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1 Nuclear Fusion (FUSION): Plasma Heating 
Systems -Microwave Plasma Heating & 
Current Drive Systems- 

Contact: Dr. Gerd Gantenbein 

The Department for High Power Microwave Technologies is focusing on the research and development of 

high power RF sources (gyrotrons) and related components for electron cyclotron resonance heating and 

current drive (ECRH&CD) of magnetically confined nuclear fusion plasmas.  

In particular the following major activities have been carried out in 2017: 

– Gyrotron Development for W7-X, targeting at 1.5 MW RF power at 140 GHz.

– Experimental study on further performance optimization of the European 1 MW, 170 GHz Hollow-

Cavity Gyrotron Prototype for ITER.

– 2 MW, 170 GHz Longer Pulse Coaxial-Cavity Gyrotron Prototype, upgrade of the modular short pulse

gyrotron with internal cooling systems.

– Gyrotron Development for DEMO, with the focus of efficiency enhancement by multi-staged

depressed collectors.

– Developments on theory and numerical simulations of beam-wave interaction tools, electron beam-

optics codes and quasi-optical systems.

– FULGOR: progress in the erection of the new gyrotron test stand

– Generation of ultrashort pulses using advanced gyro-TWT design.
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1.1 Gyrotron Development for W7-X  

Contact: Dr. Konstantinos Avramidis 

Since the very beginning of the operation of the stellarator Wendelstein 7-X (W7-X), the Electron Cyclotron 

Resonance Heating (ECRH) system, consisting of ten 1 MW, 140 GHz gyrotrons, has exhibited a remarkable 

performance. The available EC heating and current drive power in the plasma ranges from 7 to 9 MW, that 

is, W7-X is using the world’s largest ECRH system today. The possibility of even higher ECRH power in the 

future is under consideration. Motivated by this, studies towards an upgraded 1.5 MW, 140 GHz gyrotron 

design were initiated, which showed that the most promising development path, with respect to risk and 

cost, would be the upgrade of the existing TE28,8-mode gyrotron of W7-X, in order to operate in the 

TE28,10 mode.  

 

Fig. 1.1.1:  Simulation of the TE28,10-mode gyrotron start-up considering 83 competing modes. 

In this period, an optimised design for the cavity and non-linear uptaper of the TE28,10-mode gyrotron has 

been obtained, which fulfils the specifications and requires the smallest changes with respect to the existing 

gyrotron layout. Beam-wave interaction simulations, taking into account realistic spreads in the electron 

beam parameters, verified the cavity & uptaper performance. An example is given in Fig. 1.1.1, where the 

TE28,10 mode generates 1.7 MW in the cavity at nominal operation (78.5 kV, 56 A, 5.55 T) with an estimated 

total efficiency of 35 % without depressed collector. A first assessment of the necessary modifications of 

the rest of the gyrotron components has also been made. 

In support to the investigations on the W7-X gyrotron upgrade, the components of a TE28,10 mode generator 

for low-power tests of the quasi-optical mode converter system of the gyrotron have been designed and 

manufactured (Fig. 1.1.2). The mode generator has been assembled and experimental results are expected 

in 2018.  
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Fig. 1.1.2: Components for the TE28,10 mode generator: cavity with coaxial insert (left) and taper (right). 

The possibility of MW-class operation of the upgraded gyrotron at the additional frequency of 175 GHz for 

Collective Thomson Scattering diagnostics has been also studied. Initial results showed that the designed 

cavity could operate in the TE36,12 mode and yield 1.2 MW at 175.8 GHz at the operating point of 78 kV, 

55 A, 7.0 T with 26 % total efficiency without depressed collector. 
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1.2 Gyrotron Development for ITER 

Contact: Dr. Tomasz Rzesnicki  

 Experimental study on further performance optimization of the  
European 1 MW, 170 GHz hollow-cavity gyrotron prototype. 

