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Abstract Nowadays, one needs to consider seriously the
possibility that a large separation between the scale of new
physics and the electroweak scale exists. Nevertheless, there
are still observables in this scenario, in particular the Higgs
mass, which are sensitive to the properties of the UV the-
ory. In order to obtain reliable predictions for a model which
involves very heavy degrees of freedom, the precise match-
ing to an effective theory is necessary. While this has been so
far only studied for a few selected examples, we present an
extension of theMathematica packageSARAH to perform
automatically the matching between two scalar sectors at the
full one-loop level for general models. We show that we can
reproduce all important results for commonly studied models
like split- or high-scale supersymmetry. One can now easily
go beyond that and study new ideas involving very heavy
states, where the effective model can either be just the stan-
dard model or an extension of it. Also scenarios with several
matching scales can be easily considered. We provide model
files for the MSSM with seven different mass hierarchies as
well as two high-scale versions of the NMSSM. Moreover,
it is explained how new models are implemented.

1 Introduction

The Standard Model (SM) of particle physics is a very suc-
cessful theory which has been completed with the discovery
of the Higgs boson at the Large Hadron Collider (LHC) [1,2].
On the other side, there are observations like dark matter for
which no viable candidate exists within the SM. While it
has been expected that solutions to the open problems of the
SM, like e.g. supersymmetry (SUSY), exist close to the elec-
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troweak scale, the LHC has not found any direct signal for
new physics so far. Therefore, the possibility of a large gap
between the electroweak (EW) and the scale of new physics
has been studied more intensively in the recent years. The
most prominent idea in this direction is ‘split supersymmetry’
(split-SUSY) in which the SUSY scalars are much heavier
than the SM particles and the SUSY fermions [3–5]. In this
setup, most of the appealing properties of SUSY like gauge
coupling unification and a dark matter candidate are kept,
but the coloured particles are too heavy to be produced at
the LHC. Mechanisms have been proposed how split-SUSY
could arise from string theory [6,7], and also the question of
naturalness has been discussed [8]. Moreover, the ansatz of
high-scale SUSY, i.e. that all SUSY particles are much heav-
ier than the EW scale, is taken seriously nowadays [9,10].
While it is widely believed that these models suffer from a
large fine-tuning, it has pointed out that large SUSY scales
can be combined with the relaxion mechanism to solve the
big and the small hierarchy problem simultaneously [11]. The
idea of SUSY with very large mass scales is not restricted to
the Minimal Supersymmetric extension of the SM (MSSM),
but has also been applied to other SUSY models like the Next-
to-MSSM (NMSSM) [12] or models with Dirac gauginos
[13–17].

Even if states beyond the SM (BSM) are too heavy to be
produced at current colliders, they often still have an in-print
in experimental results, see e.g. Refs. [18,19]. The precise
measurement of the Higgs boson mass of mh = 125.09 GeV
[20] at the LHC has added another very important constraint
in this direction. Consequently, large efforts were put in a
precise Higgs boson mass calculation in split- or high-scale
SUSY [9,10,21–23]. The reason for this endeavour is that the
commonly used fixed order calculations of the Higgs boson
mass in SUSY models should only be applied in the case
of a small separation between the EW scale and the SUSY
scale. Otherwise, the presence of large logarithms introduces
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a large uncertainty in the prediction of the numerical value
of mh [23–26]. This can be resolved either by the standard
ansatz of an effective field theory (EFT) in which the heavy
states are integrated out [27–36], or by a hybrid method
in which the fixed-order calculation is combined with the
higher-order leading logarithms extracted from an EFT [37–
40]. In both cases, one needs to know how the couplings
among the light states depend on the full theory. In terms
of the EFT ansatz this means that the full model involving
heavy and light states must be matched to an effective theory
at the scale at which the heavy degrees of freedom are inte-
grated out. The matching at leading order is straight-forward
and the relations often can be read off from the tree-level
Lagrangians of both models. However, tree-level relations
are usually not sufficient to obtain the necessary precision
in the Higgs boson mass prediction. Therefore, higher-order
corrections are needed. Of course, the matching procedure at
the full one-loop level is already much more time-consuming.
Depending on the details of the full and effective model also
several subtleties like infra-red divergences can occur as dis-
cussed in Ref. [41].

In order to facilitate these studies, we have developed
an automatised process to perform the matching between
the scalar sectors of two renormalisable theories. This fea-
ture has been implemented in the Mathematica package
SARAH [42–46] and provides the functionality to obtain ana-
lytical expressions for the matching conditions at the one-
loop level. Also the interface between SARAH and SPheno
[47,48] has been extended to include the matching between
an EFT and a UV-complete theory. In that way, one can
obtain very quickly numerical predictions for the Higgs
boson mass but also for all kind of other observables that
concern the Higgs boson. It is worth to stress that this func-
tionality is not restricted to split- or high-scale versions of
the MSSM. A large variety of SUSY, but also non-SUSY
models, with large BSM scales can be studied with the
presented tool-chain. Also the considered EFT need not
to be the SM, but could be a singlet extension, a Two-
Higgs-Doublet-Model (THDM), or an even more compli-
cated model. Concerning the nature of the heavy states, we
restrict our attention to heavy fermions and scalars. The
implementation of integrating out heavy vector bosons at
the one-loop level is reserved for future work. However, the
low-energy EFT can still contain an extended gauge sector
which is also matched at the one-loop level. Nevertheless, we
will mainly concentrate in the given examples on the estab-
lished MSSM scenarios because they offer the possibility to
compare our generic approach with results available in the
literature.

