

Table 6.4: Computation times of 12 example constrained IK-solutions compared to 12 steps
of forward integration of the canonical and all transformation systems of a stepping
DMP. Also listed are their means t and their standard deviations σ .

6.4 Summary and Review

This chapter introduced a novel method to efficiently generate omni-
directional steps for a humanoid robot to recover from pushes of different
intensities, applied from arbitrary horizontal directions. The two pillars
of the method are a parametric stepping motion generator and a learn-
able policy that generates suitable step parameters from measured push
parameters.

Motion Generation The motion generator leverages human demon-
strations that were captured during push recovery experiments in a motion

185

6 Recovery Stepping

capture laboratory, converted to motions for the ARMAR-4 robot, and
encoded as joint-level motion primitives (DMPs). Leveraging human mo-
tion examples alleviates the need for self-collision checking or redundancy
resolution. Each step motion consists of two parts, the capture step in
which the first foot is placed on the step location, and the recovery step

in which the second foot is moved to restore the initial pose (at a new
location). The motion generator computes stepping motions from a small
set of input parameters, most notably the step location and the execution
durations of the capture and the recovery step. It was implemented as an
encapsulated component of the ArmarX software framework. Thanks to the
incorporation of human stepping demonstrations in the form of joint-level
DMPs, the overall human motion characteristic is retained and motion
generation is achieved in a highly efficient manner. Ankle motions proved
to be difficult to learn from motion capture data and were instead generated
with simple heuristics. Comparative evaluations of this method against
task-space motion planning with subsequently solving the IK-problem
revealed a ten-fold speedup and significantly lower standard deviation of
the computation time, making the proposed method favorable for real-time
applications.

Stepping Policy The step parameters that are fed to the motion gener-
ator must be estimated from push parameters that can be measured by the
robot with on-board sensors (see Chapter 4). This mapping from push pa-
rameters p to step parameters s is formalized as a learnable policy s = π(p)
and implemented as an artificial neural network. This network is trained
on data (experience) generated in dynamics simulations of the ARMAR-4
robot performing push recovery steps. To make this data generation effi-
cient and goal-directed, a dedicated method was introduced that explores
new areas in the space of push parameters (the p-space) once the policy is
sufficiently well trained in previously explored regions.

186

6.4 Summary and Review

Evaluations of training in different regions of the p-space show that this
process can generate suitable stepping motions for a wide variety of pushes
from very few initial training data. The fact that successful push recovery
can be achieved without any additional balance control in the final state
highlights the quality of the learned stepping motions, and suggests that the
addition of balance control could make the proposed method applicable to
an even wider range of pushes.

Results The overall result is an efficient method to generate successful
stepping motions from very few initial training samples and with compar-
atively little training, enabling the simulated ARMAR-4 robot to recover
from a wide variety of pushes from different directions and of different
intensities (see Figure 6.11). Experimental evaluation shows that a small
neural network with one hidden layer is able to learn a suitable stepping
policy after 500 policy roll-outs with ten episodes each. As an an on-policy
method, the learning process trains the policy to interpolate the stepping
parameters in the area of the p-space defined by the initial examples.

187

7 Conclusion

The goal of the work presented in this thesis was to find novel ways for
answering the following question:

What does a bipedal humanoid robot need to perceive and to do in order to

regain its balance after a forceful push?

Addressing this question was subdivided into three aspects, namely (1) clas-
sification of the current stability and the estimation of external perturbations,
(2) push recovery by whole-body postural balancing in place, and (3) regain-
ing balance by stepping. These three aspects are thematically coherent, yet
they represent individual building blocks for a balance system that plays a
fundamental role in enabling humanoid robots to find meaningful applica-
tions beyond research labs. A self-imposed constraint on possible answers
to this question was the requirement for computational efficiency to ensure
future applicability of the developed methods on real humanoid robots with
limited resources. To allow the newly developed methods for push recov-
ery specific state estimation to be deployed on a variety of humanoids and
wearable assistive devices, one of the goals was to minimize the amount of
sensors needed.

189

7 Conclusion

7.1 Scientific Contribution

The scientific contribution of this thesis can be summarized as follows.

Disturbance Estimation and Stability Classification Disturbance
estimation with a small sensor setup was addressed by analyzing acceler-
ation data from a single body-worn inertial measurement unit mounted on
a human subject during push recovery trials. It was shown that even this
minimalistic sensing equipment can indicate the direction and the intensity
of pushes to the upper body, and that these quantities are related to the type
of push recovery action (i. e. stepping or no stepping) chosen by the human.
This methodology, with human-derived strategy decision boundaries, can be
transferred to wearable assistive devices or humanoids where torso mounted
IMUs are either readily available or can easily be retrofitted.
Furthermore, disturbance estimation specifically for humanoid robots with
F/T sensors in the ankles was addressed. A method was presented that
enables calculating the 3D action line of a push force applied at arbitrary
locations on the humanoid’s body based on measurements of the contact
wrenches at the feet. This was achieved by projecting the individually mea-
sured contact wrenches into a common frame and pseudo-inverting the lin-
ear relation between the force application point and the force and torque
values, represented as a skew-symmetric matrix. The presented method was
implemented and validated on the ARMAR-4 robot.
Building on the premise and previously shown success of minimal sensor
setups, a study based on a large collection of augmented human motion data
was conducted to investigate whether body-mounted IMUs directly allow
the estimation of the current necessity of push recovery in dynamic situ-
ations, without the explicit estimation of the disturbance. To this end, an
exhaustive search for a classification system, consisting of a sensor setup
(number and location of sensors on the body) and a classification technique
that can map instantaneous IMU measurements to a binary assessment of

190

7.1 Scientific Contribution

the current stability, was conducted. It was shown that the realization of
such a classification system is possible with as little as three body mounted
IMUs, using an artificial neural network as classifier.
A crucial component for automatically labeling the training data for this
classification system was the development of a new indicator of dynamic
stability, the ZMP-Ratio. It allows to quantitatively assess the violation of
the ZMP-criterion, which on its own is too restrictive to judge the stability
of dynamic human motions.

Whole-Body Postural Balancing The presented work on postural bal-
ancing is focused on computational efficiency. It was investigated whether
inherently efficient linear LQR whole-body balance controllers can be en-
hanced by better methods of linearizing the ground contact, and by optimiz-
ing the weights in the LQR cost function. It was shown that less constrained
(with respect to related approaches) linear formulations of the ground con-
tact result in controllers with higher balancing performance, and that opti-
mizing the weight parameters using iterative Simulated Annealing in a re-
duced parameter space can further increase the controller’s capability. Eval-
uations were carried out in dynamics simulations of a planar robot model,
and with the 3D full dynamics model of the ARMAR-4 robot. With the
introduced improvements to linear postural balance control, the 3D robot
model showed resilience against significantly stronger pushes than a similar
approach in related work, based on a rigid ground contact model and not
utilizing LQR weight optimization.

Recovery Stepping Aiming at computational efficiency, recovery step-
ping was realized by mimicking recorded human stepping motions and find-
ing successful adaptations through simulation-based reinforcement learn-
ing. Recorded human stepping motions were transferred to the kinematics
of ARMAR-4 and encoded as motion primitives on the joint level, allow-
ing fast step parameter adaptation and motion generation without the need

191

7 Conclusion

for more than one solution of the inverse kinematics (IK) problem per step
segment. An efficient scheme for directed experience generation in simu-
lation was devised, which allowed to train a stepping policy that maps the
parameters of the push to parameters of the recovery step. This policy was
represented as an artificial neural network. The resulting system enables
the simulated ARMAR-4 robot to successfully react to pushes from a wide
range of directions and intensities, and achieve static stability after taking
an appropriate step, without requiring additional measures of balance con-
trol. Motion generation with the proposed motion primitive based method
is an order of magnitude faster than a method based on task space motion
generation and joint angle trajectory computation via iteratively solving the
IK problem.

7.2 Discussion and Future Work

This thesis has led to novel approaches and promising results in all three
areas that were investigated.

Disturbance Estimation and Stability Classification The unprece-
dentedly exhaustive search for an optimal classification system for dynamic
stability described in Chapter 4, consisting of a small number of body-
mounted IMU sensors and a suitable classification technique, has produced
interesting results, suggesting that only three sensors and a neural network
are a viable option to detect instantaneous instability and hence the need for
active push recovery. Future work in this area could aim at further improving
the performance of the proposed system by integrating several consecutive
frames into the prediction, rather than making predictions based on a single
motion frame alone. This measure might enhance robustness and overall
performance of the system, especially when moving from emulated sensor
data to data collected with actual sensors during human locomotion.