The EU 1 MW, 170 GHz gyrotron with hollow cylindrical cavity has been designed within the European 

GYrotron Consortium (EGYC) in collaboration with the industrial partner Thales Electron Devices (TED) and 

under the coordination of Fusion for Energy (F4E). The experimental verification of the Short-Pulse (SP) 

gyrotron prototype was successfully completed in 2015. In order to investigate the further optimization of 

the gyrotron performance, additional tests with the modified SP prototype have started. The activities are 

focused on the increasing of the total efficiency towards 50 % (ITER requirement) in depressed collector 

operation. The saturation of the gyrotron efficiency at higher retarding voltages, which was observed 

during the experiments with the CW tube was theoretically predicted by simulations of the overall gyrotron 

geometry and is related to the reflection of electrons in the region of the mirror-box, due to a significant 

drop of the electron kinetic energy caused by the voltage depression of the spent beam space-charge, 

which defines the limits of the applicable maximum body voltage, before reflection of electrons begins. 

That effect is mainly governed by the geometrical arrangement of the gyrotron inside the mirror box. In 

order to perform a study of this effect different configuration setups, based on additional structures i.e. 

metallic pipes or optimized potential elevating structure (Fig. 1.2.1) installed inside the mirrorbox, have 

been prepared for the tests. The achieved results have been compared with an optimal depression voltage 

arrangement where the retarding voltage was set on the gyrotron by using of the ceramic-isolated collector 

of the 2 MW, 170 GHz coaxial-cavity short-pulse gyrotron prototype that is available at KIT. 

  

Fig. 1.2.1:  Potential elevating structure. 
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Fig. 1.2.2: RF power and total efficiency vs. retarding voltage obtained experimentally with different gyrotron  

configurations. (bottom). 

Fig. 1.2.2 presents the generated RF power and the corresponding efficiency for the four different gyrotron 

configurations: (a) original “basic” setup in 2015 (red line), (b) cooling pipes mock-up installed in the mirror 

box and set on High Voltage (HV) (blue line), (c) optimized potential elevating structure (grey line) and (d) 

complete mirror-box set on HV (green line). In all cases the operating parameters are close to the nominal 

ones. As already predicted theoretically, the best results have been achieved by placing of the retarding 

potential on the gyrotron body. It resulted in an increase of the total gyrotron efficiency from 34 % to close 

to 45 % (retarding potential on the body). 

Preliminary tests of the first version of the potential elevating structure confirmed a significant increase of 

the efficiency close to 40 %, limited by the maximal possible value of the applicable body voltage (~32 kV), 

due to vacuum issues. The gyrotron performance equipped with the potential elevating structure is 

expected to be similar to the configuration with the HV on the gyrotron body, being possibly a reasonable 

alternative solution for hollow cavity gyrotrons in the future. Final validation of the structure at better 

gyrotron conditions are planned for 2018. 
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1.3 Gyrotron Developments for future DEMO  

 Developments in frame of EUROfusion 

Contact: Dr. Konstantinos Avramidis 

The R&D towards a gyrotron that will meet the requirements posed by the envisaged Electron Cyclotron 

Heating and Current Drive system for DEMO is, at the largest part, performed within the Work Package 

Heating and Current Drive (WPHCD) of EUROfusion. The studies are in line with the European Fusion 

Roadmap towards a demonstration power plant. Gyrotron R&D is a necessary step to bridge the gap 

between today’s state-of-the-art gyrotrons and future gyrotrons for DEMO. The EU DEMO1 baseline 2015 

poses significant challenges on the gyrotron. These are the need for dual, high-frequency operation 

(170/204 GHz) and/or fast frequency step-tunability, as well as the requirements for higher power (2 MW), 

higher overall efficiency (60 %), and a higher level of Reliability-Availability-Maintainability-Inspectability 

(RAMI) in line with that of a power plant. To keep the gyrotron R&D relevant with respect to possible 

baseline changes and to alternative reactor configurations towards a future power plant, efficient MW-

class gyrotron operation at higher (~240 GHz) frequencies is also considered in parallel. 

The advanced concept of the coaxial gyrotron has been selected as being the most promising, compared 

to the conventional hollow-cavity gyrotron, towards the higher power and frequency target, since the 

enhanced mode selectivity of coaxial cavities permits stable operation at very high-order modes, which are 

compatible with large dimensions of the gyrotron cavity. The 170 GHz, 2 MW short-pulse coaxial gyrotron 

at KIT has already exhibited excellent performance at ms pulses. The next step for coaxial gyrotron 

technology towards DEMO is to prove experimentally its capability for long-pulse operation, especially with 

respect to the cooling and alignment of the coaxial insert. To this end, the coaxial gyrotron has been 

upgraded in this period with new, water-cooled components and experiments targeting at 100 ms pulses 

are expected in early 2018. The gyrotron is shown in Fig. 1.3.1. Supportive multi-physics numerical 

investigations on the cooling of the coaxial insert have also been performed. It was predicted that the 

cooling is compatible with continuous-wave operation. According to the calculations, a heat flux to the 

insert of up to 0.39 kW/cm2 and an insert misalignment of up to 0.2 mm can be acceptable. This gives a 

large margin with respect to the expected values (i.e. heat flux < 0.15 kW/cm2, misalignment < 0.1 mm).  

