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Abstract. Various fields of application, such as risk assess-
ments of the insurance industry or the design of flood protec-
tion systems, require reliable precipitation statistics in high
spatial resolution, including estimates for events with high
return periods. Observations from point stations, however,
lack of spatial representativeness, especially over complex
terrain. Current numerical weather models are not capable
of running simulations over thousands of years. This pa-
per presents a new method for the stochastic simulation of
widespread precipitation based on a linear theory describ-
ing orographic precipitation and additional functions that
consider synoptically driven rainfall and embedded convec-
tion in a simplified way. The model is initialized by various
statistical distribution functions describing prevailing atmo-
spheric conditions such as wind vector, moisture content, or
stability, estimated from radiosonde observations for a lim-
ited sample of observed heavy rainfall events. The model is
applied for the stochastic simulation of heavy rainfall over
the complex terrain of southwestern Germany. It is shown
that the model provides reliable precipitation fields despite
its simplicity. The differences between observed and simu-
lated rainfall statistics are small, being of the order of only
± 10 % for return periods of up to 1000 years.

1 Introduction

Severe pluvial flood events resulting from persistent rainfall
over large areas have the potential to cause high economic
losses of several billion euros (EUR) in central Europe. In
Germany, the two extreme floods of 2002 and 2013 with

estimated return periods of more than 200 years (Schröter
et al., 2015) resulted in losses of more than EUR 22 billion
(inflation adjusted to 2017; MunichRe, 2017). In addition to
these rare extreme events, less-severe floods with shorter re-
turn periods, such as in 2005, 2006, 2010, and 2011 (Uh-
lemann et al., 2010; Kienzler et al., 2015), also contribute
significantly to the large average annual losses from floods
of EUR 1.1 billion in Germany in the last 30 years (Mu-
nichRe, 2017). Flood risk estimation, for example, for in-
surance purposes or for the design of appropriate flood pro-
tection systems, requires comprehensive statistical analyses
of both runoff and rainfall. Traditionally, extremes associ-
ated with the latter have been estimated at point stations from
the intensity–duration–frequency (IDF), with extreme value
statistics being applied (Koutsoyiannis et al., 1998). This
method, however, implies two major difficulties: (i) the low
density of point observations and their limited representative-
ness, in particular over complex terrain, and (ii) the limited
observation period with the consequence that not all possible
extreme configurations enter the samples.

To account for the former issue, geostatistical interpolation
routines, such as kriging (Goovaerts, 2000), or techniques
relating precipitation to orographic or atmospheric charac-
teristics (e.g., Basist et al., 1994; Drogue et al., 2002) have
been applied. Recently, Marra et al. (2017) showed that IDFs
can be reliably estimated from remote sensing data, such as
weather radars, with high spatial coverage. However, the con-
version from radar reflectivity to rain intensity leads to high
uncertainty, mainly because of the unknown drop size distri-
bution in combination with the radar reflectivity being pro-
portional to the drop diameter in the sixth power. Compar-
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ing IDFs obtained from radar data with point observations
on a local scale, Peleg et al. (2018) found that the spatial
IDFs tend to underestimate rainfall intensity for short return
periods and that the natural variability of extreme rainfall in-
creases the uncertainties of the IDFs for longer return periods
and larger areas.

To account for the limited observation period, several stud-
ies have employed stochastic weather generators to simu-
late precipitation events at single grid points (e.g., Richard-
son, 1981; Furrer and Katz, 2007; Neykov et al., 2014).
A recent study by Cross et al. (2018), for example, intro-
duced a censored rainfall modeling approach designed to
reduce the underestimation of extremes. In addition, some
two-dimensional stochastic weather generators are currently
available. The Space–Time Realizations of Areal Precipita-
tion model (STREAP) by Paschalis et al. (2013), for instance,
uses probability density functions (PDFs) for sequences of
wet and dry periods to stochastically create storms. In be-
tween the single storm events, the spatial distribution of pre-
cipitation is simulated using auto- and cross-correlations be-
tween the single grid cells of the investigation area. Based
on that, Peleg et al. (2017) extended the STREAP model
to a semi-physical level by implementing physical correla-
tions between different climate variables like cloud cover
and precipitation. The spatial distribution, however, is still
calculated in a statistical way. Other pure statistically based
weather generators have recently been presented by Benoit
et al. (2018) or Singer et al. (2018). Albeit considering the
long-term variability of precipitation, which leads to more
reliable estimates for extremes, these approaches still have a
limited physically justified spatial representativeness.

Furthermore, robust estimates of precipitation extremes
with high return periods, for example, for an event happen-
ing once in 200 years, require a large sample size of sev-
eral thousands of events. Current numerical weather predic-
tion (NWP) models, though having a high spatial resolution
of several kilometers, are not able to simulate thousands of
events due to their complexity and the resulting high com-
puting costs.

In this study we present a semi-physical two-dimensional
stochastic precipitation model (SPM2D), which was de-
signed for the stochastic simulation of a very large number
of precipitation fields in high spatial resolution. It is based
on the linear theory for orographic precipitation by Smith
and Barstad (2004). The novelty of our approach is a phys-
ical linkage between the single grid cells of the model do-
main. Precipitation associated with different processes such
as orographically induced wave dynamics, large-scale lifting,
or embedded convection is described by simplified parame-
terizations and combined linearly. Inclusion of several phys-
ically based tuning parameters of the model helps to keep
track to precipitation patterns of real events. The model relies
on several input parameters such as wind speed and direc-
tion, static stability, or moisture obtained from radio sound-
ings. By doing so, the input parameters have to keep constant

over the whole investigation area and for the time period of
the soundings, usually 12 h. For the stochastic simulations,
these input parameters are varied randomly based on appro-
priate PDFs derived from a representative sample of histor-
ical heavy rainfall events. Because precipitation regimes in
summer and winter vary significantly, we seasonally differ-
entiate our analyses. The SPM2D is one component of a
novel risk assessment method to quantify the probable max-
imum loss for a 200-year event (PML200) by considering
simultaneous flooding along the main river networks. This
paper, however, discusses only on the precipitation or hazard
component.

The paper is structured as follows. Sect. 2 introduces the
basic concept of the SPM2D. Section 3 briefly describes the
data sets used in this study. Section 4 presents the results of
the calibration based on a set of 200 representative histor-
ical heavy rainfall events and examines sensitivities of the
model depending on varying ambient conditions. Section 5
shows some characteristics of the selected events. Results of
the stochastic simulations are discussed in Sect. 6, and Sect. 7
lists some conclusions. Further information is given in a short
Appendix and Supplement.

2 Stochastic precipitation model

The SPM2D model is designed for the simulation of
widespread, pluvial precipitation over complex terrain such
as low mountain ranges, a typical feature of European to-
pography. The investigation area for this study is the federal
state of Baden-Württemberg (BW) in southwestern Germany
(Fig. 1). The terrain exhibits a certain degree of complexity,
with the broad Rhine Valley with elevations of 100–200 m
bounded by the Vosges mountains (France) to the west and
the Black Forest mountains to the east. The highest peak is
the Feldberg, with a maximum elevation of 1493 m, in south-
ern Black Forest. To the northeast, the topography is more
flat with some rolling terrain. Annual precipitation varies be-
tween 600 mm (southern Rhine Valley) and approximately
2000 mm (southern Black Forest).

As described in the following Sect. 2.2, orographic precip-
itation is computed in Fourier space, and therefore, the model
domain has to be symmetric with 2n (n is a positive integer).
In this study we used a 512× 512 grid with a resolution of
1 km2. Also note that the assumption of horizontal homoge-
neous conditions, which is a prerequisite for the orographic
model, limits the overall size of the model domain.

After a description of the model components (Sect. 2.1–
2.3), some necessary preparations and an overview of the
general simulation procedure are presented in Sect. 2.4.
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Figure 1. Topographic map (in meters above mean sea level;
m a.m.s.l.) of southwestern Germany and surrounding areas with
main river networks and lakes as well as substantial orographic
structures. The national borders (slim solid black contours) and the
border of the federal state of Baden-Württemberg (bold solid black
contour) are shown, as well as the model domain (red box), which
extends from 46.6 to 50.8◦ N and from 6.9 to 11.1◦ E.