192

7.2 Discussion and Future Work

Another promising future line of research is the application of the newly
developed ZMP-Ratio to humanoid walking. Many methods for the gener-
ation of dynamic walking motions are based on the premise that the ZMP-
criterion needs to be fulfilled at all times – despite the fact that humans
significantly violate it during dynamic motions. The ZMP-Ratio provides
a quantitative measure for this violation that might be considered in novel
motion generation methods to create humanoid walking that mimics the dy-
namic and highly efficient ways humans walk more closely than current
methods.

Whole-Body Postural Balancing Both aspects of the optimization
method for linear whole-body postural balancing controllers, i. e. less con-
strained ground contact models and weight optimization, proved successful
at enhancing balancing performance. Since reacting to pushes in the sagittal
plane (i. e. from the front and back) was identified in to be more challeng-
ing, the optimization was focused on these pushes rather than on pushes in
the frontal plane (i. e. from left and right). Future work in this area could
extend the presented optimization to cover the full range of push directions
and investigate unified controllers that adeptly react to the entirety of fea-
sible pushes. While the success of weight optimization was shown using
Simulated Annealing, other optimization methods could be investigated and
might lead to better results, or result in a faster optimization.

Recovery Stepping The developed step motion generator has proven
to be efficient at producing viable, coordinated and effective stepping
motions. Learning appropriate step parameters for given push parameters
with a policy-gradient reinforcement learning approach was effective for
different areas of the push parameter space, both for comparatively weak
and strong pushes (in relation to the human experiments). Future work
could apply this method to different humanoid robot models and leverage
initial training data from different human subjects to assess the ability

193

7 Conclusion

to generalize, as well as finding policies that generalizes over the entire
feasible range of push parameters. Another interesting aspect of future
work is to validate the stepping capability on an actual humanoid robot.
The method developed in this work was evaluated purely in simulation.
Transferring the obtained results to real robotic hardware, i. e. Sim-to-Real

transfer, is an active research topic in its own right due to the inevitable and
multifaceted differences between the simulation and the real world. Those
differences originate, among others, from inaccuracies in the underlying
simulation model, simplifications of the actual physics in the dynamics
simulation for the sake of computational tractability, and from changing
contact conditions. A promising method to address this problem is Domain

Randomization, where a sufficiently expressive policy is trained and tested
in a large number of slightly different simulated domains in terms of
dynamics models, friction, and other relevant parameters. The obtained
policy is expected to successfully generalize to the real world, which is then
only another domain with yet slightly different parameters.

194

Appendix

A DMP Library

The DMP Library1 is a C++ software library developed at the H2T to fa-
cilitate working with Dynamical Movement Primitives (see Section 2.4).
It provides the functionality to learn DMPs from example trajectories us-
ing locally weighted regression for single-DoF and multi-DoF setups with a
shared canonical system. The number of Gaussian kernel functions can be
chosen and varied for experimental purposes. When reproducing a DMP-
encoded trajectory using the DMP library, the start-point, the end-point and
the temporal scaling factor can be varied to differ from the example trajec-
tory.

B MMM Framework

Recordings of human motions can be an invaluable resource for motion gen-
eration for humanoid robots. Human motion data can come from various
sources, e. g. from marker-based and markerless optical motion capture, or
motion capture with body-worn sensors. To make human motion data ac-
cessible for further research, a unified representation of this data, organiza-
tion in a structured database and programmatic accessibility via an API are
required. A large-scale system that fulfills those requirements has been de-
veloped at the H2T [Mandery et al. 2016] and is used throughout this thesis.

1 https://gitlab.com/h2t/DynamicMovementPrimitive

195

https://gitlab.com/h2t/DynamicMovementPrimitive

Appendix

This system uses the MMM framework and its reference model of the hu-
man body for data representation and conversion [Terlemez et al. 2014].

(a) (b) (c) (d)

Figure A.1: Snapshot of a motion that was converted from the human demonstration (a) via
the MMM reference model of the human body (b) and the kinematic model of the
ARMAR-4 robot (c) to a motion executed on the real robot (d).

Human motion data is acquired on a regular basis at the H2T’s Motion Cap-
ture Laboratory, which is equipped with a state-of-the-art marker-based op-
tical motion capturing system. The data is organized and stored in the KIT
Whole-Body Human Motion Database2 that provides, among others, the
entire motion converted to the MMM reference model in the MMM data
format. The MMM framework provides automated converters that allow to
adapt the human motions to other kinematic entities, such as the humanoid
robot ARMAR-4. This automatic conversion greatly facilitates the gener-
ation of robot motions from recorded human motion data. An example of
such a conversion is shown in Figure A.1.

2 https://motion-database.humanoids.kit.edu/

196

https://motion-database.humanoids.kit.edu/

C ArmarX

C ArmarX

ArmarX3 is the robot software development environment developed at the
H2T to control and program the robots of the ARMAR robot family4. It
provides the functionalities and tools to efficiently develop software that
can be executed on robots, accessing sensory information and commanding
the robot’s actuators. Development with ArmarX is facilitated by the use of
statecharts that can be edited through a graphical interface and provide easy-
to-use building blocks for high-level functionalities. An example statechart
is shown in Figure A.2.
„ArmarX is organized in three layers. The Middleware Layer provides all

core facilities to implement distributed applications as well as basic building

blocks for robot software architectures. Based on these building blocks, the

Robot Framework Layer provides a robot API implementing more complex

functionality like kinematics, memory, and perception. Robot specific APIs

can be implemented by extending the provided generic robot API modules.

Robot programs are realized in the Application Layer. [...] Specialized

components can interact with the ArmarX Simulator or the robot hardware

via ArmarX RT.“ [Vahrenkamp et al. 2015]

Figure A.2: Example of a robot program represented as an ArmarX statechart. High-level robot
skills and behaviors can be built from lower-level building blocks.

3 https://armarx.humanoids.kit.edu/
4 http://h2t.anthropomatik.kit.edu/english/397.php

197

https://armarx.humanoids.kit.edu/
http://h2t.anthropomatik.kit.edu/english/397.php

Appendix

ArmarX is designed to be robot-agnostic. This means that a real robot can
easily be exchanged with a simulation (and vice versa), allowing fast and
low-risk development in simulation and later deployment on the real robot
without the need of adapting components above the robot-specific real-time
layer.

D ARMAR-4

ARMAR-4 [Asfour et al. 2013] is a full-body bipedal humanoid robot with
torque-control capabilities in all of its 30 major joints, as well as a large set
of proprioceptive sensors.

(a) The ARMAR-4 hu-
manoid robot (rendered
view)

(b) Kinematic structure
of the ARMAR-4 hu-
manoid robot

Figure A.3: Rendering of the ARMAR-4 humanoid robot (a) and the kinematic structure of the
robot, excluding the joints of the hands (b). (Both images taken from [Asfour et al.
2013], © 2013 IEEE).

198

D ARMAR-4

Kinematics and System Architecture The major joints of the robot
include six joints per leg (three per hip, one per knee and two per ankle),
eight joints per arm (four per shoulder including an inner shoulder joint,
two per elbow including forearm rotation and two per wrist) and two for
the torso (upper body pitch and rotation). All of these joints are based on
similar integrated actuation units that include, amongst other components,
an electric brushless DC motor, a Harmonic Drive reduction gear, position
encoders and a torque sensor. The actuation units that drive the leg joints
offer a maximum torque of 157 Nm and a maximum rotational speed of
336 deg/s. The eleven joints that move the neck, the eyes and the toes are
based on brushed DC motors and do not feature torque sensors. The eleven
joints of each hand are powered by pneumatic actuators. A central PC is
responsible for real-time motion control and interfaces all actuators via six
CAN-buses. Figure A.3 shows the robot and its kinematic structure.

Proprioceptive Sensing ARMAR-4 includes a large suite of proprio-
ceptive sensors. The three most important sensor types in the context of this
thesis are the joint torque sensors, the body-mounted IMU and the Force/-
Torque sensors in the ankles. The joint torque sensors make ARMAR-4 a
suitable target for torque-based control methods such as LQR whole-body
balancing. The joints can also be operated in velocity control mode, en-
abling the robot to directly execute pre-computed motions such as DMP-
based recovery stepping. The IMU mounted on the torso of ARMAR-4
provides the linear acceleration, rotational velocity and absolute orientation
of the robot, which are important inputs for methods of state and distur-
bance estimation. The Force/Torque sensors mounted between the feet and
the ankle joints of the robot provide a precise measurement of all forces and
torques (i. e. the contact wrench) between the robot and the ground. This
information can be used to obtain the Center of Pressure (CoP) and also to
reconstruct forces acting on the robot at locations different from the feet.

199

Appendix

E Motion Recordings

List of the motion recordings used for the study presented in Section 4.3.
All of these 50 files are available from the KIT Whole-Body Human Motion
Database5.