  

Fig. 1.3.1:  The assembled longer-pulse 2 MW coaxial gyrotron and its components. 
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To keep the development path towards the DEMO gyrotron as fast and cost-effective as possible, the 

design of a 2 MW, 170/204 GHz coaxial gyrotron has been initiated using the existing 170 GHz, 2 MW 

coaxial gyrotron as a starting point. A preliminary assessment showed that a good performance can already 

be achieved with relatively minor modifications of the existing gyrotron. MW-class operation at 237 GHz 

seems also possible. The investigations focused on the gyrotron cavity and its calculated performance is 

summarised in Table 1.3.1. The Table includes results for the existing cavity of the coaxial gyrotron as well 

as for a proposed, slightly modified coaxial cavity with a shorter midsection, which achieves a more 

balanced performance at the three different frequencies. In parallel, the theoretical studies on 2 MW, 

~240 GHz gyrotrons operating at very-high-order modes have been continued, focusing on the tolerance 

of misalignments and on start-up scenarios using triode-type electron guns to increase the 

mode selectivity. 

Cavity Existing coaxial cavity Modified coaxial cavity 

Frequency [GHz] 170.00 204.14 237.17 170.04 204.16 237.18 

Operating mode TE34,19 TE40,23 TE48,26 TE34,19 TE40,23 TE48,26 

Beam energy [keV] 90 80.7 60 92.8 88 78 

Beam current [A] 75 70 60 75 75 70 

Cavity power [MW] 2.25 1.8 1.04 2.5 2.2 1.63 

Interaction efficiency [%] 34.9 33.0 30.2 36.7 33.4 30.2 

Table 1.3.1:  Simulated performance of triple-frequency operation of the coaxial gyrotron cavity. 

The target of  60 % efficiency for the DEMO gyrotron implies the development of advanced, Multi-Stage 

Depressed Collectors (MDC) to increase the energy recuperation from the spent electron beam. Given that 

in the gyrotron the electrons are guided by a strong magnetic field to the collector, the required separation 

of electrons according to their energy, necessary for MDC operation, is quite challenging. Extensive 

investigations on different MDC concepts culminated in a very promising configuration, based on the EB 

drift concept and adopting helical electrodes (Fig. 1.3.2). Extensive Particle-In-Cell simulations of a two-

stage collector showed very good handling of secondary electrons, which is one of the major issues in 

MDCs, and demonstrated a collector efficiency of 77 %, resulting in an overall gyrotron efficiency of 63 %. 

Excellent tolerance in electron beam misalignments and stray magnetic fields was also demonstrated. The 

latter is shown in Fig. 1.3.2. 
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Fig. 1.3.2:  Top: a two-stage EB helical MDC with electron trajectories colour-coded according to kinetic energy. Bottom: 
dependence of the collector efficiency η on the direction of a perturbing magnetic field perpendicular to the collector axis. 

The required high RAMI level of a DEMO gyrotron calls for further optimisation of all critical gyrotron 

components in terms of reliability and robustness. In this frame, investigations on advanced cooling 

methods of the gyrotron cavity, including micro-channel cooling and spray cooling have been initiated. 

More important, a new advanced triode-type Magnetron Injection Gun (MIG) has been procured for the 

existing coaxial gyrotron by Thales Electron Devices (TED, Vélizy-Villacoublay, France) and will be installed 

in the gyrotron in 2018. The gun is designed to be free of electron trapping mechanisms, i.e. compatible 

with long-pulse operation and is manufactured with coated emitter edges to minimise the influence of 

manufacturing tolerances and edge effects on the electron beam quality (Fig. 1.3.3). This is the first time in 

Europe that this technology is used for gyrotrons. 
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Fig. 1.3.3:  MIG mock-up cathode with coated emitter edges. 

