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A B S T R A C T

In recent years, electricity markets have been characterized by a growing share of fluctuating renewable
energies, which has increased concerns about the security of electricity supply. As a consequence, exist-
ing market designs are adapted, and new capacity remuneration mechanisms are introduced. However,
these mechanisms entail new challenges, and it is disputed whether they are indeed needed. In this arti-
cle, an overview of the current debate on the necessity of capacity remuneration mechanisms is provided.
Furthermore, initial experiences of real-world implementations are discussed, and common findings in the
literature, categorized by their economic implications, are derived. Finally, shortcomings in existing research
and open questions that need to be addressed in future works are pointed out.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A reliable electricity system remains one of the main objectives
of energy market regulators. This objective requires the stimulation
of adequate investments on the supply side by market prices, which
are to be high enough to finance not only the operational but also
the fixed costs. However, generating adequate price signals becomes
more and more challenging during the energy transition phase
mainly shaped by the expansion of distributed renewable energies
sources (RES). This intensified the discussion on demand-supply
adequacy and lead to the proposal and in some cases introduc-
tion of mechanisms to remunerate capacity providers. However, the
necessity and the design of these so-called capacity remuneration
mechanisms (CRMs) are diversely evaluated in the literature.

Due to the already large and still quickly growing number of
studies on CRMs1, it is increasingly hard to keep an up-to-date

* Corresponding author.
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1 In the literature, two other terms—capacity mechanism and capacity markets—
are commonly used as synonyms for capacity remuneration mechanisms. In this
article, however, capacity markets have a narrower definition and are considered as
a specific variant of the different mechanism to enumerate capacity (see Section 3).

overview. As several real-world experiences in the implementation
and administration of CRMs have been gained, reviews have already
been carried out focusing on the practical lessons learned (e.g., Batlle
and Rodilla, 2010; Beckers et al., 2012; Bhagwat et al., 2016b; Karac-
sonyi et al., 2006; Spees et al., 2013). However, because of the rapid
development and frequent regulatory changes, some of the presented
information is already obsolete. Other more broadly oriented stud-
ies provide a systematic description of CRMs as well as a descriptive
comparison (e.g., Doorman et al., 2016; DNV GL, 2014; European Com-
mission, 2016b; Hancher et al., 2015; de Vries, 2007) or focus on the
fundamental economic principles of CRMs, (e.g., Cramton et al., 2013;
Stoft, 2002). Beside these studies on theoretical concepts of market
design and CRMs as well as a review of mechanisms implemented
in some countries, to the best knowledge of the authors, there does
not exist a comprehensive review of the discussion and assessment
of different design options for the electricity market in the literature.

Therefore, this article aims to guide both, new entrants and
advanced researchers, through the field of electricity market design by
providing a comprehensive and up-to-date overview of market design
options. As the topic is well discussed in the literature and there are
several real-world implementations of CRMs today, this paper aims
not only to review theoretical studies on electricity market design but
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0140-9883/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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also to describe a selection of real-world implementations of CRMs as
alternative design options. This enables the potential reader to gain
insights from theoretical approaches and related studies as well as
from practical implementations.

In order to understand why there are so many approaches in
theory and practice and how the discussion about the requirement
for alternative design options evolved, Section 2 provides a review of
the discussion about generation adequacy and about the performance
of the energy-only-market (EOM). Afterward, the focus is set on the
assessment of market design options in the literature, both from
a practical perspective and theoretical perspective. In the practical
case, a selection of the most relevant design options implemented
in electricity markets around the world is discussed (Section 3). The
theoretical perspective considers the assessment of the impacts of
different design options on regulatory targets, such as generation
adequacy and RES integration (Section 4). The review of the latter
perspective is carried out in focusing on the qualitative discussion
of limitations and benefits of each market design option, as well as
on the model-based analysis of impacts on different criteria, e.g.,
market welfare, security of supply or incentivizing flexibility. Finally,
the main common findings are discussed, open questions with which
researchers are currently confronted are pointed out, and a set of
policy implications is derived (Section 5).

2. The ongoing debate about securing generation adequacy

The question of whether EOMs generate sufficient price signals to
incentivize investments in generation capacity is closely linked to the
specific characteristics of electricity markets, i.e., their long-standing
barriers and more recent challenges. Therefore, after describing these
characteristics, the discussion on generation adequacy is summarized
to show the motivation behind CRMs, to make the review more com-
prehensive and to present the latest findings from the fast-growing
literature in a broader context.

2.1. Existing barriers to generation adequacy

The barriers in the electricity sector can be clustered in physical
and market-related ones. Physical barriers are mainly based on the
fact that electricity systems need to balance generation and con-
sumption in each node of the electricity grid at every point in time,
as the disruption of electricity frequency can lead to severe damages,
such as the destruction of connected devices or even the collapse
of the entire power system (Kwoka and Madjarov, 2007). Usually,
the most substantial amount of electricity is already traded several
months or years in advance via forward contracts and over-the-
counter (OTC) markets that allow energy suppliers to hedge their
portfolio (Meeus et al., 2005). As the possibilities to store electric-
ity economically are still limited, and deviations from the expected
consumer demand as well as the unexpected unavailability of gen-
eration capacity induce a need for short-term trading, spot markets
usually possess high liquidity. However, as a certain time between
spot market clearing and fulfillment is still necessary to organize the
delivery, current wholesale markets are unable to capture these tem-
poral and spatial requirements in their clearing process. Hence, other
market or regulatory mechanisms are required. Furthermore, due to
the nature of the electricity network, a free-rider problem occurs
as up to now the network cannot differentiate between customers
with and without contracts guaranteeing a reliable supply (Lynch
and Devine, 2017). Therefore, an EOM design without reliability con-
tracts cannot discriminate between customers who are willing to
pay for reliability and those who are not (Joskow and Tirole, 2007).
These technical properties are one reason why electricity prices as
the outcome of market equilibrium cannot carry all information
and signals necessary for the reliable long-term operation and the
required investments in the generation infrastructure.

One example for market-related barriers are price caps in spot
markets, which are a regulatory barrier introduced to protect con-
sumers and to avoid the abuse of market power in the absence of
demand elasticity (Stoft, 2002). However, as Petitet et al. (2017) point
out, price caps are usually set below the value of lost load (VoLL)2

for political reasons, and the resulting investments in generation
capacity are likely not sufficient to cover the electricity demand at
all times. Even though it is theoretically possible to set shortage
prices or price caps sufficiently high, i.e., equal to the VoLL, in prac-
tice its specific value would have to be determined first, a task often
described as difficult or even impossible to perform (e.g., Cramton
et al., 2013; Willis and Garrod, 1997).

Therefore, other measures may be required to replace signals
coming from price spikes and to generate sufficient incentives for
investments (Doorman et al., 2016). These additional measures are
to be implemented to address the so-called missing money problem,
which can be defined as the lost earnings beyond the price cap, espe-
cially for peak load power plants (see Fig. 1b). More detailed, missing
money is that part of these lost earnings that is necessary to cover the
investment and all other fixed costs. For Joskow and Tirole (2007),
missing money may also occur due to premature technical decisions
of system operators to avoid market disequilibrium and brownouts3.
Furthermore, Newbery (2016a) argues that even if earnings from
price spikes are sufficient to cover fixed and capital costs, investors
might not be willing to bear the associated risks and are unable to
lay them off through futures and contract markets. In this case, the
problem is referred to as missing market instead of missing money
(Newbery, 1989).

Another problem in current wholesale electricity markets is that
large parts of electricity demand are inelastic from a short-term per-
spective, e.g., households have a fixed rate for energy consumption
in combination with a base rate tariff (Dütschke and Paetz, 2013)
and, thus, do not actively participate in the volatile wholesale mar-
ket or show any reaction even to drastic prices changes (Cramton
and Stoft, 2005). Therefore, the marginal costs of base load and with
increasing demand peak load power plants set the market price until
the entire demand can no longer be met by the existing generation
capacity (see Fig. 1a). For this reason, Lynch and Devine (2017) state
that the price signal for reliable supply and generation adequacy can
be considered weak. Keppler (2017) even argues that many prob-
lems regarding security of supply could be solved if the demand
side became more elastic and participated in the market efficiently.
Furthermore, Aalami et al. (2010) claim that the implementation of
demand response programs will lead to the reflection of wholesale
prices in retail prices, especially, if new developments change the
need for electric services and new business models are developed for
the demand response measures. However, currently, the main bur-
den of balancing the system to guarantee the reliable operation of the
electricity grid in the short term and to ensure generation adequacy
in the long term lies on the supply side.

2.2. Recently emerging challenges

In addition to the already mentioned long-standing barriers that
exist on wholesale electricity markets, several recent developments
revive the debate about mechanisms remunerating generation
capacity, e.g., the rise of intermittent RES or the market-related and
political uncertainties, such as the phase-out of specific technologies.

2 The value of lost load describes the average willingness of customers to pay for
the reliability of their electricity supply. The individual willingness to pay is not an
unlimited value but can vary between close to zero and tens of thousands of Euros
per MWh, especially for critical infrastructures such as hospitals (Hogan, 2017).

3 In the electricity system major failures result in brownouts or blackouts. A black-
out is a disruption in a wider range of an electricity system up to a total collapse of
the whole supply whereas a brownout implies an excessively reduced voltage that can
result in equipment failure, e.g., overheating of electric motors (Blume, 2007).
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Fig. 1. Price setting in scarcity situations. a) The equilibrium price p∗ is below the price cap p̄ and an efficient outcome is achieved. b) The equilibrium price p∗ is above the price
cap p̄, however, as the resulting price p∗ is equal to the price cap, welfare losses occur (missing money).

The aim of the following paragraphs is, thus, to shed light on these
developments.