2.1 General description

Overall, the model SPM2D quantifies total precipitation Rtot
from the linear superposition of four terms, each of them rep-
resenting a specific precipitation process:

Rtot = Roro+R∞+Rfront+Rconv. (1)

The first two components of Eq. (1) originate from the di-
agnostic linear model of orographic precipitation according
to Smith and Barstad (2004) and Barstad and Smith (2005),
hereafter referred to as the Smith–Barstad model (SBM). The
first component, Roro, quantifies rain enhancement as a con-
sequence of orographically induced lifting. Over complex
terrain and for high amounts of incoming water vapor flux
(Kunz, 2011), this part dominates the other three in Eq. (1).
The next term, R∞, is the background precipitation re-
lated to synoptic-scale lifting. According to the omega equa-
tion, large-scale lifting, preferably occurring downstream of
troughs (low-pressure systems at higher levels), is the result
of three different mechanisms: positive vorticity advection
increasing with height (or vice versa), maximum of diabatic
phase transitions, and maximum of warm air advection. Even
though vertical lifting results from the superposition of these
three mechanisms, we do not split R∞ accordingly, as the
single forcing terms cannot be estimated from vertical sound-
ings used as input data in our approach (see Sect. 3.2).

As the SBM does not reliably reproduce the observed spa-
tial variability of precipitation also over flat terrain for phys-
ical reasons (Kunz, 2011), we have implemented two ad-
ditional components: Rfront to consider precipitation asso-

ciated with synoptic-scale fronts and Rconv related to em-
bedded convection atop stratiform clouds on a local scale
(e.g., Fuhrer and Schär, 2005; Kirshbaum and Smith, 2008).
While the former component can modify the entire precipi-
tation field, the latter can lead to enhanced totals on the local
scale. Deep moist convection, however, is not considered, as
it is not relevant for larger river floods. Note that both Roro
and Rfront can attain negative values in descent areas. Neg-
ative values of total precipitation Rtot, however, are physi-
cally not meaningful and are therefore truncated away (i.e.,
Rtot =max(Rtot, 0) in Eq. 1).

2.2 The Smith–Barstad model (SBM)

The linear orographic SBM (Smith and Barstad, 2004;
Barstad and Smith, 2005) is a simple yet efficient way of
computing precipitation over complex terrain. It has been
successfully applied in various regions around the world,
e.g., several locations in the US (Barstad and Smith, 2005),
Iceland (Crochet et al., 2007), southwestern Germany (Kunz,
2011), or southern and northern Norway (Caroletti and
Barstad, 2010; Barstad and Caroletti, 2013).

2.2.1 Orographic precipitation

The SBM is based on the linear theory of three-
dimensional (3-D) stratified, hydrostatic flow over mountains
with uniform incoming horizontal wind speed and stability
(Smith, 1980, 1989). It explicitly considers linear flow ef-
fects evolving over mountains, such as upstream-tilted grav-
ity waves or a flow that goes around rather than over an obsta-
cle in the case of low wind speed, high static stability, and/or
large mountains (i.e., small Froude numbers). It is assumed
that saturated lifting produces condensed water that falls to
the ground after a certain time shift (Jiang and Smith, 2003).
Thus, precipitation on the ground is directly related to the
condensation rate.

One of the key components of the linear model is a pair
of linear steady-state equations for the advection of verti-
cally integrated cloud water and hydrometeor density dur-
ing characteristic timescales of cloud water conversion τc and
the fallout of hydrometeors τf, respectively. Both timescales
are mathematically analogous and are assumed to be con-
stant in time and also in space for mesoscale domains. When
the timescales are set to zero, the maximum precipitation is
almost one order of magnitude larger compared to a configu-
ration with, for example, τf = τc = 1000 s (Kunz, 2011).

A powerful method for the solution of the advection equa-
tions for cloud physics together with 3-D flow is to apply
a two-dimensional (2-D) Fourier transform. Precipitation at
the ground is obtained via an inverse FFT given by the trans-
fer function:
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Roro(x,y)=

∫∫
iCwσ ĥ(k, l)

(1− imHw)(1+ iσ τc)(1+ iσ τf)

· ei(kx+ly)dkdl, (2)

which connects the precipitation field in Fourier space (frac-
tion term) to the orography, ĥ(k, l), both related to the hor-
izontal wavenumbers (k, l); i is the imaginary unit, and
Cw = ρSref0mγ

−1 is the uplift sensitivity related to the con-
densation rate ρSref = ρdqv, where ρd is the density of dry air,
qv is the water vapor density, and 0m and γ are the moist adi-
abatic and actual lapse rates, respectively. The scaling height
Hw is the (absolute) height where the integrated water va-
por density dropped to e−1, and σ = Uk+V l is defined as
the intrinsic frequency with the components U and V of the
undisturbed horizontal wind vector assumed to be constant
through time and space.

Whereas the nominator of Eq. (2) gives the dependency
of precipitation on vertical motion and orography, the first
bracket of the denominator describes the modification of the
source term by airflow dynamics. The second and third terms
of the denominator consider the advection of hydrometeors
during the characteristic timescales τx (x = c; f ). In case of
a descent downstream of mountains, Roro may become nega-
tive, leading to a reduction of total precipitation in Eq. (1) in
that area.

The vertical wavenumber m in Eq. (2) is given by the dis-
persion relation (Smith, 1980):

m(k, l)=

[
N2

m− σ
2

σ 2

(
k2
+ l2

)]0.5

. (3)

In this formulation, m controls both the depth and tilt of a
forced ascent or descent. Because vertical lifting is assumed
to be saturated throughout the whole column, meaning that
the lifted condensation level (LCL) is directly at the ground,
so the saturated Brunt–Väisälä frequencyNm (e.g., Lalas and
Einaudi, 1973) has to be considered instead of the dry one,
Nd. Compared to unsaturated conditions, saturated flow leads
to a weakening of the amplitude of the gravity waves via the
reduction of static stability. In this case, the flow tends to
go more directly over an obstacle rather than around (Dur-
ran and Klemp, 1982; Kunz and Wassermann, 2011). Even
though the concept of saturated flow by simply consider-
ing Nm must be regarded as an approximation of the real-
ity, it has been successfully applied by several authors study-
ing flow dynamics and precipitation (Jiang and Smith, 2003;
Smith and Barstad, 2004; Kunz and Wassermann, 2011).

Combining Eq. (2) with Eq. (3), a total number of seven
atmospheric parameters is required as input for Roro. In this
study, we used vertical profiles of temperature, moisture, and
wind from radio soundings (see Sect. 3.2) for that purpose.

Figure 2. Probability of observed 24 h rainfall totals greater
than 50 mm, expressed as the average days per year for Baden-
Württemberg; the black box indicates the area where background
precipitation R∞ is estimated.

2.2.2 Background precipitation

Under the assumption that the prevailing synoptic conditions
during the 12 h of model integration are approximately hori-
zontally homogeneous and stationary,R∞ also becomes con-
stant. To consider large-scale lifting in the SPM2D, we esti-
mate R∞ from observed rainfall totals (see Sect. 3.1) over
a larger area with almost flat terrain, where Roro as well as
evaporation associated with an ascent are minimized to a
large degree. To ensure proper estimation of R∞ for the his-
toric events, we choose an area that covers most of the total
investigation area but excludes the Black Forest and the pre-
Alpine region, where precipitation totals are highest. In the
selected region (Fig. 2, black box), large totals occur only
rarely. Values of more than 50 mm per day, for example, ex-
hibit an annual exceedance probability p of less than 0.5.
Furthermore, as confirmed by Fig. 2, the probability of rain
totals in excess of 50 mm per day is more or less homoge-
neously distributed.

2.3 Modifications of the SBM

As further development, two types of modifications are ap-
plied to the SBM: adjustments to the existing orographic
precipitation using additional calibration parameters and ad-
ditional precipitation components originating from different
physical processes.

2.3.1 Adjustments to Roro

The original orographic precipitation equation of the SBM
(Eq. 2) is modified in the SPM2D by adding three constant
calibration parameters (bold symbols):
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Figure 3. Different effects of the implemented internal free param-
eters fdry (blue), fCw (red), and coro (green) on the original oro-
graphic precipitation part (black curve) for a west-to-east cross sec-
tion through the model domain. The underlying orography is shown
in black.