 2 MW, 170 GHz longer pulse coaxial-cavity gyrotron prototype. 

Contact: Dr. Tomasz Rzesnicki 

For fusion power plants that shall generate significant electric power such as DEMO the required RF power, 

efficiency, and operating frequency of gyrotrons needs to be further improved. A minimum RF output 

power of 2 MW at continuous wave (CW) and at operating frequencies up to 240 GHz are currently 

required. In order to satisfy those requirements, KIT is working on advanced gyrotron concepts, particularly 

on the coaxial-cavity gyrotron technology. Experiments at KIT demonstrated its superior performance by 

showing an RF output power above 2.2 MW in short pulses (ms-range) at an operating frequency of 170 

GHz. In comparison to the classic hollow-cavity gyrotron technology widely used in todays fusion gyrotrons 

the coaxial-cavity gyrotron technology offers reduced voltage depression and mode competition. That 

allows an operation at very high-order operating modes, which leads to a significant higher RF output 

power. At KIT a modular-type of 2 MW 170 GHz coaxial-cavity short-pulse (ms) pre-prototype gyrotron 

operating at very short pulses up to a few milliseconds has been used to verify the superior performance 

of the coaxial-cavity gyrotron technology so far. A first industrial 170 GHz 2 MW coaxial-cavity gyrotron 

prototype operating at long pulses was built and was tested for ITER in 2012. In favor of the ITER EU 1 MW 

gyrotron development that 2 MW development was put on hold for ITER. Nevertheless, in frame of 

EUROfusion and supported by F4E the coaxial-cavity development continues at KIT. Currently, the main 

focus of KIT is to verify the performance of the coaxial-cavity gyrotron at longer pulses. As a first step 

towards a coaxial-cavity gyrotron operating at CW, a new modular gyrotron prototype was constructed, 

with the goal to extend the pulse lengths up to 1 s. This tube allows the verification of the gyrotron 

performance at extended pulse duration and validation of all operating parameters relevant for further CW 

operation. Furthermore, the pre-validation of the critical gyrotron components at longer-pulse regime is 

possible, in particular the behavior of the inner conductor, during heating up. Hence, the main issue for the 

construction of the new propotype gyrotron was the introduction of a reliable cooling systems for the beam 

tunnel, cavity, launcher, quasi optical mirror system, CVD diamond output window and the collector. Due 

to the presence of an independent cooling system for each component, monitoring of the internal losses 

in each gyrotron component and of the final energy balance of the tube during longer-pulse operation is 

possible. A very big advantage of this longer-pulse gyrotron is the modular construction. It allows an easy 
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implementation and testing of new subcomponents with advanced water cooling systems, material 

compositions and geometries. The assembled longer-pulse gyrotron, installed in the superconducting (SC) 

magnet, ready for the first operation is shown in Fig. 1.3.4.  

A bake-out procedure of the complete tube has been applied resulting in significantly better vacuum 

conditions. Experimental results will be expected in 2018.  

 

Fig. 1.3.4: The KIT 2 MW coaxial-cavity longer pulse gyrotron in the superconducting magnet. 
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1.4 Developments on theory and numerical simulations 

Contact: Dr. Stefan Illy 

Cavity simulation and beam-wave interaction tools 

A multi-physics numerical procedure has been established, in collaboration with the Polytechnic University 

of Turin, which models the influence of the thermal expansion of the gyrotron cavity on the expected 

gyrotron performance. It is an iterative simulation method, which involves electrodynamic, thermal-

hydraulic, and thermo-mechanical simulations. For the electrodynamic simulations, the in-house code-

package EURIDICE for gyrotron interaction calculations and cavity design is used. A new module for 

addressing different models for the temperature dependence of the cavity wall conductivity has been 

developed and included in EURIDICE. Four different models were implemented, based on the ITER Material 

Properties Handbook as well as other sources. The materials under consideration are Glidcop and pure 

copper, which are the ones used in gyrotron cavities. The multi-physics numerical procedure has been used 

to simulate the European 170 GHz, 1 MW continuous-wave prototype gyrotron for ITER, considering both 

the existing cavity cooling system (see Fig. 1.4.1) and proposals for an improved cooling system. The longer-

pulse 170 GHz, 2 MW coaxial gyrotron at KIT was also simulated using this procedure.  

Fig. 1.4.1: Temperature profile along the inner contour of the cavity of the EU gyrotron for ITER, as obtained by transient multi-
physics modelling. The change of the inner contour due to the thermal expansion is also shown. The inset shows the evolution of 
the maximum temperature with time. 

