Building explicit hybridization networks using the
maximum likelihood and Neighbor-Joining
approaches
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Abstract Tree topologies are the simplest structures which can be used to
represent the evolution of species. Over the two last decades more complex
structures, called phylogenetic networks, have been introduced to take into
account the mechanisms of reticulate evolution, such as species hybridization
and horizontal gene transfer among bacteria and viruses. Several algorithms
and software have been developed in this context, but most of them yield as
output only an implicit network, which can be difficult to interpret. In this paper,
we introduce a new algorithm for inferring explicit hybridization networks from
binary data. In order to build our explicit hybridization networks, we use a
maximum likelihood approach applied to Neighbor-Joining tree configurations.
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Our algorithm takes as input a set of n binary sequences, e.g., presence/absence of
restriction sites or presence/absence of certain genes in genomes, corresponding
to a set of n species. We obtain as output a hybridization network in which
terminal nodes represent the n input species and the hybrids are explicitly
identified among them. The new algorithm was tested on various simulated
and real datasets, and its efficiency was compared to a distance-based method
developed in our previous study. Overall, the new algorithm provided better
hybrid recovery results in terms of true positive and false positive rates than the
distance-based method. The main novelty of our method is that it allows one
to reconstruct explicit hybridization networks by combining both the distance
(Neighbor-Joining) and maximum likelihood reconstruction approaches. It also
provides the respective contributions of all parents to hybrids.

1 Introduction

Topological discordance among gene trees representing the evolution of a
given set of species is commonly attributed to different reticulate evolutionary
processes, including species hybridization, horizontal gene transfer, ancient gene
duplication, gene loss and incomplete lineage sorting (Huson and Bryant, 2006).
Interspecific gene exchange has been well documented and is very frequent
across many groups of animals, plants and bacteria. Reticulate evolutionary
processes, not following vertical inheritance of genetic material, cannot be
adequately represented by traditional phylogenetic trees such as a species tree
or the tree of life. Phylogenetic networks should be used instead to represent
these evolutionary events.

Many efforts in the field of phylogenetics have been dedicated to the inference
and statistical validation of phylogenetic trees, while effective methods and user-
friendly software for reconstructing phylogenetic networks still remain limited
or under development (Solis-Lemus and Ané, 2016). The main disadvantage of
many hybridization networks building methods is that the networks they provide
are rather implicit than explicit, thus rarely allowing an accurate identification
of hybrid species and their parents (Willems et al, 2014). Several attempts to
model reticulate evolutionary relationships using phylogenetic networks have
been made by a number of research groups around the world. Bandelt and
Dress (1992) were among the first authors to do it. They described the split
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decomposition method that allows for data representation under the form of
a split graph that reveals conflicting signals hidden in the data. Bryant and
Moulton (2004) continued the work of Bandelt and Dress (1992) by proposing
the NeighborNet network-building algorithm that reconstructs planar split
networks. Despite the popularity of the split decomposition and NeighborNet
methods, the networks they generate usually contain a very high number of
splits from which explicit reticulation events cannot be deduced easily. Huson
and Bryant (2006) reviewed the terminology and interpretations used when
defining different types of phylogenetic networks. The authors showed how a
split network can depict confidence sets of trees and introduced a statistical
test for determining whether the conflicting signal in a network is tree-like.
Huson and Bryant (2006) have also developed the popular SplitsTree program
allowing for inferring different types of phylogenetic networks from sequences,
distances and trees. Huson and Klopper (2007) designed an algorithm to infer
recombination events from binary sequences by using general reticulation
networks and galled trees (explicit networks). Huson and Scornavacca (2012)
developed the Dendroscope 3 program to study rooted phylogenetic trees and
networks. This program includes a number of algorithms for drawing and
comparing rooted phylogenetic networks, most of which are implicit, as well as
for inferring them from a set of rooted trees. Albrecht et al (2012) developed a
fast parallel algorithm to infer a minimum hybridization network from two input
trees. Chen and Wang (2012) described an algorithm for constructing implicit
phylogenetic networks from multiple conflicting gene trees.