Driven by the introduction of various subsidy programs, RES have
experienced a remarkable rise4. PV and wind power are highly capital
intensive (e.g., Newbery, 2016b; Schmidt, 2014) but feature marginal
costs close to zero (Milligan et al., 2016; Osorio and van Ackere,
2016). The low generation costs of RES result in decreasing electricity
prices—also known as the merit-order effect (Sensfuß et al., 2008).
Lower electricity prices in turn reduce the yields of conventional
generation and, at the same time, the larger share of RES decreases
the load factors of thermal capacities. Combined with the priority
dispatch of RES implemented in many European countries (Hu et al.,
2017; Newbery et al., 2017), this effect can even lead to negative
prices (Nicolosi, 2010). Furthermore, as scarcity situations occur less
often, renewable generation reduces the profitability of peak-load
plants that depend on recovering their capital costs during a limited
number of hours (Keppler, 2017). In Europe, the expansion of RES
in combination with several other factors, e.g., decreasing prices for
hard coal and carbon emission certificates, caused a significant drop
in electricity prices (see Bublitz et al., 2017; Hirth, 2018; Kallabis et
al., 2016) that drastically complicated the recovering of operating
expenses for conventional capacities (see Fig. 2). For instance, in the
last years, gas-fired generation was often unprofitable. As a conse-
quence gas power plants are being mothballed and decommissions
are already carried out or being considered (S&P Global Platts, 2013;
Bloomberg, 2015; Réseau de transport d’électricité, 2014b).

Due to the dependence on weather conditions, the generation of
PV and wind power is highly intermittent, and especially wind gener-
ation is hard to predict (Newbery, 2016b). As their level of electricity
generation is semi-dispatchable, only a reduction is possible (Lynch
and Devine, 2017; Di Cosmo and Lynch, 2016), an additional need for
flexibility is created, which, for example, can be provided by demand
response measures, large-scale storage capacities or power plants
with the ability to quickly ramp up or down (Pollitt and Anaya, 2016;
Cepeda and Finon, 2013). Therefore, without further advancements,
intermittent RES are currently unable to replace dispatchable con-
ventional power plants adequately (Hach et al., 2016; Doorman et
al., 2016) and the need for dispatchable generation capacity remains
high. Moreover, as RES are often located away from the demand

4 The rise of RES is, for example, illustrated by the fact that between 2006 and
2016, the worldwide installed photovoltaic (PV) and wind power capacity grew by
a compound annual rate of 48% respectively 21% to a worldwide installed capacity
of 303 GW respectively 487 GW by the end of 2016 (REN21, 2017).

centers and the locations of capacities they replace, grid constraints
will play a more pronounced role. RES are already mentioned as
the main driver for grid congestions (Bruninx et al., 2013), and in
the future, supply and demand need to be balanced at different
geographical levels, e.g., at the local, the national or supranational
level.

Finally, investors face different uncertainties regarding fuel and
electricity prices and the regulatory framework, e.g., the nuclear
phase-out decision, fossil fuel reduction or carbon emission tar-
gets. Even though the phase-outs affect supply security, Becker et al.
(2016) claim that neither politicians nor scientists discuss lowering
the level of security of supply to achieve a sustainable and affordable
system. Beyond that, in case of an investment decision, the prompt
commissioning of generation capacity—especially for controversial
technologies (e.g., carbon capture and storage)—proves to be another
obstacle, as the licensing process is tedious and adds another layer of
uncertainty (Doorman et al., 2016).

2.3. The optimal functioning of energy-only markets and the necessity
of capacity remuneration mechanisms

One, maybe the most persuasive, argument in favor of an EOM is
that—even in the absence of an active demand response—resulting
market prices are efficient and, thus, lead to sufficient long-term
investments guaranteeing the least-cost long-term system if several
key assumptions are met (Caramanis et al., 1982; Oren, 2005;
Schweppe et al., 1988; Stoft, 2002): (1) the market is perfectly
competitive, (2) market participants have rational expectations and
(3) follow a risk-neutral strategy. However, in the light of the present
state of electricity markets that feature several imperfections (Cepeda
and Finon, 2011), these assumptions seem rather unrealistic, maybe
even impossible to realize in practice. In real-world markets, a small
number of producers often dominate the market, resulting in a
duopoly or oligopoly (e.g., Schwenen, 2014), and invest strategically
(Grimm and Zöttl, 2013; Zöttl, 2010). Furthermore, investors are
usually rather risk-averse, i.e., building less capacity than risk-neutral
investors would (Neuhoff and de Vries, 2004). Moreover, market
participants may not always have rational expectations, and in the
presenceofthelargeuncertainties,e.g.,aboutthedevelopmentofelec-
tricity prices, and the long lead times for new investments, electricity
markets are prone to suffer investment cycles (Arango and Larsen,
2011; Ford, 2002; Olsina et al., 2006). The alternation between over-
capacity and under-capacity results in inefficient market allocations,
i.e., in the former case, unprofitable investments and, in the latter case,
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Fig. 2. The development of day-ahead prices in major European markets in the last years shows a clear downward trend, apart from the years 2009 and 2010, which can be
regarded as outliers due to the impact of the global economic crisis. The comparison of the figures for 2008 and 2016 indicates a decline of about 50% in Germany, France, and
Italy, whereas the decline in Spain is about 33%. Sources: ENTSO-E (2017), EPEX SPOT (2018), Gestore dei Mercati Energetic (2017), OMI-Polo Español S.A. (2017).

an excessive risk of load curtailment and high costs for consumers
(Réseau de transport d’électricité, 2014a). Moreover, de Vries and
Hakvoort (2004) argue that even long-term contracts do not provide
a solution as they offer consumers the opportunity to free-ride.5

In addition, Keppler (2017) shows two other independent prob-
lems of an EOM. On the one hand, demand-side externalities in the
form of transaction costs and incomplete information ensure that the
social willingness-to-pay is greater than private willingness-to-pay
for additional capacity. On the other hand, investments in genera-
tion capacities are not arbitrarily scalable, but rather take discrete
values. In combination with dramatically lower revenues in the transi-
tion from underinvestment to overinvestment, investors have strong
asymmetric incentives and, thus, tend to underinvest rather than
to overinvest. Besides, Joskow and Tirole (2007) argue that scarcity
rents are very sensitive to regulatory changes and that even minor
mistakes are likely to have a significant impact on market prices.

Some of the more critical voices stress that market imperfections,
especially the lack of demand response, will always persist in EOMs,
and lead to the exercise of market power, which results in high
price peaks. Thus, a different framework or additional measures,
e.g., CRMs, are required to help to ensure generation adequacy
efficiently (Cramton and Stoft, 2005; Joskow and Tirole, 2007). Others
reply that the main problem of EOMs is the lack of political will
to allow for unconstrained electricity prices6 and periodic shortages
(Besser et al., 2002; Hogan, 2005).

However, often it is argued that CRMs are inefficient and accord-
ing to Oren (2000) the least desirable instrument or according to
Hogan (2017) only the third best option to ensure reliability, with
the first option being the elimination of the leading underlying
causes, e.g., incentivizing a flexible demand7, and the second-best

5 A problem with long-term contracts is that they are not contracted directly
between consumers and utilities, but rather through load-serving entities as interme-
diaries. However, rational consumers prefer the cheapest retailer, which by avoiding
long-term contracts does not contribute to the financing of peaking capacities.

6 Although price caps are frequently mentioned as a source of the missing money
problem, the data on market prices often tells a different story, e.g., since the
establishment of the EEX in 2000, the upper price limit of the German spot market
(3000 Euro/MWh) was not once hindering the price formation (EPEX SPOT, 2018),
the same seems to be the case in several US market areas from 2000 to 2006 (Joskow,
2008).

7 In the future, if end consumers start to participate directly in the market via smart
meters, they could specify in detail what price they are willing to pay for each con-
sumption level. If the price is too high, the smart meter will switch off individual
consumers directly, for example, the washing machine, while leaving others con-
nected, e.g., the lights and refrigerator. Thereby, the missing money problem could be
avoided (Newbery, 2016a).

option being an administrative price curve for the usage of reserve
energy. Wolak (2004) even claims that the rationale for CRMs is
essentially a holdover from the regulated regime of the energy sec-
tor that encourages over-investment and is highly susceptible to
market power, thus, frequently requiring regulatory intervention to
set a non-distorted capacity price. In a recent publication, Wolak
(2017) instead argues that generation adequacy can be ensured by
establishing a market for standardized forward contracts and man-
dating retailers to participate in order to provide sufficient liquidity.
He states that in this way generation adequacy can be ensured at the
lowest possible cost, as scarcity is reflected in the forward prices and
investors are provided with the necessary financing.

Summing up, whether the EOM is able to guarantee generation
adequacy, is still discussed intensively in the literature. It is appar-
ent that the efficient allocation of resources by an EOM is a highly
challenging task, given the particular combination of the unusual
characteristics of the electricity market. Here, the utilization of real-
world experience to draw general conclusions is of limited use. In
case, some analysts argue that the developments on a particular
market serve as an example for the inherent shortcomings of an
EOM, advocates respond that the market has not been able to func-
tion well due to regulatory mistakes (Doorman et al., 2016). Beyond
that, Hogan (2017) states that the financial distress present in many
European as well as North American electricity markets, can be
attributed to overcapacities. Nonetheless, recent developments have
raised serious doubts on the effectiveness of an EOM so that many
politicians deem the introduction of CRMs necessary.

3. Market design options and current status of real-world
implementations

In order to highlight the practical relevance of the market design
concepts developed in the literature, an overview of several CRMs
currently implemented or in the planning stage around the world
is provided in the following. These real-world implementations are
classified with respect to some key characteristics. Then, conclusions
and implications for future implementations are presented. Thereby,
this section provides a helpful backdrop for a deeper understanding
of the literature reviewed in Section 4.