1. push_recovery_right01.xml

2. push_recovery_right02.xml

3. push_recovery_right03.xml

4. push_recovery_right04.xml

5. push_recovery_right05.xml

6. push_recovery_right06.xml

7. push_recovery_right07.xml

8. push_recovery_right08.xml

9. push_recovery_right09.xml

10. push_recovery_right10.xml

11. push_recovery_right11.xml

12. push_recovery_stand_back01.xml

13. push_recovery_stand_back02.xml

14. push_recovery_stand_back03.xml

15. push_recovery_stand_back04.xml

16. push_recovery_stand_back05.xml

17. push_recovery_stand_back06.xml

18. push_recovery_stand_back07.xml

19. push_recovery_stand_back08.xml

5 https://motion-database.humanoids.kit.edu/

200

https://motion-database.humanoids.kit.edu/

E Motion Recordings

20. push_recovery_stand_back09.xml

21. push_recovery_back02.xml

22. push_recovery_back04.xml

23. push_recovery_back05.xml

24. push_recovery_back06.xml

25. push_recovery_back07.xml

26. push_recovery_back08.xml

27. push_recovery_back10.xml

28. push_recovery_left01.xml

29. push_recovery_left02.xml

30. push_recovery_left03.xml

31. push_recovery_left05.xml

32. push_recovery_left06.xml

33. push_recovery_left07.xml

34. push_recovery_left08.xml

35. push_recovery_left09.xml

36. push_recovery_left10.xml

37. push_recovery_front04.xml,

38. push_recovery_front05.xml

39. push_recovery_front06.xml

40. push_recovery_front07.xml

41. push_recovery_front09.xml

42. push_from_behind08.xml

43. push_from_behind11.xml

44. push_from_behind12.xml

201

Appendix

45. push_from_the_left_side10.xml

46. push_from_the_left_side11.xml

47. push_from_the_left_side12.xml

48. push_from_the_front09.xml

49. push_front_hard03.xml

50. push_recovery_stand_right11.xml

202

F Classifier Hyperparameters

F Classifier Hyperparameters

The classifiers investigated in Section 4.3 of Chapter 4 were all implemented
using their respective standard implementation from the scikit-learn Python
library6. The essential hyperparameters are listed in Table A.1. Parameters
that are not listed were set to their default values. Parameters that differed
from the default values in scikit-learn are highlighted.

Classifier Hyperparameter Value

Naive Bayes Distribution Type Gaussian

k-Nearest Neighbors k 10

Bagged-kNN

k 10

base classifiers 10

samples for base classifiers 0.5 #overall Samples

features for base classifiers 0.5 #overall Features

Perceptron
regularization type L1

regularization coefficient α 0.001

Neural Network

activation function Hyperbolic Tangent

hidden layers 1

hidden units 100

Support Vector Machine
kernel type Linear

penalty coefficient C 1

Table A.1: Essential hyperparameters for the classifiers used in Section 4.3 of Chapter 4. Pa-
rameters that differ from the default values in scikit-learn are highlighted.

6 https://scikit-learn.org/stable/

203

https://scikit-learn.org/stable/

Appendix

G Simulated Annealing

The Simulated Annealing algorithm for optimizing LQR weights W in the
setting of Chapter 5, where the balancing performance p is evaluated in
dynamics simulation.

Algorithm A.4 Simulated Annealing

Require:
T0 – Initial temperature
α – Cooling coefficient 0 < α < 1
nmax – Number of iterations
evaluatePerformance(W) – Objective function (dynamics simulation)

1: function SIMULATEDANNEALING(T0, α , nmax)
2: W ← random . Initialize current weights
3: Wopt ←W . Initialize Current best weights
4: p← evaluatePerformance(W) . Performance from simulation
5: popt ← p . Initialize current best performance
6: T ← T0 . Initialize temperature
7: for n← 1 . . .nmax do
8: Wnew← randomFromGaussian . Gaussian distr. around W
9: pnew = evaluatePerformance(Wnew) . Dynamics Simulation

10: if pnew ≥ p then . New weights are better than current
11: W ←Wnew . Update current weights
12: p← pnew . Update current performance
13: if pnew > popt then . New performance is current best
14: Wopt ←Wnew . Update current best weights
15: popt ← pnew . Update current best performance
16: end if
17: else . New weights are worse than current
18: (W ←Wnew, p← pnew) with probability exp

(
p(Wnew)−p(W)

T

)
19: end if
20: T ← αT . Cooling
21: end for
22: return Wopt
23: end function

204

List of Figures

2.1 The six unactuated DoFs of a humanoid robot 13
2.2 Humanoid robot as floating base system with hybrid dynamics . 15
2.3 HRP-2, TORO and ARMAR-4 16
2.4 Planned footsteps, measured ZMP- and CoM-trajectories 22
2.5 DMP reproductions with different numbers of kernels 28
2.6 Schematic depiction of a computational neural network 33
2.7 The reinforcement learning (RL) setting 37
2.8 Influence of the integration timestep on dynamics simulations . . 39

3.1 The ability to distinguish between being balanced and falling . . 43
3.2 A DARwin-OP humanoid robot reacting to a push 49
3.3 A simulated Atlas robot walking over uneven terrain 51
3.4 A linear control scheme for walking stabilization 57
3.5 Simulated full dynamics LQR for push recovery 59
3.6 A humanoid robot balancing different inverted pendulums . . . 61
3.7 The standard LIPM and the LIPM Plus Flywheel 63
3.8 Different locations of capture regions 64
3.9 Learning capture point adaptations 65
3.10 A humanoid robot reacting to a lateral push by stepping 67
3.11 Push recovery based on reinforcement learning 69
3.12 Recovery stepping with a task space DMP 70
3.13 Stability Classification and Disturbance Estimation 72
3.14 Related Methods: Balancing in place 73
3.15 Related Methods: Recovery stepping 74

205

List of Figures

4.1 Human subject with IMU, sensorized push device 78
4.2 Push force and torso acceleration during a push recovery trial . . 81
4.3 Torso acceleration and its numerical derivative 84
4.4 Selected push recovery strategies for estimated push intensities . 85
4.5 All human trials, colored by the actual direction 88
4.6 Ankle F/T sensors of the ARMAR-4 humanoid robot 89
4.7 Coordinate transformation for the dual contact case 93
4.8 Virtual wrench components from robot experiments 94
4.9 Force action lines computed from virtual contact wrenches . . . 95
4.10 Validation experiment on the ARMAR-4 96
4.11 Overview over the envisioned classification system 98
4.12 Positions of optical markers and emulated IMUs 100
4.13 ZMP-Ratio for a dynamically stable dual contact situation . . . 102
4.14 ZMP-Ratio during a human push recovery trial 106
4.15 Optimal sensor placements . 111

5.1 Intended result: Whole-body balancing of ARMAR-4 118
5.2 Planar 3DoF model . 120
5.3 Linear contact models . 126
5.4 LQR weight optimization cycle 131
5.5 Data generation process for contact model evaluation 138
5.6 Comparison of contact model performances 139
5.7 Current best performances during Simulated Annealing 141
5.8 Balancing sequence of the simplified 2D model 142
5.9 Validation Experiments in the ARMAR-4 simulation 144

6.1 Envisioned push recovery capability 148
6.2 Stepping motion recordings . 153
6.3 MMM motion conversion example 154
6.4 Parametric step trajectory generator 158
6.5 Trajectory selection grid . 159

206

List of Figures

6.6 Step generation pipeline . 161
6.7 Single layer stepping policy network 165
6.8 New parameter generation . 169
6.9 Exemplary recorded push force profiles 175
6.10 ArmarX statechart for automated stepping policy learning 176
6.11 Multi-directional evaluation experiments 179
6.12 P-space with 5000 sampled locations 181
6.13 Evaluation of π500,weak after 500 training iterations 182
6.14 Evaluation of π500,strong after 500 training iterations 183

A.1 Motion conversion from human to robot 196
A.2 An example statechart implemented in ArmarX 197
A.3 ARMAR-4 and its kinematic structure 198

207

List of Tables

4.1 Sensing modalities and recorded data during push recovery . . . 80
4.2 Correct recovery strategy prediction from a single IMU 86
4.3 F1-scores of the 36 classification systems 109

5.1 Benefits and challenges of LQR balance control 117
5.2 Free parameters in the 2D optimization 134
5.3 Free parameters in the 3D optimization 136
5.4 Controller Performance of different optimization strategies . . . 141

6.1 Parameter grid for step recordings 152
6.2 Examples of initial parameter sets 168
6.3 Generated parameters for experience generation 170
6.4 Computation times of constrained IK vs. DMP 185

