
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

New Frameworks for
Concurrently Composable
Multi-Party Computation

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften
der KIT-Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation
von

Brandon Broadnax

aus Karlsruhe

Tag der mündlichen Prüfung: 16.01.2019

Erster Referent: Prof. Dr. Jörn Müller-Quade
Zweiter Referent: Prof. Jesper Buus Nielsen, PhD

ii

iii

Acknowledgements
First and foremost, I would like to thank my advisor Jörn Müller-Quade for his
invaluable support. We had many interesting discussions, not only on the subject
of this thesis, but on many other topics such as the philosophy of mathematics
(especially “platonism vs formalism”). I also want to express my gratitude to
Jesper Buus Nielsen for taking his valuable time to co-referee my thesis.

Furthermore, I want to thank my co-authors for the many inspiring dis-
cussions: Nico Döttling, Valerie Fetzer, Gunnar Hartung, Matthias Huber,
Alexander Koch, Bernhard Löwe, Jeremias Mechler, Tobias Müller, Matthias
Nagel, Andy Rupp and Patrik Scheidecker.

Special thanks also to Björn Kaidel and Jeremias Mechler for carefully
proofreading parts of this thesis.

I had the pleasure to work with many wonderful colleagues. In particular, I
want to thank my officemate Björn Kaidel for introducing me to the wonderful
world of folk music and for our frequent burger evenings. I also want to express
my sincere thanks to Bernhard Löwe for his unwavering kindness and support.
Many thanks also to Dirk Achenbach for his help and guidance when I started
working at the institute, to Jeremias Mechler for the many interesting discussions
on politics, to Thomas Agrikola for always providing me with cough drops, to
Antonio Almeida and Mario Strefler for our (“regular”) after-work jogging
sessions and for participating in the “Badische Meile” with me, and to all the
others for the many joyful moments during my time at the institute.

Another special thanks to Willi Geiselmann, Holger Hellmuth and Carmen
Manietta for keeping the institute running behind the scenes.

Last but not least, I thank my friends and family for their encouragement
and unending support. In particular, I want to express my deepest gratitude to
my deceased maternal grandfather who taught me quite a lot. I dedicate this
thesis to him.

iv

v

Zusammenfassung
Sichere Mehrparteienberechnung ist ein Teilgebiet der Kryptographie, das sich
mit dem folgenden Problem befasst: Eine Gruppe von sich gegenseitig misstrau-
enden Parteien möchte gemeinsam eine Funktion auf ihren geheimen Eingaben
berechnen. Um dieses Problem zu lösen, müssen die involvierten Parteien ein
Protokoll durchführen, das ihnen erlaubt, die gewünschte Funktion gemeinsam
zu berechnen ohne sich gegenseitig vertrauen zu müssen. Eine wichtiger Zweig
der sicheren Mehrparteienberechnung ist die komponierbare Mehrparteienbe-
rechnung. Diese hat zum Ziel, Protokolle zu entwickeln, die auch dann noch
sicher bleiben, wenn sie in einem Netzwerk mit beliebigen anderen Protokollen
ausgeführt werden. Um solche Protokolle zu konstruieren wurden in der Literatur
Sicherheitsmodelle entwickelt, die einen komponierbaren Sicherheitsbegriff haben,
der es erlaubt, Aussagen über die Sicherheit eines Protokolls zu machen wenn es
zusammen mit anderen Protokollen ausgeführt wird.

Die vorliegende Dissertation leistet einen Beitrag auf dem Gebiet der kompo-
nierbaren Mehrparteienberechnung. Dabei werden zwei neue Sicherheitsmodelle
präsentiert und mehrere neue sichere Protokolle konstruiert. Die Hauptbeiträge
dieser Arbeit lassen sich wie folgt zusammenfassen:

Ein neues Sicherheitsmodell für komponierbare Mehrparteien-
berechnung im Standardmodell
Protokolle, die starke Voraussetzungen an eine vertrauenswürdige Infrastruktur
(engl. trusted setup assumptions) stellen, wie z.B. eine Schlüsselregistrierungsstelle,
die alle geheimen Schlüssel der Parteien kennt, sind sehr verwundbar. Insbeson-
dere könnten alle Sicherheitsgarantien verloren gehen wenn diese Infrastruktur
korrumpiert wird. Es ist deshalb erstrebenswert Protokolle zu konstruieren, die
nur schwache Voraussetzungen an eine vertrauenswürdige Infrastruktur stel-
len. Vorzugsweise sollten Protokolle im „Standardmodell“ (engl. plain model)
konstruiert werden, in dem nur authentifizierte Kanäle als vertrauenswürdige
Infrastruktur vorausgesetzt werden. In den bisherigen Sicherheitsmodellen mit
komponierbaren Sicherheitsbegriff können viele interessante kryptographische
Aufgaben aber nicht im Standardmodell realisiert werden oder wurden bisher
im Standardmodell nur realisiert basierend auf wenig untersuchten oder relativ
starken Annahmen oder durch ineffiziente Protokolle, die eine nicht-konstante
Anzahl an Kommunikationsrunden benötigen.

Das erste in dieser Arbeit präsentierte Sicherheitsmodell verbessert die aktuel-
le Situation. Es liefert einen komponierbaren Sicherheitsbegriff, der es erlaubt, für
fast alle kryptographischen Aufgaben Protokolle im Standardmodell zu konstru-
ieren, die nur konstant viele Runden benötigen und dabei auf gut untersuchten,
relativ schwachen Annahmen basieren (sog. standard polynomial-time assumpti-
ons). Eine der Konstruktionen, die vorgestellt werden, ist zusätzlich vollständig
black-box. Dies bedeutet, dass die zugrundeliegenden kryptographischen Primitive
nur über ihr Eingabe/Ausgabe-Schnittstelle verwendet werden, und insbesondere
keine ineffizienten Techniken angewandt werden, die den Code dieser Primi-
tive benutzen. Kein Protokoll für komponierbare Mehrparteienberechnung im
Standardmodell, das bisher in der Literatur konstruiert wurde, erfüllte alle der
genannten Eigenschaften.

vi

Ein neues Sicherheitsmodell zur Verwendung einfacher, unhack-
barer Hardwaremodule
In den bisherigen Sicherheitsmodellen wird zwischen zwei Korruptionsmodellen
unterschieden: dem statischen Korruptionsmodell, bei dem bereits vor Protokoll-
beginn feststeht, welche Parteien korrumpiert sind, und dem adaptiven Korrupti-
onsmodell, bei dem Parteien während des gesamten Protokollverlaufs korrumpiert
werden können. Statische Korruptionen modellieren beispielsweise eine Gruppe
böswilliger Protokollteilnehmer, die sich vor Protokollbeginn verschworen haben.
Adaptive Korruptionen modellieren Hacker, die während des Protokollverlaufs in
Computer einbrechen. Da physikalische Angriffe zeitaufwendig sind und deshalb
typischerweise vor Beginn des Protokollverlaufs initiiert werden müssen, können
adaptive Korruptionen als Fernangriffe aufgefasst werden (z.B. Senden von
Viren). Sowohl das statische als auch das adaptive Korruptionsmodell sind sinn-
volle Modelle für viele praktische Szenarien. Beide Korruptionsmodelle ignorieren
aber die realistische Möglichkeit, dass Parteien nur zu bestimmten Zeitpunkten
während des Protokollverlaufs durch einen Fernangriff korrumpiert werden kön-
nen. Beispielsweise könnte eine Partei einfache, (durch Fernangriffe) unhackbare
Hardwaremodule verwenden wie z.B.Datendioden, um unidirektionale Kanäle
zu implementieren, oder (Air-Gap-)Schalter, um sich vom Netzwerk zu trennen.
Ein Angreifer kann deshalb eine Partei nicht unbedingt während des gesamten
Protokollverlaufs durch einen Fernangriff korrumpieren, sondern nur während
diese online ist, d.h. während sie Nachrichten von der Außenwelt empfangen
kann. Folglich können die von solchen einfachen, unhackbaren Hardwaremo-
dulen gebotenen Vorteile nicht adäquat in den bisherigen Sicherheitsmodellen
abgebildet werden, da diese den Angreifer in seinen Möglichkeiten, Parteien zu
korrumpieren, entweder zu sehr oder zu wenig einschränken.

Das zweite in dieser Arbeit vorgestellte Sicherheitsmodell behandelt dieses
Problem. Es liefert einen komponierbaren Sicherheitsbegriff und erlaubt, die
Vorteile, die von einfachen, unhackbaren Hardwaremodulen wie den oben ge-
nannten gebotenen werden, adäquat abzubilden. Basierend auf sehr wenigen und
sehr einfachen unhackbaren Hardwaremodulen werden für fast alle kryptogra-
phischen Aufgaben Protokolle konstruiert, die sehr starke Sicherheitsgarantien
gegen Fernangriffe bieten.

vii

Abstract
Secure multi-party computation (MPC) deals with the setting where a group of
mutually distrustful parties wishes to jointly compute a function of their private
inputs. To solve this problem, the parties must engage in an appropriate protocol
that allows to jointly evaluate the desired function without the need to trust each
other. An important branch of MPC is concurrently composable MPC which
aims at constructing protocols whose security properties remain valid even when
they are running concurrently with arbitrary other protocols. In order to obtain
concurrently composable MPC protocols, various security frameworks have been
proposed that come with a composable security notion which allows to argue
about the security of a protocol when it is running alongside other protocols.

The present thesis contributes to the field of concurrently composable MPC
by providing two new security frameworks along with new secure MPC protocols.
The main contributions are summarized as follows:

A New Framework for Concurrently Composable MPC in the
Plain Model
Basing the security of protocols on strong trusted setup assumptions, such as a
key registration authority who knows the secret keys of all parties, makes them
very vulnerable. In particular, all security guarantees may be lost if the trusted
setup is corrupted. It is therefore desirable to construct protocols requiring only
weak assumptions on the trusted setup. The “minimal” setting in this context
is the so-called plain model where only authenticated channels are assumed as
trusted setup. However, in the previous security frameworks with a composable
security notion, many interesting cryptographic tasks cannot be realized in
the plain model or have so far only been realized in the plain model based on
assumptions that are either not well-studied or relatively strong, or by inefficient
protocols requiring a super-constant number of communication rounds.

Our first new framework improves upon this by providing a composable
security notion that allows the construction of constant-round MPC protocols in
the plain model for almost every cryptographic task based on well-studied and
relatively weak assumptions (so-called standard polynomial-time assumptions).
One of the constructions we present is additionally fully black-box, i.e. only
uses the underlying primitives through their input/output interfaces instead of
applying inefficient techniques that use the code of these primitives. No prior
concurrently composable MPC protocol in the plain model fulfilled all of the
aforementioned properties.

A New Framework for Utilizing Simple Remotely Unhackable
Hardware Modules
In the existing security frameworks, one distinguishes between two corruption
models: the static corruption model where the set of corrupted parties is fixed
before the protocol execution begins and the adaptive corruption model where
parties can fall under adversarial control during the entire protocol execution.
Static corruptions model, e.g., a group of protocol participants who conspired
before the start of the protocol execution. Adaptive corruptions model hackers

viii

actively breaking into computers during a protocol execution. Since direct
physical attacks (i.e. tampering with hardware) are time consuming and therefore
typically must be mounted before the start of the protocol execution, adaptive
corruptions can be regarded as remote attacks, e.g., sending of computer viruses.
Static and adaptive corruptions are meaningful notions in many practical settings.
However, they both ignore the realistic possibility of parties being remotely
hackable only at certain moments during the protocol execution. For instance, a
party may use simple remotely unhackable hardware modules such as data diodes
to implement unidirectional channels or air-gap switches to disconnect itself from
the network. A hacker may therefore not be able to corrupt a party via a remote
attack during the entire protocol execution but only while the party is online,
i.e. able to receive messages from the outside world. Hence, the advantages
provided by such remotely unhackable hardware modules cannot be adequately
captured in the existing security frameworks since they give the adversary either
not enough or too much freedom over party corruption.

Our second new framework addresses this problem. It provides a composable
security notion and allows to adequately capture the advantages provided by
remotely unhackable hardware modules such as the ones mentioned above.
Utilizing only very few and very simple remotely unhackable hardware modules,
we construct MPC protocols for almost every cryptographic task with very strong
security guarantees against remote attacks.

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Contribution of this Thesis . 7
1.3 Other Result . 10
1.4 Structure of this Thesis . 11

2 Preliminaries 13
2.1 Notation . 13
2.2 Basic Concepts . 13
2.3 Cryptographic Primitives . 14

2.3.1 One-Way Functions . 14
2.3.2 Commitment Schemes . 15
2.3.3 Public-Key Encryption Schemes 18
2.3.4 Digital Signatures . 20
2.3.5 Message Authentication Codes 21

2.4 The Universal Composability Framework 23
2.4.1 Definition of the Framework 23
2.4.2 Standard Well-formed Ideal Functionalities 27
2.4.3 Some Important Functionalities 27
2.4.4 Basic Properties of the Framework 29
2.4.5 Universal Composition . 29

3 Non-malleability and CCA Security 31
3.1 Notions for Public-Key Encryption Schemes 31

3.1.1 Variants of CCA Security 31
3.1.2 Variants of Non-malleability 33
3.1.3 Relations . 34

3.2 Notions for Commitment Schemes 35
3.2.1 Contribution . 36
3.2.2 Related Work . 38
3.2.3 Variants of CCA Security 38
3.2.4 Variants of Non-malleability 40
3.2.5 First Transformation (Puzzle-Solution Approach) 42
3.2.6 Second Transformation (Sharing Approach) 50

ix

x CONTENTS

4 A New Framework for Concurrently Composable MPC in the
Plain Model 57
4.1 Introduction . 57

4.1.1 Contribution . 60
4.1.2 Related Work . 61

4.2 Definitions of the Previous Frameworks 63
4.2.1 SPS Security Framework 63
4.2.2 Angel-based Security Framework and UC with super-

polynomial Helpers Framework 63
4.3 Shielded Oracles . 64

4.3.1 Definition of the Framework 64
4.3.2 Basic Properties and Justification 67
4.3.3 Universal Composition . 69
4.3.4 Polynomial Simulatability 71
4.3.5 Relation with Angel-based Security 74

4.4 A Constant-Round Commitment Scheme 77
4.4.1 Construction and Security Proof 78
4.4.2 First Application: Constant-Round (Black-Box) ZK . . . 85
4.4.3 A Modular Composition Theorem 86

4.5 Constant-Round (Black-Box) General MPC 94

5 A New Framework for Utilizing Simple Remotely Unhackable
Hardware Modules 97
5.1 Introduction . 97

5.1.1 Contribution . 99
5.1.2 Related Work . 100

5.2 The Fortified Universal Composability Framework 101
5.2.1 Channels . 101
5.2.2 Online State . 102
5.2.3 Corruption Model . 104
5.2.4 Interface Modules and Fortified Functionalities 107
5.2.5 Notify Transport Mechanism and Activation Instructions 111
5.2.6 Fortified UC Emulation 112

5.3 Properties of the Framework . 113
5.4 Construction for Non-Reactive Functionalities 118

5.4.1 Up to N Parties Under Adversarial Control 135
5.5 Construction for Reactive Functionalities 137

5.5.1 Up to N Parties Under Adversarial Control 142
5.6 Architectures without Erasure . 142

6 Conclusion and Prospects 145

Bibliography 147

Own Publications 161

Chapter 1

Introduction

1.1 Background and Motivation
Secure Multi-Party Computation. In the setting of multi-party computa-
tion (MPC), a group of mutually distrustful parties wants to jointly evaluate a
function on their private inputs. In order to do so, the parties must engage in
an appropriate protocol that allows them to jointly evaluate the desired function
without having to trust each other. Research in the area of MPC started with
the work of [Yao82] which introduced Yao’s Millionaires’ Problem. This problem
can be stated as follows:

Two millionaires want to know who is richer without revealing any additional
information about their wealth.

Multi-party computation allows to solve many interesting, sometimes seem-
ingly impossible tasks. For instance, each of the following problems has been
solved in the literature with an appropriate MPC protocol:

Private Set Intersection
Two agencies each hold a set of private data. They want to determine which
secrets are held by both agencies without revealing any other information
(see, e.g. [FNP04; Dac+09; HEK12]).

Dining Cryptographers Problem (Boolean OR)
A group of parties sitting around a table in a restaurant are informed that
their meals have been paid for by someone. They then want to find out if
their meals have been paid by one of them or by a third party not present
at the table. However, no party wants to disclose if it paid for the meal or
not (see, e.g. [Cha88; WP+89; GJ04]).

(1-out-of-2) Oblivious Transfer
One party can choose to learn exactly one out of two bits held by another
party, while the latter does not learn which bit was chosen by the former
(see, e.g. [Rab81; EGL85; NP01; Lin08]).

An important subfield of MPC is general multi-party computation which
aims at constructing protocols for realizing (almost) every function. [Yao86]

1

2 CHAPTER 1. INTRODUCTION

constructed the first general MPC protocol for the case of two parties by in-
troducing the technique of garbled circuits. Their protocol works roughly as
follows: One party creates an “encrypted circuit” of the desired function with
its input hardwired into the circuit. The other party can learn the decryption
keys corresponding to its input using an oblivious transfer protocol and can thus
evaluate the circuit. This protocol is only secure in the presence of semi-honest
adversaries who follow the protocol specification but try to learn additional
information by analyzing the messages they receive. [GMW87] later gave a
solution for the general case of malicious adversaries and for an arbitrary number
of parties. They showed how a semi-honest protocol can be compiled into a
protocol secure against malicious adversaries by requiring the parties to prove
in each step (via a zero-knowledge proof) that they have honestly followed the
protocol specification. Since then, many more general MPC protocols secure
against malicious adversaries have been proposed in the literature, e.g. [BGW88;
CGT95; CDM00; Ish+06; DN07; IPS08; Cho+09; Lin13; LOS14; Lin+15].

Beyond the question of mere realizability, several research directions focus on
constructing general MPC protocols with additional properties. These properties
are typically related to efficiency or the strength of the required computational
assumptions. In the following, we list some of these properties:
Round Complexity

The number of (communication) rounds required by a protocol is measured
as a function of the security parameter. In order to minimize the overhead
caused by rounds of communication, it is desirable to construct constant-
round protocols which require only a number of rounds that is independent
of the security parameter.

Strength of Required Computational Assumptions
The computational assumptions required by MPC protocols are generally
divided into two categories: standard polynomial-time assumptions that are
well-studied in the literature or non-standard and super-polynomial-time
assumptions that are either not well-studied or relatively strong compared
to the former.

Use of Underlying Primitives (Black-Box vs. Non-Black-Box)
A protocol is black-box if it only uses the underlying cryptographic primi-
tives through their input/output interfaces. Non-black-box constructions,
on the other hand, use the code of the underlying primitives. It is typically
more desirable to obtain black-box protocols as non-black-box constructions
tend to be highly inefficient.

Defining Security of MPC Protocols. Finding a meaningful security defi-
nition for MPC protocols is a delicate task. One might be inclined to choose the
straightforward approach of specifying a list of requirements for a given task and
then deeming a protocol for that task “secure” if it fulfills all the requirements
on that list. However, this approach is problematic for several reasons.

First, important requirements may be forgotten. As an example, consider
the following list of security requirements:
Input Privacy:

Each party learns no additional information about the other parties’ inputs
beyond what can be inferred from its own input and output.

1.1. BACKGROUND AND MOTIVATION 3

Correctness:
Each party outputs the correct result.

It is tempting to believe that an MPC protocol is secure if it fulfills the above list
of requirements. However, this is not true. Consider the following toy protocol
for the task of computing the exclusive OR (XOR) of two inputs:
Party A sends its input to party B. B then computes the XOR of A’s input and
its own input and sends the result to A. Both parties then output the computed
value.

This protocol fulfills all the requirements on the above list. In particular,
input privacy is not an issue for the task of computing the XOR of two inputs.
This is because each party can always learn the other party’s input by simply
XORing its own input to its output. However, the above protocol allows B
to learn A’s input before it chooses its own input. As a consequence, B can
determine the result of the protocol alone. Intuitively, this should not be possible
in a secure protocol for XOR, i.e. the parties’ inputs should be independent of
each other. Hence, the above list of security requirements is incomplete.

Second, giving formal definitions of security requirements in the presence
of malicious parties is difficult. For instance, consider the above-mentioned
requirement of input privacy. Since a malicious party may deviate from the
protocol specification in arbitrary way, the messages it sends may not correspond
to any valid input value. Therefore, it is a-priori not well-defined what it means
that such a malicious party can learn no additional information “beyond what
can be inferred from its own input and output”.

The modern approach for defining security, which informally originated in
the work of [GMW87], is based on the so-called real-ideal paradigm. In this
approach, a given protocol is compared with an “ideally secure” setting, called
ideal protocol. The parties in an ideal protocol do not directly communicate with
each other but instead secretly hand their inputs to an external trusted party,
called ideal functionality, who locally computes the desired function and secretly
hands the parties their outputs. A protocol π is said to securely realize a task
if it is “as secure as” the ideal protocol φ for that task. This means that any
“damage” that can be caused by an adversary A interacting with π can also
be caused by an adversary S, called the simulator, interacting with the ideal
protocol φ. If this holds, π is also said to emulate φ. Many security notions have
been formulated based on this approach (e.g. [MR91; BCG93; Can00; Can01;
Gol04]) and numerous protocols have been shown to satisfy such a security
notion. For instance, [Gol04] gave a detailed proof that the aforementioned
general MPC protocol constructed in [GMW87] fulfills their security notion.

Protocol Composition. In practice, cryptographic protocols typically run
in a network with other protocols. It is therefore not sufficient to argue the
security of a protocol in the stand-alone setting, where it is executed once in
total isolation (as is done in the frameworks proposed in, e.g., [MR91; BCG93;
Can00; Gol04]). To illustrate this, consider the following two examples.

The first example, taken from [Can06], shows that running multiple execu-
tions of a protocol concurrently may bring forth new security requirements that
do not exist in the stand-alone setting.

4 CHAPTER 1. INTRODUCTION

Consider the task of commitment which is a two-party task consisting of
two phases: a commit phase, where a sender is able to provide a receiver a
“commitment” to a value while keeping that value secret (hiding property) and
an unveil phase, where the sender can open the commitment only to the value
he committed to in the commit phase (binding property).

Consider a first-price sealed-bid auction protocol where each party commits to
its bid using a commitment protocol. Once the bidding is over, all commitments
are opened. The actioneer then determines the highest submitted bid and thus
the winner of the auction.

At first glance, any secure commitment protocol seems to suffice for the
above application. Since the commitment is hiding, no party can learn the bid
of another party during the bidding stage. Furthermore, the binding property
ensures that no party can increase its bid depending on the opened bids. However,
the hiding and binding property do not rule out the following attack: A malicious
party M may modify a commitment to a value x generated by another party P
in such a way that when P opens its bid then M is able to open his commitment
to, say, x + 1. This way, M can break the security of the auction protocol
without breaking the binding or hiding property. Instead, M breaks a new
requirement, namely maintaining “independence” between committed values.
This requirement, called non-malleability in the literature, does not arise in the
stand-alone setting since it is of no concern there. However, it may become crucial
in a setting where multiple instances of a protocol are executed concurrently
such as the commitment protocol in the above auction protocol.

The second example, taken from [GK90; Fei91; Can06], shows that a protocol
may be secure in the stand-alone setting but lose security properties (proven in
the stand-alone setting) when run concurrently with other protocols. This may
even happen when only two instances of the same protocol are run concurrently.

Consider the task of zero-knowledge (ZK) where, given a binary (NP-)relation
R, a “prover” P holding a value x and a secret “witness” w wants to convince
a “verifier” V that R(x,w) = 1 holds without revealing anything beyond the
validity of that statement (in particular, without revealing w). This task is
formally defined by the ideal protocol φZK in which the ideal functionality FZK
takes (x,w) as input from P and outputs R(x,w) to V .

Assume there exists a “puzzle system” that allows the prover and verifier to
generate “puzzles” p with the following properties:

• The prover can solve any puzzle.

• The verifier cannot feasibly solve puzzles. He cannot even distinguish
between a valid solution to a puzzle generated by himself and a random
(invalid) one.

Such a puzzle system exists if one allows the prover to be computationally
unbounded [GK90] or by assuming that the prover holds some “trapdoor”
information [Fei91].

Let π be any protocol that emulates φZK according to a security notion in
the stand-alone setting, such as one of the notions formulated in [MR91; BCG93;
Can00; Gol04]. (Note that since the following argument is informal the exact
definition of security is not important. However, formal proofs can be given in
each of the aforemention frameworks.) Construct a new protocol π′ out of π
as follows: First, the parties run the protocol π. Once π has terminated, they

1.1. BACKGROUND AND MOTIVATION 5

continue as follows: P sends a random puzzle p to V . V then generates a puzzle
p′ and responds with a tuple (s, p′). If s is a correct solution to the puzzle p
generated by P , then P sends its secret witness w to V . Otherwise, P sends a
solution s′ for the puzzle p′ generated by V .

It holds that if π is a secure protocol for ZK in the stand-alone setting then
so is π′. Informally, this is because V cannot solve puzzles and is therefore
unable to make P reveal its witness in a stand-alone setting. Furthermore, since
V cannot distinguish the solution s′ from a random value, which V could have
generated by itself, V does not learn anything in the interaction with P in a
stand-alone execution of π′ beyond the validity of the given statement.

However, a malicious V can learn a secret witness when interacting in two
concurrent executions of the protocol π′ as follows: Let P1 and P2 be the two
provers interacting with V . V first waits to receive the puzzles p1 and p2 from
the two provers. V then sends (s, p2) to P1 for some arbitrary value s. It then
obtains a solution s2 to p2 from P1. V can then send (s2, p̃) for some arbitrary
puzzle p̃ to P2. Since s2 is a correct solution for p2, V will obtain P2’s witness.

The Universal Composability Framework. The foregoing examples show
that analyzing the security of a protocol only in the stand-alone setting can lead
to devastating effects when the analyzed protocol is executed in a network with
other protocols. One should therefore have a security notion that also considers
the concurrent setting. Formulated via the real-ideal paradigm, a security notion
X should fulfill the following property:

If π emulates φ (according to security notion X), then any system of protocols
where one or multiple instance(s) of π are executed concurrently with arbitrary
other protocols emulates the same system of protocols where each instance of π
is replaced by an instance of φ.

A security notion with this property is called closed under protocol composition
or composable. Security notions that only consider the stand-alone setting do
not have this property. For instance, the second example showed that a system
consisting of two concurrent executions of a ZK protocol proven secure in the
stand-alone setting may fail to emulate a system consisting of two concurrent
executions of the ideal protocol φZK. This is because a malicious verifier may
learn a secret witness in the former setting (as shown in the example) but not in
the latter since the two instances of the ideal functionality FZK only output the
result of the evaluated relation to the verifier.

The Universal Composability (UC) framework, put forward by [Can01],
provides a security notion that is closed under protocol composition. It does so
by introducing an additional entity called environment that models protocols
running concurrently with the protocol whose security is being analyzed. The
environment may freely interact with the adversary throughout the protocol
execution and provide inputs to and receive outputs from the protocol parties.
A protocol π is said to emulate a protocol φ in the UC framework if for every
adversary A interacting with π, there exists a simulator S interacting with
φ such that no environment Z can distinguish between an interaction with
π and A or φ and S. As a consequence of this definition, a protocol proven
secure in the UC framework is guaranteed to be (concurrently) composable,
i.e. its security properties remain valid even when multiple instances of that

6 CHAPTER 1. INTRODUCTION

protocol are concurrently executed in an arbitrary unknown environment. The
UC framework has become the “standard” framework for designing and analyzing
concurrrently composable multi-party computation protocols. However, it has
various shortcomings. Two of these shortcomings are the subject of this work
and will be described in the following.

Problem 1: Setup Assumptions. Unfortunately, the strong composable
security notion provided by the UC framework comes with a price: It has been
shown that many interesting tasks such as oblivious transfer, zero-knowledge
or commitments cannot be realized with UC security in the plain model, where
only authenticated channels are assumed as trusted setup [CF01; CKL03; Lin03;
PR08; KL11]. Furthermore, [Lin04] proved that the need for some additional
trusted setup extends to even the special case of (concurrent) self -composability,
where only instances of the same protocol are concurrently executed. All general
MPC protocols that have been constructed in the UC framework therefore
assume some additional trusted setup (see, e.g. [Can+02; Bar+04; Can+07;
KLP07; Kat07; CPS07; LPV09; Dac+13a; HV15]). For instance, [Can+02] gave
a construction based on a common reference string where the trusted setup
is assumed to provide a string that is honestly sampled from some predefined
distribution. However, protocols relying on some additional trusted setup are
less likely to be secure in practice, where a trusted setup is often hard to come
by (or expensive). It is therefore desirable to have a meaningful composable
security notion that can be achieved in the plain model.

In order to reach this goal, new frameworks have been proposed relaxing the se-
curity notion of the UC framework. One of the most prominent solutions is based
on the idea of providing the simulator with super-polynomial resources. This idea
is motivated by the fact that for many cryptographic tasks, such as commitments
or oblivious transfer, the respective ideal protocol is information-theoretically
secure, i.e. remains (ideally) secure even in the presence of adversaries with
unbounded runtime. Granting the simulator super-polynomial resources there-
fore still leads to a meaningful security notion for many cryptographic tasks.
This approach was put forward in [Pas03] which introduced the Security with
super-polynomial simulators (SPS) framework where the simulator is allowed to
run in super-polynomial-time. Many self-composable general MPC protocols in
the plain model have been constructed in the SPS security framework (see, e. g.,
[Pas03; BS05; LPV12; Gar+12; Dac+13a; GKP17; GKP18]). However, a major
drawback of the SPS security framework is that its security notion is not closed
under protocol composition. In particular, SPS-secure protocols can become
insecure when executed alongside other protocols.

In order to overcome this problem of SPS security, [PS04] proposed the
Angel-based security framework. In this framework, the adversary, environment
and simulator run in polynomial-time but all have access to a so-called Imagi-
nary Angel that provides super-polynomial resources for specific computational
problems. The security notion in the Angel-based security framework is closed
under protocol composition and implies SPS security. [CLP10] later put forward
the UC with super-polynomial helpers framework where the environment and
simulator may query a super-polynomial helper which, unlike Imaginary Angels,
may be interactive and stateful. This framework also provides a composable
security notion implying SPS security. Many general MPC protocols in the plain

1.2. CONTRIBUTION OF THIS THESIS 7

model have been constructed in the Angel-based security and UC with super-
polynomial helpers framework. However, all of these constructions are either
based on non-standard or super-polynomial-time assumptions [PS04; MMY06;
KMO14] or require a super-constant number of rounds [CLP10; LP12; Kiy14;
Goy+15; HV16].

Problem 2: Corruption Model. In the UC framework one (essentially)
distinguishes between two corruption models: the static corruption model and
the adaptive corruption model. The static corruption model considers adversaries
that corrupt parties only before the protocol execution begins. This captures, e.g.,
a group of protocol participants who conspired prior to the start of the protocol
execution. In contrast, adversaries in the adaptive corruption model (first
proposed by [Can+96]) are able to corrupt parties throughout the entire protocol
execution, allowing them to base their corruption strategy on the messages they
received so far. Intuitively, adaptive corruptions model hackers who actively
break into computers during a protocol execution. Since direct physical attacks
(i.e. tampering with hardware) are time consuming and therefore must typically
be mounted prior to the start of the protocol execution, adaptive corruptions
can be regarded as remote attacks, e.g., sending of computer viruses. The UC
framework with adaptive corruptions (“adaptive UC framework”) captures real-
life threats more accurately than its analog with static corruptions. However,
it ignores the realistic possibility of a party being (temporarily) isolated from
the network and therefore not remotely hackable. For instance, a party could
utilize simple remotely unhackable hardware modules such as air-gap switches to
disconnect itself from the network or data diodes to implement unidirectional
channels. An adversary may therefore not be able to corrupt a party via a
remote attack at any given moment but only while the party is online, i.e.
able to receive messages from the outside world. Furthermore, a party may
use additional hardware modules such as a simple encryption unit that only
implements a specific public-key encryption scheme. Such hardware modules
with very limited functionality can be implemented securely as fixed-function
circuits and formally verified for correctness. They can therefore be assumed to
be resilient against remote attacks. In particular, an adversary can only corrupt
such hardware modules if he has direct physical access to them. Using such
hardware modules in conjunction with air-gap switches and data diodes allows a
party to, e.g., implement secure message transmission without the risk of being
remotely hacked while sending (sensitive) data.

It follows that the advantages provided by simple remotely unhackable
hardware modules cannot be adequately captured in the adaptive UC framework
since this framework gives the adversary too much freedom over party corruption.
It is therefore desirable to find a new framework that also provides a composable
security notion but allows to capture these advantages.

1.2 Contribution of this Thesis
This thesis provides two new frameworks for concurrently composable MPC,
each of which addresses one of the problems stated in the previous section. Our
main contributions are summarized as follows:

8 CHAPTER 1. INTRODUCTION

A New Framework for Concurrently Composable MPC in the
Plain Model

Our first new framework provides a composable security notion that implies
SPS security and can be satisfied by constant-round general MPC protocols
in the plain model based on only standard polynomial-time assumptions.
One of the constructions we present is additionally fully black-box. No
prior concurrently composable general MPC protocol in the plain model
fulfilled all of the aforementioned properties.

A New Framework for Utilizing Simple Remotely Unhackable
Hardware Modules

Our second new framework provides a composable security notion and
allows to adequately capture the advantages provided by remotely unhack-
able hardware modules. Utilizing only very few and very simple remotely
unhackable hardware modules, we construct general MPC protocols with
very strong security guarantees against remote attacks based on standard
polynomial-time assumptions.

We note that although one could also try to conceive a single new framework
addressing both of the aforementioned problems we have chosen to present a
separate framework for each problem instead. This is because these problems
involve quite different concepts and techniques. Furthermore, presenting two
frameworks instead of one greatly simplifies the presentation of this thesis.

In the following, we give a more detailed description of our contributions:

A New Framework for Concurrently Composable MPC in the
Plain Model
We present a new framework that is also based on the idea of providing simula-
tors with super-polynomial resources. However, unlike in previous frameworks,
simulators in our new framework are only given restricted access to the results
computed in super-polynomial time. We model this restricted access via state-
ful oracles that may directly interact with the ideal functionality without the
simulator observing the communication. We call these oracles shielded oracles.

As with UC security, the security notion of our framework is closed under
protocol composition. Furthermore, our security notion can be shown to lie
strictly between Angel-based security/UC security with super-polynomial helpers
and SPS security and is compatible with UC security in the sense that protocols
proven secure in the UC framework are also secure in our new framework.

Restricting access to super-polynomial resources allows us to apply a new
proof technique where entities involving super-polynomial resources can be re-
placed by indistinguishable polynomially bounded entities. As a consequence,
our constructions require weaker building blocks than the general MPC protocols
in the Angel-based security and UC with super-polynomial helpers framework.
In particular, it suffices to use parallel CCA-secure commitment schemes as a
building block in our constructions instead of “full-fledged” CCA-secure com-
mitment schemes, which were commonly used in the general MPC protocols
in the previous frameworks. Unlike CCA-secure commitment schemes, parallel
CCA-secure commitment schemes have known constant-round (and black-box)
instantiations based on standard polynomial-time assumptions. As a result, we

1.2. CONTRIBUTION OF THIS THESIS 9

are able to show that constant-round general MPC in the plain model based
on standard polynomial-time assumptions can be achieved in our new frame-
work. We present two general MPC protocols with these properties. One of our
protocols is also fully black-box. To the best of our knowledge, this construc-
tion was the first black-box constant-round general MPC protocol satisfying a
meaningful composable security notion in the plain model based on standard
polynomial-time assumptions.

A New Framework for Utilizing Simple Remotely Unhackable
Hardware Modules
We present a new framework that allows to capture the advantages provided
by simple remotely unhackable hardware modules. In our new framework, each
party has an online state (online/offline) that is determined by the type and state
of its channels, e.g., state of its air-gap switches. Furthermore, the adversary
is able to corrupt parties in two different ways, namely by mounting either
physical attacks, which model physically tampering with (or replacing) hardware,
or online attacks, which model remote hacking attacks. Contrary to physical
attacks, online attacks give the adversary control over a party only if the party is
currently online and not assumed to be unhackable. We call our new framework
Fortified UC.

Our framework provides a security notion that is closed under protocol
composition and equivalent to adaptive UC security for protocols that do not
use any remotely unhackable hardware modules. As a consequence, UC-secure
protocols can be used as building blocks in protocols in our new framework.

Utilizing only very few and very simple remotely unhackable hardware mod-
ules, we construct general MPC protocols where mounting online attacks does
not enable an adversary to learn or modify a party’s inputs and outputs unless
he gains control over a party via the input port before the party has received
its (first) input (or gains control over all parties). Hence, our protocols protect
against all online attacks, except for online attacks via the input port while a
party is waiting for its (first) input. To achieve theses strong security guarantees
against online attacks, the parties’ inputs and outputs are authenticated, masked
and shared in our protocols in such a way that an adversary cannot learn or
modify them when corrupting a party through an online attack.

It is important to note that the simple remotely unhackable hardware modules
used in our general MPC protocols are based on substantially weaker assump-
tions than the tamper-proof hardware tokens proposed by [Kat07]. In particular,
they are not assumed to be physically tamper-proof and can thus not be passed
to other (possibly malicious) parties. Therefore, these remotely unhackable
hardware modules cannot be used as an additional trusted setup to circumvent
the aforementioned impossibility results of the UC framework. Our general MPC
protocols therefore rely on additional, well-established setup assumptions (e.g.
a common reference string) in conjunction with simple remotely unhackable
hardware modules to achieve concurrent composability. Given all the afore-
mentioned assumptions, our general MPC protocols provide the best possible
protection against online attacks in a setting where parties cannot be protected
while waiting for input.

10 CHAPTER 1. INTRODUCTION

Additional Result
Relations between Variants of Non-malleability and CCA security for
Commitment Schemes

The setting of non-malleability, introduced by [DDN91], considers in its basic form
an adversary A interacting in two sessions Π1,Π2 of a two-party protocol Π such
as a commitment scheme, zero-knowledge protocol or a public-key encryption
(PKE) scheme. A interacts with an honest sender S in session Π1, playing the
role of the receiver. Conversely, A plays the role of the sender in the other
session Π2, interacting with an honest receiver R. Informally, Π is said to be
non-malleable if no adversary can transform a transcript T (a) he receives in
session Π1, which depends on S’s secret input a, into a transcript T ′(ã) 6= T (a)
in session Π2 corresponding to a value ã that is related to a and accepted by R.
For instance, a commitment scheme (informally) satisfies non-malleability if for
every message m, no adversay can transform a commitment Com(m) he receives
into another commitment Com(m̃) to a related message m̃.

Another security notion that is closely related to non-malleability is CCA
security. Roughly speaking, a two-party protocol Π such as commitment scheme
or a PKE scheme is CCA-secure if the secret input of the sender S remains
hidden even in the presence of adversaries who have access to an oracle O that
extracts input values from transcripts of other instances of Π. For instance, a
PKE scheme is CCA-secure if (informally) an adversary can learn nothing about
a plaintext m from a ciphertext c ← Enc(pk,m) (apart from its length) even
given an oracle O(sk, ·) that decrypts all ciphertexts c′ 6= c.

Non-malleable and CCA-secure protocols play a central role as building
blocks in concurrently composable general MPC protocols (e.g. [LPV09; CLP10;
Gar+12]). This is also true for the general MPC protocols presented in this
work which make crucial use of PKE schemes or commitment schemes fulfilling
some notion of non-malleability or CCA security. Identifying which notions of
non-malleability or CCA security are necessary for our general MPC protocols
was an important problem during our research. In particular, we explored how
the identified notions relate to other notions in order to assess how strong the
identified notions are and, in particular, how they can be instantiated. For PKE
schemes, the relations among these notions have already been settled in the
literature (e.g. [Bel+98; BS99]). However, only very few relations have been
analyzed for commitment schemes so far. We have therefore proved separations
between a variety of notions related to non-malleability and CCA security that
were proposed for commitment schemes in the literature. These results are
presented in this thesis as an additional contribution.

1.3 Other Result
We have also proposed a new approach to software protection that is not part of
this thesis. An abstract of this result is given below.

Towards Efficient Software Protection Obeying Kerckhoffs’s Principle

Software has become an increasingly important commercial factor. As a con-
sequence, software protection, i.e. protection against unauthorized copying of

1.4. STRUCTURE OF THIS THESIS 11

software products, has become an important field of IT security. In order to be
effective, software protection inherently requires some form of hardware since
software can always be copied if it is not physically protected. However, since
hardware is costly, a practical software protection scheme cannot solely rely on
hardware. Instead, a combination of practically viable hardware measures and
software methods should be employed.

Like any cryptographic scheme, software protection schemes should fulfill
Kerckhoffs’s principle which dictates that a cryptographic scheme should be
secure even if everything about it, except for cryptographic keys, is publicly
known. A scheme which violates this principle gives an adversary who knows the
underlying mechanisms sufficiently well a great advantage, often resulting in the
scheme being completely broken. Unfortunately, software protection schemes
used in practice generally rely on “security through obscurity” and therefore
violate Kerckhoffs’s principle. In the literature, various methods have been
proposed that can be used to guarantee provably secure software protection in
accordance with Kerckhoffs’s principle (e.g, [Gol87; GO96; PR10; Shi+11; Lin16;
LT17]). However, these constructions are impractical due to their overhead.

In [Bro+18b] we proposed a new software protection scheme that is both
compliant with Kerckhoffs’s principle and practically viable. At the core of this
scheme lies a simple assumption: a hacker lacks the domain knowledge that is
necessary to create the software product he seeks to copy illegally. For instance,
a hacker may not be familiar with the underlying mathematics of a scientific
program such as a computer algebra system.

This lack of domain knowledge can be exploited to obtain a secure protection.
The main idea is to partition the code of a software in such a way that, given
an arbitrary subset of parts, it is hard to come up with the remaining parts if
one lacks the underlying domain knowledge. Each part of the partitioned code
is encrypted separately and only decrypted when needed during the program
execution. The key for decrypting these parts is stored on a hardware dongle.

Assuming a program admits a partition with the above property, a hacker
can perform no attack on our scheme that is better than storing every part of
the program that is decrypted during program execution. Of course, not all
programs admit such a partition. Identifying which code structures admit such
a partition is part of ongoing research.

1.4 Structure of this Thesis
Each chapter contains a summary of the contribution presented in that chapter
as well as a discussion of the related work. In the following, we give a brief
outline of this thesis.

• In Chapter 2, we introduce notation and give definitions of some of the
cryptographic primitives used in this work along with various well-known
security notions for these primitives. We also give a brief and simplified
introducton into the UC framework, which will serve as the basis for the
new security frameworks presented in this work.

• In Chapter 3, we introduce several notions related to non-malleability
and CCA security that were proposed for PKE schemes and commitment
schemes in the literature. The first part of this chapter cites some proven

12 CHAPTER 1. INTRODUCTION

relations among these notions for PKE schemes and contains no original
work of the author. The second part clarifies the relations among these
notions for commitment schemes. This part is taken almost entirely from
[Bro+18a], which was published at PKC 2018. Both parts of this chapter
serve as a complement to the following chapters and may be skipped on
first reading.

• In Chapter 4, we present a new framework for concurrently composable
MPC in the plain model. We show that the security notion of our frame-
work lies stricly between SPS and Angel-based security and is closed under
protocol composition. We present two constant-round general MPC proto-
cols in the plain model based on standard polynomial-time assumptions
that are secure in our framework. One of these constructions is also fully
black-box. This chapter is taken almost entirely from [Bro+17], which was
published at EUROCRYPT 2017.

• In Chapter 5, we introduce a new framework that allows to capture the
advantages provided by simple remotely unhackable hardware modules.
We prove that the security notion of this framework is closed under protocol
composition and equivalent to adaptive UC security for protocols that
do not use any remotely unhackable hardware modules. Using only very
few and very simple remotely unhackable hardware modules, we construct
general MPC protocols providing very strong security guarantees against
online attacks. This chapter is taken almost entirely from [Bro+18c], which
is available as a technical report at the Cryptology ePrint Archive but has
not been published elsewhere yet.

• In Chapter 6, we briefly summarize the main contributions of this work
and indicate some future research directions related to this work.

Chapter 2

Preliminaries

In this chapter, we introduce notation and give definitions of the cryptographic
primitives and security models used in this work.

2.1 Notation
Throughout this work, we denote the security paramter by n ∈ N. We assume
that (if not explicitly mentioned) all algorithms, i.e. Turing machines, are
implicitly given the security parameter as input in unary form 1n. We call an
algorithm probabilistic if it has access to a random tape whose cells each contain
a uniformly distributed bit. We say that an algorithm runs in polynomial time
if its runtime is upper bounded by a polynomial in the bitlength of its input.
We call a probabilistic algorithm running in polynomial time a PPT algorithm.
If an algorithm does not run in polynomial time, then we say that it runs in
super-polynomial time.

For a PPT algorithmM, we write y ←M(x) to denote the output y ofM
on input x. We sometimes want to make the randomness used byM explicit
and write y = M(x; r). We denote by MO(x) an algorithm M with input x
and (black-box) access to an oracle O.

For a bitstring x ∈ {0, 1}∗, we denote by |x| the bitlength of x. For a finite set
S, we write s← S to denote the operation of picking an element s of S uniformly
at random. Furthermore, we write card(S) to denote the cardinality of S. We
denote by ⊥ a special error symbol and by poly an unspecified polynomial.

2.2 Basic Concepts
In this section, we recall some basic general concepts that will be used throughout
this work (cf. [Gol03] for a detailed discussion of these concepts).

Negligible functions are used to formalize the notion of a “very small”,
and hence tolerable, adversarial success probability. Informally, a function is
negligible if its absolute value approaches zero faster than the inverse of any
positive polynomial. A formal definition is given below.

13

14 CHAPTER 2. PRELIMINARIES

Definition 2.1 (Negligible and Overwhelming Function). A function f : N→ R
is negligible if for every constant c > 0 there exists an integer n0 ∈ N such that
for all n > n0 it holds that |f(n)| < n−c. In the following, we denote by negl an
unspecified negligible function.

We call a function f : N→ R overwhelming if 1− f is a negligible function.

A nice property of negligible functions, which follows easily from the above
definition, is that they are closed under addition and multiplication.

Next, we recall the concept of computionally indistinguishable probability
ensembles.

Definition 2.2 (Probability Ensembles). Let I be a countable set. A probability
ensemble X = {Xi}i∈I is a sequence of random variables Xi indexed by I.

Definition 2.3 (Computational Indistinguishability). Let X = {Xn,z}n∈N,z∈{0,1}∗
and Y = {Yn,z}n∈N,z∈{0,1}∗ be probability ensembles. X and Y are computa-
tionally indistinguishable, denoted by X c≡ Y , if for every PPT “distinguisher”
D whose running time is polynomial in its first input, there exists a negligible
function negl such that for all n ∈ N and z ∈ {0, 1}∗ it holds that1

|Pr[D(1n, z,Xn,z) = 1]− Pr[D(1n, z, Yn,z) = 1]| < negl(n)

2.3 Cryptographic Primitives
In this section, we define cryptographic primitives that are relevant to this work.

2.3.1 One-Way Functions
One-way functions are one of the most important primitives in cryptography.
Roughly speaking, a one-way function is easy to compute but hard to invert.
The following definition of one-way functions is taken from [Gol03].

Definition 2.4 (One-Way Functions). A function f : {0, 1}∗ → {0, 1}∗ is called
one-way if the following holds:

(i) There exists a (deterministic) polynomial-time algorithm F such that
F (x) = f(x) for all x ∈ {0, 1}∗.

(ii) For every PPT adversary A, there exists a negligible function negl such
that for all n ∈ N, z ∈ {0, 1}∗ it holds that

Pr
x←{0,1}n

[A(1n, z, f(x)) ∈ f−1(f(x))] ≤ negl(n)

(Note that the probability is also over the internal coin tosses of A).
1Note that, throughout this work, we only consider security notions in the non-uniform

setting, i.e. distiguishers/adversaries always have an additional (non-uniform) input. This is
because we will work in frameworks based on the UC framework, which is non-uniform.

2.3. CRYPTOGRAPHIC PRIMITIVES 15

If f is one-way and additionally a permutation over {0, 1}n for every n, then
f is called a one-way permutation (OWP).

Next, we define trapdoor permutations, which are one-way functions that
allow for efficient computation of preimages when given an appropriate trapdoor.
This notion was first proposed by [Gol03]. In the following, we give a definition
of this primitive, paraphrasing from [Gol04].

Definition 2.5 (Trapdoor Permutations). A collection of trapdoor permutations
is a collection of permutations {fα : Dα → Dα} together with four PPT algorithms
(I, S, F,B) such that the following holds:

(i) On input 1n, algorithm I selects at random an n-bit long index α (not
necessarily uniformly) of a permutation fα, along with a corresponding
trapdoor τ and returns (α, τ).

(ii) On input α, algorithm S samples the domain Dα of fα, returning an almost
uniformly distributed element in it.

(iii) For any x ∈ Dα, given α and x, algorithm F returns fα(x).

(iv) For any y in the range of fα(x), if (α, τ) is a possible output of I(1n),
then, given τ and y, algorithm B returns f−1

α (y).

(v) For every PPT adversary A, there exists a negligible function negl such
that for all n ∈ N, z ∈ {0, 1}∗ it holds that

Pr
(α,τ)←I(1n)

y←S(α)

[A(z, α, y) = f−1(y)] ≤ negl(n)

(Note that the probability is also over the internal coin tosses of A).

A stronger primitive than trapdoor permutations are enhanced trapdoor
permutations. Enhanced trapdoor permutations fulfill the requirement that it
is hard to find the preimage of a random element y ← S(α) even when given
the coins used by S in the generation of y. This primitive was introduced by
[Gol04]. In the following, we recall that definition (paraphrasing from [Gol04]).

Definition 2.6 (Enhanced Trapdoor Permutations). A collection of trapdoor
permutations {fα : Dα → Dα} (as defined in Definition 2.5) is called enhanced
if the following holds: For every PPT adversary A, there exists a negligible
function negl such that for all n ∈ N, z ∈ {0, 1}∗ it holds that

Pr
(α,τ)←I(1n)
r←{0,1}poly(n)

[A(z, α, r) = f−1
α (S(α; r))] ≤ negl(n)

(Note that the probability is also over the internal coin tosses of A).

2.3.2 Commitment Schemes
A commitment scheme 〈C,R〉 is a protocol between two parties, called sender
and receiver, that consists of two phases: a commit phase and an unveil phase.

16 CHAPTER 2. PRELIMINARIES

In the commit phase, the sender is able to provide the receiver a “commitment”
to a value while keeping that value secret (hiding property). In the unveil phase,
the sender can open the commitment only to the value he committed to in the
commit phase (binding property). Throughout this work, we require that the
binding property is “statistical”, i.e., holds against unbounded adversaries, while
the hiding property is “computational”, i.e., only holds against polynomially
bounded adversaries. This ensures that a commitment uniquely defines the
committed value with overwhelming probability. In addition, we assume a
“canonical unveil phase”. This means that the sender opens the commitment
by sending a tuple (v, r), where r is the randomness used by the sender in the
commit phase, and the receiver checks if (v, r) is consistent with the messages he
received in the commit phase. Furthemore, we focus on tag-based commitment
schemes [PR05; DDN00a] in this work. In a tag-based commitment scheme,
the sender and receiver additionally use a common “tag” as an additional input
to the protocol. Intuitively, a tag is the chosen identitity of the sender of a
commitment.

In the following, we formally define the hiding and binding property:

Definition 2.7 (Computationally Hiding). Let Exphiding
〈C,R〉,A(z)(n) denote the out-

put of the following probabilistic experiment:
On input 1n, z, the adversary A picks a tag tag and two strings v0 and v1 and

sends the tuple (v0, v1, tag) to the experiment. The experiment then randomly
selects a bit b ← {0, 1} and commits to vb by playing the role of the honest
sender of 〈C,R〉 using the tag tag chosen by A. Finally, A sends a bit b′ to the
experiment, which outputs 1 if b = b′ and 0 otherwise.

An adversary is called valid if he only chooses strings v0, v1 such that |v0| =
|v1|.
〈C,R〉 is said to be computationally hiding if for every valid PPT adversary

A, there exists a negligible function negl such that for all n ∈ N, z ∈ {0, 1}∗ it
holds that

Pr[Exphiding
〈C,R〉,A(z)(n) = 1] ≤ 1

2 + negl(n)

Definition 2.8 (Statistically and Perfectly Binding). Let Expbinding
〈C,R〉,A(z)(n) de-

note the output of the following probabilistic experiment:
On input 1n, z, the adversary A first interacts with the experiment by playing

the role of the sender in 〈C,R〉 using a tag of his choice. After the commit phase
is over, A sends two tuples (v, r), (v′, r′) to the experiment. The experiment then
outputs 1 if v 6= v′ and both tuples are accepting, and 0 otherwise.
〈C,R〉 is said to be statistically binding if for every adversary A, there exists

a negligible function negl such that for all n ∈ N, z ∈ {0, 1}∗ it holds that

Pr[Expbinding
〈C,R〉,A(z)(n) = 1] ≤ negl(n)

If Pr[Expbinding
〈C,R〉,A(z)(n) = 1] = 0, then 〈C,R〉 is said to be perfectly binding.

Computationally hiding and statistically binding commitment schemes can
be constructed with two rounds of interaction based on any one-way function

2.3. CRYPTOGRAPHIC PRIMITIVES 17

(see, e.g. [Nao89]). Furthermore, [Blu81] provided a non-interactive commitment
scheme that is computationally hiding and perfectly binding based on any one-
way permutation.

We will also use homomorphic commitment schemes in this work, which are
defined as follows:
Definition 2.9 (Homomorphic Commitment Schemes). A homomorphic com-
mitment scheme Comhom consists of two PPT algorithms (Gen,Commit) such
that:

1. The key generation algorithm Gen takes as input 1n and outputs a (public)
commitment key ck. The commitment key specifies three groups, which
we write muliplicatively, Mck (message space), Rck (randomizer space)
and Cck (commitment space). We assume that one can sample elements
uniformly at random from Rck.

