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Abstract

Modern computing systems are becoming increasingly complex. On one end of
the spectrum, personal computers now commonly support multiple processing
cores, and, on the other end, Internet services routinely employ thousands of
servers in distributed locations to provide the desired service to its users. In
such complex systems, concerns about energy usage and power consumption
are increasingly important. Moreover, growing awareness of environmental
issues has added to the overall complexity by introducing new variables to the
problem. In this regard, the ability to abstractly focus on the relevant details
allows model-based design to help significantly in the analysis and solution of
such problems.

In this dissertation, we explore and analyze model-based design for energy
and power considerations in computing systems. Although the presented tech-
niques are more generally applicable, we focus their application on large-scale
Internet services operating in U.S. electricity markets. Internet services are be-
coming increasingly popular in the ICT ecosystem of today. The physical in-
frastructure to support such services is commonly based on a group of coop-
erative data centers (DCs) operating in tandem. These DCs are geographically
distributed to provide security and timing guarantees for their customers. To
provide services to millions of customers, DCs employ hundreds of thousands
of servers. These servers consume a large amount of energy that is traditionally
produced by burning coal and employing other environmentally hazardous
methods, such as nuclear and gas power generation plants. This large energy
consumption results in significant and fast-growing financial and environmen-
tal costs. Consequently, for protection of local and global environments, gov-
erning bodies around the globe have begun to introduce legislation to encour-
age energy consumers, especially corporate entities, to increase the share of
renewable energy (green energy) in their total energy consumption. However,
in U.S. electricity markets, green energy is usually more expensive than energy
generated from traditional sources like coal or petroleum.

We model the overall problem in three sub-areas and explore different ap-
proaches aimed at reducing the environmental foot print and operating costs
of multi-site Internet services, while honoring the Quality of Service (QoS) con-
straints as contracted in service level agreements (SLAs).

vii



Firstly, we model the load distribution among member DCs of a multi-site In-
ternet service. The use of green energy is optimized considering different fac-
tors such as (a) geographically and temporally variable electricity prices, (b)
the multitude of available energy sources to choose from at each DC, (c) the ne-
cessity to support more than one SLA, and, (d) the requirements to offer more
than one service at each DC. Various approaches are presented for solving this
problem and extensive simulations using Google’s setup in North America are
used to evaluate the presented approaches.

Secondly, we explore the area of shaving the peaks in the energy demand of
large electricity consumers, such as DCs by using a battery-based energy stor-
age system. Electrical demand of DCs is typically peaky based on the usage
cycle of their customers. Resultant peaks in the electrical demand require de-
velopment and maintenance of a costlier energy delivery mechanism, and are
often met using expensive gas or diesel generators which often have a higher
environmental impact. To shave the peak power demand, a battery can be used
which is charged during low load and is discharged during the peak loads.
Since the batteries are costly, we present a scheme to estimate the size of battery
required for any variable electrical load. The electrical load is modeled using
the concept of arrival curves from Network Calculus. Our analysis mechanism
can help determine the appropriate battery size for a given load arrival curve
to reduce the peak.

Thirdly, we present techniques to employ intra-DC scheduling to regulate the
peak power usage of each DC. The model we develop is equally applicable to
an individual server with multi-/many-core chips as well as a complete DC
with an intermix of homogeneous and heterogeneous servers. We evaluate
these approaches on single-core and multi-core chip processors and present the
results.

Overall, our work demonstrates the value of model-based design for intelligent
load distribution across DCs, storage integration, and per DC optimizations
for efficient energy management to reduce operating costs and environmental
footprint for multi-site Internet services.
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Zusammenfassung

Moderne Computersysteme werden immer komplexer. Am einen Ende des
Spektrums stehen die heutigen PCs die häufig mehrere Prozessorkerne besit-
zen, und am anderen Ende die Internet-Dienste, die aus Tausenden von Ser-
vern in verteilten Standorten bestehen, um den gewünschten Service für ih-
re Benutzer zu ermöglichen. In solch komplexen Systemen ist die Betrachtung
der Energie- bzw. Leistungsverbrauchswerte ein zunehmend wichtiger Aspekt.
Darüber hinaus hat das wachsende Umweltbewusstsein die Gesamtkomple-
xität des Problems durch Einführung neuer Variablen erhöht. In diesem Zu-
sammenhang ermöglicht es der Ansatz des modellbasierten Entwurfs (Model-
Based-Design), sich in der Analyse und Lösung solcher Probleme auf die rele-
vanten Details zu konzentrieren.

In dieser Arbeit untersuchen und analysieren wir das Model-Based-Design in
Hinblick auf Energieverbrauch und Energieeffizienz von Rechensystemen. Ob-
wohl die vorgestellten Techniken allgemein anwendbar sind, konzentrieren
wir uns auf ihre Anwendung auf groß angelegte Internet-Dienste die in den
US-amerikanischen Strommärkte tätig sind. Internet-Dienste werden im heu-
tigen ICT-Ökosystem immer beliebter. Die physikalische Infrastruktur, die sol-
che Dienste unterstützt, basiert häufig auf einer Gruppe von kooperativen Re-
chenzentren (Data Centers - DCs), die im Tandem arbeiten. Diese Rechenzen-
tren sind geographisch verteilt, um für ihre Kunden Sicherheit und angemes-
sene Antwortzeiten zu gewährleisten. Um eine große Anzahl von Kunden be-
dienen zu können, setzen Rechenzentren Hunderttausende von Servern ein.
Diese Server verbrauchen große Mengen an Energie, die traditionell durch Ver-
brennen von Kohle oder unter Verwendung anderer umweltgefährdender Me-
thoden, wie Kern- und Gaskraftwerke, gewonnen wird. Dieser große Ener-
gieverbrauch verursacht bedeutende und schnell wachsende finanzielle und
umwelttechnische Kosten. Folglich haben die Staatsregierungen rund um die
Welt begonnen, Rahmenprogramme einzuführen, um den Energieverbrauch
zu optimieren für den Schutz der lokalen und globalen Umwelt. Insbesondere
Unternehmen sind aufgefordert, den Anteil der erneuerbaren Energie (grüne
Energie) in ihrem Gesamtenergieverbrauch zu erhöhen. Jedoch auf den US-
amerikanischen Strommärkten ist die grüne Energie in der Regel teurer als die
traditionelle Energie, die aus Kohle oder Erdöl erzeugt wird.
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Wir untergliedern das Gesamtproblem in drei Teilbereiche und untersuchen
verschiedene Ansätze zur Verringerung der Umweltbelastung und Betriebs-
kosten von verteilten Internet-Diensten unter Beibehaltung der Dienstgüte (QoS),
wie in den Service Level Agreements (SLAs) vereinbart.

Zuerst modellieren wir die Lastverteilung zwischen den angeschlossenen Re-
chenzentren eines verteilten Internet-Diesntes. Die Verwendung grüner Ener-
gie wird unter Berücksichtigung verschiedener Faktoren optimiert, wie zum
Beispiel (a) geographisch und zeitlich variabler Strompreise, (b) der Anzahl
der zur Verfügung stehenden Energiequellen an jedem Rechenzentrum, (c) der
Notwendigkeit, mehr als eine SLA zu unterstützen, und (d) das Erfordernis,
mehr als einen Dienst an jedem Rechenzentrum anzubieten. Es werden ver-
schiedene Ansätze zur Lösung dieses Problems vorgestellt und umfangreiche
Simulationen des nord-amerikanischen Google-Setups verwendet, um die vor-
gestellten Ansätze zu evaluieren.

Zweitens erforschen wir die Möglichkeit der Spitzenabdeckung im Energiebe-
darf eines Rechenzentrums durch ein batteriebasiertes Energiespeichersystem.
Der Strombedarf von Rechenzentren ist aufgrund der Verwendungszyklen sei-
ner Kunden typischerweise spitzenlastig. Resultierende Spitzen im Strombedarf
erfordern (a) die Entwicklung und Aufrechterhaltung teurer Energieabgabe-
mechanismen, und werden (b) durch kostspielige Gas- oder Dieselgenerato-
ren gedeckt, die eine höhere Umweltbelastung verursachen. Um die Spitzen zu
decken, kann eine Batterie verwendet werden, die bei niedriger Last aufgela-
den und während der Spitzenlasten entladen wird. Da die Batterien teuer sind,
präsentieren wir ein System, welches die Bestimmung der optimalen Größe
der Batterie erlaubt. Die elektrische Last modellieren wir mit dem Konzept der
Arrival-Curves aus der Network Calculus. Unser Analyse-Mechanismus kann
dazu beitragen, die benötigte Batteriegröße für eine gegebene Load-Arrival-
Curve zu bestimmen, um die Spitzenabdeckung zu reduzieren.

Drittens stellen wir Techniken zur verfügen, welche ermöglichen den Spitzen-
stromverbrauch jedes Rechenzentrums zu regulieren durch ein optimiertes Sche-
duling-Verfahren. Das Modell, das wir entwickeln, ist in gleicher Weise an-
wendbar auf einen einzelnen Server mit Mehrkern-/Vielkern-Prozessoren so-
wie auf ein komplettes Rechenzentrum mit homogenen und heterogenen Grup-
pen von Servern. Wir bewerten diese Ansätze auf Einzel- sowie Mehrkernpro-
zessoren und präsentieren die Ergebnisse.

Insgesamt zeigt unsere Arbeit den Wert des modellbasierten Entwurfs für eine
intelligente Lastverteilung auf Rechenzentren, Batterie-Integration und Opti-
mierungen der Rechenzentren für ein effizientes Energie-Management im Hin-
blick auf die Senkung der Betriebskosten und der Umweltbelastung für verteil-
te Internet-Dienste.
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1 Introduction

Over the past few decades, computing systems have grown increasingly com-
plex. This holds true for both the processing chips and the compute architecture
that surrounds them. Increasing internal complexity can be seen in the preva-
lence of multi-core processing chips with multiple levels of memory caches
and multistage instruction pipelines. Analogously, the increasing complex-
ity of the external architecture is reflected in the diversity of applications for
which computers are now used. On one end of the spectrum are resource- and
energy-constrained embedded devices such as nodes in a wireless sensor net-
work, while on the other end, there are Internet services supporting millions
of users through geographically distributed, collaborative data centers, each
comprising of thousands of individual servers. The complexity of such sys-
tems makes them opaque to the users, forcing them to trust the system blindly.
Similar hurdles are faced by designers also, who often have to resort to intu-
ition and expert-opinion rather than real data when designing and optimizing
such systems. In this context, attempts to optimize useful aspects of such com-
plex systems can benefit from structured methods that allow designers to focus
on essential attributes by abstracting out the irrelevant details. These essential
attributes and their interplay constitute a model of a system.

Models can be of different types, depending on the kind of information they
contain, the level of formality they use, how they are represented, and the level
of abstraction. An important design choice is to select the most appropriate
model for the current goal.

In this dissertation, we develop model-based design and analysis techniques to
address the efficiency of large-scale computing systems. In particular, we focus
on aspects, such as environmental impact, operating costs and temperature-
related issues. Examples of large-scale computing systems are multi data center
based Internet services offered by Google, Amazon, Microsoft and others.

Due to the geographically distributed architecture of such services, their con-
stituent DCs often fall into service areas of different electricity markets. The
electricity markets belonging to different regions show great variance among
them, due to factors such as fuel availability, weather patterns and local leg-
islation, among others. To keep the problem tractable, we use the data and
trends from electricity markets of only one country, i.e., the United States. The
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1 Introduction

techniques we develop and present in this thesis are, however, not limited to
Internet services only and are more generally applicable. The other possible
areas of application are smart grids and real-time systems, among others.

In this chapter, we motivate our work by discussing the energy needs and re-
sulting environmental impact that multi data center based Internet services are
creating globally. After this, we present a short overview of the techniques
we developed to tackle these issues. Last, we document our contributions and
present an overview of the entire work.

1.1 Motivation

Since the Industrial Revolution, the amount of green house gases (GHG) emit-
ted annually due to fuel combustion has increased exponentially as shown in
Figure 1.1. Compared to the pre-industrial era estimate of 280 ppm, the con-
centration of CO2 in 2017 stood at 408 ppm, i.e., around 45% higher, with an
average growth of 2 ppm/year in the last decade [76].

The negative effects of global warming on the environment are gradually be-
ing realized and awareness of the need to reduce GHG emissions is increas-
ing. The trend can be seen in the new legislation and recommendations by
governmental agencies all over the world [148, 141, 147]. Recently, to this ef-
fect, United Nations Framework Convention on Climate Change (UNFCCC)
organized a conference in Paris with the aim of “... stabilization of greenhouse
gas concentrations in the atmosphere at a level that would prevent dangerous
anthropogenic interference with the climate system.” [147]. UNFCCC boasts
almost universal membership with 195 nations signatory to the convention.
However, growing world energy demand is still playing a key role in the up-
ward trend in GHG emissions, because it is satisfied chiefly by burning fossil
fuels. It has been estimated that around three fourth of the global man-made
(anthropogenic) GHG emissions are a result of burning fossil fuel, primarily
coal, to produce electricity and heat [76], as shown in Figure 1.2.

One of the prime consumers of electricity is the so-called information and com-
munication technology (ICT) sector [78, 83, 155]. Specifically, it is estimated
that ICT products and services accounted for 4.6% of the global electricity con-
sumption in 2012 [155]. This share increased from an estimated 3.9% in 2007,
notwithstanding the fact that the global economy was going through a reces-
sion during this period.

Within the ICT sector, the major impact is generated by data centers. It has been
reported that in 2005 in the United States, data centers consumed 56 TWhs. This
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Figure 1.1: Trend in CO2 emissions
from fossil fuel combus-
tion [19, 90]

Figure 1.2: Global shares of anthro-
pogenic GHG [76]

number increased by 53% to 85.6 TWhs in 2010, representing about 2.2% of to-
tal U.S. electricity use [83]. A similar trend is seen all over the world, as seen
in Figure 1.3. Globally, the electricity usage for data centers has been increas-
ing with a compounded annual growth rate of 4.4% with no signs of reces-
sion. Moreover, the amount of energy consumed for cooling down the servers
is comparable to the energy consumed for actual computing, both categories
shown as infrastructure and servers in Figure 1.3, respectively.

Owing to their massive electricity usage, data centers cause a significant en-
vironmental impact. For instance, for each of four and a half million regis-
tered users of Second Life, the average avatar consumes 1,752 kWh per year,
or about two-thirds that of an actual person, globally averaged [28]. This, in
terms of CO2 emissions, is equivalent to 1.17 tonnes, i.e., the same as driving
an average-size car for around 5500 km [28]. Similarly, each search at Google is
estimated to produce about 0.2g of CO2 [71]. Combining this with the estima-
tion of the one billion daily search requests processed by Google [101] results in
an estimate of 200 tons of GHG emissions due to Google searches everyday.

In view of these facts, it is imperative that the ICT sector, in general, and Inter-
net services, in particular, strive to reduce their environmental footprint. In this
dissertation we employ model-based design to develop schemes with the po-
tential to efficiently minimize the environmental impact and reduce operating
costs by regulating energy usage for the computing systems of interest. In the
following sections we present a short overview of the developed approaches.
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Figure 1.3: Worldwide electricity consumption breakdown for data cen-
ters [155]

1.2 Renewable Energy Utilization

One way to control GHG emissions is to use electricity obtained through re-
newable sources like wind and the sun, instead of consuming fossil fuels like
coal, petroleum and natural gas. Renewable sources provide a virtually lim-
itless clean supply of energy without releasing any GHG in the atmosphere.
The “green” energy generation facilities are often co-located at sites where the
energy is to be consumed and the energy that is produced is directly used to
power the devices [8]. However, these “green” sources suffer from an inherent
unreliability due to their dependence on the weather. For instance, the peak
in production of the electricity - noon, in case of solar panels - might not cor-
respond to the peak in consumption - 08:00 AM to 12:00 PM on weekdays for
Internet services. Similarly, the peaks in the production of wind and water
based renewable sources does not necessarily occur at the same time or with
the same frequency as peaks in electricity demand. This can be overcome by
over-designing the green energy setup such that, even at minimum produc-
tion, it exceeds the peaks in demand. Considering most on-site green energy
generation is through solar panels which have almost no output at cloudy days,
this approach, however, can be overly expensive. The other way is to provide
a back-up fossil fuel-based power (brown power) infrastructure to fall back
upon. Because of this, the amortized cost of producing a unit of green energy
is more than that of brown energy [163].
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Table 1.1: Annual financial and environmental costs of Internet Services [127].

Company Servers Electricity Cost CO2 (Tons)
eBay 16K 0.6× 105 MWh $3.7M 0.43× 107

Akamai 40K 1.7× 105 MWh $10M 1.2× 107

Rackspace 50K 2.0× 105 MWh $12M 1.4× 107

Microsoft > 200K > 6× 105 MWh >$36M 4.3× 107

Google > 500K > 6.3× 105 MWh >$38M 4.5× 107

An alternative approach followed by many data center operators in the U.S. is
to outsource green energy production to specialist third parties, such as a wind
farm operator [44]. The electricity produced in such a facility is contributed to
the grid and sold at the same price as brown energy. However, for every unit of
energy contributed, they are allowed to sell instruments, such as renewable en-
ergy credits (RECs). Other businesses must buy these RECs to show the reduc-
tion of their environmental impact. RECs are an additional regulatory source
of income for renewable energy producers which offset higher production costs
of renewable energy to bring it at par with brown energy [58]. In comparison,
businesses in European Union have to buy carbon credits equivalent to their
emissions thereby producing a regulatory addition in the price of brown en-
ergy and making it less desirable, as discussed further in Section 2.2.7.

The fundamental issue driving the regulation is that renewable energy is costlier
to produce than brown energy. According to United States market survey, the
cost of production of wind energy is expected to be in the range of 7 to 20 cents
per kWh for the next 5 years. Similarly, solar energy per kWh is expected to
range from 12 to 24 cents, depending upon the method of production. In com-
parison, brown energy typically costs 1∼15 cents per kWh [153, 132]. Here, we
consider only the cost of production, and not the cost of delivering the energy
to the end consumer, as we assume delivery expenses will add a constant offset
on top of production costs, irrespective of the generation method. We also ne-
glect the tax levied on brown energy production, as it imposed on production
plants that are commissioned after 2022.

In addition to the environmental impact of massive energy consumption, data
centers are faced with high electricity bills for their energy usage. Table 1.1
presents estimated costs and environmental impacts of some of the major In-
ternet services. Reducing the environmental footprint also involves expenses
in addition to normal operating costs. In view of this, the decision about when
and how much green energy to buy is important and has potential to save op-
erating costs, as well as reducing the environmental impact.
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Moreover, typical Internet services are provided through a group of data cen-
ters which are distributed geographically. The reasons for this include natural
business distribution, the need for high service availability and disaster tol-
erance, the sheer size of their computational infrastructure, and/or the desire
to provide uniform access times to the infrastructure from widely-distributed
client sites. Being geographically dispersed provides extra degrees of freedom
for cost, as well as environmental impact optimization, by intelligently dis-
tributing the incoming requests among the member data centers. In this dis-
sertation we explore these degrees of freedom to reduce brown energy usage
while remaining within budget constraints.

1.3 Battery Inclusion for Demand Side
Management

As seen in Table 1.1, the data centers have high electricity usage and, conse-
quently, high electricity bills. The cost of electricity depends not only on the
amount of electricity a customer uses, but also the time of day at which it is
used as well as how quickly it is used. Demand for electricity is quite variable
depending on the office-home cycle of the general population and seasonal cy-
cles around the year, but varying the production of electricity on short notice
can be expensive. The trends in the price of electricity, like other commodities,
follow the dynamics of supply and demand; i.e., the price increases during the
periods of high demand and decreases during the non-peak hours.

There are two main drawbacks of uneven demand in electricity. First, the sup-
ply must be provisioned for the worst-case power loads which might occur
only occasionally. Failing to ensure this might make the generation system
unstable, resulting in a catastrophic failure for the whole system. Therefore,
the supply network as well as the generation setup must be over-provisioned.
Consequently, additional costs are incurred which must be borne by the end
consumers of electricity, mostly irrespective of their individual contribution in
the peak loading.

Second, the peaks in demand are often met through those generators that can be
powered up quickly. These consume natural gas or diesel as fuel, typically. Al-
though they have a short response time, these back-up generators have a higher
environmental impact because they are not highly efficient. Clearly, to max-
imize the return on investment, electricity producers use their most efficient
generators for the base demand, and then, as the peak in demand occurs, the
left-over, less efficient generators are looped in. Therefore, the runtime of the
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inefficient generators increases with increasing “peakiness” in demand. Ran-
domness in electricity demand results in higher production costs, as well as
higher environmental impact [121, 143].

To make the demand more uniform, power generation companies have in-
troduced tariffs for bigger consumers that penalize peaks and encourage a
“flatter” demand. This approach is called “demand side management” (DSM)
[121]. In this model, incentives are provided to shape and/or shift the demand.
For instance, the actual electricity bill not only depends on how much energy
was consumed, but also how quickly it was consumed. If the demands are
(d1, d2, ..., dn), then the total bill is of the form c1 ·

∑
i di + c2 ·maxi{di}. Peaks

are often measured in the time scale of 15 minutes to 1 hour. The peak penalty
is also referred to as demand charge, and it can be more than 300 times the reg-
ular cost of energy [6, 49]. Consequently, the demand charge often exceeds the
amount of all other charges combined [6].

In this dissertation we model this problem in its basic form for peak minimiza-
tion using an energy storage element, such as a battery. We employ the frame-
work of network calculus to derive the relationship among battery size and the
maximum possible peak.

1.4 Intra Data Center Optimizations

Internet services are often provided by a group of geographically distributed
data centers. Optimizations performed within a data center, such as decreasing
power consumption or demand side management, can translate into a reduc-
tion of overall environmental impact, or financial savings, or both. For such
optimizations, the internal architecture of the data center plays an important
role.

Internally, each data center consists of thousands of servers. These servers can
either be heterogeneous or homogeneous in nature. For a given workload, it
can be decided for each server when and for how long to turn it on - dynamic
power management (DPM) - or, a finer grained control through selecting an
operating frequency for each server, among a set of discrete possible operating
frequencies, i.e., dynamic voltage frequency scaling (DVFS). Given thousands
of servers, selecting an optimal configuration for each is a difficult combinato-
rial problem. Moreover, workloads that data centers process are often bound by
service level agreements (SLAs) that must be fulfilled. SLAs define contracted
boundaries of time that must be respected for processing each request.

In essence, this problem is similar to another well-known problem of dark sil-
icon [50, 112]. The dark silicon problem is described as follows. Processing

7



1 Introduction

chips are accumulating an ever-increasing amount of logic units (transistors) as
per Moore’s law. In contrast, neither on-chip power supply networks nor heat
dissipation solutions are keeping up. Consequently, there will be more logic
units on processing chips than can be safely turned on, simultaneously. This
necessitates scheduling the use of logic units that takes these power-related
constraints into consideration.. Considering a real-time workload for a hetero-
geneous many-core chip of dark silicon era, this problem is analogous to the
one described above in the domain of a data center with thousands of hetero-
geneous servers in the presence of an SLA.

In our work, we model the second variant of the problem, i.e., scheduling a
real-time workload for a many-core chip in dark silicon era, such that the peak
power is minimized.

1.5 Thesis Contribution

In the scope of this dissertation, the above key concerns are addressed and we
make the following contributions.

Optimizing Multiple Data Center Based Internet Services

We focus on decreasing the environmental impact and operating costs of com-
plex computing systems. One of the application areas is distributed Internet
services. In this regard, we present the following.

• We show that Internet services that are provided by multiple geographi-
cally distributed data centers, can exploit many degrees of freedom for
cost savings and environmental impact reduction. Such opportunities
stem from differences in electricity prices, time zones, climates, and ac-
cess to green energy.

• We model the problem of maximizing green energy usage within a com-
plete Internet service (such as Google or iTunes) without exceeding the
allocated budget, as an optimization problem. For this multifaceted prob-
lem, we develop a holistic model that considers all important factors, such
as energy consumption from the infrastructure for networking, computa-
tion, and cooling devices, latencies due to geographical distance, differ-
ing SLAs, time varying prices of electricity, varying weather conditions
affecting green energy availability, and others as explained in detail in
Chapter 2.
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• As a solution to the above modeled problem, we present software op-
timization strategies to dynamically decide the distribution of incoming
requests at the central hub of an Internet service provider among the con-
stituent data centers.

• We evaluate our optimization strategies extensively with real-world work-
load traces from Wikipedia [150] and time varying electricity prices from
different regions in the United States, obtained from NYISO [117].

Utilizing Energy Storage to Suppress Peak in Electrical Demand

Environmental impact can be reduced by making electrical demand more even
over time. This can be achieved by introducing a storage element, such as a bat-
tery buffer, in the system. Here, an important question arises: when to store the
energy and when to consume it. A false decision about charging and discharg-
ing in the presence of a battery buffer can be more damaging than a system
without a battery buffer. In this regard, our contributions are as follows.

• We model the electrical loads by adopting the concept of arrival curves
in Network Calculus [89]. That is, the electrical loads for the given time
interval lengths are upper bounded by the given arrival curve.

• As a step toward peak minimization, we develop a mathematical tech-
nique to determine the maximum possible peak that can occur in a system
whose control algorithm and battery state are known. The control algo-
rithm decides when to charge and when to discharge the battery. Our
analysis technique is limited only to monotonic controllers, as defined
later in Chapter 4.

• We perform simulations to verify the efficacy of our analysis technique.
For these, we use actual electrical load profiles and pricing data from the
New York region of the United States [117].

• As an application of the developed technique, we present a case study
of a large electricity consumer and determine the amount of savings that
are potentially achievable if an appropriately-sized battery buffer is em-
ployed to flatten the peaks in demand.

Power Management Within Data Centers

As part of optimizations that can be helpful for power management within each
individual data center, we model the similar problem of peak power reduction
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in the scope of many-core processing chips of the dark silicon era. Guarantee-
ing timing behavior of real-time tasks on such processing chips is non-trivial
because of the existence of performance throttling mechanisms that step in au-
tomatically once the processing chip exceeds the temperature limits. Thus a
way is needed to partition and schedule the tasks on processing cores in such
a way that timing criteria are met and power consumption remains within the
limit. This problem is, in fact, a general form of scheduling tasks (such as indi-
vidual jobs of MapReduce [42]) in a data center such that a peak in the power
consumption of the whole data center is minimized. In the scope of this dis-
sertation, we concentrate on the general form of the problem, for which our
contributions are as follows.

• We develop a peak power management scheme for many-core processors
that execute task sets with real-time requirements. We develop a tech-
nique of introducing coordinated sleep cycles in the schedule of each core
to minimize peak power consumption, without violating the hard real-
time requirements of the tasks.

• In addition to the existing utilization-based schedulability tests, we in-
troduce the concept of a sufficient test for schedulability, considering the
peak power consumption of a task set with real-time requirements.

• We analyze and evaluate our techniques using power traces collected
from the 48-core SCC [46] platform and gem5 architecture simulator in
combination with McPAT [96].

1.6 Thesis Structure and Overview

The remainder of this thesis is organized into five chapters, each dedicated to
its own facet of power management and optimization. First, Chapter 2 presents
background knowledge that can help in following the topics discussed in the
thesis. These include information about DCs, generic architecture of Internet
services, energy market dynamics, energy storage systems and SLAs, among
others. In Chapter 2, we also include a review of related literature.