3.1. Generic types of capacity remuneration mechanisms

Typically, CRMs are designed to incentivize investments and thus
improve generation adequacy, i.e., avoid shortage situations. This is
implemented by offering capacity providers income on top of the
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earnings from selling electricity on the market (Hawker et al., 2017).
Yet, the mechanisms vary in the way the required quantities that
are supplied and the corresponding capacity prices are determined
(Hach et al., 2016).

The European Commission (2016b) distinguishes between
volume-based mechanisms, where a specific capacity sufficient to
guarantee the desired level of generation adequacy is set and then
results in a market-driven price, and price-based mechanisms, where
the amount of the procured capacity is steered by setting a tar-
get price. Both categories can also be subdivided into market-wide
and targeted approaches. Whereas market-wide mechanisms pro-
vide support to all capacity in the market, targeted mechanisms aim
at supporting only a subset, e.g., newly built capacity or capacity
expected to be required additionally to the one already provided by
the market. More specifically, six different types of mechanisms can
be differentiated (for typical characteristics, see Table 1):

(1) Tender for new capacity. Financial support is granted to capac-
ity providers in order to establish the required additional
capacity. Different variations are possible, e.g., financing the
construction of new capacity or long-term power purchase
agreements.

(2) Strategic reserve. A certain amount of additional capacity is
contracted and held in reserve outside the EOM. The reserve
capacity is only operated if specific conditions are met, e.g., a
shortage of capacity in the spot market or a price settlement
above a certain electricity price.

(3) Targeted capacity payment. A central body sets a fixed price
paid only to eligible capacity, e.g., selected technology types
or newly built capacity.

(4) Central buyer. The total amount of required capacity is set by
a central body and procured through a central bidding pro-
cess so that the market determines the price. Two common
variants of the central buyer mechanism include the forward
capacity market (Cramton and Stoft, 2005, 2006) and reliabil-
ity options (Perez-Arriaga, 1999; Vázquez et al., 2001; Batlle
et al., 2007).

(5) De-central obligation. An obligation is placed on load-serving
entities to individually secure the total capacity they need
to meet their consumers’ demand. In contrast to the cen-
tral buyer model, there is no central bidding process. Instead,
individual contracts between electricity suppliers and capac-
ity providers are negotiated.

(6) Market-wide capacity payment. Based on estimates of the level
of capacity payments needed to bring forward the required
capacity, a capacity price is determined centrally, which is
then paid to all capacity providers in the market.

3.2. Current status of implementation around the world

While the first CRMs in the US date back to the 1990s, European
countries only rather recently started implementing such mecha-
nisms or are currently evaluating tailored solutions. However, the
European trend towards applying CRMs stands in contrast to the Euro-
pean Commission’s preference for the EOM as an approach to trigger
new investments and provide signals for decommissioning in case of
overcapacities (Petitet et al., 2017). Some further countries outside of
Europe and the US, such as Australia and Colombia, are also relying
on CRMs in order to guarantee generation adequacy.

An overview of several real-world implementations of CRMs as
well as planned mechanisms is provided in Table 2 and Fig. 3.
The country-specific approaches differ not only with regard to the
chosen type of the mechanism but also with regard to the respective
administrators and the eligible technologies. Further characteristics
of some currently active mechanisms can be found in Appendix A.

3.3. Discussion and implications for future implementations

An expert survey conducted by Bhagwat et al. (2016b) reveals
that the CRMs implemented in the US have effectively—but likely not
efficiently—contributed to reaching the different regions’ respective
reliability goals. For this reason, the experts generally advise the
EU to rely on EOMs and not implement CRMs. If, however, CRMs
are to be implemented in Europe, they recommend using consistent
and transparent rules with minimum subsequent modifications.
Moreover, based on the US experience, it seems advisable to base the
capacity remuneration on the availability of the respective resources
in actual scarcity conditions. Since these recommendations are quite
generic, they are also applicable to any country outside of Europe
which is considering the implementation of a CRM.

Bhagwat et al. (2016b) further state that cross-border inefficien-
cies are currently not considered a major issue in the US, even though
the introduction of the PJM mechanism has likely been a key driver
for the subsequent implementation of a CRM in the neighboring MISO
region. In this respect, the situation is different in Europe, where the
European Commission (2011) considers a single European electricity
market—also termed “internal electricity market”—essential in order
to ensure competitive, sustainable and secure energy supply in the
future. This is contrasted by several European countries already
using or currently implementing individual mechanisms to increase
generation adequacy on a national level (see Section 3.2). Yet, in
a highly interconnected electricity system like the European one,
the uncoordinated implementation of local mechanisms might lead
to numerous potentially adverse cross-border effects, which are
described in detail in Section 4.6.

Table 1
Typical characteristics for different types of CRMs. However, due to specific requirements, the concrete specifications may vary in different countries. Sources: European
Commission (2016b), Hancher et al. (2015), Neuhoff et al. (2013, 2016).

Type Category Procurement/
market type

Participation in
other markets

Product Main regulatory
parameters

Tender for new capacity Volume-based/
targeted

Centralized/
auction

Yes Firm capacity Capacity volume

Strategic reserve Volume-based/
targeted

Centralized/
auction

No Reserve capacity Capacity volume,
activation rule, trigger
event

Targeted capacity payment Price-based/
targeted

Centralized/
auction

Yes Firm capacity Capacity price, eligibility
criteria

Central buyer Volume-based/
market-wide

Centralized/
auction

Yes Call option Capacity volume, strike
price

De-central obligation Volume-based/
market-wide

Decentralized/
bilateral

Yes Reliability certificate Security margin, penalties

Market-wide capacity payment Price-based/
market-wide

Centralized/
auction

Yes Firm capacity Capacity price
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Table 2
Overview of implemented CRMs around the world. Sources: Bhagwat et al. (2016b), Byers et al. (2018), Cejie (2015), Chow and Brant (2018), Deutscher Bundestag (2016), EirGrid
plc and SONI Limited (2017), European Commission (2014, 2016a,b,c, 2017a,b), Government of Western Australia (2017), Hancher et al. (2015), Harbord (2016), Midcontinent
Independent System Operator, Inc. (2019), New York Independent System Operator (2018), Patrian (2017), PJM (2018), Roques et al. (2017), Single Electricity Market Committee
(2016), Southwest Power Pool, I. (2018a,b), Svenska Kraftnät (2016).

Type Market area Administrator Eligible technologies Status1

TSO/ISO RA TPP VRES DSM IC

Strategic reserve Belgium x x x x Active (2014)
Germany x x x x Planned2 (2018)
Sweden x x x Active (2003)

Central buyer Colombia x x x Active (2006)
Ireland3 x x x x x x Planned (2017)
Italy3 x x x x x Planned (2018)
Poland4 x x x x x x Planned (2018)
UK x x x x x x Active (2014)
US – ISO-NE x x x x x Active (1998)
US – MISO x x x x x Active (2009)
US – NYISO x x x x x Active (1999)
US – PJM x x x x x Active (2007)

De-central obligation Australia – SWIS x x x x x Active (2005)
France x x x x x Active (2015)
US – CAISO x x x x x x Active (2006)
US – SPP x x x x x Active (2018)

Targeted capacity payment Spain5 x x Active (2007)

Abbreviations: CAISO—California ISO, DSM—demand side management, IC—interconnector, ISO—independent system operator, ISO-NE—ISO New England, MISO—Midcontinent
ISO, NYISO—New York ISO, PJM—Pennsylvania-New Jersey-Maryland Interconnection, RA—regulatory authority, SPP—Southwest power pool, SWIS—South West interconnected
system, TPP—thermal power plant, TSO—transmission system operator, VRES—variable renewable energy sources

1 Year of (planned) implementation in parentheses. The year refers to the respective mechanism currently in place, however, other mechanism may have been used before.
2 In Germany, two separate mechanisms have been discussed that can be classified as a strategic reserve. In 2016, a security stand-by arrangement for lignite-fired power

plants with a total capacity of 2.7 GW was introduced in order to attain national climate targets. Furthermore, an additional so-called capacity reserve is supposed to be active in
winter of 2018/19 to ensure generation adequacy. However, as the European Commission still assesses whether the capacity reserve complies with EU state aid rules, it is unclear
whether the planned schedule can be met.

3 To date, targeted capacity payments are used.
4 Currently, a strategic reserve is implemented.
5 This refers to the now in place “availability service” mechanism. An additional mechanism named “investment incentive” was abolished in 2016.

The European Commission has already recognized this issue and
therefore continuously assesses the conformity of planned and imple-
mented mechanisms with EU State aid rules (for an overview of the
cases see European Commission, 2017c). For a lawful public inter-
vention in the market, the European Commission (2013) asks for the
respective member state to demonstrate the essential need for any
capacity remuneration. Moreover, any mechanism must ensure that
distortions of competition are minimized and technology neutrality
is guaranteed. The latter aspect includes the eligibility of demand-
side measures or foreign generation capacity, which, for example,
has led to several adjustments of the French decentralized capacity
market mechanism.

4. Findings on capacity remuneration mechanisms in the
literature

After analyzing real-world implementations of CRMs, the findings
in the literature are discussed below. In view of the large number of
studies, the findings have been structured based on the specifically
investigated topics. This allows to compare similar studies and to
derive common results. In many of the analyses, e.g., for evaluating
dynamic long-term effects—such as the occurrence of investment
cycles—the use of models is highly suitable (Hary et al., 2016).
Table 3 gives a quick overview of the existing approaches available
in the literature including the regarded market characteristics or
the considered research topics. For example, this allows determin-
ing which model type is particularly suitable for the assessment of
specific research questions.