2. The commit algorithm Commit takes as input a commitment key ck, a
message m ∈Mck and a randomizer r ∈ Rck and outputs a commitment
Commit(ck,m, r) ∈ Cck.

In this work, we use verifiable perfectly binding homomorphic commitment
schemes, which are homomorphic commitment schemes with the following prop-
erties:

• (Computationally Hiding) Let Exphidhom
Comhom,A(z)(n) denote the output of the

following probabilistic experiment:
At the beginning, the experiment generates ck← Gen(1n). On input 1n, z
and ck, the adversary A picks two messages m0,m1 and sends the tuple
(m0,m1) to the experiment. The experiment then randomly selects a bit
b ← {0, 1} and computes r ← Rck, com∗ = Commit(ck,mb, r) and sends
com∗ to A. Finally, A sends a bit b′ to the experiment, which outputs 1 if
b = b′ and 0 otherwise.
An adversary is called valid if he only chooses messages m0,m1 such that
m0,m1 ∈Mck.
Comhom is said to be computationally hiding if for every valid PPT
adversary A, there exists a negligible function negl such that for all
n ∈ N, z ∈ {0, 1}∗ it holds that

Pr[Exphidhom
Comhom,A(z)(n) = 1] ≤ 1

2 + negl(n)

• (Perfectly Binding) For all commitment keys ck output by Gen(1n) it
holds that if m,m′ ∈ Mck such that m 6= m′ then Commit(ck,m, r) 6=
Commit(ck,m′, r′) for all r, r′ ∈ Rck.

• (Homomorphism) For all commitment keys ck output by Gen(1n) and all
m1,m2 ∈Mck and r1, r2 ∈ Rck it holds that

Commit(ck,m1 ·m2, r1 · r2) = Commit(ck,m1, r1) · Commit(ck,m2, r2)

(where the group operations are carried out inMck, Rck and Cck, respec-
tively.)

18 CHAPTER 2. PRELIMINARIES

• (Verifiability) There exists a (deterministic) polynomial-time algorithm
Verify such that Verify(ck) = 1 if and only if there exists a string r ∈
{0, 1}poly(n) such that ck = Gen(1n; r).

Verifiable perfectly binding homomorphic commitment schemes can be con-
structed based on, e.g., the well-studied DDH assumption. Concretely, the
ElGamal commitment scheme [ElG84] fulfills these properties (cf. [AIR01]).
Moreover, the Linear Encryption scheme [BBS04] can also be viewed as a com-
mitment scheme with these properties. This scheme is based on the DLin
assumption, which is a generalization of the DDH assumption.

Finally, we define extractable commitment schemes as proposed by [PW09].
Roughly speaking, an extractable commitment schemes comes with an efficient
extraction algorithm which extracts the value committed by a (possibly malicious)
sender.

Definition 2.10 (Extractable Commitment Schemes). Let 〈C,R〉 be a statisti-
cally binding commitment scheme. Then, 〈C,R〉 is extractable if there exists a
PPT oracle machine E (the “extractor”) such that for any PPT sender S∗, ES∗

outputs a pair (τ, σ) such that

• τ is identically distributed to the view of S∗ at the end of interacting with
an honest receiver R in the commit phase.

• the probability that τ is accepting and σ 6= ⊥ is negligible.

• if σ 6= ⊥, then it is statistically impossible to decommit τ to any value
other than σ.

[PW09] showed how to transform any commitment scheme into a commitment
scheme that is also extractable.

2.3.3 Public-Key Encryption Schemes
A public-key encryption scheme allows to encrypt a message using someone’s
publicly available “public key”. Decryption is possible with the corresponding
“secret key” that is only known to its owner. In the following, we give a definition
of this primitive, paraphrasing from [LK14].

Definition 2.11. A public-key encryption scheme PKE is a tuple of three PPT
algorithms (GenPKE,Enc,Dec) such that:

1. The key-generation algorithm GenPKE takes as input 1n and outputs a
pair of keys (pk, sk). We call pk public key and sk secret key.

2. The encryption algorithm Enc takes as input a public key pk and a message
m ∈M for some underlying message spaceM, and outputs a ciphertext c.

3. The decryption algorithm Dec takes as input a secret key sk and a ciphertext
c and outputs a message m ∈ M or a special symbol ⊥ denoting failure.
We assume without loss of generality that Dec is deterministic and write
m = Dec(sk,m).

2.3. CRYPTOGRAPHIC PRIMITIVES 19

It is required that for every n ∈ N, every (pk, sk) output by GenPKE(1n) and
every m ∈M it holds that

Dec(sk,Enc(pk,m)) = m

PKE schemes should prevent an adversary from learning anything about a
plaintext m given a ciphertext c ← Enc(pk,m) and the public key pk (apart
from its length). This requirement is formally captured by the notion of indistin-
guishability under chosen plaintext attacks security (IND-CPA security), which
was put forward by [GM84].

Definition 2.12 (Indistinguishability under Chosen Plaintext Attacks). Let
Expind-cpa

PKE,A(z)(n) denote the output of the following probabilistic experiment: At
the beginning, the experiment generates a key pair (pk, sk)← GenPKE(1n). On
input 1n, z and pk, the adversary A chooses two messages m0,m1 and sends
the tuple (m0,m1) to the experiment. The experiment then chooses a random bit
b ← {0, 1}, computes c∗ ← Enc(pk,mb) and sends c∗ to A. At the end of the
experiment, A sends a bit b′ ∈ {0, 1}. The experiment then outputs 1 if b = b′,
and 0 otherwise.

An adversary is called valid if he only chooses messages m0,m1 such that
|m0| = |m1|.

A public-key encryption scheme PKE is IND-CPA-secure if for every valid
PPT adversary A, there exists a negligible function negl such that for all n ∈
N, z ∈ {0, 1}∗ it holds that

Pr[Expind-cpa
PKE,A(z)(n) = 1] ≤ 1

2 + negl(n)

It is sometimes convenient to use the following alternative formulation of
IND-CPA security:

Equivalent Formulation. Denote by Outputind-cpa
PKE,A(z)(n, b) the output of A

in the experiment Expind-cpa
PKE,A(z)(n) if the challenge bit is fixed to b.

A public-key encryption scheme PKE is IND-CPA-secure if and only if for
every valid PPT adversary A, there exists a negligible function negl such that
for all n ∈ N, z ∈ {0, 1}∗ it holds that

|Outputind-cpa
PKE,A(z)(n, 0)−Outputind-cpa

PKE,A(z)(n, 1)| ≤ negl(n)

IND-CPA-secure PKE schemes can be constructed assuming the existence of
trapdoor permutations (cf. [Gol04]).

We will also use PKE schemes with oblivious public key generation as
proposed by [DN00]. A PKE scheme with this property allows to sample public
keys without obtaining knowledge of the corresponding secret key. In order to
formally define this notion, we first give a definition of invertible sampling, which
was also put forward by [DN00].

Definition 2.13 (Invertible Sampling). Let M be a PPT algorithm. M is
said to have invertible sampling if there exists a PPT algorithm M−1 such that

20 CHAPTER 2. PRELIMINARIES

the probability ensembles {(x, y, r)|r ← {0, 1}poly(n), y ← M(x; r)}n∈N,x∈{0,1}∗
and {(x, y, r′)|r ← {0, 1}poly(n), y ← M(x; r), r′ ← M−1(y, x)}n∈N,x∈{0,1}∗ are
computationally indistinguishable.

We now give a definition of PKE schemes with oblivious public key generation,
paraphrasing from [DN00].

Definition 2.14 (PKE Schemes with Oblivious Public Key Generation). A
public-key encryption scheme PKE = (GenPKE,Enc,Dec) has oblivious public
key generation if there exists a PPT algorithm G̃en with invertible sampling (as
defined in Definition 2.13) such that the probability ensembles {pk|(pk, sk) ←
GenPKE(1n)}n∈N and {p̃k| p̃k← G̃en(1n)}n∈N are computationally indistinguish-
able.

IND-CPA-secure PKE schemes with oblivious public key generation can be
constructed based on various well-studied assumptions such as the DDH or RSA
assumption (see e.g. [DN00]).

2.3.4 Digital Signatures
A digital signature scheme allows a party to produce a signature of a digital
document using its own private “signing key”. Each signature can be publicly
verified with the “verification key” corresponding to the signing key with which
the signature was produced. In the following, we give a definition of digital
signature schemes, paraphrasing again from [LK14].

Definition 2.15. A digital signature scheme SIG is a tuple of PPT algorithms
(GenSIG,Sig,VrfySIG) such that:

1. The key-generation algorithm GenSIG takes as input 1n and outputs a pair
of keys(vk, sgk). We call vk the verification key and sgk the signing key.

2. The signature-generation algorithm Sig takes as input a signing key sgk
and a message m ∈ {0, 1}∗ and outputs a signature σ.

3. The verification algorithm VrfySIG takes as input a verification key vk, a
message m ∈ {0, 1}∗ and a signature σ and outputs a bit b ∈ {0, 1}, with
b = 1 meaning valid and b = 0 meaning invalid. We assume without loss
of generality that VrfySIG is deterministic and write b = VrfySIG(vk,m, σ).

It is required that for every n ∈ N, every (vk, sgk) output by GenSIG(1n) and
every m ∈ {0, 1}∗, it holds that

VrfySIG(vk,m, σ) = 1

In our constructions, we will additionally assume that the digital signature
scheme is length-normal, meaning that signatures of messages of equal length
are also of equal length.

Definition 2.16 (Length-Normal Signatures). A digital signature scheme SIG
is length-normal if for every n ∈ N, every (vk, sgk) output by GenSIG(1n)
and all m,m′ ∈ {0, 1}∗ such that |m| = |m′| the following holds: If σ ←
Sig(sgk,m), σ′ ← Sig(sgk,m′), then |σ| = |σ′|.

2.3. CRYPTOGRAPHIC PRIMITIVES 21

Digital signature schemes should prevent an adversary from forging signatures.
This requirement is formally captured by the notion of existential unforgeability
under adaptive chosen message attacks (EUF-CMA security). Informally, a
digital signature scheme is EUF-CMA-secure if no adversary can produce a
forgery even if he his allowed to obtain signatures of any other message of his
choice. A formal definition of this security notion follows.

Definition 2.17 (Existential Unforgeability under Adaptive Chosen Message
Attacks). Let Expeuf-cma

SIG,A(z)(n) denote the output of the following probabilistic
experiment: At the beginning, the experiment generates a key pair (vk, sgk)←
GenSIG(1n). On input 1n, z and vk, the adversary A may then send queries to
the signing oracle OSig(sgk,·). Let Q denote the set of all queries. At the end
of the experiment, A outputs a tuple (m,σ). The experiment then checks if
VrfySIG(vk,m, σ) = 1 and m /∈ Q and outputs 1 if this holds and 0 otherwise.

A digital signature scheme SIG is EUF-CMA-secure if for every PPT adver-
sary A, there exists a negligible function negl such that for all n ∈ N, z ∈ {0, 1}∗
it holds that

Pr[Expeuf-cma
SIG,A(z)(n) = 1] ≤ negl(n)

In this work, we will require a weaker notion of unforgeability, namely
existential unforgeability under non-adaptive chosen message attacks (EUF-
naCMA security). Contrary to EUF-CMA security, this notion only considers
adversaries who are allowed to obtain signatures of other messages non-adaptively.
Below, we give a formal definition of this security notion.

Definition 2.18 (Existential Unforgeability under Non-Adaptive Chosen Mes-
sage Attacks). Let Expeuf-nacma

SIG,A(z)(n) denote the output of the following proba-
bilistic experiment: At the beginning, the experiment generates a key pair
(vk, sgk) ← GenSIG(1n). On input 1n, z, the adversary A may then send a
single parallel query to the signing oracle OSig(sgk,·). Let Q denote the set of all
queries. Afterwards, A is given the verification key vk. Finally, A outputs a
tuple (m,σ). The experiment then checks if VrfySIG(vk,m, σ) = 1 and m /∈ Q
and outputs 1 if this holds and 0 otherwise.

A digital signature scheme SIG is EUF-naCMA-secure if for every PPT
adversary A, there exists a negligible function negl such that for all n ∈ N, z ∈
{0, 1}∗ it holds that

Pr[Expeuf-nacma
SIG,A(z)(n) = 1] ≤ negl(n)

Lenght-normal EUF-(na)CMA-secure digital signatures schemes can be con-
structed assuming the existence of one-way functions (cf. [Rom90] or alternatively
[Gol04]).

2.3.5 Message Authentication Codes
Message authentication codes (MACs) are the symmetric analogue to digital
signature schemes, i.e. parties have to share a key in order to use this primitive.
A definition follows (paraphrasing again from [LK14]).

Definition 2.19. A message authentication code MAC is a tuple of PPT
algorithms (GenMAC,Mac,VrfyMAC), such that:

22 CHAPTER 2. PRELIMINARIES

1. The key-generation algorithm GenMAC takes as input 1n and outputs a
key k. We call k the MAC key.

2. The tag-generation algorithm Mac takes as input a MAC key k and a
message m ∈ {0, 1}∗ and outputs a MAC tag t.

3. The verification algorithm VrfyMAC takes as input a MAC key k, a message
m ∈ {0, 1}∗and a MAC tag t and outputs a bit b ∈ {0, 1}, with b = 1
meaning valid and b = 0 meaning invalid. We assume without loss of
generality that VrfyMAC is deterministic and write b = VrfyMAC(k,m, t).

It is required that for every n ∈ N, every k output by GenMAC(1n) and every
m ∈ {0, 1}∗ it holds that

VrfyMAC(k,m, t) = 1]

As with digital signature schemes, MACs are required to be unforgeable. We
will consider two security notions for MACs in this work: the relatively weak
notion of existential unforgeability under one chosen message attacks (EUF-1-
CMA security) and the notion of existential unforgeability under adaptive chosen
message attacks (EUF-CMA security). The definitions are given below.

Definition 2.20 (Existential Unforgeability under One Chosen Message At-
tacks). Let Expeuf-1-cma

MAC,A(z)(n) denote the output of the following probabilistic exper-
iment: At the beginning, the experiment generates a MAC key k ← GenMAC(1n).
On input 1n, z, the adversary A may send a single query m′ to an oracle
OMac(k,·). Afterwards, A outputs a tuple (m, t). The experiment then checks if
VrfyMAC(k,m, t) = 1 and m 6= m′ and outputs 1 if this holds and 0 otherwise.

A message authentication code MAC is EUF-1CMA-secure if for every PPT
adversary A, there exists a negligible function negl such that for all n ∈ N, z ∈
{0, 1}∗ it holds that

Pr[Expeuf-1-cma
MAC,A(z)(n) = 1] ≤ negl(n)

Definition 2.21 (Existential Unforgeability under Adaptive Chosen Message At-
tacks). Let Expeuf-cma

MAC,A(z)(n) denote the output of the following probabilistic exper-
iment: At the beginning, the experiment generates a MAC key k ← GenMAC(1n).
On input 1n, z, the adversary A may send queries to an oracle OMac(k,·). Let
Q denote the set of all queries. FAt the end of the experiment, A outputs a
tuple (m, t). The experiment then checks if VrfyMAC(k,m, t) = 1 and m /∈ Q
and outputs 1 if this holds and 0 otherwise.

A message authentication code MAC is EUF-CMA-secure if for every PPT
adversary A, there exists a negligible function negl such that for all n ∈ N, z ∈
{0, 1}∗ it holds that

Pr[Expeuf-cma
MAC,A(z)(n) = 1] ≤ negl(n)

The works of [GGM84; GGM86] imply that EUF-CMA secure MACs (and
hence also EUF-1-CMA-secure MACs) can be constructed given any one-way
function (see also [Gol04]). Moreover, [WC81] showed how to construct MACs
which satisfy EUF-CMA security even in the presence of unbounded adversaries.

2.4. THE UNIVERSAL COMPOSABILITY FRAMEWORK 23

2.4 The Universal Composability Framework
In this section, we give a brief and simplified introduction into the Universal
Composability (UC) framework. For a detailed description of the UC framework,
see [Can01].

2.4.1 Definition of the Framework

The Basic Model of Computation. In the UC framework, the model of
computation is based on interactive Turing machines (ITMs). An ITM is a
Turing machine with the following tapes:

• identity tape

• work tape

• random tape

• outgoing message tape

• Externally writable tapes (for holding inputs coming from other machines).

– input tape

– incoming message tape

– subroutine output tape

• one-bit activation tape

Instances of an ITM, referred to as ITIs, are identified by the contents of
their identity tape. We assume that the identity of an ITI is a tuple (PID, SID)
where PID is called the party identifier and SID the session identifier.

Intuitively, an ITM is an algorithm written for a distributed system (i.e. a
“protocol”, cf. paragraph “Cryptographic Protocols”), while an ITI is a specific
entity in a distributed system running the code of that algorithm. Different
entities within a distributed system are differentiated with their PIDs.

External Write Instructions. ITIs are able to communicate with each other
via external write instructions that are written on the sending ITI’s outgoing
message tape. One distinguishes three different ways in which an ITI can provide
information to another ITI: provide input, send a message or give subroutine
output. This is modelled by external write instructions containing either
the targeted ITI’s input tape, incoming message tape or subroutine output
tape as one of its arguments. In the UC framework, not all external write
instructions written by an ITI are permitted. Instead, a control function decides
if an external write instruction is allowed or silently dropped (cf. paragraph
“UC Execution Experiment” for a description of the allowed external write
instructions).

24 CHAPTER 2. PRELIMINARIES

Cryptographic Protocols. A protocol π is a single ITM as defined above. A
set of (polynomially many) ITIs are called an instance of a protocol π if all ITIs
in this set run the code of π and have the same SID. The ITIs in an instance of
π which have a PID 6= ⊥ are called the (protocol) parties of that instance of π.

Some of the ITIs in an instance of a protocol may be designated as subroutines
of parties of that instance. As will be explained later, if an ITI P ′ is a subroutine
of a party P then it can provide input to P and obtain subroutine output from
P . A party P ′ that is a subroutine of a party P is called a sub-party of P and
P is called a calling party of P ′. A party of an instance of a protocol π that is
not a subroutine of another party of that instance is called a main party of that
instance of π.

In this work, we only consider cryptographic protocols that are polynomially
bounded, i.e., which can be simulated by a single (non-interactive) Turing machine
in probabilistic polynomial time.

Adversary and Environment. In the UC framework, an instance of a pro-
tocol π interacts with two additional ITIs called adversary and environment.2
The adversary A has full control over the communication between protocol
parties (i.e. messages to be written on the parties’ incoming message tapes).
More specifically, parties do not send each other messages directly but send the
message (together with the address of the intended recipient) to A who is not
obliged to forward this message to the intended recipient. If A does forward
the message (unaltered) to the intended recipient, then one says that A delivers
this message. The environment Z provides inputs to the main parties of the
protocol and may receive outputs from the main parties. In addition, Z and A
may interact freely with one another. It is stressed that Z has only access to
the inputs and outputs of the main parties but neither has direct access to the
communication between parties nor to the inputs and outputs of the subroutines.
Furthermore, A has access only to the communication between parties but does
not have access to their inputs and outputs.

Intuitively, the environment Z models protocols that provide input to and
receive output from the instance of π. The adversary A models a malicious
entity that attacks the protocol via the communication links, without having
access to the protocol parties’ (secret) local inputs and outputs.

For a more formal and detailed definition of the adversary and environment
in the UC framework, see paragraph “UC Execution Experiment”.

Ideal Functionalities and Ideal Protocols. An ideal functionality F is an
ITI whose PID is set to be ⊥. Typically, an ideal functionality F is a subroutine
of multiple parties in an instance of a so-called ideal protocol. The ideal protocol
with functionality F consists of N parties, called dummy parties, and the ideal
functionality F which is a subroutine of all N parties. The interaction of an
instance of the ideal protocol with functionality F with an adversary A and an
environment Z is defined as follows:

• Each party forwards its input to F .

2For the sake of concreteness, the adversary and environment are given the identities (1,⊥)
and (0,⊥).

2.4. THE UNIVERSAL COMPOSABILITY FRAMEWORK 25

• F gives subroutine output to (a subset of) the parties. F is said to give
public delayed output if F first sends the output to the adversary A along
with the identity of the designated receiver. When A replies with the
notification deliver, F sends the output to the designated party. F is
said to give private delayed output if it behaves the same as for public
delayed outputs, except that the adversary does not receive the output
but only the identity of the designated receiver.

• Each party forwards the subroutine outputs coming from F as subroutine
outputs to the environment Z.

• The adversary A may interact with F (as specified by F). (This commu-
nication models potential leakage of information on the protocol parties’
inputs and outputs as well as a possibility of A to exert some influence,
e.g. block an output or corrupt a dummy party, cf. “Party Corruption”).

• All messages coming from the adversary are ignored by the parties.

Ideal protocols are used to formally define a cryptographic task. As an
example, consider the task of computing the OR of N inputs (this is also known
as “dining cryptographer’s problem”, cf. [Cha88]): the ideal functionality FOR
takes all inputs, computes their OR, and then (successively) outputs the result
to the parties. By design, correctness and input privacy hold trivially in the
ideal protocol with functionality FOR. Furthermore, since the parties provide
their inputs to FOR without knowing the other parties’ inputs, independence of
inputs is also assured.

Non-Reactive and Reactive Functionalities. An ideal functionality is
either non-reactive or reactive. A non-reactive functionality interacts with the
parties in a single round, taking at most one input from each party and providing
at most one output to each party. In contrast, a reactive functionality may
receive inputs and provide outputs in multiple rounds, possibly maintaining
state information between rounds.

Party Corruption. Unless specified otherwise (see below), party corruption
is modeled by corrupt messages sent by the adversary A to the protocol parties.
Upon receiving a corrupt message, a party outputs “corrupted” and sends
its entire local state to A. Also, all future inputs and subroutine outputs are
forwarded to A. Furthermore, A may instruct the corrupted party to send any
message of his choice by writing the respective instruction on the corrupted
parties’ incoming message tape.

Party corruption is handled differently in ideal protocols. In these protocols,
the dummy parties ignore all incoming messages from A, in particular, corrupt
messages. Party corruption is therefore handled solely by the ideal functionality
F . More specifically, A may corrupt a (dummy) party P by sending the message
(corrupt, P) to the ideal functionality F . In this work, unless explicitly specified
otherwise, we consider ideal functionalities that are standard corruption, which
means that F proceeds as follows upon receiving a (corrupt, P) message: F
marks this party as corrupted and outputs “corrupted” to P . In the next
activation, F sends to A all the inputs and outputs of P so far. In addition,
from this point on, whenever F gets an input value v from P , it forwards v to

26 CHAPTER 2. PRELIMINARIES

A, who may then send a “modified input value” v′ that overwrites v. Also, all
output values intended for P are sent to A instead.

Static and Adaptive Corruption. In the UC framework, one distinguishes
between static and adaptive corruptions. In the static corruption model, the
adversary may only corrupt parties prior to the start of the protocol execution.
In contrast, in the adaptive corruption model, the adversary may corrupt parties
throughout the entire protocol execution.

UC Execution Experiment. An execution of a protocol σ with adversary A
and an environment Z on input a ∈ {0, 1}∗ and with security parameter n ∈ N
is a run of a system of ITIs subject to the following restrictions:

• First, Z is activated on input a ∈ {0, 1}∗.

• The first ITI to be invoked by Z is the adversary A.

• Z may invoke a single instance of a challenge protocol, which is set to be
σ by the experiment. The SID of σ is determined by Z upon invocation.

• Z may provide inputs to A and to the main parties of σ.

• The adversary A may send messages to the parties of σ as well as give
subroutine outputs to Z.

• Each party of σ may send messages to A, provide inputs to its subroutines
and give subroutine outputs to the parties of which it is a subroutine. Main
parties may give subroutine outputs to Z.

• The ITIs take turns during the execution experiment, i.e., whenever an
ITI writes an allowed external write instruction, then the targeted ITI
is activated and the sending ITI is suspended. If an ITI suspends its
computation without writing an external write instruction or if it writes a
disallowed external write instruction, then the environment Z is activated.
(Note that this has the effect that at any point in time throughout the
execution experiment only a single ITI is active.)

• At the end of the execution experiment, Z outputs a single bit.

Let ExecUC
(
σ,A,Z

)
(n, a) be the random variable defined as the output of the

environment Z on input a ∈ {0, 1}∗ and with security parameter n ∈ N after
interacting with protocol σ and adversary A in the UC execution experiment.

Define ExecUC
(
σ,A,Z

)
=
{

ExecUC
(
σ,A,Z

)
(n, a)

}
n∈N,a∈{0,1}∗

In the UC framework, the security of a protocol is defined via the real-ideal
paradigm. This means that a protocol π is deemed a secure realization of a given
task if it is “as secure as” the ideal protocol with the functionality for that task.
This is formalized by the notion of UC emulation which can be applied to any
two protocols (not just real vs. ideal). Informally, a protocol π UC-emulates a
protocol φ if for any adversary A interacting with π, there exists an adversary
S, called the simulator, interacting with φ such that no environment Z can
distinguish between an interaction with π and A or φ and S. A formal definition
of this notion follows.

2.4. THE UNIVERSAL COMPOSABILITY FRAMEWORK 27

Definition 2.22 (UC Emulation). Let π and φ be protocols. π is said to UC-
emulate φ, denoted by π ≥UC φ, if for every PPT adversary A, there exists a
PPT adversary S such that for every PPT environment Z it holds that

ExecUC
(
π,A,Z

) c≡ ExecUC
(
φ,S,Z

)
Abusing notation, we will also write π ≥UC F if π UC-emulates the ideal

protocol with functionality F . In this case, we also say that π UC-realizes F .

2.4.2 Standard Well-formed Ideal Functionalities
As argued in [Can+02], not all ideal functionalities can be UC-realized. [Can+02]
therefore defined the class of “well-formed” functionalities and showed how to
UC-realize every functionality in this restricted class. In the following, we recall
their definition:

Well-Formed Functionalities. An ideal functionality is called well-formed if
it consists of a “shell” and a “core”. The core is an arbitrary PPT TM. The shell
is a TM that acts as a “wrapper” in the following way: All incoming message
are forwared to the core except for corrupt messages. Furthermore, outputs
generated by the core are forwarded by the shell. Moreover, an ideal functionality
is adaptively well-formed if it consist of a shell and a core as described above
and, in addition, the shell sends the random tape of the core to the adversary if
all parties are corrupted at some activation.

Since [Can+02] worked in a different version of the UC framework, where
the simulator is responsible for message delivery between the parties and the
functionality and where party corruption is handled by the experiment instead
of the functionality, we make the following additional restrictions:

Standard Functionalities. We call an ideal functionality F standard if F
i) immediately notifies the adversary with the message (received, Pi) upon
receiving input from a party, and ii) is standard corruption3, and iii) only gives
(public or private) delayed outputs to the parties (except for “corrupted” outputs
upon receiving corrupt messages from the adversary).

2.4.3 Some Important Functionalities
In the following, we list some important ideal functionalities that will be used in
this work.

Definition 2.23 (Authenticated Message Transmission). Fauth proceeds as
follows, running with parties S and R and an adversary A:

1. Upon receiving an input (Send, sid, S,R,m) from S, generate a public
delayed output (Sent, sid, S,R,m) to R.

3Cf. Section 2.4.1 (paragraph “Party Corruption”) for a definition of standard corruption.

28 CHAPTER 2. PRELIMINARIES

2. Upon receiving (Corrupt, sid, S,m′) from the adversary A, and if
(Sent, sid, S,R,m) has not yet been delivered to R, then output
(Sent, sid, S,R,m′) to R.

Definition 2.24 (Common Reference String). FDcrs proceeds as follows, running
with parties P1, . . . , PN and an adversary A, and parametrized by a distribution
D:

• When activated for the first time on input (value, sid), compute crs ←
D(1n), and send a public delayed output (crs, sid) to the activating party.
In each other activation, send a public delayed output (crs, sid) to the
activating party.

Definition 2.25 (Bit Commitments). Fcom proceeds as follows, running with
parties C and R and an adversary A:

1. Upon receiving an input (Commit, sid, C,R, b) from C, where b ∈ {0, 1},
record the value b and generate a public delayed output (Receipt, sid, C,R)
to R. Ignore any subsequent Commit messages.

2. Upon receiving an input (Unveil, sid, C,R) from C, proceed as follows: If
some value b was previously recoded, then generated a public delayed output
(Unveil, sid, C,R) to R. Otherwise, do nothing.

String Commitments: The ideal string commitment functionality Fstcom is iden-
tical to Fcom, except that the sender C can commit to a bitstring s ∈ {0, 1}n.

Definition 2.26 (Oblivious Transfer). FOT proceeds as follows, running with
parties S and R and an adversary A:

1. Upon receiving input (Sender, sid, S,R, b0, b1) from S, where bi ∈ {0, 1},
store (b0, b1).

2. Upon receiving input (Receiver, sid, S,R, i) from R, where i ∈ {0, 1},
wait until a tuple (b0, b1) is stored and then send a private delayed output
(Output, sid, S,R, bi) to R.

Definition 2.27 (Public Bulletin Board). Freg proceeds as follows, running with
parties P1, . . . , PN and an adversary A:

1. Upon receiving a message (register, sid, v) from party P ,
send (registered, sid, P, v) to the adversary A; upon receiving ok from A,
record the pair (P, v). Otherwise, ignore the message.

2. Upon receiving a message (retrieve, sid, Pi) from some party Pj (or the
adversary A), generate a public delayed output (retrieve, sid, Pi, v) to Pj ,
where v = ⊥ if no record (P, v) exists.

Note that, in contrast to the usual definition in the literature (e.g. [CSV16]),
Freg allows key revocation in this work.

2.4. THE UNIVERSAL COMPOSABILITY FRAMEWORK 29

2.4.4 Basic Properties of the Framework
In the following, we recall some important properties of the UC framework (cf.
[Can01] for the proofs).

First, recall the definition of the dummy adversary:

Definition 2.28 (UC Emulation with Respect to the Dummy Adversary). The
dummy adversary D is an adversary that when receiving a message (sid, pid,m)
from the environment, sends m to the party with party identifier pid and session
identifier sid, and that, when receiving m from the party with party identifier
pid and session identifier sid, sends (sid, pid,m) to the environment.

Let π and φ be protocols. π is said to UC-emulate φ with respect to the
dummy adversary, if there exists a PPT adversary SD such that for every PPT
environment Z it holds that

ExecUC
(
π,D,Z

) c≡ ExecUC
(
φ,SD,Z

)
A convenient property of the UC framework is that one need only consider

the dummy adversary in security proofs because UC emulation is equivalent to
UC emulation with respect to the dummy adversary.

Proposition 2.29 (Completeness of the Dummy Adversary). Let π and φ be
protocols. Then, π UC-emulates φ if and only if π UC-emulates φ with respect
to the dummy adversary.

Another very useful property of the UC framework is that UC emulation
is transitive. This property is important for modular analysis of protocols (cf.
Section 2.4.5).

Proposition 2.30 (Transitivity). Let π1, π2, π3 be protocols. If π1 ≥UC π2 and
π2 ≥UC π3, then it holds that π1 ≥UC π3.

2.4.5 Universal Composition
The central property of the UC framework is that its security notion is closed
under protocol composition. More specifically, let ρφ be a protocol that makes
subroutine calls to a polynomial number of instances of a protocol φ. The
universal composition theorem guarantees that if a protocol π UC-emulates φ
then one can replace all subroutine calls to instances of φ by subroutine calls to
instances of π without losing security.

Theorem 2.31 (Universal Composition Theorem). Let π, φ, ρ be protocols. Then
it holds that4

π ≥
UC
φ =⇒ ρπ ≥

UC
ρφ

The universal composition theorem has several important implications. First,
it guarantees that the security properties of a UC-secure protocol remain valid
even when multiple instances of that protocol are executed in an unknown
environment. This property is called concurrent security.

4Actually, the universal composition theorem only holds if both π and φ are subroutine
respecting protocols (cf. [Can01] for a definition). For simplicity, we ignore this subtlety in
this work.

30 CHAPTER 2. PRELIMINARIES

Another important consequence of the universal composition theorem is that
it allows for modular analysis of protocols, i.e. the security of a composite
protocol can be deduced from its components. This feature is essential for
proving the security of complex protocols. To this end, the notion of hybrid
protocols was introduced:

Hybrid Protocols. A protocol is said to be in the F-hybrid model if it makes
subroutine calls to the ideal protocol with functionality F .

As an example, say one has a protocol ρπ making subroutine calls to a
commitment protocol π and wants to prove that ρπ UC-emulates some ideal
functionality G. Instead of proving this statement “en bloc”, one can separately
prove that the (simpler) protocol ρFcom , which is in the Fcom-hybrid model, UC-
emulates G and that π UC-emulates Fcom. The universal composition theorem
and transitivity of UC emulation (cf. Proposition 2.30) then imply the desired
statement that ρπ UC-emulates G.

Hybrid protocols are also used to model trusted setup assumptions. For
instance, a protocol that requires a public bulletin board or a common reference
string as a trusted setup is defined in the Freg-hybrid model (cf. Definition 2.27)
or FDcrs-hybrid model (cf. Definition 2.24), respectively. A protocol is said to
be in the plain model if it requires no trusted setup other than authenticated
channels, i.e. if it is only in the Fauth-hybrid model.

Chapter 3

Non-malleability and CCA
Security

This chapter is broken into two parts, both of which serve as a complement to
the subsequent chapters. The first part deals with security notions related to
non-malleability and CCA security for PKE schemes and contains no original
work of the author. Several known relations between these notions are cited from
the literature. PKE schemes satisfying such a notion will be used as a building
block in the general MPC protocols presented in Chapter 5. The second part
considers the corresponding security notions for commitment schemes, which
will be important in the constructions presented in Chapter 4. As an additional
contribution of this thesis, separations are proven between a variety of these
security notions in this part.

The second part of this chapter is taken almost entirely from [Bro+18a],
which was published at PKC 2018.

3.1 Notions for Public-Key Encryption Schemes
In this section, we briefly recall definitions and relations among several security
notions related to non-malleablility and CCA security proposed for PKE schemes.

3.1.1 Variants of CCA Security
The notion of indistinguishability under chosen ciphertext attacks (IND-CCA
security) was introduced in the work of [RS91]. Roughly speaking, a PKE scheme
is IND-CCA-secure if an adversary is unable to break the security of the scheme
even if he has access to an oracle that decrypts all ciphertexts except for the
challenge ciphertext. IND-CCA secure PKE schemes have many applications.
For instance, IND-CCA-secure PKE schemes were used as a building block for
UC-realizing the ideal commitment functionality Fcom (cf. Definition 2.25) in
the reusable CRS-hybrid model [CF01]. Furthermore, IND-CCA secure PKE
schemes are sufficient for realizing the public-key encryption functionality FPKE
in the UC framework (in the case of static adversaries). In fact, UC-realizing
FPKE is equivalent to IND-CCA security [Can01; CKN03]. In the following, we
give a formal definition of this security notion.

31

32 CHAPTER 3. NON-MALLEABILITY AND CCA SECURITY

Definition 3.1 (Indistinguishability under Adaptive Chosen Ciphertext At-
tacks). Let Expind-cca

PKE,A(z)(n) denote the output of the following probabilistic ex-
periment: At the beginning, the experiment generates a key pair (pk, sk) ←
GenPKE(1n). On input 1n, z and pk, the adversary A chooses two messages
m0,m1 and sends the tuple (m0,m1) to the experiment. The experiment then
chooses a random bit b ← {0, 1}, computes c∗ ← Enc(pk,mb) and sends c∗ to
A. At the end of the experiment, A sends a bit b′ ∈ {0, 1}. The experiment then
outputs 1 if b = b′, and 0 otherwise. Througout the experiment A may send
queries to the oracle ODec(sk,·).

An adversary is called valid if he only chooses messages m0,m1 such that
|m0| = |m1| and does not query ODec(sk,·) on c∗ during the experiment.

A public-key encryption scheme PKE is IND-CCA-secure if for every valid
PPT adversary A, there exists a negligible function negl such that for all n ∈
N, z ∈ {0, 1}∗ it holds that

Pr[Expind-cca
PKE,A(z)(n) = 1] ≤ 1

2 + negl(n)

Equivalent Formulation. Denote by Outputind-cca
PKE,A(z)(n, b) the output of A

in the experiment Expind-cca
PKE,A(z)(n), if the challenge bit is fixed to b.

A PKE scheme is IND-CCA-secure if and only if for every valid PPT adversary
A there exists a negligible function negl such that for all n ∈ N, z ∈ {0, 1}∗ it
holds that ∣∣Outputind-cca

PKE,A(z)(n, 0)−Outputind-cca
PKE,A(z)(n, 1)

∣∣ ≤ negl(n)

A variant of CCA security, put forward by [Bel+98], considers only adversaries
that send a single parallel query to the decryption oracle. This notion is called
indistinguishability under parallel chosen ciphertext attacks (IND-pCCA security).
A formal definition follows.

Definition 3.2 (Indistinguishability under Parallel Chosen Ciphertext Attacks).
Let Expind-pcca

PKE,A(z)(n) denote the output of the following probabilistic experiment:
At the beginning, the experiment generates a key pair (pk, sk) ← GenPKE(1n).
On input 1n, z and pk, the adversary A chooses two messages m0,m1 and sends
the tuple (m0,m1) to the experiment. The experiment then chooses a random bit
b ← {0, 1}, computes c∗ ← Enc(pk,mb) and sends c∗ to A. At the end of the
experiment, A sends a bit b′ ∈ {0, 1}. The experiment then outputs 1 if b = b′,
and 0 otherwise. During the experiment A may send a single parallel query to
the oracle ODec(sk,·).

An adversary is called valid if he only chooses messages m0,m1 such that
|m0| = |m1| and his parallel query to ODec(sk,·) does not contain c∗.

A public-key encryption scheme PKE is IND-pCCA-secure if for every valid
PPT adversary A, there exists a negligible function negl such that for all n ∈
N, z ∈ {0, 1}∗ it holds that

Pr[Expind-pcca
PKE,A(z)(n) = 1] ≤ 1

2 + negl(n)

3.1. NOTIONS FOR PUBLIC-KEY ENCRYPTION SCHEMES 33

Equivalent Formulation. Denote by Outputind-pcca
PKE,A(z)(n, b) the output of A

in the experiment Expind-pcca
PKE,A(z)(n), if the challenge bit is fixed to b.

A PKE scheme is IND-pCCA-secure if and only if for every valid PPT
adversary A there exists a negligible function negl such that for all n ∈ N, z ∈
{0, 1}∗ it holds that∣∣Outputind-pcca

PKE,A(z)(n, 0)−Outputind-pcca
PKE,A(z)(n, 1)

∣∣ ≤ negl(n)

3.1.2 Variants of Non-malleability
Informally, a PKE scheme is non-malleable if, given a ciphertext c under a public
key pk encrypting a message m, an adversary is unable to produce another
ciphertext c̃ 6= c (also under pk) such that c̃ decrypts to a message m̃ that is
related to m. There are several variants of non-malleability for PKE schemes. In
its basic form, called non-malleability under chosen plaintext attacks (NM-CPA
security), the adversary is given no oracle to aid him [DDN91; Bel+98]. In
contrast, the notion of non-malleability under chosen ciphertext attacks (NM-
CCA security) grants the adversary access to a decryption oracle that may be
queried on any ciphertext except for the challenge ciphertext [DDN00b]. In
the following, we give formal definitions of these notions, paraphrasing from
[Bel+98].

Definition 3.3 (Non-malleability under Chosen Plaintext Attacks). Denote
by Expnm-cpa

PKE,A(z)(n) denote the output of the following probabilistic experiment:
At the beginning, the experiment generates a key pair (pk, sk) ← GenPKE(1n).
On input 1n, z and pk, the adversary A outputs a description of a message
space, described by a sampling algorithm M. The experiment then samples a
message x←M and computes y ← Enc(pk, x) and sends y to A. The adversary
then outputs a description of a relation R and a vector y. The experiment then
computes x = Dec(sk,y) and outputs 1 if R(x,x) = 1 and 0 otherwise.

Let Ẽxp
nm-cpa
PKE,A(z)(n) denote the output of the following probabilistic experiment:

At the beginning, the experiment generates a key pair (pk, sk) ← GenPKE(1n).
On input 1n, z and pk, the adversary A outputs a description of a message space,
described by a sampling algorithmM. The experiment then samples a message
x, x̃ ← M and computes ỹ ← Enc(pk, x̃) and sends ỹ to A. The adversary
then outputs a description of a relation R and a vector ỹ. The experiment then
computes x̃ = Dec(sk, ỹ) and outputs 1 if R(x, x̃) = 1 and 0 otherwise.

An adversary is called valid if he only outputs a distribution M such that
all strings having non-zero probability under M are of the same length, and no
component of ỹ equals ỹ.

A public-key encryption scheme PKE is NM-CPA-secure if for every valid
PPT adversary A there exists a negligible function negl such that for all n ∈
N, z ∈ {0, 1}∗ it holds that∣∣Pr[Expnm-cpa

PKE,A(z)(n) = 1]− Pr[Ẽxp
nm-cpa
PKE,A(z)(n) = 1]

∣∣ ≤ negl(n)

Definition 3.4 (Non-malleability under Chosen Ciphertext Attacks). Denote
by Expnm-cca

PKE,A(z)(n) denote the output of the following probabilistic experiment:
At the beginning, the experiment generates a key pair (pk, sk) ← GenPKE(1n).

34 CHAPTER 3. NON-MALLEABILITY AND CCA SECURITY

NM-CCA Security

NM-CPA Security

IND-CPA Securiy

IND-CCA Security

IND-pCCA Security

Figure 3.1: Relations among variants of non-malleability and CCA security (and
IND-CPA security) proposed for PKE schemes.

On input 1n, z and pk, the adversary A outputs a description of a message
space, described by a sampling algorithm M. The experiment then samples a
message x←M and computes y ← Enc(pk, x) and sends y to A. The adversary
then outputs a description of a relation R and a vector y. The experiment
then computes x = Dec(sk,y) and outputs 1 if R(x,x) = 1 and 0 otherwise.
Througout the experiment A may send queries to the oracle ODec(sk,·).

Let Ẽxp
nm-cca
PKE,A(z)(n) denote the output of the following probabilistic experiment:

At the beginning, the experiment generates a key pair (pk, sk) ← GenPKE(1n).
On input 1n, z and pk, the adversary A outputs a description of a message space,
described by a sampling algorithmM. The experiment then samples a message
x, x̃ ← M and computes ỹ ← Enc(pk, x̃) and sends ỹ to A. The adversary
then outputs a description of a relation R and a vector ỹ. The experiment
then computes x̃ = Dec(sk, ỹ) and outputs 1 if R(x, x̃) = 1 and 0 otherwise.
Througout the experiment A may send queries to the oracle ODec(sk,·).

An adversary is called valid if he only outputs a distribution M such that all
strings having non-zero probability underM are of the same length, no component
of ỹ equals ỹ, and he does not query ODec(sk,·) on c∗ during the experiment.

A public-key encryption scheme PKE is NM-CCA-secure if for every valid
PPT adversary A there exists a negligible function negl such that for all n ∈
N, z ∈ {0, 1}∗ it holds that∣∣Pr[Expnm-cca

PKE,A(z)(n) = 1]− Pr[Ẽxp
nm-cca
PKE,A(z)(n) = 1]

∣∣ ≤ negl(n)

3.1.3 Relations
In this section, we very briefly recall the known relations between the security
notions defined in the previous section (see Fig. 3.1 for an overview).

In [Bel+98] it is shown that IND-CCA security is equivalent to NM-CCA
security. Furthermore, it also follows readily from some of the techniques in
this work that NM-CPA security does not imply NM-CCA security and that
IND-CPA security does not imply NM-CPA security.

3.2. NOTIONS FOR COMMITMENT SCHEMES 35

Theorem 3.5 (IND-CCA ⇔ NM-CCA). Every IND-CCA-secure PKE scheme
is also NM-CCA-secure. Every NM-CCA-secure PKE scheme is also IND-CCA-
secure.

Theorem 3.6 (NM-CPA ; NM-CCA). If there exists an NM-CPA-secure
PKE scheme, then there also exists an NM-CPA-secure PKE scheme that is not
NM-CCA-secure.

Theorem 3.7 (IND-CPA ; NM-CPA). If there exists an IND-CPA-secure
PKE scheme, then there also exists an IND-CPA-secure PKE scheme that is not
NM-CPA-secure.

Theorem 3.5 shows the strength of IND-CCA security, establishing an equiv-
alence between this notion and a strong form of non-malleability. Theorem 3.6
(together with Theorem 3.5) shows that mere non-malleability is indeed a weaker
requirement than IND-CCA security. Note that while Theorem 3.7 implies that
NM-CPA security is a strictly stronger notion than IND-CPA security, it can
be shown that NM-CPA secure PKE schemes can be constructed given any
IND-CPA secure PKE scheme without further assumptions [PSV06]. This can
even be done in a black-box way [Cho+18].

In [BS99] it is shown that the notions of IND-pCCA security and NM-CPA
security are equivalent.

Theorem 3.8 (IND-pCCA⇔ NM-CPA). Every IND-pCCA-secure PKE scheme
is also NM-CPA-secure. Every NM-CPA-secure PKE scheme is also IND-pCCA-
secure.

Theorem 3.8 is very useful as it allows to work with Definition 3.2 instead of
the more involved Definition 3.3 in security proofs. This theorem will later be
used in Chapter 5.

3.2 Notions for Commitment Schemes
Informally, the (basic) setting of non-malleability for (tag-based) commitment
schemes is the following: A malicious party A, called man-in-the-middle, takes
part in two sessions of a commitment protocol, playing the role of the sender
in one session and that of the receiver in the other. A’s goal is to produce a
commitment to a value ṽ under a tag t̃ag such that t̃ag is different from the tag
used in the session in which A is the receiver and ṽ is related to the value v to
which A receives a commitment.

Several variants of non-malleability have been defined for commitment
schemes in the literature, depending on the number and scheduling of the
protocol sessions in which the man-in-the-middle A may participate. The most
basic form is stand-alone non-malleability where A only participates in two ses-
sions. The notion of parallel non-malleability considers adversaries that receive
multiple commitments in parallel and commit to multiple values in parallel. In
the setting of concurrent non-malleability, the adversary may receive and send
multiple commitments in an arbitrary schedule determined by him.

Numerous works on non-malleable commitment schemes can be found in
the literature (e.g. [CVZ10; Wee10; LP11; Goy+12; Cia+16; Goy11; Goy+14;

36 CHAPTER 3. NON-MALLEABILITY AND CCA SECURITY

GPR16; Cia+17] to name a few). Non-malleable commitments have been used
as a central building block for concurrently composable general MPC protocols
both in the plain model (e.g. [LPV09; Gar+12; GKP17]) and based on additional
setup assumptions (e.g. [LPV09]).

CCA security (“security against adaptive chosen commitment attacks”) is
a security notion that is closely related to non-malleability. CCA security
generalizes the hiding property by granting the adversary access to an oracle that
extracts committed values. A commitment scheme is said to be CCA-secure if it
remains hiding even in the presence of an adversary who may send polynomially
many queries in an arbitrary schedule to such an oracle. As with non-malleability,
multiple variants of CCA security have been defined in the literature, depending
on the number and scheduling of the queries the adversary may send to the
oracle. One-One CCA security considers adversaries that may only send a single
query consisting of exactly one commitment to the oracle. The notion of parallel
CCA security considers adversaries that may query the oracle on a single query
consisting of polynomially many commitments sent to the oracle in parallel.

CCA-secure commitment schemes were introduced by [CLP10] as a central
building block for general MPC protocols in the plain model in the UC with
super-polynomial helpers framework1. Since then, all general MPC protocols
that have been constructed in the UC with super-polynomial helpers framework
and Shielded Oracles framework2 were based on commitment schemes satisfying
a variant of CCA security (see [CLP10; CLP13; Kiy14; KMO14; LP12; Goy+15;
HV16; Bro+17]). For instance, parallel CCA-secure commitment schemes and
one-one CCA-secure commitment schemes were used as building blocks for several
round-efficient general MPC protocols in the plain model in the UC with super-
polynomial helpers framework [Kiy14; KMO14]. Furthermore, parallel CCA
secure commitment schemes were also used as a building block for constant-round
general MPC protocols in the plain model in the Shielded Oracles framework
[Bro+17].3

3.2.1 Contribution
We settle the relations among a variety of security notions related to non-
malleability and CCA security that have been proposed for commitment schemes
in the literature (see Fig. 3.2). Our results show, in particular, that some of
the known relations between notions defined for PKE schemes do not carry
over to the case of commitment schemes. In particular, we show that parallel
non-malleability and parallel CCA security are not equivalent, in contrast to the
corresponding notions for PKE schemes (cf. Theorem 3.8).4 In a little more
detail, the results and techniques of this subchapter are the following:

Separation Results
We prove separations between multiple variants of non-malleability and
CCA security proposed for commitment schemes (Theorems 3.17 to 3.28).

1Prior to [CLP10], the work of [PPV08] introduced the notion of adaptively-secure commit-
ments which is a variant of CCA security for non-interactive perfectly binding commitments.

2Cf. Chapter 4 for a definition of these frameworks.
3The results of [Bro+17] are the subject of Chapter 4.
4It can be shown, however, that parallel non-malleability and parallel CCA security are

equivalent for non-interactive commitment schemes by adapting the proof of Theorem 3.8 (cf.
[Bro+18a].

3.2. NOTIONS FOR COMMITMENT SCHEMES 37

Concurrent
Non-malleability

Parallel
Non-malleability

Non-malleability

CCA Security

Parallel CCA Security

One-One
CCA Security

†

‡‡

‡‡‡‡

*

*

* only for non-interactive commitment schemes

Figure 3.2: The relations between several security notions for commitment
schemes. The dotted arrows indicate trivial implications. Markings indicate
relations proven in the literature (see [PPV08] for † and [Cia+16] for ‡) or
separating commitment schemes from the literature (see [LPV08] for ‡‡). The
thick arrows indicate relations that are proven in this chapter.

Transformations We obtain all of our separation results using two generic trans-
formations. Given two appropriate security notions X and Y from the class
of security notions we compare in this chapter, these transformations take a
commitment scheme that fulfills notion X and output a commitment scheme
that still fulfills notion X but not notion Y . Both transformations are fully
black-box and require no additional computational assumptions.

• Puzzle-Solution-Approach (cf. Section 3.2.5): The first transformation is
used for separations where Y is a CCA-related security notion. The key
idea of this transformation is to expand a commitment scheme that fulfills
a security notion X by a “puzzle phase” where the sender sends a specific
computationally hard puzzle to the receiver. If the receiver answers with
a correct solution, then the sender “gives up” and sends his input to the
receiver who can then trivially win in the security game in this case. If the
puzzle is tailored appropriately, then the expanded commitment scheme
still fulfills notion X but fails to fulfill notion Y . Intuitively, this separation
holds because an adversary in the Y -security game has access to an oracle
that “breaks” the puzzle but an adversary in the X-security game does
not.

• Sharing-Approach (cf. Section 3.2.6): The second transformation is used for
separations where Y is a variant of non-malleability. This transformation
expands a given commitment scheme by adding a “share phase” in which
the sender commits to two random shares of his input in a specific order.
This is done in such a way that a man-in-the-middle adversary is able to
forward these commitments to the receiver in his experiment. After the
commit phase is over, these shares will be opened by the implicit oracle in
the experiment and given to the distinguisher, who can then reconstruct
the committed value.

38 CHAPTER 3. NON-MALLEABILITY AND CCA SECURITY

Remark 3.9 (On Black-Box Separations). We note that the separations proven
in this chapter differ from black-box separations. Separating a security notion
X from a security notion Y by a black-box separation means that one cannot
construct a scheme satisfying X from a scheme satisfying Y in a black-box
manner. Black-box separations are stronger than our separations. However,
we note that one cannot achieve black-box separations between the security
notions described in this chapter. This is because, given a (statistically binding)
commitment scheme satisfying any of the security notions considered in this
chapter, one can construct a commitment scheme satisfying any other security
notion in this chapter in a black-box way. This can be shown as follows: First,
each of the notions described in this chapter implies the standard hiding property
for commitment schemes. Furthermore, given a commitment scheme that is
binding and hiding, one can construct a one-way function in a black-box way
[IL89]. Moreover, [Kiy14] showed how to construct a CCA-secure commitment
scheme from any one-way function in a black-box way. Since CCA security
implies any other notion described in this chapter, the statement follows. This
transformation is, of course, highly inefficient and therefore only of theoretical
interest. In particular, this transformation comes with a logarithmic blow-up in
the round complexity, making it useless for constructing constant-round protocols
(which is the goal in Chapter 4).

3.2.2 Related Work
For the class of security notions for commitment schemes that are considered
in this chapter, only a few relations are resolved. [PPV08] show that CCA
security implies concurrent non-malleability. In [Cia+16] it is shown that the
non-malleable commitment scheme from a preliminary version of [GPR16] is
not concurrent non-malleable. [LPV08] construct a commitment scheme that
separates non-malleability and parallel non-malleability. The remaining relations
are, to the best of our knowledge, unsettled.

Notation. In the folllowing, we denote by Comtag(v) a commitment to the
value v ∈ {0, 1}n under the tag tag ∈ {0, 1}n using the (possibly interactive)
commitment scheme Com. (Note that if we later use a phrase like “the sender
sends Comtag(v) to the receiver”, we do not assume that the commitment scheme
is non-interactive and hence consists of only one message. We rather use this
formulation as an abbreviation for “the sender commits to v under the tag tag
to the receiver using the commitment scheme Com”.)

3.2.3 Variants of CCA Security
Roughly speaking, a tag-based commitment scheme Com is said to be CCA-
secure, if the value committed to using a tag tag remains hidden even if the
receiver has access to an oracle that “breaks” polynomially many commitments
using a different tag tag′ 6= tag. In this work, we only consider committed value
oracles (oracles that return the committed value, cf. [LP12]) as opposed to
decommitment oracles (oracles that return the entire decommitment information,
cf. [CLP10]). In the following, we give a formal definition of CCA-secure
commitment schemes.