A.1 Essential classifier hyperparameters 203

209

List of Algorithms

1 Automatic Labeling . 103

2 Step Policy Learning . 166
3 Push Parameter Generation . 171

A.4 Simulated Annealing . 204

211

Acronyms

ADC Analog to Digital Converter
ANN Artificial Neural Network

CAN Controller Area Network
CoM Center of Mass
CoP Center of Pressure

DARPA Defense Advanced Research Project Agency
DCM Divergent Component of Motion
DDP Differential Dynamic Programming
DLR Deutsches Zentrum für Luft- und Raumfahrt
DMP Dynamic Movement Primitive
DNN Deep Neural Network
DoF Degree of Freedom

F/T sensor 6-DoF Force/Torque Sensor
FZMP Fictitious Zero Moment Point

H2T High Performance Humanoid Technologies
HMM Hidden Markov Model
HRP Japanese Humanoid Robotics Project

ICP Instantaneous Capture Point
IK Inverse Kinematics
IMU Inertial Measurement Unit

213

Acronyms

kNN k-Nearest Neighbors

LIPM Linear Inverted Pendulum Model
LQR Linear Quadratic Regulator

MMM Master Motor Map
MPC Model Predictive Control

NASA National Aeronautics and Space Administration
NB Naive Bayes
NN Neural Network

PD Proportional Derivative

QP Quadratic Program

ReLU Rectified Linear Unit
RL Reinforcement Learning

SA Simulated Annealing
SP Support Polygon
SQP Sequential Quadratic Program
SVM Support Vector Machine

ZMP Zero Moment Point

214

KIT Karlsruhe Institute of Technology

Bibliography

Z. Aftab, T. Robert, and P.-B. Wieber. Ankle, hip and stepping strategies
for humanoid balance recovery with a single model predictive control
scheme. In Humanoid Robots (Humanoids), 2012 12th IEEE-RAS Inter-

national Conference on, pages 159–164. IEEE, 2012. 68

C. E. Agüero, N. Koenig, I. Chen, H. Boyer, S. Peters, J. Hsu, B. Gerkey,
S. Paepcke, J. L. Rivero, J. Manzo, et al. Inside the virtual robotics chal-
lenge: Simulating real-time robotic disaster response. IEEE Transactions

on Automation Science and Engineering, 12(2):494–506, 2015. 55

B. D. Anderson and J. B. Moore. Optimal control: linear quadratic meth-

ods. Courier Corporation, 2007. 24

M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pa-
chocki, A. Petron, M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor,
J. Tobin, P. Welinder, L. Weng, and W. Zaremba. Learning dexterous
in-hand manipulation. ArXiv, arXiv:1808.00177, 2018. 36

T. Asfour, J. Schill, H. Peters, C. Klas, J. Bucker, C. Sander, S. Schulz,
A. Kargov, T. Werner, and V. Bartenbach. ARMAR-4: A 63 DOF Torque
Controlled Humanoid Robot. In 2013 13th IEEE-RAS International Con-

ference on Humanoid Robots (Humanoids), pages 390–396, Oct. 2013.
16, 198

S. Bäuerle. Entwurf und Implementierung eines LQ-Reglers zum Bal-
ancieren humanoider Roboter. Master thesis, Karlsruhe Institute of Tech-
nology (KIT), May 2018. 139, 141

215

Bibliography

S. Bäuerle, L. Kaul, and T. Asfour. Linear contact modeling and stochastic
parameter optimization for LQR-based whole-body push recovery. In
IEEE/RAS International Conference on Humanoid Robots (Humanoids),
pages 224–231, 2018. 118, 119, 126, 142, 144

M. Behnisch, R. Haschke, and M. Gienger. Task space motion planning
using reactive control. In Intelligent Robots and Systems (IROS), 2010

IEEE/RSJ International Conference on, pages 5934–5940. IEEE, 2010.
149

A. Ben-Israel and T. N. Greville. Generalized inverses: theory and applica-

tions, volume 15. Springer Science & Business Media, 2003. 91

J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-
parameter optimization. In Advances in neural information processing

systems, pages 2546–2554, 2011. 31

J. Borras and T. Asfour. A whole-body pose taxonomy for loco-
manipulation tasks. In Intelligent Robots and Systems (IROS), 2015

IEEE/RSJ International Conference on, pages 1578–1585. IEEE, 2015.
14

Boston Dynamics. Atlas - the world’s most dynamic humanoid. https:
//www.bostondynamics.com/atlas, 2018. Accessed: 2018-07-
23. 16

K. Bouyarmane and A. Kheddar. On the dynamics modeling of free-
floating-base articulated mechanisms and applications to humanoid
whole-body dynamics and control. In Humanoid Robots (Humanoids),

2012 12th IEEE-RAS International Conference on, pages 36–42. IEEE,
2012. 14, 15

S. Boyd and C. Barratt. Linear controller design: limits of performance.
Technical report, Stanford University Stanford United States, 1991. 24

216

https://www.bostondynamics.com/atlas
https://www.bostondynamics.com/atlas

Bibliography

A. Bryson. Time-varying linear-quadratic control. Journal of optimization

theory and applications, 100(3):515–525, 1999. 60

A. Bryson and Y. Ho. Applied optimal control. New York: Hemisphere,
1975. 119

bulletphysics. Bullet physics engine. http://bulletphysics.org/,
2018. Accessed: 2018-08-20. 39, 174

G. Cannata, M. Maggiali, G. Metta, and G. Sandini. An embedded artifi-
cial skin for humanoid robots. In Multisensor Fusion and Integration for

Intelligent Systems, 2008. MFI 2008. IEEE International Conference on,
pages 434–438. IEEE, 2008. 45

S.-J. Chung and N. Pollard. Predictable behavior during contact simula-
tion: a comparison of selected physics engines. Computer Animation and

Virtual Worlds, 27(3-4):262–270, 2016. 39, 174

A. De Luca and R. Mattone. Actuator failure detection and isolation using
generalized momenta. In Robotics and Automation, 2003. Proceedings.

ICRA’03. IEEE International Conference on, volume 1, pages 634–639.
IEEE, 2003. 47

A. De Luca and R. Mattone. Sensorless robot collision detection and hybrid
force/motion control. In Robotics and Automation, 2005. ICRA 2005.

Proceedings of the 2005 IEEE International Conference on, pages 999–
1004. IEEE, 2005. 47

G. De Maria, C. Natale, and S. Pirozzi. Force/tactile sensor for robotic
applications. Sensors and Actuators A: Physical, 175:60–72, 2012. 46

H. Diedam, D. Dimitrov, P.-B. Wieber, K. Mombaur, and M. Diehl. On-
line walking gait generation with adaptive foot positioning through linear

217

http://bulletphysics.org/

Bibliography

model predictive control. In IROS 2008-IEEE-RSJ International Con-

ference on Intelligent Robots & Systems, pages 1121–1126. IEEE, 2008.
66

M. Diehl and K. Mombaur. Fast motions in biomechanics and robotics.
Springer, 2006. 21

W. Ding, X. Chen, Z. Yu, L. Meng, M. Ceccarelli, and Q. Huang. Fall
protection of humanoids inspired by human fall motion. In IEEE/RAS

International Conference on Humanoid Robots (Humanoids), pages 827–
833, 2018. 42

K. Doughty, R. Lewis, and A. McIntosh. The design of a practical and
reliable fall detector for community and institutional telecare. Journal of

Telemedicine and Telecare, 6(1_suppl):150–154, 2000. 44

J. Englsberger, C. Ott, M. A. Roa, A. Albu-Schäffer, and G. Hirzinger.
Bipedal walking control based on capture point dynamics. In Intelligent

Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on,
pages 4420–4427. IEEE, 2011. 63, 66

J. Englsberger, T. Koolen, S. Bertrand, J. Pratt, C. Ott, and A. Albu-Schäffer.
Trajectory generation for continuous leg forces during double support and
heel-to-toe shift based on divergent component of motion. In Intelligent

Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Confer-

ence on, pages 4022–4029. IEEE, 2014a. 66

J. Englsberger, A. Werner, C. Ott, B. Henze, M. A. Roa, G. Garofalo,
R. Burger, A. Beyer, O. Eiberger, K. Schmid, et al. Overview of the
torque-controlled humanoid robot TORO. In Humanoid Robots (Hu-

manoids), 2014 14th IEEE-RAS International Conference on, pages 916–
923. IEEE, 2014b. 16

218

Bibliography

J. Englsberger, C. Ott, and A. Albu-Schäffer. Three-dimensional bipedal
walking control based on divergent component of motion. IEEE Trans-

actions on Robotics, 31(2):355–368, 2015. 63, 66

S. Z. Erdogan, T. T. Bilgin, and J. Cho. Fall detection by using K-nearest
neighbor algorithm on WSN data. In GLOBECOM Workshops (GC Wk-

shps), 2010 IEEE, pages 2054–2058. IEEE, 2010. 44

T. Erez, Y. Tassa, and E. Todorov. Simulation tools for model-based
robotics: Comparison of Bullet, Havok, MuJoCo, ODE and PhysX. In
Robotics and Automation (ICRA), 2015 IEEE International Conference

on, pages 4397–4404. IEEE, 2015. 39

J. Ernesti, L. Righetti, M. Do, T. Asfour, and S. Schaal. Encoding of pe-
riodic and their transient motions by a single dynamic movement prim-
itive. In Humanoid Robots (Humanoids), 2012 IEEE-RAS International