Advances in the modeling of the beam-wave interaction in gyrotrons using 3D, full-wave, Particle-In-Cell 

(PIC) codes have been made. Technical details, theoretical input, and numerical results from the in-house 

code-package EURIDICE have been provided to support PIC simulations of test cases as well as real 

gyrotrons using CST Particle Studio, the code PICLas from the University of Stuttgart, and VORPAL. In all 

simulated cases a good agreement between the codes has been reached. This has been a significant step 

in increasing the confidence in 3D, full-wave PIC codes with respect to their capability of reliable simulations 

of the gyrotron interaction. 
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 Improvements of the electron beam-optics codes 

ESRAY 

The beam-optics toolbox ESRAY has been extended to allow a smoother simulation of the so-called vertical 

sweeping of gyrotron collectors. In this case strong eddy currents are induced in the relatively thick 

cylindrical copper wall of the collector. Since the magnetic field calculation tool of ESRAY can not handle 

eddy currents, this part of the simulation has been shifted to the freely available FEMM simulation program. 

ESRAY has been extended to allow better interaction with FEMM with regard to the definition of coil 

geometries, materials and data exchange between both programs. This now allows the definition of 

arbitrary waveforms for the sweeping current based on a Fourier series expansion of the current and the 

corresponding periodic magnetic field distribution in the collector. In the frame of a Bachelor thesis from 

Jackowski (2017), a conceptual study has been performed to show the possibility and benefits of vertical 

sweeping with advanced, optimized sweeping current waveforms. Fig. 1.4.2 illustrates the shape of such a 

waveform applied to a proposed coil for the relatively compact collector of the 2 MW, 170 GHz coaxial 

cavity “longer pulse” gyrotron. Fig. 1.4.3 shows the corresponding load profile on the collector wall, 

indicating that the critical peaks of the wall loading will be reduced by nearly a factor of two compared to 

conventional sweeping with a sinusoidal waveform. 

 

Fig. 1.4.2:  Proposed current waveform for the enhanced sweeping concept, indicating the shape of the pre-defined current, it’s 
approximation by a Fourier series and the (negligible) corresponding difference e. 

 

Fig. 1.4.3: Obtained averaged power density for the case of sinusoidal sweeping (blue) and sweeping with the advanced current 
waveform (red). 
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ARIADNE 

The tracking code ARIADNE has been extended to allow convergence at the presence of trapped electrons. 

This is achieved by the definition of two relaxation factors: (i) the first one for the electron beam space 

charge required for the Poisson solver, and (ii) the second one for the definition of the amplitude of the 

mode in the cavity. In particular, for the solution of Poisson equation not only the space charge of the beam 

at the last iteration is considered, but also the space charge of the previous iteration. The percentage of 

the space charge contribution of the previous iteration and the last one is defined by a user defined 

variable. Similar procedure is followed with the amplitude of the mode in the cavity. The amplitude of the 

mode in the cavity is defined by the energy losses of the beam electrons at the last iteration, but also the 

energy losses of the previous iteration. Similar to the space charge contribution, a user defined factor 

determines the percentage of the last and the previous iteration contributions on the cavity mode 

amplitude. Using this upgrade, it was possible to numerically investigate the behavior of the beam electrons 

in case of applying a high deceleration voltage at the collector which causes electron reflections. It was 

possible to estimate the reflected current and the drop of the generated power as a function of the 

decelerating voltage and to investigate the peculiar trajectories of the reflected electrons.  

In addition, the distributed memory parallization scheme of ARIADNE has been upgraded to a hybrid 

scheme in order to get the advantages of the multi-core share memory nodes of modern clusters. In 

particular, the distributed memory parallelization scheme based on MPI was upgraded with an additional 

shared memory scheme based on OpenMP. The whole mesh is stored only once in each node of the cluster, 

while the calculation of the electron trajectories are distributed on all processes (cores) of the nodes. In 

this way, it is avoided the multiple storage of the mesh in the memory of the same node and provide us 

the possibility to significantly increase the mesh density and the number of electrons considered in 

simulations. 