3.2. NOTIONS FOR COMMITMENT SCHEMES 39

Let Com be a tag-based, statistically binding commitment scheme. The
CCA-oracle Occa for Com acts as follows in an interaction with an adversary A:
It participates with A in polynomially many sessions of the commit phase of
Com as an honest receiver (the adversary determines the tag he wants to use at
the start of each session). At the end of each session, if the session is valid, the
oracle returns the unique value v committed to in the interaction; otherwise, it
returns ⊥. If a session has multiple valid committed values, the CCA-oracle also
returns ⊥. (The statistical binding property guarantees that this happens with
only negligible probability.5)

Let Expcca
Com,A(z)(n) denote the output of the following probabilistic experiment:

Let Occa be the CCA-oracle for Com. The adversary has access to Occa during
the entire course of the experiment. On input 1n, z, the adversary AOcca picks a
tag tag and two strings v0 and v1 and sends (tag, v0, v1) to the experiment. The
experiment then randomly selects a bit b← {0, 1} and commits to vb using the
tag tag to AOcca . Finally, AOcca sends a bit b′ to the experiment, which outputs
1 if b = b′ and 0 otherwise.

An adversary is called valid if he only chooses strings v0, v1 such that |v0| =
|v1| and does not query Occa on a commitment that uses the challenge tag tag
during the experiment.

Definition 3.10 (CCA-secure Commitment Schemes). Let Com be a tag-based,
statistically binding commitment scheme. We say that Com is CCA-secure, if
for every valid PPT adversary A, there exists a negligible function negl such that
for all n ∈ N, z ∈ {0, 1}∗ it holds that

Pr[Expcca
Com,A(z)(n) = 1] ≤ 1

2 + negl(n)

Equivalent Formulation. Denote by Outputcca
Com,A(z)(n, b) the output of A

in the experiment Expcca
Com,A(z)(n) if the challenge bit is fixed to b.

A tag-based, statistically binding commitment scheme Com is CCA-secure if
and only if for every valid PPT adversary A there exists a negligible function
negl such that for all n ∈ N, z ∈ {0, 1}∗ it holds that∣∣Outputcca

Com,A(z)(n, 0)−Outputcca
Com,A(z)(n, 1)

∣∣ ≤ negl(n)

The notion of parallel CCA security is a variant of CCA security where the
adversary is restricted to a single parallel oracle query.

Formally, define the parallel CCA oracle Opcca for Com to be like Occa, except
that it only answers a single parallel query (consisting of sessions of the commit
phase of Com. Note that the adversary determines the tags he wants to use at
the start of the query). Define Exppcca

Com,A(z)(n) to be identical to Expcca
Com,A(z)(n),

except that the adversary has access to Opcca instead of Occa.
An adversary is called valid in this setting if he only chooses strings v0, v1 such

that |v0| = |v1| and his parallel query to Opcca does not contain a commitment
that uses the challenge tag.

5We note that we could also assume the weaker property strong computational binding (cf.
e.g. [Kiy14]). A commitment scheme satisfies the strong computational binding property
if any (possibly malicious) PPT sender can generate a commitment that has more than one
committed value with at most negligible probability.

40 CHAPTER 3. NON-MALLEABILITY AND CCA SECURITY

Definition 3.11 (Parallel CCA-secure Commitment Schemes). Let Com be a
tag-based, statistically binding commitment scheme. We say that Com is parallel
CCA-secure, if for every valid PPT adversary A, there exists a negligible function
negl such that for all n ∈ N, z ∈ {0, 1}∗ it holds that

Pr[Exppcca
Com,A(z)(n) = 1] ≤ 1

2 + negl(n)

Equivalent Formulation. Denote by Outputpcca
Com,A(z)(n, b) the output of A

in the experiment Exppcca
Com,A(z)(n) if the challenge bit is fixed to b.

A tag-based, statistically binding commitment scheme Com is parallel CCA-
secure if and only if for every valid PPT adversary A there exists a negligible
function negl such that for all n ∈ N, z ∈ {0, 1}∗ it holds that∣∣Outputpcca

Com,A(z)(n, 0)−Outputpcca
Com,A(z)(n, 1)

∣∣ ≤ negl(n)

Another variant of CCA security is one-one CCA security where the adversary
is restricted to a single query consisting of exactly one commitment.

Define the one-one CCA-oracle O1cca for Com to be like Occa, except that
it only answers a single query consisting of exactly one commitment. Define
Exp1cca

Com,A(z)(n) to be identical to Expcca
Com,A(z)(n), except that the adversary has

access to O1cca instead of Occa.
An adversary is called valid in this setting if he only chooses strings v0, v1

such that |v0| = |v1| and his single query to O1cca does not use the challenge tag.

Definition 3.12 (One-One CCA-Secure Commitment Schemes). Let Com be a
tag-based, statistically binding commitment scheme. We say that Com is one-one
CCA-secure, if for every valid PPT adversary A, there exists a negligible function
negl such that for all n ∈ N, z ∈ {0, 1}∗ it holds that

Pr[Exp1cca
Com,A(z)(n) = 1] ≤ 1

2 + negl(n)

3.2.4 Variants of Non-malleability
We next give a definition of (stand-alone) non-malleable commitment schemes
that is essentially a game-based variant of the definition of [GPR16]. It is
easy to see that the notion in [GPR16] and our notion are equivalent. Using
a game-based variant of [GPR16] makes it easier to compare this notion with
CCA security (which is game-based).

Let Expnm
Com,A(z),D(n) denote the output of the following probabilistic experi-

ment: On input 1n, z, the man-in-the-middle adversary A picks a tag tag and
two strings v0 and v1 and sends (tag, v0, v1) to the sender S. The sender S
then chooses a random bit b← {0, 1}. A then interacts with S and a receiver
R, receiving a commitment Comtag(vb) from S and attempting to commit to
a value ṽb using a tag t̃ag of his choice in the interaction with R. A controls
the scheduling of the messages. At the end of this interaction, A outputs his
view viewA and R outputs the value ṽb. Note that R has implicit access to a
super-polynomial-time oracle O that extracts the committed value of the received
commitment for him and that the adversary’s view contains the non-uniform

3.2. NOTIONS FOR COMMITMENT SCHEMES 41

input z, the random coins used by the adversary and a transcript of all messages
received by the adversary. After the interaction has finished, the distinguisher
D gets the view viewA of the adversary and the value ṽb as input and outputs a
bit b′. The experiment outputs 1 if b = b′ and 0 otherwise.

An adversary is called valid if he only chooses strings v0, v1 such that |v0| =
|v1| and does not use the tag t̃ag = tag in his interaction with the receiver R.

Definition 3.13 (Non-malleable Commitment Schemes). Let Com be a tag-
based, statistically binding commitment scheme. Com is non-malleable if for
every valid PPT man-in-the-middle adversary A, for every PPT distinguisher
D, there exists a negligible function negl such that for all n ∈ N, z ∈ {0, 1}∗ it
holds that

Pr[Expnm
Com,A(z),D(n) = 1] ≤ 1

2 + negl(n)

[LPV08] proposed a more general variant of non-malleability called concurrent
non-malleability (CNM) where the man-in-the-middle adversary participates in
m left and m right interactions, where m = poly(n).

More specifically, the experiment for concurrent non-malleability is the same
as for (stand-alone) non-malleability, except that now the adversary A sends a
tuple (~v 0, ~v1), where ~v 0 = (v0

1 , . . . , v
0
m) and ~v1 = (v1

1 , . . . , v
1
m), to the sender S.

The sender S then chooses a random bit b← {0, 1}. A then interacts with S and
a receiver R, receiving commitments to values vb1, . . . , vbm with tags tag1, . . . , tagm
of his choice from the sender S and attempting to commit to values ṽb1, . . . , ṽbm
using tags t̃ag1, . . . , t̃agm of his choice in the interactions with R (A determines
the tag he wants to use at the start of each session). A has control over the
scheduling of the messages. Let Expcnm

Com,A(z),D(n) denote the output of this
experiment.

An adversary is called valid in this setting if he only chooses vectors ~v 0 =
(v0

1 , . . . , v
0
m) and ~v1 = (v1

1 , . . . , v
1
m) such that |v0

i | = |v1
i | for all i ∈ {1, . . . ,m} and

does not use any of the tags tag1, . . . , tagm that are used in the left interactions
in his interactions with the receiver R.

Definition 3.14 (Concurrent Non-Malleable Commitment Schemes). Let Com
be a tag-based, statistically binding commitment scheme. Com is concurrent
non-malleable if for every valid PPT man-in-the-middle adversary A, for every
PPT distinguisher D, there exists a negligible function negl such that for all
n ∈ N, z ∈ {0, 1}∗ it holds that

Pr[Expcnm
Com,A(z),D(n) = 1] ≤ 1

2 + negl(n)

Finally, parallel non-malleability (PNM) is another variant of non-malleabilty
where the adversary A receives m commitments in parallel from the sender S and
participates in m parallel interactions with the receiver R.6 Let Exppnm

Com,A(z),D(n)
denote the output of this experiment.

An adversary is called valid in this setting if he only chooses vectors ~v 0 =
(v0

1 , . . . , v
0
m) and ~v1 = (v1

1 , . . . , v
1
m) such that |v0

i | = |v1
i | for all i ∈ {1, . . . ,m}

and does not use any of the tags that are used in the m parallel left interactions
in his m parallel interactions with the receiver R.

6[Gar+16] considered a notion where the adversary receives multiple commitments in parallel
from S but is allowed to send commitments in an arbitrary scheduling in the interactions with
R. We note that our separation results also hold for this variant.

42 CHAPTER 3. NON-MALLEABILITY AND CCA SECURITY

Definition 3.15 (Parallel Non-Malleable Commitment Schemes). Let Com be
a tag-based, statistically binding commitment scheme. Com is parallel non-
malleable if for every valid PPT man-in-the-middle adversary A, for every
PPT distinguisher D, there exists a negligible function negl such that for all
n ∈ N, z ∈ {0, 1}∗ it holds that

Pr[Exppnm
Com,A(z),D(n) = 1] ≤ 1

2 + negl(n)

3.2.5 First Transformation (Puzzle-Solution Approach)
In this section, we describe the first transformation in this chapter. We call this
approach the puzzle-solution approach because the general idea is to expand a
commitment scheme by a “puzzle phase” that is executed at the beginning. Let
X and Y be security notions for commitment schemes for which we want to
show that X does not imply Y . For the first transformation, Y will always be a
CCA-related security notion. Let OX be the oracle an adversary can use in the
security game for the notion X. Let OY be the oracle an adversary can use in
the security game for the notion Y (note that these oracles may be the “empty
oracle” which returns ⊥ for each query).

Construction
Let Com be a (possibly interactive) commitment scheme. We will sometimes call
Com the base commitment scheme.

Using Com, one can define the separating commitment scheme, which we will
denote by Com′. We define Com′ as output of a transformation PComGen that
gets a base commitment scheme, a number l ∈ N and a string sch ∈ {seq, par}
as input, i.e., Com′ ← PComGen(Com, l, sch).

In the commitment scheme Com′ the sender S, who wants to commit to a
value v given a tag tag, first sends a “puzzle” to the receiver R and, depending on
whether R solves the puzzle or not, either sends v as plaintext or commits to v
using the base commitment scheme Com. The puzzle consists of l commitments
to random messages (using Com) that are either sent in parallel (if sch = par) or
sequentially (if sch = seq) to R. More specifically, the sender randomly generates
l tags of length k and l values also of length k, i.e., (tag1

p, . . . , tag
l
p)

$←−
(
{0, 1}k

)l,
(w1, . . . , wl)

$←−
(
{0, 1}k

)l.
If sch = par, the sender commits in parallel to (w1, . . . , wl) under the tags

(tag1
p, . . . , tag

l
p) to the receiver. The receiver then answers by simply guessing,

i.e., sends a tuple of random values (w′1, . . . , w′l). The sender then checks if the
receiver’s guess is correct, i.e. if for all i ∈ {1, . . . , l} it holds that wi = w′i. If
this is the case, S sends v as plaintext to the receiver. If it does not hold, S
commits to v using the tag tag and the commitment scheme Com to R.

If sch = seq, the sender sequentially commits to (w1, . . . , wl) using the tags
(tag1

p, . . . , tag
l
p) to the receiver. More specifically, he first commits to w1 using

the tag tag1
p and the commitment scheme Com and waits for a possible solution.

The receiver R then sends a random value w′1 to S. If the solution is incorrect,
then S commits to v using the tag tag and the base commitment scheme Com
to R. Otherwise, he continues the puzzle phase by sending the second puzzle
commitment, i.e., Comtag2

p
(w2), to R and again waits for a the possible solution.

3.2. PUZZLE-SOLUTION APPROACH 43

The receiver R then sends another random value w′2 to S. If the solution is
incorrect, then S commits to v using the tag tag and the commitment scheme
Com. Otherwise, he continues by sending the third puzzle commitment and so
forth. If R has correctly solved all l puzzle commitments, S sends v as plaintext
to the receiver.

Proof Strategy
To prove that X does not imply Y , one shows that the commitment scheme
Com′ still fulfills X if the base commitment scheme Com fulfills X, but not Y .
This is done by selecting l and sch in such a way that the puzzle can be solved
with OY but not with OX .

First, consider the following definition:

Definition 3.16 (O-one-way Commitment Schemes). Let Com be a tag-based
commitment scheme and O a specific oracle for it.

Let Expow
Com,A(z),O(n) denote the output of the following probabilistic experi-

ment: The experiment generates a random value v and a random tag tag, i.e.,
v ← {0, 1}n, tag ← {0, 1}n. It then sends the commitment Comtag(v) as chal-
lenge to the adversary A. On input 1n, z, the adversary sends a value v′ to the
experiment which outputs 1 if v = v′ and 0 otherwise. During the experiment
the adversary has access to the oracle O.

An adversary A is called valid if he does not query the oracle O on a
commitment that uses the challenge tag tag during the experiment.

We say that Com is O-one-way, if for every valid PPT adversary A, there
exists a negligible function negl such that for all n ∈ N, z ∈ {0, 1}∗ it holds that

Pr[Expow
Com,A(z),O(n) = 1] ≤ negl(n)

The above definition can be instantiated with various oracles. For example,
Occa-one-wayness describes a security notion where the one-way adversary has
access to the CCA-oracle for the given commitment scheme. It is easy to see
that CCA security implies Occa-one-wayness. Similarly, parallel CCA security
implies Opcca-one-wayness and one-one CCA security implies O1cca-one-wayness.
Also note that all variants of non-malleability imply ε-one-wayness for the empty
oracle ε, which just returns ⊥ for each query.

The proof strategy now proceeds as follows:

Show that Com′ is not Y -secure. One can construct an adversary A that
breaks the Y -security of Com′. A simply forwards the puzzle to the oracle OY ,
which returns the correct solution with overwhelming probability. Once A has
the correct solution, he can trivially win in the security game for Y .

The probability that A wins the game is overwhelming because the only
possibilities how A can lose are: 1) the oracle solves the puzzle it gets before the
query, 2) a session with the oracle has multiple valid committed values and OY
thus returns ⊥, 3) during the execution the adversary queries the oracle on a
commitment that uses the challenge tag (which happens if a puzzle commitment
uses the challenge tag). Since one can show that each possibility occurs only
with negligible probability, the overall winning probability of A is overwhelming.

44 CHAPTER 3. NON-MALLEABILITY AND CCA SECURITY

Show that Com′ is X-secure (under the assumption that Com is X-
secure). Let A be an adversary against Com′ in the security game for X, who
wins the game with non-negligible advantage. Depending whether or not A
solves at least one puzzle7 in the security game for X, one has to distinguish
two cases. For each case one builds an adversary who breaks the X-security of
the commitment scheme Com.

Case 1: A solves at least one puzzle. In this case, one constructs an
adversary B1 against the OX -one-wayness of Com. Recall that X-security
implies OX -one-wayness for our cases. We denote by k the number of challenge
commitments A expects. Since each of the k corresponding puzzles contains l
commitments, A expects m = l · k puzzle commitments in total. The strategy of
B1 is then first to randomly generatem−1 puzzle values and tags and to randomly
select a j ∈ {1, . . . ,m}. After B1 has received the challenge Comtag(v) from
the experiment, he starts to send A the puzzle(s). For all puzzle commitments
except the jth one he uses the honestly generated values and tags. As jth puzzle
commitment he uses the challenge commitment Comtag(v). After A has sent
the solution to the jth puzzle commitment (i.e. B1’s challenge commitment),
B1 terminates the simulation of A and sends A’s solution to the jth puzzle
commitment as his own solution to the experiment.

If A asks his oracle OX during the game, B1 sends random answers in the
puzzle phase (to simulate the oracle) and forwards the actual oracle query to
his own oracle OX . Note that it is possible that B1’s experiment returns ⊥ at
the end of the experiment. This happens if one of A’s oracle queries contains
a tag that equals B1’s challenge tag. This case may occur with non-negligible
probability because the challenge tags of A and B1 are not necessarily identical.
Fortunately, the opposite event also occurs with non-negligible probability.

The adversary B1 thus wins his game if A solves the puzzle commitment that
is the challenge and A’s oracle queries do not contain the challenge tag.

Case 2: A solves none of the puzzles. In this case one constructs an
adversary B2 against the X-security of Com. The strategy of B2 is to send
random puzzle(s) to A, who fails to solve them (by assumption). After the
puzzle phase, B2 forwards his own challenge to A. The adversary B2 also forwards
A’s solution as his own solution to the experiment.

If A asks his oracle OX during the game, B2 sends random answers in the
puzzle phase (to simulate the oracle) and forwards the actual oracle query to
his own oracle OX . Here, the challenge tags of A and B2 are always identical
(because B2 forwards it to his experiment), so the possibility of B2’s experiment
outputting ⊥ is not a problem in this case.

The adversary B2 thus wins his game if A wins his own game and solves no
puzzle.

7Note that for example in the concurrent non-malleability security game multiple puzzles
(with l = 1 for each puzzle) are sent (one for each session).

3.2. PUZZLE-SOLUTION APPROACH 45

A Concrete Example: CNM Does Not Imply CCA Security
In this section, we apply the puzzle-solution approach to separate the notion
of CCA security from the notion of concurrent non-malleability.8 To this end,
we define Com′ as Com′ ← PComGen(Com, 1, seq) where Com is a statistically
binding, concurrent non-malleable commitment scheme. The puzzle hence
consists of just one commitment (thus the scheduling does not matter in this
case). We follow the proof strategy described in Sec. 3.2.5.

Theorem 3.17 (CNM ; CCA). If Com is a statistically binding, concurrent
non-malleable commitment scheme, then Com′ ← PComGen(Com, 1, seq) is also
statistically binding and concurrent non-malleable but not CCA-secure.

Proof. The statistical binding property of Com′ follows readily from the statistical
binding property of the underlying commitment scheme Com. In the following,
we prove that Com′ is concurrent non-malleable but not CCA-secure.9

Claim 1: Com′ is not CCA-secure. We show that we can build a CCA-
adversary A, such that A wins the CCA security game for the commitment
scheme Com′ with non-negligible advantage.

The CCA-adversary A acts as depicted in Fig. 3.3. His strategy is to let
the oracle solve the puzzle he got from the experiment and to hence get the
challenge as plaintext. There are three possibilities how A can lose the game:

• The oracle solves the puzzle, i.e., y = w∗p.

• The puzzle tag equals the challenge tag, i.e., tag = tagp (in that case the
experiment returns ⊥ as result instead of a bit).

• The query sent to the oracle has more than one valid opening (in that case
the oracle returns w′p = ⊥).

The first possibility occurs with probability 1/2n because the oracle uniformly
selects a solution. The second possibility also occurs with probability 1/2n because
the puzzle tag is uniformly selected. The third possibility occurs with negligible
probability, which we denote by negl, because Com is by assumption statistically
binding. Thus, A’s success probability is overwhelming:

Pr[Expcca
Com′,A(n) = 1] ≥ 1− 1

2n −
1
2n − negl(n)

= 1− 1
2n−1 − negl(n)

Claim 2: Com′ is concurrent non-malleable. Let us assume Com′ is not
concurrent non-malleable. Then we show that Com is also not concurrent non-
malleable. Consider an adversary A and distinguisher DA such that DA wins
in the concurrent non-malleability security game for the commitment scheme

8While the separation of CCA security from concurrent non-malleability is not very surpris-
ing, we have nonetheless chosen to give a full proof for this separation. This is because this
proof is one of the easier applications of our puzzle-solution approach and therefore (hopefully)
a good example for the reader.

9For ease of notation, we omit the (non-uniform) input z of the adversary and distinguisher.
The proof can be easily adapted to include this input.

46 CHAPTER 3. NON-MALLEABILITY AND CCA SECURITY

Expcca A Occa

(tag, v0, v1)
b

$←− {0, 1}
tagp

$←− {0, 1}n

wp
$←− {0, 1}n

If w′p = wp, send vb
Else, send Comtag(vb)

⊥, if tagp = tag∗p
1, if b = b′

0, otherwise

tag
$←− {0, 1}n

(v0, v1)
$←− ({0, 1}n)2

tag∗p
$←− {0, 1}n

w∗p
$←− {0, 1}n

If y = w∗p, give up
Else, continue

If x /∈ {v0, v1}, give up
Else, continue

b′ :=

{
1 , if x equals v1

0 , otherwise

y
$←− {0, 1}n

Comtagp(wp)

Comtag∗p(w
∗
p)

y

Comtagp(wp)

w′pw′p

vb / Comtag(vb)

=: x

b′

Figure 3.3: Graphical depiction of the behavior of the adversary A in the CCA
security game for the commitment scheme Com′. Note that w′p ∈ {wp,⊥} is
either the unique committed value wp or, if the commitment has more than one
valid opening, ⊥.

Com′ with advantage Advcnm
Com′,A,DA(n). Let m = poly(n), where n is the security

parameter, be the number of concurrent commitment sessions initiated by the
sender in the concurrent non-malleability security game for Com′. Then we can
split up DA’s success probability as follows:

Pr[Expcnm
Com′,A,DA(n) = 1] = Pr[Expcnm

Com′,A,DA(n) = 1 ∧ ∃i : A solves puzzle i]
+ Pr[Expcnm

Com′,A,DA(n) = 1 ∧ @i : A solves puzzle i]
(3.1)

Hence, in the following it suffices to consider that A wins and

• Case 1: A solves at least one of the m puzzles.

• Case 2: A solves none of the m puzzles.

Case 1: A solves at least one of the m puzzles. Using A we construct an adversary
B1 against the ε-one-wayness (for the empty oracle ε) of the commitment scheme
Com. The adversary B1 acts as depicted in Fig. 3.4 in the ε-one-way security

3.2. PUZZLE-SOLUTION APPROACH 47

Expow B1

A

(~v 0, ~v1)
v

$←− {0, 1}n
tag

$←− {0, 1}n

1, if w′j = v
0, otherwise

b
$←− {0, 1}

j
$←− {1, . . . ,m}

(tag1p, . . . , tag
j−1
p , tagj+1

p , . . . , tagmp)
$←− ({0, 1}n)m−1

(w1, . . . , wj−1, wj+1, . . . , wm)
$←− ({0, 1}n)m−1

Com
tagjp

(wj) := Comtag(v)

Comtag(v)

tagi

Comtagip
(wi)

w′i
Comtagi(v

b
i)

w′j
(if A does not send w′j ,

set w′j := 0n)

For i from
1 to m

Figure 3.4: Graphical depiction of the behavior of the adversary B1 in the ε-one-
way security game for the commitment scheme Com. Note that ~v 0 = (v0

1 , . . . , v
0
m)

and ~v1 = (v1
1 , . . . , v

1
m).

game for the commitment scheme Com. His strategy is to mimic the experiment
for A in the concurrent non-malleability security game and to replace a random
puzzle commitment with the challenge he got from his own experiment. Note
that depending on the behavior of A, it may at some time happen that A sends
a puzzle to who he believes is the receiver, but is actually B1. If B1 receives such
a puzzle Com

t̃ag
i

p

(w̃i) from A, he acts as an honest receiver and sends a random
solution w̃′i back. The time of A’s interaction with the “receiver” or the contents
of the puzzle do not matter in this case, therefore this interaction is omitted in
Fig. 3.4.

By construction, B1 wins the game if w′j equals v, which happens if A correctly
solves the jth puzzle. Thus, since Com is concurrent non-malleable (and hence
ε-one-way), there exists a negligible function negl1 such that the following holds

negl1(n) ≥ Pr[Expow
Com,B1,ε(n) = 1]

≥ Pr[Expow
Com,B1,ε(n) = 1 | ∃i : A solves puzzle i]

· Pr[∃i : A solves puzzle i]

≥ 1
m
· Pr[∃i : A solves puzzle i]

≥ 1
m
· Pr[Expcnm

Com′,A,DA(n) = 1 ∧ ∃i : A solves puzzle i]

(3.2)

Case 2: A solves none of the m puzzles. Using A, we construct an adversary
B2 against the concurrent non-malleability of the commitment scheme Com.

48 CHAPTER 3. NON-MALLEABILITY AND CCA SECURITY

S B2

A

R
(~v 0, ~v1)(~v 0, ~v1)

tagitagi
b

$←− {0, 1}

(tag1p, . . . , tag
m
p)

$←− ({0, 1}n)m

(w1, . . . , wm)
$←− ({0, 1}n)m

If w′
i = wi, give up

yi
$←− {0, 1}n

viewB2 (ṽb1, . . . , ṽ
b
q)

Comtagi(v
b
i)

Comtagip
(wi)

w′
i

Comtagi(v
b
i)

Com
t̃ag

i
p
(w̃i)

yi

Comt̃agi
(ṽbi) / ṽbi

viewA

Comt̃agi
(ṽbi)

For i from
1 to m

For i from
1 to m

For i from
1 to m

For i from
1 to m

DB2

b′

Description of DB2 :

• Execute the distinguisher from A,
i.e., b′ ← DA(viewA, (ṽb1, . . . , ṽ

b
q))

(I)

(II)

Figure 3.5: Graphical depiction of the behavior of the adversary B2 in the
concurrent non-malleability security game for the commitment scheme Com. At
(I) A’s interaction with the “sender” is depicted and at (II) A’s interaction with
the “receiver”. Note that ~v 0 = (v0

1 , . . . , v
0
m) and ~v1 = (v1

1 , . . . , v
1
m). Note that

Com
t̃agi

(ṽbi) / ṽbi denotes that, depending on whether B2 correctly guessed the
solution yi or not, the ith result value is sent as a commitment or as a plaintext
value. In the (negligible) case that B2 correctly solves a puzzle and gets a value
ṽi as plaintext, he himself commits to this value before sending the commitment
to the receiver. Also note that viewB2 contains viewA.

For each i ∈ {1, . . . ,m}, B2 sends an honestly generated puzzle to A (thereby
simulating the sender), who fails to solve it, and then forwards the ith commitment
he gets from the sender toA. WhenA interacts with his receiver, who is simulated
by B2, B2 answers with random strings in the puzzle phases (to simulate an
honest receiver) and forwards the commitments from A to his own receiver (cf.
Fig. 3.5).

It holds that, since Com is concurrent non-malleable, there exists a negligible
function negl2 such that

3.2. PUZZLE-SOLUTION APPROACH 49

1
2 + negl2(n) ≥ Pr[Expcnm

Com,B2,DB2
(n) = 1]

≥ Pr[Expcnm
Com,B2,DB2

(n) = 1 | @i : A solves puzzle i]
· Pr[@i : A solves puzzle i]

= Pr[Expcnm
Com′,A,DA(n) = 1 | @i : A solves puzzle i]

· Pr[@i : A solves puzzle i]
= Pr[Expcnm

Com′,A,DA(n) = 1 ∧ @i : A solves puzzle i]

(3.3)

Putting things together. Combining Eq. 3.2, Eq. 3.3 and Eq. 3.1, we get the
following:

Pr[Expcnm
Com′,A,DA(n) = 1] = Pr[Expcnm

Com′,A,DA(n) = 1 ∧ ∃i : A solves puzzle i]
+ Pr[Expcnm

Com′,A,DA(n) = 1 ∧ @i : A solves puzzle i]

≤ m · negl1(n) + negl2(n) + 1
2

This concludes the proof of the theorem.

More Separations based on the Puzzle-Solution Approach
In this section, we show how more separation results can be obtained by appro-
priately instantiating the puzzle-solution approach from Sec. 3.2.5.

First, using the same puzzle and very similar arguments as in the proof of
Thm. 3.17, one can also prove that parallel non-malleability does not imply
parallel CCA security, that (stand-alone) non-malleability does not imply one-one
CCA security, that concurrent non-malleability does not imply parallel CCA
security and that parallel non-malleability does not imply one-one CCA security.

Theorem 3.18 (PNM ; PCCA). If Com is a statistically binding, parallel
non-malleable commitment scheme, then Com′ ← PComGen(Com, 1, seq) is also
statistically binding and parallel non-malleable but not parallel CCA-secure.

Theorem 3.19 (NM ; 1CCA). If Com is a statistically binding, non-malleable
commitment scheme, then Com′ ← PComGen(Com, 1, seq) is also statistically
binding and non-malleable but not one-one CCA-secure.

Theorem 3.20 (CNM ; PCCA). If Com is a statistically binding, concurrent
non-malleable commitment scheme, then Com′ ← PComGen(Com, 1, seq) is also
statistically binding and concurrent non-malleable but not parallel CCA-secure.

Theorem 3.21 (PNM ; 1CCA). If Com is a statistically binding, parallel
non-malleable commitment scheme, then Com′ ← PComGen(Com, 1, seq) is also
statistically binding and parallel non-malleable but not one-one CCA-secure.

One can prove additional separations using other puzzles.

Theorem 3.22 (1CCA ; PCCA). If Com is a statistically binding, one-one
CCA-secure commitment scheme, then Com′ ← PComGen(Com, 2, par) is also
statistically binding and one-one CCA-secure but not parallel CCA-secure.

50 CHAPTER 3. NON-MALLEABILITY AND CCA SECURITY

Proof idea. The puzzle consists of two parallel commitments. It is thus solvable
with a parallel CCA-oracle but not with a one-one CCA-oracle. The probability
that in the reduction of the first case of the second claim the oracle query can
be answered is at least 1/2− 1/2n (where n is the tag length).

Theorem 3.23 (PCCA ; CCA). If Com is a statistically binding, parallel
CCA-secure commitment scheme, then Com′ ← PComGen(Com, 2, seq) is also
statistically binding and parallel CCA-secure but not CCA-secure.

Proof idea. The puzzle consists of two commitments sent sequentially. It is thus
solvable with a CCA-oracle but not with a parallel CCA-oracle. The probability
that in the reduction of the first case of the second claim the oracle query can
be answered is at least 1/2− m/2n (where m is the number of commitments in
the oracle query and n the tag length).

3.2.6 Second Transformation (Sharing Approach)
In this section, we settle the remaining separations. Up to now we have been
able to prove our separations using the puzzle-solution approach. However, in
order to prove the remaining separations, we cannot use this approach anymore.
This is because we need to construct commitment schemes that do not fulfill
a certain variant of non-malleability for the remaining separations. We can
therefore no longer insert a puzzle into a given commitment scheme since an
adversary in a non-malleability-related experiment does not have a committed
value oracle at his disposal that can be used to solve the puzzle.

We therefore deviate from the puzzle-solution approach in the following way:
Instead of sending a puzzle, i.e., commitments to random strings, we let the
sender commit to shares of the message to be committed to using two different
random tags. This way, the adversary will be able to forward the commitments
to the shares to the receiver in his experiment. After the commit phase is
over, these shares will then be opened by the implicit oracle in the experiment.
The distinguisher will then be able to reconstruct the message and win in the
experiment.

Using the above approach, we first show that parallel CCA security does not
imply concurrent non-malleability. To this end, consider the following scheme
Com′, given a commitment scheme Com:

On input v ∈ {0, 1}n, tag ∈ {0, 1}n, the sender generates shares s0, s1 ∈
{0, 1}n such that s0⊕s1 = v. He then sends Comtag0(s0) and Comtag1(s1) to the
receiver in a sequential order using random tags tag0, tag1 ← {0, 1}n. Afterwards,
the sender sends Comtag(v) to the receiver. The unveil phase is the same as in
Com (note that the shares are never unveiled).

First note that, in general, the above construction Com′ does not yield a
separation between concurrent non-malleability and parallel CCA security, even
if Com is parallel CCA-secure. This is because Com′ may fulfill neither of
these two security notions. For instance, assuming Com is non-interactive, an
adversary against the parallel CCA security of Com′ can simply forward the two
commitments to the shares to his oracle and thereby easily win in his experiment.

In order to obtain a separation, we therefore additionally assume that Com
is extractable (cf. Definition 2.10). Note that if a statistically binding, parallel

3.2. SHARING APPROACH 51

CCA-secure commitment scheme exists, then there also exists a statistically
binding, parallel CCA-secure commitment scheme that is additionally extractable.
This is follows from the fact that one-way functions can be constructed from
commitment schemes (in a black-box way) [IL89] and that extractable CCA-
secure commitment schemes can be constructed from one-way functions (in a
black-box way) [Kiy14].

In the proof of the separation between concurrent non-malleability and
parallel CCA security, we use the following auxiliary experiment:

Definition 3.24 (RepeatPCCA). RepeatPCCA is like the ordinary parallel
CCA security game except that the adversary can “reset” the experiment at any
given moment.

More specifically, the adversary (on input 1n, z) first chooses two strings
(v0, v1) and a challenge tag tag and sends (v0, v1, tag) to the experiment. The
experiment then chooses a random bit b← {0, 1} and commits to vb using the
tag tag. The adversary can then send reset to the experiment or a bit b′. If the
adversary sends reset, then he can send new strings (v′0, v′1) and a new challenge
tag to the experiment. The experiment then commits to v′b using the new challenge
tag (note that the challenge bit b remains the same.) The adversary may reset
the experiment polynomially many times. If the adversary sends a bit b′, then
the experiment outputs 1 if b = b′ and 0 otherwise. Throughout the experiment,
the adversary may send a single parallel query to Opcca. If the adversary sends
reset but hasn’t finished his query yet, then his query is invalidated, i.e., the
oracle ignores all further messages.

An adversary A is called valid if he only chooses strings v0, v1 such that
|v0| = |v1| and does not query the parallel-CCA oracle on tags that are equal to
the current challenge tag during the experiment.

Denote by Exprpcca
Com,A(z)(n) the output of the above experiment. We say that

a tag-based commitment scheme Com is RepeatPCCA-secure if for every valid
PPT adversary A, there exists a negligible function negl such that for all n ∈
N, z ∈ {0, 1}∗ it holds that

Pr[Exprpcca
Com,A(z)(n) = 1] ≤ 1

2 + negl(n)

We have the following lemma:

Lemma 3.25. If a commitment scheme is parallel CCA-secure and extractable,
then it is also RepeatPCCA-secure.

Proof idea. Denote by (vi0, vi1, tagi) the challenge strings (vi0, vi1) and the chal-
lenge tag tagi the adversary A sends in the ith session. Using a standard hybrid
argument, one can replace all challenge commitments Com(vib, tagi) with commit-
ments Com(0|vi0|, tagi) to all-0 strings. Indistinguishability follows by reduction
to parallel CCA security. Note that the reduction B can answer the oracle query
of the adversary A against the RepeatPCCA security in the following way: If A
sends his query during B’s challenge phase, then B forwards the query to his own
parallel CCA-oracle. If A sends his query before or after B’s challenge phase,
then B uses the extractability property.

52 CHAPTER 3. NON-MALLEABILITY AND CCA SECURITY

We are now ready to prove the following theorem:

Theorem 3.26 (PCCA ; CNM). If there exists a statistically binding, parallel
CCA-secure commitment scheme, then there also exists a statistically binding and
parallel CCA-secure commitment scheme that is not concurrent non-malleable.

Proof. Let Com′ be as above with a statistically binding, parallel CCA-secure
and extractable commitment scheme Com as its base commitment scheme (as
noted above, such a Com exists if a statistically binding, parallel CCA-secure
commitment scheme exists).

The statistical binding property of Com′ follows readily from the statistical
binding property of the underlying commitment scheme Com. In the following,
we prove that Com′ is parallel CCA-secure but not concurrent non-malleable.10

Claim 1: Com′ is not concurrent non-malleable. A man-in-the-middle ad-
versary in the concurrent non-malleability game sends

(
(v0

1 , . . . , v
0
m), (v1

1 , . . . , v
1
m)
)

and tags tag1, . . . , tagm to the sender, who randomly selects a bit b. The sender
then commits for each i ∈ {1, . . . ,m} to the shares sbi0 and sbi1 using random tags
and to vbi using tag tagi to the adversary (with sbi0 ⊕ s

b
i1

= vbi). Let h := bm2 c.
For each j ∈ {1, . . . , h} the adversary forwards the commitments to sbj0

and sbj1
to the receiver (as shares for these commitments he just uses commitments to
0n). If m is odd, he chooses 0n as his last message to commit to (he also uses
commitments to 0n as shares). Since the random tags that are used to commit
to the shares (and possibly 0n) are not in {tag1, . . . , tagm} with overwhelming
probability, the distinguisher is given the shares (sb10

, sb11
, . . . , sbh0

, sbh1
) as input

(and possibly 0n) and can thus reconstruct (vb1, . . . , vbh), which suffices to deduce
the correct b if the challenge messages are chosen appropriately.

Claim 2: Com′ is parallel CCA-secure. Let A be a PPT adversary against
the parallel CCA security of Com′. Consider the following hybrids for the
commitment scheme Com′: H0 is the ordinary parallel CCA security game. H1
is like H0, except that the sender now commits to two random and independently
distributed strings s0, t (that therefore do not fulfill s0⊕t = v in general). Finally,
H2 is like H1, except that the sender commits to 0n instead of (his input) v.

Let outi be the output of the hybrid Hi.

Sub-Claim 1: |Pr[out0 = 1]− Pr[out1 = 1]| ≤ negl(n). Consider the following
adversary B against Com in the RepeatPCCA game: The adversary B simulates
the experiment H0 for A. (∗) After A has sent (v0, v1, tag), B chooses a random
bit b← {0, 1} and generates shares s0, s1 such that s0 ⊕ s1 = vb and a random
string t ∈ {0, 1}n. The adversary B then sends (s1, t, tag1), where tag1 is a
random tag of length n, to his experiment. Afterwards, B randomly selects
one of the two (sequentially ordered) commit sessions to the shares of vb in the
commit phase of Com′ and inserts his challenge C∗ into the selected session and
Comtag0(s0) into the other session (for a randomly chosen tag tag0 ∈ {0, 1}n).
If the adversary A starts his (parallel) oracle query during the challenge phase
of B (i.e., during the session in which B has inserted his challenge C∗), then B

10For ease of notation, we again omit the (non-uniform) input z of the adversary and
distinguisher. The proof can be easily adapted to include this input.

3.2. SHARING APPROACH 53

resets his experiment and repeats the aforementioned strategy (i.e., jumps back
to (∗)). Otherwise, B answers A’s oracle query in the following way:

Case 1: If A starts his query before B’s challenge phase has begun and A’s
query does not use B’s challenge tag tag1, then B forwards A’s query to his own
parallel CCA-oracle (if A’s query uses B’s challenge tag, then B aborts).

Case 2: If A starts his query after B’s challenge phase is over, then B answers
the query by extracting A.11

Afterwards, B continues simulating the experiment H0 for A. After the
simulated experiment is over, B outputs what the simulated experiment outputs.
The adversary B repeats the experiment at most n− 1 times (and aborts if the
nth iteration leads to another reset).

Denote by Ebadquery the event that the adversary A queries the parallel
CCA-oracle during the challenge phase of B in all iterations.

Let j ∈ {1, 2} be the session into which B has chosen to insert his challenge
C∗. Since B chooses j randomly in each iteration and A’s view is independent of
j in each iteration, it holds that Pr[Ebadquery] ≤ 1/2n.

Denote by Eguesstag the event that A queries his parallel CCA-oracle before
the challenge C∗ has started using B’s challenge tag tag1 in one of the iterations.

Since the challenge tag tag1 is chosen randomly (from the set of strings of
length n) and A’s view is independent of tag1 before the challenge phase C∗
begins, it holds that Pr[Eguesstag] ≤ n·i/2n, where i = poly(n) is the number of
commitments in the parallel oracle query.

Now it holds that conditioned on Ebadquery and Eguesstag both not occurring,
the output of B is either identically distributed to the output of H0 (this holds
if C∗ = Comtag1(s1)) or identically distributed to the output of H1 (this holds if
C∗ = Comtag1(t)).

Let E = Ebadquery ∪ Eguesstag and let Outputrpcca
Com,B(b) denote the output

of B in the RepeatPCCA-experiment if the challenge bit b was chosen by the
RepeatPCCA-experiment. Then we have the following:

|Pr[out0 = 1]− Pr[out1 = 1]| ≤ Pr[E] + |Pr[out0 = 1|¬E]− Pr[out1 = 1|¬E]|
= Pr[E] + |Pr[Outputrpcca

Com,B(0) = 1|¬E]
− Pr[Outputrpcca

Com,B(1) = 1|¬E]|

≤ n · i+ 1
2n + negl(n)

= negl′(n)

Note that |Outputrpcca
Com,B(0) = 1|¬E] − Pr[Outputrpcca

Com,B(1) = 1|¬E]| ≤ negl(n)
holds because Com is RepeatPCCA-secure by Lemma 3.25 and Pr[¬E] =
1− (n·i+1)/2n is overwhelming in n (see technical remark).

11Note that, in general, B cannot use his own oracle in case 2. This is because, in this
case, A queries his parallel CCA-oracle after B’s challenge phase is over. Hence, A knows the
challenge tag tag1 and may query his parallel CCA-oracle using tag1. Therefore, B cannot
simply forward A’s query to his own parallel CCA-oracle since A’s query may contain B’s
challenge tag. Furthermore, B cannot use the extractability property in case 1 since the
messages of A’s oracle query and the messages of B’s challenge phase may overlap in this case.
Hence, B cannot extract A since this may require “rewinding” the experiment of B to a specific
point in B’s challenge phase.

54 CHAPTER 3. NON-MALLEABILITY AND CCA SECURITY

Technical Remark:
Let Output(b) = Outputrpcca

Com,B(b)

|Pr[Output(0) = 1]− Pr[Output(1) = 1]| =

|(Pr[Output(0) = 1 ∧ ¬E]− Pr[Output(1) = 1 ∧ ¬E])
+ (Pr[Output(0) = 1 ∧ E]−Output(1) = 1 ∧ E])|

≥ |Pr[Output(0) = 1 ∧ ¬E]−Output(1) = 1 ∧ ¬E]|
− |Pr[Output(0) = 1 ∧ E]−Output(1) = 1 ∧ E]|
(because |x+ y| ≥ |x| − |y|)

≥ Pr[¬E] · |Pr[Output(0) = 1|¬E]− Pr[Output(1) = 1|¬E]| − Pr[E]
(because |Pr[Output(0) = 1 ∧ E]−Output(1) = 1 ∧ E]| ≤ Pr[E])

≥
1
2
· |Pr[Output(0) = 1|¬E]− Pr[Output(1) = 1|¬E]| − Pr[E]

(This holds for sufficiently large n because Pr[¬E] is overwhelming.
Note that 1/2 is arbitrary, any constant 0 < c < 1 works)

Since Com is RepeatPCCA-secure, |Output(0) = 1]− Pr[Output(1) = 1]|
is negligible.

Furthermore, Pr[E] = n · i+ 1
2n

is negligible. Hence, |Pr[Output(0) = 1|¬E]

− Pr[Output(1) = 1|¬E]| must also be negligible.

Sub-Claim 2: |Pr[out1 = 1] − Pr[out2 = 1]| ≤ negl(n). This follows from a
standard reduction argument to the parallel CCA security of Com. Consider
an adversary B′ against the parallel CCA security of Com. The adversary B′
simulates the experiment H1 for A. After A has sent (v0, v1, tag), B′ chooses a
random bit b← {0, 1} and sends (vb, 0n, tag) to his experiment. Afterwards, B′
forwards his challenge C∗ to A as A’s challenge. If A queries his oracle, then B′
forwards this query to his own oracle. After the simulated experiment is over, B′
outputs what the simulated experiment outputs. It holds that the output of B′
is identically distributed to the output of H1 if C∗ = Comtag(vb) and identically
distributed to the output of H2 if C∗ = Comtag(0n). Sub-Claim 2 now follows
from the parallel CCA security of Com.

Sub-Claim 3: Pr[out2 = 1] = 1/2. This follows from the fact that the view of
A in the hybrid H2 is independent of the challenge bit.

In conclusion, |Pr[out0 = 1]−1/2]| ≤ negl(n). Hence, Com′ is parallel CCA-secure.

Using the transformation implied by [IL89; Kiy14] described earlier, Thm. 3.26
and the fact that parallel CCA security implies parallel non-malleability, we also
get the following separation:

Theorem 3.27 (PNM ; CNM). If there exists a statistically binding, parallel
non-malleable commitment scheme, then there also exists a statistically binding
and parallel non-malleable commitment scheme that is not concurrent non-
malleable.

3.2. SHARING APPROACH 55

Using similar arguments as in the proof of Thm. 3.26, one can also show that
one-one CCA security does not imply parallel non-malleability.

Theorem 3.28 (1CCA ; PNM). If there exists a statistically binding, one-one
CCA-secure commitment scheme, then there also exists a statistically binding
and one-one CCA-secure commitment scheme that is not parallel non-malleable.

Proof idea. This separation follows by adapting the techniques used for the
separation in Thm. 3.26. In the commitment scheme Com′ the sender commits
to the shares s0 and s1 in parallel instead of sequentially. The experiment
Repeat1CCA is like RepeatPCCA except that the adversary may now query
O1cca instead of Opcca.

Remark 3.29. We note that the (known) separation between (stand-alone)
non-malleability and parallel non-malleability can also be proven using the shar-
ing approach. This follows from the transformation implied by [IL89; Kiy14],
Thm. 3.28 and the fact that one-one CCA security implies (stand-alone) non-
malleability.

Remark 3.30. We remark that all results, except for Thms. 3.19 and 3.21,
carry over to bit commitment schemes. This can be shown by similar arguments
as in the proofs of Thms. 3.17 and 3.26. The main difference for the proofs
using the puzzle-solution approach is that the puzzle consists of n parallel (bit)
commitments. The main difference for the proofs using the sharing approach is
that the sender generates 2n shares. We do not know if Thms. 3.19 and 3.21
carry over to bit commitment schemes because those theorems cannot be proven
using the above modification of the puzzle-solution approach. This is because the
number of queries that can be sent to the oracle in these cases is bounded by
a constant. Hence, the oracle cannot be used to solve a puzzle consisting of n
parallel bit commitments.

Remark 3.31. Note that if one-way functions exist, then all base commitment
schemes required for this chapter exist. In all results one can use, e.g., the
commitment scheme from [CLP10] that is based on one-way functions as base
commitment scheme Com. This scheme is CCA-secure and therefore fulfills every
security notion considered in this chapter.

56 CHAPTER 3. NON-MALLEABILITY AND CCA SECURITY

Chapter 4

A New Framework for
Concurrently Composable
MPC in the Plain Model

4.1 Introduction
In this chapter, we present a new framework for concurrently composable MPC
in the plain model. Before presenting our framework and its properties, we first
recall the impossibility results of the UC framework and how these have been
overcome in the literature so far.

Impossibility Results. It has been proven in the literature that many inter-
esting functionalities such as commitments, zero-knowledge or oblivious transfer
cannot be UC-realized in the plain model (see, e.g. [CF01; CKL03; Lin03; PR08;
KL11])). Furthermore, [Lin04] proved that the need for some additional trusted
setup extends to even the special case of (concurrent) self -composability, where
only instances of the same protocol are concurrently executed. As an example
of these negative results, we recall the argument in [CF01] for the impossibility
of UC-realizing commitments in the plain model (we have slightly adapted the
argument to better fit the discussion that comes after it). Impossibility of
UC-realizing other functionalities follow from conceptually similar arguments.

Consider an environment Z interacting with the dummy adversary D and
a commitment protocol π in the plain model. At the beginning, Z instructs
D to corrupt the sender. Z then randomly chooses a bit b and commits to b
by running the program of the honest sender and interacting with the honest
receiver via D. In the unveil phase, Z unveils its committed value. At the end
of the protocol execution, Z checks if the bit b′ output by the honest receiver
equals the b that Z chose at the beginning. Z outputs 1 if and only if b′ = b.

Assume for the sake of contradiction that π UC-realizes Fcom. Then there
exists a simulator S such that ExecUC

(
π,D,Z

) c≡ ExecUC
(
Fcom,S,Z

)
. S must

be able to extract the bit b from the protocol transcript with overwhelming
probability in order to input b into Fcom in the commit phase. One can now
construct an environment that uses S to break the protocol π. Consider the

57

58 CHAPTER 4. COMPOSABLE MPC IN THE PLAIN MODEL

environment ZS interacting with the dummy adversary D and the protocol π.
At the beginning, ZS instructs D to corrupt the receiver. ZS then chooses a
random bit b and hands b to the honest sender as input. ZS internally runs the
simulator S, relaying the messages between the honest sender and S. When S
outputs a bit b′ as input for Fcom in ZS ’s internal simulation, ZS checks if b′ = b
and outputs 1 if this holds and 0 otherwise. If S does not output anything, ZS
outputs a random bit.

It holds that S outputs the bit b with overwhelming probability when ZS
interacts with the real protocol. However, since the view of an ideal-model
adversary is statistically independent of the bit b, S outputs the bit b with
probabilty at most 1/2 when ZS interacts with the ideal protocol and any ideal-
model adversary. ZS is therefore able to distinguish between the real and ideal
protocol with non-negligible probability. We have thus reached a contradiction.

Previous Approaches to Overcome Impossibility Results. The forego-
ing argument goes through because the environment is be able to internally run
the simulator S in such a way that it can use S to break the protocol π. In order
to overcome this impossibility result, one must therefore find a way to prevent
the environment from exploiting the capabilities of the simulator.

One solution to this problem is to rely on some additional trusted setup
assumptions. Rather than designing a protocol in the plain model like π in the
above argument, one works in the F-hybrid model for some functionality F
modeling a trusted setup. Since the environment does not have direct access to
F but only via the adversary, the simulator is able to report a “rigged” setup to
the environment that allows him to simulate successfully. For instance, if F is
some form of public key infrastructure, the simulator is able to report public keys
to which he knows the corresponding secret keys, simply by generating all keys
by himself. Since in the real protocol the setup is honestly constructed by F , the
environment is not able use the simulator to break the protocol. Numerous UC-
secure general MPC protocols have been constructed based on this approach (e.g.
[Can+02; Bar+04; Can+07; KLP07; Kat07; CPS07; LPV09; LPV12; Dac+13a;
HV15]). For instance, [Can+02] provided a construction based on a common
reference string where the trusted setup is assumed to provide a string that is
honestly sampled from some predefined distribution. [Bar+04] showed how to
achieve general MPC in the UC framework assuming various forms of public key
infrastructures where the key registration authority knows the secrets keys to
the registered public keys. [Kat07] constructed a protocol based on tamper-proof
hardware tokens as setup assumption. However, protocols which assume some
additional trusted setup are less likely to be secure in practice, where a trusted
setup is often hard to come by (or expensive). It is therefore important to have
a meaningful composable security notion that is achievable in the plain model.

In order to reach this goal, new frameworks relaxing UC security have been
proposed in the literature. One of the most prominent approaches in this line
of research is based on the idea of granting the simulator super-polynomial
resources. This approach is motivated by the fact that many ideal functionalities
such as commitments or oblivious transfer are information-theoretically secure,
i.e. their security is independent of the runtime of the ideal-model adversary.1

1For instance, the (bit) commitment functionality Fcom (cf. Definition 2.25) only outputs
a notification message after receiving an input from the sender. Therefore, the hiding property

4.1. INTRODUCTION 59

[Pas03] initiated this approach by introducing the Security with super-polynomial
simulators (SPS) framework where the simulator may run in super-polynomial
time while the environment and adversary are PPT. Many self-composable general
MPC protocols in the plain model have been constructed in this framework (e.g.
[Pas03; BS05; LPV12; Gar+12; Dac+13a; GKP17; GKP18]). However, allowing
the simulator to perform arbitrary super-polynomial computations (while the
environment remains PPT) leads to a security notion that is not closed under
protocol composition. SPS security does therefore not have the advantages
provided by the UC composition theorem, i.e. concurrent security and modular
analysis (cf. Section 2.4.5).

To overcome this issue, [PS04] proposed the Angel-based security framework.
In this framework, the adversary, environment and simulator are PPT but all
have access to an oracle called “Imaginary angel” that grants super-polynomial
resources for specific computational problems. It is easy to see that Angel-based
security implies SPS security. In addition, like UC security, Angel-based security
is closed under protocol composition. Furthermore, the impossibility results of
the UC framework are circumvented by allowing the Imaginary Angel to base
its answers on the set of corrupted parties. This ensures that the environment
is unable to internally run the simulator in such a way that it can break the
protocol. In particular, the above argument for the impossibility of UC-realizing
commitments does not go through anymore. This is because the Imaginary Angel
behaves differently in the interaction with the simulator S, where the sender is
corrupted, than in the interaction with the environment ZS , where the receiver
is corrupted. ZS is therefore unable to correctly answer S ′s oracle queries in
its internal simulation. [CLP10] later proposed the UC with super-polynomial
helpers framework which also provides a composable security notion implying
SPS security. In this framework, the environment and simulator may query a
“helper” that, unlike Imaginary Angels, may be interactive and stateful. Many
general MPC protocols in the plain model have been constructed in the Angel-
based security and UC with super-polynomial helpers framework. However, all
known general MPC protocols in these frameworks are either based non-standard
or super-polynomial-time assumptions [PS04; MMY06; KMO14] or require a
super-constant number of rounds [CLP10; LP12; Kiy14; Goy+15; HV16].

Our New Framework: “Shielded Oracles”. We present a new framework
that is also based on the idea of providing simulators with super-polynomial
resources. However, unlike in previous frameworks, simulators in our new
framework are only given restricted access to the results computed in super-
polynomial time. We model the super-polynomial resources as stateful oracles
that are “glued” to an ideal functionality. These oracles may directly interact
with the functionality without the simulator observing the communication. The
outputs of these oracles may depend on the session ID of the protocol as well as
the set of corrupted parties. We call these oracles shielded oracles.