This paper is organised as follows. In Sect. 2 we explain
our generic matching procedure. In Sect. 3 the new routines in
SARAH are explained while a comparison with the literature
is done in Sect. 4. We summarise in Sect. 5.

2 Generic matching between two scalar sectors

2.1 General ansatz

We consider a general, renormalisable gauge theory with a
set of scalars {φi } and fermions {ψi } charged under unspec-
ified (sub-)sets of the theories gauge group. Without loss of
generality, one can always assume that the scalars are real.
The Lagrangian can be written as

LUV = 1

2
DμφaD

μφa + ψ†
a /Dμψa + Tr

(
Fμν,a F

μν
a

)

− 1

4!λabcdφaφbφcφd

− 1

3!κabcφaφbφc − 1

2
m2

abφaφb

− (Mabψaψb + Yabcψaψbφc + h.c.), (1)

where all gauge and representation indices have been sup-
pressed. The covariant derivative Dμ and the gauge fields are
chosen such that the field strength tensors {Fμν

a } form diago-
nal kinetic terms (in case of multiple gauged U(1) groups). In
the following it is always assumed that all gauge groups are
broken near the scale of EW symmetry breaking. If particles
with very different masses appear in such a theory, one can
categorise the particle content into light fields ({φL

i }, {ψ L
i })

and heavy fields ({φH
i }, {ψH

i }). The Lagrangian becomes

LUV = LL(φL
i , ψ L

i ) + Lmix(φ
L
i , ψ L

i , φH
i , ψH

i )

+LH (φH
i , ψH

i ). (2)

Integrating out all heavy fields leads to an effective theory
which contains only light degrees of freedom

LEFT = 1

2
DμφL

a D
μφL

a + ψ L ,†
a /Dμψ L

a + Tr
(
Fμν,a F

μν
a

)

− 1

4! λ̃abcdφ
L
a φL

b φL
c φL

d − 1

3! κ̃abcφ
L
a φL

b φL
c

− 1

2
m̃2

abφ
L
a φL

b − (M̃abψ
L
a ψ L

b

+ Ỹabcψ
L
a ψ L

b φL
c + h.c.) + Ld>4

EFT , (3)

where the last line contains operators with dimension greater
than four. Concerning a precise prediction of Higgs boson
masses, only purely scalar operators with ascending dimen-
sionality may be of interest for the matching. However, for
d > 4, their influence on the scalar potential is of the order
vi/Mj , where vi is the vacuum expectation value (VEV) of a
light and Mj the mass of a heavy field, vi � Mj . Supposed
that the fundamental theory is renormalisable, it follows
from the decoupling theorem, that the higher-dimensional
operators become unimportant if Mj → ∞. The question
arises, at which scale the vi/Mj terms are no longer relevant
for a precise Higgs boson mass calculation. The impact of
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Fig. 1 Matching of quartic couplings at tree-level. Light scalars are drawn with a single dashed line, heavy scalars with a double dashed line

dimension-six terms, compared to ordinary threshold cor-
rections (d ≤ 4), on the Higgs boson mass in a matching of
the SM to the MSSM was studied in Ref. [49]. It was found
that for 500 GeV < Mj < 1000 GeV, a two-loop matching
of these operators yields corrections on mh in the sub-GeV
range, which rapidly drop for Mj > 1 TeV. Since the focus of
this work is on BSM scenarios with Mj � 1 TeV, we neglect
all vi/Mj contributions during the matching. Thus, we assume
that all VEVs responsible for the breaking of a low-energy
gauge theory can be neglected compared to the masses of the
heavy states. In particular, this means that all gauge bosons
as well as chiral fermions are treated as massless in the com-
putation of the matching conditions.