The summary of all the findings in the literature, including but
not limited to the mentioned models in the table, is structured by
the economic implications of CRMs in the following subsections. At
first, the design elements of CRMs are briefly discussed. Then, it is
examined how CRMs are affected by market power, risk aversion, and

investment cycles. Subsequently, it is analyzed how CRMs influence
market welfare and neighboring market areas. Finally, the impact
of CRMs in an electricity market characterized by a higher share of
RES and a more flexible demand side is evaluated.

4.1. Generic design criteria for a capacity remuneration mechanism

The design of a CRM is a complex challenge where the ideal solu-
tion depends on the particular market conditions, e.g., the existing
capacity mix and the demand characteristics (Batlle and Rodilla,
2010; Cepeda and Finon, 2011; Keppler, 2017; Spees et al., 2013).
Here only the most important design parameters as well as selected
parameters for specific mechanisms are discussed, for further criteria,
e.g., see Batlle and Pérez-Arriaga (2008), Ausubel and Cramton (2010)
for different design criteria, Herrero et al. (2015) for pricing rules,
Neuhoff et al. (2016) for the design of a strategic reserve or Schwenen
(2015) for the design of capacity auctions.

4.1.1. Target for system availability
Once the decision to introduce a CRM has been made, a system-

wide target for system adequacy is often set, which helps to deter-
mine in the case of volume-based mechanisms the required capacity
level or in the case of price-based mechanisms the targeted capac-
ity price (Hogan, 2017). Here, the loss of load expectation (LOLE)8

is frequently used and often a value of 1 day in 10 years is targeted
(NERC, 2009), which however has been criticized as arbitrary and too
strict to be economically optimal (Cramton and Stoft, 2006). Taking
into account correlated outages among generators and the expected

8 However, the LOLE is not free of criticism, for example, as it refers only to cur-
tailment and does not indicate to what absolute or relative extent in relation to the
market size the curtailment occurs. Here, the unserved energy (UE) metric provides
more insight (Lueken et al., 2016). An overview of further reliability target can be
found at Milligan et al. (2016).
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Fig. 3. Overview of a) the future situation of CRMs in Europe when all planned mechanisms are implemented and b) the current situation in the US. The situation is more diverse
in Europa due to uncoordinated national approaches and diverging interests. Whereas only two different types of CRMs are found in the US, a specific case is the Texas ERCOT
market, where the EOM is supported by an artificial reserve demand curve that produces high price signals to incentivize new investments or DSM. Sources: ACER and CEER (2017),
Chow and Brant (2018), EirGrid plc and SONI Limited (2017), European Commission (2014, 2016a,b), U.S. Government Accountability Office (2017), Midcontinent Independent
System Operator, Inc. (2019), Hancher et al. (2015), Roques et al. (2016).

future demand, then the required quantity of demand to reach the
target for system availability is derived.

4.1.2. Demand curve
In quantity-based CRMs, a demand curve—usually referred to as

the variable resource requirement demand curve—must be defined
that sets the price for each capacity level.9 Although in theory, it
makes sense to rely on the declining marginal value of capacity
(Cramton and Stoft, 2007), in practice, due to the difficulty of estimat-
ing this value, usually, a linear curve based on an upper and a lower
price limit is used (Spees et al., 2013). The upper price cap needs to be
high enough to incentivize sufficient investments when the system
is tight and typically equals a multiple of the Net CONE10. The lower
price cap is usually set equal to zero and marks the capacity level
when the desired reserve margin is reached. However, sometimes,
in order to avoid a total price collapse or prevent market manipula-
tion from large purchasers of capacity, a higher price is set, e.g., 75%
of the Net CONE (Miller et al., 2012). When setting the upper and

9 Instead of demand curves sometimes a fixed capacity is set. However, Hobbs et
al. (2007) advise against this practice as sloped demand curves bear lower risks for
consumers.
10 Similar to the determination of the VoLL, the determination of the CONE or

the Net CONE, which is usually carried out by the regulator, is also a controversial
matter. The choice or the cost-basis of the reference technology, and, thus, its value
is often adjusted over time (Cramton and Stoft, 2007, 2008; Jenkin et al., 2016).
Regarding the related uncertainty, Spees et al. (2013) propose to better set a higher
value to avoid unreliable outcomes.

lower price limit, it also needs to be taken into account that a steep
demand curve may lead to more volatile prices and, thus, greater
uncertainty for investors (Bhagwat et al., 2017b).

4.1.3. Eligible technologies
In a next step, the definition of the capacity product needs to be

established, and it has to be decided which capacity resources are
eligible. de Sisternes and Parsons (2016) argue that CRMs should be
technology-neutral and allow for the participation of all elements that
canreliablyprovidecapacity(conventionalandrenewablegeneration,
storage technologies, demand-side measures). If certain technologies
were to be excluded, the mechanisms would introduce hidden sub-
sidies for the technologies eligible for the CRM, which in turn would
lead to higher costs for consumers. At the same time, however, it
must be noted that this can possibly lead to conflicts regarding the
reduction of carbon emissions, for example, in Great Britain highly
emission-intensive diesel-fueled generators received capacity pay-
ments (S&P Global Platts, 2015). Moreover, Hach and Spinler (2016)
propose to consider the specific policy targets and only consider a
technology-neutral selection if generation adequacy is to be achieved
at the lowest possible cost. However, if particularly flexible capaci-
ties are required or an ambitious emission reduction target needs to
be achieved, this should be reflected in the selection of technologies.
Although it is cheaper to only pay for new generation capacities, it
must be noted that this strategy works only once as investors will
adjust their behavior onwards and demand additional protection and
risk premiums (Cramton et al., 2013).
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Table 3
Summarized overview of modeling approaches regarding the development of electricity market design with a focus on capacity remuneration mechanisms or generation adequacy.

Publication Model typea,b Model scope Market
area

Design
criteria

Market
power

Uncer-
tainty

Investment
cycl.

Efficiency Cross-
border

High
RES

Flexible
Res.

Research
subject

Aalami et al. (2010) analytical interruptible technologies Iran x impact of capacity market programs on
the load level and shape

Abani et al. (2018) system dynamics spot market, decommissions
(retirement of unprofitable
existing generation)/
investments

hypothetical x impact of risk aversion on the
performances of capacity remuneration
mechanisms (competitive EOM, capacity
market and strategic reserve) with
investors facing an uncertain peak load

Abani et al. (2016) system dynamics spot market, decommissions
(retirement of unprofitable
existing generation)/
investments

hypothetical x x impact of investors’ risk aversion on
investments in generation capacity in a
competitive EOM and a capacity market

Assili et al. (2008) system dynamics electricity dispatch,
investments

hypothetical x influence of capacity payments on
market prices and the reserve margin

Bajo-Buenestado
(2017)

analytical (perfect
competition, subgame
perfect Nash equilibrium)

spot market, investments Texas (ERCOT) x x welfare effects of introducing capacity
payments in a competitive market and
a market with dominant firms

Bhagwat and
de Vries (2013)

agent-based (EMLab) spot market, investments,
transmission constraints

Germany,
Netherlands

x effect of a strategic reserve in Germany
on investment behavior and leakage of
reserve benefits to the Netherlands

Bhagwat et al.
(2014)

agent-based (EMLab) spot market,
decommissions/investments,
transmission constraints

hypothetical
based on
Germany

x cross-border impact of a capacity
market and a strategic reserve on
consumer costs and on investments in
the affected markets

Bhagwat
et al. (2016a)

agent-based (EMLab) spot market, decommissions
(retirement of unprofitable
existing generation)/
investments, transmission
constraints

hypothetical
based on
Germany

x x x effectiveness strategic reserve in the
presence of a high RES share

Bhagwat et al.
(2017a)

agent-based (EMLab) spot market, decommissions
(retirement of unprofitable
existing generation)/
investments, transmission
constraints

hypothetical
based on
Germany

x x x effectiveness of a capacity market in the
presence of imperfect information and
uncertainty, declining demand shocks
resulting in load loss, and a growing
share of RES

Bhagwat et al.
(2017b)

agent-based (EMLab) spot market, decommissions
(retirement of unprofitable
existing generation)/
investments

hypothetical
based on the
United
Kingdom

x x effectiveness of a forward capacity
market with long-term contracts in the
presence of a growing share of RES

Bhagwat et al.
(2017c)

agent-based (EMLab) spot market, decommissions
(retirement of unprofitable
existing generation)/
investments, transmission
constraints

hypothetical
based on
Germany

x cross-border effects of a capacity market
and/or a strategic reserve

Briggs and Kleit
(2013)

analytical (Ramsey
optimum)

spot market, investments,
transmission constraints

hypothetical x x efficiency of capacity payments

Bublitz et al.
(2015)

agent-based (PowerACE) spot market, decommissions
(retirement of unprofitable
existing generation)/
investments, operating
reserve, transmission
constraints

Germany x x effects of the proposed strategic reserve
in Germany on security of supply and
costs

Cepeda and Finon
(2011)

system dynamics spot market, investments,
transmission constraints

hypothetical x x cross-border effects of an EOM
(with/without price cap) and a forward
capacity market
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Cepeda and
Finon (2013)

system dynamics spot market, investments hypothetical
based on France

x x effects of large-scale deployment of
wind power generation on spot prices
and reliability of supply

Creti and
Fabra (2007)

analytical (perfect
competition,
monopoly)

spot market, transmission
constraints

hypothetical x firms’ optimal behavior and market
equilibrium in capacity markets with
the possibility to sell to a foreign market
under both perfect competition and
monopoly

Ehrenmann
and Smeers
(2011)

stochastic
equilibrium

electricty dispatch,
investment

hypothetical x x effects of risk (fuel prices, carbon
market) on investment decisions in
generation capacity

Fabra et al.
(2011)

analytical (Nash
equilibrium)

investments hypothetical x x effects of price caps and auction formats
(uniform-price/discriminatory) on
investments and the capacity ratio
between two firms