In order to obtain a composable security notion, environments in our frame-
work may invoke additional ideal protocols that include shielded oracles. With
these augmented environments we are able to prove a general composition theo-

holds regardless of the runtime of the adversary. Furthermore, since Fcom always outputs the
bit it stored in the commit phase after receiving an unveil instruction, the binding property is
als trivially ensured to hold against unbounded adversaries.

60 CHAPTER 4. COMPOSABLE MPC IN THE PLAIN MODEL

rem, which, like the UC composition theorem, guarantees concurrent security.
While modular analysis is not directly implied by our composition theorem for
technical reasons, one can achieve modular analysis by constructing protocols
with “strong modular composition properties”. Protocols with such a property
can be “plugged” into large classes of UC-secure protocols in such a way that
the composed protocol is secure in our framework. As a proof of concept, we
present a constant-round commitment scheme with such a property.

Our new security notion can be shown to lie strictly between SPS security and
Angel-based security/UC security with super-polynomial helpers. Furthermore,
since all super-polynomial computations are hidden away, augmented environ-
ments do not “hurt” protocols proven secure in the UC framework. Therefore,
our notion is fully compatible with UC security, i.e., UC-secure protocols are
also secure in our framework. Moreover, our concept of shielding away super-
polynomial resources allows us to apply a new proof technique where entities
involving super-polynomial resources can be replaced by indistinguishable poly-
nomially bounded entities. This allows us to construct protocols in the plain
model using weaker primitives than in the constructions in the Angel-based
security and UC with super-polynomial helpers framework. In particular, we
only require parallel CCA-secure commitments schemes instead of the stronger2
primitive of CCA-secure commitment schemes. As a consequence, we are able
to prove that constant-round (black-box) general MPC in the plain model based
on standard polynomial-time assumptions is feasible in our framework.

This chapter is taken almost entirely from [Bro+17], which was published at
EUROCRYPT 2017.

4.1.1 Contribution
We propose a new framework that is based on the idea of granting simulators
only restricted access to the results of a super-polynomial oracle. In the following,
we list the results of this chapter.

New Composable Security Notion
Our new framework provides a security notion with the following properties:

• Closed under protocol composition (Theorem 4.11, Corollary 4.13)
• Implies SPS security (Proposition 4.10) and is strictly weaker than

Angel-based security (Theorem 4.21)
• Compatible with UC security, i.e., protocols proven secure in the UC

framework are also secure in our new framework. (Theorem 4.15,
Corollary 4.16)

Commitment Scheme with Modular Composition Property
As a proof of concept, we present a constant-round commitment scheme
in the plain model based on OWPs that is secure in our framework (The-
orem 4.26, Corollary 4.28) and can be “plugged” into a large class of
UC-secure protocols, such that the composite protocol is secure in our
framework (Theorem 4.34, Corollary 4.38a). Furthermore, this construc-
tion can be made fully black-box based on verifiable perfectly binding
homomorphic commitment schemes (Corollary 4.29, Corollary 4.38b).

2Cf. Theorem 3.23.

4.1. INTRODUCTION 61

Constant-round (Black-box) MPC in the Plain Model
We show that constant-round general MPC in the plain model based on
standard polynomial-time hardness assumptions is feasible in our frame-
work. We present two constructions:

• A non-black-box protocol based on enhanced trapdoor permutations
(Theorem 4.39a)

• A black-box construction based on verifiable perfectly binding homo-
morphic commitment schemes and IND-CPA-secure PKE schemes
with oblivious public-key generation. To the best of our knowledge,
this was the first black-box constant-round general MPC protocol
satisfying a meaningful composable security notion in the plain model
based on standard polynomial-time hardness assumptions.3 (Theo-
rem 4.39b)

In addition, we also construct constant-round zero-knowledge protocols
in the plain model based on weaker assumptions than the above general
MPC protocols: A non-black-box construction based on OWPs (Corol-
lary 4.30) and a black-box construction based on verifiable perfectly binding
homomorphic commitment schemes (Corollary 4.31).

Building on Parallel CCA-secure Commitments
Our constructions require weaker primitives than the general MPC proto-
cols in the Angel-based security and UC with super-polynomial helpers
framework. In particular, it suffices to use parallel CCA-secure commit-
ment schemes as a building block in our constructions instead of CCA-
secure commitment schemes (Theorem 4.26, Theorem 4.34). Unlike CCA-
secure commitment schemes, parallel CCA-secure commitment schemes
have known constant-round (black-box) instantiations based on standard
polynomial-time assumptions.

We note that all the above-mentioned constructions are proven secure in the
static corruption model.

4.1.2 Related Work
The frameworks most related to ours are the SPS security framework, the
Angel-based security framework and the UC with super-polynomial helpers
framework.

The SPS security framework, introduced by [Pas03], provides a meaningful
security notion for many cryptographic tasks such as commitment schemes or
oblivious transfer. However, unlike UC security, SPS security is not closed
under protocol composition. Many general MPC protocols in the plain model
have been constructed in this framework in the literature, e.g., [Pas03; BS05;
LPV12; Gar+12; Dac+13a; Gar+12; GKP18]4. Some of these constructions

3We note that [GKP18] later constructed a self-composable black-box constant-round general
MPC protocol in the SPS framework based on weaker assumptions than our construction.
Some of the techniques they used build on techniques presented in this chapter. It is currently
unclear, however, if their construction also satisfies our stronger security notion.

4Note that this list of references only contains works that constructed general MPC protocols
directly in the SPS security framework. See the following paragraphs for constructions proven
secure in frameworks with stronger security notions.

62 CHAPTER 4. COMPOSABLE MPC IN THE PLAIN MODEL

are both constant-round and based on standard polynomial-time assumptions:
[LPV12] (based on constant-round semi-honest OT), [Gar+12; GKP18] (based
on constant-round semi-honest OT plus collision-resistant hash functions) and
[GKP17] (based on collision-resistant hash functions plus “weakly certifiable”
trapdoor permutations plus lossy encryption schemes plus quasi-polynomially-
hard injective one-way functions). The construction in [GKP18] is additionally
fully black-box.

The Angel-based security framework, first proposed by [PS04], provides a
security notion that implies SPS security and is closed under protocol composition.
Several general MPC protocol in the plain model have been constructed in this
framework [PS04; MMY06].5 However, all of these constructions are based on
non-standard or super-polynomial-time assumptions.

The UC with super-polynomial helpers framework also provides a security
notion that implies SPS security and is closed under protocol composition. This
framework was put forward by [CLP10] which also provided a construction in
the plain model in this framework that only relies on standard polynomial-time
assumptions, namely enhanced trapdoor permutations.6 Since then, many more
general MPC protocols in the plain model have been constructed in this frame-
work [LP12; KMO14; Kiy14; Goy+15; HV16]. The most round-efficient protocols
so far that are based on standard polynomial-time assumptions were provided
by [Goy+15] and [Kiy14]. [Kiy14] gave a fully black-box construction based on
constant-round semi-honest OT that requires Õ(log2 n) rounds. [Goy+15] gave a
non-black-box construction based on enhanced trapdoor permutations requiring
Õ(logn) rounds. Some helpers in the literature, e. g., [CLP10; KMO14; Kiy14;
Goy+15] come with a feature called “robustness” which guarantees that any
attack mounted on a constant-round protocol using this helper can be carried
out by a PPT adversary with no access to a helper. Protocols proven secure
for robust helpers can be “plugged” into constant-round UC-secure protocols,
resulting in protocols secure in the UC with super-polynomial helpers frame-
work. Moreover, [CLP13] constructed a protocol that is secure in the UC with
super-polynomial helpers framework and additionally preserves certain security
properties of other protocols running in the system. They call such protocols
“environmentally friendly”.

We note that other security notions in the concurrent setting have been
proposed which are not based on the idea of providing simulators with super-
polynomial resources. The multiple ideal query model [GJO10; GJ13; GGJ13;
CGJ15] considers simulators that are allowed to make more than one output
query per session to the ideal functionality. All known constructions in this
framework require a super-constant number of rounds. Another notion is input
indistinguishability [MPR06; Gar+12] which guarantees that an adversary cannot
decide which inputs have been used by the honest protocol parties. We note that
this security notion is not closed under protocol composition and incomparable
to ours.

5[BS05] remarked that their construction can be shown to be secure in the Angel-based
security framework but provided no proof of this claim.

6We note that in some works, e.g. [Kiy14; KMO14; GKP18], UC with super-polynomial
helpers is also referred to as Angel-based security. In this work, however, we use the original
names of these two frameworks as proposed by [CLP10] and [PS04], respectively.

4.2. DEFINITIONS OF THE PREVIOUS FRAMEWORKS 63

4.2 Definitions of the Previous Frameworks
In this section, we briefly recall the definitions of SPS and Angel-based security
and UC security with super-polynomial helpers.

4.2.1 SPS Security Framework
In the SPS security framework, a simulator’s run-time is not required to be
bounded by a polynomial. The adversary and environment are still polynomial-
time, however. In the following, we recall the definition of emulation in the SPS
security framework (first proposed by [Pas03]).
Definition 4.1 (Security with Super-polynomial Simulators (SPS)). Let π and
φ be protocols. π is said to emulate φ in the SPS security framework, denoted
by π ≥SPS φ, if if for every PPT adversary A, there exists an (not necessarily
PPT) adversary S such that for every PPT environment Z it holds that

ExecUC
(
π,A,Z

) c≡ ExecUC
(
φ,S,Z

)
Obviously, UC security implies SPS security. Another straightforward con-

sequence of the above definition is that transitivity does no longer hold for
emulation in the SPS security framework. Furthermore, SPS security is not
closed under protocol composition. Hence, the advantages provided by the
UC composition theorem, i.e. concurrent security and modular analysis (cf.
Section 2.4.5), do not carry over to the SPS framework. Still, using arguments
presented in [Can01]7, a composition theorem can be shown in the SPS security
framework for the following very restricted case: Let ρφ be a protocol that makes
exactly one subroutine call to a protocol φ. Assume π ≥SPS φ. Then it holds
that ρπ ≥SPS ρ

φ. Alternatively, one can prove a version of the composition
theorem for the case that one instance of φ, out of potentially many instances
called by ρ, is replaced with an instance of π.

4.2.2 Angel-based Security Framework and UC with super-
polynomial Helpers Framework

In the Angel-based security framework, the adverary, environment and simulator
are required to run in polynomial time but all have acccess to a super-polynomial
oracle Γ called Imaginary Angel. The Imaginary Angel Γ takes a query q and
then outputs an answer Γ(q, C) that may depend on the set C of corrupted
protocol parties.

In the following, we recall the definition of emulation in the Angel-based
security framework as proposed by [PS04].
Definition 4.2 (Angel-based Security). Let π and φ be protocols, Γ an Imaginary
Angel. π is said to emulate φ in the Γ-Angel-based framework, denoted by
π ≥Γ-Angel φ, if for every PPT adversary A, there exists a PPT adversary S
such that for every PPT environment Z it holds that

ExecUC(π,AΓ,ZΓ) c≡ ExecUC(φ,SΓ,ZΓ)
7More specifically, the proof of the “single-instance UC composition theorem” in the

alternative proof of the UC composition theorem. Note that the general proof of the UC
composition theorem in [Can01] does not carry over to SPS security because a PPT environment
cannot internally run the simulator since the latter may run in super-polynomial time.

64 CHAPTER 4. COMPOSABLE MPC IN THE PLAIN MODEL

As with UC security, Angel-based security is transitive and closed under
protocol composition (cf. [PS04]). Furthermore, it follows directly from the
definitions that Angel-based security implies SPS security.

The UC with super-polynomial helpers framework, first proposed by [CLP10],
is based on the Extended Universal Composability Framework (EUC), which is
an extension of the UC framework where all ITIs in a system of protocols may
have access to some global entity such as a globally available PKI or CRS. In
the UC with super-polynomial helpers framework, the global entity is called
helper (functionality) H and may run in super-polynomial time. H interacts
only with the environment as well as the corrupted parties. Furthermore, H
is informed by the environment as soon as a party is corrupted (cf. [CLP10]
for a detailed description of this framework). As with Angel-based security, the
security notion implied by the UC with super-polynomial helpers framework is
transitive and closed under protocol composition. Furthermore, this security
notion also implies SPS security (cf. [CLP10]).

4.3 Shielded Oracles

4.3.1 Definition of the Framework
In this section, we present a new framework that is based on the idea of granting
simulators only restricted access to super-polynomial resources. Our framework
builds on the UC framework (cf. Section 2.4).

First, we set a few conventions. While the UC framework leaves open how
session identifiers (SIDs) and corruptions are organized, we follow the convention
that both must be consistent with the hierarchical order of the protocols: The
SID of a sub-protocol must be an extension of the SID of the calling protocol
(see below). Furthermore, in order to corrupt a sub-party, an adversary must
corrupt all parties that are above that sub-party in the protocol hierarchy (i.e.
if A is calling party of B then an adversary must first corrupt A before he can
corrupt B).

SID Convention. We use the following convention for session identifiers: a
session ID sid is of the form str1||str2|| . . . ||strm, where stri ∈ {0, 1}∗ and
|| 6∈ {0, 1}∗ is a special delimiter symbol. We call a session ID sid′ an extension
of a session ID sid if there exists a session ID sid ∈ {0, 1}∗ ∪ {||} such that
sid′ = sid||sid, and a one-step extension if there exists a bitstring str ∈ {0, 1}∗
such that sid′ = sid||str. We stipulate that the session ID of a sub-protocol
must be a one-step extension of its calling protocol.

We relax the UC security notion by introducing a super-polynomial time
machine that may aid the simulator. This machine is modeled as a stateful oracle
O that is “glued” to an the ideal functionality F . O may freely interact with
the simulator and F . However, the simulator does not “see” the communication
between between O and F . Since the output of the oracle is partially hidden
from the simulator, we call O a shielded oracle.

4.3. SHIELDED ORACLES 65

F

O
FO

honest
parties

adversary

Figure 4.1: O-adjoined functionality FO internally runs F and O and enforces
the correct routing of messages (cp. Definition 4.4)

Definition 4.3 (Shielded Oracles). A shielded oracle is a stateful oracle O that
can be implemented in super-polynomial time. By convention, the outputs of a
shielded oracle O are of the form (output-to-fnct, y) or (output-to-adv, y).

The simulator is allowed to communicate with the ideal functionality only via
the shielded oracle. This way, the shielded oracle serves as an interface that carries
out specific tasks the simulator could not do otherwise. The communication
between the shielded oracle and the ideal functionality is hidden away from the
simulator. The actions of the shielded oracle may depend on the session identifier
(sid) of the protocol session as well as the party identifiers of the corrupted
parties.

Definition 4.4 (O-adjoined Functionalities). Given a functionality F and a
shielded oracle O, define the interaction of the O-adjoined functionality FO in
an ideal protocol execution with session identifier sid as follows: (See Fig. 4.1
for a graphical depiction)

• FO internally runs an instance of F with session identifier sid

• When receiving the first message x from the adversary, FO internally
invokes O with input (sid, x).
All subsequent messages from the adversary are passed to O.

• Messages between the honest parties and F are forwarded.

• Corruption messages are forwarded to F and O.

• When F sends a message y to the adversary, FO passes y to O.

• The external write operations of O are treated as follows:

– If O sends (output-to-fnct, y), FO sends y to F .
– If O sends (output-to-adv, y), FO sends y to the adversary.

Let IDEAL(FO) be the ideal protocol with functionality FO (cf. Section 2.4.1).
In order to obtain a composable security notion, we introduce the notion of

augmented environments. FO-augmented environments are UC environments
that may invoke, apart form the challenge protocol, polynomially many instances
of IDEAL(FO) for a given functionality FO. The only restriction is that the

66 CHAPTER 4. COMPOSABLE MPC IN THE PLAIN MODEL

session identifiers of these instances as well as the session identifier of the challenge
protocol are not extensions of one another. FO-augmented environments may
send inputs to and receive outputs from any invoked instance of IDEAL(FO).
In addition, FO-augmented environments can play the role of any adversary via
the adversary’s interface to the functionality FO. In particular, FO-augmented
environments may corrupt parties in instances of IDEAL(FO) by sending the
corresponding corrupt message to the functionality FO.

In what follows we give the definition of the execution experiment with an
FO-augmented environment.

Definition 4.5 (The FO-Execution Experiment). An execution of a protocol σ
with adversary A and an FO-augmented environment Z on input a ∈ {0, 1}∗
and with security parameter n ∈ N is a run of a system of interactive Turing
machines with the following restrictions:
(See Fig. 4.2 for a graphical depiction)

• First, Z is activated on input a ∈ {0, 1}∗.

• The first ITI to be invoked by Z is the adversary A.

• Z may invoke a single instance of a challenge protocol, which is set to be
σ by the experiment. The session identifier of σ is determined by Z upon
invocation.

• Z may provide inputs to the adversary or to the main parties of σ.

• Z may provide inputs to and receive subroutine outputs from the main
parties of instances of IDEAL(FO) as long as the session identifiers of
these instances as well as the session identifier of the instance of σ are not
extensions of one another.

• The adversary A may send messages to the parties of σ as well as give
subroutine outputs to Z.

• Each party of σ may send messages to A, provide inputs to its subroutines
and give subroutine outputs to the parties of which it is a subroutine. Main
parties may give subroutine outputs to Z.

• The ITIs take turns during the execution experiment, i.e., whenever an
ITI writes an allowed external write instruction, then the targeted ITI
is activated and the sending ITI is suspended. If an ITI suspends its
computation without writing an external write instruction or if it writes a
disallowed external write instruction, then the environment Z is activated.
(Note that this has the effect that at any point in time throughout the
execution experiment only a single ITI is active.)

• At the end of the execution experiment, Z outputs a single bit.

Denote by Exec
(
σ,A,Z[FO]

)
(n, a) the random variable defined as the output

of the FO-augmented environment Z on input a ∈ {0, 1}∗ and with security
parameter n ∈ N after interacting with σ and A according to the above definition.

Define Exec
(
σ,A,Z[FO]

)
=
{

Exec
(
σ,A,Z[FO])(n, a)

}
n∈N,a∈{0,1}∗

4.3. SHIELDED ORACLES 67

Z

AP1 P2 P3

P ′1 P ′2 P ′3

FO

σ

challenge
protocol

Instance of

IDEAL(F O
)

Figure 4.2: Execution of the real experiment with challenge protocol and one
additionally invoked instance of IDEAL(FO) (cp. Definition 4.5)

We will now define security in our framework in total analogy to the UC
framework:

Definition 4.6 (FO-Emulation). Let π and φ be protocols. π is said to emulate
φ in the presence of FO-augmented environments, denoted by π ≥FO φ, if for
any PPT adversary A, there exists a PPT adversary S such that for every
FO-augmented PPT environment Z it holds that

Exec
(
π,A,Z[FO]

) c≡ Exec
(
φ,S,Z[FO]

)
As in the UC framework, we will sometimes abuse notation and write

π ≥FO FO if π emulates the ideal protocol with O-adjoined functionality
FO in the presence of FO-augmented environments.

Throughout this chapter, we only consider static corruptions. (Note that in the
case of static corruptions, an FO-augmented environment determines the set of
corrupted parties of each instance of IDEAL(FO) when invoking that instance.)

4.3.2 Basic Properties and Justification
In this section, we show that our security notion is transitive and that the dummy
adversary is complete within this notion. As a justification for our new security
notion, we show that it implies SPS security.

Definition 4.7 (FO-Emulation with Respect to the Dummy Adversary). The
dummy adversary D is an adversary that when receiving a message (sid, pid,m)
from the environment, sends m to the party with party identifier pid and session

68 CHAPTER 4. COMPOSABLE MPC IN THE PLAIN MODEL

identifier sid, and that, when receiving m from the party with party identifier
pid and session identifier sid, sends (sid, pid,m) to the environment.

Let π and φ be protocols. π is said to emulate φ in the presence of FO-
augmented environments with respect to the dummy adversary, if

∃SD ∀Z : Exec
(
π,D,Z[FO]

) c≡ Exec
(
φ,SD,Z[FO]

)
.

Proposition 4.8 (Completeness of the Dummy Adversary). Let π and φ be
protocols. Then, π emulates φ in the presence of FO-augmented environments
if and only if π emulates φ in the presence of FO-augmented environments with
respect to the dummy adversary.

The proof is almost exactly the same as in [Can01]. We give the proof here
for the sake of completeness.

Proof. Clearly, if π emulates φ in the presence of FO-augmented environments
then π also emulates φ in the presence of FO-augmented environments with
respect to the dummy adversary.

We now show the converse. Let π emulate φ in the presence of FO-augmented
environments with respect to the dummy adversary. Let A be an adversary
interacting the protocol π and an FO-augmented environment Z. Define the
simulator SA as follows: SA internally runs simulated copies of A and the dummy
adversary simulator SD. SA forwards the communication between A and Z
and between SD and φ. When A delivers a message m to a party with party
identifier pid and session identifier sid, SA sends (sid, pid,m) to SD. When SD
outputs (sid, pid,m), SA copies m to the incoming communication tape of A as
a message coming from the party with party identifier pid and session identifier
sid.

Next define the environment ZA as follows: ZA internally runs simulated
copies of Z and A. ZA forwards the communication between A and Z and
between Z and the protocol parties. When A delivers a message m to the party
with party identifier pid and session identifier sid, ZA sends (sid, pid,m) to the
dummy adversary. Likewise, when ZA receives a message (sid, pid,m) from
the dummy adversary, ZA copies m to the incoming communication tape of
A as a message coming from the party with party identifier pid and session
identifier sid. Furthermore, ZA invokes the same instances of IDEAL(FO) that
the environment Z invokes. Finally, ZA outputs whatever Z outputs. We have
that

Exec
(
π,A,Z[FO]

)
= Exec

(
π,D,ZA[FO]

)
c≡ Exec

(
φ,SD,ZA[FO]

)
= Exec

(
φ,SA,Z[FO]

)
,

where the second step uses the premise. The statement follows.

Next, we show that our notion is transitive.

Proposition 4.9 (Transitivity). Let π1, π2, π3 be protocols. If π1 ≥FO π2 and
π2 ≥FO π3, then it holds that π1 ≥FO π3.

4.3. SHIELDED ORACLES 69

Z

SP1 P2 P3

F O
FO

(a) The super-polynomial power of O is en-
capsulated inside of FO

Z

SP1 P2 P3

F O

S ′

(b) The super-polynomial simulator S′ in-
ternally runs the code of O itself

Figure 4.3: Shielded Oracles imply SPS security (cp. Proposition 4.10)

Proof. Let A be an adversary interacting with π1. Since π1 ≥FO π2, there
exists a simulator S1 such that Exec(π1,A,Z[FO]) c≡ Exec(π2,S1,Z[FO]), and
since π2 ≥FO π3, there exists a simulator S2 such that Exec(π2,S1,Z[FO]) c≡
Exec(π3,S2,Z[FO]) for all FO-augmented environments Z.

Thus, Exec(π1,A,Z[FO]) c≡ Exec(π3,S2,Z[FO])8

As a justification for our new notion, one can show that security with respect
to FO-emulation implies security with respect to SPS emulation. The proof is
straightforward: View the oracle as part of the simulator. This simulator runs in
super-polynomial time, hence can be simulated by an SPS-simulator (cf. Fig. 4.3
for a graphical depiction).

Proposition 4.10 (FO-Emulation implies SPS Emulation). Let O be a shielded
oracle. Assume π ≥FO FO. Then it holds that π ≥SPS F .

4.3.3 Universal Composition
In this section, we prove that the security notion provided by our framework
is closed under protocol composition. More specifically, we generalize the UC
composition theorem to also include FO-hybrid protocols.

Theorem 4.11 (Composition Theorem). Let O be a shielded oracle, F and G
functionalities.

1. (Polynomial hybrid protocols) Let π, ρG be protocols. Assume π ≥FO G.
Then it holds that ρπ ≥FO ρG.

2. (FO-hybrid protocols) Let π be a protocol, ρFO a protocol in the FO-hybrid
model. Assume π ≥FO FO. Then it holds that ρπ ≥FO ρF

O

Proof Idea. The first statement follows from the same argument as in the proof
for the UC composition theorem, see [Can01].

8Note that our hierarchical SID convention implies that the class of FO-augmented envi-
ronments that try to distinguish between π1 and π2 is the same as the class of FO-augmented
environments that try to distinguish between π2 and π3.

70 CHAPTER 4. COMPOSABLE MPC IN THE PLAIN MODEL

Z

ρ

FO FO

π

π

π

challenge
protocol

(a) The challenge protocol ρπ

Z

ρ

FO FO

π

π

π

challenge
protocol

(b) Reduction to the premise
π ≥FO FO

Z

ρ

FO FO

π

FO

π

(c) Successive replacement of
π by FO

Z

ρ

FO FO

FO

FO

FO

(d) Final hybrid ρFO

Figure 4.4: Proof of the composition theorem (Theorem 4.11)

Second statement: This statement also follows from very similar arguments
as in the proof for the UC composition theorem. In the following, we very briefly
sketch some of these arguments (note that in the following, we use arguments that
are similiar to the simpler “alternative proof” of the UC theorem, cf. [Can01]).

Let Z be an FO-augmented environment interacting with ρπ and the dummy
adversary D. Using a standard hybrid argument, iteratively replace all instances
of π called by ρ with instances of IDEAL(FO). Indistinguishability follows by
reduction to the premise π ≥FO FO. In the reduction, the remaining instances
of π and ρ are treated as part of an FO-augmented environment which internally
runs Z and invokes the remaining instances of IDEAL(FO) (see Fig. 4.4 for
a graphical depiction). The claim then follows from the completeness of the
dummy adversary (Proposition 4.8).

The universal composition theorem in the UC framework has two important
implications (cf. Section 2.4.5): concurrent security and modular analysis. The
former means that the security properties of the analyzed protocol remain valid
even when multiple instances of the protocol are concurrently executed in an
unknown environment. The latter implies that one can deduce the security of a
composite protocol from its components.

Theorem 4.11 directly implies concurrent security (with super-polynomial
time simulators). However, modular analysis is not directly implied by The-
orem 4.11. This is because the oracle O may contain all “complexity” of the

4.3. SHIELDED ORACLES 71

protocol π, i. e., proving the security of ρFO may be as complex as proving the
security of ρπ.

Still, one can use Theorem 4.11 to achieve modular analysis by constructing
secure protocols with “strong modular composition properties”. A protocol π with
such properties can be “plugged” into a large class of UC-secure protocols, such
that the composite protocol is secure in our framework. This allows analyzing
the security of a large class of protocols ρF in the UC framework and achieve
security in our framework when replacing F with π. As a proof of concept, we
will show, using Theorem 4.11, that a large class of protocols in the Fcom-hybrid
model can be composed with a commitment protocol presented in this chapter
(cf. Theorem 4.34).

Remark 4.12. Note that Proposition 4.10 and Theorem 4.11 imply that the
security notion of our framework is strictly stronger than SPS security since
the latter is not closed under protocol composition. For a concrete separating
example, we refer to Remark 4.27.

The following is a useful extension of Theorem 4.11 for multiple oracles.

Corollary 4.13 (Composition Theorem for Multiple Oracles). Let O, O′ be
shielded oracles. Assume that π ≥FO FO and ρFO ≥FO,GO′ GO

′ . Then there
exists a shielded oracle O′′ such that ρπ ≥GO′′ GO

′′ .

Proof. Since ρFO emulates GO′ , there exists a simulator SD for the dummy
adversary.

Define O′′ as follows: O′′ internally simulates SD and O′, passes each message
SD sends to G to O′, sends each output-to-fnct output from O′ to G and each
output-to-adv output to SD, and forwards the communication between SD and
the environment. By construction, it holds that

Exec
(
ρF
O
,D,Z[FO,GO

′
]
) c≡ Exec

(
GO
′
,SD,Z[FO,GO

′
]
)

≡ Exec
(
GO
′′
,D,Z[FO,GO

′
]
)

Since SD runs in polynomial time, (FO,GO′)-augmented environments can
simulate (FO,GO′′)-augmented environments. Therefore, it follows from Propo-
sition 4.8 that ρFO ≥FO,GO′′ GO

′′ and GO′′ ≥FO,GO′′ ρF
O . By the composition

theorem we have that ρπ ≥FO ρF
O . Hence

ρπ ≥
FO

ρF
O
≥
GO′′
GO
′′

Since it holds that GO′′ ≥FO,GO′′ ρF
O , one can iteratively replace all instances

of IDEAL(GO′′) invoked by a GO′′-augmented environment with instances of
IDEAL(ρFO), obtaining an FO-augmented environment. Therefore, it holds that
ρπ ≥GO′′ ρF

O . The statement follows from the transitivity of GO′′ -emulation.

4.3.4 Polynomial Simulatability
We show a unique feature of our framework: For appropriate oracles to be defined
below, augmented environments do not “hurt” UC-secure protocols. This means

72 CHAPTER 4. COMPOSABLE MPC IN THE PLAIN MODEL

that a protocol that was proven secure in the UC framework is also secure in
our framework. As a consequence, our security notion is fully compatible with
UC security.

Definition 4.14 (Polynomial Simulatability). Let O be a shielded oracle, F a
functionality. Say that FO is polynomially simulatable if there exists a PPT
functionalityM such that

FO ≥
FO
M

If a functionality FO is polynomially simulatable then the super-polynomial
power of the oracle O is totally “shielded away” from the environment. Note that
in Definition 4.14, indistinguishability must hold for augmented environments
not only for polynomial-time environments.

As a consequence, FO-augmented environments can be replaced by polynomial-
time environments if FO is polynomially simulatable.

Theorem 4.15 (Reduction to polynomial time Environments). Let O be a
shielded oracle and F a functionality such that FO is polynomially simulatable.
Let π, φ be protocols that are PPT or in the FO-hybrid model. It holds that

π ≥
FO

φ ⇐⇒ π ≥
poly

φ

where the right-hand side means that π emulates φ in the presence of all FO-
augmented environments that never invoke an instance of IDEAL(FO) (outside
of the challenge protcol).

Proof Idea. Poly-emulation implies FO-emulation: Since FO is polynomially
simulatable, there exists a PPT functionalityM such that FO ≥FO M. Given
a FO-augmented environment Z, replace all instances of IDEAL(FO) which are
invoked by Z outside of the challenge protocol with instances of the ideal protocol
with functionalityM. Indistinguishability follows by reduction to π ≥FO FO.
Treat all instances ofM as part of a new environment Z ′ which internally runs
Z. It holds that Z ′ is PPT becauseM and Z are PPT. Then use the premise
π ≥poly φ.

The converse is trivial.

Since FO-augmented environments that never invoke instances of IDEAL(FO)
(outside of the challenge protcol) are identical to UC-environments, the following
corollary immediately follows.

Corollary 4.16 (Compatibility with the UC Framework). Let O be a shielded
oracle and F a functionality such that FO is polynomially simulatable. It holds
that

π ≥
FO

φ ⇐⇒ π ≥
UC
φ

Note that this does not contradict the classical impossibility results of the
UC framework (e.g. [CF01]): If π ≥FO FO for a polynomially simulatable FO,
then this only implies that π ≥UC FO, but it does not follow that π ≥UC F .
Although the super-polynomial power of O is shielded away from the outside, it
is indeed necessary.

4.3. SHIELDED ORACLES 73

Replacing augmented environments with polynomial-time environments will
be a key property in various proofs later in this chapter. In particular, it will
allow us to prove the security of protocols in our framework using the relatively
weak primitive parallel CCA-secure commitmens as opposed to CCA-secure
commitments, which were used in constructions in the Angel-based security and
UC with super-polynomial helpers framework.

Remark 4.17. Note that a shielded oracle O can still “hurt” the security of a
functionality F even if FO is polynomially simulatable. Consider the following
example: Let F be the two-party functionality that receives a group element g
from party A and an integer x from party B and outputs (g, gx) to A and the
adversary. Let O be the oracle that when receiving (g, gx) computes the discrete
logarithm x of gx to the base g and outputs x to the adversary. Furthermore,
let M be the PPT functionality that on input g and x from A and B outputs
(g, gx) to A and (g, x) to the adversary. It holds that FO ≥FO M. Hence, FO
is polynomially simulatable but the adversary learns the secret input of B.

Next, we show that by suitably tweaking a given oracle O one can make FO
polynomially simulatable while preserving the security relation.

Lemma 4.18 (Derived Oracle). Let O be a shielded oracle such that π ≥FO FO.
Then there exists a shielded oracle Õ such that π ≥

FÕ
F Õ and additionally F Õ

is polynomially simulatable.

Proof. (See Fig. 4.5 for a graphical depiction of the proof.) Since π emulates
FO, there exists a simulator SD for the dummy adversary D. Define the shielded
oracle Õ as follows: Õ internally simulates SD and O, passes each message SD
sends to F to O, sends each output-to-fnct output from O to F and each
output-to-adv output from O to SD, and forwards the communication between
SD and the environment.

By construction, for all FO-augmented environments Z it holds that

Exec(π,D,Z[FO]) c≡ Exec(FO,SD,Z[FO]) = Exec(F Õ,D,Z[FO])

It follows from Proposition 4.8 that π ≥FO F Õ and F Õ ≥FO π. Since SD runs
in polynomial time, FO-augmented environments can simulate F Õ-augmented
environments. Therefore, π ≥

FÕ
F Õ and F Õ ≥

FÕ
π. The theorem follows by

definingM to be the functionality that internally simulates the protocol π.

The following corollary shows that UC-secure protocols can be used as
sub-protocols in protocols proven secure in our framework, while preserving
security.

Corollary 4.19 (Composition with UC-secure Protocols). Let π, ρF be protocols
such that π ≥UC F and ρF ≥GO GO. Then there exists a shielded oracle O′ such
that

ρπ ≥
GO′
GO
′

Proof. Since ρF is PPT there exists a shielded oracle O′ such that GO′ is
polynomially simulatable and ρF ≥GO′ GO

′ by Lemma 4.18. From Corollary 4.16

74 CHAPTER 4. COMPOSABLE MPC IN THE PLAIN MODEL

Z[FO] resp. Z[F Õ]

DP1 P2 P3

π

Z[FO] resp. Z[F Õ]

SDP1 P2 P3

F O
FO

Z[FO] resp. Z[F Õ]

ŜP ′1 P ′2 P ′3

DP1 P2 P3

M

π

Z[FO] resp. Z[F Õ]

DP1 P2 P3

F SDO
ÕF Õ

c≡

≡

≡
Figure 4.5: Derived oracle (cp. Lemma 4.18)

it follows that π ≥GO′ F . The statement then follows from the composition
theorem and the transitivity of GO′ -emulation.

The last result demonstrates the compatibility of our framework with the UC
framework again. Note that while it is much more desireable to “plug” a protocol
proven secure in our framework into a UC-secure protocol—in order to obtain a
secure protocol in the plain model (this will be addressed in Theorem 4.34 and
Corollary 4.38)—doing it the other way around is still a convenient property. For
instance, it allows instantiating “auxiliary” functionalities such as authenticated
message transmission or secure message transmission, while preserving security.

4.3.5 Relation with Angel-based Security
A natural question that arises is how our security notion compares to Angel-based
security. We will prove that for a large class of Imaginary Angels – which to the
best of our knowledge includes all Imaginary Angels that can be found in the
literature – Angel-based security implies our security notion. However, assuming
the existence of one-way functions, the converse does not hold. Thus, our notion
is strictly weaker than Angel-based security.9

In the following, we define the class of Imaginary Angels for which it holds
that Angel-based security implies our security notion.10

9Note that the following results can be generalized to also hold for “UC security with
super-polynomial helpers”, see [Bro+17] for a proof.

10 [Bro+17] considered a more general class. However, the definition of this class is quite
involved. We have therefore chosen to present a proof for a smaller class that is easier to define.

4.3. SHIELDED ORACLES 75

Definition 4.20 (Normal Imaginary Angel). An Imaginary Angel Γ is called
normal if for any query q and any two sets C, C′ of corrupted parties such that
C ⊆ C′ it holds that Γ(q, C) = Γ(q, C′).

Theorem 4.21 (Relation between Angel-based Security and Shielded Oracles).

1. Assume π ≥Γ-Angel F for an Imaginary Angel Γ. If Γ is normal, then there
exists a shielded oracle O such that π ≥FO FO.

2. Assume the existence of one-way functions. Then there exists a protocol
ρ (in the Fauth-hybrid model), a functionality G and a shielded oracle O
such that ρ ≥GO GO but no Imaginary Angel Γ can be found such that
ρ ≥Γ-Angel G holds.

Proof Sketch. 1. Let ρF be the protocol that consists of one instance of the
ideal protocol with functionality F and polynomially many instances of
a protocol λ. The protocol λ is the ideal protocol with a functionality
that ignores all inputs coming from the parties and outputs a notification
message, say ⊥, to one of the parties when receiving a message from the
adversary. Instances of λ are invoked through special invocation inputs
provided by the environment. Let ρπ be like ρF , except that the one
instance of the ideal protocol with functionality F is replaced with an
instance of π. Since π ≥Γ-Angel F , it follows from the composition theorem
of the Angel-based security framework that ρπ ≥Γ-Angel ρ

F . Hence, there
exists a simulator SD such that for all environments ZΓ it holds that
ExecUC(ρπ,D,ZΓ) c≡ ExecUC(ρF ,SΓ

D,ZΓ).
Define the shielded oracle O as follows: O internally runs SD and Γ. O
forwards all messages from the ideal functionality to SD. Messages coming
from the environment are relayed by O to SΓ

D if they are addressed to
the instance of π and ignored otherwise. O answers the oracle queries of
SD by running Γ. If SD sends a message to the functionality or to the
environment, O forwards this message to the respective ITI. Messages sent
by SD to other ITIs are ignored.
Given an FO-augmented environment Z, define the Γ-Angel environment
Z ′ as follows: Z ′ internally runs Z. Messages between the parties of π and
Z are relayed. If Z sends a message to the adversary, Z ′ forwards it if it is
addressed to the instance of π. Otherwise, Z ′ ignores this message. When
Z invokes and instance of IDEAL(FO), Z ′ provides a special invocation
input to its challenge protocol instructing it to invoke an instance of λ
using the same SID and PIDs as the instance of IDEAL(FO) invoked by
Z. Z ′ internally simulates each instance of IDEAL(FO) invoked by Z
using the Imaginary Angel Γ. When Z sends an instruction to corrupt
a party, Z ′ instucts the adversary to corrupt the party with the same
identity. Messages coming from the adversary are forwared by Z ′ to Z.
Outputs coming from an instance of λ are ignored by Z ′. Finally, Z ′
outputs whatever Z outputs.
Let S = D. It is easy to see that ExecUC(ρπ,D,Z ′Γ) = Exec

(
π,D,Z[FO]

)
and ExecUC(ρF ,SΓ

D,Z ′Γ) = Exec
(
FO,S,Z[FO]

)
holds (note that since Γ

76 CHAPTER 4. COMPOSABLE MPC IN THE PLAIN MODEL

is normal it behaves the same way in each instance of O as in the interaction
with Z ′). Therefore, Exec

(
π,D,Z[FO]

) c≡ Exec
(
FO,S,Z[FO]

)
. The

statement now follows from the completeness of the dummy adversary
(Proposition 4.8).

2. Let ρ̃ be a string commitment protocol such that ρ̃ ≥FOstcom
FOstcom and FOstcom

is polynomially simulatable (cf. Section 2.4.3 for a definition of the ideal
string commitment functionality Fstcom). One can find such a protocol
and shielded oracle by taking the Angel-based protocol in [CLP10], which
is based on one-way functions, and applying part 1 of this theorem and
Lemma 4.18.11

Define the protocol ρ to be identical to ρ̃ except for the following instruction:
Before the actual commit phase begins, the receiver R chooses a bitstring
s ∈ {0, 1}n uniformly at random (n is the security parameter) and commits
to s to the sender by running the program of the honest sender in ρ̃ with
the PID of the sender and the same SID as the protocol. The sender replies
with, say, an all-1 string (1, . . . , 1) ∈ {0, 1}n. The receiver R then checks
if the bitstring he received from the sender equals s. If yes, R outputs “11”
(2-bit string). Otherwise, the protocol parties execute the protocol ρ̃.
It holds that ρ ≥FOstcom

FOstcom. This follows from the following argument:
First, it holds that ρ ≥FOstcom

ρ̃. This follows from the fact that an envi-
ronment can only distinguish ρ and ρ̃ if it guesses the string s correctly.
However, the probability that an FOstcom-augmented environment guesses s
correctly is negligible. This is because since FOstcom is polynomially simu-
latable, every FOstcom-augmented environment can be replaced by a PPT
environment and PPT environments can guess s correctly only with negli-
gible probability. In order to proof the latter claim, assume there is a PPT
environment Z that guesses s correctly with non-negligible probability.
Construct an adversary A interacting with ρ̃ as follows: A corrupts the re-
ceiver. A internally simulates Z and forwards all messages from the sender
to Z and vice versa. When Z outputs its guess, A forwards this guess
to his own environment, which checks if the bitstring it received equals
the input to the sender. By construction, A’s output is correct with non-
negligible probability. However, this cannot be simulated in the ideal model
experiment, contradicting ρ̃ ≥FOstcom

FOstcom. Hence, ρ ≥FOstcom
ρ̃ holds and

therefore ρ ≥FOstcom
FOstcom also holds by the transitivity of FOstcom-emulation

(Proposition 4.9).
Now assume for the sake of contradiction that there exists an Imaginary
Angel Γ s. t. ρ ≥Γ-Angel Fstcom holds. Then there exists a simulator SimΓ for
the dummy adversary that must be able to extract commitments (generated
by running the program of the honest sender with the PID of the sender
and the SID of the protocol) with overwhelming probability. Consider the
following adversary AΓ. AΓ corrupts the sender. AΓ internally simulates a
copy of the simulator SimΓ and forwards the commitment messages to the
bitstring s between the receiver R and SimΓ. AΓ then sends the output s′
of SimΓ to the receiver as his guess. By construction, AΓ’s guess is correct

11One could also use the commitment scheme in Corollary 4.28 to obtain a separating
example. However, this scheme is based on one-way permutations.

4.4. A CONSTANT-ROUND COMMITMENT SCHEME 77

Z

A

Sim R
1 s← {0, 1}n

4 s′
?= s

Γ

2 commit(s)

3 s′

5 “11”

n Step n
authenticated communication between parties

commit(·) Protocol messages of the base commitment ρ̃

Figure 4.6: The adversary AΓ in the proof of the second part of Theorem 4.21.

with overwhelming probability, forcing the receiver to output “11” in the
real model experiment with overwhelming probability. This cannot be
simulated in the ideal model experiment, however. We have thus reached
a contradiction. (For an illustration, see Fig. 4.6).

Theorem 4.21 raises the question if it is possible to construct secure protocols
with “interesting properties” in our framework that are not (known to be) secure
in the Angel-based setting. We will answer this question in the affirmative and
present a modular construction of a general MPC protocol in the plain model that
is constant-round (and black-box) and based only on standard polynomial-time
hardness assumptions (Theorem 4.39).

We would like to briefly note that by Theorem 4.21 we can already conclude
that we can realize every standard well-formed12 functionality in our framework
in the plain model by importing the results of [CLP10].

Proposition 4.22 (General MPC in the Plain Model). Assume the existence
of enhanced trapdoor permutations. Then, for every standard well-formed func-
tionality F , there exists a shielded oracle O and a protocol ρ in the plain model
such that

ρ ≥
FO
FO

4.4 A Constant-Round Commitment Scheme
In this section, we will construct a constant-round (bit) commitment scheme that
is secure in our framework. We note that we assume authenticated communication
and therefore implicitly work in the Fauth-hybrid model (cf. Definition 2.23).

12Cf. Section 2.4.2 for a definition of standard well-formed functionalities

78 CHAPTER 4. COMPOSABLE MPC IN THE PLAIN MODEL

4.4.1 Construction and Security Proof
Let 〈C,R〉 be a tag-based commitment scheme13 that we will use as a build-
ing block for our bit commitment scheme Π later. We require 〈C,R〉 to be
immediately committing as in the following definition.

Definition 4.23 (Immediately Committing). A commitment scheme 〈C,R〉 is
called immediately committing if the first message in the protocol comes from
the sender and already perfectly determines the value committed to.

The above definition implies that the commitment scheme is perfectly binding
and super-polynomially extractable, i. e., given a transcript, an extractor can
find the unique committed value through exhaustive search.

In the description of our commitment scheme Π, we use the following notation:
Let s = ((si,b)) ∈ {0, 1}2n for i ∈ [n] and b ∈ {0, 1} be a 2n-tuple of bits. For
an n-bit string I = b1 · · · bn, we define sI := (s1,b1 , . . . , sn,bn). Thus I specifies a
selection of n of the si,b, where one of these is selected from each pair si,0, si,1.

Construction 1. The bit commitment scheme Π is defined as follows. Whenever
the basic commitment scheme 〈C,R〉 is used, the committing party uses its pid
and the sid as its tag. Let m ∈ {0, 1}

• Commit(m):

– R: Choose a random n-bit string I and commit to I using 〈C,R〉
– S: Pick n random bits si,0 and compute si,1 = si,0 ⊕m for all i ∈ [n].
– S and R run 2n sessions of 〈C,R〉 in parallel in which S commits to
the si,bi (i ∈ [n], bi ∈ {0, 1}).

• Unveil:

– S: Send all si,bi ∈ {0, 1} (i ∈ [n], bi ∈ {0, 1}) to R.
– R: Check if s1,0 ⊕ s1,1 = . . . = sn,0 ⊕ sn,1. If this holds, unveil the
string I to S.

– S: If R unveiled the string correctly, then unveil all sI .
– R: Check if S unveiled correctly. If yes, let s′1, . . . , s′n be the unveiled

values. Check if s′i = si,bi for all i ∈ [n]. If so, output m := s1,0⊕s1,1.

The above construction is reminiscent of [DS13] who presented a compiler
that transforms any ideal straight-line extractable commitment scheme into an
extractable and equivocal commitment scheme.

Note that if an adversary is able to learn the index set I in the commit phase
then he can easily open the commitment to an arbitrary message m′ by sending
“fake” shares ti,b, such that tI = sI , and t¬I = sI ⊕ (m′, . . . ,m′). (Here ⊕ is
interpreted element-wise.) Hence Π is equivocal for super-polynomial machines.

We claim that this protocol securely realizes FOcom for a certain shielded
oracle O. We first describe O, before we move to the theorem.

Construction 2. We define the actions of the shielded oracle O as follows:14
13Cf. Section 2.3.2 for a definition of tag-based commitment schemes.
14For ease of notation, we drop the prefixes output-to-fnct and output-to-adv in the

messages output by O.

4.4. A CONSTANT-ROUND COMMITMENT SCHEME 79

If the sender is corrupted

• O chooses a random n-bit string I, and commits to the string I to the
adversary A using 〈C,R〉.

• O acts as honest receiver in 2n sessions of 〈C,R〉 in parallel. After these
sessions have completed, O extracts each instance of 〈C,R〉, obtaining
the shares (si,b for i ∈ [n]) and b ∈ {0, 1}. (If a commitment cannot be
extracted, the corresponding share is set to ⊥)

• O computes mi := si,0⊕ si,1 for all i ∈ [n]. (Indices i where one or both of
the si,b is ⊥ are ignored.) Let m ∈ {0, 1} be the most frequently occurring
mi. (If there are multiple mi occurring with the highest frequency, m
chooses m = 0). O relays (Commit, m) to Fcom

• When A sends shares s′1,0, s′1,1, . . . , s′n,0, s′n,1 in the unveil phase of Π, O
acts as an honest receiver, unveiling I.

• Finally, if A’s unveil is accepting, O instructs Fcom to unveil the message.

If the receiver is corrupted

• O acts as the sender in an execution of Π, engaging in a commit session of
〈C,R〉 with the adversary. If the adversary’s commitment is accepting, O
extracts this instance of 〈C,R〉 obtaining a string I (If parts of this string
cannot be extracted they are set to ⊥).

• O picks n random bits si,0, and lets si,1 = si,0 for all i ∈ [n], as if it were
honestly committing to m = 0. Next, it runs 2n instances of Π in parallel,
committing to the si,b.

• In the unveil phase, when O learns the message m, it computes “fake”
shares ti,b as follows: tI = sI and t¬I = s¬I ⊕ (m, . . . ,m) (⊕ is interpreted
element-wise.). O sends these shares ti,b to the adversary.

• O acts as the honest sender in the unveil phase of Π. If A’s unveil of I is
accepting, then O honestly executes the unveil phase for all bit shares tI .
(Otherwise, O outputs nothing and ignores all further inputs.)

If no parties are corrupted, O simulates an honest execution of protocol
Π on input 0, forwarding all messages to the adversary. Since O knows the index
string I (because O has created it itself) it can create fake shares just like in the
case of a corrupted receiver.

If both parties are corrupted, O just executes the dummy adversary D
internally. (Note that Z only interacts with D in the real experiment if both
parties are corrupted).

This concludes the description of the shielded oracle O. Observe that O can
be implemented in super-polynomial time. Also note that in the case of both or
no party being corrupted, O can be implemented in polynomial time.

Before we state and prove our theorem, we define the following security
notion that will be used in the proof:

80 CHAPTER 4. COMPOSABLE MPC IN THE PLAIN MODEL

Definition 4.24 (Strong Opcca-one-way Hiding). Let 〈C,R〉 be a tag-based
commitment scheme. Let Expstow

〈C,R〉,A(z)(n) denote the output of the following
probabilistic experiment: On input 1n, z, A selects a tag tag and sends that
tag to the experiment. The experiment then picks a random string I = b1 · · · bn
and commits to I using 〈C,R〉 and the tag tag selected by the adversary. A
then sends a vector (a1, . . . , an) to the experiment, where ai ∈ {0, 1,⊥}. Let
M = {l | al 6= ⊥}. The output of the experiment is 1 if card(M) ≥ n/2 and
al = bl for all l ∈M , and 0 otherwise. During the experiment, A has access to
the parallel CCA oracle Opcca of 〈C,R〉.

An adversary A is called valid if he does not query the parallel CCA oracle
on tags that are equal to the challenge tag tag during the experiment.
〈C,R〉 is called strong Opcca-one-way hiding if for every valid PPT adversary

A there exists a negligible negl such that for all n ∈ N, z ∈ {0, 1}∗ it holds that

Pr[Expstow
〈C,R〉,A(z)(n) = 1] ≤ negl(n)

We have the following easy lemma.

Lemma 4.25. If a commitment scheme 〈C,R〉 is parallel CCA-secure, then it
is also strong Opcca-one-way hiding

Proof idea. Replace the challenge commitment (which is a commitment to a
random string I) with a commitment to 0n using the parallel CCA security of
〈C,R〉. This way, the view of the adversary A becomes independent of I. A can
therefore only guess. Since A has to guess at least n/2 bits of I, A will only win
with negligible probability.

We are now ready to state the theorem:

Theorem 4.26. Assume that 〈C,R〉 is parallel CCA-secure15 and immediately
committing. Then Π ≥FOcom

FOcom, where Π is as defined in Construction 1 and
O is the shielded oracle as defined in Construction 2.

Proof. By Proposition 4.8 it suffices to find a simulator for the dummy adversary.
By construction of O, the simulator in the ideal experiment can be chosen to be
identical to the dummy adversary.

The main idea of the proof is to consider a sequence of hybrid experiments
for a PPT environment Z that may externally invoke polynomially instances
of IDEAL(FO) and iteratively replace all those instances by the real protocol
Π. This is done in a specific order utilizing the fact that the super-polynomial
computations of O are hidden away and thus the replacements are unnoticeable
by Z, or otherwise we would obtain a PPT adversary against the parallel CCA
security of 〈C,R〉.

Step 1. Let Z be a (PPT) environment that externally invokes polynomially
many instances of IDEAL(FO). We denote the output of Z by the random
variable Exec

(
FOcom,Z

)
. Furthermore, we denote by Exec

(
Π,Z

)
the output of

Z if all instances of IDEAL(FO) are replaced by instances of the real protocol
Π. We show that the following holds

Exec
(
FOcom,Z

) c≡ Exec
(
Π,Z

)
15Cf. Definition 3.11 for a definition of this notion

4.4. A CONSTANT-ROUND COMMITMENT SCHEME 81

By a standard averaging argument, we can fix some random coins r for Z.
Thus we can assume henceforth that Z is deterministic.

We call instances of IDEAL(FO) or Π where the sender or receiver is cor-
rupted sender sessions or receiver sessions, respectively. Since instances of
IDEAL(FO) can be implemented in polynomial time in the cases where both or
no party is corrupted, they can be treated as part of the environment in these
cases. Hence, we only need to consider environments that only invoke ideal
sender sessions and ideal receiver sessions.

We say a discrepancy occurred if in any ideal sender session the oracle O
extracts a valuem, but Z later correctly unveils a valuem′ 6= m. First notice that
unless a discrepancy occurs, the output of an ideal sender session is identically
distributed to the output of the real protocol Π.

We will now distinguish two cases:

1. The probability that Z causes a discrepancy is negligible.

2. The probability that Z causes a discrepancy is non-negligible.

Case 1: We replace all ideal sender sessions with instances of Π, incurring
only a negligible statistical distance. We are left with a hybrid experiment in
which only the receiver sessions are still ideal. We will now iteratively replace
ideal receiver sessions with the real protocol, beginning with the last receiver
session that is started.

Let q be an upper bound on the number of ideal receiver sessions that Z
invokes. Define hybrids H0, . . . ,Hq as follows. Hybrid Hi is the experiment
where the first i receiver sessions are ideal and the remaining q − i ideal receiver
sessions are replaced by instances of Π. The output of the experiment Hi is
the output of Z. Clearly, Hq is identical to the experiment where all receiver
sessions are ideal, whereas H0 is the experiment where all receiver sessions are
real. Let Pi = Pr[Hi = 1] denote the probability that Z outputs 1 in the hybrid
experiment Hi. Assume now that ε := |P0 − Pq| is non-negligible, i. e., Z has
non-negligible advantage ε in distinguishing H0 from Hq. We will now construct
an adversary A that breaks the parallel CCA security of Π.