All information about the heavy states is encoded in the
effective couplings and masses λ̃, κ̃ , m̃2, M̃ and Ỹ . The purely
scalar interactions λ̃, κ̃ and mass squared m̃2 contain the cru-
cial information about the scalar sector of the EFT, hence,
they have the biggest impact on the properties of the light
scalars. We know today, that (at least) one of these light
scalars must have couplings comparable to the predictions of
an SM-like Higgs boson and the mass must be about 125 GeV.
Thus, even if the mass scale of the heavy fields is well above
the reach of the LHC, we can test if the fundamental UV the-
ory is consistent with the Higgs boson mass measurements
through a precise calculation of the effective couplings at the
matching scale and the Higgs properties at the weak scale. In
order to determine the effective couplings in terms of param-
eters of the UV-theory, one assumes the matching condition
that the n-loop m-point amplitudes involving the same exter-
nal (light) states must yield the same result in the infra-red
(IR) regime of the UV-theory (i.e. the scale where the heavy
fields are integrated) and the EFT,

M(n)(φL
a , . . . , φL

m)UV = M(n)(φL
a , . . . , φL

m)EFT . (4)

Note, that the external fields in the two theories to be matched
must be treated equally. Thus, additional wave-function
renormalisations involving internal heavy fields may con-

tribute to Eq. (4) by also matching the first derivative of the
2-point function w.r.t the external momentum of the light
fields.

In this paper, we are going to calculate M using the
Feynman diagrammatic approach neglecting all external
momenta. The tree-level matching condition for a quartic
coupling,

λ̃abcd −
∑

x∈{φL }

(
κ̃abx κ̃xcd

m2
x → 0

+ κ̃acx κ̃xbd

m2
x → 0

+ κ̃adx κ̃xcb

m2
x → 0

)
= λabcd

−
∑

x∈{φL }

(
κabxκxcd

m2
x → 0

+ κacxκxbd

m2
x → 0

+ κadxκxcb

m2
x → 0

)

−
∑

x∈{φH }

(
κabxκxcd

M2
x

+ κacxκxbd

M2
x

+ κadxκxcb

M2
x

)
, (5)

is depicted in Fig. 1. Due to the assumption of vanish-
ing external momenta and vanishing light masses, infra-red
divergences appear on both sides of Eq. (5). Since the tree-
level matching for cubic couplings is trivial,

κ̃abc = κabc, (6)

the divergences cancel exactly. Thus, the effective quartic
couplings λ̃abcd are given by

λ̃abcd = λabcd −
∑

x∈{φH }

(
κabxκxcd

M2
x

+ κacxκxbd

M2
x

+ κadxκxcb

M2
x

)
.

(7)

As already mentioned, the matching at tree level is not suf-
ficient for a precise prediction of the properties of the scalar
sector at the low-energy scale. Thus, one needs to include
loop corrections changing the matching conditions to

κ̃abc + δκ̃abc(φ
L , ψ L) = κabc + δκabc(φ

L , φH , ψ L , ψH )

(8)
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λ̃abcd −
∑

x∈{φL }

∑

s,t,u

κ̃abx κ̃xcd

m2
x → 0

+ δλ̃abcd(φ
L , ψ L)

= λabcd −
∑

s,t,u

⎛

⎝
∑

x∈{φL }

κabxκxcd

m2
x → 0

+
∑

x∈{φH }

κabxκxcd

M2
x

⎞

⎠

+ δλabcd(φ
L , φH , ψ L , ψH ), (9)

where δX (φL , φH , ψ L , ψH ), with X = λ, κ , denote the sum
of all one-loop contributions that contain only light fields,
mixed heavy and light fields as well as only heavy fields in
the loop . Likewise δλ̃ can only arise from diagrams involving
light fields in the loop since there are no heavy states present
in the EFT. All generic diagrams which can contribute to tree-
level and one-loop amplitudes of any renormalisable scalar
operator are given in Appendix A. Again, IR divergences
caused by light fields are present on both sides which need to
cancel in the matching conditions. A detailed discussion on
these cancellations is beyond the scope of this paper but was
recently discussed in Ref. [41]. In summary, the matching
condition can be expressed in terms of IR-finite pieces

κ̃abc = κabc + δκabc(φ
L , φH , ψ L , ψH ) (10)

λ̃abcd = λabcd −
∑

x∈{φH }

∑

s,t,u

(
κabxκxcd

M2
x

)

+ δλabcd(φ
L , φH , ψ L , ψH ), (11)

where the one-loop contributions δX are computed using
modified loop integrals where the IR divergent pieces have
been subtracted. For instance, the scalar two-point integral B0

with vanishing external momentum (for simplicity we omit
the vanishing external momentum in the argument of all loop
function) and vanishing masses suffers from a logarithmic IR
divergence

B0(m
2,m2)|m2→0 = log

(
Q2

m2

)∣∣
∣∣
m2→0

(12)

which will necessarily cancel in the matching condition
Eq. (4). Thus, the replacement of the B0 with the modified
loop function

B0(m
2,m2)

∣
∣∣
m2→0

=
[
B0(m

2,m2) − log

(
Q2

m2

)]

m2→0

(13)

makes this cancellation manifest without the need to compute
the corresponding IR-divergent diagrams in the EFT. Thus,
the calculation of the matching conditions can be performed
in a straight-forward way by using the IR-safe loop functions

B0, B1, C0, D0, Ḃ0 and Ḃ1 defined in “Appendix B”.