Conference on, pages 57–64, 2012. 25

R. Featherstone. Rigid body dynamics algorithms. Springer, New York,
2008. ISBN 978-0-387-74314-1. 12, 13, 91

S. Feng, X. Xinjilefu, W. Huang, and C. G. Atkeson. 3D walking based
on online optimization. In Humanoid Robots (Humanoids), 2013 13th

IEEE-RAS International Conference on, pages 21–27. IEEE, 2013. 50,
51, 55

F. Flacco, A. Paolillo, and A. Kheddar. Residual-based contacts estimation
for humanoid robots. In Humanoid Robots (Humanoids), 2016 IEEE-RAS

16th International Conference on, pages 409–415. IEEE, 2016. 48

T. Flash and N. Hogan. The coordination of arm movements: an experi-
mentally confirmed mathematical model. Journal of neuroscience, 5(7):
1688–1703, 1985. 28

219

Bibliography

M. Fumagalli, M. Randazzo, F. Nori, L. Natale, G. Metta, and G. Sandini.
Exploiting proximal F/T measurements for the iCub active compliance.
In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International

Conference on, pages 1870–1876. IEEE, 2010. 47

S. F. Giszter, F. A. Mussa-Ivaldi, and E. Bizzi. Convergent force fields
organized in the frog’s spinal cord. Journal of neuroscience, 13(2):467–
491, 1993. 25

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org. 32

R. J. Griffin and A. Leonessa. Model predictive control for dynamic foot-
step adjustment using the divergent component of motion. In Robotics

and Automation (ICRA), 2016 IEEE International Conference on, pages
1763–1768. IEEE, 2016. 15, 66

R. J. Griffin, G. Wiedebach, S. Bertrand, A. Leonessa, and J. Pratt. Walking
stabilization using step timing and location adjustment on the humanoid
robot, Atlas. Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ In-

ternational Conference on, 2017. 67

S. Haddadin, A. De Luca, and A. Albu-Schäffer. Robot collisions: A sur-
vey on detection, isolation, and identification. IEEE Transactions on

Robotics, 33(6):1292–1312, 2017. 46

T. Hastie, R. Tibshirani, and J. Friedman. Unsupervised learning. In The

elements of statistical learning, pages 485–585. Springer, 2009. 32

B. Henze, M. A. Roa, and C. Ott. Passivity-based whole-body balancing
for torque-controlled humanoid robots in multi-contact scenarios. The

International Journal of Robotics Research, 35(12):1522–1543, 2016. 49

220

http://www.deeplearningbook.org

Bibliography

A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, and
M. Diehl. Online walking motion generation with automatic footstep
placement. Advanced Robotics, 24(5-6):719–737, 2010. 66, 68

H. Herr and M. Popovic. Angular momentum in human walking. Journal

of Experimental Biology, 211(4):467–481, 2008. 124

G. Hettich, L. Assländer, A. Gollhofer, and T. Mergner. Human hip–
ankle coordination emerging from multisensory feedback control. Human

movement science, 37:123–146, 2014. 48

H. Hirukawa, F. Kanehiro, K. Kaneko, S. Kajita, K. Fujiwara, Y. Kawai,
F. Tomita, S. Hirai, K. Tanie, T. Isozumi, et al. Humanoid robotics plat-
forms developed in HRP. Robotics and Autonomous Systems, 48(4):165–
175, 2004. 16

A. Hof, M. Gazendam, and W. Sinke. The condition for dynamic stability.
Journal of biomechanics, 38(1):1–8, 2005. 63

A. L. Hof. The ‘extrapolated center of mass’ concept suggests a simple
control of balance in walking. Human movement science, 27(1):112–125,
2008. 63

F. B. Horak and L. M. Nashner. Central programming of postural move-
ments: adaptation to altered support-surface configurations. Journal of

neurophysiology, 55(6):1369–1381, 1986. 48

Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, and
K. Tanie. Planning walking patterns for a biped robot. IEEE Transac-

tions on robotics and automation, 17(3):280–289, 2001. 21

S.-H. Hyon. Compliant terrain adaptation for biped humanoids without
measuring ground surface and contact forces. IEEE Transactions on

Robotics, 25(1):171–178, 2009. 56

221

Bibliography

S.-H. Hyon, J. G. Hale, G. Cheng, et al. Full-body compliant human-
humanoid interaction: Balancing in the presence of unknown external
forces. IEEE Trans. Robotics, 23(5):884–898, 2007. 45

S.-H. Hyon, R. Osu, and Y. Otaka. Integration of multi-level postural bal-
ancing on humanoid robots. In Robotics and Automation, 2009. ICRA’09.

IEEE International Conference on, pages 1549–1556. IEEE, 2009. 48, 49

A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with nonlin-
ear dynamical systems in humanoid robots. In Robotics and Automa-

tion, 2002. Proceedings. ICRA’02. IEEE International Conference on,
volume 2, pages 1398–1403. IEEE, 2002. 26

A. J. Ijspeert, J. Nakanishi, and S. Schaal. Learning attractor landscapes for
learning motor primitives. In Advances in neural information processing

systems, pages 1547–1554, 2003. 26

A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal. Dynami-
cal Movement Primitives: learning attractor models for motor behaviors.
Neural computation, 25(2):328–373, 2013. 26, 29

K. Ishihara and J. Morimoto. Real-time model predictive control with two-
step optimization based on singularly perturbed system. In Humanoid

Robots (Humanoids), 2015 IEEE-RAS 15th International Conference on,
pages 173–180. IEEE, 2015. 15

S. Ivaldi, M. Fumagalli, M. Randazzo, F. Nori, G. Metta, and G. Sandini.
Computing robot internal/external wrenches by means of inertial, tac-
tile and F/T sensors: Theory and implementation on the iCub. In Hu-

manoid Robots (Humanoids), 2011 IEEE-RAS International Conference

on, pages 521–528, 2011. 47

D. H. Jacobson and D. Q. Mayne. Differential dynamic programming.
American Elsevier Publishing Company New York, New York, 1970. 55

222

Bibliography

M. Johnson, B. Shrewsbury, S. Bertrand, T. Wu, D. Duran, M. Floyd,
P. Abeles, D. Stephen, N. Mertins, A. Lesman, et al. Team IHMC’s
lessons learned from the DARPA robotics challenge trials. Journal of

Field Robotics, 32(2):192–208, 2015. 55, 75

A. Jordao, A. C. Nazare Jr, J. Sena, and W. R. Schwartz. Human activity
recognition based on wearable sensor data: A standardization of the state-
of-the-art. arXiv preprint arXiv:1806.05226, 2018. 107

S. Kajita and K. Tani. Study of dynamic biped locomotion on rugged terrain-
derivation and application of the linear inverted pendulum mode. In
Robotics and Automation, 1991. Proceedings., 1991 IEEE International

Conference on, pages 1405–1411. IEEE, 1991. 19

S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa. The 3D
linear inverted pendulum mode: A simple modeling for a biped walking
pattern generation. In Intelligent Robots and Systems, 2001. Proceedings.

2001 IEEE/RSJ International Conference on, volume 1, pages 239–246.
IEEE, 2001. 19

S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and
H. Hirukawa. Biped walking pattern generation by using preview con-
trol of zero-moment point. In Robotics and Automation, 2003. Pro-

ceedings. ICRA’03. IEEE International Conference on, volume 2, pages
1620–1626. IEEE, 2003. 19, 22, 58, 66

S. Kajita, M. Morisawa, K. Harada, K. Kaneko, F. Kanehiro, K. Fujiwara,
and H. Hirukawa. Biped walking pattern generator allowing auxiliary
ZMP control. In Intelligent Robots and Systems, 2006 IEEE/RSJ Interna-

tional Conference on, pages 2993–2999. IEEE, 2006. 22

S. Kajita, M. Morisawa, K. Miura, S. Nakaoka, K. Harada, K. Kaneko,
F. Kanehiro, and K. Yokoi. Biped walking stabilization based on linear
inverted pendulum tracking. In Intelligent Robots and Systems (IROS),

223

Bibliography

2010 IEEE/RSJ International Conference on, pages 4489–4496. IEEE,
2010. 17, 21, 56, 57

S. Kalyanakrishnan and A. Goswami. Predicting falls of a humanoid robot
through machine learning. In Proceedings of the Twenty-second IAAI

Conference on Artificial Intelligence, pages 1793–1798. Association for
the Advancement of Artificial Intelligence (AAAI), 2010. 42, 43, 44