In Chapter 3, we explore different aspects of the problem of reducing the envi-
ronmental footprint of Internet services by regulating their energy usage. We
model this problem as an optimization problem and develop algorithms to ef-
ficiently solve it. We present a comparative analysis of developed techniques
based on a simulation of Google’s setup in the United States. The contents of
this chapter are developed upon our work as presented in [111]. We extend our
previous work by adding more details about our assumptions and a discussion
of the complexity of the problem.
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In Chapter 4, we model the problem of minimizing the peak in electrical de-
mand of a facility. We present an analysis technique to estimate the highest
peak that can possibly occur and evaluate it using real-world data. We also
present a case study in this chapter to highlight the benefits of developed tech-
nique. The contents of this chapter build upon our work in [110], where we
simplify the system model without losing generality, improve earlier proofs,
and extend the evaluation.

Chapter 5 presents our work on peak power management in the scope of many-
core processors to be able to execute real-time tasks. We present and analyze
algorithms for peak power minimization for heterogeneous and homogeneous
tasks and processing cores. Evaluations are conducted on the 48-core SCC plat-
form, among others. The contents of this chapter are based on our work as
presented in [112]. Here we extend this to include a novel application of our
results to reduce the power consumption on DC level.

In Chapter 6, we present a summary of our contributions in this dissertation.
Finally, we provide an outlook into the possible directions for future work.
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2 Background and Related Work

This chapter provides a brief overview about the background information re-
garding the important aspects that impact power and energy efficiency in data
centers. Also presented is the overview of related work from the domain of en-
ergy efficiency and environmental footprint optimization for the Internet ser-
vices.

2.1 Data Centers

A data center is a facility that is primarily responsible for storing, managing,
processing and disseminating important data necessary for business operations
of an organization. This facility houses an organization’s 1) IT equipment, such
as, servers, communication systems and storage devices; and 2) supporting in-
frastructure, such as, cooling system and backup power generators. From uni-
versities to e-commerce and from search engines to social networks, the data
centers have become critical to continuity of daily operations of modern orga-
nizations. Consequently, the security and availability of data centers is consid-
ered very crucial. In this section, we present the relevant information about
size, availability and power usage of a DC.

2.1.1 Size

Data centers vary greatly in size and services that they provide. A standard has
been developed to measure the size and density of data centers at the scale of
mini to mega [7] as shown in Table 2.1. Typically, small scale data centers are
employed by small enterprises that may use these as email and web servers.
Quite often, these data centers do not have any specialized infrastructure for
cooling or power supply. In the middle of the range, there are data centers that
have servers, storage devices and other hardware mounted into racks which
are arranged into aisles, as shown in Figure 2.1. This arrangement is primarily
followed to facilitate the containment of hot and cold air. These data centers
have detailed designs for power supply and cooling, and, proportionate signif-
icant investment for such infrastructure. Often, to avail the economy of scale,
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Figure 2.1: Server racks in Facebook data center in Lulea, Sweden.

Table 2.1: Data center standardized sizes. The focus of this dissertation is on
small to large-scale DCs. [7]

Size metric Rack yield Compute space (m2)
Mega ≥ 9,001 ≥ 22,501
Massive 3,001–9,000 7,501–22,500
Large 801–3,000 2,001–7,500
Medium 201–800 501–2,000
Small 11–200 26–500
Mini 1–10 1–25

businesses share these facilities in the so-called co-location centers or carrier
hotels. Lastly, at the top of the range are data centers with hundreds of thou-
sands of servers with massive power supply and cooling infrastructures. These
data centers are typically run by large Internet services such as Google, Ama-
zon and Facebook. Mostly, these have homogeneous hardware and software.
In the United States, most of the servers are housed in data centers with the
floor area of around 25 thousand m2 with the current trend of mergers and
acquisitions resulting in increasing sizes [22]. As per the standard categoriza-
tion [7], this floor area corresponds to the category of large scale data centers
which form the main segment of the market and hence, the prime target for the
power optimization. In this dissertation, we focus mainly on large-scale data
centers as per scale shown in Table 2.1, although the presented techniques are
applicable more generally.
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Table 2.2: Data center availability: Tier classifications to consistently describe
site-level infrastructure required to sustain data center operations. In
tier IV, Class A continuous cooling requires backup power for the
entire cooling plant. Source: [146]

Tier I Tier II Tier III Tier IV
Active capacity
components to
support the IT load

N N+1 N+1
N

After any
failure

Distribution paths 1 1
1 Active

and
1 Alternate

2 Simultane-
ously
active

Concurrently
maintainable No No Yes Yes

Fault tolerance No No No Yes
Compartmentaliza-
tion No No No Yes

Continuous cooling
Load

density
dependent

Load
density

dependent

Load
density

dependent
Class A

Maximum allowed
annual downtime
(mins) 1729 1361 95 26

2.1.2 Availability

An important metric in building and operating a data center is its availability.
Downtime caused by a data center can seriously effect business viability of
its customers. Statistics, according to the U.S. National Archives and Records
Administration (NARA), show that 93% of companies losing their data center
for 10 days or more following a major breakdown have gone bankrupt during
the following year [68, p.9].

A 4-tier classification system has been developed to classify the data centers
according to their availability [146]. Tier I data centers normally have a sin-
gle non-redundant power supply and cooling distribution path to serve the
servers. Tier II specification requires the data center to have one extra redun-
dancy for every component. This improves the availability to 99.741%, in com-
parison to Tier I’s 99.671%. Specifications for Tier III mandates multiple inde-
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Figure 2.2: Typical breakdown of energy consumption within a data center with
PUE of 2.0 [13].

pendent power and cooling paths to IT equipment, though only one is active.
Moreover, the ability to concurrently allow site infrastructure maintenance and
IT operation must be provided. This requires that each and every system or
component that supports IT operations, including back up power and cooling
system, must be able to be taken offline for scheduled maintenance without
impact to the IT environment. The availability for a tier III system has to be
guaranteed to be at least 99.982%. Tier IV requires that, in addition to IT equip-
ment, all cooling equipment is powered by multiple independent paths. Fault
tolerant site infrastructure is also required for electrical power storage and dis-
tribution facilities. This results in a typical 99.995% availability.

Most commercial data centers fall between Tier III and Tier IV as a trade-off
between cost and reliability. The tier based classification system is summarized
in Table 2.2.

2.1.3 Power Usage

The power efficiency of a data center is mostly commonly measured through a
metric known as power usage effectiveness (PUE). It is defined as the ratio of
the total power entering facility to the power being consumed by the comput-
ing devices. I.e.,

PUE =
Total Facility Energy
IT Equipment Energy

(2.1)

The smaller the value of PUE, the better it is, with the ideal case of 1. Accord-
ing to a recent survey, [74], the industry wide average PUE value is around
1.7. This has been improving from 2.5 in 2007 to 1.8 in 2011. After 2011, it

16



2.1 Data Centers

has not followed any significant trend and remained almost stable. Further
improvements in this case will require significant investment and effort, with
increasingly diminishing returns. However, it has been reported that Google
has achieved a PUE of 1.14 combined across all its data centers [79]. Similar
figures have been attributed to Microsoft and Facebook [69]. These numbers
are significantly below the industry average owing to state-of-the-art practices,
massive investment in infrastructure and relatively new facilities the big com-
panies can afford. However, such excellent efficiency is still confined to a small
set of data centers, and most of the small data centers have not improved much
stabilizing at around 1.7 [13].

A number of factors contribute toward the non-IT energy consumption in data
centers. Figure 2.2 provides an overview for this. As shown, cooling con-
tributes the largest fraction, amounting to around 25% of the overall power
used [13]. The next biggest contribution is caused by the fans used to regu-
late the air movement, consuming around 12% of the power used by the IT
equipment. The other sources include the UPS units, power distribution units,
humidifiers and the lighting.

In literature many schemes have been proposed to improve the PUE [115, 62,
122] of data centers. Since cooling the servers is the most costly operation in
terms of energy usage, it offers the maximum returns for energy optimizations.
The state-of-the-art in energy minimization for cooling is as follows. A strict
segregation is maintained between the hot air exhausted by the servers and
the cold air fed to the servers. For this, not only are the aisles carefully sealed,
the internals of server carrying racks are specially designed to allow a single
directional flow of air. Secondly, maintaining temperature of the input air at
25–30◦C instead of the usual 18–20◦C make it much easier to cool the data cen-
ter efficiently. No evidence has been found of higher component failure due to
the higher operating temperature of the IT equipment [13, p.89]. Similarly, for
water based cooling systems high efficiency values have been reported though
it might need specialized infrastructure not realizable through common off-
shelf-components [100]. For both water based and air based cooling systems,
low external temperatures can be leveraged to avoid the usage of chiller in the
cooling system. This can lead to an energy savings of up to 75% [82, p.82] for
energy used in cooling.

In summary, it is not only the computing equipment that consumes the energy
in a DC. Emphasis must also be given to other factors that contribute toward
this, and such factors must be quantified and catered for in a scheme aimed to
optimize energy in DCs.
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2.2 Electricity Market Dynamics

The electrical grid is a complex and huge system and has often been called
the most complex machine ever built by humans. Typically, it consists of three
subsystems. First one, the so-called primary system, comprises of a multitude
of synchronized power generation plants, hundreds of kilometers of transmis-
sion lines and hundreds of thousands of distribution points. Second one, the
so-called secondary system, consists of automatic control which is responsible
for secure, stable and economic operation of the power system. Thirdly, the
market based system for trading. A stable operation of electrical grid requires
smooth interplay of all these components. Moreover, as the electricity is seen
as one of the basic necessities of modern life, there is an expectation of high
reliability and cost effectiveness associated with the electrical grid. Efforts to
achieve these expectations increase the complexity of the system further. In
this section, we present an overview of the relevant details of the electrical grid
that are necessary to follow the techniques presented later in this dissertation.
For an extensive discussion of the electrical grid, the reader is referred to [108,
136, 140].

2.2.1 Heterogeneity

All electricity generation and supply networks chiefly consist of the same three
subcomponents as mentioned earlier, however, the economic and trading part
of the system has been evolving continuously for over a century. Today, from
a government-operated non-profit utility model to an open-for-all regulated
market, electricity markets in different regions of the world exist in many differ-
ent flavors. The differences originate out of a multitude of factors, such as, ap-
plicable legislation, governmental regulation, investors’ interest, fuel availabil-
ity and legacy factors. Growing share of non-reliable, increasingly distributed,
renewable energy sources in the total power mix and different weather patterns
add to the overall complexity as well.

To keep the problems tackled in this dissertation tractable in presence of all the
mentioned factors, we limit our focus mainly to electricity markets operating
in the United States. The motivation for this is as follows. As U.S. electricity
markets fall under the jurisdiction of a single regulator, i.e., U.S. Federal En-
ergy Regulatory Commission, they are more homogenized from the legal and
operational point of views as compared to their European counterparts. On the
other hand, they are quite distributed geographically as they include four dis-
tinct time-zones of Northern American continent. This makes them an easier
target for optimization schemes that exploit time-varying loads and costs in the
electrical grid.
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For the rest of the dissertation, any unqualified statement about electricity mar-
kets is to be assumed to pertain to U.S. electricity markets.

2.2.2 Competitive Market

Electricity markets can be divided into two main segments: retail and whole-
sale. Retail markets involve sales of electricity to consumers, whereas, whole-
sale markets typically involve the sales of electricity among electric utilities and
electricity traders before it is eventually sold to consumers. Much of these two
markets have evolved to be competitive where prices reflect the factors driving
supply and demand.

The wholesale market is governed by two different business models; cost-based
pricing model and market-based pricing model. The cost-based pricing model
is more orthodox and legacy oriented. As the electricity emerged as a com-
modity and the user base started growing, the electricity providers took the
form of nonprofit municipal utilities. Such setups are mostly vertically inte-
grated, in that, they are responsible for all the phases of electricity delivery,
i.e., production, transmission and distribution. The selling price of electricity
in such a setup is determined by the cost of production and operations, hence
the cost-based pricing model. Another variant of this setup is that of a regu-
lated monopoly. In this case, private investment is contracted for infrastruc-
ture development such as a new power generation plant or a transmission line.
Cost-based rates are specified by the regulator to insure recovery of the costs
associated with providing service as well as a fair return on initial investment.
These are paid through increased tariff for the end customers.

In the market-based pricing model, market forces, under regulation of a public
body, determine the price of electricity. The public regulation body, i.e., U.S.
Federal Energy Regulatory Commission (FERC), sets the legal framework and
appoints an independent operator for each regional market. These regional
transmission operators (RTOs) are non-profit, regulator-approved entities that
operate the transmission system and provide a trading platform with open and
equal access to all eligible participants (in Europe, the regulatory body is called
Agency for the Cooperation of Energy Regulators (ACER) and market opera-
tors are called transmission system operators–TSOs). The main responsibilities
of transmission operators include 1) matching the demand and supply of elec-
tricity through market based mechanisms in their respective regions, 2) operat-
ing a competitive nondiscriminatory market where energy producers can offer
their production and the load serving entities (LSEs) can buy and reserve the
transmission network for their customers, and, 3) planning and insuring ade-
quate generation for the future requirements considering relevant consumption
trends.
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clearing price.

The LSEs and generation units can independently enter into long term con-
tracts with each other for the sale of electricity ranging up to years in advance.
Other than this, the trading of electricity on the market occurs mainly in two
phases; day-ahead unit commitment, or planning for the next day’s energy dis-
patch, and economic dispatch, or real-time dispatch of the system. In the unit
commitment stage, the RTOs typically decide a detailed schedule for electric-
ity generators for each hour of the next 24-hour period. On the basis of this
short term trading commitment, the generating units plan their operations a
priori as they often need several hours lead time before they can be brought
online. Also, other factors, such as physical characteristics of the generating
units and weather forecast, are taken into account to guarantee that dispatch
can meet the load reliably. In the second stage, the operators must decide in
real-time the level at which each available resource from the unit commitment
stage should be operated, given actual load and grid conditions, so that overall
production costs are minimized. Actual conditions can vary from those forecast
in the day-ahead commitment, and hence operators must adjust the dispatch
accordingly. The real-time or spot market is much more volatile than the day-
ahead market.

The operators decide real-time dispatch as per a supply curve which lists all
generating units’ bids of price at which they are willing to sell the energy as
well as the maximum amount of energy they can sell. Sorting these bids from
lower to higher and adding them together produces the mentioned supply
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curve (an example is presented later in Figure 2.6). Likewise, each LSE bids
a volume range for a price they are willing to pay. The market clearing price
is where the supply and demand curves cross. In other words, starting at the
lowest price, the bids from generating units are matched to buyers until all de-
mand bids are covered. The last generator bid accepted sets the market clearing
price. This process is explained in Figure 2.3. In contrast to pay-as-you-bid sys-
tem, a single clearing price system encourages price benefits for end customers.
Moreover, because the last increment of demand set the clearing price, an ex-
plicit price signal to conserve electricity is established. For certain customers
who can reduce their demand, a price incentive can be transparently seen.

As discussed, in a market based system, the supply and demand of electricity
in a market decide the price of electricity at any given time. The demand for
electricity is heavily influenced by the time of day, weather and other such lo-
cal phenomena. This results in spatial and temporal variance in the price of
electricity. For instance, Figure 2.4 shows the price variability in three cities
in North America which lie in different time zones —New York, NY in East-
ern Standard Time (EST), Oak Ridge, TN in Central Standard Time (CST) and
Los Angeles, CA in Pacific Standard Time (PST). These price variations can be
exploited as we discuss later in Chapter 3.

2.2.3 Cost of Energy

The cost of electricity that the end consumers pay, is dependent upon the tar-
iff under which the electricity is sold. A number of factors affect the cost of
electricity in an offered tariff, such as, the whole-sale price of electricity in the
market, applicable taxation, RTOs’ fees, amount of energy and power needed,
among others. Typical retail tariffs for the sale of electricity can be divided into
two main categories; static and dynamic pricing tariffs.

Static pricing tariffs are those under which the price of energy has been fixed
a priori. Most common among these is the flat tariff commonly offered to resi-
dential consumers. Under this tariff, every unit of energy (kWh) costs the same
throughout the budgeting period, e.g. a year, except for the periodic increment
to adjust for the inflation. A variant of this tariff is time-of-use pricing tariff
(TOU). In TOU, the cost of electricity varies depending upon the time at which
the electricity is used. For example, there are two distinct prices of electricity,
one applicable from 9 am to 5 pm of weekdays, and one for all other times. The
price for higher load period is set higher to encourage the consumers to shift
their load to periods of lower demand. Although, more and more utilities are
shifting toward TOU pricing from the older flat pricing model, this simplistic
scheme fails to accurately reflect the actual situation of supply and demand in
the market, resulting in an economic inefficiency.
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time line is shown according to Eastern Standard Time (EST). Data
sourced from [27, 117, 118].

Another attempt toward resolving this inefficiency, without necessitating a ma-
jor infrastructure upgrade in metering, has been the introduction of, now ubiq-
uitously prevalent, demand charge. Here the users are charged for the peak
power consumption (kW), in addition to the total energy consumption (kWh).
For example, see currently effective tariffs in three regions around California: [34,
134, 139]. The demand charge can be a substantial part of the overall electricity
bill; cases where more than 50% of the overall cost is due to the peak power sur-
charge are not uncommon [6, 49, 59]. Demand charge is typically only levied
on non-residential customers.

The other category is that of dynamic pricing tariffs. In these, the price of elec-
tricity is not fixed and can vary significantly depending upon the demand. For
example, the price of electricity during hours of peak demand, such as after-
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noons in summer months, might be ten times more than the price during hours
of low demand, such as early mornings. The peak timings also shift monthly
and seasonally. Motivated by these price variations, large consumers of elec-
tricity (for example, industrial-scale consumers) try to schedule their workload
intelligently according to the expected price of electricity. This might lead to
substantial monetary gains. Under these tariffs, the market volatility is passed
fully to the consumers of electricity. The end customers pay the same price as
dictated by day-ahead or real-time electricity market [127] plus an offset for fac-
tors such as taxation, delivery etc. Mostly large data centers buy energy under
contracts that fall into this category. However, in some markets such tariffs also
being offered to the residential customers [36, 125].

2.2.4 Demand Response

Generally, in the electricity market, the total load on the grid at any instant,
is considered to be inelastic, that means, it must be met at all times or else
the stability of the grid might be jeopardized. Also, storing the electricity in
any appreciable level at the scale of the grid is still not possible. This results
in in-elasticity in demand. Such demand pattern is disruptive for the normal
workings of an open market because increase in the price of commodity can
not be compensated through decreased demand as shown in Figure 2.5. Con-
sequently, the price of electricity rises very high at the time of peak usage. Pro-
ducing even a small elasticity in demand can result in substantial cost savings.
For instance, it has been reported that a small reduction of demand by 5% could
have been resulted in a 50% price reduction during California electricity crisis
in 2000-2001 [5].

In this context, demand response (DR) is a mechanism to introduce elasticity
in the electrical demand. DR aims to alter the electricity usage by end-users
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from their normal consumption pattern in response to changes in the price of
electricity. For example, the alteration of usage patterns can result from shifting
some time-wise elastic activity either earlier or later in time, such as, delayed
activation of an airconditioning unit [35]. This might result in temporary loss
or degradation of service for the consumers. Sometimes this might not be tol-
erable for all consumers. Hence, most of the DR programs are voluntary for
end-consumers.

Different mechanisms are employed to shape the electricity demand. These can
be categorized according to the timescale they target [140, p.52]. For example,
an arguably long term DR mechanism is to make electrical devices more energy
efficient in response to rising electricity prices. The results for this action might
start appearing on timescale of years. But commonly used DR mechanisms
include time-of-use (TOU) pricing, demand charge and real-time pricing for
electricity. The effectiveness of TOU pricing and demand charge are seen on the
timescale of months, where as real-time pricing is a more short term solution.
Another method to achieve DR is by directly controlling consumer’s electrical
devices. Although it is effective for peak control, the adoption remains low due
to its intrusive nature and the infrastructure required.

DR has significant potential for cost savings through peak reduction. It has
been estimated that a 5% reduction in U.S. peak electricity demand could pro-
duce approximately $35 billion in cost savings over a 20-year period [51]. This
shows the economic potential for such a facility that can save the electricity in
time of low demand and deliver it at the peak time. For this reason, electric-
ity storage facilities, such as pumped hydro storage and battery based electrical
storage system (BESS), are attracting attention. We tackle this problem in Chap-
ter 4.

2.2.5 Environmental Penalty

Electricity generation remains one of the chief producers of environmental pol-
lution and anthropogenic GHGs. According to a recent report from Interna-
tional Energy Agency (IEA), the energy sector is responsible for two- thirds of
the total GHG emissions and 80% of CO2, globally [76]. Although the renew-
able sources are gaining market share, particularly in Europe, their share in the
United States in 2015 was 10% [152]. Similar figure has been reported on global
level [76].

The reliance on fossil fuel for electricity production is the main cause of the en-
vironmental pollution. IEA also reported that global CO2 emissions from elec-
tricity and heat almost doubled between 1990 and 2013, driven by the large in-
crease of generation from coal mainly in developing economies [76]. Although,
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the percentage share of electricity generated through fossil fuel has decreased
in these years, the absolute share has almost tripled owing to the increases in
population and GDP in the developing economies specially in Asia and South
America. It is believed the trend is likely to continue in the future as well.

Being one of the major users of electricity, ICT, in general, and data centers, in
particular, have a substantial contribution in the environmental pollution and
GHG emissions. Here we ignore the indirect contributions of ICT, for example
in optimizing the electricity production processes, and consider only its direct
contributions. According to recent studies, ICT products accounted for 4.6%
of the total annual electricity consumption where data centers have been the
fastest growing segment. Data centers use 85.6 TWhs annually in the United
States alone. This represents approximately 2.2% of the total U.S. consump-
tion [83, 155].

Moreover, the load profiles of the data centers are generally quite uneven as
they are influenced by the local weather and the service request patterns of their
customers. The change in local weather, such as ambient temperature, changes
the air conditioning requirements of the data center. For instance, this can result
in peaks in summer afternoons, perfectly coinciding with peak generated by
the population’s requirement of air conditioning. Similar scenario is repeated
in numerous situations where DCs exacerbate the problem of peakiness in the
electrical demand.

The peaks in the electrical demand from the grid cause an extra environmental
penalty, as the peaks in demand are often served through fast-acting and inef-
ficient diesel and gas generators that lack the sophisticated apparatus needed
to clean the exhaust they produce. Also, it has been estimated that diesel gen-
erators used to serve the peaks, are responsible for a substantial fraction of the
total nitrogen oxides released in the process of electricity production [162].

Peaks in the electrical demand also have another indirect effect on the environ-
ment. As the electricity prices rise during the peak times, this incurs a hefty
financial penalty on the large-scale Internet services that need to purchase the
expensive energy in this period for providing the service. Hence, they consume
the budget that could have been utilized to purchase or produce the green en-
ergy.

Analogously, an even load profile results in a two-fold return. It reduces the
environmental footprint, and, can be served more economically as compared
to an uneven load profile as the supply curve is a convex function of required
load. We analyze the problem of balancing the load profile in Chapter 4.
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Figure 2.6: Market supply curve for NYISO as of 5th May 2010. [154].

2.2.6 Renewable Sources

Electricity can be produced using sources which naturally replenish themselves
on a human timescale to negate environmental effects resulting from the burn-
ing of fossil fuels. For example, solar, wind, rain, geothermal, biomass and tidal
sources can be exploited to generate energy. Among these, the ones that are see-
ing the quickest adoption have been solar and wind. World-wide investments
into wind and solar sources of electricity have seen a substantial growth in the
last couple of decades (see Figure 2.7). In 2014, out of USD 270 billion new in-
vestments in renewable energy, USD 250 Billion were in solar and wind [105].

As more investment and research money is poured into the wind and solar
sources of renewable energy, the cost of energy production through these sources
has been decreasing. However, owing to the capital costs of establishing these
energy production facilities, the energy produced is still more expensive than
that produced by the conventional sources that consume fossil fuel. Accord-
ing to a recent report by the U.S. Energy Information Administration for power
plants entering in service in 2022, the levelized costs of energy produced by
offshore windmills and onshore are estimated to be 146.7 USD/MWh and 56.9
USD/MWh, respectively. Similarly, the levelized costs for photovoltaic based
solar energy production and thermal based solar energy production are esti-
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Figure 2.7: Worldwide investments in wind and solar energy capacities [105].

mated to be at 66.3 USD/MWh and 179.9 USD/MWh, respectively. In contrast,
the fossil fuel based energy is expected to be produced at the cost of 57–58 US-
D/MWh [153]. These estimates include the tax rebates offered and penalties
levied on different sources of electricity production due to their environmental
impact, however, local renewable energy production facilities (e.g. rooftop PV
panels) are not considered due to their small impact. Clearly, as people prefer
the green energy over the fossil fuel based energy, with the growing user base,
the capital costs will get amortized, increasing the feasibility of the green en-
ergy. In the future, we believe that the greener sources of energy will become
ever more competitive in terms of their production cost, resulting in a rich mix
of green and brown electricity options available to the end consumers to choose
from.

To gain access to renewable energy, two main approaches are followed. Some
businesses opt to build their own small-scale production facilities such as set-
ting up rooftop photo-voltaic panels. The other option is to contract a spe-
cialized electricity producer who contributes the contracted amount of green
electricity to the grid. In the case of first option, a connection to the grid is
necessary due to the intermittent nature of wind and solar sources. In the sec-
ond case, a mix of brown and green energy is bought from the grid depending
upon a number of factors such as available budget, weather conditions, energy
price etc. We tackle both these cases in context of maximizing the green energy
usage in Chapter 3. We concentrate primarily on solar and wind energy in our
analysis. However, the framework we propose is applicable to any source that
has a limit on availability and has a non-zero cost.
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Figure 2.8: Solar REC price for New Jersey [53]

2.2.7 Carbon Market

In order to curtail environmental pollution a market based scheme was de-
vised during UNFCCC meeting in 1997 at Kyoto, Japan, called Kyoto Proto-
col [148]. Under this scheme, each of the participating countries is allocated
a specified quota of carbon credits. One carbon credit or emissions permit is
considered equivalent to one metric ton of carbon dioxide (CO2) emissions.
Other names for carbon credits are Kyoto units and Certified Emission Re-
duction units (CER). Each participating government makes sure that net car-
bon emissions originating in their country do not exceed the allocated credits.
Those countries that need to emit more CO2 than the allocated credits, buy
them from others who have excess and vice versa. These trades take place on
open market basis among countries, which insures that emissions are reduced
at that place where it costs the least to optimize.

Similar schemes exist at national levels which are often called cap-and-trade
schemes. The government or a central regulatory authority allocates a limited
number of credits for each administrative region, as per the cap for that re-
gion, to discharge specific quantities of pollutants per time period. Businesses
with emissions above a certain level are mandated to hold the credits equiva-
lent to their emissions. Since the total credits are capped for each region, the
businesses that need to increase their emissions must buy credits from others
willing to sell them. Also, the cap on credit insures that these have a value. In
effect, the buyer is paying a charge for polluting, while the seller is rewarded
for having reduced emissions. The largest of such schemes is European Union
Emission Trading Scheme (EU-ETS).