Most of the existing network-building algorithms rely on the distance-based
approach, but recently some new methods based on the maximum likelihood
approach which usually provides more accurate results have started to appear.
For instance, Solis-Lemus and Ané (2016) presented a new method for inferring
explicit pseudolikelihood phylogenetic networks from multi-locus genetic data.
The main advantage of their method is that it accounts for incomplete lineage
sorting in the framework of a coalescent model as well as for horizontal
inheritance of genes through reticulation nodes in the network. This method
proceeds by calculating the concordance factor of any given quartet (or split)
of species that is the proportion of genes whose true tree displays that quartet.
Olave et al (2018) have also proposed a method to detect hybridization explicitly
in the presence of incomplete lineage sorting by evaluating the likelihood of
various models with different levels of gene flow and assessing the expected
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gene tree discrepancy. It is worth noting that the methods of Solis-Lemus and
Ané (2016) and Olave et al (2018) build hybridization, or gene flaw, networks
from sets of different gene trees. In this article, we extend our previous distance-
based algorithm for inferring explicit hybridization networks (Willems et al,
2014) by considering a maximum likelihood approach which will be applied to
Neighbor-Joining (Saitou and Nei, 1987) tree configurations.

2 Methods

In this section, we recall the terminology which is necessary to define our new
algorithm.

Trees and networks

A phylogenetic network is a graph used to represent evolutionary relationships
between a set of species which are associated with some of the graph nodes.
A phylogenetic network is said to be explicit if it explicitly represents some
reticulate evolutionary events, such as hybridization or horizontal gene transfer,
in a way that hybrid species and their parents (for a hybridization event) or
donors and recipients of genetic material (for a horizontal gene transfer) can
be identified explicitly. A phylogenetic network is said to be implicit if it only
allows visualization of certain evolutionary incompatibilities, usually compared
to a phylogenetic tree, without explicitly identifying the species involved in
reticulate evolutionary events and their roles in these events.

(a) Phylogenetic tree (b) Explicit phylogenetic network (c) Implicit phylogenetic network
Root Root (split graph)
Spl
Sp2
Sp3
Spl Sp2 Sp3 Spa Spl Sp2 Sp3 Sp4 Sp4

Figure 1: (a) A rooted phylogenetic tree; (b) A rooted phylogenetic (hybridization) network - here,
Species 3 is a hybrid of Species 2 and 4; (c) An implicit phylogenetic network (split graph).
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Figure 1 presents examples of a traditional phylogenetic tree defined on a set
of 4 species (case a), of an explicit phylogenetic (hybridization) network (here
Species 3 is a hybrid of Species 2 and 4, case b), and of a split graph, which is
an implicit phylogenetic network (case c).

Neighbor Joining (NJ)

Neighbor Joining (Saitou and Nei, 1987) is the most popular distance-based
algorithm for inferring phylogenetic trees. Starting from a star tree, this clustering
algorithm selects at each step the best neighbors i and j (according to the
minimum evolution criterion) and replaces them by their common ancestor X.
The minimum evolutionary criterion states that the optimal tree is the tree with
the shortest total sum of edge lengths. The NJ algorithm requires as input a
matrix of evolutionary distances between species at hand and returns as output
a tree metric matrix (i.e., a metric that can be uniquely represented by a tree).
NIJ infers the correct phylogenetic tree if the input distances between species are
sufficiently close to the true evolutionary distances.

Maximum likelihood
The maximum likelihood in a phylogenetic context can be defined as follows.

Input: n binary sequences of length L corresponding to n species.

There exist several evolutionary models based on Markov processes. Let
Pr(z, N1, N) be the probability that character Ny (DNA, amino acid or binary)
changes into character N, during evolutionary time ¢. The likelihood of a tree T
can be given by the following formula:

L
L) = [ | L), (1
=1

where L;(T') is the sum of the probabilities of all possible evolutionary scenarios
at position /.

F81 Model (Felsenstein (1981))

We will use the F81 evolutionary model originally defined by Felsenstein
because it perfectly suits for describing the evolution of binary sequences (e.g.,
presence/absence of restriction sites or presence/absence of certain genes in
genomes). Let g (respectively 1) be the proportion of 0’s (respectively, 1°s)
in the input data. If 8 = Hrolez then the transition probabilities of the F81



6 Matthieu Willems, Nadia Tahiri and Vladimir Makarenkov

Markov process are given by the following formulas, where ¢ is the evolutionary
time between two binary sequences:

Pr(1,0,0) = e P! + g (1- e‘ﬁt),

Pr(t,1,1) = e P + m; (1 - e_'B’), )
Pr(#,0,1) = m; (1 — e7P7), 2)
Pr(z,1,0) = mo (1 — e‘B’).