K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hi-
rata, K. Akachi, and T. Isozumi. Humanoid robot HRP-2. In Robotics

and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE International

Conference on, volume 2, pages 1083–1090 Vol.2, April 2004. doi:
10.1109/ROBOT.2004.1307969. 16

K. Kaneko, F. Kanehiro, M. Morisawa, K. Akachi, G. Miyamori,
A. Hayashi, and N. Kanehira. Humanoid robot HRP-4-humanoid robotics
platform with lightweight and slim body. In Intelligent Robots and Sys-

tems (IROS), 2011 IEEE/RSJ International Conference on, pages 4400–
4407. IEEE, 2011. 16

O. Kanoun, F. Lamiraux, P.-B. Wieber, F. Kanehiro, E. Yoshida, and J.-P.
Laumond. Prioritizing linear equality and inequality systems: applica-
tion to local motion planning for redundant robots. In ICRA 2009-IEEE

International Conference on Robotics & Automation, pages 2939–2944.
IEEE, 2009. 52

D. M. Karantonis, M. R. Narayanan, M. Mathie, N. H. Lovell, and B. G.
Celler. Implementation of a real-time human movement classifier using a
triaxial accelerometer for ambulatory monitoring. IEEE transactions on

information technology in biomedicine, 10(1):156–167, 2006. 44

G. Karer and I. Škrjanc. Predictive approaches to control of complex sys-

tems, volume 454. Springer, 2012. 14

224

Bibliography

N. Kashiri, J. Malzahn, and N. G. Tsagarakis. On the sensor design of
torque controlled actuators: A comparison study of strain gauge and
encoder-based principles. IEEE Robotics and Automation Letters, 2(2):
1186–1194, 2017. 15

L. Kaul and T. Asfour. Human push-recovery: Strategy selection based on
push intensity estimation. In ISR 2016: 47th International Symposium

on Robotics; Proceedings of, pages 547–554. VDE VERLAG, Berlin,
Offenbach, 2016. 76, 78, 81, 84, 85, 88

M. Khadiv, A. Herzog, S. A. A. Moosavian, and L. Righetti. Step timing
adjustment: A step toward generating robust gaits. In Humanoid Robots

(Humanoids), 2016 IEEE-RAS 16th International Conference on, pages
35–42. IEEE, 2016. 68

J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics:
A survey. The International Journal of Robotics Research, 32(11):1238–
1274, 2013. 32, 36

A. Kolker, M. Jokesch, and U. Thomas. An optical tactile sensor for mea-
suring force values and directions for several soft and rigid contacts. In
ISR 2016: 47st International Symposium on Robotics; Proceedings of,
pages 1–6. VDE, 2016. 46

T. Koolen, T. De Boer, J. Rebula, A. Goswami, and J. Pratt. Capturability-
based analysis and control of legged locomotion, part 1: Theory and
application to three simple gait models. The International Journal of

Robotics Research, 31(9):1094–1113, 2012. 63, 66

T. Koolen, S. Bertrand, G. Thomas, T. De Boer, T. Wu, J. Smith, J. En-
glsberger, and J. Pratt. Design of a momentum-based control framework
and application to the humanoid robot Atlas. International Journal of

Humanoid Robotics, 13(01):1650007, 2016. 55

225

Bibliography

P. Kryczka, P. Kormushev, N. G. Tsagarakis, and D. G. Caldwell. Online re-
generation of bipedal walking gait pattern optimizing footstep placement
and timing. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ

International Conference on, pages 3352–3357. IEEE, 2015. 68

S. Kudoh, T. Komura, and K. Ikeuchi. The dynamic postural adjustment
with the quadratic programming method. In Intelligent Robots and Sys-

tems, 2002. IEEE/RSJ International Conference on, volume 3, pages
2563–2568. IEEE, 2002. 54

S. Kuindersma, F. Permenter, and R. Tedrake. An efficiently solvable
quadratic program for stabilizing dynamic locomotion. In Robotics

and Automation (ICRA), 2014 IEEE International Conference on, pages
2589–2594. IEEE, 2014. 12, 13, 53, 55, 58

S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter,
T. Koolen, P. Marion, and R. Tedrake. Optimization-based locomotion
planning, estimation, and control design for the Atlas humanoid robot.
Autonomous Robots, 40(3):429–455, 2016. 50, 51

S.-H. Lee and A. Goswami. A momentum-based balance controller for
humanoid robots on non-level and non-stationary ground. Autonomous

Robots, 33(4):399–414, 2012. 124

S. Levine and V. Koltun. Learning complex neural network policies with tra-
jectory optimization. In ICML ’14: Proceedings of the 31st International

Conference on Machine Learning, 2014. 69

F. L. Lewis, D. Vrabie, and V. L. Syrmos. Optimal control. John Wiley &
Sons, 2012. 119

W. Li and E. Todorov. Iterative linear quadratic regulator design for nonlin-
ear biological movement systems. In ICINCO (1), pages 222–229, 2004.
60

226

Bibliography

D. Luo, X. Han, Y. Ding, Y. Ma, Z. Liu, and X. Wu. Learning push recov-
ery for a bipedal humanoid robot with dynamical movement primitives.
In Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th International

Conference on, pages 1013–1019. IEEE, 2015. 70, 71

E. Magrini, F. Flacco, and A. De Luca. Estimation of contact forces using a
virtual force sensor. In Intelligent Robots and Systems (IROS 2014), 2014

IEEE/RSJ International Conference on, pages 2126–2133. IEEE, 2014.
47

C. Mandery, Ö. Terlemez, M. Do, N. Vahrenkamp, and T. Asfour. Uni-
fying representations and large-scale whole-body motion databases for
studying human motion. IEEE Transactions on Robotics, 32(4):796–809,
2016. 99, 151, 195

L. Manuelli and R. Tedrake. Localizing external contact using propriocep-
tive sensors: The contact particle filter. In Intelligent Robots and Systems

(IROS), 2016 IEEE/RSJ International Conference on, pages 5062–5069.
IEEE, 2016. 46

A. Marco, P. Hennig, J. Bohg, S. Schaal, and S. Trimpe. Automatic LQR
tuning based on gaussian process global optimization. In Robotics and

Automation (ICRA), 2016 IEEE International Conference on, pages 270–
277. IEEE, 2016. 61, 117

S. Mason, L. Righetti, and S. Schaal. Full dynamics LQR control of a hu-
manoid robot: An experimental study on balancing and squatting. In Hu-

manoid Robots (Humanoids), 2014 14th IEEE-RAS International Confer-

ence on, pages 374–379. IEEE, 2014. 25, 58, 59, 60, 116, 121, 122, 127,
135, 144

S. Mason, N. Rotella, S. Schaal, and L. Righetti. Balancing and walking
using full dynamics LQR control with contact constraints. In Humanoid

227

Bibliography

Robots (Humanoids), 2016 IEEE-RAS 16th International Conference on,
pages 63–68. IEEE, 2016. 25, 59, 60, 116

MathWorks. Simscape multibody. https://de.mathworks.com/p

roducts/simmechanics.html, 2018. Accessed: 2018-08-20. 40

T. Matsubara, S.-H. Hyon, and J. Morimoto. Learning parametric dynamic
movement primitives from multiple demonstrations. Neural networks, 24
(5):493–500, 2011. 29

R. B. McGhee and G. I. Iswandhi. Adaptive locomotion of a multilegged
robot over rough terrain. IEEE transactions on systems, man, and cyber-

netics, 9(4):176–182, 1979. 19

M. Mistry, J. Buchli, and S. Schaal. Inverse dynamics control of floating
base systems using orthogonal decomposition. In Robotics and Automa-

tion (ICRA), 2010 IEEE International Conference on, pages 3406–3412.
Citeseer, 2010. 13

P. Mittendorfer and G. Cheng. Humanoid multimodal tactile-sensing mod-
ules. IEEE Transactions on robotics, 27(3):401–410, 2011. 45

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Belle-
mare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518
(7540):529, 2015. 36

K. Mombaur. Using optimization to create self-stable human-like running.
Robotica, 27(3):321–330, 2009. 50

J. Moya, J. Ruiz-del Solar, M. Orchard, and I. Parra-Tsunekawa. Fall de-
tection and damage reduction in biped humanoid robots. International

Journal of Humanoid Robotics, 12(01):1550001, 2015. 44

228

https://de.mathworks.com/products/simmechanics.html
https://de.mathworks.com/products/simmechanics.html

Bibliography

F. A. Mussa-Ivaldi. Nonlinear force fields: a distributed system of control
primitives for representing and learning movements. In Computational