U.S. being a nonparticipant in Kyoto Protocol, does not take part in the interna-
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tional emission trading. Lacking a nation-wide regulation, there are state-level
regulations in place inside U.S. that focus on the main polluter i.e., electricity
production and strive to enhance the use of renewable energy. Big consumers of
electricity are required to buy renewable energy credits (RECs) in proportion to
their electricity consumption. Renewable energy producers are allowed to sell
one REC for every MWh of energy they contribute to the grid. These credits are
traded on free market, hence their prices fluctuate on the basis of supply and
demand, similar to electricity. Figure 2.8 shows the price variability for solar
credits in New Jersey. Price of RECs can basically be seen as a surcharge that
is to be paid on top of brown energy price to make it "green". The framework
we develop to reduce the environmental footprint of data centers in Chapter 3
caters for this case implicitly.

2.3 Energy Storage System

Energy storage systems help capture the energy produced at one time to be
used at a later time. There exist many systems for energy storage mainly dif-
fering from each other in the form in which they store the energy. For example,
batteries store energy in the form of chemical energy, whereas hydro pumped
storage systems store it in the form of potential energy by pumping the water
to higher altitude. The choice of the most appropriate storage system depends
on the application’s charge and discharge ratings, the actual required energy
storage and its daily operating cycle. Other considerations include economic
and environmental issues.

For applications related to DR or peak shaving in electrical supply systems, the
most important considerations are peak durations and conversion efficiency.
Also, the terrain on which the facility is to be built plays an important role in the
choice of a storage system. Presently, world-over the most commonly used stor-
age systems are battery electrical storage systems (BESS) and pumped-storage.

In the following sections, we compare both these systems considering their fea-
sibility for peak shaving applications.

2.3.1 Pumped Storage System

A pumped storage system basically consists of two nearby water reservoirs
at different altitudes. At the off-peak time, the system consumes electricity
to pump water up to the higher reservoir, while at the peak time the reverse
happens where the flowing water moves an alternator to produce electricity.
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Worldwide, the pumped-storage hydroelectricity (PSH) scheme is the most
commonly used method for energy storage in the grid. The Electric Power
Research Institute (EPRI) reports that PSH accounts for more than 99% of grid
storage capacity globally, representing around 127,000 MW [48]. PSH reported
energy efficiency varies in practice between 70% and 80%, with claims of up to
87% [131].

Although PSH dominates the energy storage systems, traditional PSH has lim-
ited capacity for expansion. Sites that fulfill the requirements needed for such
systems, are neither easy to find, nor can they be expanded as per the growing
demand. Creating such system where and when needed involves exorbitant
financial and environmental costs, including the damages to the local flora and
fauna.

2.3.2 BESS

The second most common form of energy storage system is a battery electri-
cal storage system (BESS). In a BESS, the central component of the system is a
rechargeable battery that is used to store electrical energy in the form of chemi-
cal energy. Over the years, the capabilities of batteries have increased and lead-
acid technology is gradually being replaced by more environmental friendly
sodium-sulphur (NaS), nickel-cadmium (NiCd) techniques. Also, the former
provides better short-term power ratings and lower maintenance requirements.
An example of such systems is the battery system in Golden Valley, Fairbanks,
Alaska [57]. This system is capable of providing 27 MW for up to 15 min-
utes with an expected life time of 20 years. Installation cost of this project was
$35 million. However, the worlds biggest battery storage system is going to be
based on lithium-ion (Li-ion) technology, capable of 400 MWh, and, will replace
a gas-based ‘peaker’ plant [3]. A comparison of different battery technologies
along with their cycle efficiencies is shown in Table 2.3.

The high installation price of the battery electrical storage systems (BESS) has
hampered its adaptivity. The biggest contribution in the price of BESS comes
from the battery. However, keeping the upcoming trends about electric cars
in mind, this can potentially change. On the average, a car remains parked
for 23 hours daily. Normally, while in parked state, the electric vehicles are
connected to the grid for charging. During this time, their batteries can be used
to shave off the peaks occurring in the grid, thereby easing the load on grid
and curtailing the net payable bill [65, 80]. This development makes BESS and
associated techniques a promising aspect for the future.
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Table 2.3: Cost and efficiency of various battery systems [166, 137]

Battery Cycle Self discharge Life Capital cost
System efficiency (per day) cycles (USD/kWh)
Lead-acid 70–90% 0.1–0.3% 500–800 150–200
NiCd 70–90% 0.2–0.6% 2,000 350–1,000
Li-ion >90% 0.1–0.3% 1,000–10,000 250–1,800
NaS 87% ~20% 2,500 300–550

2.3.3 Other Technologies

Quite a number of other technologies has also been used for energy storage.
Examples include flywheel energy storage systems (FES), pressurized air stor-
age system and heated water storage. Particularly, the FES has been used in
a number of facilities around the world. It does not hold much market share
currently but has high potential due to its long life, low maintenance require-
ment, fast charging time and immunity to temperature variance. However, the
technology has still not matured [4].

2.3.4 Suitability

In order to assess the suitability of a technology for introducing the flexibility
of load shifting in the electrical grid, a number of factors need to be considered.
Important factors include the initial investment, environmental effects, conver-
sion efficiency, maximum capacity and response time among others. Pumped
hydro storage and pressurized air storage are two most commonly used meth-
ods for energy storage but they suffer from limitations as they require appro-
priate geological features which are not found commonly. Also the available
geological features decide the maximum achievable capacity. Due to this spe-
cific nature of storage facility, these can not be replicated at any site as per
requirements at hand [47, 73]. In comparison, BESS does not have any such
specific requirement for terrain and the maximum capacity can be scaled as re-
quired. Due to these advantages it is more feasible for small to medium scale
peak reduction applications such as for a single industrial unit or a data center.
However, the solution we develop in this dissertation (Chapter 4) is agnostic to
the technology used for energy storage.

With the increasing share of renewable energy sources in the grid, and, owing
to the intermittent nature of the renewable sources, a more general application
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Figure 2.9: Typical Internet service architecture. Data centers 1, 2 and 3 are the
back-ends. The front-end devices are typically spread across multi-
ple data centers.

of grid-integrated storage is load shifting instead of peak shaving, that we re-
strict ourselves to, in the scope of this dissertation. Peak shaving is a special
case of load shifting. However, the important factors mentioned above for suit-
ability of a technology remain the same for both cases.

2.4 Internet Services

In this section, we take a look at the general architecture of the multi-DC based
Internet services and the factors that effect their operating costs as well as their
impact on the environment.

2.4.1 Architecture

Internet services are generally provided through a group of geographically
distributed data centers that work in tandem to provide a multitude of ser-
vices with different service level agreements (SLAs) and with high reliability to
the globally distributed clientele consisting of millions of users, through shar-
ing the workload amongst them. Typical architecture of an Internet service is
shown in Figure 2.9. Front-ends handle incoming requests from the clients and
redirect them to the appropriate back-end that can serve them. After this redi-
rection, the client directly interacts with the back-end for all the subsequent
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requests of the session. Although, logically the front-end and the back-end are
two different entities, physically both might be co-located in the same data cen-
ter. The user content and the data important for running the service, are kept
at the back-end and are mirrored at multiple locations. The cost for this re-
dundancy is the extra state-coherence traffic that is generated to keep all copies
of the data in sync with each other. To avoid this extra state-coherence traffic,
typically the data is not mirrored at more than 2 or 3 locations.

Typically the term ‘request’ is used when the duration of computation required
is in the range of a couple of seconds, e.g. a search request to Google. On the
other hand, when longer computation is required, e.g., in the range of several
minutes or hours, it is called a ‘job’, e.g. indexing jobs for a search engine. In
Chapter 3, we use the work model of requests, whereas in Chapter 5 we follow
the work model of jobs.

2.4.2 Important Aspects

Internet services are complex and huge systems with a lot of possibilities of
optimizations in terms of energy usage and environmental footprint reduction.
Considering their distributed nature and the spatial variability of electricity
prices, there exists a potential to save electricity cost as well as reduce their en-
vironmental impact, if an appropriate load distribution strategy is employed.
However, making a right load distribution decision is not trivial and the fol-
lowing important factors can potentially impact the outcome.

Varying prices of electricity

The prices of electricity, both green and brown, vary temporally and geographi-
cally. Although many electricity supply companies have shifted to time-varying
prices for bigger consumers, some still follow the fixed-priced energy contracts
with constant cost per energy unit. Moreover, actual processors consume sub-
stantially more energy during processing of requests than during idling. This
implies that the variance in energy used for processing the requests, i.e. the ac-
tive energy component, is a significant fraction of the total energy [127]. An ap-
propriate workload distribution amongst the member data centers that caters
for this variability effectively can reap substantial financial gains.
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Multiple services with different SLAs

Data centers are either dedicated to only one client, e.g. Facebook’s data centers
or they service more than one client such as Amazon’s EC2. In general, it can
be said that data centers are expected to offer more than one service to more
than one client, under different SLAs with varying degrees of QoS guarantees
and with different pricing. Majority of the previous work has focused on a
single data center providing a single service. The impact of multiple SLAs and
multiple services being offered by a group of data centers has often not been
considered.

Session-based services

The services offered by the data centers are either session-based or stateless. In
the case of session-based services, not all requests can be arbitrarily routed to
any data center. The requests belonging to one session must either be served
by the same data center, or the context transfer has to be considered.

Communication latency due to geographical distance

The distance between the data centers and the front end causes additional delay
in serving the routed requests. Previous studies [127] have found that the delay
is correlated to geographical distance. This delay should be considered when
distributing the requests otherwise the SLA might be violated.

Energy cost of sleep-wake transitions

Putting a server in a data center to sleep or bringing it back for executing is not
free in terms of energy consumption. Sleep-wake transitions incur additional
energy costs that need to be catered when deciding to route the incoming load.
By selecting a server that is already in operation, extra overhead caused by the
transition can be saved.

Energy consumption of infrastructure

Data centers do not only consist of servers. There are also other non-computing
devices as well like networking switches, routers, cooling devices and light-
ing. The average energy consumed by these devices is almost the same as the
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energy consumption of processors (typical PUE=1.7 [74]). These devices con-
tribute substantially toward the environmental footprint of a data center and
their effect must be considered.

Energy sources and caps

There are three basic sources of energy in each data center: 1) green energy
harvested through the local resources (like a local wind farm), 2) green energy
bought in form of carbon credits, and 3) brown energy. Many data centers
nowadays include some local facilities to produce green energy, e.g., [8, 149].
The energy produced by the local facilities is audited and converted to carbon
credits [116] which can be used just as other credits bought at local markets.
The price for these credits has to be paid in the form of initial expenditure on
the renewable energy facility. Local wind or solar farms can produce limited
supply of green energy and its maximum production cannot exceed its rated
output. This can be considered as a limit on availability.

2.5 Parallelized Workloads and Dark Silicon

The amount of data that DCs need to process each day is increasing at a rapid
rate, thereby straining the computing resources required for processing it. It
has been estimated that the total digital information will increase 300 times be-
tween 2005 and 2020, i.e., from 130 exabytes to 40,000 exabytes [54]. In this
era of data explosion, DCs employ ever evolving parallel processing mecha-
nisms to compute and deliver results in a timely manner. In view of these re-
quirements, the hardware setup employed in the DCs is relatively simple and
comprises of a large number of common-off-the-shelf (COTS) PCs that are in-
terconnected through a high-speed data link. However, the software part has
been evolving rapidly with the aim of deriving maximum performance out of
all the available servers by utilizing them in parallel. A number of software
frameworks have appeared for this including MapReduce [42], Hive [145] and
Spark [161], among others.

These software frameworks share the salient architectural features among them,
in that, there is a central ‘master’ node, that divides and distributes the work
among the ‘worker’ nodes and keeps track of their progress through the pe-
riodic ‘heartbeat’ messages. Scheduling and error handling is the job of the
master node. Naturally, to gain performance through full parallelization, the
compute-workloads must not have any data interdependency though. This is
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the most common scenario for batch processing of data in DCs (‘jobs’, as men-
tioned in Section 2.4.1).

Just as DCs have thousands of individual servers connected through a high-
speed intranet, many-core processors have thousands of individual processing
cores sharing an on-chip network [20]. The architectural similarities between
these two fields are quite apparent. Hence, the facts that Intel named their pro-
totype 48-core processor [72] Single-Chip Cloud Computer (SCC), and, DCs are
seen as “a large multiprocessor” by researchers in the field of scheduling [95].

An important topic in the domain of many-core chips is that of power manage-
ment. Due to the limitations imposed by power provisioning circuitry within
a chip and heat removal apparatus from many-core chips, a significant fraction
of these chips must always remain inactive [50]. This phenomenon has been
termed as ‘dark silicon’. The gap between the total available silicon on the
chip and the amount that can be turned on simultaneously is growing, and it
is widely believed that increase in the performance of modern processors will
originate from parallelization instead of higher frequency of operation [144, 2].
As the power is becoming a scarce resource within a chip, the decision about
where and how much power to use is becoming increasingly important [120,
128, 21] and this trend is likely to continue.

Similar to many-core chips, DCs also have a pressing need to optimize their
power consumption because of binding legislation and environmental con-
cerns. Owing to the architectural similarities between the DCs and many-core
chips, both the DCs and the many-core chips can be modeled using very similar
power consumption abstractions for computation of timing critical workloads.
Exploiting these similarities, we focus only on the problem of power manage-
ment within many-core chips but our results are generally valid for wider ap-
plicability in data centers.

2.6 Related Work

In this section, we discuss relevant works in the area of minimizing environ-
mental footprint of data centers through maximizing the usage of renewable
energy, i.e., the main mechanism we use to manage environmental impact and
energy in data centers. Also discussed are the approaches that aim to conserve
energy in DCs and cost management strategies by exploiting electricity price
variance.
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2.6.1 Greening the Data Centers

DCs and Internet services being major electricity consumers in the IT sector,
have been focus of a lot of research to make them environmentally friendly.
This can be divided into three main categories:

Energy conservation

These studies aim to decrease the energy consumption of a DC, where de-
creased environmental footprint is basically a by-product. Examples include
[30], [67], [159]. Mostly, these aim to optimize a single DC. For example, Wang
et al. [159] present a scheme to reduce power consumption while fulfilling the
generalized SLAs within a single DC. The solution we present builds on top
of these schemes as we aim for multiple DC optimization and single DC opti-
mization is part of that.

Electricity cost management

These studies are nearer to our approach. The key difference between this cate-
gory and the previous one is that, here, multiple and geographically distributed
DCs are considered. Examples in this category include [127], [92], [103], [102].
Qureshi et al. [127] were the first to tackle the problem of cost minimization by
exploiting the geographic variance of energy prices but they do not consider
the carbon market dynamics. These are also not considered in [92] and [102].

Utilizing the green energy

This is a relatively new direction with only few initial studies e.g [163], [138],
[130]. Our approach falls into this category. [163] present how to maximize
the use of environmental friendly green energy to power the servers in DCs,
while maintaining the average response time for incoming requests. However,
since they use queuing theory to model the service provision, it can not handle
generalized SLAs, for instance, in the form of percentile guarantees; e.g. an
SLA of the form (L,P ) where P percent requests must be satisfied within time
L. The same argument also applies to the limitations of the research in [130],
[86], [138]. Moreover, [130] and [138] do not consider time-varying workloads,
multiple services, or market interactions. Stewart and Shen [142] also focus on
minimizing the environmental penalty by reducing the use of brown energy.
They use a model in which Internet service providers own the renewable en-
ergy farm. In contrast, we consider the more general case where the renewable energy
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can be locally produced or bought in form of RECs by the commercial producers and
contributed to the grid. Le et al. [85] are more thorough in their approach towards
the problem. They focus on cost reduction by exploiting the distributed nature
of DCs for dynamic request dispatching while maintaining SLAs. They are the
first ones to consider carbon interactions. Our approach has two main differ-
ences from [85]: Firstly, we aim to maximize the green energy usage within
budgetary constraints as opposed to maximizing profits within brown energy
cap. Secondly, in our solution, we divide the optimization problem to smaller
parts: one to be solved by each data center and the other for the front end. This
helps two folds: 1) we can include more factors to model energy consumption,
including the infrastructure for networking, computation, cooling devices, etc.,
and 2) the optimization problem can be solved more frequently because of the
reduced complexity at the front end. The latter also results in a shorter horizon
for energy price and traffic predictions, making predictions more accurate.

2.6.2 Peak Shaving

The peak shaving problem in utility networks is a special case of demand re-
sponse, where the aim is to reduce the highest peak in the power consumption.
In the scope of this dissertation, we restrict ourselves to the peak shaving prob-
lem only. Theoretically, it is a special case of a more general load shifting prob-
lem. But practically, peak shaving problem has a bigger financial impact in the
todays market-place than its general version due to still low penetration of re-
newable energy sources ( 10% in 2015 in the Unites States [152]). The reason for
peak-shaving problem having a bigger financial impact is the ubiquitous pres-
ence of ‘demand charge’ in almost all electricity tariffs offered in the United
States. Demand charge is a charge levied on non-residential customers accord-
ing to the peak power they draw from grid, in addition to the bill they receive
for total energy usage. There exist some results in the literature for peak min-
imization problem, such as [24, 88, 119, 11, 151, 12, 94, 1]. These works can be
divided into two main categories on the basis of the pricing model they employ,
as follows.

In the first model, the electricity provider controls the electrical load of the con-
sumer and turns it off during the peak load times. The maximum duration
for which the load can be turned off is agreed via contract. This approach is
adopted in [88, 1].

In the second pricing model, the demand response is encouraged through con-
trolling the pricing for the peak. This is still the most common approach to re-
duce the demand charge. There have been works in this direction such as [94,
11, 119].
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In both of these cases, the peak demand can be decreased by introducing a
battery in the system. To determine the most appropriate battery size, and to
measure the effectiveness of a control algorithm, an important milestone is to
be able to quantify the peak load that can occur in presence of that battery and
that control algorithm.

In our approach, presented in Chapter 4, we devise a methodology for quanti-
fying the peaks. Fundamental difference between our work and the previous
works such as [1, 88] is that we consider the load as inelastic which must be
fulfilled at the time of demand. As mentioned in the beginning of this section,
due to still low penetration of general load shifting possibilities in the contem-
porary electricity market, this assumption is more in line with current market
practices. However, this must change in the future to ease the transition toward
renewable sources.

Among the works that follow the second pricing model, [11] offers online al-
gorithms for shaving peaks and present worst-case competitive ratio analysis
for these. This work aims to minimize the peak through specific algorithms
whereas we aim to quantify them for any given monotonic algorithm. They
also do not consider the practical aspects of inefficiencies in batteries. More
recently, [94] tackle the same problem using an approach of optimal control in
context of data centers. Their focus, however, has been on decreasing the peaks
on the average, whereas, for demand charge, the electricity providers consider
the highest peak only.

2.6.3 Internal Optimizations for Data Centers

Managing the power consumption within a DC is similar to the management
of power consumption within a many-core chip. As discussed earlier (Section
2.5), we focus on the equivalent problem of power and energy management
within many- and multi-core chips instead.

A primary concern in many-core chips of the dark silicon era is to decide how
many and which cores to turn on to successfully compute a timing critical
workload. An error in the proper selection of a subset of chip might result
in the chip overheating and negatively affecting its availability later on. This
might result in real-time tasks missing their deadlines. For this, we propose
a peak power-management scheme for many-core chips in Chapter 5. In this
section, we present the relevant works in this regard.

In past, much research has focused on power, energy and thermal manage-
ment for multi-core systems [52, 158, 77]. In [52], the global thermal-aware
scheduling of sporadic tasks is analyzed to minimize the peak temperature
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using DVFS as a knob. In [77] an optimal procrastination interval for each
task with real-time constraints is derived to minimize the energy consumption.
Likewise, [158] proposed a scheduling analysis to minimize the energy con-
sumption under thermal constraints. In these works the scheduling decisions
are intended to reduce the energy or temperature by controlling the average
power consumption. Therefore, these cannot be effectively modified to control
the peak power consumption to remain within the thermal design power (TDP)
constraint, as is the case in our work. Moreover, we cater for heterogeneity of
cores and tasks as well.

The work in [114, 129, 135] focuses on maximizing performance under a power con-
straint, e.g., TDP. In [114], a control-based framework is proposed to obtain the
optimal trade-off between power and performance of asymmetric multi-core
systems under a specific power budget (TDP). The work in [129] exploits the
process variations between the cores in a homogeneous multi-core system to
pick the more suitable cores for an application to improve performance. Their
results show that the performance efficiency can be increased along with the
increasing dark silicon area, due to the proportional increment of the process
variations. However, in both of these works [114, 129], the performance is not
guaranteed, making it unsuitable for real-time tasks. In our work, we tackle
the dual problem, in which we focus on minimizing the peak power consumption
while considering the schedubility of the hard real-time tasks as constraints, i.e.,
delivering a guaranteed performance. In [135], Sartori et al strive to boost the
performance while guaranteeing that power consumption of the chip does not
shoot beyond a threshold. However, the performance is again not guaranteed.
In contrast, we provide a simple, polynomial time, online admissibility test for
hard real-time task sets.

Another work in high correlation to ours is [91]. In it a new scheduling algo-
rithm is developed that minimizes the peak power consumption for real-time
tasks. However, the complexity of the method is so high that it can only be used
for offline design. In comparison, we present polynomial time algorithms, that
can be used for online scheduling.
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In this chapter we focus on the problem of massive environmental footprint of
data centers and propose mechanisms for its reduction. We propose and evalu-
ate a framework for optimization-based request distribution that enables multi-
data-center Internet service providers to manage their environmental foot print
and energy costs, while respecting their SLAs. The proposed framework allows
services to take full advantage of the geographical locations of distributed data
centers. Specifically, it exploits data centers that pay different electricity prices
(the pricing scheme can be either fixed, TOU or dynamic as explained in Chap-
ter 2), data centers located in different time zones and data centers that are
powered by renewable energy sources. At the same time, the framework con-
siders the existing requirements for high throughput and availability. Based on
the framework, we propose a methodology for online load distribution deci-
sions so that the green energy utilization is maximized while remaining within
the allocated budget. We propose an optimization-based policy which uses
mathematical optimization algorithms, time series analysis for load prediction,
and statistical performance data from data centers. We also propose a greedy
heuristic designed with the same goals and constraints as the optimization-
based policy.

We evaluate these policies using real electricity prices and actual traces from
Wikipedia. Our results show that the optimization-based policies can account
for substantial reduction in environmental footprint by a marginal increase in
costs through intelligently leveraging time zones and hourly electricity prices.

3.1 Overview

In this chapter, we focus on the minimization of the environmental footprint
of DCs under the budget constraint and the generalized SLAs, including per-
centile and average response time guarantees. We present a software optimiza-
tion strategy to dynamically dispatch the incoming requests from the central
hub of an Internet service provider (such as Google or iTunes) to the distributed
DCs. This is a multifaceted optimization problem, and many important aspects
need to be considered in such a setting, as detailed earlier in Section 2.4.2.
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In our approach, we divide the problem into two subproblems, one to be solved
individually by each DC and the other by the central dispatching hub. We
present a practical solution encompassing all the energy-consuming compo-
nents in a DC. That includes the energy consumption from the infrastructure for
networking, computation, and cooling devices. Our solution is flexible enough
to be applicable to DCs consisting of heterogeneous servers as well as able to ac-
commodate different SLAs. We evaluate this with real-world workload traces
from Wikipedia [150] and varying electricity prices from different regions in
USA obtained from NYISO [117]. We show that our greedy algorithm is able
to find a good solution to this optimization problem by relaxing the budget
constraint and can be easily adopted in data centers.

3.2 System Model

In this section, we formalize the system model and discuss how we handle the
challenges discussed previously.

We consider a network of N DCs as shown in Figure 3.1. A central dispatcher
receives all the requests and dispatches them to the N DCs according to a to-
be-designed dynamic load balancing strategy. The data centers share a common
operational budget for a budgeting period (e.g. a month). The budgeting period
is divided into smaller control periods (e.g. an hour). The network of data cen-
ters collaboratively provides the total required service Λb (the request rate) in a
control period b.

Energy Sources. We consider that each DC has Z different energy sources to
choose from. These can be different forms of green or brown energy sources.
The cost to buy a unit ($ per kWh) from the jth energy source in DC i during
control period b is Cb,i,j . We assume that Cb,i,j is time varying. Importantly,
fixed-cost energy contracts are just a special case of this more general setting.
DCs with local green energy production facilities have to bear the initial in-
vestment and continuous management costs for such facilities. These costs,
amortized over time, can be considered as the price of green energy.

When one unit of energy (kWh) is purchased from the jth energy source in DC
i, the associated penalty is defined as φi,j . In general, green energy sources
have none, while brown energy source has a positive penalty.

The availability of renewable energy and carbon credits in the market depends
on the weather conditions and the cap set by the legislation authorities. Avail-
ability affects the price of energy and the cap enforces an upper limit. We as-
sume the jth energy source in all DCs to be limited to a maximum usage of Lj
in the current budgeting period.
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Front end

Data-center’s 

configurations table

Data-center 1 Data-center 2 Data-center N

Reqs  Energy

λ2,1            E2,1

λ2,2            E2,2

λ2,M          E2,M

Reqs  Energy

λN,1            EN,1

λN,2            EN,2

λN,M          EN,M

Client

1

3

2

Reqs  Energy

λ1,1            E1,1

λ1,2            E1,2

λ1,M          E1,M

Figure 3.1: Architectural overview of a network ofN data centers with a typical
route for a request and its reply

Service Level Agreements. DCs offer multiple services to multiple clients un-
der different SLAs. This factor can be incorporated by dividing each DC into
smaller cells to cover all the services that should be provided through the DCs.
Each cell is considered as an individual DC. However, it is not mandatory that
each DC covers all the services, due to the following reasons: 1) The overhead
for maintaining the coherence of the states is larger than the performance gains
[87]. 2) Not all clients are geographically suitably located to be served by some
of the DCs because the communication latency is correlated to the geograph-
ical distance [127]. Therefore the clients can be statically assigned to a subset
of DCs. Please note that SLAs that we consider are only within the premises
of service providers. Our SLA can be combined with Internet QoS approaches
to extend the guarantees all the way to the users’ sites [164]. For the rest of
this chapter, we only present how to deal with one SLA for the simplicity of
presentation.

Session-based services. Incoming requests from the clients are distributed by
a central dispatcher. We assume that once a request has been routed, the reply
comes directly from the corresponding DC. If it is a session-based service, all
the further correspondence is directly with the DC which the first request in
session was assigned to. We assume that the front end is not part of the routing
process after the initial decision, hence does not cause any additional latency.

DC Configuration Table. Every DC requires some energy as an input to pro-
vide some service as output. The required energy consumption depends upon
the service requirements as well as the hardware and infrastructure configura-
tions of the DC. This behavior can be captured in a table for energy requirement
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versus the maximum service (in terms of the request rate) in a DC under the
specified SLA.