Probability vectors

For each species i, we consider its binary sequence as a probability vector of
dimension L (probability of having 1 at position /): P(i,/) = O (respectively, 1),
if the /th character of sequence i is equal to O (respectively, 1).

Likelihood of an NJ tree

An NJ tree configuration is shown in Figure 2. Species 1 and 2 are neighbors.
The intermediate Species X and Y correspond to the two internal nodes. The
maximum likelihood function to be used to estimate the likelihood of this
configuration T (i.e., configuration considered at a certain step of the NJ
algorithm) can be defined as follows:

L

LlT,zzl_l Z

I=1 \(ex,ey)e{0,1}?

n
PixP>x Pxy l—[ Py ||, 3)

k=3

where:

* Pix =(1-P(1,0))Pr(t1,0,ex) + P(1,1)Pr(11, 1, ex),
* Px =(1-P(2,0))Pr(12,0,ex) + P(2,1)Pr(12, 1, ex),
* Pxy= Pr(txy, ex, €y),

* Pyr = (1= P(k,1))Pr(tx,0,ey) + P(k,[)Pr(t, 1, ey),

and all the notations correspond to Figure 2. Indeed, for each position /, there
are four possible scenarios (ex = 0 or 1, and ey = 0 or 1) for each Species X and
Y. The probability of each scenario is equal to the product of the probabilities
along all the n + 1 branches of the NJ configuration shown in Figure 2.
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1 t, 3
ty :

X tXY Y Figure 2: Anintermediate N:I trge configu-
------------- ration used to compute the likelihood that
Species 1 and 2 are neighbors. X and Y
2 t2 t are the internal nodes of the presented in-
nsn termediate NJ tree with n leaves and n + 1

edges.

Hybrid Likelihood

Now, we can define the likelihood function to estimate the likelihood that Species
1, 2 and 3 are linked by a parents-hybrid relationship. In this case we define the
probability that Species 3 is a hybrid of Species 1 and 2 by:

L

Ly, = l_l Z Z P P3Pr(t;, €, €3) |, “)

=1 16{1’2} (ei’€3)€{0,1}2

where P; = (1 — )(1 — P(i,1)) + P(i,1), for 1 <i < 3, and all the notations
correspond to Figure 3. In this case, we have two possible scenarios for each
position /, since each character of Species 3 may come either from Species 1 or
from Species 2.

t t

3 Figure 3: Configuration used to compute the likelihood that Species 3 is a
hybrid of Species 1 and 2.

3 Main algorithm

In this section we describe the main algorithm 1 allowing us to infer either an
explicit hybridization network or a phylogenetic tree (if no hybrids are present
in the data) from a set of n binary sequences (e.g., encoding presence-absence
of certain genes in species genomes).
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Algorithm 1 Main Algorithm

Input: n binary sequences of size L corresponding to n species.

Output: An explicit hybridization network with terminal nodes corresponding to the

input species. Some of these terminal nodes will be identified as hybrids.

1: na=n

2: whileny > 3 do

3:

12:
13:

14:
15:
16:

Determine the best pair of neighbors (i*, j*) according to NJ over all possible pairs
of remaining species i and j.

Compute the likelihood LiT* I of the NJ tree topology in which i* and j* are
neighbors (see Figure 2 and Formula 3).

Determine the best hybrid triplet /4’,i’, j’ and compute its maximum likelihood
L}’l’f i (where h’ is a hybrid of i’ and j’; see Figure 3 and Formula 4) over all
possible triplets of current species 4, i and j.

if L,‘:{J,’j, > LiT*’j* then
Species i’ is identified as a hybrid of i’ and j’, and is removed from the dataset.

else
Species i* and j* are considered as neighbors, and we replace them by their
direct common ancestor X determined by NJ.