By the averaging principle, there must exist an index i∗ ∈ [q] such that
|Pi∗−1 − Pi∗ | ≥ ε/q. By a standard coin-fixing argument, we can now fix the
coins that are used in the first i∗ − 1 receiver sessions up until the point where
the i∗th receiver session starts, while maintaining Z’s distinguishing advantage.16
Since we fixed Z’s coins before, the experiment is now deterministic until the
start of session i∗. In particular, the first message of Z in session i∗, which is
the first message of a commitment on a bitstring I using 〈C,R〉, is computed
deterministically.

We can now construct the non-uniform adversary A against the parallel CCA
security of 〈C,R〉. As a non-uniform advice, A receives a complete trace of all
messages sent up until the point where the i∗th receiver session starts. This

16Note that “fixing the coins up until the point where event E occurs” means the following:
Let M be the (non-uniform) turing machine that internally simulates the entire execution
experiment given the security parameter 1n, the environment’s input z and two random tapes
r1, r2 ∈ {0, 1}L, where L = poly(n) is an upper bound on the number of random coins used in
the experiment. M(1n, z, r1, r2) simulates the execution experiment using the random tape r1
up until the point where event E occurs and uses r2 afterwards. “Fixing the coins up until the
point where event E occurs” now means that the first random tape r1 is fixed.

82 CHAPTER 4. COMPOSABLE MPC IN THE PLAIN MODEL

includes all bit strings I1, . . . , Ii∗ to which Z committed to in all receiver sessions
1, . . . , i∗. Note that all messages sent up until the point where session i∗th starts
come from a deterministic process, and the Ii are uniquely determined by the
first messages of each session i since 〈C,R〉 is immediately committing.
A now proceeds as follows. A internally simulates Z and all sessions invoked

by Z. This simulation can be done in polynomial time since all ideal sender
sessions and the ideal receiver sessions i∗ + 1 through q have been replaced by
instances of Π, and A knows the index strings Ii that are used in the ideal
receiver sessions 1 through i∗.

Let m∗ be the message that Z chooses as input for the sender in the receiver
session i∗. A reads I def= Ii∗ from its non-uniform advice and samples a tuple sI of
n random strings. It then computes s¬I = sI⊕ (m∗, . . . ,m∗) and s′¬I = sI for all
i ∈ [n]. A sends the messages (s¬I , s′¬I) to the parallel CCA security experiment.
In order to simulate the i∗th receiver session in its internal simulation, A forwards
all the messages between the experiment and Z and simultaneously commits
honestly to all values sI to Z. When Z requires that the commitments to all sI
be opened, A honestly unveils these. When Z terminates, A outputs whatever
Z outputs in the experiment. This concludes the description of A.

It holds that if the parallel CCA security experiment picks the messages s′¬I ,
Z obtains a commitment to the all-zero string in A’s simulation. Therefore, in
this case the view of Z is distributed identically to the view inside the hybrid
Hi∗ . If the parallel CCA security experiment picks the messages s¬I , Z obtains
a commitment to the message m which is identical to the view of Z inside the
hybrid Hi∗−1. Therefore, it follows that∣∣Outputpcca

Com,A(0)−Outputpcca
Com,A(1)

∣∣
=
∣∣Pr[Hi∗ = 1]− Pr[Hi∗−1 = 1]

∣∣
= |Pi∗ − Pi∗−1|
≥ ε/q,

Hence, A breaks the parallel CCA security of 〈C,R〉 (note that in this case A
does not need the parallel CCA oracle.)

Case 2: We now turn to case 2. First note that if there exists an environment
that causes a discrepancy with non-negligible probabilty than there also exists an
environment that invokes, apart from polynomially many ideal receiver sessions,
exactly one ideal sender session and also causes a discrepancy with non-negligible
probabilty. This is because if a general environment Z causes a discrepancy with
non-negligible probability, then there exists a session j∗ in which a discrepancy
happens for the first time. An environment Z ′ that invokes only one ideal sender
session can then internally run Z, guess j∗ and simulate all the other sender
sessions with the real protocol. It holds that Z ′ also causes a discrepancy with
non-negligible probability.

So we henceforth assume that there exists an environment Z that causes a
discrepancy with non-negligible probabilty and invokes at most q ideal receiver
sessions and only one ideal sender session. In what follows, we will replace
all ideal receiver sessions with instances of the real protocol Π using the same
strategy as in case 1. Define the hybrids H0, . . . ,Hq as in case 1 except that
now Z can additionally invoke exactly one ideal sender session in all these

4.4. A CONSTANT-ROUND COMMITMENT SCHEME 83

hybrids. Clearly, Hq is identical to the experiment where all receiver sessions
are ideal, whereas H0 is the experiment where all receiver sessions are real. Let
Pi = Pr[Hi = 1] again.

Assume that Z can distinguish between H0 and Hq with non-negligible
advantage ε. Then there exists an index i∗ such that |Pi∗−1 − Pi∗ | ≥ ε/q. We
can now fix the coins that are used in the first i∗ − 1 receiver sessions and the
one ideal sender session up until the point where the i∗th receiver session starts,
while maintaining Z’s distinguishing advantage.

We will construct a non-uniform adversary A′ that breaks the parallel CCA
security of 〈C,R〉. As in case 1, A′ receives as a non-uniform advice a complete
trace of all messages sent up until the point where the i∗th receiver session starts
which also includes all index strings Ii to which Z committed in all receiver
sessions up to and including the receiver session i∗, and possibly the shares to
which Z committed in the only ideal sender session.
A′ now proceeds the same way as in case 1. It internally runs Z and simulates

either hybrid Hi∗−1 or Hi∗ for Z by embedding the challenge of the parallel CCA
security experiment into the simulated receiver session i∗. The adversary A′
simulates all (ideal) receiver sessions i ≤ i∗ with the help of his advice, and all
receiver sessions i > i∗ by running instances of the real protocol Π. If Z has
already started to commit to the shares in the only ideal sender session then (by
definition) these shares are also part of A′’s advice and A′ can simulate the ideal
sender session using its advice. (Note that 〈C,R〉 is immediately committing,
hence the first message of (the parallel executions of) 〈C,R〉 uniquely determines
the shares). If Z has not yet started to commit to the shares in the ideal sender
session, then A′ can use its parallel CCA oracle to extract them by forwarding
the corresponding messages between the oracle and Z (note that the tag in A’s
challenge is different from the tag in his oracle query since the sessions invoked
by Z have unique SIDs). Finally, A′ outputs whatever Z outputs.

The analysis of A′ is the same as in case 1 and we end up with the conclusion
that A′ breaks the parallel CCA security of protocol 〈C,R〉.

Since a discrepancy can be detected in polynomial-time, the above argument
allows us to reduce to environments that cause a discrepancy with non-negligible
probability and only invoke exactly one ideal sender session. Let Z be such an
environment.

We will now construct an adversary A′′ against the strong Opcca-one-way
hiding security of 〈C,R〉 (cf. Definition 4.24). A′′ proceeds as follows: A′′
forwards the messages between the experiment and Z for the commitment to a
random bitstring I that Z expects from the oracle O in the ideal sender session.
When Z sends the commitments on the shares si,b, A′′ forwards them to its
parallel CCA oracle, thus learning the values si,b that Z committed to. A can
now simulate the oracle O and reconstruct the message m defined by these shares
(by defining m to be the most frequent value that occurs in {si,0 ⊕ si,1}i∈[n]).
When Z sends the shares s′i,b in the unveil phase, A′′ compares them to the
extracted shares si,b and defines the vector (a1, . . . , an) as

al :=
{
bl if ∃ bl ∈ {0, 1} : sl,bl = s′l,bl ∧ sl,¬bl 6= s′l,¬bl (?)
⊥ else (if no such bl exists)

and sends (a1, . . . , an) to the experiment.

84 CHAPTER 4. COMPOSABLE MPC IN THE PLAIN MODEL

We will now analyze A′′’s success probability. Let M be the set of indices l
for which condition (?) holds. If Z causes a discrepancy, then it holds that all
tuples of shares (s′i,0, s′i,1) define the same message m′ and this message m′ is
different from m, the most frequently occuring value of {si,0 ⊕ si,1}i∈[n]. Thus
card(M) ≥ n/2. Furthermore, for each l ∈M , bl must equal the lth bit of the
bitstring to which A′′’s experiment has committed if Z causes a discrepancy.

Hence, A′′ wins with non-negligible probability in the strong Opcca-one-way
hiding experiment since Z, by assumption, causes a discrepancy with non-
negligible probability.

Step 2. We will now prove that for every FO-augmented environment

Exec
(
Π,D,Z[FOcom]

) c≡ Exec
(
FOcom,D,Z[FOcom]

)
.

If the sender is corrupted then the real and ideal experiment are statistically
close. This follows from the fact that by step 1, case 2, an FOcom-augmented
environment can cause a discrepancy only with negligible probability.

If the receiver is corrupted then by step 1 the real and ideal experiment are
both indistinguishable to the experiment where all instances of IDEAL(FO)
have been replaced by instances of the real prototol. Hence the outputs of the
real and ideal experiment are indistinguishable by transitivity.

If no party is corrupted then one can first replace all ideal sender sessions and
ideal receiver sessions with the real protocol using step 1, obtaining a polynomial
time environment that does not invoke super-polynomial time entities. Then one
can prove indistinguishability by using a very similar reduction to the parallel
CCA security as in step 1, case 1.

If both parties are corrupted then the real and ideal experiment are identically
distributed.

Remark 4.27 (Separating Example between SPS Security and Shielded Ora-
cles). One can obtain a protocol that is secure in the SPS security framework
but not in our framework by assuming that the commitment scheme 〈C,R〉 in
construction 1 is only computationally hiding, statistically binding and extractable
(cf. Definition 2.10) but not non-malleable.

Concretely, instantiating 〈C,R〉 with the extractable commitment scheme
in [PW09] yields the desired result (note that the protocol in [PW09] is not a
tag-based commitment scheme but can be trivially made into (a malleable) one
where the parties simply ignore the tag). SPS security follows easily from some
of the arguments in the above proof (in particular, the case of a corrupted sender
follows from a similar argument as in the reduction to the strong Opcca-one-way
hiding security of 〈C,R〉 in step 1, case 2; the case of a corrupted receiver follows
from a similar argument as in the reduction to the parallel CCA security of 〈C,R〉
in step 1, case 1). Furthermore, since an augmented environment interacting
with this protocol can easily cause a discrepancy by simply corrupting the sender
and forwarding the messages between the honest receiver of this protocol and
an additionally invoked ideal receiver session, this protocol is not secure in our
framework.

The underlying commitment scheme 〈C,R〉 can be instantiated with the 8-
round construction in [Goy+14]. It is straightforward to see that this construction
is parallel CCA-secure by using the extractor in its security proof. Deviating from

4.4. A CONSTANT-ROUND COMMITMENT SCHEME 85

[Goy+14] (which used the two-round protocol from [Nao89] based on one-way
functions), we instantiate the basic commitment scheme in this construction with
the non-interactive perfectly binding scheme from [Blu81] (which is based on
one-way permutations) because we require an immediately committing protocol.
Since this instantiation is constant-round, we obtain the following result:
Corollary 4.28. Assume the existence of one-way permutations. Then there
exists a constant-round bit commitment protocol Πcom and a shielded oracle O
such that Πcom ≥FOcom

FOcom.
The protocol Πcom in Corollary 4.28 is non-black-box because the construction

from [Goy+14] (instantiated as described above) is non-black-box. However,
the only non-black-box part of the construction from[Goy+14] is a ZK proof
for proving knowledge of committed values and that these values satisfy linear
relations. As pointed out in [Goy+14], this can both be done making only black-
box use of a homomorphic commitment scheme. Instantiating the construction
from [Goy+14] with a (perfectly binding) homomorphic commitment scheme thus
yields a fully black-box construction. Since we need an immediately committing
scheme in the plain model for our protocol we let the sender (and not a trusted
setup) generate the commitment key of the homomorphic commitment scheme.
This can be done if the homomorphic commitment scheme is “verifiable”. A
verifiable homomorphic commitment scheme allows to non-interactively verify
that a commitment key is well-formed (cf. Definition 2.9 for a formal definition).
With this instantiation, we obtain the following corollary:
Corollary 4.29. Assume the existence of verifiable perfectly binding homomor-
phic commitment schemes. Then there exists a constant-round black-box bit
commitment protocol ΠBB

com and a shielded oracle O such that ΠBB
com ≥FOcom

FOcom.

4.4.2 First Application: Constant-Round (Black-Box) ZK
As a first application of the commitment scheme constructed in the previous
section, we present two constant-round zero-knowledge protocols in the plain
model that are secure in our framework.17

By [CF01], there exists a constant-round UC-secure zero-knowledge protocol
ρFcom in the Fcom-hybrid model. Since this protocol is unconditionally secure,
one can find a shielded oracle O′ such that ρFOcom ≥FOcom,FO

′
ZK
FO′ZK, where O is

the shielded oracle as defined in Construction 2. O′ is defined as the simulator
for the (super-polynomial-time) adversary DO. Combining Corollary 4.13 and
Corollary 4.28, one obtains a (non-black-box) constant-round zero-knowledge
protocol based on OWPs.
Corollary 4.30. Assume the existence of one-way permutations. Then there
exists a constant-round zero-knowledge protocol ΠZK and a shielded oracle O
such that ΠZK ≥FOZK

FOZK.

Furthermore, using the protocol [CF01] and combining Corollary 4.13 and
Corollary 4.29, one obtains a constant-round and black-box ZK protocol based
on verifiable perfectly binding homomorphic commitment schemes.

17Note that we will later construct two general MPC protocols that require stronger assump-
tions than the ZK protocols presented in this section (namely enhanced trapdoor permutations
for the first construction and verifiable perfectly binding homomorphic commitment schemes
plus PKE with oblivious public-key generation for the second construction.)

86 CHAPTER 4. COMPOSABLE MPC IN THE PLAIN MODEL

Corollary 4.31. Assume the existence of verifiable perfectly binding homo-
morphic commitment schemes. Then there exists a constant-round black-box
zero-knowledge protocol ΠBB

ZK and a shielded oracle O such that ΠBB
ZK ≥FOZK

FOZK.

4.4.3 A Modular Composition Theorem
We show that we can plug the protocol Π from Construction 1 into a large
class of UC-secure protocols in the Fcom-hybrid model in such a way that the
composite protocol is secure in our framework. We first define Commit-Compute
protocols and parallel-CCA-UC-emulation.

Definition 4.32 (Commit-Compute Protocols). Let ρFcom be a protocol in the
Fcom-hybrid model. We call ρFcom a commit-compute protocol or CC protocol
if it can be broken down into two phases: An initial commit phase, where the
only communication allowed is sending messages to instances of Fcom. After
the commit phase is over, a compute phase begins where sending messages to
instances of Fcom except for Unveil-messages is prohibited, but all other com-
munication is allowed.

Technical Remarks:

• Note that one cannot plug a commitment protocol π that is secure in our framework into
an arbitrary UC-secure protocol and always obtain a protocol secure in our framework.
Consider any protocol ρFcom that UC-realizes the coin toss functionality Fct in the
Fcom-hybrid model (take, e.g., the coin flipping protocol by Blum [Blu81]). Construct
a new protocol ρ̃Fcom out of ρFcom in the following way:
ρ̃Fcom is identical to ρFcom except that in the beginning the receiver chooses n random
bits a1, . . . , an and commits to these bits using π in a predetermined scheduling. The
sender then commits to, say, an all-1 string by sending (commit, 1) to n instances of
Fcom. After the receiver has reveived an OK from all n instances of Fcom, he unveils
all bits. The sender then unveils his bits. The receiver then checks if the bitstring
(b1, . . . , bn) it has received from the sender equals the bitstring (a1, . . . , an). If this
holds, the receiver outputs “11” (2-bit string). Otherwise, both parties execute the
protocol ρFcom .
Since π is hiding, it holds that ρ̃Fcom ≥UC Fct. However, there exists no shielded oracle
O′ such that ρ̃π ≥FO′ct

FO′ct . This is because the adversary can simply forward the
commitments to the ai to instances of π, thereby forcing the receiver to output “11”.

• We implicitly assume that at each activation during the commit phase each party de-
terministically decides if it commits or not during the current activation. This prevents
a protocol party from transmitting the result b = (b1, . . . , bn) of a local randomized
computation by deciding to commit at the i-th activation only if the bit bi equals, say,
1. In particular, it prevents the receiver from running a variation of the above coin
flipping example by sending the commitments to the random bits a1, . . . , an this way.

Definition 4.33 (pCCA-UC-Emulation). We write ρ ≥Opcca -UC φ if a protocol ρ
UC-emulates a protocol φ in the presence of PPT environments that may interact
with the parallel CCA oracle Opcca of a tag-based commitment scheme 〈C,R〉.

In the following, let Π be the protocol as in Construction 1 with an im-
mediately committing and parallel CCA-secure commitment scheme 〈C,R〉 as
building block. Let Opcca be the parallel CCA oracle of 〈C,R〉.

We are now ready to state the theorem:

4.4. A CONSTANT-ROUND COMMITMENT SCHEME 87

Z[GO′]

DP1 P2 P3

GO′

SD

O O

O′G

Figure 4.7: The functionality G with composed oracle O′

Theorem 4.34 (Modular Composition Theorem). Let ρFcom be a CC protocol
and G a functionality. If ρFcom ≥Opcca -UC G then there exists a shielded oracle O′
such that

ρΠ ≥
GO′
GO
′

Proof. Since ρFcom ≥Opcca -UC G there exists a dummy adversary simulator SD.
Let O be the shielded oracle from Construction 2, s. t. Π ≥FOcom

FOcom. We define
the shielded oracle O′ as follows. (For a graphical depiction see Fig. 4.7).
O′ internally simulates multiple instances of O (one for each instance of Fcom

in ρ) and SD, and forwards messages as follows.

• Messages from the adversary addressed to an instance of Fcom are forwarded
to the corresponding internal instance of O.

• Messages from an internal instance of O to an instance of Fcom are for-
warded to the dummy adversary simulator SD.

• Messages between SD and the functionality G are forwarded.

• Messages from the dummy adversary simulator SD addressed as coming
from an instance of Fcom are forwarded to the respective instance of O.

• Messages from the dummy adversary simulator SD not addressed as coming
from an instance of Fcom are output to the adversary (without forwarding
them to an internal instance of O).

We claim that for this oracle ρΠ ≥GO′ GO
′ holds. By Proposition 4.8 it is

sufficient to find a simulator for the dummy adversary. The simulator will be
the dummy adversary in the ideal world.

Recall that we call instances of IDEAL(FO) or Π where the sender or receiver
is corrupted sender sessions or receiver sessions, respectively. We denote by
ρΠS,FOcom the protocol ρFOcom where all ideal sender sessions have been replaced
by the real protocol.

Let Z be a (PPT) environment invoking polynomially many instances of
(the CC protocol) ρΠS,FOcom . We denote the output of Z by the random variable

88 CHAPTER 4. COMPOSABLE MPC IN THE PLAIN MODEL

Exec(ρΠS,FOcom ,Z). Furthermore, we denote by Exec(GO′ ,Z) the output of Z if
all instances of ρΠS,FOcom are replaced by instances of GO′ .

In the following hybrid argument, we will have to globally order the protocol
instances invoked by Z according to when their commit phase is over and
(adaptively) invoke instances of ρΠS,FOcom , ρFOcom or GO′ based on this order. Since
the message scheduling may be random, however, this order is not determined
a-priori. We will therefore have the experiment in the hybrids implement the
commit phases of all invoked protocols “obliviously”, i. e., interact with the
environment by running the programs of the shielded oracles and store the
inputs of the honest parties without following their instructions in the commit
phases. (Note that the only communication that is visible to the environment in
the commit phase is its interaction with the shielded oracles or the receiver in
an instance of ΠS. The latter interaction is identical to an interaction with the
shielded oracle in a sender session. Furthermore, the inputs of the honest parties
have no effect on the messages the shielded oracles output to the environment in
a commit phase.) Once the commit phases of an instance of ρΠS,FOcom has ended,
the experiment in the hybrids will invoke an instance of ρΠS,FOcom , ρFOcom or GO′

depending on the position within the global order of sessions. The experiment
will then invoke the honest parties with their respective inputs and follow their
instructions (it will also invoke the simulator SD with the extracted values
if this session is GO′). Messages from FOcom or SD to instances of O (which
are “ok” messages) are suppressed. This way, the execution is consistent with
the messages in the commit phase and distributed identically as if one of the
protocols GO′ , ρΠS,FOcom , or ρFOcom was executed from the beginning.

Step 1. We show that

Exec(ρΠS,FOcom ,Z) c≡ Exec(GO
′
,Z)

By a standard averaging argument, we can fix some random coins r for Z.
Thus we can assume henceforth that Z is deterministic.

Let q be an upper bound on the number of instances of ρΠS,FOcom that Z
invokes. Consider the 2q + 1 hybrids H00,H01,H10,H11,H20, . . . ,Hq0 which are
constructed as follows:

Definition of hybrid Hij: Execute the commit phase of each instance invoked
by Z “without running the code of the parties” by invoking instances of O. Follow
the instruction of each instance of O. Parties are only there as placeholders for
the environment in the commit phases. Their instructions will be execute after
the commit phase of the respective instance is over. Note that this can be done
since the actions of the parties (i.e. choice of input values) in the commit phases
have no effect on the view of the environment in these phases. Messages output
from an instance of O are stored as well. After the commit phase of an instance
is over do the following:

(See Fig. 4.8 on page 90 for a graphical depiction of the sequence of the
hybrid games.)

1. If this is the kth instance in which the commit phase has ended and
k ≤ i then invoke an instance of the dummy adverary simulator and the

4.4. A CONSTANT-ROUND COMMITMENT SCHEME 89

functionality G. Hand the dummy parties their respective inputs and the
dummy adversary simulator the messages output by the instances of O.
Follow the instructions of the dummy adversary simulator and G. Ignore
messages of the dummy adversary simulator to the environment if these
messages are coming from an instance of Fcom in the commit phase (i. e. an
“ok” message). In the unveil phase, messages from the dummy adversary
simulator mimicking an interaction with Fcom (which are messages of the
form (Unveil, b)) are forwarded to the respective instance of O (with the
same SID). Messages from the dummy adversary simulator not mimicking
an interaction with an instance of Fcom are output (without forwarding
them to an O-instance).

2. If k = i+ 1 and j = 0 or k > i+ 1 then run the protocol parties of ρFcom

with their inputs and follow their instructions. For all subsessions where
the sender is corrupted invoke instances of ΠS and “replay” the commit
phase of ΠS using the same randomness for the receiver as the respective
oracle and the messages the environment has sent. For all subsessions
where the receiver or both or no party has been corrupted invoke instances
of Fcom and adjoin the respective oracle. Ignore “ok” messages from the
instances of Fcom.

3. If k = i+ 1 and j = 1 then run the parties of ρFcom with their inputs in
the commit phase and follow their instructions. For all subsessions, invoke
an instance of Fcom and adjoin the respective oracle. Send the extracted
commited values of the O-instances in sender sessions to the respective
Fcom-instance. Ignore “ok” messages from the instances of Fcom.

Observe that H00 = Exec(ρΠS,FOcom ,Z) and Hq0 = Exec(GO′ ,Z).
Let Pij denote the probability that Z outputs 1 in hybrid Hij . Assume

|P00 − Pq0| is non-negligible. Then there exists an index i∗ such that either∣∣Pi∗1 − P(i∗+1)0
∣∣ or |Pi∗0 − Pi∗1| is also non-negligible.

Case 1:
∣∣Pi∗1 − P(i∗+1)0

∣∣ is non-negligible. In this case, these neighboring
hybrids are equal except that in the (i∗ + 1)th instance ρFOcom is replaced by GO′ .

We can now fix the coins that are used in the experiment up until the
point where the (i∗ + 1)th commit phase has ended, while maintaining Z’s
distinguishing advantage.

We can now construct an environment Z ′ that distinguishes ρFcom from G.
As a non-uniform advice, Z ′ receives a complete trace of all messages sent until
this point, including all shares si and strings I that Z committed to until the
point where the (i∗ + 1)th commit phase has ended (note that since 〈C,R〉
is immediately committing, the first message in a receiver session uniquely
determines the string I. Also note that the interaction with all O-instances for
the case of a corrupted sender mimicking a commit phase of Π is over until this
point.) Z ′ internally simulates the execution experiment with Z using its advice.
Messages to the (i∗ + 1)th instance are sent to the challenge protocol. Z ′ may
(tentatively) also invoke ideal receiver sessions in order to simulate ideal receiver
sessions that are invoked after the point where the (i∗ + 1)th commit phase has
ended.

90 CHAPTER 4. COMPOSABLE MPC IN THE PLAIN MODEL

GO′|com
GO′|com

FOcom

FOcom
ΠS

FOcom
ΠS

FOcom

GO′|comp
GO′|comp ρ

ρ

ρ

. . .

. . .

. . .

. . .

1 i i+ 1 i+ 2 q

(a) Hybrid Hi1: All instances up to and
including i are ideal protocol instances, in-
stance i+ 1 has a completely ideal commit
phase but still a real compute phase, all
instances from i+2 and above are ρΠS,FOcom

GO′|com
GO′|com GO′|com ΠS

FOcom
ΠS

FOcom

GO′|comp
GO′|comp GO′|comp

ρ

ρ

. . .

. . .

. . .

. . .

1 i i+ 1 i+ 2 q

(b) Hybrid H(i+1)0: All instances up to
and including i + 1 are ideal protocol in-
stances, all instances from i+ 2 and above
are ρΠS,FOcom

Figure 4.8: The sequence of hybrids Hib: The notation GO′|comp denotes the
“compute phase” of a G-instance and GO′|com denotes the “commit phase” of a
G-instance

Observe that the real execution corresponds to hybrid Hi∗1 and the ideal
execution to hybrid H(i∗+1)0. By construction, Z ′ distinguishes ρFcom from G.
Since FOcom is polynomially simulatable, Z ′ can be replaced by a polynomial
time environment that also distinguishes ρFcom from G, using Theorem 4.15. We
have thus reached a contradiction.

Case 2: |Pi∗0 − Pi∗1| is non-negligible. In this case, these neighboring hybrids
are equal except that in the (i∗ + 1)th instance ρΠS,FOcom is replaced by ρFOcom .
Since Z distinguishes these hybrids it holds that with non-negligible probability
Z causes a discrepancy in hybrid Hi∗1 as otherwise these hybrids would be
statistically close. Let Z̃ be the environment that internally runs Z and outputs
1 as soon as a discrepancy occurs.18 If no discrepancy occurs, Z̃ outputs 0. By

18Note that a subtlety arises here since the environment may not be able to learn the
committed values and is therefore unable to detect discrepancies. To make the environment
able to learn the committed values, we redefine the shielded oracle O for the case of a corrupted
sender as follows: After the simulated unveil phase is over and accepting, the oracle first
outputs the extracted committed value to the simulator. After receiving a notification message
from the simulator, the oracle sends the Unveil-message to the functionality. Denote this
modified oracle by Õ. Furthermore define Π̃ to be identical to Π, except that the receiver
sends the unveiled value to the sender after he has accepted this value. The sender then
sends a notification message to the receiver who then outputs the unveiled value. It follows
from the same arguments as in the proof of Theorem 4.26 that Π̃ ≥

FÕcom
FÕcom and that

FÕcom is polynomially simulatable. Using these modified versions in the above proof one
obtains ρΠ̃ ≥GO′ G

O′ . Since Π unconditionally emulates Π̃ it holds that ρΠ ≥GO′ ρ
Π̃, hence

ρΠ ≥GO′ G
O′ by transitivity of GO′ -emulation.

4.4. A CONSTANT-ROUND COMMITMENT SCHEME 91

construction, Z̃ outputs 1 with non-negligible probability in Hi∗1. We will now
consider i∗ + 1 new hybrids h0, . . . , hi∗ .

Definition of hybrid hj: (See Fig. 4.9 on page 92 for a graphical depiction
of the hybrids hj .)

Execute the commit phase of each instance “without running the code of the
parties” as described in the description of the hybrids Hij . After the commit
phase of an instance is over do the following (for a fixed j ∈ {0, . . . , i∗}):

1. If this is the kth instance in which the commit phase has ended and
k ≤ i∗ − j then invoke an instance of the dummy adverary simulator and
the functionality G. (Marked as range (I) in Fig. 4.9.)
Hand the dummy parties their respective inputs and the dummy adver-
sary simulator the messages output by the instances of O. Follow the
instructions of the dummy adversary simulator and G. Ignore messages
of the dummy adversary simulator to the environment if these messages
are coming from an instance of Fcom in the commit phase (i. e. an “ok”
message). In the unveil phase, messages from the dummy adversary simu-
lator mimicking an interaction with Fcom (which are messages of the form
(Unveil, b)) are forwarded to the respective instance of O. Messages from
the dummy adversary simulator not mimicking an interaction with an
instance of Fcom are output (without forwarding them to an O-instance).

2. If i∗ − j + 1 ≤ k ≤ i∗ + 1 then run the protocol parties of ρFcom with their
inputs in the commit phase and follow their instructions. (Marked as range
(II) in Fig. 4.9.)
For all subsessions, invoke an instance of Fcom and adjoin the respective
oracle. Send the extracted commited values of the O-instances in sender
sessions to the respective Fcom-instance. Ignore “ok” messages from the
instances of Fcom.

3. If k ≥ i∗ + 2 then run the protocol parties of ρFcom with their inputs and
follow their instructions. For all subsessions where the sender is corrupted
invoke instances of ΠS and “replay” the commit phase of ΠS using the
same randomness for the receiver as the respective oracle and the messages
the environment has sent. For all subsessions where the receiver or both
or no party has been corrupted invoke instances of Fcom and adjoin the
respective oracle. Ignore “ok” messages from the instances of Fcom.

Observe that h0 = Hi∗1. Let j∗ be the largest index such that Z̃ causes a
discrepancy in hybrid hj∗ with non-negligible probability. j∗ is well-defined,
since there is an index for which this property holds (namely 0). Furthermore,
j∗ ≤ i∗ − 1. This follows from the following argument. Observe that the last
hybrid hi∗ only contains instances of ρFOcom . Since Π FO-emulates IDEAL(FO)
and due to the composition theorem, Exec(ρΠ,Z) is indistinguishable from hi∗ .
Since no discrepancy occurs in Exec(ρΠ,Z) it follows that a discrepancy can
occur in hi∗ only with negligible probability.

By construction, Z̃ distinguishes the hybrids hj∗ and hj∗+1 (in the first hybrid
Z̃ outputs 1 with non-negligible probability and in the second hybrid only with
negligible probability).

92 CHAPTER 4. COMPOSABLE MPC IN THE PLAIN MODEL

GO′|com
GO′|com

FOcom

FOcom

FOcom

FOcom

ΠS

FOcom
ΠS

FOcom

GO′|comp
GO′|comp ρ

ρ
ρ

ρ

. . .

. . .

. . .

. . .

. . .

. . .

1 i∗ − j∗
i∗ −
j∗ + 1 i∗ + 1 i∗ + 2 q

(I) (II) (III)

(a) Hybrid hj∗ : The substitution of ρ by G has been
reverted for instances k ∈ {i∗−j∗+1, . . . , i∗+1} (marked
as range (II))

Figure 4.9: Hybrid hj .

We will now modify these hybrids. For k ∈ {j∗, j∗ + 1} define the hybrid
hybk−j∗ to be identical to hk except for the following: At the beginning, the
experiment randomly selects one sender session. In all commit phases that end
after the (i∗ − j∗)th commit phase the real protocol ΠS is invoked instead of
FOS in all sender sessions that have not been selected at the beginning. The
one sender session that has been selected at the beginning remains ideal if and
only if it is part of one of the commit phases 1, . . . , i∗ + 1.

It holds that Z̃ also distinguishes hyb0 from hyb1. This is because Z̃ still
causes a discrepancy in hyb0 with non-negligible probability because with high
probability (1/poly) the first sender session in which Z̃ causes a discrepancy
is selected. Furthermore, Z̃ causes a discrepancy in hyb1 with only negligible
probability (otherwise Z̃ would have already caused a discrepancy with non-
negligible probability in hj∗+1).

We can now fix the coins that are used in the experiment up until the
point where the (i∗ − j∗)th commit phase has ended, while maintaining Z̃’s
distinguishing advantage.

We can now construct an environment Z ′′ that distinguishes ρFcom from G.
As a non-uniform advice, Z ′′ receives a complete trace of all messages sent until
this point, including all shares si and index sets I that Z̃ commited to until the
point where the (i∗− j∗)th commit phase has ended. Z ′′ proceeds as follows: Z ′′
internally simulates the execution experiment with Z̃ using its advice. Messages
to the (i∗ − j∗)th instance are sent to the challenge protocol. Z ′′ can simulate
the only instance of FOS that may occur in a commit phase with its parallel
CCA oracle Opcca (note that if Z̃ has already started to commit to shares in this
session then these shares are also part of Z ′′’s advice.) Z ′′ may (tentatively)
also invoke ideal receiver sessions in order to simulate ideal receiver sessions that

4.4. A CONSTANT-ROUND COMMITMENT SCHEME 93

are invoked after the point where the (i∗ − j∗)th commit phase has ended.
Observe that the real execution corresponds to hybrid hyb1 and the ideal

execution to hybrid hyb0. By construction, Z ′′ distinguishes ρFcom from G. With
the same argument as in the proof of Theorem 4.26, step 1, case 2, one can
replace all ideal receiver sessions that Z ′′ invokes with instances of the real
protocol (using the fact that 〈C,R〉 is parallel-CCA-secure). By construction,
an environment Z ′′ was found that can query the parallel CCA oracle Opcca and
distinguish ρFcom and D from G and SD. We have thus reached a contradiction.

Step 2. We show that ρΠ ≥GO′ GO
′ , completing the proof.

Let Z be a GO′ -augmented environments interacting with ρΠ and the dummy
adversary D. By step 1, we can replace all instances of GO′ with instances of
ρΠS,FOcom . Since Π FO-emulates IDEAL(FO), it follows from the composition
theorem that we can replace (the challenge protocol) ρΠ also with ρΠS,FOcom .
Again by step 1, we can replace all instances of ρΠS,FOcom back with instances of
GO′ . The theorem follows.

If the following property holds for the commitment scheme 〈C,R〉, the premise
ρFcom ≥Opcca -UC G is automatically fulfilled.

Definition 4.35 (r-Non-Adaptive Robustness). Let 〈C,R〉 be a tag-based com-
mitment scheme and Opcca its parallel CCA oracle. For r ∈ N, we say that 〈C,R〉
is r-non-adaptively-robust w. r. t. Opcca if for every PPT adversary A, there
exists a PPT simulator S, such that for every PPT r-round interactive Turing
machine B, the following two ensembles are computationally indistinguishable:

• {〈B(y),AOpcca(z)〉(1n)}n∈N,y∈{0,1}∗,z∈{0,1}∗

• {〈B(y),S(z)〉(1n)}n∈N,y∈{0,1}∗,z∈{0,1}∗

The above definition is a relaxation of the (adaptive) robustness property
put forward by [CLP10].

Corollary 4.36. Let ρFcom be a constant-round CC protocol and G a functionality
such that ρFcom ≥UC G. If the commitment scheme 〈C,R〉 in Π is additionally
r-non-adaptively-robust for sufficiently large r, then there exists a shielded oracle
O′ such that

ρΠ ≥
GO′
GO
′

Up to now, we could instantiate 〈C,R〉 with a modified version of the scheme
in [Goy+14] as described above of Corollary 4.28. This scheme can be easily
made also r-non-adaptively-robust w. r. t. Opcca by adding “additional slots”
using the technique in [LP09] (the scheme needs to have at least r + 1 slots in
order to be r-non-adaptively-robust).

In the following lemma, we show that every UC-secure protocol ρFcom can be
transformed into a UC-secure CC protocol.

Lemma 4.37 (CC-Compiler). Let ρFcom be a protocol in the Fcom-hybrid model.
Then there exists a CC protocol Comp(ρ)Fcom such that Comp(ρ)Fcom ≥UC ρ

Fcom .
Furthermore, if ρFcom is constant-round then so is Comp(ρ)Fcom .

94 CHAPTER 4. COMPOSABLE MPC IN THE PLAIN MODEL

Idea of proof. Replace each instance of Fcom with a randomized commitment
where the sender commits to a bit b by sending a random value a to Fcom
and a⊕ b to the receiver. Since the number or rounds of ρFcom is polynomially
bounded, the number of commitments of each party is also polynomially bounded.
Put all randomized calls to Fcom in a single commit phase.

Let Πr be the constant-round protocol as in Construction 1 where 〈C,R〉 is
instantiated with the immediately committing, parallel CCA-secure and r-non-
adaptively-robust modified version of [Goy+14] as described above. Furthermore,
let ΠBB

r be the same as Πr, except that [Goy+14] is instantiated with a ver-
ifiable perfectly binding homomorphic commitment scheme, thus making the
construction fully black-box. Applying Corollary 4.36 and Lemma 4.37, one
obtains the following:
Corollary 4.38. Let ρFcom be a constant-round protocol and G a functionality
such that ρFcom ≥UC G.
(a) Assume the existence of one-way permutations. Then, for sufficiently large

r, there exists a shielded oracle O′ such that

Comp(ρ)Πr ≥
GO′
GO
′

(b) Assume the existence of verifiable perfectly binding homomorphic commit-
ment schemes. Then, for sufficiently large r, there exists a shielded oracle
Õ such that

Comp(ρ)ΠBBr ≥
GÕ
GÕ

4.5 Constant-Round (Black-Box) General MPC
We now apply Corollary 4.38 to obtain two constant-round general MPC pro-
tocols based on standard polynomial-time assumptions that are secure in our
framework. By [Can+02; IPS08]19, there exists a UC-secure constant-round
general MPC protocol (for realizing every standard well-formed functionality) in
the Fcom-hybrid model based on enhanced trapdoor permutations . Plugging Πr

(for a sufficiently large r) into this protocol yields a (non-black-box) constant-
round general MPC protocol in the plain model based on enhanced trapdoor
permutations. Furthermore, by [HV15], there exists a UC-secure constant-round
black-box general MPC protocol (for realizing every standard well-formed func-
tionality) in the CRS-hybrid model based on IND-CPA-secure PKE schemes
and constant-round semi-honest oblivious transfer.20 This protocol can be trans-
formed into a UC-secure, constant-round, black-box protocol in the Fcom-hybrid
model based on IND-CPA-secure PKE schemes with oblivious public-key gener-
ation.21, 22 Plugging the black-box protocol ΠBB

r into this modified version of
19More specifically, it follows from [Can+02] that there exists a constant-round proto-

col UC-realizing FOT in the Fcom-hybrid model based on enhanced trapdoor permutations.
Furthermore, [IPS08] provided a constant-round UC-secure general MPC protocol in the
FOT-hybrid model based on pseudorandom generators (or equivalently one-way functions).

20The CRS is the public key of the underlying IND-CPA secure PKE scheme in the
construction presented in [HV15].

21Cf. Definition 2.14 for a definition of PKE schemes with oblivious public key generation.
22Note that IND-CPA-secure PKE schemes with oblivious public-key generation imply

two-round semi-honest oblivious transfer, cf. [Ger+00]).

4.5. CONSTANT-ROUND (BLACK-BOX) GENERAL MPC 95

[HV15] yields a fully black-box constant-round general MPC protocol in the plain
model based on verifiable perfectly binding homomorphic commitment schemes
and IND-CPA-secure PKE schemes with oblivious public-key generation.

Theorem 4.39 (Constant-round (Black-Box) General MPC in the Plain Model).

(a) Assume the existence of enhanced trapdoor permutations. Then, for ev-
ery standard well-formed23 functionality F , there exists a constant-round
protocol πF in the plain model and a shielded oracle O such that

πF ≥
FO
FO

(b) Assume the existence of verifiable perfectly binding homomorphic commit-
ment schemes and IND-CPA-secure PKE schemes with oblivious public-key
generation. Then, for every standard well-formed functionality F , there
exists a constant-round protocol πBBF in the plain model and a shielded
oracle O such that

πBBF ≥
FO
FO

Furthermore, πBBF uses the underlying commitment scheme and PKE
scheme only in a black-box way.

23Cf. Section 2.4.2 for a definition of standard well-formed functionalities.

96 CHAPTER 4. COMPOSABLE MPC IN THE PLAIN MODEL

Chapter 5

A New Framework for
Utilizing Simple Remotely
Unhackable Hardware
Modules

5.1 Introduction
In this chapter, we present a new framework that allows to adequately capture
the advantages provided by remotely unhackable hardware modules. Before
presenting our new framework, we first recall the adaptive UC framework and
its shortcomings.

The Adaptive UC Framework. In the UC framework with adaptive cor-
ruptions (“adaptive UC framework”) adversaries are allowed to corrupt parties
throughout the entire UC execution experiment, enabling them to base their
corruption strategy on their view so far (cf. Section 2.4.1). An adversary inter-
acting with an ideal protocol φ is therefore able to learn and modify inputs and
outputs of each party during the entire execution if he corrupts it (by sending
corrupt-messages to the ideal functionality, cf. Section 2.4.1). As a consequence,
an adversary interacting with a protocol π that UC-emulates φ may also have
these possibilities.

Intuitively, the adaptive UC framework captures hackers breaking into com-
puters during the execution of a protocol. Since direct physical attacks (i.e.
tampering with hardware) are time consuming and therefore must typically be
mounted before the start of the protocol execution, adaptive corruptions can
be regarded as remote attacks, e.g., sending of computer viruses. The adaptive
UC framework is meaningful in many settings. However, it ignores the realistic
possibility of parties being (temporarily) isolated from the network and there-
fore not remotely hackable. For instance, a party could utilize simple remotely
unhackable hardware modules such as data diodes to implement unidirectional
channels or air-gap switches to disconnect itself from the network. An adversary
may therefore not be able to corrupt a party via a remote attack during the entire

97

98 CHAPTER 5. UTILIZING REMOTELY UNHACKABLE HARDWARE

protocol execution but only while the party is online, i.e. able to receive messages
from the outside world. Furthermore, a party may have additional hardware
modules at its disposal such as a simple encryption unit that only implements a
specific public-key encryption scheme. Since such hardware modules with very
limited functionality can be implemented securely as fixed-function circuits and
formally verified for correctness, they can be assumed to be resilient against
remote attacks. In particular, an adversary can only corrupt such hardware
modules if he has direct physical access to them. Using such hardware modules
in conjunction with air-gap switches and data diodes enables a party to, e.g.,
implement secure message transmission without risking to be remotely hacked
while sending (sensitive) data.

It follows that the advantages (e.g. isolation properties) provided by simple
remotely unhackable hardware modules cannot be adequately captured in the
adaptive UC framework since this framework gives the adversary too much
freedom over party corruption. In the following, we will propose a new framework
that allows to capture these advantages.

New Framework: “Fortified UC” We present a new framework that pro-
vides a composable security notion and allows to adequately capture the advan-
tages provided by remotely unhackable hardware modules. In our framework,
called Fortified UC, one distinguishes between two kinds of corruptions, namely
physical attacks and online attacks. Physical attacks model adversaries physically
tampering with or replacing hardware. Online attacks model adversaries mount-
ing remote attacks, such as sending computer viruses. Contrary to physical
attacks, online attacks give the adversary control over a party only if the party
is currently online and not assumed to be unhackable. A party’s current online
state is determined by the type and state of its channels, e.g., state of its air-gap
switches. The hardware modules used in a protocol and their interconnections
are part of what we call the protocol architecture in our framework.

Utilizing only very few and very simple remotely unhackable hardware mod-
ules, we construct general MPC protocols that protect against all online attacks

i) mounted after a party received its (first) input (unless all parties are
corrupted), and

ii) mounted before a party received input if the attack comes from the “out-
side”, i.e. from all channels except one at a party’s input port.

More specifically, the parties in our protocols are disconnected from the outside
world while waiting for input and can therefore not be corrupted through
online attacks from the outside at that point. After receiving input, the parties
authenticate, mask and share their secrets in such a way that mounting online
attacks gives the adversary control over a party but not the ability to learn the
inputs or outputs (i.e. results of the MPC) of a party, nor to modify them unless
he gains control over all parties. This stands in contrast to the adaptive UC
framework where an adversary may learn and modify the inputs and outputs
of corrupted parties after they received input.1 Although erasing parties seem

1If the parties are able to reliably erase local data, then an adversary in the adaptive UC
framework may not learn all inputs of a corrupted party if he corrupts the party “too late”.
For instance, if the task to be realized is reactive (cf. Section 2.4.1) then the adversary may
not learn past inputs. However, he may still be able to learn the current input and all future
inputs.

5.1. INTRODUCTION 99

necessary to achieve such a strong protection, we show that this assumption can
be dropped using appropriate protocol architectures.

It is important to note that, unlike the hardware tokens proposed by [Kat07],
the simple remotely unhackable hardware modules used in our constructions can
be tampered if one has direct physical access to them. They can therefore not
be passed to other (possibly malicious) parties but are only used and trusted by
their owner. Hence, they are not sufficient to circumvent the impossibility results
of [CF01; CKL03; Lin03; PR08; KL11]. Our general MPC protocols therefore
rely on additional, well-established setup assumptions in combination with simple
remotely unhackable hardware modules to achieve concurrent composability.
Given all the aforementioned assumptions, our constructions provide the best
possible protection against online attacks in a setting where parties cannot be
protected while waiting for (their first) input.

This chapter is taken almost entirely from [Bro+18c], which is available as a
technical report at the Cryptology ePrint Archive but has not been published
elsewhere yet.

5.1.1 Contribution

We utilize realistic simple remotely unhackable hardware modules that, to
the best of our knowledge, have so far not been used for secure multi-party
computation. In the following, we list the results of this chapter.

New Composable Security Notion
We propose a new framework that, unlike previous frameworks, allows
to adequately capture the advantages provided by remotely unhackable
hardware modules. As with UC security, the security notion of our new
framework is closed under protocol composition (Theorem 5.10). Further-
more, our new security notion is equivalent to adaptive UC security for
protocols that do not use any remotely unhackable hardware modules
(Theorem 5.9). As a consequence, UC-secure protocols can be used as
building blocks in constructions in our new framework.

Protocols with Strong Security Guarantees Against Online Attacks
Using only very few and very simple remotely unhackable hardware mod-
ules, we construct general MPC protocols with very strong security guar-
antees against online attacks: An adversary is unable to learn or modify
a party’s inputs and outputs by mounting online attacks unless he gains
control over a party via the input port before the party has received its
(first) input (or gains control over all parties). We present a construction
for non-reactive functionalities (Theorem 5.16) using only two simple re-
motely unhackable hardware modules (apart from air-gap switches and data
diodes) per party and a protocol for reactive functionalities (Theorem 5.22)
that uses only one additional simple remotely unhackable hardware module
per party. Both constructions can be proven secure in our new frame-
work for adversaries that gain control over all but one parties. We also
present an augmentation of these constructions that allow simulation even
in the case that all parties are under adversarial control (Theorem 5.21

100 CHAPTER 5. UTILIZING REMOTELY UNHACKABLE HARDWARE

and Theorem 5.23)2. For simplicity, we assume erasing parties in our
protocols. However, we later show how this assumption can be dropped
(cf. Section 5.6).

5.1.2 Related Work
The adaptive corruption model, first proposed in [Can+96], models adversaries
that can corrupt parties at any point during the protocol execution. Numerous
general MPC protocols achieving adaptive UC security have been constructed
in the literature, see e.g. [Can+02; IPS08; IPS09; Lin09; Dac+13b; CGP15;
GP15; HLP15; HV15; DKR15; CPV17]. Almost all of these works consider
the non-erasure model, where honest parties are not assumed to be able to
erase data reliably. A notable exception is [Lin09] who constructed a relatively
efficient, constant-round general MPC protocol based on only enhanced trapdoor
permutations in the erasure model, where honest parties are assumed to reliably
erase data. Also, [HLP15] provided relatively simple and efficient protocols in
the partial erasure model, where only one party is assumed to erase data reliably.

The mobile adversary model (also called proactive model), introduced by
[OY91], models an adversary taking over a party— similar in spirit to our
framework as “remote hacks”—and possibly undoing the corruption at a later
point in time. There are only a few works on MPC in this setting. [OY91]
provided a general MPC protocol in the stand-alone setting that is secure against
mobile adversaries. [Bar+14] later provided a UC-secure construction. Both
of these protocols assume that a majority of parties is honest throughout the
protocol execution. Very recently, [Eld+18] constructed a general MPC protocol
that is even secure against a dishonest majority.

Regarding remotely unhackable hardware modules in a broader context:
[Gar+15] initiated a general study of one-way secure computation protocols over
noisy channels in a setting where only one party speaks (e.g. via a data diode).
[AMR14] made use of a remotely unhackable equality check hardware module to
ensure the correct, UC-secure functioning of a parallel firewall setup in the case
of one malicious firewall.

[Kat07] proposed tamper-proof hardware tokens as a plausible additional
setup assumption for UC-secure protocols. Along this line of research, [Goy+10]
showed strong feasibility results of what can be done with such tokens. Moreover,
[Döt+13] showed that UC security is possible with a constant number of untrusted
and resettable hardware tokens. Furthermore, [HPV17] constructed constant-
round adaptively secure protocols which allow all parties to be corrupted.

Isolation is a general principle in IT security with lots of research on isolation
through virtualization, see e.g. [Nem17]. Isolation in this way can be seen as a
software analog of a trusted, remotely unhackable encryption module. Moreover,
there is a wealth of literature on data exfiltration/side channel attacks to air-
gaps including attacks based on acoustic, electromagnetic and thermal covert
channels, cf. [ZGL18]. However, these works are not relevant to our work because
they aim at protecting against outgoing communication from malicious internal

2Note that obtaining a protocol π that allows simulation even in the case that all parties
are corrupted is important in the setting where instances of π are subroutines of an “outer”
protocol ρ (not involving all parties of π). In this setting, it may happen that all parties of
an instance of π become corrupted but not all parties of the outer protocol ρ. Security of ρ
should still hold in this case.

5.2. THE FORTIFIED UC FRAMEWORK 101

parties, while we use data diodes/air-gap switches for the purpose of not being
corrupted through messages coming from the outside. As an example, the Qubes
OS provides strict separation between application domains, allowing to use an
isolated GPG environment in a safe manner [Qub18].

5.2 The Fortified Universal Composability
Framework

In this section, we present a new framework that allows to adequately capture the
advantages provided by remotely unhackable hardware modules. Our framework
builds on the UC framework (cf. Section 2.4).

5.2.1 Channels
Recall that in the UC framework, communication is modelled via external
write instructions written on an ITI’s outgoing message tape. A control function
decides if the instruction is allowed. There are three different ways for ITIs to
communicate: provide input, send a message, give subroutine output. This is
modelled by external write instructions targeted at another ITI’s input tape,
incoming message tape or subroutine output tape, respectively (cf. paragraph
“External Write Instructions” in Section 2.4).

In order to model protection mechanisms such as air-gap switches and data
diodes (unidirectional communication) as well as the online state of a protocol
party, we explicitly specify (possibly multiple) channels between ITMs that
determine if communication between two ITMs is allowed and in which direction
it is allowed. In particular, if there exists no channel between two ITMs then
communication is not allowed between them. We assume that each channel has
a unique identifier.

Channels can be between (sub-)parties of a protocol or between (sub)parties
and ideal functionalities. In addition, channels can also be between a party and
the environment or the adversary. Channels between a party and the environment
model the allowed communication with calling parties from other protocols.
Channels between a party and the adversary model possible communication to
the “outside world”.

Channels are modelled on top of the existing communication mechanism of
the UC framework. Specifically, each protocol description must include a set of
channels involving the protocol parties, which is part of the protocol architecture
(cf. Section 5.2.3). The protocol architecture is given to the control function as
an additional input. An external write instruction is allowed by the control
function only if there exists a channel that allows the intended communication
between the sending ITI and the receiving ITI. Otherwise, an external write
instruction is silently dropped.

In our framework, we have three kinds of channels: standard channels that
permanently allow bi-directional communication as well as two kinds of enhanced
channels: air-gap switches and data diodes.

Enhanced Channels. In our framework, we want to capture possible security
gains resulting from being isolated by forbidding certain communication and

102 CHAPTER 5. UTILIZING REMOTELY UNHACKABLE HARDWARE

thus preventing corruption (“remote hacking”) by the adversary. To this end,
we introduce two kinds of enhanced channels:

1. Data diodes that allow communication in one direction only.

2. Air-gap switches that can be connected or disconnected by the party that
operates them. Disconnected air-gap switches allow no data transmission
at all. Connected ones allow bi-directional communication. Each air-
gap switch has an initial connection state determined by the protocol
architecture.

In order to model the current state of air-gap switches, we introduce a special
air-gap switch status tape for each party containing the identifiers of each of its
air-gap switches as well as its current state. A party can change the current
state of each of its air-gap switches by writing on this tape. The control function
gets the contents of each air-gap switch status tape as an additional input.

Communication between A and Z and A and Ideal Functionalities.
As in the UC framework, the adversary and the environment may freely interact
with each other. The same applies to the communication between the adversary
and ideal functionalities. Formally, we always assume standard channels between
these ITIs which are given to the control function in addition to the protocol
architecture. Communication between these ITMs is therefore independent of
the given protocol architecture.

Terminology. Let µ and µ′ be two ITIs. We say that “µ is connected to µ′”
if there is a channel between µ and µ′. If there is a data diode between µ and µ′
in the direction of µ′ then we say that “µ is connected to µ′ via data diode”. If
there is an air-gap switch operated by µ to µ′ then we say that “µ is connected to
µ′ via air-gap switch”. Likewise, we say that “µ is connected to µ′ via a standard
channel” if there is a standard channel between µ and µ′. If there is a channel
C between µ and the adversary we say that “µ is connected to the adversary
via C”. Likewise, if there is a channel C between µ and the environment we say
that “µ is connected to the environment via C”. Furthermore, we say that “µ
can send messages (or provide input or give output) to µ′ via C” or that “µ′ can
receive messages (or input or output) from µ via C” if C is a channel between µ
and µ′ that allows the respective external write instruction.

Conventions for Graphical Depiction of Architectures. Main parties
are represented by boxes with rounded corners, sub-parties and ideal functionali-
ties by cornered ones. Boxes with bold lines and grey background denote that
the sub-party is unhackable. Standard channels are denoted by lines, data diodes
by and air-gap switches by (initially disconnected) and
(initially connected). Dashed lines denote standard channels to other parties
that are not shown.