Fan et al.
(2012)

stochastic
equilibrium

electricity dispatch,
investments

hypothetical x effects of uncertainty and risk aversion
on investments in high and low-carbon
capacities

Franco et al.
(2015)

system dynamics electricity dispatch,
decommissions
(retirement of
unprofitable existing
generation)/investments

Great Britain x effect of central buyer capacity market
on investment cycles and long-term
market stability

Genoese et al.
(2012)

agent-based
(PowerACE)

spot market, investments,
operating reserve,
transmission
constraints

hypothetical
based on Spain

x impact of a capacity payment
mechanism on the long-term
development of investments in
conventional capacities and on
electricity prices

Gore et al.
(2016)

single-firm
optimization

spot market,
transmission
constraints

Finland, Russia x x short-term effects of an EOM and an
energy-plus-capacity market on
cross-border trade and efficient
allocation of transmission capacity

Grave et al.
(2012)

single-firm
optimization (DIME)

electricity dispatch,
decommissions (based
on age)/investments

Germany x development of security of supply
under the increasing penetration of
intermittent RES and the need for
backup capacity and electricity imports

Grimm and
Zöttl (2013)

analytical (perfect
competition, Nash
equilibrium)

spot market,
investments

Germany x influence of spot market design on
firms’ investment decision for different
regimes of spot market competition
(competitive prices and Cournot-Nash
equilibrium)

Hach et al.
(2016)

single-firm
optimization

spot market,
decommissions
(retirement of
unprofitable existing
generation)/investments

Great Britain x affordability, reliability, and
sustainability of a central buyer
capacity market (for new or
new/existing capacity)

Hach and
Spinler (2016)

real options for
single investor

spot market, investments Europe x x effect of capacity payments on
investments in gas-fired power plants
under rising renewable feed-in

Hary et al.
(2016)

system dynamics spot market,
decommissions
(retirement of
unprofitable existing
generation)/investments

hypothetical x x x dynamic effects of a capacity market
and a strategic reserve mechanism on
investment cycles

Hasani-
Marzooni and
Hosseini
(2013)

system dynamics electricity generation,
investments, operating
reserve, transmission
constraints

Iran x x effect of a (regional) capacity payment
mechanism and a price cap on
investments in Iranian electricity market

(continued on next page)
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Table 3 (continued)

Publication Model typea,b Model scope Market area Design
criteria

Market
power

Uncer-
tainty

Investment
cycl.

Efficiency Cross-
border

High
RES

Flexible
Res.

Research
subject

Herrero et al.
(2015)

single-firm
optimization

electricity dispatch,
investments

hypothetical x effects of the implemented pricing rule
(linear and non-linear) on long-term
investment incentives

Hobbs et al. (2007) agent-based
(single agent)

investments hypothetical x x effects of alternative demand curves in
the PJM market on reserve margins,
generator profitability, and consumer
costs

Höschle et al.
(2017)

analytical
(Karush-Kuhn-Tucker)

electricity dispatch,
investments, green
certificates

Belgium x effect of central buyer capacity market
and strategic reserve on the reserve
margin and non-participating RES

Jaehnert and
Doorman (2014)

single-firm
optimization

electricity dispatch,
investments, transmission
constraints

Netherlands,
Germany

x effect of a capacity mechanism or an
increased price cap on generation
capacity under rising renewable feed-in

Joskow (2008) analytical
(Ramsey optimum)

spot market, investments hypothetical x x sources of the missing money problem
in imperfect markets

Joskow and Tirole
(2007)

analytical
(Ramsey optimum)

spot market, investments,
operating reserve

hypothetical x x x efficiency of capacity obligations

Keles et al. (2016) agent-based
(PowerACE)

spot market, decommissions
(retirement of unprofitable
existing generation)/
investments, operating reserve,
transmission constraints

Germany x generation adequacy in different market
designs (EOM, central buyer capacity
market, strategic reserve)

Kim and Kim (2012) single-firm optimization electricity dispatch,
investments, transmission
constraints

South Korea x effects of zonal forward capacity
markets on investments across market
zones

Laleman and
Albrecht (2016)

statistical electricity dispatch Belgium x occurrence of electricity shortages and
surpluses in the presence of a high
share of nuclear combined with a high
share of intermittent RES

Lara-Arango et al.
(2017a)

analytical (joint
maximization, Nash
equilibrium, perfect
competition) combined
with scenario
experiments

spot market, investments hypothetical x x economic welfare of a central buyer
capacity market and a strategic reserve

Lara-Arango et al.
(2017b)

agent-based electricity dispatch,
decommissions (based on
age)/investments

hypothetical x x influence of uncertainty on producer
surplus and market stability in case of
capacity payments and a capacity
auction

Léautier (2016) analytical (two-stage,
Nash equilibrium)

spot market, investments hypothetical x x x optimal investment in different market
designs (financial reliability options,
physical capacity certificates, single
market for energy and operating
reserves)

Le Coq et al. (2017) analytical combined
with scenario
experiments

spot market, investments hypothetical x x relationship between prices, market
power and investment under three
different regulatory regimes (low price
cap, high price cap, capacity market)

Levin and
Botterud (2015)

single-firm
optimization

electricity dispatch,
investments, spinning-up
and non-spinning reserve

Texas (ERCOT) x ability of three different market
mechanisms (Operating Reserve
Demand Curves, Fixed Reserve Scarcity
Prices and fixed capacity payments) to
provide generator revenue sufficiency
and resource adequacy with increasing
amounts of renewable energy
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Lueken et al.
(2016)

statistical spot market PJM x x resource adequacy requirements in the
PJM market area assuming plant failures
are either independent or correlated

Lynch and
Devine
(2017)

analytical (Karush-
Kuhn-Tucker)

spot market,
decommissions
(retirement based on
higher maintenance
costs)/investments,
refurbishment

hypothetical x impact of refurbishment under capacity
payments and reliability options

de Maere
d’Aertrycke
et al. (2017)

stochastic
equilibrium

electricity dispatch,
investments

hypothetical x x impact of incomplete risk trading
(Contracts for Difference, Reliability
Options with and without physical
back-up) on investments

Mastropietro
et al.
(2016)

agent-based
(two-stage)

spot market, investments hypothetical x impact of penalty schemes for under-
delivery on capacity mechanisms’
effectiveness and unit reliability

Meunier
(2013)

analytical electricty dispatch,
investment

hypothetical x effect of risk and risk-aversion on the
long-term equilibrium technology mix

Meyer and
Gore (2015)

analytical (Nash
equilibrium)

spot market, investments hypothetical x x x influence of competition and market
power on market welfare of CRMs
(strategic reserve and reliability options)

Milstein and
Tishler
(2012)

analytical (Nash
equilibrium)

spot market, investments Israel x the rationality of underinvestment if
profit-seeking, non-abusive producers
construct and operate either one—base
or peaking—generation unit (or both)

Mohamed
Haikel
(2011)

analytical (three
stage, Karush-
Kuhn-Tucker,
Nash equilibrium)

spot market, investments hypothetical x x x comparison of three CRM (reliability
options, forward capacity market, and
capacity payments) in regard of
efficiently assuring long-term capacity
adequacy in Cournot oligopoly,
collusion, and monopolistic situations

Neuhoff et al.
(2016)

single-firm
optimization

electricity dispatch,
transmission constraints

hypothetical x x x benefits of coordinated cross-border
strategic reserves

Ochoa and
Gore (2015)

system dynamics electricity dispatch,
investments,
transmission constraints

Finland, Russia x x effects of maintaining a strategic reserve
in Finland in combination with the
different scenarios of interconnection
expansion and trading arrangements
with Russia

Osorio and
van Ackere
(2016)

system dynamics electricity dispatch,
investments,
transmission
constraints

Switzerland x x impact of the nuclear phase-out and the
increasing penetration of variable RES
on security of supply

Ozdemir
et al. (2013)

single-firm
optimization
(COMPETES)

electricity dispatch,
decommissions (based on
age)/investments,
transmission constraints

Europe x cross-border effects (investments,
electricity generation, market prices,
and import export flows) of a unilateral
introduction of a German capacity
market

Park et al.
(2007)

system dynamics spot market, investments South Korea x effects of capacity incentive systems—
loss of load probability or fixed capacity
payments—on investment in the Korean
electricity market

Petitet et al.
(2017)

system dynamics
(SIDES)

electricity dispatch,
decommissions
(retirement of
unprofitable existing
generation)/investments

hypothetical x x effects of capacity mechanisms on
security of supply objectives assuming
risk-averse and risk-neutral investor
behavior in power markets undergoing
an energy transition

(continued on next page)
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Table 3 (continued)

Publication Model typea,b Model scope Market area Design
criteria

Market
power

Uncer-
tainty

Investment
cycl.

Efficiency Cross-
border

High
RES

Flexible
Res.