: H T
it £, > L. ;. then

Species i’ is identified as a hybrid of i’ and j’, and is removed from the
dataset.

else

Species i* and j* are considered as neighbors, and we replace them by their
direct common ancestor X determined by NJ.

end if
end if

I’lA=I’lA—1

17: end while

18: We merge the three remaining species.
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Remarks

When we replace i and j by their common ancestor X, the /-th component of
the probability vector of X is computed by dividing £(X, [, 1) (the likelihood of
having 1 at position /) by L(X,[,1) + L(X,[,0). The likelihoods .L(X, [, ex), for
ex = 0 or 1, are computed as follows:

n
PixPox Pxy l—[ Py
k=3

LX,Lex)= Y

fye{o,l}

, &)

where Pix, Pyx, Pxy, Pyx are computed according to Equation 3. For each
position, we compute the probability that the hybrid character comes from each
of the parents (degree of hybridization). Edge lengths are optimized using the
Newton-Raphson method in the maximum likelihood computations.

The second version of our algorithms proceeds by correcting the likelihood
values using a Bayesian information criterion (Schwarz and Gideon, 1978) in
the following way:

. 2LZ]. +(n+1)In(2L),

. H

2.£h’l.’j +2In(3L),

since there are n + 1 degrees of freedom and 2L data in the NJ tree with n leaves
(see Figure 2), and 2 degrees of freedom and 3L data in the hybrid configuration
(see Figure 3). This refined version of our algorithm was also tested in our
simulations (see section 4).

4 Simulation study

In our simulations, we first generated random phylogenetic trees using the tree
generation algorithm available on the T-REX website (Boc et al, 2012). This
algorithm requires as input the number of species n as well as the average tree
edge length, and returns as output a random binary phylogenetic tree with n leaves
that is built according to the method of Kuhner and Felsenstein (1994). In total,
we generated 1000 unrooted phylogenetic trees for each of the following tree
sizes: n = 8, n = 16 and n = 32, with the average edge length of 0.1. Then, we
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simulated the evolution of binary sequences of length L = 1000 along these trees
using the F81 evolutionary model (Felsenstein, 1981). For each phylogenetic
tree generated this way, we obtained n binary sequences (corresponding to the
tree leaves) of size L. The hybrids were added to the data afterwards. To add
the hybrids, we first randomly selected two integers 1 < i < j < n. Let @
be the selected degree of hybridization, i.e., the contribution of a parent to a
hybrid expressed as a proportion and varying from 0O to 1 (see Willems et al
(2014) for more details on this hybridization parameter). We generated a new
hybrid sequence with the first @ X L binary characters of sequence i to which
we added the remaining (1 — @) X L binary characters of sequence j. This new
hybrid sequence was added to the n original sequences. In our simulations,
we considered the following values of the hybridization parameter: @ = 0.3,
a = 0.4 and a = 0.5 (for each tree considered in our simulations, the value of &
was selected randomly, following the uniform distribution). Obviously, @ and
1 — a play a symmetric role in our model, and the hybridization degrees of 0.3
and 0.4 correspond to the hybridization degrees of 0.7 and 0.6, respectively. In
general, the hybrid detection rate decreases as the value of @ becomes closer
to 0 or to 1 because one of the two parents becomes closer to the hybrid. The
number of hybrids added to trees ranged from O to 5. Thus, for each considered
tree size, n, we obtained 1000 binary sequence alignments corresponding to
the original trees and 6000 matrices corresponding to phylogenetic networks
having 0 to 5 hybrids.

Our first simulation was carried out using: (1) our previous distance-based
method (Willems et al, 2014), (2) our new algorithm described in this paper,
and (3) its refined version in which we corrected the likelihood function by
means of a Bayesian information criterion (see section 3). The results of this
first simulation are shown in Figure 4.

Moreover, for the trees with 8 leaves (i.e., species), we also simulated the
data with different lengths of the binary sequences. Specifically, sequences of
the following sizes: 20, 50, 100, 200, 500 and 1000, were considered. This
second simulation was also conducted with phylogenetic networks including 0
to 5 hybrids. The results of this simulation are presented in Figure 5.

The results of the first simulation demonstrate that the new hybrid detection
method presented in the previous section clearly outperformed our previous
distance-based method (Willems et al (2014)) in terms of the false positive
rate. However, the two methods showed very close results in terms of the true
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positive rate. Furthermore, the refined version of our original method, in which
we corrected the likelihood with a Bayesian information criterion, provided the
best overall results in terms of the true positive rate and the second best overall
results, after our new method, in terms of the false positive rate. Our second
simulation confirmed the trends observed in the first one: The refined version of
our new (original) method was much better than the original method in terms of
the true positive rate, but was not good enough in terms of the false positive
rate. These trends are especially noticeable when short binary sequences (i.e.,
when L ranged between 20 and 200) are considered.