5.2.2 Online State
Online State of Channels to the Environment. The environment Z may,
upon each activation, mark each channel that exists between Z and a protocol

5.2. THE FORTIFIED UC FRAMEWORK 103

party either online or offline. For this, we introduce a special channel marking tape
containing the identifiers of each channel to Z and the current markings. Z can
change the current markings by writing on this tape. The control function gets
the contents of this tape as an additional input. As the environment embodies
other, concurrently executed protocols, this mechanism reflects the online state of
the calling parties being implicitly incorporated in the environment. In addition,
for each channel between Z and a party, Z is informed upon each activation
about whether it can receive output via that channel3.

Online State of Protocol Parties. A (sub-)party P of protocol π is online
via C if C is a channel such that one of the following holds:

1. P can receive messages from the adversary via C

2. P can receive output from an ideal functionality F via C

3. P can receive output/input via C from a sub-party/calling party M and
M is online via C ′ and C ′ is a channel between M and an ITM µ 6= P .

4. P can receive input from the environment Z via C and Z has marked the
channel C online

If none of the above holds, P is offline via C. If there exists no channel such
that P is online via that channel, we say that P is offline. If P is online via
some channel, we say that P is online.

Intuitively, (1) models a party who is able to receive messages from the
“outside world” and is therefore online. (2) models a party who is able to receive
messages from a trusted third party F that “lives” somewhere in the outside
world.4 For instance, F could be a public bulletin board, a common reference
string, or a trusted party evaluating a specific function on the parties’ private
inputs. (3) models a party being transitively online via connections to a sub-party
or calling party who is online. (4) models a party being transitively online via
connections to a calling party from another protocol.

Note that each party has an initial online state prior to invocation depending
on the protocol architecture (in particular, the initial connection states of air-gap
switches) and how the environment initially marked the respective channels.

Status Report to the Adversary. Each time the adversary is activated, he
gets informed via which channels each party is online. This is called the status.
As will be described in Section 5.2.3, the adversary is able to gain control over
“hackable” parties during the protocol execution when these parties are online.
Giving the status to the adversary facilitates corruption as he does not have to
examine which parties are online. Also, the status will play an important role in
the proof of the composition theorem (Theorem 5.10).

3Jumping ahead, these two abilities of the environment will be very important in the proof
of the composition theorem of our new framework (cf. Theorem 5.10).

4Note that it may be necessary to disable a party being online via a channel to specific
functionalities such as signature cards in order to adequately model them. This can be done
by, e.g., allowing functionalities to mark their channels to parties offline or online (like the
environment). For simplicity, we do not consider this mechanism in this work.

104 CHAPTER 5. UTILIZING REMOTELY UNHACKABLE HARDWARE

Example 1. Consider the protocol architecture depicted in Fig. 5.1.
Let Z be an environment that permanently marks the channel to P1 online

and the channel to P2 offline. P1 disconnects its air-gap switch to Z as soon as
it has received input. Later, P1 connects its air-gap switch to the adversary A
at a specific point, say, after having erased its input.

Q1 is always online (being connected to the ideal functionality F via a
standard channel, cf. (2) on Page 103). The same holds for P2 (being connected
to the adversary A via standard channel, cf. (1) on Page 103). Therefore, Q2
is also always online (being connected to P2 via a standard channel, cf. (3)
on Page 103). P1 is online before receiving its input (being connected to the
environment Z via a connected air-gap switch and Z has marked the channel
to P1 online, cf. (4) on Page 103), offline immediately afterwards, and online
again after having erased its input (having connected its air-gap switch to the
adversary A, cf. (1) on Page 103). M ’s online state is the same as P1’s (being
connected to P1 via a standard channel, cf. (3) on Page 103).

P1 P2

Q1 Q2M

A

F

on off

Figure 5.1: Protocol Architecture for Example 1

5.2.3 Corruption Model
We distinguish between two kinds of corruption: physical attacks and online
attacks. Physical attacks model an adversary physically tampering with or
replacing a party’s hardware. Online attacks model remote hacks (e.g. sending
a computer virus).

Since, in practice, physical attacks are time consuming and therefore typically
must be mounted before the protocol execution begins, the adversary is allowed
to carry out this type of corruption only prior to the start of the protocol
execution in our model.5 Online attacks, on the other hand, can be carried out
throughout the protocol execution. Unlike physical attacks, online attacks only
take effect if the targeted party is online and assumed to be hackable. In the
following, we describe our new corruption model in more detail.6

5We note that our general MPC protocols for the case of up to N − 1 corrupted parties (cf.
Sections 5.4 and 5.5) can be shown to be secure even if physical attacks are allowed throughout
the protocol execution.

6Note that the following describes the behavior of protocol parties in the real model upon

5.2. THE FORTIFIED UC FRAMEWORK 105

In our framework, parties can be either hackable or unhackable. The protocol
architecture specifies which parties are hackable or unhackable (cf. Page 107).

Let P be the set of main parties of a protocol π. At the first activation,7 the
adversary A may only send a physical-attack instruction that enables him
to gain control over parties regardless of the protocol architecture. Formally,
A writes (physical-attack,M), whereM⊆ P, on his outgoing message tape.
Each P ∈ M and all of their sub-parties are then connected to the adversary
via a standard channel and all air-gap switches controlled by and data diodes
coming from these parties are replaced with standard channels. From then on,
A has full control over all P ∈ M and all of their sub-parties (including the
unhackable ones).8

From the second activation on, A may not send a physical-attack in-
struction anymore. A may send online-attack instructions that enable A to
gain control over hackable parties when they are online. Formally, if A writes
(online-attack, P) on his outgoing message tape and P is a (sub-)party of π
that is online and hackable, then a standard channel between P and A is created
and all air-gap switches controlled by P are connected. P then sends its entire
local state to A. From then on, A has full control over P . If P is unhackable,
then this instruction is ignored.

If A has gained control over a (sub-)party P through one of the above
instructions, we say that P is “corrupted”.

Finally, if a (sub-)party P is corrupted, then each ideal functionality which is
connected to P is informed about P being corrupted through a special message
(corrupt, P) that is written on its incoming message tape. Also, each main
party immediately informs the environment after being corrupted.9

Example 2. Consider the protocol architecture in Fig. 5.2 on Page 106.
Let Z be an environment that permanently marks its channel to P1 online

and to P2 offline. On receiving input, P1 disconnects its air-gap switch to Z. P2
connects its air-gap switches to the adversary and Q2 upon receiving input.

At his first activation, the adversary A may write (pyhsical-attack,M),
M ⊆ {P1, P2}. If, e.g., M = {P1}, then A gains control over P1 and M
as well as (the unhackable) party Q1. Alternatively, from the second acti-
vation on, A may gain control over P1 before P1 has received its input by
writing (online-attack, P1) (because P1 is online via the channel to Z at this
point). A may also choose to “skip” P1 by writing (online-attack,M) but not
(online-attack, P1). This way, A can still gain control over P1 after P1 has
received its input because P1 is online via the channel to M (because a standard

corruption. As in the UC framework, party corruption in ideal protocols is handled solely by
the ideal functionality.

7As in the UC framework, the first ITI to be invoked by the environment in our framework
is the adversary (cf. Definition 5.3 for the Fortified UC execution experiment).

8Formally, these parties forward all future inputs and subroutine outputs to A and A can
send these parties any instruction by writing external write instructions targeted at their
incoming message tape. Note that since standard channels have been created between these
parties and A, these external write instructions are always allowed by the control function.

9Note that, to ensure that the above instructions can be fully carried out, the environment
Z is not allowed to activate any other ITI until Z is explicitly informed (by the control function)
that this instruction has been fully carried out (in particular, all functionalities connected to
parties corrupted through that instruction have been (iteratively) informed that these parties
are corrupted and all corrupted main parties have informed Z that they are corrupted).

106 CHAPTER 5. UTILIZING REMOTELY UNHACKABLE HARDWARE

channel between M and A has been created). Moreover, A cannot gain control
over P2 through an online-attack instruction before P2 has received its input
(because P2 is offline up to this point).

P1 P2

Q1 Q2M

A

F

on off

Figure 5.2: Protocol Architecture for Example 2

In addition to our new corruption model, we also introduce “taint instruc-
tions” and define when parties are “combined” (i.e. can only be corrupted
together). Note that since these mechanisms play only a minor role in the rest
of this chapter the following two paragraphs may be skipped on first reading.

“Tainting” Unhackable Parties. Consider an unhackable party E that is
connected to a hackable party M via air-gap switch and to the adversary via
air-gap switch. E’s air-gap switch toM is connected only if E’s air-gap switch to
the adversary is disconnected. M is only connected to E. Therefore, A cannot
gain control over M through an online-attack instruction since M is always
offline. However, it should be intuitively possible for A to gain control over M
since otherwise E would act as a “perfect firewall” for M .

To this end, A may send taint instructions in our model. Formally, if A
writes (taint, P) on his outgoing message tape and P is a (sub-)party of π that
is online and unhackable, then a standard channel between P and A is created.

In the above example, writing a taint instruction when E’s air-gap switch
to A is connected enables A to gain control over M since M is then online via
the air-gap switch to E when that air-gap switch is connected.

Combination of Parties. In the UC framework, parties may be combined
by giving them the same PID or the same value in a component of the PID
(“PID-wise corruption”). Intuitively, combined parties are processes running
on the same physical machine. In our framework, two parties are combined if
i) their PIDs are equal in the first component10 and ii) they are connected via
standard channels only and iii) they are both either hackable or unhackable.
If two parties P, P ′ are combined then any (online-attack, µ) or (taint, µ)
instruction such that µ ∈ {P, P ′} affects both parties.

10Here we assume that PIDs have the form (pid1|| . . . ||pidl), where l ≥ 1, pidi ∈ {0, 1}∗.

5.2. THE FORTIFIED UC FRAMEWORK 107

We will later implicitly combine dummy parties with their respective calling
party in the constructions presented in this chapter.

Remark 5.1. Note that our corruption model gives the adversary lots of freedom.
In particular, the adversary is still able to freely control a party he has corrupted
via an online-attack instruction even if that party is offline via all channels
specified by the protocol architecture (as is the case for the party M after P1
has received its input in Example 2). This is possible because we grant the
adversary standard channels to parties corrupted via online-attack instructions.
Intuitively, this models the ability of a hacked device to communicate with the
outside world via side-channels. Allowing the adversary to corrupt a party when
it is online only via channels to a tainted party can also be seen as exploiting side
channels. Also, the adversary always knows which parties are online and can gain
control over a party also when that party is transitively online via some channel
to another party. Our corruption model therefore captures the vulnerabilities
implied by being online in a very pessimistic way. This has the advantage of
making the security notion of our framework both strong and simple at the same
time.

Protocol Architecture. The protocol architecture of a protocol π consist of
the following: i) a set of channels involving parties of π and ii) a specification of
the initial connection state of each air-gap switch in that set and iii) for each
party in π a specification of whether that party is hackable or unhackable.

5.2.4 Interface Modules and Fortified Functionalities
Recall our security goal stated in the introduction to this chapter: The adversary
should be unable to learn or modify a party’s inputs and outputs (i.e. results of
the MPC) via online-attack instructions i) mounted after a party received its
(first) input (unless all parties are corrupted) and ii) mounted before a party
received input if the attack “comes from the outside”. To model this goal, we
introduce interface modules, an appropriate ideal-model protocol architecture and
fortified functionalities.

Interface Modules. In order to achieve the above-mentioned level of security,
a party’s result of the MPC must remain unmodified and hidden from the
adversary even if the party is corrupted via an online-attack instruction after
receiving input. This is not possible if a party learns its result and outputs it
itself since the adversary would then learn this result if he corrupts the party
and could then also instruct the party to output a value that does not equal its
result. Furthermore, for reactive tasks, a party corrupted via an online-attack
instructio after receiving input n must also not be able to learn or modify its
input(s) for the rounds ≥ 2.

Deviating from the UC framework, we therefore allow the main parties to
invoke special sub-parties called interface modules that are connected to their
main party as well as to the environment via channels specified by the protocol
architecture. These interface modules may thus give subroutine output to or
receive input from the environment subject to the protocol architecture.

Intuitively, interface modules model simple hardware modules connected to,
e.g., a PC. During the protocol execution, a user does not trust his PC since

108 CHAPTER 5. UTILIZING REMOTELY UNHACKABLE HARDWARE

it may have been remotely hacked (in particular, the output of his PC may
have been altered by a hacker). Instead, he only trusts the unhackable interface
modules and, in particular, the outputs given by them (e.g. via a display).

In our constructions, interface modules will be unhackable sub-parties with
very limited functionality (except for the interface modules Si introduced in
Section 5.6 which will be hackable). We will assume an interface module called
output interface module (OIM) that is used for ensuring that a party’s result of
the MPC remains unmodified and hidden from the adversary even in the case
that the party is corrupted after receiving input. More specifically, a party’s
result(s) will only be learned by its OIM, which outputs these result(s) instead
of the party. For reactive tasks, we will also assume an input interface module
(IIM) for ensuring that a party’s input(s) for the rounds ≥ 2 remain secret and
unmodified even in the case that the party is corrupted after receiving (its first)
input. Note that in the ideal execution, the ideal functionality may also interact
with dummy parties corresponding to interface modules (see Definition 5.2).

Ideal Protocols. In ideal protocols, each dummy party is connected to the
environment and to the ideal functionality F via channels specified by the ideal
protocol’s architecture. Recall that, as described in Section 5.2.3, F is informed
through a special message (corrupt, P), which is written on its incoming message
tape, when a party P connected to F is corrupted.11

In this chapter, we will consider the ideal protocols SC(F) and AG(F), which
are defined as follows:

SC(F) is the ideal protocol where the dummy parties are connected to F and
the environment via standard channels.

For a non-reactive12 functionality F , AG(F) is the ideal protocol where N
hackable “dummy main parties” P1, . . . , PN are connected to F via initially
disconnected air-gap switches and to the environment via initially connected air-
gap switches, and additionally N unhackable “dummy output interface modules”
OIM1, . . . ,OIMN are connected to F and the environment via standard channels
(for a graphical depiction of AG(F), see Fig. 5.3). Upon input v, each party Pi
disconnects its air-gap switch to the environment, connects its air-gap switch to F ,
and passes v to F . Each Pi connects its air-gap switch to the environment again
upon receiving a special message open from F . Furthermore, if F is reactive,
AG(F) additionally contains N unhackable “dummy input interface modules”
IIM1, . . . , IIMN which are connected to F via standard channels and to the
environment via initially disconnected air-gap switches. Each IIMi connects its
air-gap switch to the environment upon receiving open from F .

Note that since the air-gap switch between a party Pi and F is disconnected
before Pi has received input, the parties Pi in AG(F) cannot be corrupted by an
online-attack instruction “coming from the outside” prior to receiving input.
More specifically, each Pi can only be corrupted by an online-attack instruction
prior to receiving input if it is online via its channel to the environment (which
is the case if the environment has marked this channel online).

Note that in the following we will also refer to OIMi (and IIMi) as the
“dummy OIM (resp. IIM) of Pi”

11Note that the adversary is not allowed to write external write instructions containing
the special message (corrupt, P) in order to prevent him from bypassing the corruption rules
(e.g. by sending (corrupt, P) to F during the protocol execution while party P is offline).

12For a definition of reactive resp. non-reactive functionalities, see Section 2.4.1.

5.2. THE FORTIFIED UC FRAMEWORK 109

P1 P2 PN

F

. . .OIM1 OIM2 OIMN

Figure 5.3: Protocol Architecture of the Ideal Protocol AG(F) (Non-Reactive
Case).

Fortified Functionalities. In contrast to functionalities in the adaptive UC
framework, fortified functionalities do not pass the inputs and outputs of a party
Pi corrupted after receiving input to the adversary A and also do not allow
him to modify Pi’s input and the output to Pi’s dummy OIM, unless all parties
Pj (j = 1, . . . , N) are corrupted. A can only block an output or instruct the
functionality to pass either the output computed by the functionality or an error
symbol ⊥ to Pi’s dummy OIM. If all parties are corrupted, A learns all inputs
and outputs and may modify them arbitrarily (including the outputs to the
dummy OIMs).

Definition 5.2 (Fortified Functionality). Let G be a non-reactive standard13
ideal functionality interacting with N parties P1, . . . , PN and A. Define the
fortified functionality [G] of G interacting with P1, . . . , PN , A and additionally
N “dummy output interface modules (OIMs)” OIM1, . . . ,OIMN as follows:

• [G] internally runs an instance of G.

• [G] initializes a counter c = 0.

• Upon receiving input from a party Pi, [G] forwards that input to G.

• Each time G sends a notification to A upon receiving input from an (honest)
party, [G] forwards that notification to A.

• When G gives a (public or private) delayed output, [G] gives the same (public
or private) delayed output with the only difference that, upon confirmation
by A, [G] forwards the output to the dummy OIM of the party for which G
intended this output.

• Upon receiving (corrupt, Pi), [G] does the following:

– If [G] has not yet received input from Pi, [G] increments c, marks Pi
as corrupted before input and forwards (corrupt, Pi) to G.

– If [G] has already received input from Pi, [G] increments c, marks Pi
as corrupted after input and forwards (corrupt, Pi) to G.

13Cf. Section 2.4.2 for a definition of standard functionalities.

110 CHAPTER 5. UTILIZING REMOTELY UNHACKABLE HARDWARE

• If G outputs “corrupted” to Pi upon receiving (corrupt, Pi), [G] forwards
this to Pi.14

• Handling Parties Pi marked as corrupted before input:

– If G sends the input of Pi to A, [G] forwards that input to A. Fur-
thermore, if A sends a modified input value for Pi, [G] forwards that
value to G.

– If G sends an output intended for Pi to A, [G] sends that output to
A. A may instruct [G] to pass any output of his choice to OIMi.

• Handling Parties Pi marked as corrupted after input:

– If c < N and G sends the input of Pi to A upon receiving (corrupt, Pi)
(after having output “corrupted” to Pi), ignore this message. Further-
more, if A sends a modified input value for Pi, ignore this value.

– If c < N and G sends the output intended for Pi to A, [G] first notifies
A that OIMi is about to receive output. A may then instruct [G] to
pass that output or ⊥ to OIMi.

• If c = N , send all inputs and outputs to A. In addition, A may determine
the outputs of all dummy OIMs in this case.

• All other messages between A and G are forwarded.

• If A sends (output, ỹ, Pi), [G] outputs ỹ to Pi if [G] has marked Pi.15

Reactive Case. If G is reactive, then [G] is defined as above except that [G]
additionally interacts with N “dummy input interface modules”IIM1, . . . , IIMN

as follows: Upon receiving input from an honest party Pi, [G] forwards that input
to G and sends open to the dummy IIM of Pi. If Pi is marked, [G] forwards all
inputs provided by a party Pi for rounds u ≥ 2 to the adversary A. Furthermore,
upon receiving an input provided by the dummy IIM of a party Pi who is marked
as corrupted before input, [G] forwards this input to A who may then modify it.
However, upon receiving an input provided by the dummy IIM of a party Pi
who is not marked as corrupted before input, [G] does not forward this input to
A (and does not allow A to modify it).

By construction, AG([G]) captures our desired security goal: i) [G] ensures
that corrupting a party Pi via an online-attack instruction after it has received
its (first) input does not enable the adversary to learn or modify Pi’s input(s)
and result(s) of the MPC (i.e. outputs of Pi’s dummy OIM), unless all parties Pj
(j = 1, . . . , N) are corrupted, and ii) the initially disconnected air-gap switches
between the parties Pi and [G] ensure that the adversary cannot corrupt a

14Note that this output is always allowed by the control function. In particular, it is allowed
when a party is corrupted before receiving input because the respective air-gap switch, which
is disconnected at that point, is replaced by a standard channel if the party is corrupted
via a physical-attack instruction or immediately connected if a party is corrupted via an
online-attack instruction.

15Note that the adversary is able to determine what a corrupted party outputs. However,
he cannot modify the output of the (unhackable) dummy OIM of a party corrupted after
receiving input (unless c = N).

5.2. THE FORTIFIED UC FRAMEWORK 111

party Pi via an online-attack instruction “coming from the outside” before
Pi has received input, i.e. each Pi can only be corrupted via an online-attack
instruction at that point if it is online via its channel to the environment.

5.2.5 Notify Transport Mechanism and Activation
Instructions

In the UC framework, the adversary is not activated when a party provides
input or receives subroutine output from a sub-party and is therefore not able
to adaptively corrupt it during this communication. In our setting of hacking
adversaries, this is undesirable because it does not capture the possibility of
parties being remotely hacked when they are online during such communication.

As a motivating example, consider a hackable party P that is connected to
the environment and the adversary A via standard channels. Furthermore, P
is also connected to an unhackable sub-party P ′ via a standard channel. Upon
receiving input, P provides an input containing secret data (e.g. shares of its
input) to P ′. P ′ then outputs a notification message to P who immediately
erases all secret data after being activated again. As this message delivery is
immediate, i.e. A is not activated during the communication between P and P ′,
he is unable to corrupt P before P has erased its secret data and sent it to an
unhackable sub-party, even though P has been online all the time.

To address this problem, we introduce a notify transport mechanism that
activates A (under certain conditions) upon immediate message delivery.

Notify Transport Mechanism. Let µ, µ′ by two ITIs such either

• µ and µ′ are protocol (sub-)parties that are not combined, or

• µ is a protocol (sub-)party and µ′ is an ideal functionality that is not a
fortified functionality, or vice versa.

If µ sends an external write instruction addressed to µ′ and the control
function allows this instruction, then the adversary A is activated with a notify
transport message (notify transport, µ′’s ID). Upon activation with a notify
transport message, A may forward the notify transport message to the environ-
ment Z or execute an online-attack or taint instruction (or do nothing, i.e.
only carry out local computations and then go into idle mode). Upon activation
with a notify transport message, Z may only activate A again. Upon activation
by Z after having been activated with a notify transport message in the previous
activation, A may only carry out an online-attack or taint instruction (or
do nothing). Afterwards, the external write instruction is carried out.

Note that, upon receiving a notify transport message, A is not allowed to
block the message sent by µ or activate another party.

Why Exclude Fortified Functionalities? The notify transport mechanism
does not apply to the communication between the dummy parties and [G]. This
ensures that the ideal-model adversary is not activated after a dummy party has
sent its input to [G] before [G] receives this input. Note that he would otherwise
be able to learn or modify a party’s input and output through an online-attack
instruction at a moment when the party has already received its input.

112 CHAPTER 5. UTILIZING REMOTELY UNHACKABLE HARDWARE

Activation Instructions. In the UC framework, protocol parties are activated
via external write instructions. This mechanism cannot be applied to parties
that are offline, however. For instance, consider a party P that wants to send
messages to multiple parties via data diodes while being offline. In order to do
so, P must be activated multiple times. This raises a problem since there is no
way to activate P via an external write instruction.

In order to address this problem, we allow the adversary to send activation
instructions. Formally, A may activate a party P by writing (activate, P) on
its outgoing message tape. P will then be activated.

5.2.6 Fortified UC Emulation
We now define the execution experiment in our framework by applying the rules
specified in Sections 5.2.1 to 5.2.5 to the UC execution experiment:

Definition 5.3 (Fortified UC Execution Experiment). An execution of a protocol
σ with adversary A and an environment Z on input a ∈ {0, 1}∗ and with security
parameter n ∈ N is a run of a system of ITMs subject to the following restrictions:

• First, Z is activated on input a ∈ {0, 1}∗. At each activation, Z may
mark each channel that exists between Z and a protocol party either online
or offline. In addition, for each channel to Z, Z is informed upon each
activation if it can receive output from that channel (cf. Section 5.2.2).

• The first ITI to be invoked by Z is the adversary A. The corruption model
is as specified in Section 5.2.3.

• Z may invoke a single instance of a challenge protocol, which is set to be
σ by the experiment. The SID of σ is determined by Z upon invocation.

• Z may provide inputs to the adversary. In addition, Z may provide inputs
to the parties of σ subject to the protocol architecture (cf. Section 5.2.1).
(Note that among the parties that may receive input from Z are interface
modules, cf. Section 5.2.4.)

• The adversary A may give subroutine outputs to Z. In addition, A may
send messages to the parties of σ subject to the protocol architecture (Sec-
tion 5.2.1). At each activation, A is given the status (cf. Section 5.2.2).
Moreover, A may activate a party through activate instructions (cf. Sec-
tion 5.2.5).

• Each party of σ may send messages to the adversary, provide inputs to
its sub-parties and give subroutine outputs to the parties of which it is
a sub-party or to the environment Z subject to the protocol architecture
(Section 5.2.1). Immediate communication (i.e. providing inputs or giving
subroutine outputs) may trigger the notify transport mechanism activating
the adversary as specified in Section 5.2.5.

• The ITIs take turns during the execution experiment, i.e., whenever an
ITI writes an allowed external write instruction, then the targeted ITI
is activated and the sending ITI is suspended. If an ITI suspends its
computation without writing an external write instruction or if it writes a
disallowed external write instruction, then the environment Z is activated.

5.3. PROPERTIES OF THE FRAMEWORK 113

(Note that this has the effect that at any point in time throughout the
execution experiment only a single ITI is active.)

• At the end of the execution experiment, Z outputs a single bit.

Denote by ExecFortUC(σ,A,Z)(n, a) ∈ {0, 1} the output of the environment Z
on input a ∈ {0, 1}∗ and with security parameter n ∈ N when interacting with σ
and A according to the above definition.

We now define security in our framework in analogy to the UC framework:

Definition 5.4 (Emulation in the Fortified UC Framework). Let π and φ be
protocols. π is said to emulate φ in the Fortified UC framework, denoted by
π ≥

##
φ,16 if for every PPT adversary A there exists a PPT adversary S such

that for every PPT environment Z there exists a negligible function negl such
that for all n ∈ N, a ∈ {0, 1}∗ it holds that

|Pr[ExecFortUC

(
π,A,Z

)
(n, a) = 1]− Pr[ExecFortUC

(
φ,S,Z

)
(n, a) = 1]| ≤ negl(n)

Let π be a protocol with N main parties P1, . . . , PN and L ≤ N . We will
later say that “π emulates φ for up to L parties under adversarial control” if
emulation holds for all (real-model) PPT adversaries A corrupting at most L
parties P ∈ {P1, . . . , PN}.

5.3 Properties of the Framework
In this section, we show some important properties of our new security notion.

As in the UC framework (cf. Proposition 2.29), the dummy adversary is also
complete in our framework.

Definition 5.5 (Emulation with Respect to the Dummy Adversary). Define the
dummy adversary D as follows: i) When receiving a message (sid, pid,m) from
the environment Z, D sends m to the party with extended identity (pid, sid).
ii) When receiving (physical-attack,M) or (online-attack, P) or (taint, P)
or (activate, P) from Z, D carries out that instruction. iii) When receiving m
from the party with PID pid and SID sid, D sends (sid, pid,m) to Z. iv) When
receiving the instruction status from Z, D sends the status Z.

Let π and φ be protocols. π is said to emulate φ with respect to the dummy
adversary in the Fortified UC framework if there exists a ppt-adversary SD such
that for every ppt-environment Z there exists negligible function negl such that
for all n ∈ N, a ∈ {0, 1}∗ it holds that

|Pr[ExecFortUC

(
π,D,Z

)
(n, a) = 1]−Pr[ExecFortUC

(
φ,SD,Z

)
(n, a) = 1]| ≤ negl(n)

Proposition 5.6 (Completeness of the Dummy Adversary). Let π and φ be
protocols. Then, π ≥

##
φ if and only if π emulates φ with respect to the dummy

adversary in the Fortified UC framework.
16Think of “##” as a fence, i.e. part of a fortification.

114 CHAPTER 5. UTILIZING REMOTELY UNHACKABLE HARDWARE

Proof Idea. The proof is almost identical to the proof in the UC framework (cf.
[Can01] or the proof of Proposition 4.8 in this work). The main difference is
that the environment ZA, which internally runs a copy of a given adversary A
and environment Z, forwards the status to A each time A is activated in ZA’s
internal simulation. Note that ZA can obtain the status by sending status to
the dummy adversary D.

Like UC emulation (cf. Proposition 2.30), emulation in the Fortified UC
framework is transitive.

Proposition 5.7 (Transitivity). Let π1, π2, π3 be protocols. If π1 ≥
##

π2 and

π2 ≥
##
π3 then it holds that π1 ≥

##
π3.

Proof Idea. The proof follows from the same argument as in the UC framework
(cf. [Can01] or the proof of Proposition 4.9 in this work).

Our security notion can be shown to be equivalent to adaptive UC security
for “plain protocols” that do not have unhackable sub-parties. Before stating
the theorem, we first formally define plain protocols:

Definition 5.8 (Plain Protocols). A protocol π is called plain if all of the
following hold: i) all (sub-)parties in π are hackable ii) π only uses standard
channels iii) π has no interface modules iv) each party in π is combined with
all of its sub-parties v) each (sub-)party in π that is not a (dummy) party of
an ideal (sub-)protocol is connected to the adversary via a standard channel
vi) (sub-)parties in π only make calls to standard functionalities

Note that plain protocols can be interpreted as protocols in the UC framework
in a natural way.

In the constructions presented later in this chapter we will use certain plain
protocols that additionally have air-gap switches between specific ITIs as sub-
protocols. In the following, we define this type of protocols:

Given a plain protocol protocol π, define π to be identical to π except for
the following: All standard channels, except for the ones between combined
parties and between parties and the environment, are replaced with initially
disconnected air-gap switches. Upon receiving input, each party connects all of
its air-gap switches.

We will later use protocols of the form SC(F)17 as sub-protocols in our
constructions.

We are now ready to state the theorem:

Theorem 5.9 (Equivalence with UC Emulation for Plain Protocols). Let π and
φ be plain protocols. Then,

π ≥
##
φ ⇐⇒ π ≥

UC
φ ⇐⇒ π ≥

##
φ,

where ≥
UC

denotes UC emulation with respect to adaptive (PID-wise18) corruption.
17Note that in the ideal protocol SC(F), each dummy party is connected to F via an initially

disconnected air-gap switch and to the environment via a standard channel.
18Recall (cf. Section 5.2.3) that the PIDs of combined parties (which can only be corrupted

together in our framework) are equal in their first component. We therefore prove equivalence
with a variant of adaptive UC security where parties with PIDs which are equal in their first
component are corrupted together (this is what we mean by “PID-wise corruption”).

5.3. PROPERTIES OF THE FRAMEWORK 115

Proof Idea. In the following, we briefly sketch some arguments for the statement
π ≥

UC
φ =⇒ π ≥

##
φ. The other statements follow from very similar arguments.

Since π ≥
UC

φ, it follows that there exists a simulator SD for the dummy

adversary D. Given SD, one can construct a simulator S̃D for the dummy
adversary in the Fortified UC framework. S̃D is defined roughly as follows:
S̃D internally runs SD, relaying the messages between SD and the other ITIs.
Upon receiving a physical-attack or online-attack instruction from Z, S̃D
informs SD which parties are to be corrupted and then carries out the respective
instruction. When SD reports that he has received a message from an ideal
functionality, S̃D first reports a notify transport message to the environment.
S̃D ignores all notify transport messages. Upon receiving status from the
environment, S̃D reports that each party is online via all of its channels in π.

Assume for the sake of contradiction that there is a Fortified UC environment
Z̃ that can distinguish between an interaction with π and D or φ and S̃D with
non-negligible probability. Then one can construct a UC environment Z that can
distinguish between an interaction with π and D or φ and SD with non-negligible
probability, thus reaching a contradiction. Z is defined roughly as follows: Z
internally runs Z̃, relaying the messages between Z̃ and the other ITIs. When
Z̃ sends a physical-attack or online-attack instruction, Z corrupts the
respective parties by sending corrupt messages to the adversary. When the
adversary reports that he has received a message from an ideal functionality,
Z first reports a notify transport message to Z̃. Each time Z̃ is activated in
Z’s internal simualtion, Z informs Z̃ that it can receive output via each of its
channels to the parties in π. When Z̃ sends status, Z reports to Z̃ that each
party is online via all of its channels in π.

It is easy to see that the view of Z̃ when interacting with the challenge
protocol is identical to its view when internally run by Z (note that the notify
transport mechanism is only triggered in a plain protocol if a party sends a
message to a standard ideal functionality, which, by convention, immediately
notifies the adversary upon receiving input).

The following theorem guarantees that, like UC security (cf. Theorem 2.31),
the security notion of the Fortified UC framework is closed under protocol
composition:
Theorem 5.10 (Composition Theorem). Let π, φ, ρ be protocols. Then,

π ≥
##
φ =⇒ ρπ ≥

##
ρφ

Sketch. The proof is very similar to the proof of the composition theorem of the
UC framework(cf. [Can01]). The two main differences are the following

The environment Zπ, which internally runs a given environment Z, the
protocol ρ and instances of π and φ and interacts with the dummy adversary D
and either π or φ as challenge protocol, behaves as in proof of the composition
theorem of the UC framework (cf. [Can01]) and additionally does the following:

1. Zπ marks each channel to a party in the challenge protocol according to
the online state of the respective calling party in ρ in its internal simulation.
This ensures that the online states of the parties in the challenge protocol
when interacting with Zπ are the same as when run as subroutines of ρ in
an interaction with the environment Z.

116 CHAPTER 5. UTILIZING REMOTELY UNHACKABLE HARDWARE

2. Zπ determines if a party E in its internal simulation who is a calling
party of a party P in the challenge protocol is online via a channel C to
P by deriving the relevant information from the status reported by the
adversary (which contains information about whether P is online via a
channel C ′ 6= C to another ITM µ 6= E) and by checking whether it can
receive output19 via C from P .20 This ensures that the online state of E
when internally run by Zπ is the same as when running in an interaction
between ρ and the environment Z.

3. If Z sends (physical-attack,M) in Zπ’s internal simulation, Zπ sends
(physical-attack,M′) to D, where the parties inM′ are the main parties
of Zπ’s challenge protocol who are the respective sub-parties of the parties
inM. Furthermore, if Z sends (online-attack, P) for a party P in Zπ’s
challenge protocol, Zπ forwards (online-attack, P) to D. Finally, if Z
sends (online-attack, T) for a party T in Zπ’s internal simulation, Zπ
checks the online state of T in its internal simulation and ignores this
instruction if T is offline or internally carries out this instruction if T is
online. Furthermore, if T is combined with a party P in Zπ’s challenge
protocol, Zπ forwards (online-attack, P) to D.

The simulator S, which internally runs copies of the simulator Sπ implied by
π ≥

##
φ and interacts with a given environment Z and the protocol ρφ, behaves

as in proof of the composition theorem of the UC framework (cf. [Can01]) and
additionally does the following:
S keeps track of a “simulated status” as follows:

1. If E is a party who is not a party of an instance of φ and C is channel
between E and an ITM who is also not a party of an instance of φ, then
E is online via C in S’s “simulated status” if and only if the status S
receives21 from the experiment states that E is online via C.

2. At each activation, S internally hands the copies of the simulator Sπ a
status that is derived from the status that S receives from the experiment
(by taking the information about the channels involving the parties in the
respective instance of φ). Afterwards, S sends the instruction status to
all copies of Sπ, receiving a status from each copy.

3. If P is a party of an instance of φ and C ′ is a channel between P and any
other ITM, then P is online via C ′ in S’s “simulated status” if and only
if the status reported by the respective copy of the simulator Sπ for that
instance of φ claims P to be online via C ′.

4. If E is a party who is not a party of an instance of φ and C ′′ is channel
between E and a party P who is a party of an instance of φ, then E is
online via C ′′ in S’s “simulated status” if and only if the status that S

19Recall that for each channel to Zπ , Zπ is informed upon each activation if it can receive
output from that channel, cf. Section 5.2.2.

20Recall that, by definition, E is online via channel C if and only if E can receive output
via C from the sub-party P and P is online via a channel C′ 6= C to another ITM µ 6= E, cf.
Section 5.2.2.

21Recall that, at each activation, the adversary S gets informed via which channels each
party is online, cf. Section 5.2.2.

5.3. PROPERTIES OF THE FRAMEWORK 117

receives from the experiment states that E is online via C ′′ and the status
reported by the respective copy of Sπ for that instance of φ claims that P
is online via a channel C̃ 6= C ′′ to another ITM µ 6= E.

When the environment Z sends the instruction status to S, then S reports
the “simulated status” to Z. When Z sends (online-attack, E) for a party E
who is not a party of an instance of φ, then S checks the online state of E that
is implied by the “simulated status” and ignores this instruction if E is offline
or carries out the instruction if E is online. When Z sends (online-attack, P)
for a party P that is a party of an instance of φ, then S forwards this message
to the respective copy of Sπ for that instance.

Theorems 5.9 and 5.10 allow for modular composition with UC-secure pro-
tocols. This will be used in the subsequent sections where we will construct
protocols ρSC(F) such that ρSC(F) ≥

##
AG([G]) for some fortified functionality [G].

Given a protocol π such that π ≥
UC

SC(F), we can replace all instances of the ideal

protocol SC(F) which are called by ρ by instances of the protocol π as follows:
By Theorem 5.9, it holds that π ≥

##
SC(F). Hence, we have that ρπ ≥

##
ρSC(F) by

Theorem 5.10. Therefore, ρπ ≥
##

AG([G]) by transitivity of Fortified UC emulation
(Proposition 5.7).

Technical Remarks: Further Discussion of the Composition Theorem

1. Not giving the environment the possibility to learn if it can receive output via a channel
between the environment and a party does not lead to a composable security notion. As
an example, consider a two-party protocol π (realizing some non-reactive functionality)
that only uses standard channels. In particular, parties P1, P2 in π are always online.
Consider a protocol π′ that is identical to π, except that the parties are connected to
the environment via initially connected air-gap switches. Each party in π′ disconnects
its air-gap switch to the environment upon receiving input. Before giving output, a
party connects its air-gap switch to the environment again. It is easy to see that π
emulates π′ according to this modified notion (that is identical to the security notion of
the Fortified UC framework, except that the environment is not informed about whether
it can receive output from a channel).
Now, consider a protocol ρπ that consists of two parties E1, E2 making subroutine
calls to one instance of π, i.e. Pi is a sub-party of Ei in ρπ. Each Ei is offline via all
channels, except to Pi. It holds that ρπ does not emulate ρπ′ . This is because the
parties Ei are online in ρπ but offline in ρπ′ . Hence, an environment who instructs the
dummy adversary D to send an online-attack instruction to one of the Ei’s can easily
distinguish these two protocols by observing if that party becomes corrupted or not.

2. Stipulating that a party is online if it can receive input from the environment, i.e. not
giving the environment the possibility to modify the online state of its channels to the
parties (by marking the channel), neither leads to a composable security notion. As
an example, consider a two-party protocol π where each party Pi is connected to the
environment via a standard channel. Furthermore, both parties are connected to the
adversary via initially connected air-gap switches. Let π′ be identical to π, except that
all air-gap switches to the adversary are initially disconnected. It is easy to see that π
emulates π′ according to this modified notion (that is identical to the security notion of
the Fortified UC framework, except that a party is online if it can receive input from
the environment).
Now, consider a protocol ρπ that consists of two parties E1, E2 making subroutine
calls to one instance of π, i.e. Pi is a sub-party of Ei in ρπ. Each Ei is offline via all

118 CHAPTER 5. UTILIZING REMOTELY UNHACKABLE HARDWARE

channels, except to Pi. By construction, the parties Pi are still initially online in ρπ.
However, they are initially offline in ρπ

′ . Hence, an environment who instructs the
dummy adversary D to send an online-attack instruction to one of the Pi’s can easily
distinguish these two protocols by observing if that party becomes corrupted or not.

3. Only giving the adversary the current online state of a party instead of the information
via which channels a party is online does also not lead to a composable security notion.
As an example, consider a two-party protocol π where the environment is connected
to the parties P1, P2 via initially connected air-gap switches (i.e. the environment
operates these air-gap switches). Furthermore, both parties in π are connected to the
adversary via initially disconnected air-gap switches. Let π′ be identical to π, except
that all air-gap switches to the adversary are initially connected. It is easy to see that π
emulates π′ according to this modified notion (that is identical to the security notion of
the Fortified UC framework, except that the adversary is only given the current online
state of each party).
Now, consider a protocol ρπ that consists of two parties E1, E2 making subroutine calls
to one instance of π, i.e. Pi is a sub-party of Ei in ρπ. Each Ei is (only) connected
to the environment and adversary via initially connected air-gap switches. On any
input, each Ei disconnects its air-gap switch to the environment. On input 0, each Ei
disconnects its air-gap switch to the adversary but lets its air-gap switch to Pi remain
connected. In contrast, on input 1, each Ei disconnects its air-gap switch to Pi but lets
its air-gap switch to the adversary remain connected.
It holds that ρπ does not emulate ρπ′ . This can be argued as follows: Consider the
environment Z interacting with the dummy adversary D that randomly chooses a bit b,
hands b to E1 as input, and then instructs D to send an online-attack instruction to
E1. By construction, the party E1 will then be corrupted or not depending on the input
b. More specifically, E1 will be corrupted if b = 1 and remain uncorrupted otherwise
(since P1 in π is offline). However, in the protocol ρπ′ , E1 is always online regardless
of its inputs. This is because E1 is either online via its channel to the adversary or to
the party in π′ who, by construction, is always online. Therefore, a potential simulator
interacting with ρπ′ who only gets the online state of the parties cannot decide if the
online attack on E1 should be carried out or ignored.

5.4 Construction for Non-Reactive
Functionalities

In this section, we present a construction for realizing the fortified functionality
of every non-reactive (standard adaptively well-formed22) ideal functionality.

The broad idea is to have the parties P1, . . . , PN send encrypted shares of
their inputs via data diodes in an offline sharing phase and subsequently use
these shares to compute the desired function in an online compute phase. This,
however, cannot be done straightforwardly. To begin with, the parties are not
able to retrieve public keys themselves in the sharing phase since this would
necessitate going online, making them susceptible to online attacks. Therefore,
each party Pi sends its shares to an unhackable sub-party called encryption
unit (Enc-unit) via a data diode. The Enc-unit retrieves the public keys and
sends encrypted shares to hackable sub-parties of the designated receivers called
buffers (note that since the parties P1, . . . , PN are offline they are unable to
receive messages).

Furthermore, each message has to be authenticated so that the adversary
cannot change the input of a party by modify the messages it sends. One
could do this with an additional unhackable “authentication unit” which signs
each ciphertext or have the Enc-unit sign all ciphertexts. However, since we

22Cf. Section 2.4.2 for a definition of standard adaptively well-formed.

5.4. CONSTRUCTION FOR NON-REACTIVE FUNCTIONALITIES 119

want to use as few and as simple unhackable sub-parties as possible, we take a
different approach. Each party Pi sends its shares together with valid signatures
to its Enc-unit. The verification key is sent, over an intermediary sub-party
called join (J), to a hackable sub-party called registration module (RM) which
disconnects itself from J after receiving input and forwards the verification key
to a public bulletin board via a data diode. Once a party Pi has sent all of its
shares, it erases everything, except for its own share, its verification key and
its decryption key. In order for this sign-then-encrypt approach to be secure,
we assume that the PKE scheme is non-malleable (NM-CPA-secure) and that
the digital signature is unforgeable (EUF-naCMA secure) and also satisfies a
property we call length-normal, guaranteeing that signatures of messages of
equal length are also of equal length. This prevents an adversary from learning
information of plaintexts based on the length of their ciphertext. Each party
Pi is connected to its sub-party J via an initially disconnected air-gap switch in
order to prevent the adversary from corrupting Pi’s RM (or J) but not Pi before
Pi has received its input.

In the compute phase, the adversary must be prevented from using values
that are different from the shares sent by the honest parties to the corrupted
parties in the sharing phase. Otherwise, he would be able to modify the inputs
of the parties who were honest in the sharing phase. The parties Pi therefore not
only use the shares they received but also the signatures of these shares and the
registered verification keys during the compute phase. The result of the compute
phase is the error symbol ⊥ if not all signatures are valid. Since the signing keys
were erased at the end of the sharing phase, the adversary cannot generate new
valid signatures for parties Pi corrupted after receiving input. He is also unable
to revoke the verification key of such parties since this would require corrupting
the respective RM, which is impossible since that party is offline.

Moreover, an adversary could swap a message in the sharing phase addressed
to (the buffer of) an honest party Pj with a ciphertext of a share and signature
received by a corrupted party (by encrypting that tuple with the respective
public key). Furthermore, an adversary controlling at least two parties Pi, Pj
knows two shares and valid signatures of each party and could use one of these
tuples twice in the compute phase. To prevent these attacks, a party Pi signs
each share along with the designated receiver’s PID. In addition, a party Pi also
includes its own PID in each message it sends in order to prevent the adversary
from reusing messages sent by honest parties for the parties corrupted before
receiving input.

Finally, one cannot simply send the result of the compute phase to a party
Pi since this would allow the adversary to learn and modify the output of the
parties corrupted after receiving input. Instead, we introduce another unhackable
sub-party called output interface module (OIM). Each party Pi sends not only
the shares of its input xi but also shares of a random pad ri and of a MAC key
ki in the sharing phase. Furthermore, each party Pi sends ri and ki to its OIM
via a data diode. In the compute phase, the parties will then use these shares to
compute (yi + ri,Mac(ki, yi + ri)), where yi is the desired output value (of party
Pi). Each party then sends its result to its OIM, which will check authenticity
by verifying the MAC tag and, if correct, reconstruct and output the value yi.

In the following, we will take a modular approach and define a functionality
FG that implements the verification of the input values (in particular, verification

120 CHAPTER 5. UTILIZING REMOTELY UNHACKABLE HARDWARE

of the signatures) in the compute phase as well as the subsequent multi-party
computation on the shares. Using Theorems 5.9 and 5.10, we will be able to
replace the sub-protocol SC(FG) in our construction with an existing adaptively
UC-secure protocol (cf. Remark 5.17).

We first define the functionality FG .

Construction 3. Let G be a non-reactive standard adaptively well-formed
ideal functionality. FG proceeds as follows, running with parties P1, . . . , PN and
adversary A and parametrized with a digital signature scheme SIG and a message
authentication code MAC.

1. Initialize the Boolean variable verify = true.

2. Upon receiving input from party Pi, store it and send (received, Pi) to A.
Upon receiving (confirmed, Pi) from A, mark Pi as input given.

3. Upon receiving (corrupt, Pi), behave like a standard corruption ideal func-
tionality. In addition, forward this message to G.

4. Upon receiving from A a (modified) input for a party Pl marked as
corrupted, store that input (if an input has already been stored for Pl then
overwrite it) and, if not done yet, mark Pl as input given.

Consistency Check
5. Once each party has been marked as input given, check if each stored input

is of the form #»vki = (vk(i)
1 , . . . , vk(i)

N), (sji, rji, kji, σji) (j = 1, . . . , N).

(i) If no, set verify = false.
(ii) If yes, check if #»vk1 = · · · = #»vkN .

(A) If this does not hold, set verify = false.
(B) Else, set (vk1, . . . , vkn) = (vk(1)

1 , . . . , vk(1)
N). For all i = 1, . . . , N ,

check if VrfySIG(vkj , Pi, sji, rji, kji, σji) = 1 for all j = 1, . . . , N .
(a) If this does not hold for every i, j, set verify = false.
(b) Else, proceed with Item 6.

Reconstruction and Computation
6. For each i = 1, . . . , N , compute xi = si1 + si2 + · · ·+ siN , ki = ki1 + ki2 +
· · ·+ kiN and ri = ri1 + ri2 + · · ·+ riN .

7. Internally run G on input (x1, . . . , xN). Let (y1, . . . , yN) be the output of
G. For all i = 1, . . . , N , compute oi = yi + ri and θi ← Mac(ki, oi).

8. If party Pi requests an output, proceed as follows:

(i) If verify = false, send a private delayed output ⊥ to Pi.
(ii) Else, if Item 7 has already been carried out, send a private delayed

output (oi, θi) to Pi.

9. If A requests an output for a party Pl marked as corrupted, proceed as
follows:

(i) If verify = false, send ⊥ to A.
(ii) Else, if Item 7 has already been carried out, send (ol, θl) to A.

5.4. CONSTRUCTION FOR NON-REACTIVE FUNCTIONALITIES 121

10. Once all parties are corrupted, send all of the private randomness used so
far as well as the private randomness G sends to A in this case (note that
G is adaptively well-formed) to the adversary A. (Note that this ensures
that FG is also adaptively well-formed).

11. All other messages between A and G are ignored.

Let Freg be the public bulletin board functionality (cf. Definition 2.27).
Let PKE = (GenPKE,Enc,Dec) be a public-key encryption scheme (cf. Defini-
tion 2.11), SIG = (GenSIG,Sig,VrfySIG) a digital signature scheme (cf. Defini-
tion 2.15) and MAC = (GenMAC,Mac,VrfyMAC) a message authentication code
(cf. Definition 2.19).

Given a non-reactive standard adaptively well-formed functionality G, we
next define our protocol ΠG for realizing the ideal protocol AG([G]).

Construction 4. Define the protocol ΠG as follows:
Architecture: See Fig. 5.4 for a graphical depiction.

Pi

Freg

RMi

Ji

FG

Enci

Bufferi
A

OIMi

Figure 5.4: Architecture of ΠG . Each party Pi (i = 1, . . . , N) has 3 hackable sub-
parties, called buffer, registration module (RM) and join (J), and 2 unhackable
sub-parties, called Enc(-unit) and OIM. Buffer and Enc-unit are connected
to the adversary via standard channels. All air-gap switches, except for P ’s
air-gap switch to the environment and the RM’s air-gap switch to J , are initially
disconnected.

Offline Sharing Phase
Upon input xi ∈ {0, 1}p, each party Pi (i = 1, . . . , N) does the following:23

• Disconnect air-gap switch to the environment.

• Generate (pki, ski)← GenPKE(1n), ki ← GenMAC(1n),
(sgki, vki)← GenSIG(1n) and a random pad ri ← {0, 1}q.

23Note that, without loss of generality, we assume that all inputs have the same length
p = poly(n) and all outputs have the same length q = poly(n).

122 CHAPTER 5. UTILIZING REMOTELY UNHACKABLE HARDWARE

• Generate shares si1 + si2 + · · ·+ siN = xi and ki1 + ki2 + · · ·+ kiN = ki
and ri1 + ri2 + · · ·+ riN = ri.

• Connect air-gap switch to J.

• Send (ki, ri) to OIM and (pki, vki) to J.

• Create signatures σij ← Sig(sgki, Pj , sij , rij , kij) (j = 1, . . . , N)

• Send (Pj , sij , rij , kij , σij) (j ∈ {1, 2, . . . ,m} \ {i}) to Enc-unit

• Erase everything, except for (sii, rii, kii, σii), vki and ski.

Registration module and J: On input (pki, vki) to J , J forwards the input
to RM . RM then disconnects air-gap switch to J and registers pki and vki by
sending these keys to the public bulletin board functionality Freg.

Enc-unit: Receive a list L = {(Pj , vj)}j={1,...,N}\{i} from one’s main party Pi.
At each activation, for each (Pj , vj) ∈ L, request pkj belonging to Pj from Freg.
If retrievable, compute cij ← Enc(pkj , vj), send (Pi, cij)24 to buffer of Pj and
delete (Pj , v) from L. Then, go into idle mode.

Buffer: Store each message received. On input retrieve, send all stored mes-
sages to one’s main party.

Online Compute Phase
Having completed its last step in the sharing phase, a party Pi does the following:

• Connect air-gap switches to buffer, to Freg and to FG.

• Request from Freg all verification keys {vkl}l∈{1,...,N}\{i} registered by the
other parties’ registration modules. If not all verification keys can be
retrieved yet, go into idle mode and request again at the next activation.

• Send retrieve to buffer and check if the buffer sends at least N − 1
messages. If no, go into idle mode and when activated again send retrieve
and check again. If yes, check if one has received from each party Pj a set
Mj = {(Pj , c̃)} with the following property (∗) (Validity Check):
There exists a tuple (Pj , ŝji, r̂ji, k̂ji, σ̂ji) and a (Pj , c) ∈Mj such that:

– Dec(ski, c) = (Pj , ŝji, r̂ji, k̂ji, σ̂ji) and
VrfySIG(vkj , Pi, ŝji, r̂ji, k̂ji, σ̂ji) = 1

– For all (Pj , c̃) ∈Mj it holds that either Dec(ski, c̃) = (Pj , ŝji, r̂ji, k̂ji, σ̂ji)
or (Pj , c̃) is “invalid”, i.e., either decrypts to a tuple (Pj , s̃ji, r̃ji, k̃ji, σ̃ji)
such that VrfySIG(vkj , Pi, s̃ji, r̃ji, k̃ji, σ̂ji) = 0, or decrypts to a tuple
(P ′, s̃ji, r̃ji, k̃ji, σ̃ji) such that P ′ 6= Pj, or does not decrypt correctly.

If this does not hold, send ⊥ to FG. Else, send all retrieved verification
keys (vk1, . . . , vkN) as well as all tuples (ŝji, r̂ji, k̂ji, σ̂ji) (j ∈ {1, . . . , N})
to FG.

24Sending the sender’s PID as prefix is not necessary but simplifies the discussion. Note
that for (Pi, c) we also say that “c is addressed as coming from party Pi”.

5.4. CONSTRUCTION FOR NON-REACTIVE FUNCTIONALITIES 123

Online Output Phase
Having completed its last step in the compute phase, a party Pi requests output
from FG and forwards that output to OIM.

OIM: Store the first input (ki, ri) from one’s main party. On second input
(oi, θi) or ⊥ from one’s main party, do the following: If the received value equals
⊥, output ⊥. Otherwise, check if VrfyMAC(ki, oi, θi) = 1 and output yi = oi + ri
if this holds, and ⊥ otherwise.

Remark 5.11. Note that we do not model how to reuse modules such as the
registration modules that stay disconnected throughout the protocol execution. In
practice, one may assume, e.g., a physical reset mechanism for these modules.

We will prove that ΠG emulates the ideal protocol AG([G]) (cf. Section 5.2.4
for a definition of AG([G])) in the Fortified UC framework for adversaries cor-
rupting at most N − 1 parties P ∈ {P1, . . . , PN} under the assumptions that
PKE is NM-CPA-secure (cf. Definition 3.3), SIG is EUF-naCMA-secure and
length-normal (cf. Definitions 2.16 and 2.18) and MAC is EUF-1-CMA-secure
(cf. Definition 2.20).