Research
subject

Ringler et al. (2017) agent-based
(PowerACE)

spot market, investments,
operating reserve,
transmission constraints

CWE Market
area

x x effects of cross-border congestion
management and capacity mechanisms
on welfare and generation adequacy in
Europe (potential development of the
CWE Market)

Schwenen (2014) analytical spot market hypothetical x x x effect of market structure (duopoly with
symmetric and asymmetric firm size) on
security of supply in a capacity market
and an EOM

Schwenen (2015) analytical capacity auction New York
(ICAP)

x strategic bidding to coordinate on an
equilibrium in multi-unit auctions with
capacity constrained bidders

See et al. (2016) single-firm optimization electricity dispatch,
transmission constraints

hypothetical x reinforcing cross-border competition for
the supply of capacity generation with
the help of a flow-based forward
capacity mechanism

Tashpulatov (2015) log-linear regression spot market England and
Wales

x effects of regulatory reforms on
incentive and disincentive to exercise
market power

Traber (2017) analytical
(Karush-Kuhn-Tucker)

spot market, decommissions
(based on age)/
investments/retrofitting,
transmission constraints

Germany,
France, and
Poland

x effects of capacity remuneration
mechanisms on welfare and distribution
(consumers/producers) with a focus on
conventional power plants

de Vries and
Heijnen (2008)

agent-based spot market, decommissions
(based on age)/investments,
interruptible technologies

The
Netherlands

x x x effectiveness of different market designs
(an EOM with and without market
power, capacity payment, operating
reserves pricing, capacity market) under
uncertainty about demand growth

Weiss et al. (2017) hybrid (single-firm
optimization/
agent-based)

spot market, investments Israel x x market prices, reliability, and consumer
costs in different market designs (EOM,
capacity market, strategic reserve)

Willems and
Morbee (2010)

analytical spot market, investment Germany x x effects of an increasing number of
derivatives on welfare and investment
incentives in electricity market with risk
averse firms

Winzer (2013) agent-based spot market, investments Great Britain x x robustness of various capacity
mechanisms to welfare losses caused by
regulatory errors

a Here, the column “model scope” excludes all CRM as these are mentioned in the column “Research subject”.
b If only marginal costs are regarded to determine, which capacity is operating, the term “electricity dispatch” is used. However, the term “spot market” is used if the strategic behavior of market participants is explicitly modeled.
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4.1.4. Verification system
In order to enhance the performance of CRMs, a performance

incentive system is required, which ensures that the capacities actu-
ally provide the contracted capacity when the system is tight (Vazquez
et al., 2002; Mastropietro et al., 2016). This can either be implemented
through a financial penalty for non-compliance (Cramton and Stoft,
2005) or by restricting the amount a resource can provide to its firm
capacity (Batlle and Pérez-Arriaga, 2008). The experiences from the
United States show that despite the existence of explicit penalties,
underperformance has occurred, which underlines the importance
of designing and implementing a performance incentive system
(Mastropietro et al., 2017). If a financial penalty is chosen, it needs
to be high enough to incite investors to compliance, which, however,
increases the risk of investors and this is reflected in their bids. For
the exact amount of the penalty, it is possible to rely on the VoLL, the
capacity price or the Net CONE.

4.2. Potential and effects of market power

Central buyer mechanisms, e.g., reliability options, are able to
lower the potential for market power in wholesale electricity mar-
kets (Le Coq et al., 2017; Léautier, 2016) and thereby improve the
efficiency and reduce the total bill of generation, which is defined
as the sum of the revenues realized by the electricity generators
(Hach et al., 2016). By contrast, compared to an EOM, Bhagwat et
al. (2016a) claim that a strategic reserve increases the possibility to
exercise market power as the opportunities to withhold capacities,
which can result in an activation of the reserve and extreme market
prices, become more frequent compared to an EOM where market
power is primarily exercised during capacity shortage hours.

In addition, as Mohamed Haikel (2011) points out, market power
might be exerted when introducing non-market based mechanisms,
e.g., capacity payments. However, the possible entry of a new com-
petitor makes them less vulnerable to market power than, e.g.,
day-ahead markets, where in the short term no additional competi-
tion can emerge (Schwenen, 2014). Therefore, it seems unlikely that
the additional potential of market power within a CRM will compen-
sate for the lower potential in the wholesale markets. Nonetheless,
Joskow (2008) advocates that the capacity price could be reduced by
the quasi-rents earned by a hypothetical peaking unit, thereby dis-
incentivizing the exercise of market power. Furthermore, Cramton
and Stoft (2008) argue that only new investments could be allowed
to set the capacity price to mitigate market power, existing capacity
must either submit a zero bid or is not allowed to participate at all.
The rationale behind this approach is that although established mar-
ket players might possess market power, they are unable to exercise
it if there is competitive new entry and only new investments set
the price.

4.3. Influence of uncertainty and risk aversion

In the majority of the considered analyses, it is assumed for
simplification purposes that all decision-makers act risk-neutral,
although several theoretical arguments (Neuhoff and de Vries, 2004;
Banal-Estanol and Ottaviani, 2006) as well as real-world observa-
tions suggest that decision-makers in the energy sector are usually
risk-averse or at least behave accordingly (Meunier, 2013). This
seems to be the case not only for economic but also for political
decision-makers (Finon et al., 2008; Neuhoff et al., 2016). However,
several studies explicitly consider risk-aversion and their findings
are described in the following.

As the electricity market reacts very sensitively to the level of risk
aversion of the investors (e.g., Petitet et al., 2017), risk aversion causes
themarkettodeviatefromtheinstalledcapacityinthewelfareoptimal
case (Winzer, 2013). Given the high social costs of capacity shortages

and the uncertainty associated with the development of the electric-
ity market, de Vries and Heijnen (2008) point out that the socially
optimal level of generation capacity is higher than the theoretical
optimum under perfect foresight. Moreover, Ehrenmann and Smeers
(2011) find that in an EOM with a low price cap as well as in a CRM,
uncertainty and risk aversion aggravates the generation adequacy
problem, which in turn can dramatically increase the costs for end
consumers. This is caused by delaying investments and shifting from
high- to less-capital intensive investments. Similar findings are made
by de Vries and Heijnen (2008) who state that CRMs can contribute
to a more balanced generation portfolio by reducing the investment
risk and, thus, counteracting the tendency of risk-averse investors
towards low-capital technologies with short lead times. Fan et al.
(2012) conclude that a CRM could prove to be beneficial as their find-
ings indicate that risk aversion tempts investors to adopt the decisions
that would have been taken if the worst-case scenario had materi-
alized thereby avoiding investments in new uncertain technologies,
e.g., concentrating solar power.

As part of an analytical analysis, Neuhoff and de Vries (2004)
investigate the influence of weather- and demand-related uncer-
tainty and risk aversion on the investment decisions of electricity
generators having a unique technology at their disposal. Their results
indicate that an EOM will provide insufficient investment incentives
to ensure generation adequacy if investors or final consumers are
risk-averse and unable to hedge their portfolio adequately via long-
term contracts. de Maere d’Aertrycke et al. (2017) analyze the effect
of two reference long-term contracts as well as the impact of a long-
term forward capacity market and find that even though long-term
contracts and a highly calibrated forward capacity market are able to
improve welfare substantially, they also entail severe drawbacks. In
all cases, traded volumes need to be far higher than in current energy
markets as illiquidity can severely impair the effectiveness of these
instruments and increase the risk premiums demanded by investors
by about 10%. Besides, Willems and Morbee (2010) find that the
liquid trade of derivatives provides sufficient incentives for a risk-
averse producer to invest. Here, forward contracts mainly lead to
an increase of investments in base-load capacity, and if also options
are offered in the market, the investments in peak-load plants will
increase as well. In some cases, if no suitable financial substitutes are
traded for an investment option, however, overinvestment can occur.

Furthermore, Abani et al. (2016) state that considering the risk
aversion of the decision makers involved is crucial when compar-
ing different market designs. Their results demonstrate that when
comparing the implementation of a central buyer mechanism and
an EOM, the difference in shortage situations increases if investors
are regarded as risk-averse instead of risk-neutral. In a more recent
study, Abani et al. (2018) investigate an EOM and two CRMs (cen-
tral buyer, strategic reserve) and find that in case of risk aversion,
investors tend to extend the lifetime of existing generation capacity
instead of building new, which in turn leads to higher total gener-
ation costs. Similarly, Petitet et al. (2017) show that in an EOM the
amount of economically motivated decommissions of thermal plants
or the level of scarcity prices is dependent on the risk aversion of the
investors. However, CRMs are comparatively insensitive to the risk
aversion of the market participants due to the fact that the required
quantity is directly specified by the regulator and the risk aversion
of the market participants is reflected in their bids affecting the total
costs. This proves to be a substantial benefit for policy makers as
market developments are more predictable.

4.4. Effects of investment cycles

Although fixed or variable capacity payments are unable to abol-
ish investment cycles, they reduce the cycles’ amplitude resulting in
a high level of market price stability and a reasonable reserve margin
(Assili et al., 2008; Ford, 1999). Moreover, Cepeda and Finon (2011)
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demonstrate that investment cycles can effectively be dampened
by capacity obligations, in turn leading to smoother annual average
electricity prices and higher reliability.

In case of a strategic reserve, Bhagwat et al. (2016a) and de Sis-
ternes and Parsons (2016) find that investment cycles, e.g., caused
by uncertainty about the future electricity demand, may still occur.
Similarly, Hary et al. (2016) show that although underinvestment
is avoided, overinvestment is not prevented by a strategic reserve
as the regulator cannot influence the perceived value of additional
generation capacity or enforce investors to postpone their decisions.
However, a central buyer mechanism is able to positively influence
investor behavior and, therefore, reduce the occurrences of under-
and overinvestment. Moreover, Bhagwat et al. (2017a) find that in
case of a forward capacity market boom and bust cycles may still
occur if the electricity demand drops sharply, consequently lead-
ing to the decline of capacity prices and multiple decommissions
of existing capacity so that only a high reserve margin initially
set by the regulator prevents loss of load situations. In reaction
to the resulting shortage, capacity prices spike again, and invest-
ments are made. Similarly, Bhagwat et al. (2017b) state that in a
forward capacity market investment cycles still exist, but in com-
parison with an EOM, they extend over longer periods and feature
smaller amplitudes. Also, by decreasing the investor risk and reli-
ability risk for consumers, forward reliability markets can prevent
boom-bust cycles (Cramton and Stoft, 2008).

Beyond, Franco et al. (2015) claim that the implementation of
a CRM together with long-term contracts for low-carbon genera-
tors prevent any fluctuations in the price and reserve margin in
the British electricity market. However, sudden shocks seem not
to be taken into account in the analysis. Also, Hasani and Hosseini
(2011) state that a hybrid CRM (periodically using capacity pay-
ments and a forward capacity market) is able to prevent over- and
underinvestment efficiently.