100 True positive rate / tree size (@) |100 True positive rate / number of hybrids (b)
95 95
90 90
85
85
80
75 80
70 75
65 - T | 70 4 T T T 1
8 16 32 1 2 3 4 5
45 False positive rate / tree size (c) 35 False positive rate / number of hybrids (d)

8 16 32 0 1 2 3 4 5

Figure 4: True positive and false positive rates (in %) with respect to the tree size (cases a and c)
and the number of hybrids (cases b and d) obtained in simulations with O to 5 hybrids for trees with
8, 16 and 32 leaves and binary sequences of size 1000 using: (1) our previous distance-based method
(Willems et al (2014); (), (2) our original ML method (0), and (3) the refined version of the ML
method in which we corrected the likelihood with a Bayesian information criterion (A). The averages
over all parameter combinations except the fixed one (tree size or number of hybrids) are shown.

After the additional tests that we conducted with larger trees (with 50 to 100
leaves), we can conclude that in terms of the true positive rate our algorithm
based on the Bayesian information criterion becomes equivalent to the distance-
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based method described in Willems et al (2014), but in terms of the false positive
rate it clearly outperforms the distance-based method.

100 True positive rate / sequence size (a) 50 False positive rate / sequence size (b)
90 50
80 40
30
70
20
60 10
50 7 T 0 T

20 50 100 200 500 1000 20 50 100 200 500 1000

Figure S: True positive (a) and false positive (b) rates (in %) shown with respect to the sequence
size. These results were obtained from simulations with O to 5 hybrids and trees with 8 leaves. The
sequences of sizes: 20, 50, 100, 200, 500 and 1000 were analyzed. The simulations were conducted
using: (1) our original ML method (O0) and (2) the refined version of the ML method in which we
corrected the likelihood with a Bayesian information criterion (A). The averages over all parameter
combinations except the fixed one (sequence size) are shown.

5 Analysis of the mosquitoes data

To test our new method on real data, we considered the dataset of restriction
maps of the rDNA cistron for 16 species of mosquitoes constructed using eight
recognition restriction enzymes (Kumar et al, 1998).A total of 26 sites were
scored. The original binary sequence data are reported in Table 1 in Kumar et al
(1998).

Huson and Klopper (2007) have constructed a galled network (i.e., a specific
type of recombination phylogenetic network) for this dataset and found that
these data include 4 hybrids. Later on, Willems et al (2014) used the Hamming
distances to transform the original mosquitoes data into a distance matrix before
applying their distance-based network reconstruction method (see Figure 15
in Willems et al (2014)). The method by Willems et al (2014) also returned a
network with 4 hybrids (i.e., 4 reticulations in the network).

After the application of the refined version of our method based on the BIC
correction, we obtained an explicit phylogenetic network with 5 hybrids (see
Figure 6). It is worth noting that the general structure of our network is very
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similar to that of the galled network by Huson and Klopper (2007) as well as

to that of the reticulation network by Willems et al (2014). However, we can

also observe some permutations between hybrids and parents in these networks.
For example, the species Aedes polynesiensis and Aedes triseriatus have been
identified as parent species in the network by Willems et al (2014), but have
been identified as hybrids in the network provided by our new method (see
Figure 6). Also, the species Tripteroides bambusa has been identified as a hybrid
in our phylogenetic network, but not in that by Willems et al (2014).
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Figure 6: Network obtained for the restriction map of the 16-species mosquitoes dataset (Kumar
et al, 1998) using our new method based on the BIC correction. Five hybrids, linked to the rest of
the network by dashed lines, were identified. The numbers on dashed network edges represent the

respective contributions of parents to hybrids.
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On the other hand, Huson and Klopper (2007) found four hybrids for the
mosquitoes data. For example, as in our hybridization network the species Aedes
triseriatus was found to be a hybrid of the species Haemagogus equinus and a
group of several species. On the contrary, the species Aedes polynesiensis was
found to be a hybrid in our network and not a hybrid in the network inferred
by Huson and Klopper (2007), whereas the cluster including the species Aedes
katherinensis, Aedes alasidi and Aedes seatoi was found to be a cluster of
hybrids in the network of Huson and Klopper (2007), but not in our network.

