KIT | KIT-Bibliothek | Impressum | Datenschutz

Synthesis and high-temperature oxidation of ternary carbide coatings on zirconium-based alloy cladding

Tang, Chongchong

Abstract (englisch):
Zirconium-based alloy claddings used for current light water reactors (LWRs) possess a variety of desirable features in steady-state normal operation, however, constraints regarding fast degradation, rapid exothermic reaction with high-temperature steam associated with hydrogen generation in accident scenarios motivate the requisite to develop enhanced accident tolerant fuel (ATF) claddings. One reasonable solution to improve the accident tolerance of the zirconium alloy cladding in accidental conditions while preserving its excellent behavior under normal operating conditions is external surface modification via such as coatings deposition. In addition, protective coatings applied to the zirconium alloy claddings offer the potential benefits of drastically reduced corrosion and degradation during normal operation, which are expected for application within the design framework of both current and future generation LWRs. The Mn+1AXn (MAX) phase materials comprise an extended family of layered, hexagonal ternary carbides and nitrides. They combine many attractive properties of both ceramics and metals stemming from their unique layered crystal structures and bonding characteristics; certain Al-MAX phases also possess excellent high-temperature oxidation resistance and chemical compatibility with select coolants such as hot water and molten lead. ... mehr

Open Access Logo

Volltext §
DOI: 10.5445/IR/1000091676
Veröffentlicht am 27.02.2019
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien - Angewandte Werkstoffphysik (IAM-AWP)
Publikationstyp Hochschulschrift
Publikationsjahr 2019
Sprache Englisch
Identifikator urn:nbn:de:swb:90-916763
KITopen-ID: 1000091676
HGF-Programm 32.02.11 (POF III, LK 01) Auslegungsüberschreitende Störfälle
Verlag Karlsruher Institut für Technologie (KIT)
Umfang XX, 174 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Maschinenbau (MACH)
Institut Institut für Angewandte Materialien - Angewandte Werkstoffphysik (IAM-AWP)
Prüfungsdatum 12.02.2019
Referent/Betreuer Prof. H. Seifert
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page