We consider DCs with discretized service levels, and each level has its required
energy consumption in a control period. Every DC has up to M different en-
ergy usage levels (configurations) to choose from. Each energy consumption
level corresponds to a particular maximum satisfiable service requirement. A
DC i, in its kth configuration uses Ei,k kWh of energy to satisfy λi,k service re-
quirement, under the given SLA. In the second step, using 1) these tables for all
participating data centers, 2) the workload distribution policy, and, 3) total ser-
vice required at any instant, the energy required at each data center can simply
be looked up in the respective table.

Naturally, the question arises how to construct such an energy-vs-service table
for each DC. To this end, there exist approaches for considering the energy
consumption of the servers under an SLA for a DC, e.g. the methodologies in
[64] or [32]. We assume, the energy consumed by infrastructure is also part of
the total energy consumption Ei,k. The DC configuration table forms the basis of
a very general solution as it can include the energy spent on cooling, the energy
consumption of network equipment, the hardware heterogeneity and various
settings of SLAs. It has potential to capture most of the relevant aspects of a DC
with a selectable granularity.

Another important aspect is the energy cost for the off→on transitions of the
servers in the DCs. We assume that the entries in a DC configuration table al-
ready include the worst case energy requirement for such transitions. Hence,
we do not explicitly include them in the model. Since the transition only occurs
once (∼1 min [87]) per control period (1 hour in our model), i.e. turning the re-
quired servers on at the beginning of every control period, adding such worst
case energy requirements does not increase the actual energy consumption sig-
nificantly.

For notational brevity, if the available energy configuration of data center i ism
and m < M , we define λi,j = λi,m and Ei,j = Ei,m for m < j ≤ M . Without
loss of generality, with respect to k, we also assume that λi,k is non-decreasing
andEi,k is non-decreasing as well. We assume that the first entry λi,1 in the data
center configuration table for DC i is 0. The corresponding energy consumption
Ei,1 may be 0 when the infrastructure and the hardware do not consume any
energy when the DC is not used in the control period. However, practically,
Ei,1 > 0 and represents the energy cost of network infrastructure and other
equipment, e.g. lighting, etc. In essence, it is an offset that can be added to all
the entries of the configuration table.

Discretization. Commonly available processors on the market which are em-
ployed in the servers in the DCs are designed to operate on multiple discrete
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frequency (and corresponding voltage) settings [37]. The performance of the
processor increases when operating at a higher frequency and vice versa, with
the cost of higher performance being higher power consumption. Selection of
the appropriate frequency setting for each processor is controlled by the OS and
is normally decided on the basis of the total load on the system. DC-wide all
the processors can be selected to run at any of the allowed frequency settings.
Since the processors are only capable of operating at discrete frequency (and
hence discrete power) settings, their combination, i.e. a DC, also has discrete
power consumption points. To reflect this situation accurately we model the
DC through a discretized table of energy vs service. This forms the basis of an
integer optimization problem that we present in the following section.

3.3 Problem Definition and Future Prediction

3.3.1 Problem Statement

The objective is to minimize the total environmental penalty in the current bud-
geting period while satisfying the service requirement with the quality of ser-
vice (QoS) as contracted in the SLA, without exceeding the total budget S with
the time varying energy prices. Each DC can choose a fraction of the total re-
quired energy in the period from any of the available sources. The optimiza-
tion goal is to select an index ki with 1 ≤ ki ≤ M for DC i such that the total
environmental penalty is minimized under the service requirement constraint
∀b ∑N

i=1 λi,ki ≥ Λb and the budget constraint.

Summarizing this,

i, j, k, b = Indices used for DCs, energy sources, configurations and
control periods

N = Total number of DCs
M = Maximum number of configurations per DC
Z = Maximum number of energy sources
B = Maximum number of control periods in a budgeting period
Lj = Maximum energy availability from jth source for all DCs

combined (kWh)
S = Total allowed cost budget for all DCs ($)
Eb,i,k = Energy required at DC i for kth configuration during bth

control period (kWh)
φi,j = Penalty associated with jth energy source in ith DC (kg of

CO2. Here, CO2 is equivalently replaceable by any other
GHG or the sum of all GHGs, without loss of generality)
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Cb,i,j = Cost of jth energy source in ith DC during the bth control
period ($ per kWh)

Λb = Total service required during the bth control period
λi,k = Service provided at DC i’s kth configuration
xb,i,j = In ith DC, portion of jth energy source to fulfill the energy

requirement during the bth control period
yb,i,k ∈ {0, 1} for all b, i, k. Binary decision variable. 1 if kth config-

uration in bth control period in ith DC is selected to be used,
else 0.

With these symbols, the optimization problem can be formulated as follows:

Minimize:
B∑

b=1

N∑

i=1

Z∑

j=1

M∑

k=1

yb,i,k · Eb,i,k · xb,i,j · φi,j (3.1a)

such that: 0 ≤ xb,i,j ≤ 1, for all b, i, j (3.1b)
Z∑

j=1

xb,i,j = 1, for all b, i (3.1c)

N∑

i=1

M∑

k=1

yb,i,k · λi,k ≥ Λb, for all b (3.1d)

B∑

b=1

N∑

i=1

M∑

k=1

yb,i,k · xb,i,j · Eb,i,k ≤ Lj , for all j (3.1e)

B∑

b=1

N∑

i=1

Z∑

j=1

M∑

k=1

yb,i,k · Eb,i,k · xb,i,j · Cb,i,j ≤ S. (3.1f)

These can be restated as:

(3.1a): Minimize the sum of environmental penalty in all DCs in a budgeting
period, such that

(3.1b): usage of any energy source in a DC in any control period cannot be more
than total energy requirement for that data center in that control period,

(3.1c): sum of all the proportions from all the energy sources should satisfy the
energy requirements of the DC,

(3.1d): provided service should satisfy the required service for all control peri-
ods,
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(3.1e): usage of any energy source cannot exceed its availability in the market,
and

(3.1f): the sum of the costs occurring at the DCs should remain within the overall
budget.

3.3.2 In-feasibility due to Unknown Future

A solution to the problem detailed in Equations (3.1a)–(3.1f) will result in the
optimal reduction in environmental penalty. However, to solve this, we need
Λb and Cb,i,j for all future control periods. This is, however, not possible. Elec-
tricity prices change on hourly basis and the horizon for “certain” knowledge
spans only an hour in the future. Similarly, as service requests follow long
term (monthly) and short term (hourly) trends (see Figure 3.3), good enough
predictions are possible only for an hour in advance. Due to these factors we
transform the problem to maximize the usage of green energy within a single
control period. The problem can be modified as follows for a control period b,
where 1 ≤ b ≤ B: (with modified set of old symbols which belong only to a
single control period)

Minimize:
N∑

i=1

Z∑

j=1

M∑

k=1

yi,k · Ei,k · xi,j · φi,j , (3.2a)

such that: 0 ≤ xi,j ≤ 1, for all i, j (3.2b)
Z∑

j=1

xi,j = 1, for all i (3.2c)

N∑

i=1

M∑

k=1

yi,k · λi,k ≥ Λ, (3.2d)

N∑

i=1

M∑

k=1

yi,k · xi,j · Ei,k ≤ Lj − Lb−1
j , for all j (3.2e)

N∑

i=1

Z∑

j=1

M∑

k=1

yi,k · Ei,k · xi,jCi,j ≤ ψ(S − Sb−1). (3.2f)

here,

• ψ = function for budget distribution. The input for this function is the
total remaining budget at the start of bth control period, i.e. S − Sb−1. We
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Figure 3.2: Outline for modified methodology

denote this by ∆ in the rest of this paragraph for the ease of readability.
ψ(∆) can be as simple as distributing the remaining budget equally on
remaining control periods (i.e., ∆

B−b+1 ), or, it can be complex enough to
include the predictions of traffic and pricing. However, it must always
satisfy ψ(∆) ≤ ∆ to insure that the budget constraint is satisfied.

• Lδj = Used-up quota of energy availability for jth type of energy up to δ
control period, where L0

j = 0.

• Sδ = Budget consumed in the past for control periods up to δ with
S0 = 0.

Henceforth, we tackle the problem of greening the DCs as per Equations (3.2a)-
(3.2f) i.e., according to the methodology shown in Figure 3.2. For every control
period, we first calculate the budget on basis of traffic forecast. Predictions
based on historical information or other prediction models, e.g. [25] or [156],
can be adopted and an error buffer can be planned depending upon the pre-
diction accuracy to cater for uncertainties. In the second step a load balancing
strategy has to be designed for the data centers under the calculated budget
constraint and the Λ constraint with the specified SLA. The requests are dis-
patched to different DCs as a result of the second step. The main focus of our
methodology in this chapter is the second step, i.e. load balancing for minimizing the
environmental penalty under the budget and the service requirement. We assume that
dispatching overhead is negligible.

Hardness. The problem formulated in Equations (3.2a)-(3.2f) is NP-hard even
for deriving a feasible solution. This can be proved by reducing from the deci-
sion version of the knapsack problem.
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Proof. We reduce from the decision version of the knapsack problem. For an in-
put instance of the knapsack problem, we are given N items and two constants
W and V , in which each item i has a weight wi and a value vi. The objective
of the knapsack problem is to select a subset of the N items such that the total
weight of the selected items is less than or equal to W and their value is larger
than or equal to V . The knapsack problem is NP-complete [56].

The reduction works as follows: We construct N DCs such that each DC has
only two configurations for the performance and energy consumption. That is,
for DC i, λi,1 = 0, Ei,1 = 0, λi,2 = vi, Ei,2 = wi. The performance requirement
in current budgeting period b, λF,b is set to V , while the budget is set to W . The
cost to buy one unit from the brown energy source is set to 1 as well.

Therefore, there exists a feasible solution for the knapsack problem if and only
if the reduced instance for the studied problem has a feasible solution. Hence,
we conclude that deriving a feasible solution under budget and performance
constraints for the studied problem is NP-hard.

3.4 Our Solution

The drawback of solving the optimization problem separately for each control
period (Equations (3.2a)–(3.2f)) is that the global optimality is not guaranteed.
I.e., the possibility to trade off expensive green energy in one control period
against cheaper green energy in another control period might remain unuti-
lized. We show this by solving this problem optimally within each control pe-
riod through dynamic programming. After that we present a simple greedy
algorithm that, by optimizing the budget distribution, produces better results
in our simulations. Finally, we combine the positives of both approaches to
form our final solution.

3.4.1 Dynamic Programming (DP)

Penalty Table for a DC

We first consider how to optimize for any DC i in a control period when the
local budget Si and the local service requirement Γi are given. A point to note
here: Γi is not the same as the previously mentioned Λ. In a given control pe-
riod, Λ is the total service required at the whole ISP level, whereas Γi is the
portion of that service that has to be provided by DC i. According to the defini-
tion, we know that we should choose the least power-intensive configuration,
say k∗, of the data center that fulfills the service requirement, i.e., λi,k∗ ≥ Γi.
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Suppose that xi,j with 0 ≤ xi,j ≤ min{1, Lj
Ei,k∗

} is the fraction of the total energy
purchased from the jth energy source in DC i. It is now clear that the objective

for this case is to minimize Ei,k∗
Z∑
j=1

xi,j · φi,j such that
Z∑
j=1

xi,j ·Ci,j ·Ei,k∗ ≤ Si

and
Z∑
j=1

xi,j = 1. This can be solved by using the linear programming solver

in general. Since, the green energy sources have zero environmental penalty,
the above linear programming can be solved by a simple algebra calculation in
O(Z) time complexity given that energy sources are presorted for preference.
We omit the details of algebra here.

By iterating all possible values of Si and Γi, we can build the corresponding
penalty table p(i,Γi, Si) to show the minimum penalty for DC i under the
above configurations. If it is not feasible to support Γi under budget Si, then,
p(i,Γi, Si) will be set to∞.

We remove the infeasible and dominated entries in the penalty p-table for DC i
created above, to decrease the size of this table. An entry p(i, λ, s) is dominated
by another entry p(i, λ′, s′) if s ≥ s′, λ ≤ λ′, and p(i, λ, s) > p(i, λ′, s′).

Suppose that the p-table has Qi entries for DC i after the above procedure. The
p-table has to be generated in each control period because the penalty incurred
depends on the time-varying energy prices which are not know a priori. For
the kth entry in the p-table for DC i with k ≤ Qi, we denote

• `i,k as the service provided (request rates),

• si,k as the allocated budget, and

• πi,k as the penalty stored in p(i, `i,k, si,k).

Building the Dynamic Programming Table

On the basis of the penalty tables (p-table) obtained for each data center in the
previous step we can now build a dynamic programming table to select the
appropriate configuration of every DC to provide the total required service.

Suppose that P (i, λ, s) is the minimum penalty for the first i DCs under the
budget s to provide the service requirement (total request rate) λ. For brevity,
when λ < 0 or s < 0, we define P (i, λ, s) as∞. Clearly, for λ ≥ 0 and s ≥ 0, we
know that

P (1, λ, s) = p(1, λ, s). (3.3)

Where p-table is from the previous section.
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For i = 2, 3, . . . , N , the following recursive formula can be adopted to minimize
the total penalty P under budget s ≥ 0 and service requirement λ ≥ 0:

P (i, λ, s) = min
k=1,2,...,Qi

{P (i− 1, λ− `i,k, s− si,k)

+πi,k}. (3.4)

Clearly, P (N,Λ, S) is the minimum penalty for distributing the requests and
the budgets. The standard dynamic programming technique can be adopted
and the solution can be obtained via backtracking from P (N,Λ, S). The time
complexity for calculating a single entry P (i, λ, s) based on Equation (3.4) is
O(Qi). To build the table correctly, we have to calculate P (i, λ, s) from i =
1, 2, . . . , N and from λ = 0 to Λ and from s = 0 to s = S sequentially. This gives
the overall time complexity O(NSΛQmax), where Qmax is maxiQi.

Optimality and Complexity

The above presented DP approach derives the optimal solution to minimize
the environmental penalty for a control period. However, in the problem scale,
some level of discretization in both budget and service is mandatory. Appropri-
ate discretization results in a smaller global penalty table (P ) and this reduces
the computation complexity. The construction of the table P depends on how
we discretize the values of λ from 0 to Λ and the values of s from 0 to S. The
complexity can be reduced by rounding down si,k and s to the nearest integer

multiple of a given number, let’s say, Is. That is, s′i,k is
⌊
si,k
Is

⌋
Is. Similarly,

we can also round down `i,k and λ to the nearest integer multiple of a given

number, let’s say, Iλ. That is, `′i,k is
⌊
`i,k
Iλ

⌋
Iλ. Then Is and Iλ can serve as the

discretization factors of budget S and Λ. This makes the time complexity to
O(N S

Is
Λ
Iλ
Qmax).

3.4.2 Greedy Algorithm

We now present a heuristic algorithm based on a greedy strategy without build-
ing the penalty p-table constructed in Section 3.4.1. The two important factors
to be considered are the penalty and the budget. These two factors are in-
versely related, i.e., to reduce penalty more budget has to be paid and vice
versa. We devise a heuristic strategy which strives to minimize the weighted
sum of both.

Suppose that in the DC i, it has been decided to use the kthi configuration. That
is, it will provide λi,ki service withEi,ki energy consumption. Suppose that xi,j

51



3 Maximizing Green Energy Usage

with 0 ≤ xi,j ≤ min{1, Lj
Ei,ki
} is the fraction of the total energy purchased from

the jth energy source in DC i. If ki is given for every DC i, the objective for this
case is to

minimize
N∑
i=1

Ei,ki
Z∑
j=1

xi,j · φi,j (3.5a)

such that
N∑
i=1

Z∑
j=1

xi,j · Ei,kiCi,j ≤ S, (3.5b)

Z∑
j=1

xi,j = 1, for all i (3.5c)

N∑
i=1

Ei,ki · xi,j ≤ Lj . for all j (3.5d)

As ∀i∀jxi,j is a real number, with its value between 0 and 1, the above linear
program can be solved optimally by using a linear programming solver or via
linear algebraic calculation with low time complexity.

The algorithm works as follows: all the DCs are set to their lowest service set-
ting, i.e. ki = 1 and we check for feasibility of this setting in terms of budget and
service by verifying the feasibility and solving the optimal solution for Equa-
tion (3.5a). If

∑N
i=1 λi,ki is no less than Λ, the algorithm terminates; otherwise

it increases one DC i∗ among the DCs to the next configuration ki∗ + 1. The
selection of i∗ is as follows:

Suppose that the current solution has set ki. By advancing only DC i to the
configuration ki + 1, we can find the optimal setting in Equation (3.5a) for min-
imizing the penalty under this setting. Please note that the penalty is set to∞
if there is no feasible solution for Equation (3.5a). By advancing the configu-
ration of DC i, suppose that ∆service

i is additional service, ∆penalty
i is the addi-

tional penalty, and ∆budget
i is the additional budget (this is none-zero when the

budget has not yet been exhausted in the current solution).

For a DC i, we define two terms: brownness, i.e. penalty caused per unit of

provided service ( ∆penalty
i

∆service
i

) and economy, i.e. budget spent per unit of provided

service ( ∆budget
i

∆service
i

). The heuristic that we use is brownness · wb + economy · we.
Where wb and we are the weights that can be assigned to prefer brownness over
economy or vice versa.

Algorithm 1 presents the pseudo-code of the above greedy algorithm. The
worst-case number of combinations that we have to check for different ki in
this algorithm is O(N2M), as in each while loop in Algorithm 1 we consider
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Algorithm 1: The greedy algorithm
Input: Data center configuration table for all DCs, Service requirement: Λ,

Budget: S, weights: wb, we
Output: Configuration for all DCs: ki
ki←− 1 for each DC i;
while true do

if
N∑
i=1

λi,ki ≥ Λ then

if Equation (3.5a) has a feasible solution then
return the solution ki for each DC i with the purchase plan by
solving Equation (3.5a) optimally;

else
return the solution ki for each DC i but with “over budgeting” by
buying all energy from the cheapest brown source;

for each DC i with ki < M do
∆service
i ←− λi,ki+1 − λi,ki ;

calculate ∆budget
i ,∆penalty

i based on Equation (3.5a);

let i∗ be the minimum ( ∆penalty
i∗

∆service
i∗

· wb +
∆budget
i∗

∆service
i∗

· we);
ki∗ ←− ki∗ + 1;

up to N DCs and the number of iterations in the while loop is at most NM .
For each combination, we have to solve Equation (3.5a). This can be sped up
by starting based on the current solution. However, solving Equation (3.5a)
by using linear programming solvers is already quite efficient. As we are not
able to guarantee the budget satisfaction, over budgeting may be needed by
borrowing from future invocations, as presented in pseudo-code.

3.4.3 Greedy + DP (G+D)

The greedy algorithm, when allowed over-budgeting, guarantees to find a fea-
sible solution, if there exists one. It keeps increasing the offered service pro-
gressively in search of a feasible solution. In the worst case, it configures all the
DCs to run at maximum service setting. However, in the average case, it finds
a feasible setting much earlier. Moreover, the heuristic used for the greedy al-
gorithm does not buy overly expensive green energy, resulting in an efficient
budget usage. In comparison, the DP method finds the optimal solution in
terms of environmental penalty, even if the cost to reduce the environmental
penalty is overly prohibitive.
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We devise a method to combine both approaches to accumulate the benefits
of both: for a given control period we execute the greedy algorithm to find a
feasible solution. We analyze the budget requirement of this solution and set
this as the maximum budget constraint for the DP method. Since the greedy
algorithm optimizes for the budget as well, its solutions are more miserly in
terms of budget usage. Setting this budget as upper limit for DP results in
a reduced search space for dynamic programming approach. In this way we
achieve a solution which incorporates the budget optimization of the greedy
algorithm with the optimal search for minimal environmental penalty from DP
approach.

As G+D uses greedy and DP sequentially, its worst case time complexity is
O(N3M S

Is
Λ
Iλ
Qmax), using the previously introduced symbols.

In the following sections we present our simulation setup and evaluation re-
sults.

3.5 Simulation Setup

We adopt the settings from [163] to evaluate the proposed solution by simulat-
ing the Google’s setup for the location of DCs in the US. For these locations, we
obtain the electricity pricing information from [117]. For our simulations, the
following factors are important.

Non-varying factors include the hardware capabilities of the DCs. These in-
clude server capabilities and cooling infrastructure. We consider four DCs, in
which each data center is equipped with homogeneous servers, as detailed in
Table 3.2. We use the method in [159] to build the DC configuration table, pre-
sented in Section 3.2, by considering 50 servers in each data center. The result-
ing table has at most 87 entries in each data center. Other methodologies like
[64] and [32] can also be adopted for calculating the DC configuration tables.
Please note that the complexity of the presented solutions does not directly de-
pend on the number of servers in DCs, but the number of entries in the DCs’
configuration tables. Even when the servers in a DC increase, we can reduce the
number of entries in the DC configuration tables by changing the management
granularity.

The penalty for a green energy source is set to 0. The penalty for a brown energy
source is set to 1. This multiplied by CO2 kg generated per kWh gives actual
environmental penalty.

Time-varying factors include energy prices. The availability for both forms of
energy does not vary. The fluctuation in the production of green energy due
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Table 3.2: Data center settings used for simulation (adopted from [92]): Speed
ratio is the ratio of the frequency by adopting dynamic voltage fre-
quency scaling (DVFS) to the maximum frequency in the system.

Specifications
Power settings

Speed Service Power
ratio (req/sec) (W)

DC # 1

Location: San Luis Valley
Colorado

Processor: AMD Athlon
Max Freq: 3.0 GHz

1.00 750 174.09
0.90 675 141.28
0.66 500 88.88
0.50 375 68.13
0.26 200 55.29

DC # 2

Location: Los Angeles
California

Processor: Pentium 4, 630
Max Freq: 3.0 GHz

1.00 750 93.99
0.80 600 62.76
0.50 375 37.99
0.40 300 34.10
0.30 250 32.37

DC # 3

Location: Oak Ridge
Tennesse

Processor: Pentium D950
Max Freq: 3.4 GHz

1.00 850 194.00
0.85 725 146.19
0.64 550 102.13
0.44 375 78.82
0.29 250 71.20

DC # 4

Location: San Luis Valley
Colorado

Processor: AMD Athlon
Max Freq: 3.0 GHz

1.00 750 174.09
0.90 675 141.28
0.66 500 88.88
0.50 375 68.13
0.26 200 55.29

to environmental factors causes a shift in its price but the overall availability
contracted by the suppliers in the form of RECs is fulfilled. Green energy has a
higher price than brown energy as explained in the introduction (Section sim-
ulation we assume a surcharge of 1.5 cents and 18.0 cents per kWh for wind
and solar energy [39] respectively in addition to the brown energy price. For
price trace of electricity, we use the data from NYISO [117]. Specifically, we
use Day-Ahead price data for Nov’07 for four regions previously mentioned.
This period was chosen as it corresponds to the period of available Wikipedia
traces.

The other time varying factor is the total service requirement, Λb. It is a random
variable but overall it follows a weekly recurring pattern (see Figure 3.3). We
use the actual workload trace from Wikipedia [150], i.e., Oct’07 for forecasting
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Figure 3.3: Wikipedia workload trace in Oct. and Nov. 2007 [150]

and the Nov’07 for the actual workload.

3.6 Evaluation

In this section, we present the results of our evaluations. We take a month as
a budgeting period and an hour as a control period. For the greedy algorithm
proposed in Section 3.4.2, we configure the heuristic weights as wb = 10 and
we = 1 in Algorithm 1. The presented algorithm (G+D) is evaluated for three
main criteria, i.e. budget allocation and usage, environmental penalty mini-
mization and computation time. We compare it with base line schemes of “All
Green” and “All Brown” as well as DP approach (Section 3.4.1) and simple
greedy (Section 3.4.2).

3.6.1 Budget allocation

The hourly budget is allocated as a weighted average of current monthly bud-
get where the weights are calculated based on predictions. We adopt a simple
prediction scheme that predicts the number of requests in the current control
period based on the history. Any other prediction scheme, e.g., [160, 38] can be
used for better predictions.

The budget usage comparison is presented in Figure 3.4. The maximum al-
lowed budget was set to USD 80k. As expected “All Brown” uses the mini-
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mum amount of budget at the cost of huge environmental penalty, whereas,
“All Green” approach violates the maximum budget constraint.

The proposed solution, G+D, follows the same budget allocation as the greedy
algorithm. In comparison with the optimal budget allocating scheme, “All
Brown”, it uses only one eighth more budget but produces a 15 fold reduc-
tion in environmental penalty as shown in Figs. 3.4 and 3.5. In comparison
with “All Green”, G+D uses only half the budget.

Relaxing the budget constraint results in decreased environmental penalty for
the presented solution. The result is shown in Figure 3.6. The effect is, however,
non-linear. This is because increasing the monthly budget beyond a certain
point makes the availability of green energy the limiting factor.

For minimizing the environmental penalty, among the presented schemes, G+D
outperforms all others that follow the budget constraints as shown in Figure
3.5.

The fundamental difference between G+D and the DP approach is the allo-
cation of budget. Unlike DP, G+D tries to minimize the budget usage. This
provides G+D a relaxed budget constraint progressively at subsequent control
periods, as compared to the DP approach. DP produces the optimal results in
terms of environmental penalty within a single control period. To this end, it
sometime uses excessive budget for gaining a marginal reduction in penalty.
This makes the budget constraint tighter in subsequent control periods, result-
ing in higher overall penalty for dynamic programming.
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3.6.2 Computation Time

For the results to be useful, the maximum computation time must remain a
negligible fraction of the length of the control period. This condition can be
fulfilled by lengthening the control period. But, this, in turn, makes the predic-
tion horizon longer for Λb and Cb,i,j . Irrespective of the prediction scheme, this
results in deteriorated prediction quality hence affecting the solution quality.

One way to decrease computation time can be to compute the necessary ta-
bles offline. But, due to the time-varying factors like price and availability of
energies, the offline tables will be huge and unpractical.

Online computation of solution at the beginning of every control period is the
only viable option. Figure 3.7 presents the calculation time as a function of
problem size for a single control period on a normal desktop machine (Intel i3,
6GB RAM, Linux). It is clear that the greedy algorithm is the fastest with major-
ity of the computation times remaining within a second. However, G+D may
take up to a minute in a few cases. This remains suitable for a control period
of around an hour as necessitated by the electricity price horizon. changing the
granularity of discretization in the DP. Furthermore, G+D is often faster than
DP alone, although it uses DP as a subroutine. The is because of the reduced
search space for DP that greedy algorithm prunes out. With growing problem
size, the computation time increases linearly for the greedy algorithm and ex-
ponentially for dynamic programming based solutions. This was expected as
DP is pseudo-polynomial time algorithm. However, G+D, still fairs better than
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Figure 3.6: Budget vs. penalty (G+D)

DP alone. The is because of the reduced search space due to the pruning by
greedy algorithm.

3.7 Summary

The environmental footprint of DCs is becoming significant. In this chapter, we
formalized the problem of minimizing the environmental footprint of a large
scale Internet service (or maximizing the green energy usage) while fulfilling
the budgetary and service constraints. We showed that this problem is anNP-
hard problem and presented a viable greedy heuristic for optimization. The
solution that we presented 1) is up to date, in that, it is based on current legisla-
tive and economic trends. 2) It is practical. By dividing the problem into two
subproblems and solving them separately, it gives us the flexibility to add dif-
ferent kinds of SLAs and is also valid for heterogeneous servers in a single DC.
3) It is holistic in nature as it is cognizant of the energy usage for computation
hardware, the networking hardware and also the cooling infrastructure of the
DC.