Intelligence in Robotics and Automation, 1997. CIRA’97., Proceedings.,

1997 IEEE International Symposium on, pages 84–90. IEEE, 1997. 25

V. Nair and G. E. Hinton. Rectified linear units improve restricted boltz-
mann machines. In Proceedings of the 27th international conference on

machine learning (ICML-10), pages 807–814, 2010. 34

O. Ojetola, E. I. Gaura, and J. Brusey. Fall detection with wearable sensors –
SAFE (SmArt Fall dEtection). In 2011 Seventh International Conference

on Intelligent Environments, pages 318–321. IEEE, 2011. 44

D. E. Orin and A. Goswami. Centroidal momentum matrix of a humanoid
robot: Structure and properties. dynamics, 4:6, 2008. 124

C. Ott and Y. Nakamura. Admittance control using a base force/torque sen-
sor. IFAC Proceedings Volumes, 42(16):467–472, 2009. 48

J. Pankert. Human-inspired capture-stepping for push-recovery of humanoid
robots. Master thesis, Karlsruhe Institute of Technology (KIT), June
2018. 153, 154, 165, 169, 171, 173

J. Pankert, L. Kaul, and T. Asfour. Learning efficient omni-directional cap-
ture stepping for humanoid robots from human motion and simulation
data. In IEEE/RAS International Conference on Humanoid Robots (Hu-

manoids), pages 503–509, 2018. 148, 161, 166, 175, 181, 182, 183

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Re-

search, 12:2825–2830, 2011. 105

229

Bibliography

X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne. Deeploco: Dynamic
locomotion skills using hierarchical deep reinforcement learning. ACM

Transactions on Graphics (TOG), 36(4):41, 2017. 70, 164

X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne. Deepmimic:
Example-guided deep reinforcement learning of physics-based character
skills. arXiv preprint arXiv:1804.02717, 2018. 70

M. B. Popovic, A. Goswami, and H. Herr. Ground reference points in
legged locomotion: Definitions, biological trajectories and control impli-
cations. The International Journal of Robotics Research, 24(12):1013–
1032, 2005. 21

M. Posa, C. Cantu, and R. Tedrake. A direct method for trajectory opti-
mization of rigid bodies through contact. The International Journal of

Robotics Research, 33(1):69–81, 2014. 50

G. Pratt and J. Manzo. The DARPA robotics challenge [competitions]. IEEE

Robotics & Automation Magazine, 20(2):10–12, 2013. 51

J. Pratt, J. Carff, S. Drakunov, and A. Goswami. Capture point: A step
toward humanoid push recovery. In Humanoid Robots, 2006 6th IEEE-

RAS International Conference on, pages 200–207. IEEE, 2006. 19, 62,
63, 64

J. Pratt, T. Koolen, T. De Boer, J. Rebula, S. Cotton, J. Carff, M. Johnson,
and P. Neuhaus. Capturability-based analysis and control of legged loco-
motion, part 2: Application to M2V2, a lower-body humanoid. The In-

ternational Journal of Robotics Research, 31(10):1117–1133, 2012. 65,
66

N. A. Radford, P. Strawser, K. Hambuchen, J. S. Mehling, W. K. Verdeyen,
A. S. Donnan, J. Holley, J. Sanchez, V. Nguyen, L. Bridgwater, et al.
Valkyrie: NASA’s first bipedal humanoid robot. Journal of Field

Robotics, 32(3):397–419, 2015. 16

230

Bibliography

J. Rebula, F. Canas, J. Pratt, and A. Goswami. Learning capture points
for humanoid push recovery. In Humanoid Robots, 2007 7th IEEE-RAS

International Conference on, pages 65–72. IEEE, 2007. 65, 172

R. Renner and S. Behnke. Instability detection and fall avoidance for a
humanoid using attitude sensors and reflexes. In Intelligent robots and

systems, 2006 IEEE/RSJ international conference on, pages 2967–2973.
IEEE, 2006. 45

A. Roncone, M. Hoffmann, U. Pattacini, and G. Metta. Learning periper-
sonal space representation through artificial skin for avoidance and reach-
ing with whole body surface. In Intelligent Robots and Systems (IROS),

2015 IEEE/RSJ International Conference on, pages 3366–3373. IEEE,
2015. 46

N. Rotella, M. Bloesch, L. Righetti, and S. Schaal. State estimation for a
humanoid robot. In Intelligent Robots and Systems (IROS 2014), 2014

IEEE/RSJ International Conference on, pages 952–958. IEEE, 2014. 75

N. Rotella, S. Mason, S. Schaal, and L. Righetti. Inertial sensor-based hu-
manoid joint state estimation. In Robotics and Automation (ICRA), 2016

IEEE International Conference on, pages 1825–1831. IEEE, 2016. 75

L. Saab, O. E. Ramos, F. Keith, N. Mansard, P. Soueres, and J.-Y. Fourquet.
Dynamic whole-body motion generation under rigid contacts and other
unilateral constraints. IEEE Transactions on Robotics, 29(2):346–362,
2013. 51

S. Schaal. Dynamic movement primitives – a framework for motor control
in humans and humanoid robotics. In Adaptive motion of animals and

machines, pages 261–280. Springer, 2006. 26

T. B. Sheridan. Three models of preview control. IEEE Transactions on

Human Factors in Electronics, HFE-7(2):91–102, June 1966. 58

231

Bibliography

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al.
Mastering the game of Go with deep neural networks and tree search. na-

ture, 529(7587):484, 2016. 36

L. Steffan. Using data from inertial measurement units for stability pre-
diction in humans and humanoids. Master thesis, Karlsruhe Institute of
Technology (KIT), April 2017. 102

L. Steffan, L. Kaul, and T. Asfour. Online stability estimation based on
inertial sensor data for human and humanoid fall prevention. In IEEE/RAS

International Conference on Humanoid Robots (Humanoids), pages 171–
177, 2017. 76, 100, 106, 109, 111

B. Stephens. Humanoid push recovery. In Humanoid Robots, 2007 7th

IEEE-RAS International Conference on, pages 589–595. IEEE, 2007. 48

E. E. Stone and M. Skubic. Fall detection in homes of older adults using
the Microsoft Kinect. IEEE J. Biomedical and Health Informatics, 19(1):
290–301, 2015. 43

K. Suita, Y. Yamada, N. Tsuchida, K. Imai, H. Ikeda, and N. Sugimoto. A
failure-to-safety "Kyozon" system with simple contact detection and stop
capabilities for safe human-autonomous robot coexistence. In Robotics

and Automation, 1995. Proceedings., 1995 IEEE International Confer-

ence on, volume 3, pages 3089–3096. IEEE, 1995. 47

N. Sünderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner, B. Up-
croft, P. Abbeel, W. Burgard, M. Milford, et al. The limits and potentials
of deep learning for robotics. The International Journal of Robotics Re-

search, 37(4-5):405–420, 2018. 35

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction,
volume 135. MIT press Cambridge, 1998. 35

232

Bibliography

T. Takenaka, T. Matsumoto, and T. Yoshiike. Real time motion generation
and control for biped robot -1st report: Walking gait pattern generation-.
In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ Interna-

tional Conference on, pages 1084–1091. IEEE, 2009. 63

Y. Tassa, N. Mansard, and E. Todorov. Control-limited differential dynamic
programming. In Robotics and Automation (ICRA), 2014 IEEE Interna-

tional Conference on, pages 1168–1175. IEEE, 2014. 60

Ö. Terlemez. Referenzmodell des menschlichen Körpers zur Generierung

und zum Transfer menschlicher Bewegungen auf humanoide Roboter.
PhD thesis, Karlsruher Institut für Technologie (KIT), 2017. 153

Ö. Terlemez, S. Ulbrich, C. Mandery, M. Do, N. Vahrenkamp, and T. As-
four. Master Motor Map (MMM) - framework and toolkit for capturing,
representing, and reproducing human motion on humanoid robots. In
IEEE/RAS International Conference on Humanoid Robots (Humanoids),
pages 894–901, 2014. 196

E. Todorov. MuJoCo. http://mujoco.org/, 2018. Accessed: 2018-
08-20. 39

M. Tokic and G. Palm. Value-difference based exploration: adaptive control
between epsilon-greedy and softmax. In Annual Conference on Artificial

Intelligence, pages 335–346. Springer, 2011. 37

T. P. Tomo, W. K. Wong, A. Schmitz, H. Kristanto, A. Sarazin, L. Jamone,
S. Somlor, and S. Sugano. A modular, distributed, soft, 3-axis sensor
system for robot hands. In Humanoid Robots (Humanoids), 2016 IEEE-

RAS 16th International Conference on, pages 454–460. IEEE, 2016. 46

L. Tong, Q. Song, Y. Ge, and M. Liu. HMM-based human fall detection and
prediction method using tri-axial accelerometer. IEEE Sensors Journal,
13(5):1849–1856, 2013. 44