Remark 5.12 (Why IND-CPA security is not sufficient).
The following example is inspired by [LK14].

Let PKE = (GenPKE,Enc,Dec) be an additively homomorphic IND-CPA
secure public key encryption scheme with message space {0, 1}n (e.g. the
Goldwasser-Micali scheme [GM82]) and SIG = (GenSIG,Sig,VrfySIG) any digital
signature scheme.

Consider the following encoding Encode(m): Any 0 in m is transformed to 00
and any 1 is transformed to 01 or 10. The inverse Decode(m) of this encoding
parses the encoded message as pairs of bits and then maps 00 to 0 and 01 or 10
to 1. If 11 is encountered, the enitre message is be decoded to ⊥.

Let Enc′(pk,m) = Enc(pk,Encode(m)) and Dec′(sk, c) = Decode(Dec(sk, c)).
Note that PKE′ = (GenPKE,Enc′,Dec′) is also IND-CPA-secure.

Consider the following attack: Given a ciphertext c← Enc′(pk,m, σ) (where
σ ← Sigsgk(m)), compute

c′ = c+ Enc′(pk, 110 . . . 0)

By construction, c′ is a ciphertext (under Enc(pk, ·)) of a bitstring that is
identical to the encoded message Encode(m), except that the first two (most
significant) bits are flipped. It holds that if the first bit of the underlying message
m is 1, then the modified ciphertext c′ is valid since then the first two bits of
Encode(m) are 01 or 10 and the signature σ will still be valid since it is applied
to m and not to the encoding of m. On the other hand, if the first bit of m is
0, then the modified ciphertext will not be valid since then the first two bits of
Encode(m) would be 00 and their complement would be 11.

The above attack enables an adversary A to learn the first bit of a party Pi’s
input xi even if he corrupts Pi after Pi received its input (but does not corrupt
all parties) as follows: A corrupts every other party, except for one party Pj,

124 CHAPTER 5. UTILIZING REMOTELY UNHACKABLE HARDWARE

learning N − 1 shares of xi. Furthermore, A carries out the above attack on the
ciphertext cij intended for (the honest party) Pj. A can then learn the first bit
of xi by observing if the output of FG (to one of the corrupted parties) is ⊥ or not.

Before stating the theorem, we define the following auxiliary experiment,
which will be used in the proof.

Definition 5.13 (Auxiliary Experiment). The experiment Expaux
PKE,SIG,A(z)(n)

is defined as follows: At the beginning, the experiment generates keys (pk, sk)←
GenPKE(1n) and (vk, sgk) ← GenSIG(1n). On input 1n, z and pk, the adver-
sary A may then non-adaptively send queries to a signing oracle OSig(sgk,·).
Afterwards, the experiment sends vk to A. A may then send a message of
the form (prf1, prf2,m) to the experiment. The experiment then computes
σ ← Sig(sgk, prf2,m), c∗ ← Enc(pk, prf1,m, σ), and sends c∗ to A. During the
experiment, A may send a single parallel query to a decryption oracle ODec(sk,·).
At the end of the experiment, A sends a tuple (m′, σ′) to the experiment. The
experiment then checks if VrfySIG(vk,m′, σ′) = 1 and m′ has not been sent to
OSig(sgk,·) before. If this holds, the experiment outputs 1 and 0 otherwise.

An adversary A is called valid if his query to the decryption oracle ODec(sk,·)
does not contain c∗.

We have the following lemma.

Lemma 5.14. If PKE is IND-pCCA-secure25 and SIG EUF-naCMA-secure,
then for every valid PPT adversary A, there exists a negligible negl such that for
all n ∈ N, z ∈ {0, 1}∗ it holds that

Pr[Expaux
PKE,SIG,A(z)(n) = 1] ≤ negl(n)

Sketch. Assume there exists an adversary A that wins in the experiment
Expaux

PKE,SIG,A(z)(n) with non-negligible probability. Since PKE is IND-pCCA-
secure, one can replace c∗ by c′ ← Enc(pk, 0L), where L = |(prf1,m, σ)|, incur-
ring only a negligible loss in A’s success probability. Then, one can directly
construct an adversary A′ out of A that breaks the EUF-naCMA-security of SIG
with non-negligible probability. A′ simply internally simulates the experiment
Expaux

PKE,SIG,A(z)(n) for A using his signing oracle and c′ for c∗. Once A sends
a tuple (m,σ) to the experiment Expaux

PKE,SIG,A(z)(n), A′ sends (m,σ) to the
EUF-naCMA experiment. A′ then wins in the EUF-naCMA experiment if and
only if A wins in the experiment Expaux

PKE,SIG,A(z)(n).

We will use the above experiment to show that an environment Z cannot
send “fake messages” (Pi, c′) to an honest party Pj addressed as coming from a
party Pi that has not been corrupted before receiving input such that i) c′ was
not generated by the Enc-unit of Pi and ii) (Pi, c′) is accepted by Pj . Otherwise,
one could build a successful adversary A in Expaux

PKE,SIG,A(z)(n) as follows: A
guesses indices i, j such that Z sends a fake message (Pi, c′) to Pj . A simulates
the protocol execution for Z. For party Pi, A sends the tuples (Pl, sil, ril, kil)
for l 6= j to OSig(sgk,·) and (Pi, Pj, sij , rij , kij) to the experiment, receiving c∗. A
then uses (Pi, c∗) for (Pi, cij) in its simulation. If A’s guess is correct, A can

25Cf. Definition 3.2 for a formal definition of IND-pCCA security.

5.4. CONSTRUCTION FOR NON-REACTIVE FUNCTIONALITIES 125

decrypt c′ using ODec(sk,·), obtaining a message (Pi,m′, σ′). A can then send
(Pj ,m′, σ′) to the experiment and wins because he has never sent a message
of the form (Pj,m) to OSig(sgk,·). Note that if A had also sent (Pj , sij , rij , kij)
to OSig(sgk,·), then he would not win if c′ decrypts to the same plaintext as c∗,
which happens if Z manages to break the non-malleability of PKE.

Next, we define the simulator for the dummy adversary.

Definition 5.15 (Definition of the Simulator). Define the simulator Sim inter-
acting with an environment Z and a fortified ideal functionality [G] as follows:

1. At the beginning, Sim internally defines N parties corresponding to the
parties in ΠG. Throughout the simulation, Sim will keep track of the online
state of these parties by marking them as online or offline. At the beginning,
Sim marks these parties according to the initial online states of the dummy
parties in the ideal protocol (which depend on how Z has initially marked
its channels to these parties).

2. Sim initializes a Boolean variable verify = true.

3. Sim carries out the physical-attack instruction received from Z on its
first activation. Sim carries out an (online-attack, Pi) instruction only
if Sim has marked party Pi as online.

4. Upon receiving status from Z, Sim reports the status as follows: For an
honest party, Sim reports that the party is online via its channel to Z if the
party is marked as online and has not received input yet. If it has already
received input, Sim reports that it is online via its channel to its buffer, to
Freg and to FG. For a party corrupted via a physical-attack instruction,
Sim reports that it is online via all of its channels in the real protocol. For
a party corruped via an online-attack instruction, Sim reports that it is
online via the air-gap switches which Z has instructed to connect.

5. Throughout the simulation, Sim reports the respective notify transport
tokens to Z (note that we will not mention them anymore in the following).

6. Sim generates (pki, ski)← GenPKE(1n), ki ← GenMAC(1n) and (sgki, vki)←
GenSIG(1n) for each party Pi that is not corrupted before receiving input
(i.e. for each party Pi for which Sim has not sent a (physical-attack,M)
instruction such that Pi ∈ M and has not sent an (online-attack, Pi)
instruction before Pi received its input).

7. For each i such that party Pi is honest, Sim reports (registered, sid ′, RMi,
pki, vki) to Z. If Z answers with “ok”, Sim stores (pki, vki) as “registered”.

8. Upon notification by [G] that an (honest) party Pi has sent its input,
Sim marks Pi as offline and generates N random strings s′i1, . . . , s

′
iN

of length p, N random strings r′i1, . . . , r
′
iN of length q and N ran-

dom strings k′i1, . . . , k
′
iN of length |ki|. Sim then computes σ′ij ←

Sig(sgki, Pj , s′ij , r′ij , k′ij) and cij ← Enc(pkj , Pi, s′ij , r′ij , k′ij , σ′ij) (j =
1, . . . , N). Each time Z instructs to activate the Enc-unit of Pi, Sim
reports the respective tuple (Pi, cij) to Z if pkj is stored as “registered”.

126 CHAPTER 5. UTILIZING REMOTELY UNHACKABLE HARDWARE

9. Once Sim has reported all (Pi, cij) (j = 1, . . . , N) as well as
(registered, sid ′, RMi, pki, vki) for an honest party Pi, Sim marks Pi
as online.

10. If a party Pi is corrupted after receiving input, Sim sends
(s′ii, r′ii, k′ii, σ′ii, vki, ski) to Z.

11. If Z instructs to send a tuple (pkl, vkl) to Freg to the RM of a party Pl
corrupted before receiving input, Sim stores (pkl, vkl) as “registered” (if
such a tuple has already been stored for Pl then Sim overwrites it).

12. Each time Z sends a message addressed to buffer of a party Pi, Sim stores
that message as a message “received by Pi”.

13. If Z instructs to activate an honest party Pj who is marked as online
and has received at least N − 1 messages and N verification keys vkl are
stored as “registered”, then Sim stores #»vkj = (vk1, . . . , vkN) and reports
(received, Pi) to Z. Upon receiving (confirmed, Pi) from Z, Sim marks
Pj as input given.

14. If Z sends a tuple consisting of a vector #»vkj and (s′lj , r′lj , k′lj , σ′lj) (l =
1, . . . , N) as the input to FG for a corrupted party Pj , then Sim stores that
input (if an input has already been stored for Pj then Sim overwrites it)
and, if not done yet, marks Pj as input given.

15. Once all parties are marked as input given, Sim does the following:

(i) Sim checks if #»vk1 = · · · = #»vkN . If not, Sim sets verify = false.
(ii) For each j such that party Pj is honest, Sim checks if the following

two conditions hold:
– Pj has received for each i such that party Pi was not corrupted
before receiving input the tuple (Pi, cij), where cij is the respective
ciphertext generated by Sim in Item 8.

– Pj has received for each l such that party Pl was corrupted before
receiving input a setMl fulfilling property (∗) (Validity Check,
see Page 122, third item in “Online Compute Phase”).

If at least one of these two conditions does not hold, Sim sets verify =
false.

(iii) For each tuple consisting of a vector #»vkj and (s′lj , r′lj , k′lj , σ′lj) (l =
1, . . . , N) which was stored by Sim as the input to FG for a corrupted
party Pj, Sim checks the following:
– for each i such that party Pi was not corrupted before receiving in-

put, Sim checks if (s′ij , r′ij , k′ij) = (sij , rij , kij), where (sij , rij , kij)
is the respective tuple generated in Item 8. If this does not hold or
VrfySIG(vki, Pj , s′ij , r′ij , k′ij , σ′ij) = 0, Sim sets verify = false.

– for each l such that party Pl was corrupted before receiving input,
Sim sets verify = false if VrfySIG(vkl, Pj , s′lj , r′lj , k′lj , σ′lj) = 0.

16. Sim extracts the input, MAC key and random pad of each party Pl corrupted
before receiving input by (a) decrypting all ciphertexts addressed as coming

5.4. CONSTRUCTION FOR NON-REACTIVE FUNCTIONALITIES 127

from Pl which are sent by Z to the buffers of honest parties (using the
decryption keys generated in Item 6) and examining the respective plaintexts
as described in Item 15 (ii) (second condition)26, and (b) using the shares Z
sends to the Enc-unit of Pl (if Pl was corrupted through an online-attack
instruction before receiving its input), and (c) using the inputs Z sends to
FG for corrupted parties in Item 1427. Sim sends each extracted input to
[G].

17. Once all parties are marked as input given and Z instructs to activate an
honest party Pi, then

(i) If verify = true, Sim instructs [G] to send the output to the dummy
OIM of Pi.

(ii) If verify = false, Sim instructs [G] to output ⊥ to the dummy OIM
of Pi.

18. Once all parties are marked as input given and Z requests the output of
FG for a party Pi corrupted after receiving input, then

(i) If verify = true, Sim generates a random string ỹi ← {0, 1}q and
sends (ỹi,Mac(ki, ỹi)) to Z, where ki is the MAC generated by Sim
in Item 6.

(ii) If verify = false, Sim sends ⊥ to Z.

19. If Z sends a message (m′, t′) addressed to OIM of a party Pi corrupted
after receiving input, then

(i) If Z has not yet requested the output of FG for Pi yet, Sim instructs
[G] to output ⊥ to the dummy OIM of Pi.

(ii) If Z has already requested the output of FG for Pi and Sim sent
(ỹi,Mac(ki, ỹi)) (in Item 18) to Z, then
– If m′ 6= ỹi, Sim instructs [G] to output ⊥ to the dummy OIM of
Pi.

– If m′ = ỹi and VrfyMAC(ki,m′, t′) = 1, then Sim instructs [G] to
send the output to the dummy OIM of party Pi. Otherwise, Sim
instructs [G] to output ⊥ to the dummy OIM of Pi.

(iii) If Z has already requested the output of FG for Pi and Sim sent ⊥
(in Item 18) to Z, then Sim instructs [G] to output ⊥ to the dummy
OIM of Pi.

20. Once all parties are marked as input given and Z requests the output of
FG for a party Pi corrupted before receiving input, then

26Note that if a setMl fulfills property (∗), then there exists a plaintext (Pl, ŝli, r̂li, k̂li, σ̂li)
such that at least one ciphertext in Ml decrypts to this plaintext and each ciphertext in
Ml either decrypts to this plaintext or is invalid. If this plaintext exists, Sim uses it for
reconstructing Pl’s input, MAC key and random pad. Note that if this plaintext does not
exist, then it holds that verify = false.

27Note that if a party Pi who was honest during the sharing phase is corrupted, Sim does not
use the plaintext (Pl, ŝli, r̂li, k̂li, σ̂li) obtained through (a) or the shares Z may send to the Enc-
unit of Pl addressed to the buffer of Pi (if Pl was corrupted through an (online-attack, Pl) for
reconstructing Pl’s input, MAC key and random pad, but instead uses the tuple (s′li, r

′
li, k
′
li, σ
′
li)

that Z sends to FG as input for Pi in Item 14.

128 CHAPTER 5. UTILIZING REMOTELY UNHACKABLE HARDWARE

(i) If verify = true, Sim sends (yi + ri,Mac(ki, yi + ri)) to Z, where
yi is the output of [G] for party Pi and ki, ri are the MAC key and
random pad extracted in Item 16.

(ii) If verify = false, Sim sends ⊥ to Z.

21. Sim lets Z determine the output of the dummy OIM of each party corrupted
before receiving input.

We now state the theorem:

Theorem 5.16 (Up to N − 1 Corrupted Parties, Non-Reactive Case). Let G be
a non-reactive standard adaptively well-formed28 functionality. Assume PKE is
NM-CPA-secure and SIG is EUF-naCMA-secure and length-normal, and MAC
is EUF-1-CMA-secure. Then it holds that

ΠG ≥
##

AG([G])

for up to N − 1 parties under adversarial control.

Proof. By Proposition 5.6, it suffices to find a simulator for the dummy adversary.
In the following proof, we will consider a sequence of hybrids H0, . . . ,H4.

Starting from the real protocol ΠG , we will define ideal protocols that gradually
reduce the simulator’s abilities (i.e. restrict the set of parties for which he may
learn/modify the inputs/outputs). The final hybrid H4 will be the ideal protocol
AG([G]) and the simulator as defined in Definition 5.15.

Since NM-CPA security is equivalent to IND-pCCA security (cf. Theorem 3.8),
we will use the assumption that PKE is IND-pCCA-secure in the following proof.

Let Z be an environment that instructs D to corrupt at most N − 1 parties
P ∈ {P1, . . . , PN}. Let outi(Z) be the output of Z in the hybrid Hi.

In the following, we will say corrupted before input and corrupted after input
for the sake of brevity.

Hybrid H0. Let H0 be the execution experiment between the environment Z,
the dummy adversary D and the real protocol ΠG .

Hybrid H1. Let H1 be the execution experiment between the environment Z,
the ideal protocol AG(F1) and the ideal-model adversary Sim1, where F1 and
Sim1 are defined as follows: Define F1 to be identical to [G], except for the
following: F1 hands the adversary the inputs and outputs of every party (honest
and corrupted) and allows him to determine the outputs of the dummy OIMs
of all corrupted parties (i.e. all parties corrupted before and after input). Note
that, like [G], F1 does not allow the adversary to modify the inputs of parties
corrupted after input (unless all parties are corrupted) and also does not allow
him to modify the inputs of honest parties.

Define Sim1 to be like the simulator in Definition 5.15, except for the following:
In Item 8, Sim1 reports ciphertexts as they are generated in the real protocol

(i.e., ciphertexts containing a share of a party’s actual input, of a random pad
and of a MAC key as well as a signature of these shares). In Item 10, Sim1
reports the respective shares as they are generated in the real protocol (i.e. a

28Cf. Section 2.4.2 for a definition of standard adaptively well-formed ideal functionalities.

5.4. CONSTRUCTION FOR NON-REACTIVE FUNCTIONALITIES 129

share of a party Pi’s actual input, of a random pad and of a MAC key) along
with a valid signature of these shares and vki, ski. In Item 18, if verify = true,
Sim1 reports (yi + ri,Mac(ki, yi + ri)) to Z, where yi is the output Sim1 receives
for the respective party from F1 and ki, ri are the MAC key and one-time pad
generated in Items 6 and 8. If verify = false, Sim1 reports ⊥. In Item 19, if
Z sends a message (m′, t′) addressed to the OIM of a party Pi (corrupted after
input), Sim1 carries out the program of the OIM in the real protocol (using the
MAC key and one-time pad generated in Items 6 and 8), thereby computes an
output value y′ ∈ {0, 1}q ∪ {⊥} of the OIM, and then instructs [G] to output y′
to the dummy OIM of Pi.

Consider the following events:
Let Efakemess be the event that there exists an honest party Pj that re-

trieves a tuple (Pi, c′) in its buffer such that party Pi is not corrupted be-
fore input and (Pi, c′) is “valid”, i.e. Dec(skj , c′) = (Pi, s′ij , r′ij , k′ij , σ′ij) and
VrfySIG(vki, Pj , s′ij , r′ij , k′ij , σ′ij) = 1, but either c′ 6= cij or cij has not been
generated yet (by the Enc-unit of party Pi).

Let Efakeinp be the event that Z sends an input (s′ij , r′ij , k′ij , σ′ij) for a cor-
rupted party Pj to FG such that party Pi is not corrupted before input and
VrfySIG(vki, Pj , s′ij , r′ij , k′ij , σ′ij) = 1, but (s′ij , r′ij , k′ij) 6= (sij , rij , kij) (where vki
and (sij , rij , kij) were generated by Pi).

Let E = Efakemess ∪Efakeinp. It holds that

Pr[out0(Z) = 1 ∧ ¬E] = Pr[out1(Z) = 1 ∧ ¬E]

This is because if Efakemess does not occur then a message in the buffer of
an honest party Pj that is addressed as coming from a party Pi who was not
corrupted before input decrypts to a valid message/signature pair if and only if
it equals the ciphertext cij sent by Pi. Moreover, since Efakeinp does not occur,
it holds that for each corrupted party Pj , if Z sends a tuple (s′ij , r′ij , k′ij , σ′ij)
as input to FG for Pj such that Pi was not corrupted before input, then either
VrfySIG(vki, Pj , s′ij , r′ij , k′ij , σ′ij) = 0 or VrfySIG(vki, Pj , s′ij , r′ij , k′ij , σ′ij) = 1 and
(s′ij , r′ij , k′ij) = (sij , rij , kij), where vki and (sij , rij , kij) were generated by Pi.

Therefore, it holds that

|Pr[out0(Z) = 1]− Pr[out1(Z) = 1]| ≤ Pr[E] ≤ Pr[Efakemess] + Pr[Efakeinp]

Claim 1: Pr[Efakemess] is negligible.
Consider the following adversaryA in the auxiliary experiment Expaux

PKE,SIG,A(z)(n):
At the beginning, A randomly selects a tuple (i, j) ∈ {1, . . . , N} × {1, . . . , N}
such that i 6= j. A then simulates hybrid H0 using the public key pk from the
experiment for pkj in its internal simulation. When Z gives the party Pi its input
xi, A generates shares sil, ril, kil of xi, of a random pad ri and of a MAC key ki
just like in H0. A sends the tuples (Pl, sil, ril, kil) for l 6= j to the signing oracle
OSig(sgk,·), receiving signatures σil. After receiving the verification key vk from
the experiment, A uses vk for vki in its internal simulation. Using pk, A encrypts
all tuples (Pi, sil, ril, kil, σil) (l 6∈ {i, j}) and sends them to the respective party
in its internal simulation. Once the message (Pi, cij) is supposed to be sent in
the internal simulation, A sends (Pi, Pj, sij , rij , kij) to the experiment, receiving
c∗. A then uses (Pi, c∗) for (Pi, cij) in its simulation. When Pj is activated
and is online and has received at least N − 1 messages, A sends all ciphertexts

130 CHAPTER 5. UTILIZING REMOTELY UNHACKABLE HARDWARE

addressed as coming from Pi such that c 6= c∗ to the decryption oracle ODec(sk,·)
(if c∗ has not been generated yet, A sends all ciphertexts addressed as coming
from Pi). For each message (Pl,m, σ) he receives from the oracle ODec(sk,·), A
checks if VrfySIG(vk, Pj ,m, σ) = 1. If this holds for a message (Pl,m′, σ′), then
A sends this message (Pj ,m′, σ′) to the experiment. If during the simulation,
Pi is corrupted before input or Pj is corrupted (before or after input) or if no
message A receives from ODec(sk,·) is valid, then A sends ⊥ to the experiment.

By construction, it holds that if Efakemess occurs and A has correctly guessed
an index (i, j) for which Efakemess occurs, then A sends a message c′ to ODec(sk,·)
such that c 6= c∗ or c∗ has not been generated yet and Dec(sk, c′) = (Pi,m′, σ′)
and VrfySIG(vk, Pj ,m′, σ′) = 1. Since A does not send a message of the form
(Pj,m) to the signing oracle OSig(sgk,·), it follows that Expaux

PKE,SIG,A(z)(n) = 1.
Furthermore, the probability that A correctly guesses an index (i, j) for which
Efakemess occurs is at least 1/(N · (N − 1)). Hence,

Pr[Expaux
PKE,SIG,A(z)(n) = 1] ≥ Pr[Efakemess]/(N · (N − 1))

Therefore, since Pr[Expaux
PKE,SIG,A(z)(n) = 1] is negligible by Lemma 5.14 and

N · (N − 1) is polynomial in n, it follows that Pr[Efakemess] is also negligible.

Claim 2: Pr[Efakeinp] is negligible.
Consider the following adversary A against the EUF-naCMA security of SIG:
At the beginning, A randomly selects an index i ∈ {1, . . . , N}. A then simu-
lates hybrid H0. When Z gives the party Pi its input xi, A generates shares
sij , rij , kij of xi, of a random pad ri and of a MAC key ki just like in H0. A
sends the tuples (Pj , sij , rij , kij) (j = 1, . . . , N) to the signing oracle OSig(sgk,·),
receiving signatures σij . After receiving vk, A uses vk for vki, encrypts all
tuples (Pi, sij , rij , kij , σij) (j 6= i) and sends them to the respective party in its
internal simulation. Each time Z sends a tuple (s′ij , r′ij , k′ij , σ′ij) as input for
a corrupted party Pj to FG such that (s′ij , r′ij , k′ij) 6= (sij , rij , kij), A checks if
VrfySIG(vki, Pj , s′ij , r′ij , k′ij , σ′ij) = 1. If this holds, A sends (Pj , s′ij , r′ij , k′ij , σ′ij)
to the experiment. If during the simulation, Pi is corrupted before input or if no
message A checks is valid, then A sends ⊥ to the experiment.

By construction, it holds that if Efakeinp occurs and A has correctly guessed
an index i for which Efakeinp occurs, then Expeuf-nacma

SIG,A(z)(n) = 1 because the tuple
(Pj , s′ij , r′ij , k′ij , σij) is valid and (Pj , s′ij , r′ij , k′ij) 6= (Pj , sij , rij , kij) has not been
sent to the signing oracleOSig(sgk,·). Furthermore, the probability thatA correctly
guesses an index i for which Efakeinp occurs is at least 1/N . Hence,

Pr[Expeuf-nacma
SIG,A(z),(n) = 1] ≥ Pr[Efakeinp]/N

Therefore, since Pr[Expeuf-nacma
SIG,A(z)(n) = 1] is negligible because SIG is EUF-

naCMA-secure by assumption andN is polynomial in n, it follows that Pr[Efakeinp]
is also negligible.

Hence, there exist a negligible function negl1 such that

|Pr[out0(Z) = 1]− Pr[out1(Z) = 1]| ≤ negl1(n)

Hybrid H2. Let H2 be the execution experiment between the environment Z,
the ideal protocol AG(F1) (again) and the ideal-model adversary Sim2, where
Sim2 is defined as follows:

5.4. CONSTRUCTION FOR NON-REACTIVE FUNCTIONALITIES 131

Define Sim2 to be like Sim1, except for the following: In Item 8, upon
notification by F1 that an (honest) party Pi has sent its input, Sim2 generates
N random strings k′i1, . . . , k′iN of length |ki| (where ki is the MAC key generated
in Item 6) and computes σ′ij ← Sig(sgki, Pj , sij , rij , k′ij) (j = 1, . . . , N), where
the sij and rij are still the shares of the input xi and of a random pad ri,
respectively. Sim2 then iteratively reports (Pi,Enc(pkj , Pi, sij , rij , k′ij , σ′ij)) (j ∈
{1, . . . , N} \ {i}) to Z. If Pi is corrupted, Sim2 sends (sii, rii, k′ii, σ′ii, vki, ski) to
Z in Item 10. (Note that, in Item 18, Sim2 still uses the MAC key ki generated
in Item 6 for the output of FG to Pi if that output is 6= ⊥).

Let H2,0, . . . ,H2,N be the execution experiment between the environment
Z, the ideal protocol AG(F1) and the ideal-model adversary Sim2,0, . . . ,Sim2,N ,
respectively, where Sim2,i is defined as follows:

Define the simulators Sim2,i to be like Sim1, except for the following: In
Item 8, upon notification by F1 that an (honest) party Pl ∈ {P1, . . . , Pi} has sent
its input, Sim2,i generates N random strings k′l1, . . . , k′lN of length |kl| (where kl
is the MAC key generated in Item 6), computes σ′lj ← Sig(sgkl, Pj , slj , rlj , k′lj)
(j = 1, . . . , N), and iteratively reports (Pl,Enc(pkj , Pl, slj , rlj , k′lj , σ′lj)) (j ∈
{1, . . . , N} \ {l}) to Z. If a party Pl ∈ {P1, . . . , Pi} is corrupted after having
received input, Sim2,i sends (sll, rll, k′ll, σ′ll, vkl, skl) to Z in Item 10.

It holds that
Pr[out2,0(Z) = 1] = Pr[out1(Z) = 1]

and
Pr[out2,N (Z) = 1] = Pr[out2(Z) = 1]

Assume that there exists a non-negligible function ε such that |Pr[out1(Z) =
1] = Pr[out2(Z) = 1]| > ε. Then there exists an i∗ ∈ {1, . . . , N} such that

|Pr[out2,i∗−1(Z) = 1]− Pr[out2,i∗(Z) = 1]| > ε/N

Moreover, if party Pi∗ is not corrupted after input, i.e. if it is corrupted
before input or remains honest throughout the execution, then the views of Z in
H2,i∗−1 and H2,i∗ are identically distributed. Therefore,

ε/N <|Pr[out2,i∗−1(Z) = 1]− Pr[out2,i∗(Z) = 1]|
=|Pr[out2,i∗−1(Z) = 1 ∧ party Pi∗ corrupted after input]
− Pr[out2,i∗(Z) = 1 ∧ party Pi∗ corrupted after input]|

Consider the following adversary A against the IND-pCCA security of PKE:
At the beginning, A randomly selects an index j ∈ {1, . . . , N} \ {i∗}. A then
simulates the experiment H2,i∗−1. When Z gives the party Pi∗ its input xi∗ , A
generates shares si∗l, ri∗l, ki∗l of the input xi∗ , of a random pad ri∗ and of a MAC
key ki∗ just like in H2,i∗−1. A additionally generates a random string k′i∗j . A then
generates signatures σi∗j , σ′i∗j for (Pj , si∗j , ri∗j , ki∗j) and (Pj , si∗j , ri∗j , k′i∗j),
respectively, and sends (Pi∗ , si∗j , ri∗j , ki∗j , σi∗j), (Pi∗ , si∗j , ri∗j , k′i∗j , σ′i∗j) to the
experiment, receiving a ciphertext c∗. Note that A’s challenge messages are
allowed, i.e. have the same length, because SIG is length-normal. A then
continues simulating the experiment H2,i∗−1, using c∗ as ci∗j and his decryption
oracle to decrypt the ciphertexts in the buffer of Pj that are addressed as coming
from the parties corrupted before input but do not equal c∗ (the ones that

132 CHAPTER 5. UTILIZING REMOTELY UNHACKABLE HARDWARE

are equal to c∗ are ignored29). Note that in A’s internal simulation, party Pi∗
receives the correct value from FG (i.e. (yi∗ + ri∗ ,Mac(ki∗ , yi∗ + ri∗)) or ⊥). At
the end of the experiment, A outputs what Z outputs. If during the simulation,
Z corrupts Pj (before or after input) or if Pi∗ is not corrupted after input, A
sends ⊥ to the experiment.

Let Outputind-pcca
PKE,A (b) denote the output of A in the IND-pCCA experiment

when the challenge bit b is chosen (cp. Section 3.1.1). By construction, assuming
party Pi∗ is corrupted after input, if A guessed an index j such that party Pj
remains honest then it holds that if the challenge bit is 0 the view of Z in
A’s internal simulation is distributed as in the experiment H2,i∗−1 and if the
challenge bit is 1 the view of Z in A’s internal simulation is distributed as in the
experiment H2,i∗ . Moreover, assuming party Pi∗ is corrupted after input, the
probability that A guesses an index j such that party Pj remains honest is at
least 1/(N − 1). Hence,

|Outputind-pcca
PKE,A (0)−Outputind-pcca

PKE,A (1)|
=|Pr[out2,i∗−1(Z) = 1 ∧ party Pi∗ corrupted after input ∧Guess correct]
− Pr[out2,i∗(Z) = 1 ∧ party Pi∗ corrupted after input ∧Guess correct]|

> ε/(N · (N − 1))

This contradicts the IND-pCCA security of PKE.
Hence, there exist a negligible function negl2 such that

|Pr[out1(Z) = 1]− Pr[out2(Z) = 1]| ≤ negl2(n)

Hybrid H3. Let H3 be the execution experiment between the environment Z,
the ideal protocol AG(F2) and the ideal-model adversary Sim3, where F2 and
Sim3 are defined as follows:

Let F2 be identical to F1, except that now the adversary is not allowed
to determine the outputs of the dummy OIMs of parties corrupted after input
anymore (only of parties corrupted before input).

Define Sim3 to be like Sim2, except that Item 19 is identical to the same step
of the simulator in Definition 5.15.

Let Efakeoutp be the event that Z sends a message (m′, t′) to OIM of a party
Pi corrupted after input such that VrfyMAC(ki,m′, t′) = 1 but either Pi has
received ⊥ from FG or a tuple (m, t) such that m′ 6= m, or Pi has not received
an output from FG yet.

It is easy to see that the following holds:

Pr[out2(Z) = 1 ∧ ¬Efakeoutp] = Pr[out3(Z) = 1 ∧ ¬Efakeoutp]

Therefore, it holds that

|Pr[out2(Z) = 1]− Pr[out3(Z) = 1]| ≤ Pr[Efakeoutp]

29Note that a tuple (Pl, c∗) addressed as coming from a party Pl corrupted before input is
always invalid since Pl 6= Pi∗ .

5.4. CONSTRUCTION FOR NON-REACTIVE FUNCTIONALITIES 133

Claim 3: Pr[Efakeoutp] is negligible.
Consider the adversary A against the EUF-1-CMA-security of MAC. At the
beginning, A randomly selects an index i ∈ {1, . . . , N}. A then simulates the
hybrid H2. Once Z expects the output from FG for party Pi (if Pi is corrupted
after input), A computes the output m for this party. If m = ⊥, A sends ⊥ to
Z. Otherwise, A sends m to the oracle OMac(k,·), receiving a tag t. A then sends
(m, t) to Z. If Z sends a tuple (m′, t′) to OIM of Pi such that m′ 6= m, then A
sends (m′, t′) to the experiment. If during the simulation, Pi is not corrupted
after input or if Z sends ⊥ or a tuple (m′, t′) such that m′ = m to OIM of Pi,
then A sends ⊥ to the experiment.

By construction, it holds that if Efakeoutp occurs and A correctly guessed an
index for which Efakeoutp occurs, then Expeuf-1-cma

MAC,A(z)(n) = 1 because (m′, t′) is
valid and m′ 6= m has not been sent to OMac(k,·). Moreover, the probability that
A correctly guesses an index for which Efakeoutp occurs is at least 1/N . Hence,

Pr[Expeuf-1-cma
MAC,A(z)(n) = 1] ≥ Pr[Efakeoutp]/N

Therefore, since Pr[Expeuf-1-cma
MAC,A(z)(n) = 1] is negligible because MAC is EUF-1-

CMA-secure by assumption and N is polynomial in n, it follows that Pr[Efakeoutp]
is also negligible.

Hence, there exist a negligible function negl3 such that

|Pr[out2(Z) = 1]− Pr[out3(Z) = 1]| ≤ negl3(n)

Hybrid H4. Let H4 be the execution experiment between Z, the ideal protocol
AG(F3) and the ideal-model adversary Sim4, where F3 and Sim4 are defined as
follows: Let F3 be identical to F2, except that the adversary is not given the
inputs and outputs of honest parties anymore. In addition, the adversary is only
given the inputs and outputs of parties corrupted after input when all parties
are corrupted.

Define the adversary Sim4 to be like Sim3, except that Items 8, 10 and 18
are identical to the same steps of the simulator in Definition 5.15.

Let H4,0, . . . ,H4,N be the execution experiment between the environment Z,
the ideal protocol AG(F3,0), . . . , AG(F3,N) and the adversary Sim4,0, . . . ,Sim4,N ,
respectively, where F3,i and Sim4,i are defined as follows:

Define F3,i be identical to F2, except now the adversary is not given the
inputs and outputs of the parties Pl ∈ {P1, . . . , Pi} if they are honest or corrupted
after input unless all parties are corrupted.

Define the simulators Sim4,i to be like Sim3, except for the following: In
Item 8, upon notification by F3,i that an (honest) party Pl ∈ {P1, . . . , Pi}
has sent its input, Sim4,i generates N random strings s′l1, . . . , s′lN of length p,
N random strings r′l1, . . . , r′lN of length q and N random strings k′l1, . . . , k′lN
of length |kl| (where kl is the MAC key generated in Item 6). Sim4,i then
computes σ′lj ← Sig(sgkl, j, s′lj , r′lj , k′lj) (j = 1, . . . , N), and iteratively re-
ports (Pl,Enc(pkj , Pl, s′lj , r′lj , k′lj , σ′lj)) (j ∈ {1, . . . , N} \ {l}) to Z. If a
party Pl ∈ {P1, . . . , Pi} is corrupted after having received input, Sim4,i sends
(s′ll, r′ll, k′ll, σ′ll, vkl, skl) to Z in Item 10. In Item 18, if verify = true, then for
every party Pl ∈ {P1, . . . , Pi} corrupted after having received input, Sim4 gener-
ates a random string ỹl ← {0, 1}q and sends (ỹl,Mac(kl, ỹl)) to Z as the output

134 CHAPTER 5. UTILIZING REMOTELY UNHACKABLE HARDWARE

from FG (where kl is the MAC key generated in Item 6). If verify = false,
then for every corrupted party, Sim4,i sends ⊥ to Z as the output from FG .

It holds that
Pr[out4,0(Z) = 1] = Pr[out3(Z) = 1]

and
Pr[out4,N (Z) = 1] = Pr[out4(Z) = 1]

Assume that there exists a non-negligible function ε such that |Pr[out3(Z) =
1] = Pr[out4(Z) = 1]| > ε. Then there exists an i∗ ∈ {1, . . . , N} such that

|Pr[out4,i∗−1(Z) = 1] = Pr[out4,i∗(Z) = 1]| > ε/N

Moreover, if party Pi∗ is not corrupted after input, i.e. if it is corrupted
before input or remains honest throughout the execution, then the views of Z in
H4,i∗−1 and H4,i∗ are identically distributed. Therefore,

ε/N < |Pr[out4,i∗−1(Z) = 1]− Pr[out4,i∗(Z) = 1]|
= |Pr[out4,i∗−1(Z) = 1 ∧ party Pi∗ corrupted after input]
− Pr[out4,i∗(Z) = 1 ∧ party Pi∗ corrupted after input]|

Consider the following adversary A against the IND-pCCA security of PKE:
At the beginning, A randomly selects an index j ∈ {1, . . . , N} \ {i∗}. A
then simulates the experiment H4,i∗−1. When Z gives the party Pi∗ its in-
put xi∗ , A generates shares si∗l and ri∗l of xi∗ and of a random pad ri∗ and
generates random strings k′i∗l (l ∈ {1, . . . , N}) just like in H4,i∗−1. A addi-
tionally generates random strings s′i∗j and r′i∗j . A then generates signatures
σi∗j , σ

′
i∗j for (Pj , si∗j , ri∗j , k′i∗j) and (Pj , s′i∗j , r′i∗j , k′i∗j), respectively, and sends

(Pi∗ , si∗j , ri∗j , k′i∗j , σi∗j), (Pi∗ , s′i∗j , r′i∗j , k′i∗j , σ′i∗j) to the experiment, receiving
a ciphertext c∗. Note that A’s challenge messages are allowed because SIG is
length-normal. A then continues simulating the experiment H4,i∗−1, using c∗
as ci∗j and his decryption oracle to decrypt the ciphertexts in the buffer of Pj
that are addressed as coming from the parties corrupted before input but do
not equal c∗ (the ones that are equal to c∗ are ignored, cf. Footnote 29). Note
that in A’s internal simulation, party Pi∗ receives the correct value from FG (i.e.
(yi∗ + ri∗ ,Mac(ki∗ , yi∗ + ri∗) or ⊥). At the end of the experiment, A outputs
what Z outputs. If during the simulation, Z corrupts Pj (before or after input)
or if party Pi∗ is not corrupted after input, then A sends ⊥ to the experiment.

By construction, assuming party Pi∗ is corrupted after input, if A guessed an
index j such that party Pj remains honest then it holds that if the challenge bit
is 0 the view of Z in A’s internal simulation is distributed as in the experiment
H4,i∗−1 and if the challenge bit is 1 the view of Z in A’s internal simulation
is distributed as in the experiment H4,i∗ . Moreover, assuming party Pi∗ is
corrupted after input, the probability that A guesses an index j such that party
Pj remains honest is at least 1/(N − 1). Hence,

|Outputind-pcca
PKE,A (0)−Outputind-pcca

PKE,A (1)|
=|Pr[out4,i∗−1(Z) = 1 ∧ party Pi∗ corrupted after input ∧Guess correct]
− Pr[out4,i∗(Z) = 1 ∧ party Pi∗ corrupted after input ∧Guess correct]|
> ε/(N · (N − 1))

5.4. CONSTRUCTION FOR NON-REACTIVE FUNCTIONALITIES 135

This contradicts the IND-pCCA security of PKE.
Hence, there exists a negligible function negl3 such that

|Pr[out3(Z) = 1]− Pr[out4(Z) = 1]| ≤ negl3(n)

Since H4 is identical to the execution between Z, the ideal protocol AG([G])
and the simulator Sim defined in Definition 5.15, it follows that there exists a
negligible function negl such that

|Pr[ExecFortUC

(
ΠG ,D,Z

)
= 1]− Pr[ExecFortUC

(
AG([G]),Sim,Z

)
= 1]| ≤ negl(n)

The statement follows.

Remark 5.17. Using Theorems 5.9 and 5.10, we can replace SC(FG) in ΠG
with an adaptively UC-secure protocol (based on standard polynomial-time as-
sumptions), e.g. [Can+02; Dac+13b; HV15]. Note that this inevitably requires
an additional trusted setup assumption (e.g. a common reference string, cf.
Definition 2.24) because the unhackable sub-parties (and Freg) cannot be used to
circumvent the impossibility results in the UC framework (e.g. [CF01; CKL03]).

Remark 5.18. PKE schemes, digital signature schemes and MACs satisfying the
respective properties in Theorem 5.16 exist under the assumption that trapdoor
permutations exist. More specifically, IND-CPA-secure PKE schemes exist
assuming the existence of trapdoor permutations [Gol04]. [PSV06; Cho+18]
showed how to construct a NM-CPA-secure PKE scheme given any IND-CPA
secure PKE scheme without further assumptions. Furthermore, lenght-normal
EUF-naCMA-secure digital signatures schemes can be constructed assuming the
existence of one-way functions [Rom90; Gol04]. Finally, EUF-1-CMA-secure
MACs exist if one-way functions exist [GGM84; GGM86].

Remark 5.19. Note that one can also let a party check each message it receives
(in its buffer) right away once it is online without having to wait for at least N−1
messages in the buffer. The protocol remains secure if one assumes the stronger
assumption that PKE is IND-CCA-secure (cf. Definition 3.1 for a definition).

Remark 5.20. Note that if the parties Pi disconnect all their air-gap switches
again after receiving output from FG, then A cannot corrupt them anymore and
thus cannot obtain all shares anymore.

5.4.1 Up to N Parties Under Adversarial Control
One can augment construction 4 in order to obtain a protocol Π(2)

G that is also
secure if the adversary corrupts all parties at the expense of one additional
unhackable sub-party called decryption unit (Dec-unit). The main idea in the
new construction is that the parties do not decrypt ciphertexts themselves but
instead send them to their Dec-unit (cf. Fig. 5.5). More specifically, in the
sharing phase, each party Pi sends its decryption key ski to its Dec-unit via a
data diode and then deletes ski. In the compute phase, each Dec-unit accepts a
single vector of ciphertexts from its main party (via a connected air-gap switch).

The simulator Sim′ for the case of up to N parties under adversarial control
is identical to the simulator for up to N − 1 in Definition 5.15, except for the
following: Once the Nth (final) party has been corrupted, Sim′, who learns the

136 CHAPTER 5. UTILIZING REMOTELY UNHACKABLE HARDWARE

Pi

Freg

RMi

Ji

FG

Enci

Bufferi
A

OIMi

Deci

Figure 5.5: Architecture of Π(2)
G : Each party Pi (i = 1, . . . , N) has 3 hackable sub-

parties, called buffer, registration module (RM) and join (J), and 3 unhackable
sub-parties, called Enc(-unit), Dec(-unit) and OIM. Buffer and Enc-unit are
connected to the adversary via standard channels. All air-gap switches, except
for P ’s air-gap switch to the environment and the RM’s air-gap switch to J , are
initially disconnected.

inputs and outputs of all parties from [G] in this case, reports a plaintext tuple
such that the shares it contains and the shares received by the other parties are
consistent with the input, MAC key and output of the Nth corrupted party. If
Z sends a vector of ciphertexts to the Dec-unit of the Nth (final) party that
has been corrupted, Sim′ returns plaintext tuples such that the shares they
contain and the shares held by the other parties are consistent with the inputs,
MAC keys and outputs of the other parties. Note that Z is unable to check if
the plaintext tuples it receives from Sim′ have been encrypted before since the
Dec-units are unhackable and do not leak the decryption keys.

More specifically, let s′ij , r′ij , k′ij be the 3N shares which are generated in
Item 8 and ỹi ← {0, 1}n (i = 1, . . . , N) the random strings which are generated
in Item 18. Once the Nth (final) party, denoted by Pl∗ , is corrupted, Sim′
computes for each i the values s̃il∗ = xi +

∑
j∈{1,...,N}\{l∗} s

′
ij , and k̃il∗ =

ki +
∑
j∈{1,...,N}\{l∗} k

′
ij and r̃il∗ = ỹi + yi +

∑
j∈{1,...,N}\{l∗} r

′
ij . Sim′ then

creates signatures σ̃il∗ ← Sig(sgki, Pl∗ , s̃il∗ , r̃il∗ , k̃il∗) (i = 1, . . . , N) (where the
sgki are the signing keys generated in Item 6) and reports the plaintext tuple
(Pi, s̃l∗l∗ , r̃l∗l∗ , k̃l∗l∗ , σ̃l∗l∗) to Z. If Z sends a vector of ciphertexts to the Dec-unit
of party Pl∗ , then Sim′ checks for each c′ contained in that vector if c′ = cil∗

for some i. For each c′ for which this holds, Sim′ returns the corresponding
plaintext tuple (Pi, s̃il∗ , r̃il∗ , k̃il∗ , σ̃il∗). For each c′ for which this does not hold,
Sim′ returns Dec(sk∗l , c′) (where the ski are the decryption keys generated in
Item 6). Note that for each i it holds that xi = s̃il∗ +

∑
j∈{1,...,N}\{l∗} s

′
ij and

ki = k̃il∗ +
∑
j∈{1,...,N}\{l∗} k

′
ij and yi = ỹi + r̃il∗ +

∑
j∈{1,...,N}\{l∗} r

′
ij .

The proof that Π(2)
G realizes AG([G]) for up to N parties under adversarial

control is very similar to the proof of Theorem 5.16 and therefore omitted.

5.5. CONSTRUCTION FOR REACTIVE FUNCTIONALITIES 137

Theorem 5.21 (Up to N Corrupted Parties, Non-Reactive Case). Let G be a
non-reactive standard adaptively well-formed functionality. Assume PKE, SIG,
MAC are as in Theorem 5.16. Then it holds that

Π(2)
G ≥

##
AG([G])

for up to N parties under adversarial control.

5.5 Construction for Reactive Functionalities
In this section, we present a construction for realizing the fortified functionality
of every reactive (standard adaptively well-formed) ideal functionality. The new
construction is a direct generalization of constructions 3 and 4.

For reactive functionalities, a new problem arises because a protocol party is
online after the first round. The input(s) for the next round(s) can therefore not
just be given to a party since it may have been corrupted. We therefore need to
find a way to insert the input(s) for the rounds u ≥ 2 into the protocol without
allowing a party to learn or modify them.

To this end, we introduce an additional unhackable sub-party called input
interface module (IIM) which acts as the counterpart of the OIM for inputs. Let
R ∈ N be the number of rounds. In the sharing phase, each party Pi generates
2R random pads r1

i , . . . , r
R
i , t

1
i , . . . , t

R
i and creates shares of these random pads.

Also, each party Pi pads its (first) input x̃1
i := x1

i + t1i and computes a MAC tag
of this padded input. Each party Pi then sends the R random pads r1

i , . . . , r
R
i as

well as the MAC key ki to its OIM and the other R random pads t1i , . . . , tRi and
the MAC key ki to its IIM. As before, each random pad is shared with the other
parties along with signatures of these shares, the PID of the designated receiver
as well as the number of the round in which this share is to be used. Note that
the latter prevents an adversary from re-using shares from earlier rounds.

In each compute phase, the parties use their shares, signatures, padded inputs
and MAC tags to compute the desired padded output values for that round as
well as MAC tags of these padded output values and of a prefix containing the
round number and an indication that this value is an output. Verification and
reconstruction of the output values is then done as before using the OIM. Note
that since the prefix contains the round number, an OIM is able to reject results
from earlier compute phases.

As before, each input to the compute phase has to be verified before the
desired padded output values are computed. Now, however, not only the sig-
natures of the shares are verified but also the MAC tags of the padded inputs.
In order to obtain the MAC tags for the padded inputs for the rounds u ≥ 2,
the respective input has to be inserted into the protocol via the IIM. The IIM
applies a one-time pad on each input it receives and computes a MAC tag of
the padded input and of a prefix containing the round number and an indication
that this value is an input. It then sends the computed tuple to the party. This
way, a party is be able to continue the computation without learning the inputs
for the rounds u ≥ 2. Note that since the prefix contains the round number, the
adversary cannot use padded inputs of earlier rounds. Also note that since the
prefix indicates whether the respective value is an input or output, an adversary
cannot send a padded input to an OIM.

138 CHAPTER 5. UTILIZING REMOTELY UNHACKABLE HARDWARE

As before, we will take a modular approach and define an ideal functionality
Freac
G that implements the verification of the input values in the compute phase

as well as the multi-party computation on the shares and padded inputs. Freac
G

is defined as follows.

Construction 5.
Let G be a reactive standard adaptively well-formed ideal functionality with
R rounds. Freac

G proceeds as follows, running with parties P1, . . . , PN and an
adversary A and parametrized with a digital signature SIG and a message au-
thentication code MAC.

1. Initialize R + 1 Boolean variables verify0, verify1,. . . ,verifyR = true
and a counter u = 1.

2. Upon receiving input from party Pi, store it and send (received, Pi) to A.
Upon receiving (confirmed, Pi) from A, mark Pi as input given.

3. Upon receiving (corrupt, Pi), behave like a standard corruption ideal func-
tionality. In addition, forward this message to G.

4. Upon receiving from A a (modified) input for a party Pl marked as
corrupted, store that input (if an input has already been stored for Pl then
overwrite it) and, if not done yet, mark Pl as input given.

Consistency Check
5. Once each party has been marked as input given, delete all input given

markings and proceed with Item 6 if this is round u = 1, else proceed with
Item 7.

6. Check if every party Pi has sent an input of the form #»vki = (vk(i)
1 , . . . , vk(i)

N),
(tji, rji, σji, kji, σ′ji) (j = 1, . . . , N).

i) If no, set verify0 = false.
ii) If yes, check if #»vk1 = · · · = #»vkN .

(A) If this does not hold, set verify = false.
(B) Else, set (vk1, . . . , vkn) = (vk(1)

1 , . . . , vk(1)
N). For all i = 1, . . . , N ,

check if VrfySIG(vkj , Pi, kji, σ′ji) = 1 for all j = 1, . . . , N .
(a) If this does not hold, set verify = false.
(b) Else, for each i = 1, . . . , N , compute and store ki = ki1 +

ki2 + · · ·+ kiN and continue with Item 8.

7. If verify0 = false, do nothing. Else, check if every party Pi has sent
an input of the form (tuji, ruji, σuji) (j = 1, . . . , N), (x̃ui , τui). If no, set
verifyu = false. Else, continue with Item 8.

8. For all i = 1, . . . , N , check if VrfySIG(vkj , u, Pi, tuji, ruji, σuji) = 1 for all
j = 1, . . . , N and if VrfyMAC(ki, Inp Round u, x̃ui , τ

u
i) = 1.

(a) If this does not hold for all i, j, set verifyu = false.
(b) Else, proceed with Item 9.

5.5. CONSTRUCTION FOR REACTIVE FUNCTIONALITIES 139

Reconstruction and Computation
9. For each i = 1, . . . , N , compute rui = rui1 + rui2 + · · · + ruiN and tui =

tui1 + tui2 + · · ·+ tuiN and xui = x̃ui + tui .

10. Internally run G on input (xui , . . . , xuN). Let (yu1 , . . . , yuN) be the out-
put of G. For all i = 1, . . . , N , compute oui = yui + rui and θui ←
Mac(ki, Outp Round u, oui). Increment counter u.

11. If party Pi requests an output for round u′, proceed as follows:

(i) If u ≤ u′, ignore.
(ii) Else, if verify0 = false or verifyu′ = false, send a private delayed

output ⊥ to Pi.
(iii) Else, send a private delayed output (oui , θui) to Pi.

12. Once all parties are corrupted, send all of its private randomness used so
far as well as the private randomness G sends to A in this case (note that
G is adaptively well-formed) to the adversary A. (Note that this ensures
that Freac

G is also adaptively well-formed).

Let G be a reactive standard adaptively well-formed functionality. We next
define our protocol Π(3)

G for realizing the ideal protocol AG([G]).

Construction 6. Define the protocol Π(3)
G as follows:

Architecture: See Fig. 5.6 for a graphical depiction.

Pi

Freg

RMi

Ji

FG

Enci

Bufferi
A

OIMi

IIMi

Figure 5.6: Architecture of Π(3)
G : Each party Pi (i = 1, . . . , N) has 3 hackable sub-

parties, called buffer, registration module (RM) and join (J), and 3 unhackable
sub-parties, called Enc(-unit), OIM and IIM. Buffer and Enc-unit are connected
to the adversary via standard channels. All air-gap switches, except for P ’s
air-gap switch to the environment and the RM’s air-gap switch to J , are initially
disconnected.

140 CHAPTER 5. UTILIZING REMOTELY UNHACKABLE HARDWARE

Offline Sharing Phase
Upon input x1

i ∈ {0, 1}p, each party Pi does the following:

• Disconnect air-gap switch to the environment.

• Generate a key pair (pki, ski)← GenPKE(1n), a MAC key ki ← GenMAC(1n),
a signature key pair (sgki, vki)← GenSIG(1n) and 2R random pads
t1i , t

2
i , . . . , t

R
i ← {0, 1}p and r1

i , r
2
i , . . . , r

R
i ← {0, 1}q.

• Generate shares tui1 + tui2 + · · · + tuiN = tui and rui1 + rui2 + · · · + ruiN = rui
(u = 1, . . . ,R) and ki1 + ki2 + · · ·+ kiN = ki.

• Connect air-gap switch to J and to IIM.

• Send (ki, rui) to the OIM and (ki, tui) to the IIM (u = 1, . . . ,R).

• Send (pki, vki) to the registration module via J and to IIM.

• Create signatures σuij ← Sig(sgki, u, Pj , tuij , ruij) and σ′ij ← Sig(sgki, Pj , kij)
(j = 1, . . . , N ;u = 1, . . . ,R).