The key advantage of our network representation, as well as of that by Willems
et al (2014), over galled networks and split graphs is that our methods identify
hybrids and their parents explicitly. Moreover, the respective contributions of
parents to hybrids (i.e., hybridization degree) were also determined by our
method (see the numbers on dashed edges in Figure 6).

6 Conclusion

In this paper, we have introduced a new accurate method for inferring explicit
hybridization networks from presence-absence data (i.e., binary sequences).
These networks can be used to represent adequately reticulate phylogenetic
relationships between species, including for example hybridization events and
horizontal gene transfers between species. Most of the existing algorithms devel-
oped in this context return as output only an implicit phylogenetic network, which
is often very difficult to interpret. Our new method infers explicit hybridization
networks using both the maximum likelihood and Neighbor-Joining approaches.
The new method can be applied for building and interpreting phylogenetic
networks for different types of binary sequences associated with species at
hand, e.g., presence/absence of certain genes in genomes or presence/absence
of restriction sites. Our simulations showed that the new method, and especially
its modified version that uses a maximum likelihood correction by a Bayesian
information criterion, outperforms the distance-based technique of Willems
et al (2014) in terms of both the true positive and false positive rates, regardless
of the number of species and hybrids in the dataset. Another advantage of the
method presented here, compared to the distance-based method of Willems et al
(2014), is that our new method does not require an additional hybrid selection
threshold parameter that should be specified by the user in the distance-based
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method. The main drawback of the new method is that it is slower than the
distance-based method of Willems et al (2014). For example, for a dataset with 8
species (respectively, 64 species), our hybrid detection program written in C++,
executed on an IBM PC computer equipped with an Intel i7 processor and 8GB
of RAM, takes on average less than a second (respectively, 1.2 seconds) to carry
out the distance-based method described in Willems et al (2014), while it takes
on average 1.5 seconds (respectively, 13 minutes and 56 seconds) to carry out the
maximum likelihood-based method described in this paper for the sequences of
length L = 100. The time complexity of our distance-based method is O(n?). It
is asymptotically equivalent to the time complexity of the NJ algorithm (Saitou
and Nei, 1987). In general, our maximum likelihood-based method is more
accurate (see Figures 4-5) but also slower (its time complexity is linear in terms
of the sequence length, but is exponential in terms of the number of species
in the worst case) than our distance-based method, as it is usually the case in
phylogenetic analysis (Felsenstein, 2003). Thus, the maximum likelihood-based
method presented in this paper can be recommended for use with phylogenetic
networks having up to 100 species, while the distance-based method described
in Willems et al (2014) can be applied to larger genomic datasets.

We are currently working on a mixed version of the two methods. For a large
number of species, we can first infer a preliminary hybridization network using
the distance-based method. Then, we can refine it locally by using the maximum-
likelihood-based method. At the same time, we also plan to incorporate into the
new method a priori knowledge, consisting of known probabilities for species
h to be a hybrid of species i and j (1 < h,i,j < n), based for example on the
species dispersal areas.

The program implementing our new algorithm was implemented in the C++
language. It is freely available to the research community at the following URL ad-
dress: http://www.info2.ugam.ca/~makarenkov_v/makarenv/
hybrids_detection.zip.

Acknowledgements This work was supported by Natural Sciences and Engineering Research Council
of Canada.


http://www.info2.uqam.ca/~makarenkov_v/makarenv/hybrids_detection.zip
http://www.info2.uqam.ca/~makarenkov_v/makarenv/hybrids_detection.zip

16 Matthieu Willems, Nadia Tahiri and Vladimir Makarenkov

References

Albrecht B, Scornavacca C, Cenci A, Huson D (2012) Fast computation of minimum
hybridization networks. Bioinformatics 28(2):191-197, DOI 10.1093/bioinformat-
ics/btr618

Bandelt H, Dress A (1992) Split decomposition: A new and useful approach to
phylogenetic analysis of distance data. Molecular Phylogenetics and Evolution
1(3):242-252, DOI 10.1016/1055-7903(92)90021-8

Boc A, Diallo A, Makarenkov V (2012) T-REX: A web server for inferring, vali-
dating and visualizing phylogenetic trees and networks. Nucleic Acids Research
40(W1):W573-W579, DOI 10.1093/nar/gks485