In summary, the presented results support the assertion that
investment cycles, which are caused by uncertainties, e.g., regard-
ing the demand growth, can be damped by CRMs (de Vries and
Heijnen, 2008). However, most often they cannot be completely pre-
vented and a sufficient reserve margin mainly depending on market
uncertainties needs to be determined by the regulator.

4.5. Efficiency and market welfare of capacity remuneration
mechanisms

As a strategic reserve allows the use of all contracted capacities
only for a single purpose, inevitably inefficiencies occur, and addi-
tional investments are needed to replace the lost flexibility (Höschle
et al., 2017). Further, the dispatch of the strategic reserve at any
other value than the VoLL can reduce the market welfare analogous
to the price caps in the EOM (Finon et al., 2008). Besides, a strategic
reserve does not appear to improve the market stability or increase
the expected economic surplus in the long term (Lara-Arango et al.,
2017a). Therefore, it seems advisable to use a strategic reserve as a
short-term solution and replace it by other mechanisms in the long
term. However, the distributional effects of a strategic reserve seem
to be relatively small (Neuhoff et al., 2016).

Creti and Fabra (2007) state that in order for a CRM to maxi-
mize social welfare, gains from reducing load loss situations must
exceed the additional capacity costs and the secured capacity pro-
cured should be equal to the peak demand. Furthermore, they argue
that the price limit should be defined as the opportunity costs of
providing full capacity commitment as different parameterizations
would lead to a reduction in welfare through either overcapacities or
scarcity prices. In a case study for Great Britain, Hach et al. (2016) find
that through deliberate overcapacity and, thereby, avoiding extreme
prices and lost load occasions, a central buyer mechanism can effec-
tively lower the total bill of generation. Similar results are obtained

by Bhagwat et al. (2017b), Höschle et al. (2017), and Keles et al.
(2016) in case studies of the electricity market in Great Britain, Bel-
gium, and Germany, respectively. However, Schwenen (2014) argues
that in a framework with two firms, in equilibrium capacity prices
are non-competitive due to capacity constraints and signals for the
entry of new firms are likely being distorted by the regulator.

By employing an analytical model, Briggs and Kleit (2013) find
that capacity payments for base-load power plants are never optimal.
In the short term, capacity payments will cause prices to fall and
competitive base-load power plants to be suppressed, and in the long
term incentives to invest in peak load power plants and generation
adequacy will decline. Also, the positive short-term price effect might
be lower than theoretically expected (Genoese et al., 2012), and the
payments might even fail to ensure an adequate reserve margin (Park
et al., 2007; Kim and Kim, 2012). Likewise, Milstein and Tishler (2012)
find that targeted capacity payments for the peaking technology,
which account for 25% of the associated capacity costs, only increase
the social welfare by 0.02%. Furthermore, Bajo-Buenestado (2017)
show that the benefit of capacity payments depends on the intensity
of competition and is less if the market is controlled by dominant
companies as in many real-world markets. Joskow and Tirole (2007)
state that if market power is present in a market with more than
two states of nature, i.e., peak and off-peak, capacity payments are
an insufficient instrument.

As results from the literature are not always coherent and often
only applicable for specific cases, the question of which CRM is most
efficient remains open. For example, often a central buyer mechanism
seems to yield significantly better results than a strategic reserve
(Hary et al., 2016; Keles et al., 2016; Höschle et al., 2017), but some-
times the results are ambiguous (Traber, 2017). Most likely, this can
be attributed to the fact that the results depend among other things
on the existing generation structure and their development in time
(Batlle and Rodilla, 2010; Traber, 2017) as well as the taken assump-
tions, e.g., the consideration of uncertainty (Lara-Arango et al., 2017b)
or the risk aversion of investors (Petitet et al., 2017). Nevertheless,
there seems to be a consensus in the literature that market-based
mechanisms are usually advantageous compared to intervention-
ist mechanisms, e.g., capacity payments (Batlle and Rodilla, 2010;
Mohamed Haikel, 2011; Lara-Arango et al., 2017a).

4.6. Influence on neighboring markets through cross-border effects

One of the difficulties encountered in the study of cross-border
effects is the large number of influence factors such as the regarded
markets, generation technologies, different interconnector capacities
or asymmetric market sizes. Furthermore, cross-border effects are
strongly influenced by competition between market participants and
the possibility of exerting market power (Meyer and Gore, 2015).
Thus, deriving common conclusions is extremely challenging.

One major short-term cross-border effect is the occurrence of
market distortions if a CRM does not adequately consider generation
capacities abroad. In this case, through additional capacity payments,
domestic producers gain a competitive edge over foreign producers
(Hawker et al., 2017). However, the primary focus of the scientific
research is on long-term effects, i.e., the development of generation
adequacy, distributive effects, and price effects, as CRMs will mainly
drive investment decisions (e.g., Ozdemir et al., 2013). For example,
with the help of an agent-based electricity market model Bhagwat et
al. (2014, 2017c) find that in case of a forward capacity market and
strategic reserve in two neighboring markets, the forward capacity
market appears to have a negative spillover effect on the strategic
reserve. However, a neighboring EOM does not limit the ability of a
national forward capacity market or strategic reserve to achieve its
objectives. Indeed, vice versa, two effects can be observed. On the
one hand, the neighboring EOM operates as a free-rider and bene-
fits from the additional foreign generation capacities. On the other
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hand, the dependence of the EOM on imports increases, which can
be particularly disadvantageous in critical situations. Similar results
are obtained by Ochoa and Gore (2015), who show in a case study
for the Finnish and Russian electricity market, that if Russian imports
were reliably available, abolishing Finland’s strategic reserve could
lead to lower costs for Finnish consumers. However, as this is not
the case, the advantages of maintaining a strategic reserve out-
weigh the disadvantages, and the interconnection expansion should
be avoided—instead, the development of local capacities should be
given preference. Furthermore, Cepeda and Finon (2011) find that
in the long term an EOM will only marginally benefit from a CRM
in an adjacent market. Also, for the EOM, the unilateral introduc-
tion of a price cap leads to a reduced level of security of supply
as suppliers prefer to offer their generation capacity in neighboring
markets. Moreover, by using a simulation model to investigate the
unilateral introduction of a strategic reserve and reliability options
in a two-country case, Meyer and Gore (2015) show that the overall
cross-border welfare effect is most likely negative.

In addition, it can be concluded that the introduction of a CRM in
a neighboring country creates considerable pressure on the national
regulator to introduce a dedicated CRM as a safeguard against possi-
bly harmful consequences (Bhagwat et al., 2017c; Gore et al., 2016).
Therefore, Hawker et al. (2017) are advocating the cross-border coor-
dination of CRMs to provide sufficient new investment in generation
and transmission capacities and Neuhoff et al. (2016) claim that a
coordinated strategic reserve in Europe should be feasible and, among
other things, would have the following advantages: On the one hand,
capacities from abroad could be used at times of maximum stress and,
on the other hand, the joint calculation of the reserve volume would
reduce the required quantity as individual demand peaks usually
occur at different times. Furthermore, with the possible expansion of
cross-border capacity and the associated strong influence on prices
(Osorio and van Ackere, 2016), a coordinated approach seems to be
increasingly advantageous. However, solving the dilemma of choos-
ing between a coordinated or national approach is complex. Especially
when time is a critical factor, a co-ordinated solution might not be
implemented early enough due to the increased need for coordination
(de Vries, 2007).

4.7. Impact of a high share of intermittent renewables

One of the central questions associated with the rapid expansion
of RES is whether they exacerbate the adequacy problem. First of
all, Cramton et al. (2013) point out that price caps present in most
EOMs are unaffected as the level is neither lowered nor increased
by RES. Nonetheless, increasing low price caps might become more
relevant as large investments in peak-load generation capacity are
likely to be required as a backup for intermittent RES. However, this
could be prevented by a price cap set too low (Cepeda and Finon,
2013; Jaehnert and Doorman, 2014). As RES, due to their marginal
costs close to zero, can be regarded as a price-inelastic demand—with
the exception of situations where the prices are negative—Cramton
et al. (2013) argue that RES increase the volatility of and the uncer-
tainty about the demand and market prices and, thereby, exacerbate
the adequacy problem. Similarly, Newbery (2017) claims that a high
share of intermittent RES, on the one hand, and the uncertainty
about the development of the carbon allowances price, on the other
hand, likely require long-term capacity contracts—beyond a horizon
of three to four years—for ensuring reliability efficiently.

Jaehnert and Doorman (2014) investigate the development of sys-
tem adequacy and find that the capacity reserve margins decrease
with an increasing share of RES leading to several occurrences of
load curtailment. Also, the merit-order effect caused by large-scale
employment of wind energy is more relevant in an EOM than in a
market with a CRM, where thermal generation capacities are better
able to recover the fixed costs of their investment (Cepeda and Finon,

2013). However, in reverse, a CRM that only takes into account the
secured available capacity can have a negative impact on the market-
driven development of wind power. Still, in a world with 100%
renewable energy, Weiss et al. (2017) argue that an EOM can ade-
quately function if market prices take into account the opportunity
costs of flexible resources. However, in such a scenario, RES probably
still require a dedicated funding mechanism. Besides, a CRM might
be necessary to minimize the associated risk of underinvestment in
flexible capacities.

4.8. Incentives for flexible resources

As with increasing shares of RES supply fluctuations in the elec-
tricity market become more frequent, flexible resources are required
(Nicolosi, 2010; Grave et al., 2012), e.g., demand-side management
or short-term and long-term storage options that have not yet been
sufficiently remunerated in the market design to date (Cepeda and
Finon, 2013; Joskow, 2008). An adequate market design needs to
pay sufficient attention to flexible resources in order to fully cap-
italize on their potential (Neuhoff et al., 2016; Weiss et al., 2017).
Although flexible resources do not automatically guarantee a reli-
able level of investment, they ensure reliability under different levels
of installed generation capacity and induce an efficient electricity
dispatch (Cramton and Stoft, 2005).