2.2 Renormalisation scheme

A simple renormalisation scheme which is applicable to a
wide range of models is the MS/DR scheme. Therefore, we
are going to stick mainly to this scheme. The only exception is
the treatment of the off-diagonal wave-function renormalisa-
tion (WFR) of the scalar fields. It has been proposed in Ref.
[10] that these contributions can be dropped by assuming
finite counter-terms for some input parameters. For instance,
in the high-scale MSSM one could assume a counter-term
for tan β which exactly cancels the off-diagonal WFR con-
tributions. This approach is a more economic calculation and
can lead to performance improvements in the runtime. How-
ever, it depends on the considered model and the chosen
input parameters if such a scheme is possible. Therefore, we
provide the possibility to include or exclude the one-loop
contributions from off-diagonal WFR constants during the
calculation.

For an appropriate choice of the WFR treatment it is
worth to mention the equivalence between excluding the off-
diagonal WFR constants and the extraction of effective quar-
tic couplings from a pole-mass matching [24,41]. Thus, for
the comparison with tools that use a pole-mass matching, the
inclusion of off-diagonal WFR constants should be disabled
in the calculation.

2.3 Parametrisation of the results at the matching scale

Using matching conditions to calculate the effective cou-
plings yields solutions that are functions of the parameters
of the UV theory. However, in some cases it might be bet-
ter to (at least partially) give their dependence on the EFT
parameters. This is especially the case for the SM gauge and
Yukawa couplings because their values are known very pre-
cisely. Therefore, one also needs to match these couplings at
a suitable loop-level. Concerning the matching of the scalar
sector, the EFT parameters that enter the scalar matching con-
ditions at tree-level need to be matched at the one-loop level
(and re-inserted into the scalar tree-level matching). For all
other parameters, a tree-level matching is sufficient as long
as we stick to a one-loop matching of the scalar couplings.
For non-supersymmetric models the scalar parameters which
we want to match are free parameters, i.e. in these cases a
matching of the SM parameters at tree-level is always suf-
ficient. This is different for supersymmetric models because
the scalar couplings are related to the other couplings through
F- and D-terms. We concentrate on the D-term contribu-
tions, i.e. the matching of the gauge couplings, because this
is the part important for the matching of scalars that could –
at least in principle – provide a SM-like Higgs boson. The
matching of the gauge couplings is parametrised by

gi → gi + δgi (14)
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and receives two different contributions:

1. Thresholds from heavy fields:

δgi =
∑

φH

1

16π2

Ci (φH )

12
I i2(φ

H )g3
i log

M2
φH

Q2

+
∑

ψH

1

16π2

Ci (ψH )

3
I i2(ψ

H )g3
i log

M2
ψH

Q2 , (15)

where gi is the gauge coupling with respect to the gauge
group i , I i2(x) is the Dynkin index of the field x with
respect to the gauge group i , and Ci (x) is a multiplicity
factor taking into account the charges under non-Abelian
gauge groups others than i , i.e. in the case of the SM gauge
group, this counts the colour and isospin multiplicity in
the loop.

2. MS–DR conversion: required if an MS and a DR renor-
malised quantity are to be matched. This is e.g. the case if
non-SUSY models are matched onto SUSY ones. There
are two different contributions which affect the quartic
couplings:

– The finite shifts of the gauge couplings for an SU (N )

group are [50]

δgi = 1

16π2 g
3
i
N

6
. (16)

– Quartic vertices receive an additional shift from MS–
DR conversion from the diagrams shown in Fig. 2.
The amplitude difference of this diagram between
the two schemes is

M = c1c2, (17)

where c1 and c2 are the two involved vertices between
two scalars and two vector bosons.

The calculation of the two different contributions was imple-
mented in SARAH and are automatically included in the
matching procedure.

V i
μ

V j
μ

φL
a

φL
b

φL
c

φL
d

c1 c2

Fig. 2 One-loop diagram contributing to the shift from MS–DR con-
version

2.4 Above and below the matching scale: threshold
corrections to fermionic couplings

So far, we have concentrated on scenarios where the running
above the matching scale can be neglected and the threshold
corrections to fermionic couplings do not play an impor-
tant role. Of course, there are plenty of situations where it
is necessary to go beyond that. The simplest case is a high-
scale SUSY scenario which is connected to a common SUSY
breaking mechanism like minimal supergravity (mSugra).
Such a SUSY breaking predicts that the masses of the spar-
ticles are degenerate at the scale of grand unification (GUT),
but not necessarily at the matching scale. Thus, finite dif-
ferences between the running masses are present below the
GUT scale. In such cases, one needs to consider the running
above the matching scale up to the GUT scale. Since two-
loop renormalisation group equations (RGEs) are commonly
used for that running, it is necessary to include the threshold
corrections to the SM gauge and Yukawa couplings. While
the threshold corrections to the gauge couplings are given by
Eqs. (15) and (16), some more work is needed to compute
the shifts to the Yukawa couplings. The general ansatz to
calculate these shifts is the same as for the scalar couplings,
i.e. imposing that the n-loop amplitudes of corresponding
fields are identical at the matching scale MM . Once again,
all IR divergences must cancel at MM , i.e. one determines
the Yukawa couplings above the threshold scale via

Yabc = Ỹabc − δYabc, (18)

whereYabc is for instance a running SM Yukawa coupling and
δYabc contains corrections from diagrams containing heavy
fields, which are obtained with IR-safe loop functions, as
well as MS–DR conversion if necessary.