The novelty of our approach lies in dividing the problem into two indepen-
dent steps, that is, per DC optimization and a central optimization scheme.
This forms the basis of a general solution that can include factors like power
consumption due to cooling infrastructure, power consumption of networking
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infrastructure, on-site renewable energy generation systems and multiple ser-
vices with multiple SLAs.

We evaluated the presented solutions with traces of electricity prices and typ-
ical Internet workloads. Extensive evaluations based on real data for price,
traffic and locations demonstrate the effectiveness of our approach.
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4 Battery Inclusion for Peak
Shifting

Electrical demand is generally random in nature. This randomness is a result
of factors such as human life patterns (e.g., office-home cycle, weekdays and
weekends, seasonal holidays etc.), weather phenomena, periodicity of seasons,
tax laws and industrial production cycles, etc. Some of these factors show a
periodic trend whereas others are sporadic one-time events.

Expected electricity production on the other hand, which used to be quite pre-
dictable and easier to plan for, is also getting random. This is a consequence
of the ever-increasing share of electricity produced by renewable sources in the
overall power-mix. Renewable sources, owing to their dependence on weather,
are inherently more unpredictable than the traditional fossil fuel based sources.

Considering the above two factors, it becomes non-trivial to economically guar-
antee the grid reliability which consumers of electricity have grown accus-
tomed to, while still optimally utilizing the renewable energy sources. The
traditional approach in this case is to guarantee reliability by over-provision-
ing the fossil-fuel based production of electricity. This over-provisioning has
to be proportional to the expected worst-case peak that can occur in the de-
mand. The additional costs that are incurred in order to insure the reliability of
the network are often passed on to the end consumers in the form of demand
charges.

An often used mechanism for passing on these charges to the end consumers
consists in the introduction of peak penalty tariffs, such as those offered to cor-
porate consumers like industrial production facilities, data centers, etc. In this
case, the actual bill not only depends on how much power was consumed but
also how quickly it was consumed. I.e. two prices, say, c1 and c2, are fixed
in the electricity purchase contract, then the monthly bill for the electricity de-
mands of, say (d1, d2, ..., dn), is of the form c1 ·

∑
i di + c2 ·maxi{di}. Here, the

second term of the summation is the peak penalty. Peaks are often measured
in the time scale of 15 mins to 1 hour. The peak penalty, also referred to as
demand charge, forms the main chunk of the bill and often exceeds all other
charges combined together [6].
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A point to note: These legacy tariffs are still the most widely offered tariff struc-
tures for bigger consumers. However, with increasing dominance of renewable
sources, it is expected that these tariff structures are going to evolve into a more
general form, where the users will be encouraged to “shape” their electrical de-
mand according to an expected electricity production curve. Considering their
current market dominance, the focus of this chapter is on the former special
form of these tariffs, i.e., where the electricity producers encourage a flatter
demand by the consumers.

Three main approaches exist to economize the bill charged by electricity providers,
as discussed previously in Chapter 2. Namely, 1) rescheduling/shedding the
loads [26], 2) spatial redistribution of the loads [126], and 3) employing a store
of energy to minimize the peaks [12, 119, 151]. All three of these are mutually
orthogonal and can be employed independently. Our methodology is based on
the last approach, i.e., employing a storage system to shift the demands.

As a side note, the demand shifting problem can be generalized as a minimax
problem applicable to any item that can be stored in time of lower demand and
then dispensed during the periods of higher demand. Economic lot sizing [15]
is one example. This is a commonly found general problem. The approach that
we present here is also more generally applicable to such problems. However,
for the convenience of presentation, we will restrict ourselves to the terminol-
ogy of batteries and electrical grid.

The contents of this chapter are based on our work presented in [110]. Here we
extend our previous work in three main aspects. Firstly, we simplify the model
we use for a battery storage system without losing the generality to include
the losses that occur in such systems. Secondly, we simplify the mathematical
proofs that we presented earlier. Lastly we use the electricity load trace from
Karlsruhe Institute of Technology in Karlsruhe, Germany (KIT) and also pro-
vide an extended evaluation section.

4.1 Overview

The basic architecture of a demand shifting system is shown in Figure 4.1. It
consists of three main components. The first component is the power grid. It
is the service provider for electricity. In our model, we assume that this is the
only source of energy input into the system. The second component is the local
reservoir of energy where the surplus energy can be stored and later retrieved
as needed. There are two main aspects of an energy storage system that de-
termine its suitability for a demand shifting system, i.e., the cycle efficiency of
the storage system and the maximum amount of energy that can be stored in it.
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Estimator

Controller Load

Local 

ReservoirGrid

Figure 4.1: Generalized architecture of a demand shifting system. Solid arrows
indicate the direction of energy flow and dotted arrows indicate the
flow of information and control.

Many technologies exist for energy storage as discussed previously in Chapter
2. However, for the industrial consumers of electricity – our main target group
in this study – battery electrical storage system (BESS) is the most promising
option due to the unique benefits that it offers. E.g., it is not dependent on any
special geological features that other systems like compressed air and pumped
hydro storage need. It offers good cycle efficiency. Moreover, with the bat-
tery technology maturing, BESS will become ever more economical with time.
Hence, we present our results mostly in the terminology pertaining to BESS,
however, the presented results are equally valid for other storage systems as
well.

In addition to the two main aspects discussed above, the third important com-
ponent in a battery storage system is the controller that decides about when
and how much energy to divert to the storage, and when to retrieve it back.
The controller is the most crucial component in the system as the effectiveness
of the whole system can potentially be compromised by a false control policy.
It is also a focus of our research presented in this chapter.

We present a concrete mathematical basis for measuring the performance of a
demand shifting system. The novelties of our approach presented in this chap-
ter as compared to existing results in the literature are twofold. Firstly, given
an arrival curve as an upper bound for the possible electrical loads, we devise a
strategy to estimate the peak power demand when using a battery as an energy
storage device. Secondly, we show the efficacy of such a scheme by employing
it to decide the most appropriate battery size for large-scale consumers, though
the presented scheme is equally applicable to consumers of any size.
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4 Battery Inclusion for Peak Shifting

Our approach can be summarized as follows: We first characterize the loads
by adopting the concept of arrival curves in Network Calculus [89]. That is,
the power loads for any given time interval are upper bounded by the given
arrival curve. After this, we present a strategy to quantify the impact of any
general controller constrained by the following two properties. 1) For a given
sequence of electrical loads applied to a demand shifting system, if we start
with a higher state of charge (SOC) of a battery, the controller must ensure that
the final state of the battery also remains higher, or at least the same, as the final
state achieved when starting with the lower SOC of the battery; 2) to increase
the power demand at any instant in time, t, the load that occurs nearer to t in
the past has a bigger, or at least the same impact on the total demand at t than
the load occurring much earlier. We name this class of controllers monotonic
controllers.

4.2 Organization

We presented a general overview about peak shifting systems in the beginning
of this chapter. In the next section, we introduce the concept of applying the ar-
rival curves for quantifying electrical loads and the corresponding mathemati-
cal properties. This is followed by the formal model of the system on which we
base our analysis. In the following section, we provide a simple controller that
charges/discharges the storage system based on a given threshold and prove
that such a controller is a monotonic controller. We present a methodology in
Section 4.6 to analyze the (worst-case) peak power demand to the power grid
based on the arrival curve for monotonic controllers. The presented analysis
technique is applied to the traces of real loads from the Karlsruhe Institute of
Technology. The evaluations are presented in Section 4.7 followed by a section
about the possible applications of the presented techniques.

4.3 Application of Arrival Curves to Electrical
Loads

It is customary to provision the electrical supply for a building or an installation
according to its rated load, where ‘rated load’ is the sum of individual load con-
tributions from all the appliances installed in the building. The scenario where
a building or an installation actually operates at its rated load is very unlikely
to occur in practice, though. Consider for instance a residential building which
is equipped with both an electrical heating system and an air cooling system.
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4.3 Application of Arrival Curves to Electrical Loads

Clearly, the heating and the cooling system – being weather dependent – are
operated in a mutually exclusive way.

For a demand shifting system, basing the estimates of the peak demand of an
installation on its rated load tends to be pessimistic and can lead to an over
provisioned system requiring a significantly larger battery than what is actu-
ally required. As the battery is the main contributor towards the total cost of
the demand shifting system, an over provisioned system implies economic in-
efficiency in form of avoidable costs. In the scope of our work, we attempt to
rectify this by providing tighter upper bound for the electrical load posed by an
installation. In order to achieve this goal, we adapt the concept of arrival curves
as introduced in the framework of Network Calculus. The arrival curves were
originally conceived for modeling the traffic arriving at different nodes in a
packet-switching computer network, such as a router in Internet [89]. In such
networks, each packet that arrives at any node in the network is buffered be-
fore being further processed or forwarded. For a reliable delivery of packets it
is important to correctly dimension the buffering space for each node, where
the size of buffer depends upon the processing capability of the node as well as
the rate of arrival of the packets.

We extend the concept of the arrival curve to provide an upper bound for the
electrical load. Similar to a stream of packets arriving at a node in a computer
network, the electrical loads can be seen as a stream of electrical demands ar-
riving at the electrical grid. These demands can either be fulfilled through a
battery or directly through the grid or both. Here, the size of the appropriate
battery required for a demand shifting system depends on the magnitude of
electrical loads. We provide a mechanism to quantify the worst-case electrical
demand that considers their magnitude, i.e., through an arrival curve as shown
in Figure 4.2.

A point to note is that an arrival curve is not the same as a cumulative load
trace. A cumulative load trace represents one concrete instance of loads, whereas
an arrival curve provides a model which represents all possible load traces. We
term any sequence of loads that is upper bounded by an arrival curve α as
α-compliant.

4.3.1 A Method to Generate an Arrival Curve

Arrival curves are normally based on the historic trend of the loads. In this
section, we present a simple method to generate an arrival curve. We set the
value of ∆ to be the smallest possible discrete window used by the supplier of
electricity as basis for a demand charge, typically 15 mins. The highest load
that ever occurred in the whole historic trace in any interval of length ∆ gives
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Figure 4.2: A method to generate an arrival curve from a historic load trace.

us the value of the arrival curve for that ∆. For the next iteration, we increase
the size of ∆ by a unit amount and repeat the same process, which gives us the
second point for the arrival curve. The process is repeated until ∆ is equal to
the interval of our choice.

For example, we might use a load trace with the length of one year to generate
an arrival curve with the length of one month. For this, we start with the ∆
equal to one hour and increment it in each step by an hour till it equals one
month. This gives us an arrival curve for one month. The ‘pessimism’ in the
arrival curve can be increased by considering a longer load trace from history,
for example ten years instead of one, and so on. This method is graphically
shown in Figure 4.2. The left side of the figure shows the loads that need to
be served. In order to discretize, we assume for every time slot that the load is
accumulated at a single point in the end of the slot, as shown in the Figure 4.2.
The right side of the figure shows the resultant arrival curve on basis of the
loads. The intervals in which the maximum load is seen are marked in red at
the bottom of the figure.

Note that we have moved from the absolute time to the relative time domain,
thus some knowledge from the demand stream is lost, such as the exact time
at which a specific situation occurred as well as any knowledge of the average
load.

We argue that the arrival curve of the electrical loads of an installation is a
tighter approximation of the actual loading pattern as compared to the con-
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4.3 Application of Arrival Curves to Electrical Loads

temporary practice of a single valued ‘rated load’. This information can be
exploited for choosing a suitable battery size for that installation, as we show
in the following sections of this chapter.

The method presented here to generate an arrival curve is a simple and effec-
tive method with low computational complexity. However, it is not the only
method. Other more effective methods can also be researched. But this is not
the focus of our work. We assume that an upper load arrival curve is given.

4.3.2 Properties of Arrival Curves

In this section, we discuss the significant properties of arrival curves that are
relevant to the results presented in this chapter. Please note that a counterpart
to an upper arrival curve, i.e. a bound for the maximum load, is a lower arrival
curve, i.e. a bound for the minimum expected load. However, in accordance
with our goals, we limit our focus only to upper arrival curves. When not
explicitly mentioned otherwise, we refer to upper arrival curve when using the
term ‘arrival curve’.

Definition

Given a function α, defined for t ≥ 0, we say a series of chronologically ordered,
consecutive load requests, say `1, `2, ..., are upper bounded by α, if and only if
for any time interval (s, t], where 0 ≤ s ≤ t, the following equation holds.

∀t ≥ s ≥ 0
∑

s<i≤t
`i ≤ α(t− s) (4.1)

and α(0) = 0.

We denote the function α as the upper arrival curve. For consistency in dis-
cretization and without any loss of generality, we assume the arrival curves to
be left-continuous. Also, as we assume a unidirectional flow of energy, all the
load requests are non-negative. Hence, an upper arrival curve cannot have a
negative value. We use the short form of “α-compliant” for any sequence of
loads that is upper bounded by an arrival curve α.

Sub-additivity

Any given load sequence can be compliant to more than one possible upper
arrival curve as shown in Figure 4.3, e.g., α1 and α2. Both of these provide
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can be safely made tighter by excluding the shaded area from it.

an upper bound for the shown cumulative load sequence. α2 shows a very
pessimistic bound for the load sequence. α1, on the other hand, is not ‘tight’.
Consider for example α1(1) = 6, i.e., the maximum load in any single time
slot cannot be more than 6, whereas α1(2) = 15, i.e., the maximum cumulative
load in two consecutive slots can at most be 15. The latter is a more relaxed
constraint than the former one, hence it is superfluous (shown as the shaded
area in Figure 4.3). If the maximum load in one time slot is limited to 6, then
maximum load in two consecutive slots can not exceed 12. Hence, using α1(1),
we can generate a more strict constraint for α1(2), i.e., 12. Generalizing this, a
‘tight’ arrival curve is the one that follows α(s+ t) ≤ α(s) +α(t). This property
is called sub-additivity. We assume that any arrival curve that is given is sub-
additive.

Truncating an Arrival Curve

A given arrival curve can be safely truncated to a shorter length, if required.
One motive to reduce the length of an arrival curve can be to reduce the com-
putational effort for any subsequent analysis steps. While truncating an arrival
curve to a required length, say t, it has to be insured that it remains defined for
all points s, such that 0 ≤ s ≤ t, i.e. the right most part of the curve is removed
to shorten it to a desired length.

The loss of information resulting from the truncation of an arrival curve might
remove some of the constraints from the sequence of loads that is bounded by
this arrival curve. Due to reduced constraints on the acceptable load sequence,
the amount of ‘pessimism’ in the system increases.
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Combining Arrival Curves

More than one arrival curve can be combined together to make the load ap-
proximations better. The basic idea can be explained with the help of an ex-
ample. Suppose, through an expert analysis, we know that the worst loads are
generated each year in the month of December. We analyze the load traces for
the month of December from last n years and generate corresponding arrival
curves. These n disjointed arrival curves, say α1, α2, ..., αn can be combined to-
gether to result in a single arrival curve, αR by selecting a point wise maximum
among all, i.e. αR(i) = max(α1(i), α2(i), ..., αn(i)), where i ranges from 0 to the
maximum number of time units in December.

A point to note here that the mathematical operation to combine more than one
arrival curve into a single arrival curve remains the same even if the curves do
not belong to similar intervals. For example, lets say through expert analysis
it is found out that loads from last year’s June are expected to occur in this
year’s December because of an aperiodic festival. In this case, we might need
to combine arrival curve from last year’s June with a historical arrival curve
from December to get a prediction of the possible loads.

4.3.3 Alternative Uses of Arrival Curve

An approach similar to load quantification through arrival curves can be used
to estimate the amount of energy produced by sporadic sources of energy, such
as wind and solar. In contrast to the previous case where we estimated the elec-
tricity consumption through the maxima of the sums of loads in each interval
∆, we here choose the minimum energy produced in each interval. This data
can be named ‘production curve’, and can be used to predict the least amount
of energy that is guaranteed to be produced in any future period of a given
length. This information can be useful for predicting the amount of fossil fuel
based energy that should be provisioned in the future.

Note: For the rest of the discussion in this chapter we assume the arrival
curve for the electrical load of the concerned installation is given a priori.

4.4 System Model and Problem Definition

In this section, we formalize the system model and present the problem defi-
nition. Figure 4.4 shows the abstract architecture for the peak shaving system
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Figure 4.4: Abstract model for a demand shifting system. The arrows show the
direction of energy flow.

considered in our scheme. Although such a demand shifting system operates
continuously, for ease of modeling, we discretize the system. We assume that
all the operations, such as charging, discharging and requests to the grid, are
point-operations and take place at the end of the corresponding time slot.

4.4.1 Load Model

As mentioned before, we discretize the time into time slots and index them
through i. For time slot i, the plant requests `i amount of energy as a non-
elastic load, i.e. it is non-postponable and non-reducible. It is assumed that the
connection to the grid is capable of fulfilling the worst-case peak demand at
any instant. We assume that the load `i is unknown until the time slot i and
is lumped together as a point load at the end of the time slot. The loads could
come irregularly, periodically, sporadically, or with jitters. The only constraint
is that they are upper bounded by an arrival curve α. Throughout the analysis
we assume that the arrival curve α is given.

4.4.2 Battery Model

The system is equipped with a battery whose maximum capacity is given as
Bmax. At time slot i, the state of charge (SOC), ci, is the available percentage
of Bmax, where 0 ≤ ci ≤ 1. In other words, the amount of energy available in
the battery at slot i, Bi, is given as ciBmax. Note, Bi is the amount of energy in
battery before putting a slot’s request, ri, to the grid or satisfying the load, `i,
because we assume that the load is lumped at the end of the slot. In the later
sections, we use SOC or Bi interchangeably to refer to the residual energy in
the battery. Clearly, 0 ≤ Bi ≤ Bmax. The battery may either be charged or
discharged, but not both, in a single time slot. The amount of energy extracted
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from the battery in a time slot i is denoted by Di. If, in i, the battery is charged,
instead of discharged, then Di is negative.

In practice, an actual, non-ideal battery suffers from two types of inefficiencies.
Firstly, it suffers from the cyclic inefficiency, i.e. the charge that is stored in the
battery cannot be completely retrieved later. We model this loss as follows. Out
of the total energy routed towards the battery, di, we assume only a fraction of
it, Di, actually gets stored in the battery, with Di = Ecycdi and 0 ≤ Ecyc ≤ 1.
The typical cyclic efficiency of commonly used batteries is normally 70–90%, as
presented earlier in Table 2.3. Secondly, the battery loses a fraction of its charge
continuously with time which is called self-discharge rate. The typical value of
self-discharge rate in each time unit of interest (~15 min for demand charge) is
so small that we ignore it to keep the model simple.

It is worth noting here that for the sake of simplification, we lump the cyclic
loss, 1 − Ecyc, of the battery at a single point at which the battery is charged,
instead of spreading it over the whole charge-discharge cycle. Henceforth, we
only consider Di, i.e., the amount of energy that can be retrieved from the bat-
tery after charging, with the losses implicitly accounted for as Di = Ecycdi.

4.4.3 Monotonic Controllers

In a system featuring a battery and a charging controller, the peak demand
from the electrical grid depends not only on the electrical load, but also on the
decisions of the controller, because the timing of charging and discharging the
battery influences the peak demand posed to the grid.

For every time slot, the controller has to decide either to charge or discharge
the battery and the amount of energy to request from the grid. That is, the
controller decides following two parameters for a time slot, i.

1. ri: the amount of energy requested from the grid, and,

2. Di: the amount of energy extracted from the battery. If the battery is being
charged instead, then Di is negative. Clearly, (Bi −Bmax) ≤ Di ≤ Bi.

We assume that the controller is causal and does not have knowledge of the
future. We also assume that at any time slot the controller can satisfy the load
partially from the battery and partially by requesting the grid, i.e., `i = ri +Di.
Fractional mixing is allowed. This is a technically feasible and fairly common
assumption [109]. A controller is said to be a feasible controller, if it ensures
that the demand is always satisfied, i.e., ∀i `i = ri +Di. As the grid is assumed
to be capable of fulfilling any demand at any instant, there are no restrictions
on ri.
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Clearly, for a system with negligible losses, the total energy input to the sys-
tem should be equal to the total output for a set of contiguous time slots in an
interval, i.e.

∀s ≤ t Bs +
∑

s≤i<t
ri = Bt +

∑

s≤i<t
`i. (4.2)

For the approach presented in this chapter, we only consider monotonic con-
trollers. Formally, a monotonic controller is defined as one that satisfies the
following two properties in addition to being feasible.

M1 First property of monotonicity. For a given loading sequence, if a con-
troller starts with a higher SOC, it ends with higher SOC. This is formal-
ized as follows. Suppose, we are given a contiguous sequence of loads
`s, `s+1, . . . , `t−1 for time slots in an interval [s, t), where s < t. We are
also given two initial SOC of a battery, Bs and B′s. Using the controller
for the given load sequence when starting from Bs at time slot s, the bat-
tery charge level at time slot t is Bt. Starting from B′s at time slot s for
the same load sequence, the battery charge level at time slot t is B′t. A
controller is said to be monotonic if it guarantees Bt ≤ B′t if Bs ≤ B′s.

M2 Second property of monotonicity. The nearer the load occurs before the point
of measurement, the higher is its impact in terms of energy requested
from the grid at this point of measurement. Formally, suppose that we
are given a chronological contiguous sequence L of loads [`1, `2, . . . , `i,
`i+1, . . .`t−1]. Consider another chronological contiguous sequence L′ of
loads [`1, `2, . . . , `

′
i, `
′
i+1, . . . `t−1]. L and L′ are identical except in slot i

and i+ 1, where the difference is given as,

`′i = `i − σ (4.3)
`′i+1 = `i+1 + σ (4.4)

Here σ is strictly positive, i.e., σ ∈ R+. A helpful visualization of L and
L′ is shown in Figure 4.5. The controller, C, is said to be monotonic if the
request from the grid for slot t by consideringL′ is no less than the request
from the grid for the same time slot by considering L.

The analysis techniques presented in this chapter are only applicable to mono-
tonic controllers. In Section 4.5, we show a practical example of such con-
trollers.

4.4.4 Problem Definition

The peak measurement problem is defined as follows. Given a monotonic con-
troller C, which serves as an interconnect between the electrical grid, a battery of size
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Figure 4.5: Constant request controller - Second property of monotonicity (M2).
Shifting the load (σ) nearer to the point measurement, t, shall not
decrease the magnitude of request at t.

Bmax and inelastic electrical loads whose demands are bounded by (upper) arrival
curve α, the objective is to find the maximum peak request among the unknown de-
mands.

4.5 Constant Request Controller

In this section we present a simple example of a monotonic controller as de-
fined earlier. This controller is referred to as constant request controller (see
Algorithm 2). It always requests a constant amount Rth from the grid as far
as the battery allows. If the total request is more than the load, the surplus is
charged to the battery and if it is less, the deficiency is fulfilled from the bat-
tery. If requested energy, Rth, is more than free capacity in battery and the load
combined together, then situation is termed as an overflow and the request
from the grid is decreased to the sum of demand (`i) and free capacity of bat-
tery (Bmax − Bi). Analogously, if the battery and Rth combined together are
still not enough to satisfy the load, then an underflow is said to have occurred
and the unsatisfied load is supported directly from the grid.

The pseudo-code for the constant request controller is presented in Algorithm 2.
Here the main outputs of the algorithm are battery status for the next time slot
and the amount of energy to request from the grid for the present time slot. For
these quantities, Algorithm 2 can be simplified as follows.

Bi+1 = max(0,min(Bmax, Rth − `i +Bi)) (4.5)
ri = Bi+1 −Bi + `i (4.6)

73



4 Battery Inclusion for Peak Shifting

Algorithm 2: Constant request algorithm
Input: Load demand: `i,

Algorithm parameter: Rth,
Battery parameters: Bmax, Bi.

Output: Grid request: ri,
Battery state: Bi+1.

ri = Rth

Bi+1 = ri +Bi − `i
/* Applying battery constraints */
if Bi+1 > Bmax then

// Overflow
ri = ri − (Bi+1 −Bmax)
Bi+1 = Bmax

else if Bi+1 < 0 then
// Underflow
ri = ri −Bi+1

Bi+1 = 0

return ri, Bi+1

4.5.1 Offline-optimal Controller

The constant request controller can also be used to emulate other simple con-
trollers, such as an offline-optimal controller. As the name implies, an offline-
optimal controller optimally chooses the time-slots for charging and discharg-
ing the battery with complete prior knowledge of the load trace. To emulate
an offline-optimal controller through the constant request controller, Rth is set
to the average of the loads in the budgeting period, then, provided the battery
is of sufficient size, i.e. underflow and overflow never occurs, this controller
gives the optimal reduction in peak request.

The basic purpose of the offline-optimal controller is to provide a baseline to
which the performance of other controllers can be compared.

It can be shown that the constant request controller is a monotonic controller as
follows.

Lemma 1. The constant request algorithm satisfies the property M1 for monotonic
controllers.

Proof. We prove the statement for M1 defined in Section 4.4.3, for constant re-
quest algorithm. M1 states a controller is said to be monotonic if it guarantees
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Bt ≤ B′t if Bs ≤ B′s.
I.e.,

(Bs ≤ B′s) =⇒ (Bt ≤ B′t) (4.7)

This can be re written as follows.

¬(Bt ≤ B′t) =⇒ ¬(Bs ≤ B′s)
⇒ (Bt > B′t) =⇒ (Bs > B′s) (4.8)

We start with the left hand side of equation 4.8 and show that the right hand
side holds after applying the constant request controller.

Starting in time slot t, Bt > B′t. Then, applying the constant request algorithm
i.e. Equation (4.5) we can write as follows.

Bt > B′t
⇒ max(0,min(Bmax,K +Bt−1)) > max(0,min(Bmax,K +B′t−1)). (4.9)

where, K = Rth − `t−1, which is the same for both cases as we have the same
charging rate and the same load sequence.

For any x and y, if max(0, x) > max(0, y), then x > y. Also, for any x, y and C,
if min(C, x) > min(C, y), then x > y.

Using these inferences, Equation (4.9) can be simplified to,

Bt−1> B′t−1.

Applying the same argument backwards progressively to all slots until slot s
would imply Bs > B′s. This shows that equation 4.8 holds, hence constant
request algorithm satisfies M1.

Lemma 2. The constant request algorithm satisfies the property M2 for monotonic
controllers.

Proof. We prove that the statement for M2, as defined in Section 4.4.3, holds
for constant request algorithm. Using the same loading sequences, L and L′,
as defined in Section 4.4.3, we observe that they consists of three contiguous,
non-overlapping intervals: [1, i − 1], [i, i + 1] and [i + 2, t). In the first and the
last interval the loading sequences are identical and only differ from each other
in the middle interval where the differences are shown in Equations (4.4) and
(4.3). We assume the initial battery status for both loading sequences is the
same, i.e. B0, and battery status for any subsequent slot, say q, is given as Bq
for L and B′q for L′.
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We start with the first interval [1, i−1]. Since the control algorithm, the loading
sequence and the initial battery status are the same for both loading sequences,
we conclude that the final battery statuses at the end of the first interval will
also be the same for both controllers, i.e.