• Compute x̃1
i = x1

i + t1i and τ1
i ← Mac(ki, Inp Round 1, x̃1

i)

• Let #»
t ij = (t1ij , t2ij , . . . , tRij), #»r ij = (r1

ij , r
2
ij , . . . , r

R
ij) and #»σ ij = (σ1

ij , σ
2
ij , . . . , σ

R
ij).

Send (j, #»
t ij ,

#»r ij ,
#»σ ij , kij , σ

′
ij) (j ∈ {1, . . . ,R} \ {i}) to the Enc-unit

• Erase everything, except for the tuple (#»
t ii,

#»r ii,
#»σ ii, kii, σ

′
ii) and (x̃1

i , τ
1
i)

and vki, ski.

Registration module and J: On input (pki, vki) to J, J forwards the input
to RM . RM then disconnects air-gap switch to J and registers pki and vki by
sending these keys to the public bulletin board functionality Freg.

Enc-unit: Receive a list L = {(Pj , vj)}j={1,...,N}\{i} from one’s main party Pi.
At each activation, for each (Pj , vj) ∈ L, request pkj belonging to Pj from Freg.
If retrievable, compute cij ← Enc(pkj , vj), send (Pi, cij) to the buffer of Pj and
delete (Pj , v) from L. Then, go into idle mode.

Buffer: Store each message received. On input retrieve, send all stored mes-
sages to one’s main party.

First Online Compute Phase
Having completed its last step in the sharing phase, each party Pi does the
following:

• Connect air-gap switches to the buffer, to Freg and to Freac
G .

• Request all verification keys {vkl}l∈{1,...,N}\{i} from Freg registered by the
other parties’ registration modules. If not all verification keys can be
retrieved yet, go into idle mode and request again at the next activation.

5.5. CONSTRUCTION FOR REACTIVE FUNCTIONALITIES 141

• Send retrieve to the buffer and check if the buffer sends at least N − 1
messages. If no, go into idle mode and when activated again send retrieve
and check again.
If yes, check if one has received from each party Pj a setMj = {(Pj , c̃)}
with the following property:
There exists a tuple (Pj ,

#̂»
t ji,

#̂»r ji,
#̂»σ ji, k̂ji, σ̂

′
ji), where

#̂»
t ji = (t̂1ji, t̂2ji, . . . , t̂Rji),

#̂»r ji = (r̂1
ji, r̂

2
ji, . . . , r̂

R
ji) and #̂»σ ji = (σ̂1

ji, σ̂
2
ji, . . . , σ̂

R
ji), and a (Pj , c) ∈ Mj

such that

– Dec(ski, c) = (Pj ,
#̂»
t ji,

#̂»r ji,
#̂»σ ji, k̂ji, σ̂

′
ji) and

VrfySIG(vkj , u, Pi, t̂uji, r̂uji, σ̂uji) = 1 (u = 1, . . . ,R) and
VrfySIG(vkj , Pi, k̂ji, σ̂′ji) = 1

– For every (Pj , c̃) ∈ Mj it holds that either Dec(ski, c̃) =
(Pj ,

#̂»
t ji,

#̂»r ji,
#̂»σ ji, k̂ji, σ̂

′
ji) or (Pj , c̃) is “invalid”, i.e., either

decrypts to a tuple (Pj ,
#̃»
t ji,

#̃»r ji,
#̃»σ ji, k̃ji, σ̃

′
ji), where #̃»

t ji =
(t̃1ji, t̃2ji, . . . , t̃Rji), #̃»r ji = (r̃1

ji, r̃
2
ji, . . . , r̃

R
ji) and #̃»σ ji = (σ̃1

ji, σ̃
2
ji, . . . , σ̃

R
ji),

such that VrfySIG(vkj , u, Pi, t̃uji, r̃uji, σ̃uji) = 0 for some u

or VrfySIG(vkj , Pi, k̃ji, σ̃′ji) = 0, or decrypts to a tuple
(P ′, #̃»

t ji,
#̃»r ji,

#̃»σ ji, k̃ji, σ̃
′
ji) where P ′ 6= Pj, or c̃ does not decrypt cor-

rectly.

If this does not hold, send ⊥ to Freac
G . Else, send all verification keys

(vk1, . . . , vkN) as well as all tuples (t̂1ji, r̂1
ji, σ̂

1
ji, k̂ji, σ̂

′
ji) (j ∈ {1, . . . , N}

and (x̃1
i , τ

1
i) to Freac

G .

• Instruct the IIM to connect its air-gap switch to Z.

Subsequent Online Compute Phases
Upon receiving an input xui ∈ {0, 1}p in round u, each IIM does the following:

IIM: Initially, set u = 2. Compute x̃ui = xui +tui and τui ← Mac(ki, Inp Round u, x̃ui)
and send (x̃ui , τui) to one’s main party. Increment u.

• Party Pi then sends (t̂uji, r̂uji, σ̂uji) (j ∈ {1, . . . , N} and (x̃ui , τui) to Freac
G .

Online Output Phases
Having completed its last step in the compute phase in round u, a party Pi
requests output from Freac

G for round u and forwards that output to OIM.

OIM: Initially, set u = 1 and store the first input (ki, (r1
i , . . . , r

R
i)) from one’s

main party. On subsequent inputs (oui , θui) or ⊥ from one’s main party, do
the following: If the received value equals ⊥, output ⊥. Otherwise, check if
VrfyMAC(ki, oui , θui) = 1 and output yui = oui + rui if this holds, and ⊥ otherwise.
Always increment u.

We are now ready to state our theorem for reactive functionalities. The proof
is similar to the proof of Theorem 5.16 and therefore omitted.

142 CHAPTER 5. UTILIZING REMOTELY UNHACKABLE HARDWARE

Theorem 5.22 (Up to N − 1 Corrupted Parties, Reactive Case). Let G be a
reactive standard adaptively well-formed functionality. Let PKE and SIG be as
in Theorem 5.16 and assume that MAC is EUF-CMA-secure. Then it holds that

Π(3)
G ≥

##
AG([G])

for up to N − 1 parties under adversarial control.

5.5.1 Up to N Parties Under Adversarial Control
With the same augmentation as described in Section 5.4.1, one can obtain a
protocol Π(4)

G that is also secure if the adversary corrupts all parties (cf. Fig. 5.7).
We again omit the proof.

Pi

Freg

RMi

Ji

FG

Enci

Bufferi
A

OIMi

Deci

IIMi

Figure 5.7: Architecture of Π(4)
G : Each party Pi (i = 1, . . . , N) has 3 hackable sub-

parties, called buffer, registration module (RM) and join (J), and 4 unhackable
sub-parties, called Enc(-unit), Dec(-unit), OIM and IIM. Buffer and Enc-unit
are connected to the adversary via standard channels. All air-gap switches,
except for P ’s air-gap switch to the environment and the RM’s air-gap switch to
J , are initially disconnected.

Theorem 5.23 (Up to N Corrupted Parties, Reactive Case). Let G be a reactive
standard adaptively well-formed functionality. Let PKE, SIG, MAC be as in
Theorem 5.22. Then it holds that

Π(4)
G ≥

##
AG([G])

for up to N parties under adversarial control.

5.6 Architectures without Erasure
We can also obtain the results in Theorems 5.16 and 5.21 to 5.23 without relying
on erasure by introducing an additional hackable interface module Si that is

5.6. ARCHITECTURES WITHOUT ERASURE 143

connected to its main party Pi via a data diode and to the environment via
an initially connected air-gap switch (cf. Fig. 5.8). Si takes the (first) input,
disconnects its air-gap switch to the environment, and carries out the sharing
phase. Afterwards, Si sends its own shares together with their signatures (and
for reactive functionalities also MAC tags) and the verification key and secret key
to Pi, who then carries out all further computations. Si is then never activated
again, remains offline throughout the protocol execution and thus cannot be
corrupted though an online-attack instruction.30 Note, however, that Si can
only be reused in subsequent protocols if it can be reset to its initial state. Such
a reset is in line with what is implicitly assumed in large parts of the MPC
literature, e.g. in the UC framework, where parties holding secrets cease to exist
after protocol execution.

PiSi

FGFreg

RMi

EnciA
OIMi

Figure 5.8: Architecture without Erasure (for up to N − 1 Parties under Adver-
sarial Control, Non-Reactive Case).

30Note that in order to formalize the security of this modified protocol, one has to add
additional “dummy” interface modules (corresponding to the Si’s) in the ideal protocol AG([G])
that are connected to [G] via a data diode and to the environment via an initially disconnected
air-gap switch.

144 CHAPTER 5. UTILIZING REMOTELY UNHACKABLE HARDWARE

Chapter 6

Conclusion and Prospects

In this thesis, we provided two new security frameworks with a composable
security notion along with several new general MPC protocols that were proven
secure in one of these frameworks.

Our first framework is based on the idea of granting simulators only restricted
access to the results computed by a stateful super-polynomial oracle. In this
framework, we constructed two constant-round general MPC protocols in the
plain model based on standard polynomial-time assumptions: a non-black-
box protocol based on enhanced trapdoor permutations and a fully black-box
construction based on verifiable perfectly binding homomorphic commitment
schemes and IND-CPA-secure PKE schemes with oblivious public-key generation.

Our second framework allows to adequately capture the advantages (e.g.
isolation properties) provided by remotely unhackable hardware modules. Utiliz-
ing only very few and very simple remotely unhackable hardware modules, we
constructed several general MPC protocols in this framework for realizing the
fortified functionality of almost every (non-reactive or reactive) ideal functionality.

In the following, we briefly discuss some research questions that arise from
this work.

Practical Round Complexity and Unconditional Security Guarantees.
In Chapter 4, we constructed general MPC protocols in the plain model based
on standard polynomial-time assumptions which—being constant-round—are
much more round-efficient than the general MPC protocols based on standard
polynomial-time assumptions in the UC with super-polynomial helpers frame-
work (recall that all general MPC protocols in the plain model in the Angel-based
security framework are based on non-standard or super-polynomial-time assump-
tions). However, the round complexity of our constructions is still impractically
high. It is therefore desirable to construct general MPC protocols (in the plain
model and based on standard polynomial time assumptions) with a low, practical
round complexity as opposed to a merely constant round complexity.

Another open problem related to our work is to construct protocols in the plain
model where some security guarantees hold unconditionally. This is inherently
impossible to achieve for tasks such as oblivious transfer, commitments or zero-
knowledge in a framework like the one presented in Chapter 4. For instance,
perfectly binding commitment schemes cannot be constructed in our framework

145

146 CHAPTER 6. CONCLUSION AND PROSPECTS

since simulators need to be able to break the binding property of the real
protocol to circumvent the impossibility results of [CF01], which is impossible
with only super-polynomial resources if the binding property holds information-
theoretically. It is therefore desirable to find a framework providing a composable
security notion that allows to construct protocols for the above-mentioned tasks
with unconditional security guarantees.

We have already begun to investigate both of the above-mentioned problems.
One approach we believe has potential is based on the idea of granting simulators
not only super-polynomial resources but also functions of the honest parties’
secret inputs if these functions “hide” these inputs. For instance, a simulator
corrupting the receiver may obtain a (hiding) commitment to the secret value
sent to Fcom by the honest sender. This way, the simulator can trivially simulate
successfully even if the real protocol is perfectly binding. Also, there is no
need to build an equivocation trapdoor into the commitment protocol which
increases the overall round complexity as in the commitment protocol presented
in Chapter 4.

Although the above approach is intuitively appealing, it comes with several
problems that are yet to be addressed. First, giving the simulator values
depending on secret inputs may result in trivial, meaningless security notions.
For instance, a commitment scheme that is hiding but not binding could still be
argued secure. This is because the simulator’s ability to send the environment a
commitment to the honest sender’s input value essentially implies the tautology
that the real protocol emulates the ideal protocol because the former is also
executed in the latter. To address this problem, one must find a security notion
based on the above approach that can be properly justified (note that we achieved
such a justification for the framework in Chapter 4 by proving that its security
notion implies the well-studied notion of SPS security). Another problem is that a
security notion based on the above approach is inherently “non-monotonic”. This
means that one can construct protocols which are secure given an assumption A
holds and another assumption B does not hold but which become completely
insecure if both A and B hold. Identifying in which classes of cryptographic
tasks this problem can arise remains an open problem.

More Efficient Protocols with Strong Security Guarantees against
Online Attacks. In Chapter 5, we have proven strong feasibility results against
remote hacking attacks. However, the general MPC protocols constructed in this
chapter are impractical due to the high computational overhead of our modular
approach of sharing inputs and then subsequently computing the desired function
with these shares. It is therefore desirable to find a different approach that
leads to more efficient protocols achieving the same level of security as the
constructions presented in this work.

We believe this is possible using a more low-level, non-modular approach.
More specifically, an appropriate protocol architecture based on a careful analysis
of, e.g., the protocol in [IPS08] could provide the desired result.

Bibliography

[AIR01] Bill Aiello, Yuval Ishai, and Omer Reingold. “Priced Oblivious
Transfer: How to Sell Digital Goods.” In: Advances in Cryptology –
EUROCRYPT 2001: 20th Annual International Conference on the
Theory and Application of Cryptographic Techniques, Proceedings.
Springer, 2001, pp. 119–135.

[AMR14] Dirk Achenbach, Jörn Müller-Quade, and Jochen Rill. “Universally
Composable Firewall Architectures Using Trusted Hardware.” In:
BalkanCryptSec 2014. Vol. 9024. LNCS. Springer, 2014, pp. 57–74.

[Bar+04] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass.
“Universally Composable Protocols with Relaxed Set-Up Assump-
tions.” In: 45th Annual IEEE Symposium on Foundations of Com-
puter Science. FOCS ’04. IEEE. 2004, pp. 186–195.

[Bar+14] Joshua Baron, Karim El Defrawy, Joshua Lampkins, and Rafail
Ostrovsky. “How to withstand mobile virus attacks, revisited.” In:
ACM Symposium on Principles of Distributed Computing, PODC
’14, Paris, France, July 15-18, 2014. 2014, pp. 293–302.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. “Short Group
Signatures.” In: Advances in Cryptology – CRYPTO 2004: 24th
Annual International Cryptology Conference, Proceedings. Springer,
2004, pp. 41–55.

[BCG93] Michael Ben-Or, Ran Canetti, and Oded Goldreich. “Asynchronous
secure computation.” In: Proceedings of the Twenty-Fifth Annual
ACM Symposium on Theory of Computing, May 16-18, 1993, San
Diego, CA, USA. 1993, pp. 52–61.

[Bel+98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway.
“Relations Among Notions of Security for Public-Key Encryption
Schemes.” In: Advances in Cryptology – CRYPTO 1998. Proceedings.
Springer. 1998, pp. 26–45.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. “Complete-
ness Theorems for Non-Cryptographic Fault-Tolerant Distributed
Computation (Extended Abstract).” In: Proceedings of the 20th
Annual ACM Symposium on Theory of Computing, May 2-4, 1988,
Chicago, Illinois, USA. 1988, pp. 1–10.

147

148 BIBLIOGRAPHY

[Blu81] Manuel Blum. “Coin Flipping by Telephone.” In: Advances in Cryp-
tology – CRYPTO 1981: IEEE Workshop on Communications Se-
curity. University of California, Santa Barbara, Deptartment of
Elecrical and Computer Engineering, 1981, pp. 11–15.

[Bro+17] Brandon Broadnax, Nico Döttling, Gunnar Hartung, Jörn Müller-
Quade, and Matthias Nagel. “Concurrently Composable Security
with Shielded Super-Polynomial Simulators.” In: Advances in Cryp-
tology - EUROCRYPT 2017 - 36th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Paris,
France, April 30 - May 4, 2017, Proceedings, Part I. 2017, pp. 351–
381.

[Bro+18a] Brandon Broadnax, Valerie Fetzer, Jörn Müller-Quade, and Andy
Rupp. “Non-malleability vs. CCA-Security: The Case of Commit-
ments.” In: Public-Key Cryptography - PKC 2018 - 21st IACR
International Conference on Practice and Theory of Public-Key
Cryptography, Rio de Janeiro, Brazil, March 25-29, 2018, Proceed-
ings, Part II. 2018, pp. 312–337.

[Bro+18b] Brandon Broadnax, Matthias Huber, Bernhard Löwe, Jörn Müller-
Quade, and Patrik Scheidecker. “Towards Efficient Software Pro-
tection Obeying Kerckhoffs’s Principle using Tamper-proof Hard-
ware.” In: Proceedings of the 15th International Joint Conference
on e-Business and Telecommunications, ICETE 2018 - Volume 2:
SECRYPT, Porto, Portugal, July 26-28, 2018. 2018, pp. 719–724.

[Bro+18c] Brandon Broadnax, Alexander Koch, Jeremias Mechler, Tobias
Müller, Jörn Müller-Quade, and Matthias Nagel. “Fortified Univer-
sal Composability: Taking Advantage of Simple Secure Hardware
Modules.” In: IACR Cryptology ePrint Archive 2018 (2018), p. 519.
url: https://eprint.iacr.org/2018/519.

[BS05] Boaz Barak and Amit Sahai. “How to play almost any mental
game over the net – concurrent composition via super-polynomial
simulation.” In: 46st Annual IEEE Symposium on Foundations of
Computer Science. FOCS ’05. IEEE. 2005, pp. 543–552.

[BS99] Mihir Bellare and Amit Sahai. “Non-malleable Encryption: Equiv-
alence between Two Notions, and an Indistinguishability-Based
Characterization.” In: Advances in Cryptology – CRYPTO 1999.
Proceedings. Springer. 1999, pp. 519–536.

[Can+02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai.
“Universally Composable Two-party and Multi-party Secure Com-
putation.” In: Proceedings of the 34th Annual ACM Symposium on
Theory of Computing. STOC ’02. ACM, 2002, pp. 494–503.

[Can+07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish.
“Universally Composable Security with Global Setup.” In: Theory
of Cryptography: 4th Theory of Cryptography Conference, TCC
2007, Proceedings. Springer, 2007, pp. 61–85.

[Can+96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. “Adap-
tively Secure Multi-Party Computation.” In: STOC 1996. 1996,
pp. 639–648.

https://eprint.iacr.org/2018/519

BIBLIOGRAPHY 149

[Can00] Ran Canetti. “Security and composition of multiparty cryptographic
protocols.” In: Journal of CRYPTOLOGY 13.1 (2000), pp. 143–
202.

[Can01] Ran Canetti. “Universally Composable Security: A New Paradigm
for Cryptographic Protocols.” In: The 42th Annual IEEE Sym-
posium on Foundations of Computer Science, 2001. Proceedings.
FOCS 2001. IEEE. 2001, pp. 136–145.

[Can06] Ran Canetti. Security and Composition of Cryptographic Protocols:
A Tutorial. Cryptology ePrint Archive, Report 2006/465. https:
//eprint.iacr.org/2006/465. 2006.

[CDM00] Ronald Cramer, Ivan Damgård, and Ueli M. Maurer. “General
Secure Multi-party Computation from any Linear Secret-Sharing
Scheme.” In: Advances in Cryptology - EUROCRYPT 2000, Inter-
national Conference on the Theory and Application of Cryptographic
Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding. 2000,
pp. 316–334.

[CF01] Ran Canetti and Marc Fischlin. “Universally composable commit-
ments.” In: Advances in Cryptology – CRYPTO 2001: 21st Annual
International Cryptology Conference, Proceedings. Springer, 2001,
pp. 19–40.

[CGJ15] Ran Canetti, Vipul Goyal, and Abhishek Jain. “Concurrent Secure
Computation with Optimal Query Complexity.” In: Advances in
Cryptology – CRYPTO 2015: 35th Annual Cryptology Conference,
Proceedings. Springer, 2015, pp. 43–62.

[CGP15] Ran Canetti, Shafi Goldwasser, and Oxana Poburinnaya. “Adap-
tively Secure Two-Party Computation from Indistinguishability
Obfuscation.” In: Theory of Cryptography - 12th Theory of Cryp-
tography Conference, TCC 2015, Warsaw, Poland, March 23-25,
2015, Proceedings, Part II. 2015, pp. 557–585.

[CGT95] Claude Crépeau, Jeroen van de Graaf, and Alain Tapp. “Commit-
ted Oblivious Transfer and Private Multi-Party Computation.” In:
Advances in Cryptology - CRYPTO ’95, 15th Annual International
Cryptology Conference, Santa Barbara, California, USA, August
27-31, 1995, Proceedings. 1995, pp. 110–123.

[Cha88] David Chaum. “The dining cryptographers problem: Unconditional
sender and recipient untraceability.” In: Journal of cryptology 1.1
(1988), pp. 65–75.

[Cho+09] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck
Wee. “Improved Non-committing Encryption with Applications to
Adaptively Secure Protocols.” In: Advances in Cryptology - ASI-
ACRYPT 2009, 15th International Conference on the Theory and
Application of Cryptology and Information Security, Tokyo, Japan,
December 6-10, 2009. Proceedings. 2009, pp. 287–302.

[Cho+18] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck
Wee. “A Black-Box Construction of Non-malleable Encryption from
Semantically Secure Encryption.” In: J. Cryptology 31.1 (2018),
pp. 172–201.

https://eprint.iacr.org/2006/465
https://eprint.iacr.org/2006/465

150 BIBLIOGRAPHY

[Cia+16] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Vis-
conti. “Concurrent Non-Malleable Commitments (and More) in 3
Rounds.” In: Advances in Cryptology – CRYPTO 2016. Proceedings.
Springer. 2016, pp. 270–299.

[Cia+17] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Vis-
conti. “Four-Round Concurrent Non-Malleable Commitments from
One-Way Functions.” In: Advances in Cryptology - CRYPTO 2017
- 37th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 20-24, 2017, Proceedings, Part II. 2017, pp. 127–
157.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. “On the Limi-
tations of Universally Composable Two-Party Computation without
Set-up Assumptions.” In: Advances in Cryptology – EUROCRYPT
2003: 22nd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Proceedings. Springer,
2003, pp. 68–86.

[CKN03] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. “Relax-
ing Chosen-Ciphertext Security.” In: Advances in Cryptology -
CRYPTO 2003, 23rd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 2003, Proceedings.
2003, pp. 565–582.

[CLP10] Ran Canetti, Huijia Lin, and Rafael Pass. “Adaptive hardness and
composable security in the plain model from standard assumptions.”
In: 51st Annual IEEE Symposium on Foundations of Computer
Science. FOCS ’10. IEEE. 2010, pp. 541–550.

[CLP13] Ran Canetti, Huijia Lin, and Rafael Pass. “From Unprovability
to Environmentally Friendly Protocols.” In: 54th Annual IEEE
Symposium on Foundations of Computer Science. FOCS ’13. IEEE.
2013, pp. 70–79.

[CPS07] Ran Canetti, Rafael Pass, and Abhi Shelat. “Cryptography from
Sunspots: How to Use an Imperfect Reference String.” In: 48th
Annual IEEE Symposium on Foundations of Computer Science.
FOCS ’07. IEEE. 2007, pp. 249–259.

[CPV17] Ran Canetti, Oxana Poburinnaya, and Muthuramakrishnan Venkita-
subramaniam. “Equivocating Yao: constant-round adaptively secure
multiparty computation in the plain model.” In: STOC 2017. ACM,
2017, pp. 497–509.

[CSV16] Ran Canetti, Daniel Shahaf, and Margarita Vald. “Universally
Composable Authentication and Key-Exchange with Global PKI.”
In: Public-Key Cryptography - PKC 2016 - 19th IACR International
Conference on Practice and Theory in Public-Key Cryptography,
Taipei, Taiwan, March 6-9, 2016, Proceedings, Part II. 2016, pp. 265–
296.

[CVZ10] Zhenfu Cao, Ivan Visconti, and Zongyang Zhang. “Constant-Round
Concurrent Non-Malleable Statistically Binding Commitments and
Decommitments.” In: Public Key Cryptography – PKC 2010. Springer.
2010, pp. 193–208.

BIBLIOGRAPHY 151

[Dac+09] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti
Yung. “Efficient Robust Private Set Intersection.” In: Applied Cryp-
tography and Network Security, 7th International Conference, ACNS
2009, Paris-Rocquencourt, France, June 2-5, 2009. Proceedings.
2009, pp. 125–142.

[Dac+13a] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Muthu-
ramakrishnan Venkitasubramaniam. “Adaptive and Concurrent
Secure Computation from New Adaptive, Non-malleable Commit-
ments.” In: Advances in Cryptology – ASIACRYPT 2013: 19th
International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Proceedings. Springer, 2013, pp. 316–
336.

[Dac+13b] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Muthu-
ramakrishnan Venkitasubramaniam. “Adaptive and Concurrent
Secure Computation from New Adaptive, Non-malleable Commit-
ments.” In: Advances in Cryptology - ASIACRYPT 2013 - 19th
International Conference on the Theory and Application of Cryp-
tology and Information Security, Bengaluru, India, December 1-5,
2013, Proceedings, Part I. 2013, pp. 316–336.

[DDN00a] Danny Dolev, Cynthia Dwork, and Moni Naor. “Nonmalleable Cryp-
tography.” In: SIAM Journal on Computing 30.2 (2000), pp. 391–
437.

[DDN00b] Danny Dolev, Cynthia Dwork, and Moni Naor. “Nonmalleable
Cryptography.” In: SIAM J. Comput. 30.2 (2000), pp. 391–437.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. “Non-Malleable
Cryptography.” In: Proceedings of the Twenty-third Annual ACM
Symposium on Theory of Computing. STOC 1991. ACM, 1991,
pp. 542–552.

[DKR15] Dana Dachman-Soled, Jonathan Katz, and Vanishree Rao. “Adap-
tively Secure, Universally Composable, Multiparty Computation
in Constant Rounds.” In: Theory of Cryptography - 12th Theory
of Cryptography Conference, TCC 2015, Warsaw, Poland, March
23-25, 2015, Proceedings, Part II. 2015, pp. 586–613.

[DN00] Ivan Damgård and Jesper Buus Nielsen. “Improved Non-committing
Encryption Schemes Based on a General Complexity Assumption.”
In: Advances in Cryptology - CRYPTO 2000, 20th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA,
August 20-24, 2000, Proceedings. 2000, pp. 432–450.

[DN07] Ivan Damgård and Jesper Buus Nielsen. “Scalable and Uncondition-
ally Secure Multiparty Computation.” In: Advances in Cryptology -
CRYPTO 2007, 27th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2007, Proceedings. 2007,
pp. 572–590.

[Döt+13] Nico Döttling, Thilo Mie, Jörn Müller-Quade, and Tobias Nilges.
“Implementing Resettable UC-Functionalities with Untrusted Tamper-
Proof Hardware-Tokens.” In: TCC 2013. Vol. 7785. LNCS. Springer,
2013, pp. 642–661.

152 BIBLIOGRAPHY

[DS13] Ivan Damgård and Alessandra Scafuro. “Unconditionally secure and
universally composable commitments from physical assumptions.”
In: Advances in Cryptology – ASIACRYPT 2013: 19th Interna-
tional Conference on the Theory and Application of Cryptology and
Information Security, Proceedings. Springer, 2013, pp. 100–119.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. “A random-
ized protocol for signing contracts.” In: Communications of the
ACM 28.6 (1985), pp. 637–647.

[Eld+18] Karim Eldefrawy, Rafail Ostrovsky, Sunoo Park, and Moti Yung.
“Proactive Secure Multiparty Computation with a Dishonest Ma-
jority.” In: Security and Cryptography for Networks - 11th Interna-
tional Conference, SCN 2018, Amalfi, Italy, September 5-7, 2018,
Proceedings. 2018, pp. 200–215.

[ElG84] Taher ElGamal. “A Public Key Cryptosystem and a Signature
Scheme Based on Discrete Logarithms.” In: Advances in Cryptology
– CRYPTO 1984: 4th Annual International Cryptology Conference,
Proceedings. Springer, 1984, pp. 10–18.

[Fei91] Uriel Feige. Alternative Models for Zero Knowledge Interactive
Proofs. 1991.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. “Efficient
Private Matching and Set Intersection.” In: Advances in Cryptology
- EUROCRYPT 2004, International Conference on the Theory and
Applications of Cryptographic Techniques, Interlaken, Switzerland,
May 2-6, 2004, Proceedings. 2004, pp. 1–19.

[Gar+12] Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. “Con-
currently Secure Computation in Constant Rounds.” In: Advances
in Cryptology – EUROCRYPT 2012: 31st Annual International
Conference on the Theory and Applications of Cryptographic Tech-
niques, Proceedings. Springer, 2012, pp. 99–116.

[Gar+15] Sanjam Garg, Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and
Amit Sahai. “Cryptography with One-Way Communication.” In:
CRYPTO 2015. Vol. 9216. LNCS. Springer, 2015, pp. 191–208.

[Gar+16] Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni
Polychroniadou. “The Exact Round Complexity of Secure Computa-
tion.” In: Advances in Cryptology – EUROCRYPT 2016. Proceedings
Part II. Springer. 2016, pp. 448–476.

[Ger+00] Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and
Mahesh Viswanathan. “The Relationship between Public Key En-
cryption and Oblivious Transfer.” In: 41st Annual Symposium on
Foundations of Computer Science, FOCS 2000, 12-14 November
2000, Redondo Beach, California, USA. 2000, pp. 325–335.

[GGJ13] Vipul Goyal, Divya Gupta, and Abhishek Jain. “What Informa-
tion Is Leaked under Concurrent Composition?” In: Advances in
Cryptology – CRYPTO 2013: 33rd Annual Cryptology Conference,
Proceedings. Springer, 2013, pp. 220–238.

BIBLIOGRAPHY 153

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “On the Cryp-
tographic Applications of Random Functions.” In: Advances in
Cryptology, Proceedings of CRYPTO ’84, Santa Barbara, Califor-
nia, USA, August 19-22, 1984, Proceedings. 1984, pp. 276–288.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to
construct random functions.” In: J. ACM 33.4 (1986), pp. 792–807.

[GJ04] Philippe Golle and Ari Juels. “Dining Cryptographers Revisited.”
In: Advances in Cryptology - EUROCRYPT 2004, International
Conference on the Theory and Applications of Cryptographic Tech-
niques, Interlaken, Switzerland, May 2-6, 2004, Proceedings. 2004,
pp. 456–473.

[GJ13] Vipul Goyal and Abhishek Jain. “On Concurrently Secure Computa-
tion in the Multiple Ideal Query Model.” In: Advances in Cryptology
– EUROCRYPT 2013: 32nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Proceedings.
Springer, 2013, pp. 684–701.

[GJO10] Vipul Goyal, Abhishek Jain, and Rafail Ostrovsky. “Password-
Authenticated Session-Key Generation on the Internet in the Plain
Model.” In: Advances in Cryptology – CRYPTO 2010: 30th Annual
Cryptology Conference, Proceedings. Springer, 2010, pp. 277–294.

[GK90] Oded Goldreich and Hugo Krawczyk. “On the Composition of
Zero-Knowledge Proof Systems.” In: Automata, Languages and Pro-
gramming, 17th International Colloquium, ICALP90, Warwick Uni-
versity, England, UK, July 16-20, 1990, Proceedings. 1990, pp. 268–
282.

[GKP17] Sanjam Garg, Susumu Kiyoshima, and Omkant Pandey. “On the
Exact Round Complexity of Self-composable Two-Party Compu-
tation.” In: Advances in Cryptology - EUROCRYPT 2017 - 36th
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Paris, France, April 30 - May 4, 2017,
Proceedings, Part II. 2017, pp. 194–224.

[GKP18] Sanjam Garg, Susumu Kiyoshima, and Omkant Pandey. “A New Ap-
proach to Black-Box Concurrent Secure Computation.” In: Advances
in Cryptology - EUROCRYPT 2018 - 37th Annual International
Conference on the Theory and Applications of Cryptographic Tech-
niques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part
II. 2018, pp. 566–599.

[GM82] Shafi Goldwasser and Silvio Micali. “Probabilistic encryption &
how to play mental poker keeping secret all partial information.” In:
Proceedings of the fourteenth annual ACM symposium on Theory
of computing. ACM. 1982, pp. 365–377.

[GM84] Shafi Goldwasser and Silvio Micali. “Probabilistic Encryption.” In:
J. Comput. Syst. Sci. 28.2 (1984), pp. 270–299.

154 BIBLIOGRAPHY

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to Play any
Mental Game or A Completeness Theorem for Protocols with Honest
Majority.” In: Proceedings of the 19th Annual ACM Symposium
on Theory of Computing, 1987, New York, New York, USA. 1987,
pp. 218–229.

[GO96] Oded Goldreich and Rafail Ostrovsky. “Software protection and
simulation on oblivious RAMs.” In: Journal of the ACM (JACM)
43.3 (1996), pp. 431–473.

[Gol03] Oded Goldreich. Basic Tools. Cambridge University Press, 2003.
[Gol04] Oded Goldreich. Foundations of cryptography: volume 2, basic ap-

plications. Cambridge university press, 2004.
[Gol87] Oded Goldreich. “Towards a theory of software protection and

simulation by oblivious RAMs.” In: Proceedings of the nineteenth
annual ACM symposium on Theory of computing. ACM. 1987,
pp. 182–194.

[Goy+10] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan,
and Akshay Wadia. “Founding Cryptography on Tamper-Proof
Hardware Tokens.” In: TCC 2010. Vol. 5978. LNCS. Springer, 2010,
pp. 308–326.

[Goy+12] Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti.
“Constructing Non-malleable Commitments: A Black-Box Approach.”
In: 53rd Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23,
2012. 2012, pp. 51–60.

[Goy+14] Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita Vald. “An
Algebraic Approach to Non-malleability.” In: 55th Annual IEEE
Symposium on Foundations of Computer Science. FOCS ’14. IEEE.
2014, pp. 41–50.

[Goy+15] Vipul Goyal, Huijia Lin, Omkant Pandey, Rafael Pass, and Amit
Sahai. “Round-Efficient Concurrently Composable Secure Computa-
tion via a Robust Extraction Lemma.” In: Theory of Cryptography:
12th Theory of Cryptography Conference, TCC 2015, Proceedings.
Springer, 2015, pp. 260–289.

[Goy11] Vipul Goyal. “Constant Round Non-malleable Protocols Using One
Way Functions.” In: Proceedings of the Forty-third Annual ACM
Symposium on Theory of Computing. STOC 2011. ACM. 2011,
pp. 695–704.

[GP15] Sanjam Garg and Antigoni Polychroniadou. “Two-Round Adaptively
Secure MPC from Indistinguishability Obfuscation.” In: Theory of
Cryptography - 12th Theory of Cryptography Conference, TCC 2015,
Warsaw, Poland, March 23-25, 2015, Proceedings, Part II. 2015,
pp. 614–637.

[GPR16] Vipul Goyal, Omkant Pandey, and Silas Richelson. “Textbook Non-
malleable Commitments.” In: Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing. STOC 2016. ACM,
2016, pp. 1128–1141.

BIBLIOGRAPHY 155

[HEK12] Yan Huang, David Evans, and Jonathan Katz. “Private Set Inter-
section: Are Garbled Circuits Better than Custom Protocols?” In:
19th Annual Network and Distributed System Security Symposium,
NDSS 2012, San Diego, California, USA, February 5-8, 2012. 2012.

[HLP15] Carmit Hazay, Yehuda Lindell, and Arpita Patra. “Adaptively
Secure Computation with Partial Erasures.” In: PODC 2015. ACM,
2015, pp. 291–300. url: http://dl.acm.org/citation.cfm?id=
2767386.

[HPV17] Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrish-
nan Venkitasubramaniam. “Constant Round Adaptively Secure
Protocols in the Tamper-Proof Hardware Model.” In: PKC 2017.
Vol. 10175. LNCS. Springer, 2017, pp. 428–460.

[HV15] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. “On
Black-Box Complexity of Universally Composable Security in the
CRS Model.” In: Advances in Cryptology – ASIACRYPT 2015:
21st International Conference on the Theory and Application of
Cryptology and Information Security, Proceedings, Part II. Springer,
2015, pp. 183–209.

[HV16] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. “Com-
posable Adaptive Secure Protocols without Setup under Polytime
Assumptions.” In: Theory of Cryptography: 14th Theory of Cryptog-
raphy Conference, TCC 2016-B, Proceedings. Printed version not
yet published. 2016.

[IL89] Russell Impagliazzo and Michael Luby. “One-way Functions are
Essential for Complexity Based Cryptography.” In: The 30th Annual
Symposium on Foundations of Computer Science, 1989. Proceedings.
FOCS 1989. IEEE. 1989, pp. 230–235.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. “Founding Cryp-
tography on Oblivious Transfer – Efficiently.” In: Advances in Cryp-
tology – CRYPTO 2008: 28th Annual International Cryptology
Conference, Proceedings. Springer, 2008, pp. 572–591.

[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. “Secure Arith-
metic Computation with No Honest Majority.” In: Theory of Cryp-
tography, 6th Theory of Cryptography Conference, TCC 2009, San
Francisco, CA, USA, March 15-17, 2009. Proceedings. 2009, pp. 294–
314.

[Ish+06] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank.
“Black-box constructions for secure computation.” In: Proceedings of
the 38th Annual ACM Symposium on Theory of Computing, Seattle,
WA, USA, May 21-23, 2006. 2006, pp. 99–108.

[Kat07] Jonathan Katz. “Universally Composable Multi-party Computa-
tion Using Tamper-Proof Hardware.” In: Advances in Cryptology –
EUROCRYPT 2007: 26th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Proceedings.
Springer, 2007, pp. 115–128.

http://dl.acm.org/citation.cfm?id=2767386
http://dl.acm.org/citation.cfm?id=2767386

156 BIBLIOGRAPHY

[Kiy14] Susumu Kiyoshima. “Round-Efficient Black-Box Construction of
Composable Multi-Party Computation.” In: Advances in Cryptology
– CRYPTO 2014: 34th Annual Cryptology Conference, Proceedings.
Springer, 2014, pp. 351–368.

[KL11] Dafna Kidron and Yehuda Lindell. “Impossibility Results for Uni-
versal Composability in Public-Key Models and with Fixed Inputs.”
In: Journal of Cryptology 24.3 (2011), pp. 517–544. Cryptology
ePrint Archive (IACR): Report 2007/478. Version 2010-06-06.

[KLP07] Tauman Yael Kalai, Yehuda Lindell, and Manoj Prabhakaran. “Con-
current Composition of Secure Protocols in the Timing Model.” In:
Journal of Cryptology 20.4 (Oct. 2007), pp. 431–492.

[KMO14] Susumu Kiyoshima, Yoshifumi Manabe, and Tatsuaki Okamoto.
“Constant-Round Black-Box Construction of Composable Multi-
Party Computation Protocol.” In: Theory of Cryptography: 11th
Theory of Cryptography Conference, TCC 2014, Proceedings. Springer,
2014, pp. 343–367.

[Lin+15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai.
“Efficient Constant Round Multi-party Computation Combining
BMR and SPDZ.” In: Advances in Cryptology - CRYPTO 2015
- 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part II. 2015, pp. 319–338.

[Lin03] Yehuda Lindell. “General Composition and Universal Composabil-
ity in Secure Multi-party Computation.” In: 44th Annual IEEE
Symposium on Foundations of Computer Science. FOCS ’03. IEEE.
2003, pp. 394–403.

[Lin04] Yehuda Lindell. “Lower Bounds for Concurrent Self Composition.”
In: Theory of Cryptography, First Theory of Cryptography Con-
ference, TCC 2004, Cambridge, MA, USA, February 19-21, 2004,
Proceedings. 2004, pp. 203–222.

[Lin08] Andrew Y Lindell. “Efficient fully-simulatable oblivious transfer.”
In: Topics in Cryptology–CT-RSA 2008. Springer, 2008, pp. 52–70.

[Lin09] Andrew Y Lindell. “Adaptively secure two-party computation with
erasures.” In: Cryptographers’ Track at the RSA Conference. Springer.
2009, pp. 117–132.

[Lin13] Yehuda Lindell. “Fast Cut-and-Choose Based Protocols for Mali-
cious and Covert Adversaries.” In: Advances in Cryptology - CRYPTO
2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 18-22, 2013. Proceedings, Part II. 2013, pp. 1–17.

[Lin16] Huijia Lin. “Indistinguishability Obfuscation from Constant-Degree
Graded Encoding Schemes.” In: Advances in Cryptology - EURO-
CRYPT 2016 - 35th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Vienna, Austria, May
8-12, 2016, Proceedings, Part I. 2016, pp. 28–57.

[LK14] Yehuda Lindell and Jonathan Katz. Introduction to modern cryp-
tography. Chapman and Hall/CRC, 2014.

http://eprint.iacr.org/2007/478

BIBLIOGRAPHY 157

[LOS14] Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart. “Dishon-
est Majority Multi-Party Computation for Binary Circuits.” In:
Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part II. 2014, pp. 495–512.

[LP09] Huijia Lin and Rafael Pass. “Non-malleability Amplification.” In:
Proceedings of the 41st Annual ACM Symposium on Theory of
Computing. STOC ’09. ACM, 2009, pp. 189–198.

[LP11] Huijia Lin and Rafael Pass. “Constant-round non-malleable com-
mitments from any one-way function.” In: Proceedings of the 43rd
ACM Symposium on Theory of Computing, STOC 2011, San Jose,
CA, USA, 6-8 June 2011. 2011, pp. 705–714.

[LP12] Huijia Lin and Rafael Pass. “Black-Box Constructions of Com-
posable Protocols without Set-Up.” In: Advances in Cryptology –
CRYPTO 2012: 32nd Annual Cryptology Conference, Proceedings.
Springer, 2012, pp. 461–478.

[LPV08] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubrama-
niam. “Concurrent Non-malleable Commitments from Any One-
Way Function.” In: Theory of Cryptography Conference. TCC 2008.
Springer, 2008, pp. 571–588.

[LPV09] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubrama-
niam. “A Unified Framework for Concurrent Security: Universal
Composability from Stand-alone Non-malleability.” In: Proceed-
ings of the 41st Annual ACM Symposium on Theory of Computing.
STOC ’09. ACM, 2009, pp. 179–188.

[LPV12] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubrama-
niam. “A Unified Framework for UC from Only OT.” In: Advances in
Cryptology – ASIACRYPT 2012: 18th International Conference on
the Theory and Application of Cryptology and Information Security,
Proceedings. Springer, 2012, pp. 699–717.

[LT17] Huijia Lin and Stefano Tessaro. “Indistinguishability Obfuscation
from Trilinear Maps and Block-Wise Local PRGs.” In: Advances
in Cryptology - CRYPTO 2017 - 37th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 20-24, 2017,
Proceedings, Part I. 2017, pp. 630–660.

[MMY06] Tal Malkin, Ryan Moriarty, and Nikolai Yakovenko. “Generalized
Environmental Security from Number Theoretic Assumptions.” In:
Theory of Cryptography: 3rd Theory of Cryptography Conference,
TCC 2006, Proceedings. Springer, 2006, pp. 343–359.

[MPR06] Silvio Micali, Rafael Pass, and Alon Rosen. “Input-Indistinguishable
Computation.” In: 47th Annual IEEE Symposium on Foundations
of Computer Science. FOCS ’06. IEEE. 2006, pp. 367–378.

[MR91] Silvio Micali and Phillip Rogaway. “Secure Computation (Ab-
stract).” In: Advances in Cryptology - CRYPTO ’91, 11th Annual
International Cryptology Conference, Santa Barbara, California,
USA, August 11-15, 1991, Proceedings. 1991, pp. 392–404.

158 BIBLIOGRAPHY

[Nao89] Moni Naor. “Bit Commitment Using Pseudo-Randomness.” In:
Advances in Cryptology - CRYPTO ’89, 9th Annual International
Cryptology Conference, Santa Barbara, California, USA, August
20-24, 1989, Proceedings. 1989, pp. 128–136.

[Nem17] Hamed Nemati. “Secure System Virtualization: End-to-End Verifica-
tion of Memory Isolation.” PhD thesis. Royal Institute of Technology,
Stockholm, Sweden, 2017. url: http://nbn-resolving.de/urn:
nbn:se:kth:diva-213030.

[NP01] Moni Naor and Benny Pinkas. “Efficient oblivious transfer proto-
cols.” In: Proceedings of the Twelfth Annual Symposium on Dis-
crete Algorithms, January 7-9, 2001, Washington, DC, USA. 2001,
pp. 448–457.

[OY91] Rafail Ostrovsky and Moti Yung. “How to Withstand Mobile Virus
Attacks (Extended Abstract).” In: PODC 1991. ACM, 1991, pp. 51–
59. url: http://dl.acm.org/citation.cfm?id=112600.

[Pas03] Rafael Pass. “Simulation in Quasi-Polynomial Time, and Its Ap-
plication to Protocol Composition.” In: Advances in Cryptology –
EUROCRYPT 2003: 22nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Proceedings.
Springer, 2003, pp. 160–176.

[PPV08] Omkant Pandey, Rafael Pass, and Vinod Vaikuntanathan. “Adap-
tive One-Way Functions and Applications.” In: Advances in Cryp-
tology – CRYPTO 2008. Proceedings. Springer, 2008, pp. 57–74.

[PR05] Rafael Pass and Alon Rosen. “Concurrent non-malleable commit-
ments.” In: 46st Annual IEEE Symposium on Foundations of Com-
puter Science. FOCS ’05. IEEE. 2005, pp. 563–572.

[PR08] Manoj Prabhakaran and Mike Rosulek. “Cryptographic complexity
of multi-party computation problems: Classifications and separa-
tions.” In: Advances in Cryptology – CRYPTO 2008: 28th Annual
International Cryptology Conference, Proceedings. Springer, 2008,
pp. 262–279.

[PR10] Benny Pinkas and Tzachy Reinman. “Oblivious RAM revisited.” In:
Advances in Cryptology–CRYPTO 2010. Springer, 2010, pp. 502–
519.

[PS04] Manoj Prabhakaran and Amit Sahai. “New Notions of Security:
Achieving Universal Composability Without Trusted Setup.” In:
Proceedings of the 36th Annual ACM Symposium on Theory of
Computing. STOC 2004. ACM, 2004, pp. 242–251.

[PSV06] Rafael Pass, Abhi Shelat, and Vinod Vaikuntanathan. “Construc-
tion of a Non-malleable Encryption Scheme from Any Semantically
Secure One.” In: Advances in Cryptology - CRYPTO 2006, 26th
Annual International Cryptology Conference, Santa Barbara, Cali-
fornia, USA, August 20-24, 2006, Proceedings. 2006, pp. 271–289.

http://nbn-resolving.de/urn:nbn:se:kth:diva-213030
http://nbn-resolving.de/urn:nbn:se:kth:diva-213030
http://dl.acm.org/citation.cfm?id=112600

BIBLIOGRAPHY 159

[PW09] Rafael Pass and Hoeteck Wee. “Black-Box Constructions of Two-
Party Protocols from One-Way Functions.” In: Theory of Cryp-
tography, 6th Theory of Cryptography Conference, TCC 2009, San
Francisco, CA, USA, March 15-17, 2009. Proceedings. 2009, pp. 403–
418.

[Qub18] Qubes OS Project. Qubes Split GPG. User Documentation. 2018.
url: https://www.qubes-os.org/doc/split-gpg/ (visited on
05/08/2018).

[Rab81] Michael Rabin. How To Exchange Secrets with Oblivious Transfer.
1981.

[Rom90] John Rompel. “One-Way Functions are Necessary and Sufficient
for Secure Signatures.” In: Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing, May 13-17, 1990, Baltimore,
Maryland, USA. 1990, pp. 387–394.

[RS91] Charles Rackoff and Daniel R. Simon. “Non-Interactive Zero-Knowledge
Proof of Knowledge and Chosen Ciphertext Attack.” In: Advances
in Cryptology - CRYPTO ’91, 11th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 11-15, 1991,
Proceedings. 1991, pp. 433–444.

[Shi+11] Elaine Shi, T-H Hubert Chan, Emil Stefanov, and Mingfei Li. “Obliv-
ious RAM with O ((logN) 3) worst-case cost.” In: Advances in
Cryptology–ASIACRYPT 2011. Springer, 2011, pp. 197–214.

[WC81] Mark N. Wegman and Larry Carter. “New Hash Functions and
Their Use in Authentication and Set Equality.” In: J. Comput. Syst.
Sci. 22.3 (1981), pp. 265–279.

[Wee10] Hoeteck Wee. “Black-Box, Round-Efficient Secure Computation via
Non-malleability Amplification.” In: 51th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2010, October 23-26,
2010, Las Vegas, Nevada, USA. 2010, pp. 531–540.

[WP+89] Michael Waidner, Birgit Pfitzmann, et al. “The dining cryptogra-
phers in the disco: Unconditional sender and recipient untraceability
with computationally secure serviceability.” In: J.-J. Quisquater and
J. Vandewalle, editors, Advances in Cryptology—EUROCRYPT 89
(1989), p. 690.

[Yao82] Andrew Chi-Chih Yao. “Protocols for Secure Computations (Ex-
tended Abstract).” In: 23rd Annual Symposium on Foundations
of Computer Science, Chicago, Illinois, USA, 3-5 November 1982.
1982, pp. 160–164.

[Yao86] Andrew Chi-Chih Yao. “How to Generate and Exchange Secrets
(Extended Abstract).” In: 27th Annual Symposium on Foundations
of Computer Science, Toronto, Canada, 27-29 October 1986. 1986,
pp. 162–167.

[ZGL18] Erkang Zheng, Phil Gates-Idem, and Matt Lavin. “Building a
virtually air-gapped secure environment in AWS: with principles
of devops security program and secure software delivery.” In: Hot
Topics in the Science of Security, HoTSoS 2018. ACM, 2018, 11:1–
11:8. url: http://dl.acm.org/citation.cfm?id=3190619.

https://www.qubes-os.org/doc/split-gpg/
http://dl.acm.org/citation.cfm?id=3190619

160 BIBLIOGRAPHY

Own Publications

• Brandon Broadnax, Nico Döttling, Gunnar Hartung, Jörn Müller-Quade,
and Matthias Nagel. “Concurrently Composable Security with Shielded
Super-Polynomial Simulators.” In: Advances in Cryptology - EURO-
CRYPT 2017 - 36th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Paris, France, April 30 - May 4,
2017, Proceedings, Part I. 2017, pp. 351–381

• Brandon Broadnax, Alexander Koch, Jeremias Mechler, Tobias Müller,
Jörn Müller-Quade, and Matthias Nagel. “Fortified Universal Composabil-
ity: Taking Advantage of Simple Secure Hardware Modules.” In: IACR
Cryptology ePrint Archive 2018 (2018), p. 519. url: https://eprint.
iacr.org/2018/519

• Brandon Broadnax, Valerie Fetzer, Jörn Müller-Quade, and Andy Rupp.
“Non-malleability vs. CCA-Security: The Case of Commitments.” In:
Public-Key Cryptography - PKC 2018 - 21st IACR International Conference
on Practice and Theory of Public-Key Cryptography, Rio de Janeiro, Brazil,
March 25-29, 2018, Proceedings, Part II. 2018, pp. 312–337

• Brandon Broadnax, Matthias Huber, Bernhard Löwe, Jörn Müller-Quade,
and Patrik Scheidecker. “Towards Efficient Software Protection Obeying
Kerckhoffs’s Principle using Tamper-proof Hardware.” In: Proceedings of
the 15th International Joint Conference on e-Business and Telecommuni-
cations, ICETE 2018 - Volume 2: SECRYPT, Porto, Portugal, July 26-28,
2018. 2018, pp. 719–724

161

https://eprint.iacr.org/2018/519
https://eprint.iacr.org/2018/519

	1 Introduction
	1.1 Background and Motivation
	1.2 Contribution of this Thesis
	1.3 Other Result
	1.4 Structure of this Thesis

	2 Preliminaries
	2.1 Notation
	2.2 Basic Concepts
	2.3 Cryptographic Primitives
	2.3.1 One-Way Functions
	2.3.2 Commitment Schemes
	2.3.3 Public-Key Encryption Schemes
	2.3.4 Digital Signatures
	2.3.5 Message Authentication Codes

	2.4 The Universal Composability Framework
	2.4.1 Definition of the Framework
	2.4.2 Standard Well-formed Ideal Functionalities
	2.4.3 Some Important Functionalities
	2.4.4 Basic Properties of the Framework
	2.4.5 Universal Composition

	3 Non-malleability and CCA Security
	3.1 Notions for Public-Key Encryption Schemes
	3.1.1 Variants of CCA Security
	3.1.2 Variants of Non-malleability
	3.1.3 Relations

	3.2 Notions for Commitment Schemes
	3.2.1 Contribution
	3.2.2 Related Work
	3.2.3 Variants of CCA Security
	3.2.4 Variants of Non-malleability
	3.2.5 First Transformation (Puzzle-Solution Approach)
	3.2.6 Second Transformation (Sharing Approach)

	4 A New Framework for Concurrently Composable MPC in the Plain Model
	4.1 Introduction
	4.1.1 Contribution
	4.1.2 Related Work

	4.2 Definitions of the Previous Frameworks
	4.2.1 SPS Security Framework
	4.2.2 Angel-based Security Framework and UC with super-polynomial Helpers Framework

	4.3 Shielded Oracles
	4.3.1 Definition of the Framework
	4.3.2 Basic Properties and Justification
	4.3.3 Universal Composition
	4.3.4 Polynomial Simulatability
	4.3.5 Relation with Angel-based Security

	4.4 A Constant-Round Commitment Scheme
	4.4.1 Construction and Security Proof
	4.4.2 First Application: Constant-Round (Black-Box) ZK
	4.4.3 A Modular Composition Theorem

	4.5 Constant-Round (Black-Box) General MPC

	5 A New Framework for Utilizing Simple Remotely Unhackable Hardware Modules
	5.1 Introduction
	5.1.1 Contribution
	5.1.2 Related Work

	5.2 The Fortified Universal Composability Framework
	5.2.1 Channels
	5.2.2 Online State
	5.2.3 Corruption Model
	5.2.4 Interface Modules and Fortified Functionalities
	5.2.5 Notify Transport Mechanism and Activation Instructions
	5.2.6 Fortified UC Emulation

	5.3 Properties of the Framework
	5.4 Construction for Non-Reactive Functionalities
	5.4.1 Up to N Parties Under Adversarial Control

	5.5 Construction for Reactive Functionalities
	5.5.1 Up to N Parties Under Adversarial Control

	5.6 Architectures without Erasure

	6 Conclusion and Prospects
	Bibliography
	Own Publications