If the EFT is not the SM but an extension with additional
fermions, also new Yukawa-like couplings are present below
the matching scale. A good example for such a scenario is
for instance split-SUSY with effective gaugino–Higgsino–
Higgs couplings. Of course, the one-loop relation to calculate
these couplings is just given by inverting Eq. (18), i.e.

Ỹabc = Yabc + δYabc. (19)

Thus, in a generic approach, both types of Yukawa cou-
pling corrections, above (SM-like) and below (BSM-like)
the matching scale are obtained simultaneously. Necessary
ingredients are the one-loop diagrams depicted in Fig. 3
together with the wave-function corrections of the external
states.

3 Implementation in SARAH and SPheno

In the last section all necessary ingredients for a matching
of two arbitrary renormalisable scalar sectors at the one-loop
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Fig. 3 Irreducible one-loop
diagrams contributing to the
threshold corrections to
scalar-fermion couplings. The
diagram on the right only shows
up for MS–DR conversion

level were introduced. In this section we describe the imple-
mentation as well as the usage in the computer programs
SARAH and SPheno.

3.1 General information about SARAH and SPheno

SARAH1 is a Mathematica package optimised for an easy,
fast and exhaustive study of BSM models. For a given model,
which is defined in form of three input files, SARAH derives
all tree-level properties, i.e. mass matrices, tadpole equa-
tions and vertices. Moreover, the analytical calculations of
one-loop self-energies and tadpoles as well as of two-loop
renormalisation group equations (RGEs) are fully automa-
tised in SARAH based on generic results given in literature
[51–61]. With version 3, SARAH became the first ’spectrum-
generator-generator’: all analytical information derived by
SARAH can be exported to Fortran code which provides
a fully-fledged spectrum generator based on SPheno. A
SARAH generated SPheno version calculates all masses
at the full one-loop level, and includes the dominant two-
loop corrections for neutral scalars [62–64]. Beyond that,
SPheno makes predictions for two- and three-body decays,
flavour and precision observables [65,66], and the EW fine-
tuning. In order to define the properties of the generated
SPheno version, SARAH needs an additional input file usu-
ally called SPheno.m. This input contains the following
information:

– The input parameters of the model
– The choice for the renormalisation scale
– The boundary conditions at the electroweak scale, at the

renormalisation scale and at the GUT scale
– Optional: a condition to dynamically determine the GUT

scale, e.g. g1(mGUT) = g2(mGUT)

– A list of particles for which the two- and three body
decays should be calculated.

Since theSPheno.mfile will be important for the discussion
in the following, we give an example in Appendix C how such
a file may look like. For more details, we refer to the manual

1 SARAH is available at hepforge: sarah.hepforge.org.

as well as theSARAHwiki page.2 In the following section, we
discuss various aspects that arise in an automatised matching
between two models and how they have been considered
through the implementation of two independent approaches.

3.2 Available options to perform the matching

The matching of two scalar sectors can be motivated by a
precise investigation of very different properties of the the-
ories to be matched. The largest contributions to threshold
corrections often have their origin in one common sector of
the heavy spectrum. It can be of particular interest to track
this origin down in order to learn more about which parts
of a given UV-theory are essential for the predictions in an
EFT framework. For this purpose an analytical evaluation of
threshold corrections is preferred. The analytical solutions
can also easily be ported to other computer programs which
is a key feature of many existing SARAH routines.

As already discussed, the matching of an EFT onto a UV-
complete model does not only influence many low-energy
observables but also enters the RGE running and other pre-
dictions above the matching scale. Considering the whole
picture of the matching procedure and its numerical influ-
ence in all sectors of the theories to be matched, a numerical
calculation of threshold corrections is preferred because it
can easily be embedded into existing routines of the gener-
ated SPheno code.

With SARAH version 4.14.0 we provide two different
possibilities to perform the matching between two arbitrary
scalar sectors:

1. An analytical calculation within Mathematica
2. A fully numerical calculation using only the SPheno

interface.