Bryant D, Moulton V (2004) Neighbor-net: An agglomerative method for the con-
struction of phylogenetic networks. In: Algorithms in Bioinformatics, Guigé R,
Gusfield D (eds), Springer, Berlin, vol. 21, p. 255-365, ISBN: 978-3-540457-84-8,
DOI 10.1007/3-540-45784-4_28

Chen Z, Wang L (2012) Algorithms for Reticulate Networks of Multiple Phylogenetic
Trees. IEEE/ACM Transactions on Computational Biology and Bioinformatics
9(2):372-384, DOI 10.1109/TCBB.2011.137

Felsenstein J (1981) Evolutionary trees from DNA sequences: A maximum likelihood
approach. Journal of Molecular Evolution 17(6):368-376, DOI 10.1007/BF01734359

Felsenstein J (2003) Inferring phylogenies. Sinauer Associates, Sunderland. ISBN: 978-
0-878931-77-4

Huson D, Bryant D (2006) Application of phylogenetic networks in evolutionary studies.
Molecular Biology and Evolution 23(2):254-267, DOI 10.1093/molbev/msj030

Huson D, Klopper T (2007) Beyond Galled Trees: Decomposition and Computation of
Galled Networks. In: Research in Computational Molecular Biology, Springer, Berlin,
p. 211-225, ISBN: 978-3-540716-81-5, DOI 10.1007/978-3-540-71681-5_15

Huson D, Scornavacca C (2012) Dendroscope 3: An interactive tool for rooted phyloge-
netic trees and networks. Systematic Biology 61(6):1061-1067, DOI 10.1093/sys-
bio/sys062

Kuhner M, Felsenstein J (1994) A simulation comparison of phylogeny algorithms
under equal and unequal evolutionary rates. Molecular Biology and Evolution
11(3):459-468, DOI 10.1093/oxfordjournals.molbev.a040126

Kumar A, Black W, Rai K (1998) An estimate of phylogenetic relationships among
culicine mosquitoes using a restriction map of the rDNA cistron. Insect Molecular
Biology 7(4):367-373, DOI 10.1046/j.1365-2583.1998.740367.x

Olave M, Avila L], Sites Jr JW, Morando M (2018) Detecting hybridization by likelihood
calculation of gene tree extra lineages given explicit models. Methods in Ecology
and Evolution 9(1):121-133, Wiley Online Library, DOI 10.1111/2041-210X.12846

Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing
phylogenetic trees. Molecular Biology and Evolution 4(4):406-425, DOI 10.1093/0x-
fordjournals.molbev.a040454


https://doi.org/10.1093/bioinformatics/btr618
https://doi.org/10.1093/bioinformatics/btr618
https://doi.org/10.1016/1055-7903(92)90021-8
https://doi.org/10.1093/nar/gks485
https://doi.org/10.1007/3-540-45784-4_28
https://doi.org/10.1109/TCBB.2011.137
https://doi.org/10.1007/BF01734359
https://doi.org/10.1093/molbev/msj030
https://doi.org/10.1007/978-3-540-71681-5_15
https://doi.org/10.1093/sysbio/sys062
https://doi.org/10.1093/sysbio/sys062
https://doi.org/10.1093/oxfordjournals.molbev.a040126
https://doi.org/10.1046/j.1365-2583.1998.740367.x
https://doi.org/10.1111/2041-210X.12846
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1093/oxfordjournals.molbev.a040454

Building explicit hybridization networks 17

Schwarz G, Gideon E (1978) Estimating the dimension of a model. Annals of statistics
6(2):461-464, DOI 10.1214/a0s/1176344136

Solis-Lemus C, Ané C (2016) Inferring phylogenetic networks with maximum pseudo-
likelihood under incomplete lineage sorting. PLoS genetics 12(3):¢1005896, Public
Library of Science, DOI 10.1371/journal.pgen.1005896

Willems M, Tahiri N, Makarenkov V (2014) A new efficient algorithm for in-
ferring explicit hybridization networks following the Neighbor-Joining prin-
ciple. Journal of Bioinformatics and Computational Biology 12(05):1450024,
DOI 10.1142/50219720014500243


https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1371/journal.pgen.1005896
https://doi.org/10.1142/S0219720014500243

	Building explicit hybridization networks using the maximum likelihood and Neighbor-Joining approaches
	Introduction
	Methods
	Main algorithm
	Simulation study
	Analysis of the mosquitoes data
	Conclusion