Roro(x,y)= coro · fdry(x,y)

·

∫∫
ifCwCwσ ĥ(k, l)

(1− imHw)(1+ iσ τc)(1+ iσ τf)

· ei(kx+ly)dkdl. (4)

The uplift sensitivity factor Cw is adjusted by a multi-
plier fCw , which reduces the sensitivity of the SPM2D for
lifting and, therefore, the precipitation rate. Precipitation is
reduced the most for sharp height gradients, whereas the ef-
fect is only weak for smooth terrain (Fig. 3, red curve). The
formulation of the SPM2D also allows for multiple ascents
and/or descents of a virtual air parcel without any changes
in its water vapor content. The more realistic partial removal
of water vapor due to condensation during the ascent is also
considered by implementing the additional function fCw .

An additional parameter, fdry, is implemented in Eq. (4) to
reduce evaporation in descent regions, where Roro becomes
negative (Fig. 3, blue curve). The resulting underestimation
of precipitation is found especially downstream of steeper
mountains with a greater descent (Kunz, 2011). The parame-
ter fdry < 1 only corrects grid points (x, y) where Roro < 0;
otherwise fdry = 1.

Finally, the last additional calibration parameter, coro, re-
duces orographic precipitation in the whole domain (Fig. 3,
green curve). It is a consequence of the assumption that the
vertical lifting of an air column with overall saturation pro-
duces condensate and instantaneous fallout at any time, im-
plying an overestimation of precipitable water. In reality, not
all layers are completely saturated, and water may also partly
be stored by clouds. The parameter coro is assumed to be in-
dependent of any lifting processes and constant in time for
the whole domain. From a mathematical perspective, the two
factors, fCw and coro, could collapse into one single param-
eter. Nevertheless, as mentioned above, they describe mod-
ifications of different physical processes and must therefore
remain separate.

2.3.2 Frontal precipitation

Apart from large-scale lifting connected to low-pressure sys-
tems or waves in the flow patterns, precipitation is also sub-
stantially enhanced by synoptic-scale weather fronts. Active
fronts may increase precipitation considerably due to cross-
frontal circulations and lifting in the warm sector of a cyclone
(e.g., Bergeron, 1937; Eliassen, 1962). Conversely, if a front
affects only parts of the investigation area (e.g., in case of
a trailing front, where the flow is almost parallel to the iso-
bars), regions not affected by the front experience much less
or even no rain at all. Both effects are considered by a sim-
plified parameterization Rfront in Eq. (1):

Rfront = (Roro+R∞) · (cfront− 1) , (5)

where cfront serves as an enhancement or reduction factor
of the overall precipitation. In this parameterization, Roro is
considered again because frontal precipitation is additionally
enhanced by orography, as shown, for example, by Browning
et al. (1975) or Houze and Hobbs (1982). Due to the additive
superposition of all precipitation components in Eq. (1), we
have to subtract the original precipitation totals, leading to a
total multiplier of (cfront− 1).

In order to estimate cfront from the observational data, we
define this quantity as the relative difference between obser-
vations O and output M of the SBM. This is expressed by

cfront =O ·M
−1
, (6)

assuming that the differences originate primarily from frontal
effects. For the quantification of cfront, we use spatial mean
values over the investigation area O and M for a training
sample of historic heavy rain events (see Sect. 2.4.1).

The frontal enhancement factor is a function of space re-
alized by a rectangular area cfront(n, t), where the orientation
of the front-parallel t axis compared to the zonal-orientated y
axis is prescribed by the mean wind direction β (Fig. 4). For
each time step the maximum value of cfront is estimated using
the corresponding PDF (cf. Sect. 5.1). To avoid strong gradi-
ents at the borders of the rectangular, we applied Gaussian-
shaped smoothing. Along the front-normal n axis, the spread
is set to 8σn, where σn is the standard derivation of the nor-
mal distribution; in the t direction, the front is infinitely ex-
tended (Fig. 4). As the minimum of cfront is zero, Rfront can
also attain negative values, leading to a weakening of total
precipitation for areas unaffected by a front.

2.3.3 Embedded convection

Embedded convection mainly occurs when lifting is locally
enhanced at mid- and upper-tropospheric levels, leading to a
decrease of thermal stability by the release of latent heat of
condensation (e.g., Kirshbaum and Durran, 2004; Kirshbaum
and Smith, 2008; Cannon et al., 2012). Convection in general
involves several complex processes that make reliable simu-
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Figure 4. Schematic of a Gaussian-shaped distribution of the frontal
enhancement factor with a maximum of cfront = 2.6 and σn = 50
(upper right corner), and its location in the model domain for a
southwesterly wind direction (arrow). The blue lines indicate the
boundaries of the frontal zone.

lations a difficult task. Since our model is restricted to large-
scale precipitation with the objective of quantifying extremes
of areal precipitation solely, we treat embedded convection
in a very simplified way by implementing several rectangu-
lar cells as convective footprints, similar to the approach for
the fronts.

Because embedded convection is mainly induced by oro-
graphic lifting, we implemented a multiplicative factor to the
precipitation fields related to both orographic and large-scale
lifting, similar to the frontal part:

Rconv = cconv · (Roro+R∞) , (7)

with the enhancement factor cconv. For each 24-hour simu-
lation period, we choose a number of rectangular convec-
tive footprints, each with a specified width W and length L,
and distribute them randomly over the whole model domain
(Fig. 5). The dimensions for each rectangle are estimated
from the PDFs of historic footprints of deep moist convec-
tion (see Sect. 3.3). Furthermore, we restricted the two pa-
rameters to L >W and Lmax = 300 km, or 300 grid points.
As for the frontal systems, the wind direction defines the ori-
entation of the longer sides of the rectangles. For each foot-
print, we choose a number of L ·W specific factors, cconv,
with cconv ∈ {0; 1}. As found, for example, by Fuhrer and
Schär (2005) or Cannon et al. (2012), embedded convection
can enhance precipitation up to 200 %, but only locally. Thus,
the given range of cconv is adequate. Within the single rectan-
gles, the spatial distribution of cconv randomly varies between
the given limits to account for the high spatial variability of
convective precipitation.

As embedded convection occurs several times a day and
at several locations, we used a variable number of convective

Figure 5. Schematic of embedded convection implementation by
using rectangular cells (blue). The orientation is defined by the wind
direction (arrow); each cell is assigned to an individual factor cconv.

footprints in the model. The complete convective precipita-
tion field for each time step is spatially smoothed to avoid
sharp gradients. For this, we applied a moving average of
10 grid points to preserve the high spatial variability of con-
vection.

2.4 Pre-preparation and simulation procedure

2.4.1 Event definition and statistical distribution
functions

Stochastic modeling of precipitation events with the SPM2D
is based on appropriate PDFs of all input parameters required
by the model. These PDFs are estimated using an adequate
set of representative past heavy rainfall events. Because the
characteristics of the ambient conditions and thus the precipi-
tation regimes change throughout the year, we seasonally dif-
ferentiate the estimated PDFs between spring (March–April–
May – hereafter MAM), summer (June–July–August – JJA),
autumn (September–October–November – SON), and winter
(December–January–February – DJF).

In the first step, a sufficient and appropriate subset of rele-
vant historic events was identified. Here, an event is defined
as a period of 1 or more days with persistent precipitation
above a certain threshold of daily totals. An extension to
multi-day events is reasonable for considering time delays in
discharge response or flood waves traveling along river net-
works (e.g., Duckstein et al., 1993; Uhlemann et al., 2010;
Schröter et al., 2015).

We define the historic event set according to maximum
areal precipitation. For this, we simply accumulate the
(equidistant) 24 h rainfall totals RBW of all grid points in the
investigation area (BW; see Sect. 3.1). Following the sort-
ing of all values of RBW in descending order, the strongest
200 values enter the sample (top200). As precipitation is not
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limited to these (single) days but may be embedded in longer
time periods, we define the threshold Rthres for the event def-
inition. For estimating Rthres, we consider “wet” days by us-
ing RBW > 0 solely and set Rthres to the 75 % percentile of
this subsample. A lower threshold leads to an overinterpre-
tation of longer clusters, and a higher one avoids multi-day
events.