It is important to stress that both options are not based on
the same routines, but have been implemented independently.
Thus, they offer the possibility to double check the obtained
results. A schematic comparison of the two approaches is

2 stauby.de/sarah_wiki/.
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Fig. 4 Schematic procedure for
the two options to calculate
matching conditions with
SARAH/SPheno

given in Fig. 4. A summary of the description given here is
also available at the SARAH wiki page.3

For the analytical calculation it is necessary that all mass
matrices in the model can be diagonalised analytically. Thus,
it is usually necessary to work with a set of assumptions
which simplify the most general mass matrices in a given
model. In theories with spontaneous symmetry breaking, a
high degree of different mixing patterns is introduced through
the presence of VEVs. It has already been argued that, if these
VEVs are responsible for the generation of masses in the
EFT, i.e. if the low-energy Lagrangian is invariant under the
symmetries broken by these VEVs, a common assumption
is to neglect all small VEVs. In addition, flavour violating
effects are usually negligible. The only exception are scenar-
ios in which large contributions to flavour violation occur in
the new physics sector. This could for instance happen in the
MSSM with large off-diagonal trilinear soft-terms which can
have a big effect on the Higgs boson mass [67]. Thus, if any
of these assumptions is not justified, it is necessary to switch
to the purely numerical calculation.

Although the focus of the Mathematica interface is on
the derivation of analytical expressions for the matching con-
ditions, additional routines have been implemented to make
these results easily usable in numerical calculations. This has
the advantage that the obtained code for numerical evalua-
tions can be much faster than the fully numerical interface
because many simplifications can be performed on the ana-

3 http://stauby.de/sarah_wiki/index.php?title=One-Loop_Threshold_
Corrections_in_Scalar_Sectors.

lytical level. In addition, the obtained results can be exported
into LATEX files which makes a evaluation of the expressions
in a human readable format possible. On the other hand, the
fully numerical implementation has several advantages: (i)
the RGE running above the matching scale can be performed,
(ii) shifts to fermionic couplings can be included, (iii) several
EFTs appearing in models with more than one matching scale
can be automatically linked (iv) flavour violating effects can
be included.

Before describing the user interface of the new routines,
we want to comment on a few subtleties to provide a better
understanding on the importance of certain user inputs.

1. Model files: in principle, one can set up specific model
files for the UV theory where for instance EW VEVs are
dropped from the very beginning. However, this com-
plicates further studies of the UV theory. Thus, we are
going to work in the following with the default model files
delivered with SARAH. For instance, we use the MSSM
implementation which includes EW VEVs and apply the
simplifying assumption to neglect these VEVs during
the matching procedure. However, the considered EFT
may require the development of further model files. For
instance, various split-SUSY models that contain only
the fermionic degrees of freedom of their corresponding
SUSY models already have been implemented in the new
SARAH version.

2. Normalisation of couplings: in many models studied in
literature, the coefficients in front of the scalar couplings
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are often chosen differently from Eq. (1). For instance, a
common convention for the SM Lagrangian reads

LSM = (
DμH

) (
DμH

)†

+
∑

f

f̄ /D f −
(

1

2
λSM |H |4 + μ2|H |2

)

−
(
Yd H

†d̄q + YeH
†ēl − YuHūq + h.c.

)
(20)

Thus, after replacing H0 → 1√
2

(h + iG + v) the vertex
in Eq. (1) between four Higgs fields h is

κ̃hhhh = −3λSM . (21)

Therefore, the correct matching condition to calculate
λSM becomes

λSM

= −1

3

⎛

⎝κhhhh + δ̄κhhhh +
∑

s,t,u

∑

x∈{φH }

(κhhx )
2

M2
x

⎞

⎠ ,

(22)

where κi denotes tree-level vertices in the UV theory
while δ̄ are the corresponding one-loop shifts. The rela-
tive normalizations between operators in the considered
UV and the effective theory, such as for example the fac-
tor −1/3 in Eq. (22), have to be provided by the user.

3. Superposition of fields: when matching a scalar sec-
tor involving multiple (light) scalar fields with identical
quantum numbers, often linear combinations of exter-
nal fields contribute to the matching of different param-
eters. For instance, consider the couplings λ4 and λ5 in a
THDM:

LT HDM

= · · · − λ4|H†
1 H2|2 − 1

2

(
λ5(H

†
1 H2)

2 + h.c.
)

, (23)

where the two SU (2) doublets H1 and H2 have the
same hypercharge. We find that any vertex involving λ4

receives also contributions from λ5 and vice versa. For
instance consider the couplings

κh1h2H
+
1 H−

2
= −1

2
(λ4 + λ5) , (24)

κh1A2H
+
1 H−

2
= 1

2
i (λ4 − λ5) , (25)

after splitting the two doublets into their charged (H±
1,2),

CP-even (h1,2) and CP-odd (A1,2) components (note that
the gauge eigenstates introduced here also correspond to

the mass eigenstates as we assume vanishing VEVs). For
simplicity, we assume real parameters . Thus, to obtain
the matching conditions for λ4 and λ5 separately, it is
necessary to calculate the superpositions

λ4 = − (M(h1h2H
+
1 H−

2 ) + iM(h1A2H
+
1 H−

2 )
)
,

(26)

λ5 = − (M(h1h2H
+
1 H−

2 ) − iM(h1A2H
+
1 H−

2 )
)
.

(27)

These conditions are user input as well.