Simulation and design of quasi-optical components 

TWLDO (Tools for Waveguide Launcher Design and Optimization) 

The method used in the TWLDO code for the analysis of the field distribution on the launcher wall has been 

improved. In TWLDO code, the input field of launchers is defined as the field distribution on waveguide 

walls in the area −∞ < z < 0. In the numerical calculation, it is impossible to calculate the field distribution 

in the semi-unlimited input area (−∞ < z < 0, z = 0 means the entry of launcher), therefore the field 

distribution in the area −7L < z < 0 on waveguide walls is used to approximate the semi-unlimited input 

area, where L is the launcher length. In the case that the discontinuity point of the field distribution is far 

away from the launcher (at z=-7L), the influence of the discontinuity on the field distribution on the 

launcher wall (at z>=0) is quite small. In the modified TWLDO code, in order to depress the influence of the 

discontinuity, the input field f in the area −7L < z < −6L is smoothly increased from 0 to the full cavity 

field fc as following: 

f =

{

fc(
1 − cos (

(z + 7L)π
L

)

2
) −7L < z < −6L

fc −6L < z < 0

The simulation results show that the influence of the discontinuity due to the limited calculation area has 

been depressed by this procedure. 
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A quasi-optical launcher for both co- and counter-rotating mode operating in the TE32,9 mode at 170 GHz 

has been designed and tested using TWLDO code. The wall profile and the field distributions on the 

launcher wall are shown in Fig. 1.4.4. The position of the wave beams should be well arranged so that the 

both wave beams from TE32,9 mode and TE-32,9 mode could be located at the center of the launcher 

aperture.  

 

 

 

Fig. 1.4.4: The wall profile (left), the field distribution of the co-rotating mode (middle) and the counter-rotation mode (right). 

KarLESSS (Karlsruhe Large Electric System Simulation Suite) 

An advanced computer code (KarLESSS) [Ma17] for the full-wave simulation of quasi-optical systems in 

high-power gyrotrons is under development. The simulation program solves the electric-field integral 

equation with the method of moments. For an acceleration of the simulations, advanced methods as high 

order basis functions, high order meshes and compression algorithms based on the adaptive cross 

approximation (ACA) are used. In 2017, optimized versions of the ACA were implemented (ACA-SVD and 

SPACA). The so called ACA-SVD algorithm combines the ACA with an additional singular-value-compression 

to reduce the required memory during a simulation. The SPACA introduces a sub-sampling and a tree-

structure of the basis functions to reduce the required calculation time and memory of the normal ACA. 

With the SPACA the favorable scaling of N*log(N) could be reached for the simulation of quasi-optical 

systems. In addition, an own preconditioner-algorithm, specialized for the ACA and its optimized versions 

was developed. With the developed preconditioner the convergence of the FGMRES algorithm, used for 

the solution of the system of linear equations, is effectively reduced. 

Aperture
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1.5 FULGOR (Fusion Long-Pulse Gyrotron Laboratory) 

Contact: Dr. Gerd Gantenbein 

The existing gyrotron test facility at KIT, which had been designed and built more than 30 years ago, plays 

a worldwide leading role in the development of high-power gyrotrons for nuclear fusion applications. This 

facility offered the unique opportunity to develop and test the first CW high power series gyrotrons for the 

stellarator W7-X in collaboration with IPP and Thales Electron Devices as the industrial partner.  

The target parameters of the new gyrotron test facility are well beyond the capabilities of the existing one. 

The new teststand will strongly support KIT’s leading role in the development of advanced gyrotrons. It will 

help to answer the questions regarding the technical limits and new physical designs for future high-power 

microwave tubes. The key parameters of FULGOR will be: 

 Full CW operation with up to 10 MW electrical power (corresponding to >= 4 MW RF power,

assuming an efficiency of the gyrotron >= 40%)

 Support of advanced energy recovery concepts, e.g. multi-stage depressed collector (MSDC)

 Super conducting magnet with a flux density of up to 10.5 T

The high voltage power supply (HVPS) will support an operating voltage of up to 130 kV with up to 120 A 

beam current in short pulse operation and 90 kV / 120 A in continues wave regime. The superconducting 

magnet will allow operation of gyrotrons at frequencies well above 200 GHz (~ 240 GHz). Other significant 

components of the teststand are: cooling system, control electronics and interlock system, RF diagnostics 

including high-power RF absorber loads. 

The capabilities of FULGOR will enable the development and CW tests of gyrotrons for future fusion 

machines like ITER and DEMO. Fig. 1.5.1 shows a simplified CAD view of the complete FULGOR system. 