Bi = B′i (4.10)

Considering the third interval, [i+2, t), the loads in L and L′ are the same from
i + 2 to t − 1. Therefore, if the inequality Bi+2 ≥ B′i+2 always holds then by
Lemma 1, we can say Bt ≥ B′t.
Therefore, to prove the second property of monotonicity for the constant re-
quest controller, it suffices to prove the following inequality.

Bi+2 ≥ B′i+2 (4.11)

Here, on basis of Equation 4.5, Bi+2 and B′i+2 are given as

Bi+2 = max(0,min(Bmax, Rth − `i+1 +Bi+1)

B′i+2 = max(0,min(Bmax, Rth − `′i+1 +B′i+1)

Say, K1 = Rth − `i+1 and using Equation (4.4), the above two equations can be
reformulated as:

Bi+2 = max(0,min(Bmax,K1 +Bi+1)

B′i+2 = max(0,min(Bmax,K1 − σ +B′i+1)

For any x and y, if x ≥ y then max(0, x) ≥ max(0, y). Therefore, to prove
Equation (4.11), we must show that

min(Bmax,K1 +Bi+1) ≥ min(Bmax,K1 − σ +B′i+1) (4.12)

For any x, y and C, if x ≥ y then min(C, x) ≥ min(C, y). Therefore, to prove
Equation (4.12), we must show that

K1 +Bi+1 ≥ K1 − σ +B′i+1

⇒ Bi+1 ≥ −σ +B′i+1

Substituting the values of Bi+1 and B′i+1 as per Equation (4.5) in this, we get

max(0,min(Bmax, Rth − `i +Bi) ≥ −σ + max(0,min(Bmax, Rth − `′i +B′i)

Using Equations (4.10), (4.3) and K2 = Rth − `i +Bi, we can rewrite this as

max(0,min(Bmax,K2) ≥ −σ + max(0,min(Bmax,K2 + σ) (4.13)

Therefore, in order to prove Equation (4.11), we need to prove Equation (4.13).
There are four sets of conditions that can occur here. We show that for each one
of these, Equation (4.13) holds.
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1. Bmax < K2 and Bmax < K2 + σ.
Under these conditions, Equation (4.13) can be simplified as follows.

max(0, Bmax) ≥ −σ + max(0, Bmax)

⇒ Bmax ≥ −σ +Bmax

Since, Bmax and σ, both are strictly positive, Equation (4.13) holds with
>.

2. Bmax < K2 and Bmax > K2 + σ.
For every Bmax < K2, it must hold that Bmax < K2 + σ because σ ∈ R+.
Hence, this case is not possible.

3. Bmax > K2 and Bmax > K2 + σ.
Under these conditions, Equation (4.13) can be simplified as follows.

max(0,K2) ≥ −σ + max(0,K2 + σ) (4.14)

Considering this equation, there are only two possible scenarios here as
follows.

a) K2 > 0.
Under this condition Equation (4.15) can be simplified as follows.

K2 ≥ −σ +K2 + σ

Clearly this equation holds. Hence, for this case, Equation (4.13)
holds with equality.

b) K2 ≤ 0.
Under this condition Equation (4.15) can be simplified as follows.

0 ≥ −σ + max(0,K2 + σ)

For this equation, the right hand side can have the possible val-
ues from the set {−σ,K2}. Both outcomes are less or equal to zero.
Hence, for this case also, Equation (4.13) holds.

4. Bmax > K2 and Bmax < K2 + σ.
Under these conditions, Equation (4.13) can be simplified as follows.

max(0,K2) ≥ −σ + max(0, Bmax)

⇒ max(0,K2) ≥ −σ +Bmax (4.15)

Considering this equation, there are only two possible scenarios here as
follows.
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a) K2 > 0.
Under this condition Equation (4.15) can be simplified as follows.

K2 ≥ −σ +Bmax

⇒ K2 + σ ≥ Bmax

This equation is true as we know that the second pre-condition for
this case was Bmax < K2 + σ. Hence, for this case, Equation (4.13)
holds with >.

b) K2 ≤ 0.
Under this condition Equation (4.15) can be simplified as follows.

0 ≥ −σ +Bmax

⇒ σ ≥ Bmax

This equation is true because, using the second pre-condition for this
case, i.e., Bmax < K2 + σ, and K2 ≤ 0, it must hold that σ > Bmax.
Hence, for this case also, Equation (4.13) holds with >.

Hence, we conclude that Equation (4.13) and therefore, Equation (4.11) holds
for all cases, therefore constant request controller satisfies M2.

Theorem 4.1. A controller C, that follows the algorithm presented in Algorithm 2 is
a monotonic controller.

Proof. This is simply based on Lemmas 1 and 2.

4.6 Analysis Technique

In this section, we present the main contribution of this chapter, i.e. , the tech-
nique to analyze the peak electrical request from the grid given 1) a load arrival
curve and 2) a monotonic control scheme to manage the battery.

The core idea of the analysis technique is based on the following three observa-
tions.

1. Firstly, the more the amount of charge in the battery, the more it will be
able to help in the reduction of request from the grid

2. a load occurring nearer prior to the point of measurement results in a not
less drained battery at the point of measurement than a load occurring
further back in time, and
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3. trivially by the definition of the arrival curve, the worst-case load in any
time interval [t, t + ∆) is upper bounded by the initial ∆ portion of the
arrival curve.

Based on these observations, we can synthetically construct a load trace for a
given time slot, that maximizes the load at that slot. When the load is maxi-
mized, this leads to the peak in request from the grid at that point. Repeating
this procedure for every time slot that belongs to an interval of interest, gives
us the maximum peak possible for each time slot of that interval. The highest
peak for the interval then is the highest peak among all the calculated peaks for
the interval.

The above presented observations form the foundation for our analysis tech-
nique. The first two of these are, indeed, the two properties of monotonicity
as discussed in the context of monotonic controllers, that is why our scheme is
limited only to monotonic controllers.

The third observation is a direct corollary of the definition of the arrival curve,
i.e., Equation (4.1), which can be used to generate worst case loading sequences.
Worst case loading sequences are discussed in detail in the following section.

4.6.1 Worst Case Load

As the name suggests, a worst case load sequence is such a loading sequence
that results in the highest possible peak in the request from the grid at the point
of interest. Due to its property of causing a peak in the request, worst case
load sequence is used extensively in the analysis technique we present. In this
section, we discuss the concept of a worst case loading sequence and present a
procedure for generating such a sequence when an arrival curve is given.

According to the definition as shown in Equation (4.1) of an arrival curve, say
α, the worst case load of any single slot is upper bounded by α(1). Similarly,
the worst case load of any two consecutive slots is upper bounded by α(2),
and so on. This property of arrival curves, combined with second property
of monotonicity, can be exploited to generate the worst case load sequence for
any arbitrary slot t. For example, to generate a worst case load sequence of two
slots, the following set of equations must be satisfied.

`2 = α(1)

`1 + `2 = α(2)
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Similarly, to generate a worst case load sequence of length three, the following
set of equations must be satisfied.

`3 = α(1)

`2 + `3 = α(2)

`1 + `2 + `3 = α(3)

These sequences can be simplified to give a loading sequence of size t as

∀k ∈ [1, t− 1] `t−k = α(k + 1)− α(k)

and `t = α(1).

We generalize this idea and prove its correctness in Theorem 4.2, where Equa-
tion (4.16) formally defines the worst case loading sequence for any slot t.

Important to note, considering the two examples of worst case load sequences
discussed above, the loading sequence for slot 2 is actually the same as that of
slot 1 except shifted by one place and one term added in the beginning. In other
words, if the worst case loading sequence for slot 1 is L, then the same for slot 2
can be stated as L′ = (`′1,L). This implies that if we need to calculate the worst
case loading sequences for all slots belonging to a contiguous single interval,
only one extra term needs to be computed for every slot which is then prefixed
to the loading sequence computed for the earlier slot. This property of worst
case loading sequence makes it computationally easier to calculate.

Theorem 4.2. Under a given arrival curve, α, a monotonic controller and an initial
battery charge B0, the peak request the controller puts to the grid at a time slot t is that
which results due to a load sequence L of loads `1, `2, . . . , `t satisfying the following:

∀i ∈ [1, t]
t∑

k=i

`k = α(t− i+ 1) (4.16)

Proof. Suppose there exists a loading sequence L′ that results in a higher re-
quest at time instant t than L when starting with the same B0. Then, due to
the monotonicity of the controller, L′ must have an interval [i, t] with higher
cumulative load than L, i.e.,

∑t
i `
′
k >

∑t
i `k, where i ≤ t. This implies that L′

lies outside the bounds of the arrival curve α and hence is not a valid loading
sequence.

4.6.2 Methodology

To determine the maximum possible peak request that might be put to the grid
by a controller in an interval, say [0, t′), we follow a three step procedure.
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Firstly, we determine the worst case loading sequence for a slot, say t, belong-
ing to the interval [0, t′) using the given arrival curve. This loading sequence
is unique for every slot and is synthetically generated as described in Theo-
rem 4.2.

In the second step, using the previously generated loading sequence for the
time slot t in combination with a given monotonic control algorithm and bat-
tery parameters, we simulate the normal working of the system. Then, the
request that the controller puts to the grid at the slot t is recorded.

Both of these steps are repeated for every t belonging to the interval [0, t′), i.e.
a budgeting period. Once we have all the worst case requests for every time
slot, we simply choose the maximum among them in the last step,. This gives
us the maximum possible peak that might occur in the interval of interest.

An important point to note here is that if the system starts with an empty bat-
tery, then the highest peak in request is trivially the one that occurs in the first
slot for a single-slot worst case loading sequence which is equal toα(1). In other
words, if we start with an empty battery, it is as if we did not have a battery in
the system as far as peak analysis is concerned. However, if the starting battery
status is non-zero then the highest peak in the request is less than highest peak
in the worst case load. For this reason, the control algorithm must insure that at
the end of each budgeting period the battery is not completely drained so that
the next budgeting period does not start with an empty battery.

4.6.3 Battery Partitioning

There are several ways to make sure that the SOC at the start of each budgeting
period is non-zero. For instance, one way is to partition the battery into two
parts, R and N , let’s say with the capacities of 25% and 75% of the original
battery, respectively. For the normal working of the system only N is used
while R is constantly charged in preparation for the next cycle. The rate of

charge per time slot for R is set to free capacity in R
no. of time slots left in the budgeting cycle ,

i.e. linear charging to ensure that R is full by the end of the budgeting cycle.
If during the normal operation N is fully charged, then the normal requests
(Rth) can be used to supplement the charging ofR. The requests from the grid
to chargeR are in addition to the normal requests that the controller generates
for the normal operation. This guarantees that at the beginning of every new
budgeting period at least 25% SOC is available in the battery. However, a price
is paid: only 75% of the total capacity of the battery is available for the normal
operation of the system.
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Another possibility is to partition the battery after a specific fraction of the bud-
geting period has elapsed (e.g., in the middle), instead of doing this in the start.
That is, the whole battery is employed for a normal peak shaving operation up
to the chosen instant and afterwards a part of the battery is reserved for linear
charging while the rest continues to be used for the normal operation. This is
a generalization of the scheme discussed earlier. The primary beneficiary in
this version are those systems that are equipped with a battery comparatively
smaller than their mean load. In such systems, owing to the small capacity of
the battery, the conditions of overflow and underflow are more likely to occur.
Hence, by delaying the partitioning as late as possible, the system can employ
the full battery for a longer period. Moreover, as the battery is not too big, the
linear charging in the last portion of the budgeting period is not likely to cause
a high peak.

Finding the appropriate partitioning point is an optimization problem in its
own right. For instance considering sizing, the bigger the portion of battery
reserved for future preparation, the lesser the system’s ability is to dampen the
peak in load that occurs after partitioning. Conversely, the smaller the por-
tion of the battery reserved for the preparation of the next budgeting cycle, the
higher the amount of pessimism is in the analysis for the next cycle because
the guarantee for initial SOC is proportionally scaled down. Similarly, consid-
ering timing, if the battery is partitioned too early, it becomes more probable
that peaks in the load will occur during the period when the system’s ability to
respond is decreased. On the other hand, if the battery is partitioned too late,
the overhead in the request due to the additional load for charging might be too
high, causing peaks of its own. Fortunately, these decisions can be fine tuned
by considering the historical trends and running simulations on the old traces.
However, we do not explore this aspect in the scope of this report.

4.6.4 Computational Complexity

The computational complexity of the presented methodology is derived from
the above mentioned three steps. Let’s say there are n time slots in a budgeting
period. In the first step, the worst case loading sequence is generated for each
of these. At maximum, this requires as many computational steps as are the
number of slots in a budgeting interval. For a worst case loading sequence of n
slots, it takes n steps.

In the second step, the control algorithm is simulated for worst case loading se-
quence for each slot. The complexity of this step depends upon the complexity
of the control algorithm. In case of the constant request algorithm (Algorithm
2), it takes linear time which can be upper bounded by n steps. Complexity of
both these steps together for a single slot can then be upper bounded by (n+n).
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For a total of n slots, the combined complexity for these two steps is given as
n(n+ n), hence 2n2.

In the last step, the highest peak is selected among the peak requests for every
slot. This is equivalent to choosing the highest number in an unsorted array of
n numbers, i.e. n-steps. Considering this, the computation steps can be upper
bounded by 2n2 + n, i.e. O(n2).

4.7 Evaluations

To evaluate our technique for Algorithm 2 presented in Section 4.5, we use the
electrical load for the month of April 2012 from Karlsruhe Institute of Tech-
nology (KIT), Germany. As April includes Easter, it provides a good example
of monthly recurring and non-recurring usage patterns. Figure 4.6 shows the
trace that we use. The figure comprises of two charts with synchronized x-axes,
each of these is elaborated as under.

The chart at the top shows KIT’s actual load trace for April 2012 along with a
request trace that a constant request controller would generate when a battery
of 20 MWh is employed in the system where the constant charging rate (Rth)
is 6.428 MW. Rth is selected to be 10% more than the mean of the load trace,
whereas the battery size is selected to be approximately four times that value.

The chart at the bottom shows the corresponding SOC for the battery over time
(SOC chart). Naturally, when the battery is used to support the load, the SOC
decreases and vice versa. The starting SOC is 25%. As can be seen in the graph,
for the last week of April, starting at midnight 24th April, the battery is logically
partitioned into two portions, one for the normal operation and one for the
preparation of the next budgeting cycle, namely R and N respectively. N is
equivalent to 75% of the total capacity of the battery, whereas R occupies the
rest. From the point of partitioning onwards,R is charged at a constant rate so
as to have it fully charged by the end of the budgeting period. Additionally,
when N is full and the load is less than Rth, then the underutilized portion of
Rth is also diverted to R’s charging, as discussed in Section 4.6.2. This is seen
in the graph, e.g. the progression of SOC for R during the day of 26th April
is higher than usual. This mechanism guarantees that at the start of the next
budgeting period, the battery will have at least 25% SOC.

In the SOC chart, looking at the progression of charge accumulation in R, it
can be seen that partitioning the battery a week in advance is not an optimal
decision in this particular case as R saturates in less than 3 days. Hence, the
partitioning point could have been delayed further. In the rest of the evalua-
tions, we set the partitioning of the battery to occur at an instance when 90%
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Figure 4.6: For April 2012, KIT’s load profile vs request profile by constant re-
quest controller for a battery size of 20 MWh and charging rate (Rth)
of 6.428 MW. Bottom diagram shows the SOC of battery. R is the
portion of the battery reserved for the preparation of the next cycle,
whereas N is the leftover portion employed for normal operation.

budgeting period has elapsed, and we divide the battery into portions of 25%
and 75% asR and N , respectively.

Apart from this, two key observations can be made in Figure 4.6. Firstly, the
resultant request curve is significantly flatter than the original load curve. And,
secondly, the peaks in the request occur whenever the battery is empty and
hence unable to support the load. Both of these aspects generally correspond
to the objectives of a peak shaving system, i.e. to reduce the maximum peak in
request and to have flatter request curve.

We examine these aspects further in Figures 4.7 and 4.8. As previously noted,
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Figure 4.7: Number of underflow instances for different Rth and different bat-
tery capacities for constant request algorithm.

the peaks in the request normally occur when the battery is completely drained
(underflow). Hence, the total number of such instances can be used as a metric
to judge the performance of the control algorithm. In Figure 4.7, we present
the results of the evaluation of constant request algorithm (Algorithm 2) in this
regard. We plot the total number of underflow instances that occur during the
simulation of actual load trace for different values of the constant charging rate
(Rth) and the battery capacity.

Clearly, the magnitude of requests and the optimum size of battery for an in-
stallation is intrinsically linked to the shape and magnitude of its load curve.
To give an insight into the interdependence of these variables, two scales are
presented on both of the independent axes in Figures 4.7 and 4.8: the outer
scale in absolute units and the inner scale as a function of average value of the
load trace.
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Figure 4.8: Peak request for constant request algorithm for different Rth and
different battery capacities.

A point to note here is that although Figures 4.7 and 4.8 have a similar appear-
ance, they express two different aspects of the peak shaving system. Figure 4.7
exhibits the average performance of the system whereas Figure 4.8 shows the
worst case performance. We elaborate this point with the aid of an example.
Consider the data points belonging to the series where battery capacity is 8.3
MWh. In Figure 4.7, we see that with the increase in charging rate the number
of underflow instances decrease, i.e. the performance of the system improves.
Considering the same series in Figure 4.8, we see that the peak request remains
at 9 MW although the Rth is increased by 20%. This shows that the battery size
of 8.3 MWh is not enough to substantially affect the highest peak in the load
trace. Based on this, we conclude that in this case increasing Rth improves the
average case performance of the system but not the worst case.

In Figure 4.8, we can observe that for the worst case performance of the system
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both Rth and battery capacity can be the limiting factor and the peak in request
can not be reduced substantially through any one of them alone. Consider for
instance data points belonging to the Rth of 6.1 MW in Figure 4.8. Here when
the battery size is increased from 1.6 MWh to 8.3 MWh the resulting highest
peak decreases. But after this, further increase in battery capacity does not
result in any decrease in the highest peak. The reason for this is that in this case
Rth has become the limiting factor. Observing the corresponding data points in
Figure 4.7, i.e. whereRth is 6.1 MW, reveal that increasing the battery size helps
reduce the underflow instances, i.e. resulting in the flatter request curve. But
the highest peak in the load trace remains beyond the reach of our system due
to too small Rth. Similarly, observing the data points belonging to the battery
capacity of 1.6 MWh in Figures 4.8 and 4.7, one can observe that increasing Rth
helps in the average case but not in the worst case. This can be attributed to
a similar reason as discussed earlier, i.e., the battery capacity has become the
limiting factor here.

Another difference between Figures 4.8 and 4.7 lies in the fact that average per-
formance of the system as measured by the number of underflow instances im-
proves monotonically with an increasing resource input to the system, i.e. Rth
and battery capacity. This however is not the case with the worst case scenario
as measured by peak power request in Figure 4.8. Here we see, for instance, for
the battery capacity of 21.8 MWh, an increase in Rth results in the decreased
peak request in the beginning, but since Rth itself is also included in the total
request, increasing it further becomes counterproductive.

It is also worth noting that the performance of Algorithm 2 is more sensitive to
changes in Rth as compared to changes in the battery capacity. For example in
Figure 4.7, for the battery size of 1.6 MWh, which is a quarter of the mean load
(5.92 MW), increasing Rth by 20%, that is from 5.8 MW to 7.0 MW, results in a
reduction of over 42% in underflow instances. For the same 20% increase inRth
but with a bigger battery in system, i.e. 8.3 MWh instead of 1.6 MWh, results
in over 90% reduction in underflow instances. To achieve the same reduction
through a bigger battery alone, the size has to be more than doubled. Consider
for example the instances which correspond to battery sizes of 8.3 MWh and
15 MWh with an Rth of 6.7 MW. Here the battery size is almost doubled to
effect a 90% reduction in underflow instances. This shows that Rth can be used
to control the peak more effectively, as long as the battery is not the limiting
factor.
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Table 4.1: Summary of Electricity Tariff HPN0 for Industrial Consumers - Duke
Energy, Indiana [6]

Component Charge
Total Demand Charge 23.3084 $/kW
Total Energy Charge 0.0295 $/kWh

4.8 Applications

A demand shifting system consists of a number of components whose inter-
play determines the net utility of such a system. The ability to model the com-
ponents and estimate the outcome can save one from expensive experiments.
The methodology presented in this chapter enables us to model the interplay
of different components of such a system and determine the worst case results
for different objectives.

The premier application of the presented technique is in determining the most
appropriate battery size as well as the configuration parameters for the control
algorithm. We present an example here to illustrate our point.

Consider, for example, an office complex such as KIT being served by a typical
electricity tariff for an industrial consumer, such as the one discussed in the case
study presented in [6]. We reproduce the salient features in Table 4.1. From
trace analysis for KIT (Figure 4.6), we know that magnitude of highest peak
for April was 10.560 MW. According to the mentioned tariff, this results into a
demand charge of USD 246 thousand for the month.

Keeping these facts in mind, the important question here is: how big a battery
should we employ in order to maximize the financial savings?

Normally, for peak shaving systems the battery of choice is Sodium Sulphur
(NAS) flow battery as it is considered the most appropriate for such applica-
tions [124]. Its costs around 300 $/kWh and has a service life of up to 20 years.
For our analysis we amortize the cost over the span of the whole life with a
nominal interest rate of 5%.

Building on the evaluations done earlier, we use the same data points and
present the results in Figure 4.9. Here we use two factors to calculate the net
monthly costs: 1) the amortized cost of the battery, and 2) the cost of the peak
in request that occurs at the point after employing the battery. We find out
that using the battery of 15 MWh with an Rth of 7 MW is the most economical
configuration where the net monthly operation costs USD 193 thousand, i.e.
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Figure 4.9: Cost estimates for NAS battery with 20 year life cycle for constant
request algorithm for different Rth and different battery capacities.

realizing a savings of USD 53 thousand per month or more than half a million
per year.

4.9 Summary

In this chapter our aim was to analyze and provide solutions for the demand
shifting problem so that the associated environmental and financial benefits can
be realized. We tackled a special version of the problem, i.e. the peak shaving
problem using the battery as an energy storage device in the system.

We started with a scheme to quantify the electrical loads using arrival curves
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and argued that it is more realistic than the existing ‘rated load’ scheme. On
this foundation, we devised a methodology to calculate the peak demand for
a given battery under monotonic controllers. We presented a simple and ef-
fective example of a monotonic control algorithm and employed it to illustrate
the conditions that must be met for a controller to be monotonic. After this
we presented our methodology for monotonic controllers with which we can
determine the worst case peak requests that a peak shaving system can pro-
duce. In the last section we evaluated the constant request controller using
actual traces from Karlsruhe Institute of Technology and showed the potential
associated financial benefits.

With the increasing share of renewable energy sources in grid, the demand
shifting problem is gaining in importance. In this chapter we attempted to
contribute by solving a special version of this problem. However, in general,
many avenues of research in this field remain open, such as tackling flexible or
postponable loads, providing absolute or probabilistic guarantees about grid
availability, managing distributed storage etc.
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In the previous chapter, we discussed a technique which can be applied in a DC
to manage peak power consumption by employing an energy storage device.
In this chapter, we present another approach to that end, applicable specifically
to DCs, by using real-time scheduling techniques. We explore the possibility
of scheduling the jobs on servers within a DC in a centrally coordinated man-
ner, so that peak power consumption is minimized while meeting the timing
constraints set for each job.

To handle jobs in DCs, the MapReduce model [41, 42] is widely used. It follows
a simple two phase approach, i.e., Map and Reduce. Many complex programs
can be trivially broken down into this computing paradigm. We present the
details of this process in Section 5.2. A cluster of servers executing a MapRe-
duce program in the presence of an SLA is fundamentally similar to a many-
core processor executing tasks that must be finished within their deadlines, i.e.,
real-time constraints.

In this chapter, we provide an overview of the MapReduce model and establish
its congruence to many-core processors. Next, we present the techniques for
power management for such systems under the timing constraints imposed by
real-time workloads. For this, we present polynomial time heuristic algorithms
for different cases that originate due to heterogeneity of processing cores and
tasks and demonstrate their effectiveness in decreasing the power consumption
using a simulation based on a 48-core prototype processor.

The techniques presented in this chapter are based on our previous work [112].
We reproduce the same mathematical results here with an extended discussion
about them. Also, we discuss the applicability of our results to scheduling in
MapReduce.

5.1 Organization

This chapter is organized as follows. In the next section, we present an overview
of the MapReduce architecture (Section 5.2) along with its resemblance to a
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large many-core processor. Next, we discuss the problem of power manage-
ment on many-core processors and the related challenges arising due to the
phenomenon of dark silicon. In Section 5.3, we present a brief introduction and
motivation for the problem of dark silicon. This is followed, in Section 5.4, by
a formal model of a many-core processor executing a real-time workload. In
Section 5.5, we present the core idea of our scheme for power management on
many-core processors. In Sections 5.6, 5.7 and 5.8, we deal with the different
cases arising from the heterogeneity of tasks and processing cores, while fo-
cusing only on frame-based real-time tasks. In Section 5.9, we generalize our
solution to include implicit deadline periodic tasks. Section 5.10 includes the
results of simulations, followed by the chapter summary in Section 5.11.

5.2 MapReduce

Invented by Google Inc., MapReduce [41] is a popular programming model for
processing and generating large data sets, by exploiting the parallel process-
ing capabilities of a cluster or a grid of commodity off-the-shelf computers. In
this section, we provide an overview of the MapReduce model and its salient
architectural details, along with a short example of how it works and its similar-
ities to many-core processors. It is not, however, intended to provide extensive
details about MapReduce here. For these, the reader is referred to the many
studies produced on this topic, e.g., [84, 42, 113], among others.

5.2.1 Overview

Among the many distributed computing paradigms available on the market,
MapReduce has established itself as one of the more popular models. The
benefits of the MapReduce programming model have been demonstrated on a
wide spectrum of domains, ranging from search and ads analysis [9, 60, 70] to
bioinformatics [99, 104, 133], artificial intelligence, machine learning and data
mining [23, 55, 165]. Over the years, a number of different implementations
of MapReduce have emerged, the famous ones being Hadoop MapReduce by
Apache Corporation [84] and Disco by Nokia Corporation [113]. Both are pub-
lished and maintained as open source software.

The central idea of the MapReduce model is to facilitate the use of large number
of computers in a DC for parallel execution by abstracting out complex details,
such as concurrency, failure recovery and time management. This allows the
users to focus on data processing strategies instead of infrastructure issues. The
user is required to provide only two functions Map and Reduce. These are
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applied sequentially to the input data and the intermediate outputs are stored
on a distributed file system. The system takes care of the error management,
scheduling, robustness, and locality issues related to the data and code.

5.2.2 An Example of the MapReduce Workflow

The MapReduce model is well suited for workloads consisting of batch re-
quests, commonly called jobs. A job normally refers to a longer running exe-
cution entity, with processing time typically in the range of minutes to hours
(in contrast to a request, with processing time in milliseconds to seconds). The
processing of jobs in the MapReduce model is coordinated centrally by a “mas-
ter” node which assigns the work packages to “worker” nodes. The worker
nodes execute the work assigned to them and update their status by sending
periodic “heart-beat” messages to the master. A classic example of a job is a pro-
gram that is used to determine the popularity of different websites by counting
the number of accesses of each URL that appears in the logs of different web
servers. The size of these logs can reach up to multiple terabytes.