Event precipitation starts on the first day that ex-
ceeds Rthres. When areal means of consecutive days are also
above Rthres, they are simply accumulated, yielding events
of more than 1 day. The last day with R ≥ Rthres before a
period of at least 3 three days of non-exceedance defines
the end of an event. Such a 3-day period ensures statisti-
cal independence of the events in accordance with the ap-
proach of Palutikov et al. (1999) for wind storms. Following
Piper et al. (2016), we only count “rain days” (RBW ≥ Rthres)
and neglect “skip days” (RBW <Rthres) within the start-day
and end-day period for event duration estimation, which is
a widely used approach (Wanner et al., 1997; Petrow et al.,
2009). This approach avoids the overinterpretation of longer
clusters. Based on this procedure, a defined precipitation
event contains 1 or more days of the top200 sample. For this
event set, all required input parameters were extracted from
sounding data and rainfall totals (see Sect. 3).

In the next step, we identified the PDFs most appropriate
for statistically describing each of the seven atmospheric in-
put parameters, the event duration tev, background precipita-
tion R∞, and front factor cfront. In addition to 20 PDFs preset
by the MATLAB statistical toolbox (MATLAB, 2016), we
considered the circular von Mises distribution (Mardia and
Zemroch, 1975) for wind direction only. In Sect. 5 it will be
further discussed which PDFs are most suitable for the input
variables in our case.

To find the PDF that best fits the data, we estimated the
appropriate number of histogram classes according to Freed-
man and Diaconis (1981) and calculated bias, the root-mean-
square error (RMSE), and the Spearman correlation coeffi-
cient rSp (Spearman, 1904) as quality indicators (QIs). We
also applied a χ2 test (Wilks, 2006) as a QI. For each QI, we
ranked the PDFs in ascending order and added up the rank
numbers for each PDF, receiving the best fit in terms of the
least QI rank sum (QIRS). In the case of alikeness of two or
more PDFs (about 10 % of all cases), we manually selected
the best one.

2.4.2 General simulation procedure

The presented SPM2D is an event-based model in the sense
that a specified number nE of independent events with vari-
able duration tev is simulated. The general procedure is as
follows (cf. Fig. 6). Starting with the iteration loop over
nE events, the season and duration tev are set at first. The next
step is the simulation of the four precipitation components
according to Eq. (1); because radio soundings used as in-
put data are available every 12 h, Roro and R∞ are computed

for the same period. In contrast, Rfront and Rconv are calcu-
lated only for 24 h as they become apparent as footprints in
daily totals. The resulting total precipitation Rtot has a tem-
poral resolution of 24 h. Despite the fact that the character-
istic timescales may vary from one situation to another, it is
found that simulations using fixed values for the free param-
eters yield trustworthy results (e.g. Barstad and Smith, 2005;
Kunz, 2011). Here, we also use constant values illustrated as
the shaded box in Fig. 6. The direct link between the pre-
cipitation components and the corresponding input variables
(described by appropriate PDFs) is also shown in Fig. 6. In
case t < tev, the next 24 h period is simulated; otherwise, the
loop jumps to the next event. A method how to assign the
nE events to a specific time period, which is required, for ex-
ample, for insurance purposes, will be introduced in Sect. 6.

3 Data sets

The SPM2D presented in this study is based on two differ-
ent types of data sets: gridded precipitation data also used to
calibrate and verify the model and vertical profiles from ra-
diosondes to initialize the model. Furthermore, the SPM2D
is also validated using reanalysis.

3.1 Rainfall totals

Rainfall statistics in our study are based on the regional-
ized precipitation (REGNIE) data provided by the German
Weather Service (DWD). REGNIE is a gridded data set of
24 h totals (06:00 to 06:00 UTC) based on several thousand
climate stations more or less evenly distributed across Ger-
many (so-called RR collective). The REGNIE algorithm in-
terpolates the observations to a regular grid of 1 km2 consid-
ering elevation, exposition, and climatology (Rauthe et al.,
2013). Despite of continuous changes in the number of sta-
tions considered and several station relocations, REGNIE is
sufficiently homogeneous for our purposes. However, areal
precipitation exhibits a certain bias, especially over elevated
terrain, such as the peaks of the Black Forest, where the num-
ber of stations is very limited (Kunz, 2011).

In our study, we use REGNIE data from 1951 to 2016 to
identify the top200 event set (see previous section); to esti-
mate the duration of the events, the front factor cfront, and
background precipitation; and to validate the SPM2D simu-
lation results.

3.2 Radio soundings

The seven input parameters (see Sect. 2) required by the
SPM2D model are derived from vertical profiles (00:00 and
12:00 UTC) of temperature, moisture, wind speed, and direc-
tion at the radio sounding station of Stuttgart located some-
what downstream of the northern Black Forest. Even though
the location might not be ideal because the profiles do not
represent undisturbed conditions, the profiles are similar to
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Figure 6. Flow chart of the individual components of the SPM2D (solid boxes) and the corresponding input variables (PDFs; dashed boxes).
Loops are highlighted as ellipsis or bold dashed arrows. The constant model parameters are illustrated as the shaded box.

those of the upstream station of Nancy in France, as shown
by Kunz (2011) for heavy rainfall events on average. Data
from Nancy are available after 1990 only and, thus, cannot
be used in this study, whereas soundings from Stuttgart have
been available since 1957.

The vertical profiles, provided by the Integrated Global
Radiosonde Archive (IGRA) from the National Climatic
Data Center (Durre et al., 2006), were interpolated into
equidistant increments of 1z= 10 m (Mohr and Kunz,
2013). All derived environmental parameters refer to the low-
est 5 km of the atmosphere since this layer is most relevant
for airflow and stability. Furthermore, to account for the de-
creasing impact of higher atmospheric layers on the flow
characteristics, the flow parameters 3 are integrated verti-
cally (3̃), applying water vapor weighting (Kunz, 2011):

3̃=

zt∫
z=0

3ρdqvdz

zt∫
z=0

ρdqvdz
, (8)

where ρd is the density of dry air and zt is the upper inte-
gration limit, here of 5000 m. As some layers may be moist-
unstable, resulting in imaginary Nm, the averaging routine is
applied to N2

m. In the few cases where Ñm was imaginary, it
was set to a near-neutral, constant value of 0.0003 s−1.

3.3 Parameters for embedded convection

The stochastic generation of enhanced precipitation streaks
associated with embedded convection, namely their length
and width (L and W ), relies on the statistics of severe con-
vective storms in Germany (Fluck, 2018). In that study, con-
vective storms in Germany, France, Belgium, and Luxem-

bourg between 2005 and 2014 were identified from the con-
stant altitude plan position indicator (CAPPI) for a reflectiv-
ity in excess of 55 dBZ. The application of the tracking algo-
rithm TRACE3D (Handwerker, 2002) identified more than
25 000 storm tracks. Even though we do not consider rain-
fall related to severe convective storms in the SPM2D, the
statistical distributions of the storm’s dimensions are reliable
proxies for the extension of enhanced precipitation from em-
bedded convection described by Rconv.

3.4 Numerical weather simulations

The SPM2D simulation results are additionally validated
with high-resolution reanalysis from the non-hydrostatic
Consortium for Small-scale Modeling (COSMO) model in
climate mode (CCLM; Rockel et al., 2008). Natalie Laube
(Institute of Meteorology and Climate Research, Karlsruhe
Insitute of Technology, personal communication, 2018) per-
formed a dynamical downscaling of an ERA-40 reanalysis
from the European Centre for Medium-Range Weather Fore-
casts (ECMWF; Kållberg et al., 2004) to a horizontal res-
olution of 2.8 km for southern Germany using a 3-fold re-
gional nesting (50 km, over 7 km, to 2.8 km). High-resolution
CCLM data are available for the period 1971–2000. For the
evaluation, we considered the top200 REGNIE events from
which around 100 events occurred within the CCLM period,
including the top two events, seven of the strongest 10 events
or 14 of the strongest 20 events.
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Table 1. Range of values of the free model parameters used for the
calibration of the model.