Whereas the concept of firm or reliable capacity is already well
defined and, moreover, constant, regardless of how the future elec-
tricity system develops, the term flexibility is still vague and fur-
thermore has a critical temporal dependency. Sometimes flexibility
is required for a few seconds or minutes, but other times for several
hours or even days and usually the most suitable options for short-
term flexibility are not coherent with those for long-term flexibility
(Hogan, 2017). In order to reliably determine the need for and value
of flexibility, it is best to compare the value of energy in scarcity with
that in abundance situations, which depends on the current state of
the electricity system.

In a well-functioning EOM, market participants are exposed to
extremely high price signals at times of scarcity or negative prices in
times of oversupply, thus, creating incentives for long-term invest-
ments in storage technologies as well as incentives for consumers
to directly react to price developments (e.g., Hu et al., 2017). For
this reason, EOMs can especially benefit from increased flexibility,
e.g., through demand response, as the market is then able to react
to extreme price peaks and consumers are no longer exposed to the
excessive market power of suppliers, thereby reducing the need for
regulatory price caps (Schwenen, 2014). Yet, if the market design is
severely different, e.g., by a forward capacity market, price spikes will
decrease in frequency and amplitude, thus, diminishing the value of
flexible resources (Hogan, 2017). Auer and Haas (2016) even argue
that the introduction of capacity payments ruins market competition,
meaning that flexibility options would not be exploited, thus, leaving
their development only in the hands of the regulator. Even though
these theoretical findings pose a clear disadvantage for CRMs, prac-
tical experiences indicate that decision makers seem to be aware of
this issue as, for example in the US, CRMs explicitly include financial
support for flexible resources, which in turn lead to a rise of these
capacities (Rious et al., 2015).

5. Conclusions and policy implications

Electricity markets are in many respects similar to most other mar-
kets; however, they require a specific regulatory framework due to
a number of peculiarities such as the physical characteristics of the
commodity electricity, an inelastic volatile demand and the missing-
money problem. In combination with the transformation from a
centralized system with primarily fossil-fuel power plants to a decen-
tralized system with a high share of renewable energies and the sharp
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decline in electricity prices, concerns among policy makers about
generation adequacy have grown and led to the implementation of
various CRMs. However, the necessity of CRMs remains the subject
of ongoing discussion, and it is often argued that an EOM already
offers an efficient solution whereas CRMs tend to be inefficient. To
better grasp the arguments of both sides, an up-to-date overview of
the debate was given. Subsequently, a classification of the different
mechanisms was shown, the current status of real-world implemen-
tations was presented, and initial experiences were discussed. While
only two types of mechanisms (central buyer and de-central obli-
gations) are used in the United States, the situation is much more
diverse in Europe due to uncoordinated national approaches.

The findings in the literature reveal that CRMs can improve gen-
eration adequacy, but also bring along new challenges. One major
advantage of CRMs is that they are able to effectively reduce or even
to solve different problems of existing markets. For example, fluctu-
ations caused by investment cycles can be dampened—even though
usually not fully abolished—and, thereby, extreme scarcity events
can be prevented. Also, the adverse effects of the abuse of market
power can be mitigated, and some mechanisms, for example, a for-
ward capacity market, are able to solve the missing money problem.
Also, CRMs usually make market developments less dependent on
the risk profile of the investors, thereby, making them more pre-
dictable and reducing deviations from the long-term optimum that
can be caused by risk-averse decision-makers.

Determining the optimal market design, however, remains an
ongoing challenge. As the adequate design depends on a variety of
factors such as the existing capacity mix and demand characteris-
tics, no general advantageousness of single mechanisms could be
determined so far. For example, often a central buyer mechanism
seems to yield significantly better results than a strategic reserve,
which is inefficient by design as contracted capacities are used for
a single purpose only. However, in exceptional cases the results
are ambiguous. Nevertheless, it can be concluded that market-based
mechanisms, e.g., a forward capacity market, are usually advan-
tageous compared to interventionist mechanisms such as capacity
payments.

Furthermore, the implementation of a CRM can lead to market
distortions, e.g., through cross-border effects. Even though cross-
border impacts are diverse and the results in the literature are
sometimes conflicting, there seems to be a consensus that a one-
sided implementation of CRMs leads to negative spillover effects on
a neighboring market without a CRM. This increases the pressure in
the neighbouring market either to introduce a domestic mechanism
or to pursue a coordinated approach. Compared to an EOM, the value
of flexible resources is diminished in the presence of a CRM. There-
fore, their expansion is largely independent of market forces and left
in the hands of the regulator.

Even though a large number of studies has already been carried
out, the comparability of the results is often limited and, thus, it is
difficult to select the best mechanism to implement. It would there-
fore be helpful if common criteria or specific scenarios are used to
evaluate different market designs. Furthermore, especially the effi-
ciency of the mechanism is all too often neglected. Also, the behavior
of market participants as learning, risk-averse agents that interact
with each other often does not seem to be adequately addressed and
rarely verified by studies or experiments. However, as the investors’
risk profile can directly influence the results and the relative advan-
tageousness of different CRM, it would thus be advisable to explicitly
consider risk aversion.
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Appendix A. Details on selected real-world implementations of
CRMs

In the following, some details on real-world implementations of
CRMs additional to the information already presented in Section 3.2 is
provided. Not all mechanisms active around the world are described,
but the focus rather lies on the mechanisms currently active in
Europe as well as the different central buyer implementations in
the United States, which is the most common type of CRM used in
Northern America.

A.1. Strategic reserve (Belgium/Sweden)

Both Belgium (since 2014) and Sweden (since 2003) have set up
strategic reserves to support demand peaks during the winter season
(Elia Group, 2015; Svenska Kraftnät, 2016). In Belgium, the capacity is
procured through a competitive tendering process, in which market
participants intending to shut down capacity are obliged to partici-
pate (Hancher et al., 2015). Thus far (until October 2017), the reserve
has not been activated (Elia Group, 2017a,b). Contrary, the Swedish
reserve has already been used a few times, with yearly costs in 2013
and 2014 amounting to about 14 respectively 13 million Euro. This
is significantly lower than the estimated costs of a shortage situation
(90 million Euro) (Cejie, 2015).

A.2. Central buyer (United Kingdom/US – ISO-NE/US – MISO/US –
NYISO/US – PJM)

In order to maintain generation adequacy, in 2014, the United
Kingdom introduced central capacity auctions with the first delivery
to take place in winter 2018/2019. The capacity payments are deter-
mined via descending clock auctions four years (T–4) and one year
(T–1) before the respective delivery period. Despite the technology-
neutral approach, the incentives for demand response (0.4–2.5% of
the contracted capacity) and new investments (4.2–6.5%) have been
limited in the first three T–4 auctions (Office of Gas and Electric-
ity Markets, 2015, 2016, 2017). However, in the latest T–4 auction
(2016), existing and new storage capacities won contracts for the
first time, accounting for around 6% of the contracted capacity (Office
of Gas and Electricity Markets, 2017).

ISO-NE and NYISO were the first market areas in the United
States to use central capacity auctions as early as 1998 and 1999,
respectively. A few years later, PJM, in 2007, and MISO, in 2009, also
introduced such mechanisms in their market areas. All four imple-
mentations have in common that capacity is procured in multiple
zones in order to account for intra-zonal transmission constraints
(Byers et al., 2018). The auction design, however, differs among the
mechanisms. While uniform pricing is applied in PJM and NYISO,
ISO-NE and MISO use descending clock auctions (Bhagwat et al.,
2016b). Moreover, ISO-NE is the only mechanism bundling capacity
options with financial call options (similarly to the reliability options
model proposed by Vazquez et al., 2002), while NYISO, PJM and MISO
conduct forward capacity markets (Byers et al., 2018). An overview
of the historical capacity prices of the four markets is provided in
Byers et al. (2018), although the authors state that clear trends could
not be identified due to the limited amount of data points as well as
differences and changes in markets rules.
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A.3. De-central obligation (France)

In 2015, France implemented a de-central obligation with the first
delivery to take place in 2017. All load-serving entities are obliged to
hold a certain number of certificates reflecting the share of electricity
consumption of their consumers during times of peak demand, e.g.,
when extreme winter conditions occur. Certificates can be obtained
by certifying own generation and demand-side capacities, which
afterward can be traded in a market or using bilateral arrangements
(European Commission, 2016a). Within Europe, the French mecha-
nism is the first to explicitly include and remunerate foreign capacities
in neighboring countries, however, limited by the expected capacity
of the respective interconnectors at peak times (European Commis-
sion, 2016c). In the first three auctions, a total volume of 34 GW has
been contracted with all auctions resulting in capacity prices close to
10,000 EUR/MW (EPEX SPOT, 2017a,b,c).

A.4. Targeted capacity payments (Spain)

The Spanish mechanism, initially introduced in 1997, was sub-
stantially redesigned in 2007 to adapt to the then valid European
law (Hancher et al., 2015). The new system was designed to reduce
investment risk by offering fixed capacity payments for a period
of ten years (investment incentive). Securing generation adequacy
in the medium-term (availability service) through contracts of one
year or less with peak-load power plants was the other main target.
However, to estimate the required generation capacity and long-term
capacity payments was made significantly more difficult by unfore-
seen events like the economic crisis and the resulting low electricity
demand, which together led to the reduction of long-term capacity
payments for investments in 2012 and ultimately to the abolition
of the investment incentive in 2013. Nonetheless, the availability
service is still active.
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