We present a sample MapReduce workflow to calculate the frequency of words
in a set of documents, as shown in Figure 5.1. This example is similar to the
previously mentioned, common use case of MapReduce: counting the accesses
for each unique URL in the web server logs. The execution of such workflows is
initiated by separating the source data into independent splits. The processing
of the input-splits is divided into two phases: the map phase and the reduce
phase. During the map phase, the master node initiates a map task for each
split of the input data and assigns these tasks to the idle worker nodes. The
worker nodes executing the map task apply the user-provided Map function
onto each split, generating intermediate key-value pairs. In the presented ex-
ample, a tuple in the form of (<word>,1) is emitted for every word encountered
in the input data. This intermediate output is stored on a distributed file system
that is accessible for all other workers. When all of the Map tasks have ended,
the master node instantiates Reduce tasks on idle nodes in the network, one
per unique intermediate key; i.e., in the presented example, one per unique en-
countered word. The job of the reduce tasks, in this case, is to aggregate the
list of intermediate data produced by Map tasks to a single value representing
word frequency by summing the values from the previous step.

When executing a MapReduce job, the number of map tasks does not depend
on the number of available nodes in the network, but the number of blocks the
input is split into. Each block is assigned to a single map task. Similarly, the
number of reduce tasks depends upon the number of keys generated during
mapping.
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Figure 5.1: A sample MapReduce workflow: Execution phases and architec-
ture.

5.2.3 Scheduling in MapReduce

In a single MapReduce job, there are multiple map and reduce tasks, each of
which is a single unit of work that can be executed in parallel during the job’s
respective map and reduce phases. There can be multiple MapReduce jobs in
the system, each with its own set of map and reduce tasks. Since the reduce
phase consumes the output of the map phase, reduce tasks are executed only
after all of the map tasks (i.e., the map phase) of the corresponding job have
been completed. However, different MapReduce jobs might be undergoing dif-
ferent phases at the same time. The master node is responsible for scheduling
these tasks, and distributes them to a number of slave nodes as per the num-
ber of free slots they have, where a slot is the smallest unit of time for which a
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processor is allocated to a task.

Generally, the MapReduce jobs are seen as best-effort, batch-mode-only appli-
cations, although, the trend is changing. MapReduce applications are increas-
ingly latency-sensitive and operate under demanding workloads that require
fast response times for data-intensive computations. Consider examples in
which the timeliness is highly desirable, such as online log processing [18], traf-
fic simulation [157] and personalized recommendations [9]. Moreover, due to
input and output dependencies that often arise when carrying out complex al-
gorithms, MapReduce jobs usually form Directed Acyclic Graphs (DAG), called
MapReduce workflows. Formulating scheduling policies for jobs represented
by DAGs, under real-time constraints, is currently an active research topic [93,
95, 97, 98, 123].

MapReduce deployments typically consist of thousands of machines sharing
a high-speed and high-bandwidth intranet. Assuming bounded network de-
lays, which can be subtracted from the respective deadlines, the MapReduce
platform acts as a very large many-core processor [95]. This makes the results
about scheduling for the domain of multiprocessor environment easily portable
to MapReduce, and vice versa. In the rest of this chapter, we focus on schedul-
ing and power management issues in the domain of many-core processors and
related issues such as dark silicon.

5.3 Power Budget in Dark Silicon

The amount of silicon available on the processing chips is increasing, while
Moore’s Law continues to hold. Increased integration is resulting in many-core
architectures. Analogously to Moore’s Law for increase in silicon for every
generation of processing chips, another prediction was made that the power
consumption per transistor will keep decreasing at roughly the same rate as
increasing silicon, i.e., the so-called Dennard scaling [45]. Historically, the tran-
sistor power reduction afforded by Dennard scaling allowed manufacturers to
raise clock frequencies drastically from one generation to the next to achieve
performance gains, without significantly increasing overall circuit power con-
sumption. However, Dennard scaling holds no more. Now, with more silicon
available on chips, designers’ focus has shifted toward core heterogeneity and
accelerator-rich designs to achieve higher performance. This increase of digital
logic on the chips and the failure of Dennard scaling [45] is resulting in in-
creased power densities on next-generation chips. Consequently, introducing
the so-called Dark Silicon problem, where a significant percentage of the total
available cores in a many-core system cannot be powered-on simultaneously
due to thermal constraints [50, 144, 66]. Commonly, the chip manufacturers
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provide a Thermal Design Power (TDP) value which is considered to be the
highest sustainable power that a chip can consume without triggering any per-
formance throttling mechanisms [75], such as Dynamic Thermal Management
(DTM). Heat-sink and the chip cooling solution are designed according to the
TDP value.

Based on technological data from ITRS and Intel, various estimates [50, 66]
show exponential growth in the amount of dark silicon with each process gen-
eration. For instance, according to [50], in a coming decade more than 50% of
the chip area be dark for 8 nm chips. Clearly, with every successive generation,
the operation below TDP will leave increasingly more parts of a chip dark.

The operational range below TDP is preferred for real-time tasks because it
is guaranteed to be DTM-free and activation of DTM can result in hardware-
based performance throttling to keep the chip within safe operating conditions.
Modeling the resultant performance loss precisely to guarantee real-time per-
formance constraints is non-trivial, because it introduces new variables in the
problem, e.g., ambient temperature and the DTM policy of the chip. One way
of guaranteeing sustainable performance is to have a DTM-free operation. If
operation below TDP guarantees that DTM is not activated, then, managing the
cumulative peak power consumption of the cores to be within the TDP limit guarantees
DTM-free operation.

Treating TDP as a hard limit negates the possibility of using the cores at high
power for short spans of time, i.e., so called thermal sprinting. On the other
hand, the major benefit it provides is that it becomes a basis of a simple, online
and pessimistic, but sufficient, test for guaranteeing the feasibility of real-time
tasks scheduled on many-core chips whose TDP values are known. This peak
power based sufficient schedulability test is similar to the widely used utilization
based schedulability test for the design of schedulers in real-time systems. Nu-
merous reports of the latter appear in the literature. Moreover, for scheduling
decisions, this test abstracts the need to consider the details, such as initial tem-
perature of the core, distance of the core from the periphery, distance from other
active cores, etc.

In order to provide a DTM-free operation, another important aspect is the het-
erogeneity of cores and tasks. Different tasks have different peak power con-
sumptions on different cores, as shown in Figure 5.2. Since heterogeneous
multi-core scheduling is an NP-complete problem [14], the approximation in-
volved in task-partitioning algorithms often leaves cores less than 100% uti-
lized. This leftover utilization can be used to put the core into a low power
sleeping state. Appropriately scheduling this sleep period for each core can re-
sult in a decreased peak power consumption for the chip, thereby helping to
remain within the TDP constraint and offering guaranteed performance due to
the DTM-free operation.
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Figure 5.2: Peak power consumption values for a subset of applications from
PARSEC benchmark [16] on two different cores.

It is important to note that peak power minimization is not the same as energy
minimization. Much of the existing research has focused on energy minimiza-
tion for real-time tasks on multi-core platforms [31, 33]. Energy minimization
can be equivalent to average power minimization, whereas our focus is on peak
power minimization. Also, for cores whose voltage and frequency are indi-
vidually dynamically scalable (per-core DVFS), the problem of minimizing the
peak power can be equivalent to the problem of minimizing the energy. That
is, because the cores can be individually slowed down appropriately to finish
the workload just in time, the core’s workload gets distributed over the whole
frame. This optimally suppresses any peaks in the power consumption, and
also results in optimal reduction of the energy consumption because the cores
are operated at the minimum feasible frequency throughout the frame. Results
such as these are reported in literature, notably [31, 33]. However, due to mon-
etary and chip-area costs, per-core DVFS is not feasible for many-core proces-
sors. Consider a system with thousands of cores, each one of them having its
dedicated analog circuitry to control the voltage and frequency. To realize such
a design would require not only a huge area on die, it might be financially un-
feasible as well. Because of this, tiled architectures are becoming popular [72].
Each tile consists of a group of cores and the operating frequency is selectable
at the granularity of a tile [72]. For such architectures, after the frequency of
operation for a tile has been selected, the cores on that tile can be individually
turned on or off ; i.e., Dynamic Power Management (DPM) can be used to con-
trol the power consumption. For this, an appropriate scheduling of sleep time
for each processing core on a tile can result in reduced peaks in the power con-
sumption for that tile, thereby reducing the peak power consumption for the
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Figure 5.3: Motivational example of two different schedules.

whole chip. We address this problem later in this chapter.

In a nutshell, for a specific processing chip, the dark silicon problem consists
of deciding the task partitioning and time schedules for the given cores, taking
advantage of the hardware capabilities such that the physical power and tem-
perature constraints are met, while satisfying the system’s minimum required
performance. We show this in the following simple example.

5.3.1 Motivational Example

Consider a many-core processor with four cores, i.e., c1, c2, c3, and c4, where
each core executes tasks at 1 GHz. Assume that the power consumption for ex-
ecution is 2 Watts per core, and that each core consumes 0 Watts when sleeping.
Moreover, for simplicity in presentation, assume negligible overhead for sleep-
ing. Under such hardware settings, consider that there are 4 real-time tasks
arriving at time 0, i.e., τ1, τ2, τ3, and τ4. Each task needs to execute 7.5 · 108

computer cycles, and all tasks share a common deadline of 1 second, i.e., frame-
based tasks. Although this results in a total utilization of 3, if task migration
is not desired, then any task partitioning scheme will assign one task in each
core.

Figure 5.3 shows two possible schedules where all tasks meet their deadlines.
For the schedule in Figure 5.3a, all tasks start execution simultaneously at time
0, and all cores go to sleep after 0.75 seconds. This results in a peak power
consumption of 8 Watts. On the other hand, by using DPM to control the
sleep cycles of the cores, Figure 5.3b shows another possible schedule. For
this second case, the peak power consumption is 6 Watts, from only activat-
ing 3 cores at any given time. Assume that TDP for this chip is 7 Watts. In
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this case, the first schedule will result in activation of DTM whereas the sec-
ond one can avoid it. In the case of the first schedule, if the DTM is activated,
it may trigger hardware-based performance throttling to keep the chip within
thermally-safe operating conditions. This can result in the tasks missing their
deadlines. Whereas, in the second schedule, DTM activation can be avoided.
Here, once a schedule is selected for the real-time task set, a sufficient feasibility
test can be designed which checks if the cumulative peak power of all cores will
exceed the TDP for the chip. This example illustrates 1) the potential benefit of
an appropriate coordinated schedule of sleep cycles of the cores in order to re-
duce the total peak power consumption, and, 2) the need to add an additional
criterion of peak power consumption for checking the feasibility of a task set
with real-time requirements.

Objective

Our goal here is to find a sleeping schedule for active cores on a fixed hardware
platform, considering the heterogeneity of cores and tasks, such that the peak
power is minimized to accommodate the TDP constraint, while guaranteeing
that all real-time tasks meet their deadlines.

Our Contributions

For hard real-time tasks:

• We present a peak power management scheme (PPM). For the sake of
completeness, we first deal with the task partitioning onto the available
cores and determine the individual schedules for all tasks. Next, we
schedule the sleep cycle, which is equivalent to the unconsumed uti-
lization of each individual core. This is done in a way that peak power
consumption is minimized, without violating the hard real-time require-
ments of the tasks.

• In addition to the existing utilization-based schedulability tests, we in-
troduce the concept of a sufficient test for schedulability considering the
peak power consumption of a task set with real-time requirements.

• An analysis of our scheme details how our solution determines the sleep
cycle for individual cores, starting from “homogeneous tasks on homoge-
neous cores” to the most general case of “heterogeneous tasks on heteroge-
neous cores”.
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• We simulate our PPM scheme using power traces collected from the 48-
core SCC platform [72] and gem5 architecture simulator in combination
with McPAT [96].

5.4 System Model and Problem Definition

We employ the commonly used system model for a heterogeneous multi-core
system [14] as follows: Given a set of software processes (tasks), a set of pro-
cessing entities (cores) upon which these tasks can execute, and the rate at
which the processing cores execute the tasks and their corresponding power
consumption values, our goal is to determine a mapping of the tasks onto the
cores and determine a time schedule for the cores in such a way that the peak
power consumption is minimized.

5.4.1 Task and Hardware Model

For the task model, we assume we have a set of n periodic tasks sharing the
same arrival time and deadline, i.e. frame-based tasks, denoted as follows: T =
{τ1, τ2, . . . , τn}. All the tasks have same the period T (this task model is later
extended to include more general implicit deadline periodic tasks in Section 5.9,
where tasks do not necessarily share the same period). In each period, all the
tasks have the same arrival time 0. We consider partitioned scheduling, in which
each task is assigned onto a core, i.e., task migration among cores is not al-
lowed. We also assume that all jobs are independent: they do not share re-
sources, they do not have data dependencies, and that there is no interprocess
communication. This model is not as restrictive as it appears, since there are
ways to transform a set of dependent tasks to independent ones [81].

We focus on a multi-core system with a set of m heterogeneous cores, that is,
C = {c1, c2, . . . , cm}. Having a system with heterogeneous cores implies that
tasks will have different execution times and power consumptions, depending
on the core to which each task is mapped. Power consumption for execution
consists of a dynamic and static component and cores can be put into sleep
mode by gating the clock. We assume that changing the execution frequency of
cores or setting them to sleep mode, and vice versa, takes a negligible amount
of time, as it is accomplished through clock gating. During sleep mode, cores
consume only static power, which might be different for each core. However,
since static power is continuously being consumed, it only adds a constant off-
set to the peak power consumption of tasks (considering the tiled-architecture,
only cores belonging to those tiles consume static power where at least one
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core is active, other tiles can be put to sleep). Hence, without loss of gener-
ality, we focus on dynamic power consumption and consider leakage a con-
stant offset. Formally, we assume that the peak dynamic power consumption
of task τi executing on core cj is denoted as pi,j , resulting in a peak power ma-
trix P = [pi,j ]n×m. Normally, during different execution phases, a task might
have different power values, and considering only the peak value makes our
approach pessimistic but safe.

Similarly, we define ui,j as the utilization of task τi executing in core cj . That is,
assume that task τi requires xi,j amount of time in the worst case when execut-
ing on core cj to meet its deadline. For all i, the period of τi is T (frame-based
tasks). Then, ui,j =

xi,j
T . This results in a utilization matrix U = [ui,j ]n×m. It

holds that 0 ≤ ui,j ≤ 1, when xi,j ≤ T . If xi,j > T , then we set ui,j to ∞ to
guarantee that core cj is not considered for placement of task τi.

Also, we assume the cores in the system have DPM capabilities, hence each core
can be put into low-power mode individually, e.g., idle, sleep, off. The overhead
for entering/leaving a low-power mode is considered negligible. Practically,
this can be realized using commonly available mechanism of clock gating.

5.4.2 Problem Definition

For n frame-based tasks and a heterogeneous many-core platform withm cores,
our objective here is to present a scheduling and mapping algorithm for exe-
cuting all n tasks without violating their deadlines, while minimizing the total
peak power consumption.

5.5 Solution Overview

To fulfill the aforementioned objective, we propose a novel peak power man-
agement scheme (PPM). Figure 5.4 shows the overview of our scheme and the
taxonomy used. The solution presented in this chapter consists of two inde-
pendent steps as discussed in detail in the subsequent sections. The first step
deals with task partitioning into the cores and the individual schedule of each
core. In the second step, we calculate a sleep cycle for individual cores in such a
way that the peak power is minimized without affecting the individual sched-
ules of cores. The second step is the key challenge targeted in this chapter. An
in-depth discussion of these steps follows.
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5.5.1 First Step: Task Partitioning
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Figure 5.4: Overview of steps for PPM
and the taxonomy used.

In the first step, as we consider
partitioned scheduling, the mapping
of the tasks onto cores must be
decided. Performing partitioned
scheduling to ensure the timing con-
straints has been researched exten-
sively, in which the survey by Davis
and Burns [40] provides a compre-
hensive study. However, as this part
is related more to the feasibility of
task partitioning, we present only the
key concepts.

Deciding whether there exists a fea-
sible task assignment for a task set
with real-time constraints into mul-
tiple cores is an NP-hard problem
in the strong sense [14]. However,
for example, the approximation algo-
rithms by Graham [61] and Baruah
[14] can be adopted to provide ef-
ficient and effective task partition-
ing for homogeneous and heteroge-
neous many-core processors, respec-
tively. There exist other works in this
direction as well [29]. Since task par-
titioning considering only the utiliza-
tion values is already NP-hard, we
do not optimize for peak power con-
sumption in this step.

The output of the task partitioning al-
gorithms is a partition matrix K =
[ki,j ]n×m. For every element in the
matrix, ki,j is set to 1 if task τi is to be
executed on core cj , otherwise 0.

The output of the next step (Section
5.5.2) is the matrix A = [aj,t]m×q . Ev-
ery element in matrix A, aj,t, is set to
i, if core j is set to execute task τi for
time slot t and 0 otherwise.
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It is not necessary to use all the given m cores for assigning the tasks; that is,
the task partitioning may use fewer than m cores for assigning the tasks. If
the time complexity is tolerable, the whole process (Step 1 and Step 2) can be
iteratively called to decide the number of cores for assigning the tasks. For the
simplicity of presentation, we focus only on one iteration in which the number
of cores for allocating tasks is fixed, and any known algorithm, e.g., [61, 14],
for task partitioning is adopted. Moreover, the derived task partitioning also
guarantees that the utilization of the tasks assigned on one core is less than or
equal to 100%, in which adopting any workload-conserving scheduling policy
(e.g., Earliest-Deadline-First (EDF)) in one core individually ensures that the
tasks can meet the deadlines, due to the assumption of frame-based tasks. If
the derived task partitioning has a core with utilization larger than 100%, either
another more powerful task partitioning algorithm should be adopted or we
should consider a bigger number of cores to partition the tasks.

5.5.2 Second Step: Sleep Schedule Decision

After the tasks are mapped onto the cores and every core’s internal schedule
is decided in Step 1, this phase decides the sleep schedule for each core, such
that the internal schedule of the core remains unaffected and peak power is
minimized. Please note that we are dealing with a frame-based task set hence
all the tasks share the same arrival time and the same deadline. This gives
us the flexibility to plan the sleep cycle for the core anywhere within the task
period, as shown in the Figure 5.5.

Theorem 5.1. If a frame-based, synchronous task set with period T and cumulative
utilization U , can be feasibly scheduled on a single core, it can also be feasibly scheduled
if the core is halted for at most bT (1− U)c time in every T interval.

Proof. The system is either idle or executing jobs in time interval [0, T ). Since
we focus on frame-based real-time tasks here, any schedule is feasible if the
core is halted only by at most T (1 − U) amount of time, as the remaining time
is used for executing jobs.

Explanatory Example

Suppose that after partitioning, one of the processing cores has two tasks (τ1, τ2)
with the period of 10 ms and worst-case execution times of 3 ms and 4 ms, re-
spectively. The cumulative utilization is 3

10 + 4
10 = 0.7. As per Theorem 5.1, the

processing core can be put to sleep for 30% of time and the task set can still be
feasibly scheduled. A sample schedule is shown in Figure 5.5.
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Figure 5.5: An example of modified schedule for frame-based tasks τ1 and τ2.
Both tasks arrive at time 0 and have a deadline at time 10.

Based on the chip’s architecture and task structure, we consider two observa-
tions.

1. Task set heterogeneity: The power consumption of a core caused by exe-
cuting a task can either be task independent, or dependent. We call the
former case homogeneous task set and the latter heterogeneous task set. For
homogeneous task set, it holds that for all i = 1, 2, . . . , n− 1, pi,j = pi+1,j .
In other words, all the rows in matrix P are identical.

2. Core heterogeneity: Like tasks, we classify the cores into two disjoint sets:
homogeneous and heterogeneous. Homogeneous cores are those in which
the power consumption of task τi is independent of the core where it is
executed; i.e., for all j = 1, 2, . . . ,m − 1, pi,j = pi,j+1 (all the columns in
matrix P are same). Furthermore, this implies that all cores are equal in
their capabilities, hence task τi has the same utilization on any core, i.e.,
for all j = 1, 2, . . . ,m − 1, ui,j = ui,j+1 (all the columns of matrix U are
same). Those cores that do not follow the above condition are heteroge-
neous cores.

These two conditions result in four possible cases. We discuss these cases one
by one in the following sections and provide efficient solutions for each. It is
to be noted here that, if claimed, optimality refers to the minimization of peak
power after the tasks set has been partitioned, i.e., the notion of optimality
is for peak power minimization considering only Step 2. As Step 1 is already
proven to be NP-hard, a polynomial time solution for this step is unlikely to
be found.
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5.6 Homogeneous Tasks on Homogeneous Cores

In this section, we consider all the tasks are identical in their power consump-
tion and differ from each other only in the utilization requirements. Also, all
the cores have identical behavior for power consumption and computational
performance output. This is the simplest case and will form the foundation for
solving the complex cases that follow.

As we consider only homogeneous tasks being executed on homogeneous cores,
it holds that, for all pi,j ∈ P, pi,j = pconst . For this case, a time schedule
with minimum peak power can be obtained by extending McNaughton’s wrap-
around rule [107] using core utilization values, as explained in more detail be-
low.

Suppose that the core utilizations, for all m cores in the system, are represented
through the vector W = [wj ]m. Using the partition matrix K and the utilization
matrix U, we can fill W, such that for all j = 1, 2, . . . ,m, wj =

∑n
i=1 ki,j · ui,j .

Clearly, for a feasible schedule, it should hold that for all j = 1, 2, . . . ,m, wj ≤
1.

Using W, we apply the wrap-around rule as follows. Assume that there are
m bins of time (b1, b2, . . . , bm), each of size T . The starting time for each is 0.
Iteratively, we assign T · wj time from bin bk to core j, starting from b1 and
w1. When core j is assigned time from bin bk, the value of bk is updated to
bk − T · wj . If, for core j, the time requirement cannot be fully satisfied from
bin bk, then we assign as much as possible from bk so that bk becomes zero, and
the rest is assigned from bk+1. As for all wj ∈ W, wj ≤ 1, a core gets time
slices from at most two bins. The time slices assigned by this algorithm form
the schedule of the core.

An example of assigning 3 cores having utilizations 0.5, 0.9 and 0.5 into 3 bins
is presented in Figure 5.6. Here, c1, having a utilization of 0.5, is completely
assigned to the first half of b1. In terms of the per-core DPM schedule, this allo-
cation means that c1 is turned on only in the beginning half of the frame, let’s
say T , then, from 0 to 0.5T . c2, with a utilization of 0.9, cannot be fully assigned
to b1, so it is partially assigned to the last half of b1 and the rest is “wrapped-
around” to the initial 40% of b2. Correspondingly, for its DPM schedule, c2 can
be turned on in the initial 40% of the frame (0 − 0.4T ) and then in the last half
of the frame (0.5T − T ). Similarly, c3 is assigned time slot from 0.4T to 0.9T ,
fulfilling its requirement of 0.5 utilization.

This is a polynomial time algorithm, with a time complexity of O(m) for m
cores. Moreover, due to the wrap-around policy, it is also clear that at any time
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Figure 5.6: Example of wrap-around for 3 cores.

instant, the algorithm will activate at most c∗ cores at the same time, where
c∗ =

⌈∑m
j=1 wj

⌉
.

Clearly, the peak power consumption, π, of the tasks scheduled using the above
presented rule is given as π = pconst · c∗. Consequently, for testing the schedu-
lability of the task set, if it holds that TDP ≥ π, then this task set is feasible.

Theorem 5.2. Given a set of homogeneous cores and a set of real-time frame-based
tasks, at least dUe processing cores must be simultaneously powered on to feasibly
schedule a set of tasks with a cumulative utilization of U .

Proof. Suppose that for a task set with cumulative utilization U , we have a fea-
sible schedule in which the number of simultaneously activated cores is less
than dUe. Then, it follows from the pigeon-hole principle that at least one of
the cores must have a utilization of more than 1, therefore the task set is infea-
sible. This is a contradiction.

A trivial indication from Theorem 5.2 is that the wrap-around rule minimizes
the number of simultaneously activated processing cores. Hence, it gives an op-
timal solution for the peak power minimization for homogeneous tasks sched-
uled on homogeneous cores, regardless of the task partitioning scheme used in
Step 1.
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Furthermore, this algorithm can also be used to approximate the cases in which
the power consumption of the task set is non-homogeneous or the case in which
the capabilities of the cores are heterogeneous.

5.7 Homogeneous Tasks on Heterogeneous Cores

In this case we assume that cores differ in their power consumption. This can be
the result of manufacturing variations or complexity of the core due to added
hardware accelerators. However, the power consumption is independent of the
tasks. That is, for all i ∈ {2, . . . ,m} pi,j = p1,j for every core j.

This case is particularly relevant to heterogeneous architectures where the cores
differ so much from each other due to their capabilities that the power con-
sumption profile of the cores is practically dependent only on the core being
used; e.g., the popular ARM big.LITTLE architecture. [63].

To solve this case we present a greedy approach called Least Density First
(LDF). This approach works as follows. First, we calculate the individual core
utilizations, W, as in Section 5.6. That is, using the partition matrix K and the
utilization matrix U, we can fill matrix W, such that for all j = 1, 2, . . . ,m,
wj =

∑n
i=1 ki,j · ui,j . We start with the core that has the highest power con-

sumption and assign it dwj · qe slots from q total slots. After this, we update a
density state vector, which is null initialized, by summing the total power con-
sumption for all slots. For the next core, we again assign dwj · qe slots with the
lowest density so far, and update the density state vector, again. This is done
iteratively for each core in W. The pseudo code for this scheme is presented in
Algorithm 3.

Formally, we set P′ and W as follows for input to Algorithm 3:

• P′ = per core power consumption, i.e., P′ = [p′j ] where, for all j ∈ {1, . . . ,m},
p′j =

∑n
i=1 ki,j · pi,j . The length of P′ is m.

• W = per core utilization, i.e., W = [wj ] where, for all j ∈ {1, . . . ,m},
wj =

∑n
i=1 ki,j · ui,j .

The output matrix, A, from Algorithm 3 gives the schedule for the cores with
the added sleep cycle. Due to the same power consumption for each task, for
peak power consumption it does not matter in which sequence the tasks are
executed on a core. Thus, we set the elements of A to either 1 or 0, where 0
means sleep time for the core and 1 active execution of tasks.

This schedule is feasible if the peak power consumption, π, is within the TDP.
Here, π can be used as the basis for an offline, sufficient feasibility test for the
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Algorithm 3: Least Density First (LDF)
Input:

Per Core peak power consumption: P′ = [p′j ]1×m
Per Core Utilizations: W = [wj ]1×m
Total time slots in a period: q

Output:
Net peak: π
Schedule assignment: A = [aj,t]m×q

Algorithm:
Density state: D = [dt]1×q ← [0]1×q ;
A = [aj,t]m×q ← [0]m×q ;
// Storing power values into an array and sorting
∀j ∈ (1, ..,m) append (p′j , j) to Q ;
Sort Q according to p′j descending;
while Q not empty do

Pop head of Q→ (p′j , j);
// Selecting the required lowest density slots in S
S = {t : dt is among dwj × qe lowest density slot};
for all t ∈ S update aj,t = 1;
for all t ∈ S update dt = dt + p′j ;

π = max(D);

task set. The problem of generating a schedule that minimizes the peak power
is NP-hard. This is formally proven in Theorem 5.3.