Parameter Minimum Maximum Increment

τx 800 s 1500 s 100 s
fCw 0.5 1.0 0.1
fdry 0.4 1.0 0.1
coro 0.5 1.0 0.1

4 Calibration

4.1 Method

The SPM2D is calibrated with the top200 events (training
data) by adjusting the free model parameters τx , fCw , fdry,
and coro (cf. Sect. 2) and comparing the simulation results
with observations. The parameter combination yielding the
best simulation results is then used for the stochastic simula-
tions (validation data). The components Rfront and Rconv are
only considered for the stochastic event set and are therefore
neglected here. In this configuration, the SPM2D is equiva-
lent to the SBM plus our modifications in Roro, referred to as
the SBM+M.

In order to determine appropriate values of the free pa-
rameters, a large number of model simulations were carried
out. Whereas one parameter was successively varied, the oth-
ers were kept constant. The selected ranges and increments
of the parameters listed in Table 1 resulted in 2016 possible
parameter combinations, giving a total number of approx-
imately 390 000 simulation days for the top200 event set.
Both data sets (from SBM+M and REGNIE) are slightly
smoothed using a running 5× 5 grid box, as the REGNIE
data show a certain spatial uncertainty (cf. Sect. 3.1), espe-
cially around the crests of the Black Forest. Furthermore, as
shown, for example, by Barstad and Smith (2005), smoothed
data yield more robust results when comparing model and
observation data. Note, however, that larger values of τx and
smaller values of fCw similarly smooth the simulated precip-
itation fields. In these cases, the QIRS method used for the
evaluation (Sect. 2.4.1) has to be applied carefully.

The model skill was evaluated using the skill score S ac-
cording to Taylor (2001) (see Eq. A1 in the Appendix) to
determine the best combination of the free model param-
eter. S relies on the Spearman (1904) correlation coeffi-
cient rSp between the SBM+M simulations and the obser-
vations (REGNIE) as well as on the standard deviations σ of
both data sets. The skill score S is computed for each day of
the top200 and each parameter combination. From all real-
izations, we select the parameter combination that yields the
highest median value of S averaged over the top200, as the
SPM2D should be able to properly represent a broad range
of different atmospheric conditions.

4.2 Calibration results

Applying the method as described above, the highest value
for S = 0.60 as the median of all top200 events is ob-
tained for the combination of τx = 1400 s, fCw = 1.0, fdry =

0.4, and coro = 0.8. For this combination, the median val-
ues of the other quality indices are rSp = 0.39, σ̂f = 0.98,
bias= 6.30 mm, and RMSE= 14.85 mm. The assessed value
for τx is physically plausible and comparable to other studies
with the SBM (e.g., Barstad and Smith, 2005; Caroletti and
Barstad, 2010; Kunz, 2011). Considering the slight overes-
timation of orographic precipitation and the strong overesti-
mation of drying in the lee of the mountains by the SBM,
the values for those adjustments are also physically plausi-
ble. Note that the parameter combination identified above
yields the lowest errors only when averaging over all top200
events. Single events are more realistic with another param-
eter combination, reflecting particularly the unknown, and
thus not considered microphysical processes that are deci-
sive for precipitation formation strongly controlled by ver-
tical wind speed, temperature, and moisture profiles. The
dependency of microphysical processes on ambient condi-
tions, however, is not relevant when running the model in the
stochastic mode, which is the objective in this study.

The sensitivity of the skill score S to changes in τ , fCw ,
and coro (Fig. S1 in the Supplement) shows a kind of dipole
structure in both cases with the highest values of S along
the counter diagonal. Lower values for S are obtained for the
shortest (longest) timescales in combination with the high-
est (lowest) uplift sensitivity or highest (lowest) weighting
of Roro in Eq. (1). This means that horizontal precipitation
drift over short distances also reduces evaporation, leading
to an overestimation of orographic precipitation (and vice
versa). This effect has to be considered by adjusting Roro.

4.3 Sensitivity of simulated total precipitation

To demonstrate how variations of atmospheric conditions
translate into precipitation, we conduct a sensitivity study
with the SBM+M using the top200 event set by gradually
changing the values of the input parameters. Following Kunz
(2011), we perturbed the values of N2

m, qv, U , β, and τ . This
is done by multiplying the respective quantity with var_mult
increasing linearly from 0.5 to 2.0 in increments of 0.1. Wind
direction β is varied in the range of±30◦ in increments of 5◦.
The calibration parameters are set to their optimum values
estimated in the previous section. Besides areal mean precip-
itation, we computed RMSE and skill score S for the median
of the top200 event set.

Mean precipitation shows a high sensitivity to changes
in qv, U , and β (Fig. 7). In all cases, precipitation increases
with increasing values and decreases with decreasing values.
Lowest sensitivity occurs for β between ±15◦ because of
the orientation of the major orographic structures (i.e., the
Black Forest) from southwest to northeast. Westerly inflow,
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Figure 7. Areal mean precipitation (24 h totals; median of the
top200 event set) as a function ofN2

m, qv, U , β, and τ , perturbed by
a multiplicative factor (0.5≤ var_mult≤ 2) and changed 1β. The
dotted lines indicate the values of the reference run.

prevailing on average, still occurs for small variations of β.
For greater shifts (1β > 20◦ or 1β <−20◦), when the in-
flow angle becomes smaller, the sensitivity slightly increases.
The changes in the wave regimes, and thus the location of
the updraft, may also explain the partly stepwise form of the
curves for both β and U . The results for N2

m and τ reveal
the opposite behavior with an increase in precipitation for
smaller values and vice versa. Furthermore, the sensitivity of
the SBM+M to changes in these two parameters is much
weaker compared to the other parameters.

Qualitatively similar behavior to the model is found for
the medians of RMSE and skill score S (Fig. S2). While
areal precipitation only provides insights into how changes
in the ambient parameters feed back into rainfall, RMSE
and S also consider the spatial distribution. The results for
RMSE (Fig. S2a) again reveal the highest sensitivity of the
SBM+M to changes in qv and U . While for var_mult> 1,
the sensitivity in terms of RMSE is similar to areal precip-
itation, there is a much higher sensitivity for var_mult< 1.
In those cases, orographic precipitation is more detached to
the mountain crests, resulting in higher totals due to reduced
evaporation in the descent regions. Because of the combina-
tion of higher totals at different locations, RMSE shows a
higher sensitivity to changes in τ and N2

m compared to areal
mean precipitation.

The skill score S, in contrast, is most sensitive to changes
in qv and τ (Fig. S2b). Regarding N2

m, S decreases just for
very high values of var_mult, while there is almost no sensi-
tivity on β. In all cases, highest S is obtained for the original
values of the input parameters, confirming that the model is
well calibrated.

4.4 Case study

After the parameter adjustment, the SBM+M tends to
slightly underestimate orographic precipitation, whereas to-
tals over flat or rolling terrain are overestimated. This behav-
ior can be seen for the case study of 31 May 2013 (Fig. 8),
a heavy precipitation event that triggered the severe flooding
in 2013 (Schröter et al., 2015).

On that day, a pronounced low-pressure system with its
center over Croatia led to the sustained advection of moist
air masses from northerly directions around 20◦ in com-
bination with a synoptic-scale ascent. The Stuttgart sound-
ing showed low stability (Nm = 0.0055 s−1), high precip-
itable water (pw= 24 kg m−2), and high wind speed (U =
20 m s−1), which is already an indication of heavy rainfall.
Consequently, precipitation totals across the investigation
area reached values of 10–100 mm.

Overall, the SBM+M is able to reproduce most of
the structures of the observed rain field (Fig. 8), espe-
cially the location of the maxima. The observed mean for
Baden-Württemberg is Robs = 33.1 mm, whereas the sim-
ulated mean is Rmod = 37.3 mm, thus being only 12.6 %
higher compared to the observations. Maximum values are
Rmax,obs = 91.7 mm andRmax,mod = 76.3 mm, which is a de-
viation of about 17 %. The area with R ≥ 50 mm is almost
equal with slightly less grid points (≈ 6 %) in the SBM+M.
The best agreement is found for the northern Black Forest as
well as the Swabian Jura. Over the northern part of the model
domain (north of 49◦ N) and southwest of Stuttgart, sim-
ulated rainfall is substantially higher compared with REG-
NIE. In contrast, the SBM+M simulates lower totals in the
southern Rhine Valley near and over the mountainous re-
gions of the southern Black Forest (around Freiburg), es-
pecially east of the city of Basel, where lee-side evapora-
tion in the model dominates. The quality indices for that
day are S = 0.62, rSp = 0.30, σ̂f = 0.75, bias= 4.44 mm, and
RMSE= 14.82 mm.