3.3 Analytical approach

In order to use the Mathematica interface to obtain ana-
lytical expressions for the matching conditions, one needs to
initialize a Mathematica kernel, load SARAH and start the
considered high-scale model. This can be done by opening a
new Mathematica notebook and entering the commands

In[1] <<SARAH.m
In[2] Start["<Model >"]

where <Model> could be for instance MSSM or NMSSM. In the
next step, there are two possibilities to obtain the matching
conditions analytically:

1. one can calculate individual effective couplings in an
interactive mode or

2. use a batchmode to calculate several matching conditions
at once and to optionally obtain LATEX , Fortran and
SPheno outputs.

We are going to give details about both options which are
based on the new command

InitMatching[Options]

where possible options are

– Parametrisation -> $LIST

– Default: {}
– Description: list of specific parametrisations of

selected model parameters
– Example:

{vu -> v Sin[ArcTan[TanBeta]], ...}

– Assumptions -> $LIST

– Default: {}
– Description: list of assumptions for parameters in the

model in order to simplify the expressions
– Example: {TanBeta>0}
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– SolveTadpoles -> $LIST

– Default: {}
– Description: list of parameters which are obtained by

the tadpole equations
– Example: {mHu2,mHd2}

– ReadLists -> $BOOL

– Default: False
– Description: if set to True, the calculation of vertices

is skipped, but results stored in a previous session are
used. This can be a significant performance boost.

– InputFile -> $FileName

– Default: False
– Description: can be used to define an input file con-

taining all necessary information

A short description of this command can be obtained within a
SARAH session by invoking the command ?InitMatching.

If the interactive mode is demanded, the optionInputFile

has to be omitted while values for Parametrisation,
Assumptions and SolveTadpoles should be provided to
allow for an analytical diagonalization of all mass matri-
ces. The usage of the batch mode requires only the option

InputFile and serves a high reproducibility of the obtained
results by providing only one single input file.

The provided assumptions and parametrisations are used
to calculate analytical expressions for all masses and
rotation matrices. If this is not possible, because
Mathematica cannot diagonalize the mass matrices ana-
lytically (using the build-in functions Eigensystem and
SingularValueDecomposition), one can either use the
purely numerical interface explained in Sect. 3.4 or choose
appropriate simplifying assumptions.

3.3.1 Interactive mode: calculating individual matching
conditions

Initializing the matching routines using the InitMatching

function with the options described in the previous paragraph
while not specifying the option InputFile enables the inter-
active mode. The necessary vertices of the high-scale the-
ory are calculated or loaded from a previous session and the
masses/rotation matrices are derived. However, no further
calculations are performed at this point.

Example initialization: consider a high-scale MSSM sce-
nario where all SUSY particles have a degenerate massMSUSY
while only the SM Higgs remains light. A possible parametri-
sation may look like
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Note that the symbols MSUSY, At, Ab, Ae and TanBeta

are not defined in the MSSM model file. Thus, additional
information about these symbols must be provided using the
Assumptions option, otherwise they are assumed to be arbi-
trary complex numbers. The initialization is invoked by

There are a few important comments concerning the
parametrisation which we have used in this example:

– The symbol epsUV is used to indicate dimensionful
parameters X which are to be neglected in the UV theory.
One should always use this parameter instead of the sim-
pler rule X->0 to avoid problems caused by a division by
0.

– It is recommended to express all matching conditions in
terms of the running parameters of the effective theory,
see Sect. 2.3. Therefore, we express the MSSM gauge
and Yukawa couplings by the SM ones using the suffix
Q which marks the running parameters (instead of g1 we
e.g. specify it to be g1Q). For these parameters, only the
tree-level matching conditions are required. The one-loop
matching conditions for the gauge couplings, discussed
in Sect. 2.3, are automatically derived.

– Delta[a,b] is the SARAH internal symbol for the Kro-
necker delta δab. We use it here to include only contri-
butions from third generation Yukawa couplings, and to
force diagonal soft masses for the sfermions.

– In order to simplify the analytical calculation, we
assume that all parameters are real. This is translated by
conj[x_]->x. The object conj is the SARAH internal
command for complex conjugation.

When all calculations are finished, it is possible to validate
if the obtained mass spectrum at the matching scale is as
expected

In[5] ?M

which yields the result

As expected, the spectrum at the matching scale contains
one massless CP-even Higgs boson which corresponds to
the SM-like Higgs boson. Also all SM-like fermions remain
massless while the heavy fields are degenerate in the mass
parameter MSUSY.

The rotation matrices are stored in the array
ReplacementRotationMatrices and read in our example
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Let us now continue with the description of the analyti-
cal interface. After the successful initialization and calcula-
tion of all mass and rotation matrices, one can compute the
leading order (LO) and next-to leading order (NLO) correc-
tions to an amplitude with the external fields given in the list
fieldslist

The fieldslist can contain two, three or four scalar
fields including their generation indices to obtain effective
mass parameters and cubic or quartic couplings. Note that
the matching of effective mass parameters is only demanded
if no spontaneous symmetry breaking occurs in this sector of
the theory. The possible options for the function EFTcoupNLO

are

– Topologies -> $LIST

– Default: {}
– Description: list of topologies to include into the cal-

culation. If empty, all topologies are used. Topologies
are denoted as in “Appendix A”.