The working of this algorithm is further explained in the example shown in
Figure 5.7. Here we have three cores, i.e., c1, c2 and c3 with utilizations of
0.6, 0.7, 0.5 and power consumption values of 3, 4, 2 Watts. Assuming a frame-
based taskset with the period of 10, the given utilization values translate to
active times of 6, 7 and 5 time slots for c1, c2 and c3, respectively. To begin
with, we choose the core with the highest power consumption, c2, and assign it
the required slots and update the density vector D. Here, the height of the bars
represents the density. After this, we choose the next-highest power consuming
core and assign it the required number of lowest density slots and so on. This
results in the per core schedule shown in the third iteration in the Figure 5.7,
and the peak in power consumption is 7 Watts.

LDF is a polynomial time algorithm. We analyze its worst-case time complexity
as follows. For execution of this algorithm, we start with two one-time opera-
tions having complexity q and mq for initializing D and A, respectively. Next,
we store the power consumption values per core in an array and sort it. The
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c2:
Iteration 1

c1:

c3:

D: 4 4 4 4 4 4 4 0 0 0
∆

Iteration 2

4 4 4 4 7 7 7 3 3 3

Iteration 3

6 6 4 4 7 7 7 5 5 5

Figure 5.7: Example for least density first algorithm

time complexity of this operation is upper bounded by m logm. Next, we enter
the loop that executes m times for the following operations. Firstly, we remove
the head of Q, i.e., constant complexity. In the second operation, we need to sort
an array of maximum size q to select the required number of lowest valued ele-
ments. Hence its time complexity is upper bounded by q log q. This is followed
by two more operations, each having a worst-case complexity of q. Therefore,
the total complexity can be given as q+mq+m+m logm+m(q log q+q+q)+q.
This can be simplified to O(m logm+mq log q).

Theorem 5.3. For a given task partitioning of homogeneous tasks onto heterogeneous
cores, deriving a schedule for cores to optimally minimize the peak power is an NP-
hard problem.

Proof. We reduce from the optimization version of the partitioning problem.
Given a set ofm numbers, the optimization version of the partitioning problem
is to divide them into two disjoint subsets, A and A′, such that the difference
of the sums of the numbers in each subset is minimized. Such a problem is
NP-hard [56].

The reduction works as follows. Consider the special case of our problem in
which we have m tasks with utilization 50%, every task has a different peak
power consumption, and a deadline for the frame-based tasks of 1. The objec-
tive is to decide whether a core is executed in the window of (0, 0.5] or (0.5, 1],
such that the final peak power consumption is minimized, which is the same
as minimizing the difference between the peak power of the windows.

This problem is equivalent to the optimization version of the partitioning prob-
lem, where the peak power consumption of the tasks represents the numbers
to partition. Deciding to execute a core in the window of (0, 0.5] is equivalent
to putting the number of its power consumption to set A. Similarly, deciding
to execute a core in the window of [0.5, 1) is equivalent to putting the number
of its power consumption to set A′.
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Therefore, an optimal solution to the optimization version of the partitioning
problem is equivalent to an optimal solution to this special case of our studied
problem and vice versa. Hence, we conclude the NP-hardness of our studied
problem.

5.8 Heterogeneous Tasks on
Heterogeneous/Homogeneous Cores

In this section, we present an algorithm for two cases; that is, 1) power con-
sumption is dependent on the task but not on the core it executes on, and, 2)
power consumption is dependent on the task as well as the core on which the
task executes.

The former case applies to the wide variety of multi-core chips currently avail-
able in the market, where several identical cores are available on the chip and
the power consumption profile of tasks differs due to the resource access pat-
tern. The latter case is a generalization to include many-core chips, such that a
core might consume less power for one task and more power for another task,
and there might exist another core in the system whose power consumption
values are reversed for the same two tasks. This is the most general case, with
all the previous cases being a special form of this case.

We present a variation of the Least Density First algorithm to solve both these
cases. The variation from the Least Density First algorithm presented earlier is
as follows. In the normal version of LDF the only decision criterion is based
on density. However, in this algorithm, we also check the assignment of the
slots. We start with the highest power consuming task and assign it the lowest
density free slots on the core in which this task has been partitioned, and this
process is repeated for all tasks. The extra step of checking the free slots is
necessary as the globally lowest-density slots might already be occupied in the
core of interest. Since we are only considering partitioned scheduling, i.e., each
task is assigned to only one core, we do not need to check for the condition in
which the same task is concurrently scheduled at two cores. The pseudo code
for the procedure is presented in Algorithm 4.

Like in the previous section, the matrix A gives us the schedule of the cores.
This schedule is feasible if π is less than or equal to the TDP.

This is also a polynomial time algorithm. We analyze its worst case time com-
plexity as follows. The algorithm starts with two one-time operations of com-
plexity q andmq, as before. Next, we conductmnmultiply operations and store
non-zero values Q which can, at most, have as many members as total number
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Algorithm 4: LDF with occupancy check
Input:

Power matrix: P = [pi,j ]n×m
Partition matrix: K = [ki,j ]n×m
Utilization matrix: U = [ui,j ]n×m
Time slots in a period: q

Output:
Peak power consumption: π
Schedule assignment: A = [aj,t]m×q

Algorithm:

Density state: D = [dt]1×q ← [0]1×q ;
A = [aj,t]m×q ← [0]m×q ;
// Storing non-zero power values into an array
∀i∀j if (ki,j · pi,j) 6= 0, append (pi,j , i, j) to Q;
Sort Q descending according to pi,j ;
while Q not empty do

Pop head of Q→ (pi,j , i, j);
// Among free slots, choosing required number of lowest

density slots in set S
S = {t : aj,t = 0 ∧ dt is among dki,j · ui,j · qe lowest density slots};
for all t ∈ S update aj,t = i;
for all t ∈ S update dt = dt + pi,j ;

π = max(D);

of tasks, i.e., n. This is followed by sorting of Q with the complexity of n log n.
Then, we run the loop n times in which the following operations are performed.
The first operation is to pop the first element of Q. This can be performed in
constant time. The second operation consists of q comparisons to check for free
slots, after which we choose the lowest valued elements from an array of q ele-
ments, i.e., the time complexity is upper bounded by q log q. This is followed by
two more operations, each having a worst case complexity of q. Therefore the
total complexity can be given as q+mq+mn+n log n+n(q+q log q+q+q)+q.
This can be simplified as O(mq +mn+ n log n+ nq log q).

5.9 Implicit Deadline Periodic Tasks

The solutions presented in Sections 5.6, 5.7 and 5.8 are applicable only to frame-
based task sets. In this section, we present a method to extend the previous
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results to include implicit deadline periodic task sets. We include the following
task types in the task model. Each task τi releases an infinite number of task
instances (jobs) with period Ti and relative deadline Di, where Di = Ti. We
assume the tasks are synchronized, that is, the first job of each task arrives at
the same instant. Frame-based tasks are a special form of implicit deadline
periodic tasks.

The core idea here is that an implicit deadline real-time task set can be feasibly
scheduled as long as its utilization on each core does not exceed 100%. There-
fore, the slack left after task partitioning can be reclaimed to halt the processing
cores in a coordinated manner to decrease the peaks in power consumption.

Theorem 5.4. A feasible, implicit deadline task set with periods {T1, T2, · · · , Tn},
with cumulative utilization U can be feasibly scheduled with Earlier-Deadline-First
(EDF) policy, if the processing core is put to sleep for (1 − U) fraction of time in
every ∆ interval, where ∆ is the greatest common divisor of (T1, T2, · · · , Tn) and is
synchronized with the tasks.

Proof. Consider an implicit deadline task set with periods {T1, · · · , Tn} and
worst-case execution times {C1, · · · , Cn} which is feasibly schedulable with
EDF policy. Consider that the sleep time of the processing core is an additional
implicit deadline task, τs, with period ∆ and execution time of ∆(1−U), where
U =

∑n
j=1

Cj
Tj

.

Assume that after introducing τs, the system cannot be feasibly scheduled us-
ing EDF policy and a job, Ji,k, of a task, τi, misses its absolute deadline, di,k.
Suppose that t0 is the last instant before di,k when the system was idle. If such
an instant does not exist, then t0 denotes the starting time of the system. Since
the system cannot be feasibly scheduled with EDF, then it must hold that:

di,k − t0 <
n∑

j=1

⌊
di,k − t0
Tj

⌋
Cj +

⌊
di,k − t0

∆

⌋
∆(1− U)

=⇒ 1 <

n∑

j=1

Cj
Tj

+ (1− U)

=⇒ 1 < U + 1− U
=⇒ 1 < 1

We reach a contradiction in which the assumption that a task set, originally
feasibly schedulable with EDF policy, becomes infeasible with the addition of
τs with period ∆ and execution time ∆(1 − U), is invalid and the theorem is
proven.
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Applicability of the earlier presented algorithms to implicit deadline periodic
tasks is a more general result, but specifically in this case an overhead can be ex-
pected due to the additional switching transitions to and from the sleep mode.
Since ∆ is the greatest common divisor of the periods of all tasks, it can be
small, and, as a sleep cycle has to be placed in each ∆, this can make the sys-
tem infeasible if there is a timing overhead associated with putting the system
to sleep. However, this overhead can be easily avoided by implementing the
sleep mode using clock gating instead of powering down the system. Clock
gating for conserving energy consumption has been well researched [43].

For periodic tasks, in the case of homogeneous tasks on homogeneous cores, the
feasibility of real-time constraints originating from peak power consumption
can be verified by the same test as introduced in Section 5.6. The peak power is
given as π = dUe · pconst, where U is the cumulative utilization and pconst is
the power consumption of any core.

For the most general case, i.e., heterogeneity of either task set or both the task
set and the processing cores, the test introduced in Section 5.8 for verifying the
feasibility of real-time constraints for the second version of LDF (Algorithm 4)
can be utilized repeatedly. Since there is a sleep period included in the schedule
for every core in the system in every ∆ interval, we can use LDF (Algorithm 4)
within each ∆ interval to coordinate the sleep periods of cores to minimize
peak power. Peak power, π, for each ∆ is known from Algorithm 4. To find
the highest peak that can occur, the system must be analyzed for an interval
equal to the hyper period of the system. A hyper period is that interval after
which the system repeats itself and is equivalent to the least common multiple
of the periods of the task set. To summarize, we employ the task partitioning
algorithm as discussed previously (Section 5.5.1) and use Algorithm 4 with P,
K and U matrices obtained from the partitioning. Here, we set the number of
slots, q, equal to ∆. Algorithm 4 returns the value of peak, π for this ∆. The
same process is repeated for the next ∆ intervals until the total analyzed period
equals a hyper period. The highest peak among all ∆ intervals belonging to the
hyper period is used to determine the feasibility.

Similarly, for homogeneous tasks on heterogeneous cores, Algorithm 3 can be
utilized repeatedly for one complete hyper period and the highest value of π
can be compared against TDP for feasibility testing.

5.10 Results and Discussion

In this section, we present the results of our simulations. To evaluate our
scheme, we use applications from the Parsec benchmark suite [16] running on
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Table 5.1: Specifications for applications used in simulations

Application Period [ms] Dynamic power usage (W)
P54C Alpha

x264 30 0.70 0.66
bodytrack 30 1.00 0.81
swaptions 450 0.60 0.74

blacksholes 900 0.50 0.70

the SCC platform and Alpha core that we simulated using gem5 and McPAT
infrastructure. To highlight the difference between peak power minimization
and average power minimization, i.e., energy minimization, we compare the
presented algorithms with a well known energy minimization scheme. The
details of the setup and the results are presented below.

5.10.1 Platform details

We use Intel’s 48-core SCC platform [72] for power measurements. This plat-
form is equipped with 48 Pentium (P54C) cores which are based on a 45 nm
manufacturing process. The cores are distributed into evenly placed 24 tiles
with 2 cores per tile. A network on chip in mesh topology allows inter-core
communication. We use four applications from the Parsec benchmark suite [16]
and obtain the peak power consumption individually for each, using the on-
board instrumentation. Details of the applications used to collect the power
traces are presented in the next section. SCC offers a tiled architecture with
so-called voltage and frequency islands. The voltage can only be changed at
the granularity of 8 cores and frequency at the granularity of 2 cores. As a pre-
cursor to future many-core processors, it shows that DPM based power control
will remain an essential ‘control knob’ in future chips.

Since the SCC platform has homogeneous cores only, it cannot be used to mea-
sure the effect of core-heterogeneity. For this, we simulated a synthetic plat-
form based on SCC’s architecture and same dimensions, but with 24 Alpha
cores [106] replacing 24 Pentium cores, one in each tile. Alpha cores are also
based on the 45 nm manufacturing process and are simulated using gem5 [17].
The peak power measurements for the Alpha cores are obtained through sim-
ulation using McPAT. Alpha and Pentium cores differ in their power consump-
tion, as well as computational performance, but are based on the same man-
ufacturing technology. This makes them a good candidates for judging the
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efficacy of this work. We run the same applications on both types of cores to
measure the power profiles for each application.

5.10.2 Real-time Workload

We generate synthetic workload for the simulations. Our scheme of workload
generation is based on the widely used technique in the real-time community
presented in [10]. We generate a randomized task set, where each task has three
parameters: 1) utilization, 2) peak power, and 3) period. These three parame-
ters are obtained as follows. For each task, the utilization is assigned randomly
in the interval (0, ul), where ul is the minimum of 1 and left over utilization in
the platform. The peak power consumption is chosen among the actual mea-
surements that were performed using the SCC platform and simulated Alpha
core on gem5 architecture simulator. We use the traces collected from four ap-
plications from the Parsec benchmark suite [16] to sample their peak power
consumption as shown in Table 5.1. To reduce evaluation time, we randomly
selected four of the 13 applications in the Parsec benchmark suite and executed
their single-core versions. Here, x264 is an H.264 video encoder, bodytrack is
a computer vision application that tracks human body whereas swaptions and
blacksholes are financial analyses applications.

For the third parameter (the period of the real-time workload), we select the pe-
riod for all tasks to be 30ms, in order to simulate a frame-based task set. Next,
we use the actual periods as mentioned in Table 5.1 for implicit deadline pe-
riodic tasks. After generating the task set, we use the partitioning algorithm,
presented in [14], to partition the tasks into the available cores. Since this algo-
rithm guarantees to find a feasible mapping if, at most, half of the processing
capacity is utilized, we use the system utilization of 24, where not mentioned
otherwise.

5.10.3 Baseline Scheme

To compare our scheme, we use a well-known energy minimization procras-
tination scheme presented in [77]. The schedule obtained using the method
of [77] optimally minimizes the energy consumption for tasks with real-time
requirements. In essence, the energy minimization scheme procrastinates the
tasks as much as possible without violating the performance constraints. In its
original form, it activates all the cores toward the end of the schedule, causing a
peak in the power consumption at the end of the period for frame-based tasks.
To suppress this peak towards the end of the schedule, we modify the scheme
by keeping m∗ cores activated through out the period, starting with the most
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power consuming cores, and activating more in the end to meet performance
requirements. Here, m∗ =

⌊∑m
j=1

∑n
i=1 ui,j · ki,j

⌋
, i.e., the floor of the total sys-

tem utilization. By keeping a subset of cores activated throughout the period,
the power consumption is distributed over the length of the entire period and
the peaks in power consumption are suppressed. This provides the basis for
fair comparison.

5.10.4 Results

Our focus in this chapter has been on minimizing peak power. We present two
important results in this regard.

First, we show a simple comparison of PPM against a well-known baseline
scheme for energy minimization for both varieties of tasks and cores. We gen-
erate the schedule required for the different combinations of applications, con-
sidering their real-time requirements using our scheme and the baseline. Ini-
tially, we consider frame-based tasks with the period to be 30ms. To simulate
the case of homogeneous task sets, we use only swaptions on all cores. To simu-
late the case of homogeneous cores, we use only the power data from the SCC
platform.

For frame-based tasks, the results are summarized in Figures 5.8 and 5.9. Here
we can see that in all four cases our scheme produces a more balanced power
consumption profile, as compared to the baseline. In the case of heterogeneous
tasks or heterogeneous cores, since we prefer the least dense slots (LDF), the
power consumption of our scheme gets distributed over the whole period. This
helps to avoid peaks.

The wrap-around method (WrapA) was basically designed for homogeneous
tasks on homogeneous cores and it solves this case optimally. In Figure 5.8a, it
can be seen that the peak produced by WrapA is not higher than that of LDF,
although not at the same point in the schedule. WrapA achieves a peak power
consumption of 3 Watts less than the baseline scheme. In the rest of the three
cases, that is, when either tasks or cores are non-homogeneous in their power
consumption (Figures 5.8b, 5.9a and 5.9b), its optimality is not guaranteed. But,
this method still fares better than the baseline scheme and its maximum devi-
ation from the LDF remains less than 10%. The greedy approach employed
in the LDF method achieves better results than both the baseline scheme and
WrapA, in this case.

In the second case, we evaluate the effect of increasing the load on the peak
power. The results are summarized in Figure 5.10. In this case, we only con-
sider the general case of heterogeneous tasks on heterogeneous cores. As ex-
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Figure 5.8: Power consumption profile for each period for homogeneous cores
(frame-based tasks)

pected, it can be seen that as the workload increases, the peak in power starts
to grow for all three schemes. Here again, we observed that the maximum
deviation of WrapA method does not exceed 10% (1.58 Watts) from the value
achieved by LDF, whereas baseline scheme deviates up to 35.5% (6.08 Watts).
The maximum deviation for both WrapA and the baseline scheme was ob-
served at the total chip utilization of 35, with a general trend of higher devi-
ations with increasing utilizations for both.
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Figure 5.9: Power consumption profile for each period for heterogeneous cores
(frame-based tasks)

Non Frame-based, Periodic Tasks

The results for the non frame-based periodic tasks are presented in Figures 5.11
and 5.12. Here we use the periods and power profiles for the tasks as mentioned
in Table 5.1. We assign the utilization randomly, according to the methodology
introduced in [10]. For periodic tasks, we only present the results for non-
homogeneous task sets on both homogeneous and heterogeneous cores, hence,
we employ Algorithm 4 here. In this case, the difference between the energy
minimization vs. peak power minimization becomes quite apparent. The base-
line scheme used is designed with the perspective of energy minimization. In
Figure 5.12, the baseline scheme’s peak power consumption is 5 Watts more
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Figure 5.10: Effect of increasing workload on peak power consumption
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Figure 5.11: Periodic workload: heterogeneous tasks on homogeneous cores

than LDF and 3 Watts more than WrapA, whereas baseline consumes less en-
ergy, as shown in Figure 5.13. In the case of homogeneous cores (Figure 5.11),
the difference in peak power consumption is even bigger. In both cases, LDF
and WrapA keep a more balanced power profile, as in the case of frame based
tasks. They are able to suppress the peaks, especially toward the end of the
schedule, where baseline scheme causes a peak in order to fulfill the perfor-
mance requirements of real-time tasks that have been back-logging during the
procrastination. The peaks caused at every 30, 450 and 900 ms correspond to
the periods of the tasks used for evaluation.

In Figure 5.12, the baseline scheme shows an oscillating pattern with the peaks
being 30 ms apart. There are also clear bulges at the periods of 450 ms and
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Figure 5.12: Periodic workload: heterogeneous tasks on heterogeneous cores
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Figure 5.13: Cumulative energy consumption: Periodic workload, heteroge-
neous tasks on homogeneous cores

900 ms, whereas LDF and WrapA show much smoother trends. This also high-
lights another fundamental difference between energy minimization (i.e., av-
erage power minimization) and peak power minimization for many-core pro-
cessors. For the former no coordination among the individual cores is required
and each core, independently, decides its procrastination duration. Whereas,
for the peak minimization, some form of coordination or synchronization is
essential. Since, in the case of LDF and WrapA, cores’ sleep cycles are coor-
dinated, they result in a more balanced power profile in comparison with the
baseline scheme.
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5.11 Summary

In this chapter, we presented the congruence between the problem of peak
power management in MapReduce clusters and the many-core architectures
for executing the workload that has real-time constraints. We presented a so-
lution to minimize peak power consumption for executing real-time tasks on
many-core architectures or, equivalently in MapReduce clusters, which can
help contain the power consumption within the TDP constraint. We argued
that the peak power consumption of a real-time task set must also be verified
when determining its scheduling feasibility. The presented peak power man-
agement scheme follows a two step procedure: Firstly, the tasks are partitioned
on to the available cores and the schedule for each core is calculated. After-
ward, our solution heuristically minimizes the peak power consumption for
systems with homogeneous tasks on homogeneous cores, either heterogeneous cores or
tasks, and with both heterogeneous tasks on heterogeneous cores. This is achieved
by putting the cores into sleep mode at appropriate points in time, without
affecting the tardiness of the real-time tasks. For this purpose, we presented
algorithms with polynomial time complexity. We simulated our scheme using
the power traces for two platforms: SCC and a heterogeneous core platform
based on SCC design. Our results show the efficacy of our scheme in terms of
peak power minimization.
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Environmental concerns are gaining importance, and consequently, the drive
to reduce the anthropogenic environmental footprint is gathering momentum.
This push toward environmental friendliness is powered by, among others, the
evolving legislative landscape around the world to counter the major sources
of pollution and global warming. One of the biggest contributors to environ-
mental harm still remains the electricity generation process.

As large-scale consumers of electricity, global Internet services contribute sig-
nificantly toward the environmental pollution. Such services often employ
hundreds of thousands of servers at multiple locations around the globe and
have high requirements of reliability, robustness and timeliness. Any attempt
to optimize this huge system needs to consider a multitude of factors, including
electricity consumption for cooling and infrastructure, fluctuating usage pat-
terns, correlation of geographical distances, timeliness of responses via SLAs,
among others. Spatially and temporally varying electricity prices that are af-
fected by weather patterns, storage options and regulatory issues, in addition
to demand and supply dynamics, add to the overall complexity. In this disser-
tation, we attempt to tackle these challenges in order to optimize the electricity
consumption of such services.

In this chapter, we present a short summary of our contributions in Section 6.1
and identify areas for future investigations in Section 6.2.

6.1 Contribution Summary

Our goal, in the scope of this dissertation, was to present a model-based design
methodology to optimize electricity usage in one of the fastest growing major
consumers of electricity in the ICT sector, i.e. large-scale multi-site Internet
services. We presented techniques to decrease the environmental footprint of
such services while respecting budgetary and performance constraints. In this
regard, our contributions fall into three areas, as follows.

In Chapter 3, we focused on maximizing the usage of green energy in a typi-
cal multi-site Internet service. We explored the gains that can be obtained by
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exploiting the temporal and spatial fluctuations in electricity prices and carbon
market dynamics, while respecting budget and SLA constraints. We showed
that this is an NP-hard problem and presented a viable greedy heuristic for
optimization. Our approach to increasing the share of green energy consisted
of two steps: Intra DC optimization and a central optimization. This resulted
in the basis for a general, holistic solution that can include factors like power
required for cooling, power consumption of networking infrastructure, on-site
renewable energy generation systems, multiple services with multiple SLAs
and an intermix of heterogeneous and homogeneous server-based DCs. We
evaluated these solutions with traces of electricity prices and typical Internet
workloads. Our results showed that the environmental footprint of a large-
scale Internet service can be decreased substantially by properly exploiting the
variability of electricity prices and green energy production.

In Chapter 4, we focused on an electrical demand shifting problem, aiming
to achieve financial and environmental benefits. In particular, we tackled the
problem of peak minimization using a battery as an energy storage element.
Including a battery buffer for energy storage at an intermediate or an end-
consumer site can result in cost savings by offering the flexibility to defer or
advance the demand to the period of lower cost. A controller is needed to de-
cide when and how much energy to store or consume from the storage at any
given time. We presented an analysis technique based on network calculus to
help determine the most appropriate battery size for a system by analyzing the
load traces from the past for this system. The technique, however, is limited to
a class of controllers called ‘monotonic’ controllers. The presented scheme lays
the groundwork for analyzing more general controllers, as well as ‘load shift-
ing’, which is a more general form of peak minimization and more appropriate
for integrating renewable energy sources into the electrical grid.

Finally, in Chapter 5, we concentrated on Intra DC level power optimizations
(in contrast to the whole Internet service level). Particularly, we discussed the
strong resemblance of MapReduce, a popular software model used in DCs, to
the many-core processing chips. We presented a scheme to minimize peak
power consumption for executing real-time tasks on many-core architectures
and argued that the peak power consumption of a real-time task set must also
be verified when deciding its scheduling feasibility. The scheme we presented
addresses all possible cases that are expected to occur on many-core chips; that
is, 1) homogeneous tasks on homogeneous cores, 2) either heterogeneous cores
or tasks, and 3) with both heterogeneous tasks on heterogeneous cores. For this,
we presented algorithms with polynomial time complexity and simulated our
scheme using the power traces for two platforms: 48 core Intel’s SCC and a het-
erogeneous core platform based on SCC design. Our results show the efficacy
of our scheme.
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6.2 Future Outlook

Energy and power management within Internet services, in particular, and ICT,
in general, is an active topic of interest that is of growing importance. Because
of the many variables involved, there are also many possible optimizations that
can be exploited to reduce the environmental footprint and the cost of operation
for large-scale Internet services.

In this section, we present some possible future directions for exploration that
can be followed to build on the techniques presented in this dissertation.

Market Heterogeneity

Not unlike other commodities, electricity markets show inherent differences
and peculiarities based on the differences of regional and legacy factors. The
differences among electricity markets in various regions of the world include
not only price differences originating from disparities in available electricity
sources, but also the organizational and legislative dissimilarities. Regional leg-
islation and regulatory principles have a bigger impact on the electricity market
than physical factors, such as fuel availability. Because the earth’s environment,
however, is a shared resource, maximizing the usage of green energy is bene-
ficial for the whole world, irrespective of where it is done. Hence, it will be
advantageous to customize the presented green energy maximization scheme
in the scope of other electricity markets, such as Europe and China.

Introducing Elasticity in Electrical Demand

In this dissertation, we concentrated on the special case of demand-shifting
mechanisms, i.e., the peak minimization scheme in the electricity consumption.
This holds merit for the majority of the world’s conventional power generation
setups, which are still powered by fossil fuel and carry negligible contributions
from renewable energy sources. However, the share of the electricity derived
from green energy sources is increasing, particularly in developed regions such
as Europe. Hence, considering the intermittent nature of renewable energy
sources, the next logical step is to find mechanisms that can ‘mould’ the electri-
cal load profile to better fit the expected availability curve of renewable energy
sources. In theory, this can even mean peak generation instead of peak shaving.
For this, an extension to the peak shaving scheme presented in Chapter 4, is a
logical next step.
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Although this dissertation presented various model-based schemes to decrease
the environmental footprint of Internet services in particular, and large con-
sumers of electricity in general, there is significant room for future work in this
direction.
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