One reason for the discrepancy between observed and sim-
ulated precipitation might be the suboptimal location of the
Stuttgart sounding used for the model initialization. The sen-
sitivity study as described in Sect. 4.3 for this particular event
obtains the best results in terms of the lowest RMSE (Fig. 9)
for an increase inN2

m or τ , whereas in the case of qv orU , the
lowest RMSE is obtained when decreasing the original val-
ues. Regarding β, the lowest RMSE is given for the original
value. The highest skill score S, conversely, is reached for in-
creasing U and qv and decreasing τ andN2

m. In the case of β,
S continuously decreases from 0.8 for northwesterly inflow
to 0.4 for northeasterly winds.
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Figure 8. Comparison of (a) REGNIE 24 h rainfall totals, and (b) SBM+M output for southwestern Germany for the case study on
31 May 2013. Note that REGNIE data are available for Germany only. The parameterization in (b) is τx = 1400 s, fCw = 1.0, fdry = 0.4,
and coro = 0.8. The areas outside of Baden-Württemberg are white for better visualization and comparison.

Figure 9. Changes in (a) RMSE, and (b) skill score S for per-
turbed values of N2

m, qv, U , β, and τ , with a multiplicative fac-
tor (var_mult), and changed 1β, for 31 May 2013. The dotted lines
indicate the values of the reference run.

5 Parameter estimation of the stochastic simulations

5.1 Adjustment of the PDFs

After separating the historic event set into the four main sea-
sons, we estimate, for each of the 10 input parameters, the

Table 2. Estimated best-fitting PDFs for event duration (tev), back-
ground precipitation R∞, and frontal enhancement factor cfront de-
rived from REGNIE data (top box); square of saturated Brunt–
Väisälä frequency N2

m, wind direction β, horizontal wind speed U ,
scaling height Hw, actual lapse rate γ , saturated moist adiabatic
lapse rate 0m, and condensation rate ρSref derived from sounding
data (bottom box). For the PDF acronyms, see Table A1.

Model parameter MAM JJA SON DJF

tev GEV GEV BSD NkD
R∞ WbD WbD WbD WbD
cfront LND GmD LND ND

N2
m GEV GbD GEV GEV

β GEV GEV GEV SD
U HND IGD HND GEV
γ GEV GEV IGD IGD
0m GEV IGD IGD GEV
Hw GEV GbD GEV LD
ρSref WbD GEV WbD WbD

PDF that best fits the distribution of the observations (Ta-
ble 2) by using the least QIRS method (cf. Sect. 2.4.1). From
the overall 21 PDFs that were considered, only 12 turned
out to be suitable for adjusting the observations. In most of
the cases, the generalized extreme value distribution (GEV),
with its special realizations of the Gumbel distribution (GbD)
and Weibull distribution (WbD), appears to be appropri-
ate (26 cases), followed by the inverse Gaussian distribu-
tion (IGD) for five parameters and the Gamma distribu-
tion (GmD) for three parameters. Especially for flow param-
eters derived from the soundings, the GEV appears to be the
most appropriate (19 out of 28 cases). We had to choose the
PDF manually 5 times due to the alikeness of two PDFs ac-
cording to the QIRS method.
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Figure 10. Histogram of top200 event duration for Baden-
Württemberg according to REGNIE (bars), and estimated best-
fitting PDFs (dotted lines) for the summer (blue) and the winter
(red).

The input parameters are considered as independent and
uncorrelated. To justify this assumption, we performed a cor-
relation analysis of all possible combinations of input param-
eters using the Spearman (1904) correlation coefficient. A
low number of about 16 % of the parameters have a corre-
lation coefficient above ±0.5, and only 4 % are highly cor-
related with ±0.7. Regarding these cases, 90 % show nega-
tive correlations with r ≤−0.5. However, there are distinct
seasonal differences; in some cases correlations are higher
in summer than in winter. The highest correlation exists be-
tween N2

m and the lapse rates, which is plausible as both
are based on the vertical temperature gradient. Because the
SPM2D is less sensitive to N2

m (cf. Sect. 4) the effect can be
neglected in the model.

5.2 Event characteristics

The histogram of the duration tev for the top200 event set
and the corresponding best-fitting PDF, shown exemplary in
Fig. 10, illustrated that during JJA, a duration of 2–3 days
dominates, with a decreasing probability toward longer pe-
riods. During DJF, the distribution is generally shifted to
longer events, whereas the probability for single-day events
remains roughly unchanged. The maximum of 15 days in
DJF represents the longest duration of the top200 event set.
Whereas the estimated PDF for the JJA (GEV) has a sharper
maximum and a stronger decrease in tev > 3, the PDF found
to best fit the duration in the DJF (NkD) shows a broader
range of possible durations. Note that the histogram in the
winter shows a large scattering with irregular peaks, making
an adjustment of a PDF difficult. For MAM and SON, the
results are comparable to those of DJF and JJA, respectively.

Concerning R∞, totals of 20–25 mm day−1 are found to
most likely occur within a range of 3–37 mm day−1 in DJF,
3–50 mm day−1 in JJA, and 0–50 mm day−1 during the other
two seasons (not shown). The corresponding PDFs are listed
in Table 2. For the cfront parameter, all PDFs have their max-
imum around 0.7 to 0.8, with a range from 0.4 to 1.4 for
most of the seasons (not shown). The distribution in SON
(Table 2) descends slower towards higher values (maximum
of around 1.6).

5.3 Atmospheric parameters

An overview of the range of the seven input parameters of
the model is shown as box plots in Fig. 11; the correspond-
ing PDFs are listed in the bottom box of Table 2. In most
cases, the atmosphere was slightly stably stratified, as rep-
resented by positive values of N2

m affecting the wave prop-
agation. During JJA, the distribution is shifted toward neg-
ative values (unstable; recall that negative values are set to
Nm = 0.0003 s−1), whereas in DJF, there are almost entirely
positive values. Wind direction β, decisive for the spatial dis-
tribution of precipitation around the mountains, shows pro-
nounced seasonal differences. More than 90 % of the top200
DJF events have southwesterly to northwesterly winds (240–
300◦), with other directions hardly observed. The reason is
that northerly flows are usually associated with low temper-
atures and thus low humidity during DJF. In JJA, the wind
direction that occurred most frequently is between 240 and
300◦ as well. However, all other directions have been ob-
served as well.

Horizontal wind speed U in all cases and all seasons is
high, especially during DJF, where reduced moisture is com-
pensated by high velocity to obtain substantial horizontal in-
coming moisture flow. Median values are 5 and 20 m s−1 dur-
ing JJA and DJF, respectively. Flow parameters related to
humidity (Hw, ρSref ) conversely show higher values in JJA,
where 0m is reduced due to the release of latent heat. The
quantity γ shows similar medians and interquartile ranges
with a broader distribution in DJF.

6 Stochastic event set and model validation

Overall, a total number of nE = 10000 events (equivalent to
approx. 31 500 days) have been simulated with the SPM2D
in stochastic mode (see Sect. 2.4.2). Therefore, a stochas-
tic set of input variables with the same size as the number of
simulation days was created using the estimated PDFs, where
the variables can be treated as independent (cf. Sect. 5.1). For
the validation of the SPM2D, we quantified statistical met-
rics such as return periods, probabilities, and percentiles and
evaluated them with observations (REGNIE), CCLM simu-
lations, and the SBM+M part. The statistical distribution
of the stochastic event set of the SPM2D should agree with
that of the top200 historic events to a large degree, and more
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Figure 11. Atmospheric parameters required as input for the
SPM2D derived from radio sounding observations at Stuttgart for
the top200 events with mean, interquartile distance, minimum, and
maximum values; the left whisker of each pair represents the sum-
mer, and the right one represents the winter season. The units for
each variable are given in the brackets below the variable names.

robust results should be notable at the heavy tail (extreme
events). The comparison with the SBM+M part is helpful
in highlighting the quality and necessity of the modifications
made to the original SBM. High-resolution CCLM simula-
tions are chosen for validation to demonstrate the advantages
of using a statistical approach for stochastic simulations in-
stead of a dynamical NWP model.