233

http://mujoco.org/

Bibliography

S. Trimpe, A. Millane, S. Doessegger, and R. D’Andrea. A self-tuning
LQR approach demonstrated on an inverted pendulum. IFAC Proceedings

Volumes, 47(3):11281–11287, 2014. 61, 117

N. G. Tsagarakis, S. Morfey, G. M. Cerda, L. Zhibin, and D. G. Caldwell.
Compliant humanoid COMAN: Optimal joint stiffness tuning for modal
frequency control. In Robotics and Automation (ICRA), 2013 IEEE In-

ternational Conference on, pages 673–678. IEEE, 2013. 68

N. Vahrenkamp, M. Kröhnert, S. Ulbrich, T. Asfour, G. Metta, R. Dillmann,
and G. Sandini. Simox: A robotics toolbox for simulation, motion and
grasp planning. In Intelligent Autonomous Systems 12, pages 585–594.
Springer, 2013. 100

N. Vahrenkamp, M. Wächter, M. Kröhnert, K. Welke, and T. Asfour. The
robot software framework ArmarX. it-Information Technology, 57(2):
99–111, 2015. 197

J. Vorndamme, M. Schappler, and S. Haddadin. Collision detection, iso-
lation and identification for humanoids. In Robotics and Automation

(ICRA), 2017 IEEE International Conference on, pages 4754–4761.
IEEE, 2017. 47

M. Vukobratović and B. Borovac. Zero-Moment Point — Thirty five years
of its life. International journal of humanoid robotics, 1(01):157–173,
2004. 20

M. Vukobratović and D. Juričić. Contribution to the synthesis of biped gait.
IEEE Transactions on Biomedical Engineering, BME-16(1):1–6, 1969.
20

M. Vukobratović and J. Stepanenko. On the stability of anthropomorphic
systems. Mathematical biosciences, 15(1-2):1–37, 1972. 20

234

Bibliography

P.-B. Wieber. Viability and predictive control for safe locomotion. In In-

telligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International

Conference on, pages 1103–1108. IEEE, 2008. 44

A. Yamaguchi and C. G. Atkeson. Combining finger vision and optical
tactile sensing: Reducing and handling errors while cutting vegetables.
In Humanoid Robots (Humanoids), 2016 IEEE-RAS 16th International

Conference on, pages 1045–1051. IEEE, 2016. 46

S.-J. Yi, B.-T. Zhang, D. Hong, and D. D. Lee. Learning full body push
recovery control for small humanoid robots. In Robotics and Automa-

tion (ICRA), 2011 IEEE International Conference on, pages 2047–2052.
IEEE, 2011a. 42, 69

S.-J. Yi, B.-T. Zhang, D. Hong, and D. D. Lee. Online learning of a full
body push recovery controller for omnidirectional walking. In Humanoid

Robots (Humanoids), 2011 11th IEEE-RAS International Conference on,
pages 1–6. IEEE, 2011b. 48

T. Zhang, J. Wang, L. Xu, and P. Liu. Fall detection by wearable sensor and
one-class SVM algorithm. In Intelligent computing in signal processing

and pattern recognition, pages 858–863. Springer, 2006. 44

Y. Zigel, D. Litvak, and I. Gannot. A method for automatic fall detection
of elderly people using floor vibrations and sound — Proof of concept
on human mimicking doll falls. IEEE Transactions on Biomedical Engi-

neering, 56(12):2858–2867, 2009. 42, 43

235

Band 1	 MANFRED KRÖHNERT
	� A Contribution to Resource-Aware Architectures

for Humanoid Robots. 2017
ISBN 3-937300-56-2

Band 2	 CHRISTIAN MANDERY
	 �Organisation, Repräsentation und Analyse menschlicher

Ganzkörperbewegung für die datengetriebene
Bewegungsgenerierung bei humanoiden Robotern. 2017
ISBN 978-3-7315-0729-1

Band 3	 MIRKO WÄCHTER
	 �Learning and Execution of Object Manipulation

Tasks on Humanoid Robots. 2018
ISBN 978-3-7315-0749-9

Band 4	 PETER KAISER
	 �Whole-Body Affordances for Humanoid Robots:

A Computational Approach. 2018
ISBN 978-3-7315-0798-7

Band 5	 LUKAS SEBASTIAN KAUL
	 �Human-Inspired Balancing and Recovery Stepping

for Humanoid Robots. 2019
ISBN 978-3-7315-0903-5

KARLSRUHE SERIES ON HUMANOID ROBOTICS

Karlsruhe Institute of Technology (KIT)  |  ISSN 2512-0875

Edited by Prof. Dr.-Ing. Tamim Asfour

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Roboti cs is arguably one of the key technologies that will (conti nue to) have a transformati ve
impact on society in the 21st century. Amongst the research fi elds specifi c to humanoid
roboti cs is the challenge of robustly maintaining balance on two legs, which is a parti cularly
interesti ng topic due to its fundamental importance for the applicati on of bipedal locomo-
ti on for humanoid robots in real-world scenarios. Unti l now, the technological challenges of
bipedal locomoti on, in parti cular balancing, have prevented it from seeing widespread use
in roboti cs. The work presented in this book represents a contributi on to this area by fi nding
new ways of answering the following questi on:
What does a bipedal humanoid robot need to perceive and to do in order to regain its bal-
ance aft er a forceful push?
It contributes to the fi eld of balancing and push recovery by investi gati ng effi cient methods
for the decision-making from internal sensors about whether and where to step, by inves-
ti gati ng several improvements to effi cient whole-body postural balancing methods, and by
proposing and evaluati ng a novel method for effi cient recovery step generati on, leveraging
human examples and simulati on-based reinforcement learning.

KARLSRUHE SERIES ON
HUMANOID ROBOTICS

INSTITUTE FOR ANTHROPOMATICS AND ROBOTICS

EDITED BY PROF. DR.�ING. TAMIM ASFOUR

L.
 S

. K
A

U
L

H
um

an
-In

sp
ire

d
Ba

la
nc

in
g

an
d

Re
co

ve
ry

 S
te

pp
in

g
fo

r H
um

an
oi

d
Ro

bo
ts

05

ISSN 2512-0875
ISBN 978-3-7315-0903-5
Gedruckt auf FSC-zerti fi ziertem Papier

9 783731 509035

ISBN 978-3-7315-0903-5

	Introduction
	Problem Statement and Contributions
	Structure of the Thesis

	Fundamentals
	Rigid Body Dynamics
	Underactuation
	Hybrid Dynamics
	Velocity and Torque Control

	Stability and Balance
	Static Stability
	Dynamic Stability
	Linear Inverted Pendulum Dynamics

	Linear Quadratic Regulators
	Dynamic Movement Primitives
	Learning Methods
	Supervised Learning
	Reinforcement Learning

	Dynamics Simulation

	Related Work
	Stability Classification
	Stability Classification for Humans
	Stability Classification for Humanoid Robots

	Disturbance Estimation
	Using Contact Force Sensors
	Using Internal Proprioceptive Sensors

	Postural Balancing in Place
	Online Optimization Methods
	Linear Balancing Control

	Balancing by Stepping
	Step Location Adjustments
	Step Time Adjustments
	Learning How to Step
	Recovery Stepping with DMPs

	Summary

	Disturbance Estimation and Stability Classification
	Push Intensity Estimation with a single IMU
	Experimental Setup
	Experimental Protocol
	Methods and Results

	Disturbance Estimation with F/T Sensors
	Line of Force Action
	Validation on the ARMAR-4 Humanoid Robot

	Dynamic Stability Estimation with Multiple IMUs
	Methodology
	Training and Evaluation on Human Motion Data
	Best Classification System

	Summary and Review

	Whole-Body Postural Balancing
	LQR for Whole-Body Balancing
	Cost Terms
	State Cost
	Actuation Cost

	Linear Contact Models
	Clamped
	Springs
	High Inertia

	Optimization of LQR Design Weights
	Optimization Cycle
	Simulated Annealing
	Parameter Space of the 2D Model
	Parameter Space of the 3D Model
	Implementation

	Evaluation in Dynamics Simulation
	Contact Model
	Optimization
	Validation on the ARMAR-4 Humanoid Robot Model

	Summary and Review

	Recovery Stepping
	Learning Stepping-DMPs from Human Demonstrations
	Methodology
	Human Motion Recordings
	DMP Representation
	Parametric Step Motion Generation

	Learning Viable Step Parameters
	Parameter Spaces and Policy Structure
	Training Procedure
	Implementation

	Evaluation in Dynamics Simulation
	Weak Pushes
	Strong Pushes
	Computational Efficiency

	Summary and Review

	Conclusion
	Scientific Contribution
	Discussion and Future Work

	Appendix
	DMP Library
	MMM Framework
	ArmarX
	ARMAR-4
	Motion Recordings
	Classifier Hyperparameters
	Simulated Annealing

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