Substantial progress has been achieved in the planning, procurement and installation of major systems of 

the new teststand.  

High Voltage Power Supply (HVPS): All EPSM power modules for CW operation (84 in total) have been 

tested (at AMPEGON), delivered and installed at KIT side. First tests of this system show very good results 

in agreement with the specifications. All modules of the pulsed power supply (PPS) (40 in total) for up to 5 

ms operation have been produced, delivered and installed. A first phase of commissioning has been 

completed end of 2017, final acceptance will be in Q2/2018. Discussions with industry on a body power 

supply, necessary for operation of the gyrotron with energy recovery of the spent electron beam, have 

been started. The specifications have been fixed and several offers have been evaluated. The start of the 

procurement is expected for early 2018.  

Cooling system: The cooling system is designed for full 10 MW CW operation. The final acceptance of the 

complete cooling system has been performed in 2017.  

Control and data acquisition: The procurement and installation of components to control the teststand (HV 

power supply, cooling system, gyrotron control and diagnostic) has been continued.  

Superconducting magnet: In 2017 the specifications of the magnet has been finalized, a call for tender has 

been launched and the system has been ordered. The key data of the magnet are: borehole diameter: 261 
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mm, max. B-field: 10.5 T, dipole coil system to optimize the electron beam position in the gyrotron, 

cryogen-free. The delivery of the system is scheduled for mid of 2019. 

Microwave diagnostics: In cooperation with IGVP, University Stuttgart, the transmission system for the RF 

beam from the gyrotron window to the absorber load has been discussed. This system will include two 

matching mirrors and two polarisers which will allow broadband transmission. At IGVP the water cooled 

matching mirrors and a 2 MW absorber load have been ordered. The polarisers will be manufactured  

at KIT.  

 

Fig. 1.5.1: FULGOR 

 

Fig. 1.5.2: NN: 10.5 T magnet with integrated dipole coils (Tesla Engineering Ltd). 
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1.6 Generation of ultrashort pulses using advanced 
gyro-TWT design 

Contact: M.Sc. Alexander Marek 

We study the generation of a periodic sequence of powerful short pulses in this project. The need for 

powerful pulsed sources of millimeter and sub-millimeter (sub-THz) radiation is motivated by a large 

number of fundamental problems and practical applications, including diagnostics of plasma, 

photochemistry, biophysics, new locating systems, and the spectroscopy of various media. 

The pulses will be formed by a feedback loop of an amplifier and a nonlinear absorber (see Fig. 1.6.1). Both, 

amplifier and absorber will be realized as gyrotron-traveling-wave-tubes with helical corrugated 

interaction-region. The amplifier will run in a regime optimal for the maximal amplification of ultrashort 

pulses, while the absorber will run in the so called Kompfner dip regime, where low-energy pulses are 

absorbed while powerful pulses can pass the absorber without loss of energy. 

For prove of concept, such a feedback loop should be first realized at a frequency of 35 GHz, but the final 

applications of the generated pulses will be in the sub-THz frequency range. Therefore, the key elements 

for a helically corrugated gyro-TWT with the frequency of 260 GHz, as well as a non-linear cyclotron 

absorber appropriate for this frequency range will be developed in parallel to the design of a feedback-loop 

at 35 GHz. 

“Cold” simulations of the helical interaction region and of additional components as mirror systems for 

input/output systems were performed in a first step of the project [Ma17]. For this, our in-house developed 

full-wave simulation tool KarLESSS was used. Currently, “hot” simulations of the interaction are performed. 

Simulations of the separated amplifier and absorber components at 35 GHz are performed with the 

commercial tool CST [Gi17]. In parallel, we investigate in the usage of the advanced simulation program 

“PICLas”, developed by the Institute of Aerodynamics and Gas Dynamics at the University of Stuttgart. 

PICLas provides the great opportunity to verify the CST simulations and to allow a full PIC simulation of a 

coupled amplifier-absorber system. 

Fig. 1.6.1:  Schematical view of concept, K: adjustable reflection factor, T: delay time of feedback coupling. 

Collaboration: In Collaboration with the Institute of Applied Physics, Russian Academy of Sciences (IAP- RAS) 

and with support of the Institute of Aerodynamics and Gas Dynamics, University of Stuttgart. 

Output 
signal 
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