Spatial 24 h mean values range between 1.2 and 79.7 mm
in the SPM2D, and 1.3 to 97.0 mm in the SBM+M, whereas
the maximum for the top200 is only 49.6 mm. In total,
128 events (0.4 %) of the SPM2D or 724 (2.1 %) of the
SBM+M yield higher spatial precipitation amounts than the
maximum of the top200. The CCLM simulations range be-
tween 1.8 and 37.6 mm.

Both the median and the 90th-percentile (p90) precipita-
tion fields of the top200 event set and the SPM2D agree
well concerning the spatial distribution and the precipitation
amounts (Figs. 12 and 13). Significant orographic precipita-
tion enhancement over the Black Forest and Swabian Jura is
clearly visible in all data sets. Note that the more detailed
structure of the REGNIE data results from the regionaliza-
tion method and its strong dependency on orography, which
should not be overinterpreted. Larger spatial differences be-
tween the different realizations mainly appear in the north-
ern Rhine Valley and to the northeast of the domain for both
the median and the p90, whereas for the latter, some differ-

ences also arise northeast and southwest of Stuttgart. Never-
theless, all differences are small, of the order of a few per-
cent. The SBM+M shows an overestimation of precipita-
tion over mountainous terrain, while the CCLM simulates
less precipitation overall for the median. For the p90, major
differences appear especially over the rolling terrain.

The areal rainfall of the SPM2D median (Fig. 12) differs
only about 3.3 % from the REGNIE top200, whereas that of
the SBM+M is about 22.1 % higher. The spatial mean of the
CCLM reanalysis is around half of REGNIE, which might be
a result of the reduced sample size. The maximum values at
any grid point of the median field are about 7 % higher in
the SPM2D compared to the REGNIE top200, and are about
34 % higher in the SBM+M realization, whereas the CCLM
maximum is about 44 % smaller.

The areal rainfall for the p90 field (Fig. 13) is about
6.5 % smaller in the SPM2D and about 14 % higher in the
SBM+M, but it is about 22 % smaller in the CCLM. The
maximum values at any grid point of the p90 field are ap-
proximately 1 % smaller in the SPM2D, about 22 % higher
in the SBM+M, and 13 % higher in the CCLM.

For other percentiles the differences between REGNIE and
the SPM2D are very small for both the spatial mean and the
maximum precipitation at any grid point in the model domain
(Fig. S3a). The differences become considerable only above
the 95th percentile. The SPM2D tends to overestimate lower
precipitation amounts because the minimum values at any
grid point are higher in the model than in the observations
and invert for the 99th percentile only. In contrast, the differ-
ences between the SBM+M and REGNIE are considerably
larger for maxima, minima, and spatial means throughout ev-
ery percentile. The CCLM reanalysis has a negative deviation
for minimum and spatial mean precipitation at all percentiles,
whereas for the maximum values there is a marked underesti-
mation for lower percentiles and an overestimation at higher
percentiles. At small percentiles, the QIs, such as rSp, S, or
σ̂f, have low values due to the overestimation of the SPM2D
(Fig. S3b). The highest skill is reached around the 90th per-
centile, with a slight decrease for higher values, which can be
the result of the increasing uncertainties of the observations.
Nevertheless, a skill score of around or above 0.8 confirms
the reliability of the stochastic simulations.

To estimate precipitation distributions for specific return
periods, we fit a Gumbel PDF to the annual maximum series
of both REGNIE and the SPM2D. As it is not possible to di-
rectly estimate the time period and a corresponding annual
maximum series for the stochastic event set, we count the
number of stochastic values exceeding the 99th percentile of
observations np99 and normalize it by the probability of oc-
currence p99, yielding the new time period:

TSPM =
np99

p99
. (9)

After sorting the SPM2D realizations in descending order,
we take the first nT = TSPM values as the annual series of the
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Figure 12. Precipitation fields for the median of (a) the top200 (REGNIE) events, (b) the SBM+M part of the stochastic events, (c) the full
SPM2D stochastic event set, and (d) the CCLM simulations of the top REGNIE events.

SPM2D and estimate a new Gumbel distribution. Using these
distributions, we obtain precipitation values for specific re-
turn periods for both REGNIE and the SPM2D. This method
is applied to both the spatial mean values of different areas
and for every single grid point.

For a 10-year return period, the SPM2D shows only small
differences in REGNIE of less than ±10 % over almost the
entire area; only in a small region in the southern Black For-
est is precipitation higher (Fig. 14a). The areal mean differ-
ence is only 0.6 %. In the case of T = 200 years (Fig. 14b),
the slight overestimation in the southern Black Forest area
remains almost the same. For this return period, the SPM2D
tends to underestimate precipitation, especially in the north-
ern part of BW and in the southeast around Lake Constance.
Nevertheless, the differences for most of the grid points
are between ±20 %; areal mean difference is about −10 %.
Taking into account the increasing statistical uncertainty for
higher return periods, this is still a reasonable result.

On the level of the major river catchments, the differ-
ences are small, too. For the Neckar catchment, for example
(Fig. 14), which covers about 38 % of BW, the spatial mean
deviation is about −0.5 % for T = 10 years and −12.7 %
for the 200-year return period. Even for catchments contain-
ing the area of overestimation in the southern Black Forest,
the spatial mean deviations are between +1 and +4 % for
T = 10 years and between−2 and−10 % for T = 200 years.

Single grid point deviations and the ensuing spatial mean
values as described above are sensitive to local conditions
and uncertainties in both REGNIE and the SPM2D. Hence,
we evaluate the model in a similar way by calculating spatial
mean precipitation first and then estimating the correspond-
ing return periods (see Appendix A3). Again, the difference
between the SPM2D and REGNIE is small for entire BW,
with slightly lower values from the simulations (Fig. 15a).
The distribution of the SPM2D is very close and almost
parallel to the estimated observed Gumbel distribution and
within the 95 % confidence interval (CI95) estimated with
the formula of Maity (2018). Considerable differences be-
tween the SPM2D and REGNIE arise only for return peri-
ods of T = 1000 years and above but are still small. For the
Neckar catchment, the SPM2D agrees well with the observed
distribution for return periods up to T = 300 years (Fig. 15b).
For higher return periods, the differences increase but are still
inside the CI95. Similar results can be found for other river
catchments (not shown).

7 Summary and conclusions

We have presented a novel method for estimating the statis-
tics of heavy rainfall based on a stochastic model approach.
Total precipitation is calculated from the linear superposi-
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Figure 13. Precipitation fields for the 90th percentile (p90) of (a) the top200 (REGNIE) events, (b) the SBM+M part of the stochastic
events, (c) the full SPM2D stochastic event set, and (d) the CCLM simulations of the top REGNIE events.

tion of four different parts: orographic precipitation, synop-
tic background precipitation, frontal precipitation, and pre-
cipitation from convection embedded into mainly stratiform
clouds. The linear theory of orographic precipitation accord-
ing to Smith and Barstad (2004), which represents the core of
the SPM2D, has been modified using three different calibra-
tion parameters to minimize the weaknesses found in pre-
vious studies such as the overestimation of wave dynam-
ics and, thus, resulting precipitation and evaporation (e.g.,
Barstad and Smith, 2005; Kunz, 2011). Furthermore, linear
theory gives a physically based linkage of the single grid
cells within the model domain, which is an improvement
compared to other stochastic weather generators based on
pure statistics like those of, for instance, Peleg et al. (2017),
Benoit et al. (2018), or Singer et al. (2018). The resulting pre-
cipitation fields and statistics are more robust and physically
justified. For cross-validation, we calibrated and adjusted
the SPM2D to a historic event set of heavy rainfall events
(top200; training data). By adjusting appropriate PDFs for
all required model parameters, we simulated 10 000 indepen-
dent stochastic precipitation events (validation data). The re-
sults were compared with observations and reanalysis data
using different percentiles and return periods.

The focus of the presented investigations was on the fed-
eral state of Baden-Württemberg in southwestern Germany,
with the striking low mountain ranges of the Black Forest

and Swabian Jura. The following main conclusions can be
drawn:

– The SPM2D has high skill for simulating both historic
and stochastic heavy rainfall events. The simulated pre-
cipitation fields and magnitudes are reliable despite the
simplified approach of the model initialized by a set of
atmospheric variables obtained from radio soundings.
The differences between the SPM2D and REGNIE are
small, with deviations of less than 10 %. Local differ-
ences, however, may also result from the regionaliza-
tion procedure of REGNIE, mainly because of the low
density of rain gauges over mountainous terrain.

– The comparison of the SPM2D with the underlying lin-
ear approach of Smith and Barstad (2004) demonstrates
the need for adjustments to the orographic precipita-
tion formulation and for additional precipitation parts
related to frontal systems and embedded convection.
The SPM2D with simplified parameterizations for these
parts even yields more reliable precipitation fields for a
historic event set compared to the sophisticated high-
resolution NWP model CCLM.

– The solution of the model equations in Fourier space
by an FFT allows for the simulation of a large number
of events and to operate the model in stochastic mode.
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Figure 14. Relative difference of the precipitation amounts for re-
turn periods of (a) T = 10 years, and (b) T = 200 years, according
to a Gumbel distribution fitted to the observations (top200) and the
SPM2D (see text for further explanation). The Neckar catchment is
shown as green contour.

Otherwise, the FFT restricts the model domain to a sym-
metric equidistant and mesoscale extent.

– The extent of the model domain, furthermore, has to be
limited to ensure the validity of the assumption of spa-
tially homogeneous distributed atmospheric conditions
and synoptic forcing. This allows, for instance, the us-
age of a single vertical profile.

– The presented stochastic approach is easily applicable
to other investigation areas. Atmospheric variables for
the initialization of the model can be estimated either
from radio soundings, such as within this study, or from
using reanalysis or data from NWP models. Therefore,
it can be applied to any region of the world with sim-
ilar precipitation characteristics, even if there is only a
limited number of ground-based observations available.

As shown in our study, the SPM2D is sensitive to per-
turbations of ambient conditions. Therefore, high-quality
input data, especially of the atmospheric parameters, are
essential. In contrast, the sensitivity of precipitation and

Figure 15. Daily rainfall totals (areal means) as a function of re-
turn period T based on the annual maximum series of observations
(REGNIE, blue), the corresponding Gumbel distribution including
the 95 % confidence intervals (black), and the annual SPM2D series
(red) for (a) the federal state of Baden-Württemberg and (b) the
Neckar catchment.

RMSE to changing input parameters is limited in a range of
around ±10 % of the original values, which is usually within
the range of uncertainty. Using data of only one sounding sta-
tion turned out to be sufficient for achieving reliable heavy
rainfall fields. As shown by Kunz (2011), the differences
to another upstream sounding station (Nancy in France) are
small, at least in the mean. This, however, applies only for
widespread precipitation with durations from several hours
to days, which is also the focus of our study. Intermittent or
even mainly convection-driven events cannot be reliably re-
produced by our model.

The input parameters can be considered as independent, as
just a few cases revealed higher correlations. The sensitivity
of the model for these parameters, however, turned out to be
weak. Additionally, the correlation coefficients between the
model input parameters vary among the seasons.

To transfer the method to another investigation area and
future risk assessments, just a few steps are necessary, the
first being a proper sample of historical heavy rainfall events.
In the next step, the statistics (PDFs) of the prevailing ambi-
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ent conditions, background precipitation, and duration of the
event set have to be calculated. Finally, the non-stochastic
part of the SPM2D has to be calibrated by determining ap-
propriate values for the free model tuning parameters.

The output of the SPM2D is a certain number of indepen-
dent heavy precipitation events and not a continuous time
series. We have presented a method for converting this to a
equivalent time period, which is mostly necessary for risk as-
sessments, by counting the number of days in the SPM2D
above a defined threshold and normalizing it by the cor-
responding probability of the observations. Using this total
time span it is possible to estimate the return period of every
single event and a corresponding new PDF. The time between
two events is assumed as dry period.

The presented SPM2D is part of the project FLORIS
(FLOod RISk estimation for southwestern Germany), which
represents a novel risk assessment methodology for an entire
domain and not only for single catchments usually consid-
ered in the insurance industry. Within the framework of this
project, the SPM2D was applied to other federal states in
central Germany. The modeled precipitation fields are used
as input data for hydrological and hydraulic simulations from
which the flood risk can be estimated, for example, those re-
quired for an event happening once in 200 years according to
the insurance regulation of Solvency II. However, the results
of the SPM2D basically can be used for several different ap-
plications such as water management or the design of flood
protection measures.

Data availability. The REGNIE data used in this paper
are freely available for research and can be requested at
the DWD (https://doi.org/10.1127/0941-2948/2013/0436;
Rauthe et al., 2013); the sounding data are freely avail-
able from the Integrated Global Radiosonde Archive
(https://www.ncdc.noaa.gov/data-access/weather-balloon/
integrated-global-radiosonde-archive; Durre et al., 2006).
The required orographic data can be obtained from http:
//srtm.csi.cgiar.org/; (https://doi.org/10.1080/13658810601169899;
Reuter et al., 2007).
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Table A1. List of the tested and suitable PDFs preset in the MAT-
LAB statistical toolbox (the short acronyms in brackets are for fur-
ther orientation).

Birnbaum–Saunders (BSD) Nakagami (NkD)
Gamma (GmD) Normal (ND)
Generalized extreme value (GEV) Poisson (PD)
Gumbel (GbD) Rayleigh (RyD)
Half-normal (HND) Rician (RcD)
Inverse Gaussian (IGD) Stable (SD)
Logistic (LD) Student’s t (StD)
Log-logistic (LLD) Weibull (WbD)
Log-normal (LND)

Appendix A: Statistical quantities

A1 Probability density functions

We used the 20 probability density functions (PDFs) preset
in the MATLAB statistical toolbox (MATLAB, 2016) plus
the circular von Mises distribution for wind speed (Mar-
dia and Zemroch, 1975). In total, 17 PDFs were suitable
and were tested and compared with the observed distribution
of each parameter for each of the four seasons (Table A1).
Note that the Gumbel distribution (GbD) and Weibull distri-
bution (WbD) are special cases of the generalized extreme
value distribution (GEV) and that some PDFs cannot be used
due to their ranges.

A2 Skill score

In this study we use the skill score S introduced by Taylor
(2001):

S =
4(1+ r)(

σ̂f+
1
σ̂f

)2
· (1+ r0)

, (A1)

where r is the correlation coefficient after Spearman (1904)
between the modeled and observed precipitation field, r0 is
the maximum attainable correlation, and σ̂f = σmod · σ

−1
obs is

the normalized standard deviation with the standard devia-
tions of the model (SBM+M) σmod and observations (REG-
NIE) σobs. For σ̂f→ 1 and for r→ r0, S approaches unity,
which is the best result. Furthermore, Taylor (2001) provided
no regulation for the estimation of r0. Therefore, we set r0 to
the maximum calculated correlation coefficient of all simu-
lations. As it is not guaranteed that this maximum is the ac-
tual maximum attainable correlation, we increase r0 by 10 %,
yielding r0 = 0.93. According to Taylor (2001), the use of
correlation and standard deviation is more stable compared
to RMSE or bias.

A3 Return periods

For the estimation of return periods, the annual maximum
series with length Tmax of the data set is sorted in descending
order. Then, the return period Tk of each element xk of this
series is given by Tk = Tmax · rk−1(xk) with the rank rk(xk)
of element xk . The first element (highest value) of the annual
series, for example, of Tmax = 100 years, has a return period
of T1 = 100 years, the second has a return period of T2 =

50 years, and so on. For the visualization, the values of Tk
were adjusted using the plotting position method of Cunnane
(1978).
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