– Example: {B[4][1],B[4][2][1], B[4][2][2]}

or equivalently {B[4]}.

– ExcludeTopologies -> $LIST

– Default: {OffdiagonalWFRs}
– Description: list of topologies to be excluded from

the calculation. The filtering of ExcludeTopologies
is also applied on the topology groups given in
the Topologies option, e.g. if {B[4]} is given
in the Topologies list but B[4][2][2] in the
ExcludeTopologies list, then only B[4][1] and
B[4][2][1] are computed.

– Example: {OffdiagonalWFRs, DiagonalWFRS} to
exclude all contributions on external legs.

– ExcludeFields -> $LIST

– Default: {}
– Description: list of fields to be excluded when appear-

ing as internal fields.
– Example: {Cha,Chi} e.g. to exclude electroweaki-

nos within a split SUSY scenario.

– InternalPatterns -> $LIST

– Default: {}
– Description: compute only diagrams with certain

internal field-type patterns. For an empty list all pat-
terns are computed.

– Example: {S,SS,SSS,SSSS} computes corrections
from heavy scalars only while {FF} computes dia-
grams that contain exactly two internal fermions.

– GaugeThresholds->$BOOL

– Default: True
– Description: whether to include the contributions

from one-loop gauge coupling thresholds to the tree-
level amplitude or not

– ShiftMSDR-> 0/1/2/Automatic

– Default: Automatic
– Description: whether to include the MS − DR con-

version factors. 0: no, 1: inclusive, 2: exclusive,
Automatic: decide between 1 and 0 depending on
the type of considered model (SUSY or non-SUSY).
exclusive means that only the conversion factor is
calculated while inclusive gives the full result plus
conversion factor (default for SUSY models).

– Debug -> $BOOL

– Default: False
– Description: multiplies each amplitude with a debug

variable marking its topology and field insertion
– Example: the term debug[C[4][1]][hh[2],

hh[2],hh[2]] may be multiplied with the expres-
sion of the amplitude of the triangle diagram (C[4][1],
see Eq. (A.6)) with three heavy internal Higgs bosons
(hh[2],hh[2],hh[2]).

– SimplifyResults -> $BOOL

– Default: True
– Description: whether to simplify the results using the

given assumptions or not.

– LoopReplace -> $FUNCTION

– Default: AnalyticLoopFunctions
– Description: the amplitudes contain loop functions in

the FormCalc notation (e.g. a B0(0,m2
1,m

2
2) func-

tion is denoted by B0i[bb0,0,m1^2,m2^2]). The
function AnalyticLoopFunctions replaces them
with the IR-save loop functions defined in “Appendix
B”. However, for a better readability one may set this
to the Identity function.

– Example: Identity

To view a short description of the options within a SARAH
session one can invoke the commands ?EFTcoupNLO and
Options[EFTcoupNLO]. The function EFTcoupLO only pro-
vides the options SimplifyResults, Debug and
ExcludeFields.
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Example calculation: proceeding with the high-scale
MSSM example i.e. the MSSM → SM matching we can
use the introduced functions to calculate the expressions for
the effective quartic coupling λSM of the SM Higgs boson
at the matching scale. The tree-level matching condition is
calculated as follows

the output reads

where the number in the square brackets denotes the gener-
ation index of the Higgs field hh. Note the coefficient − 1

3 ,
which we have included to get the value for λSM as explained
at the end of Sect. 3.2. Thus, we found at leading order

λ
(LO)
SM = 1

4
(g2

1 + g2
2)

(tan2 β − 1)2

(tan2 β + 1)2
. (28)

The full expression at the one-loop order is rather lengthy.
Therefore, we make a few approximations and include only
the terms involving the top quark Yukawa coupling. This
can be achieved by setting all other couplings to zero. The
command

where we have introduced the stop mixing parameter Xt =
At−μ tan−1 β, yields

where the symbol UVscaleQ is the name for the renormali-
sation scale used in the loop functions. Note, because of the
assumption gi → 0 this corresponds only to the leading one-
loop shift but not to the full NLO expression (including the
tree-level contributions), i.e. we found

δλ
(NLO)
SM = Y 4

t

32π2

(
12X2

t

M2
SUSY

− X4
t

M4
SUSY

)

−3Y 4
t

8π2 log
Q2

match

M2
SUSY

, (29)

which is the well-known leading one-loop shift maximized
for Xt = √

6MSUSY.
Advanced Examples: the root directory of the newSARAH

version includes the file

Example_Matching.nb

which contains already evaluated Cells that describe the
example usage of all possible Options of EFTcoupNLO (e.g.
the selection of specific topologies or debugging) within the
high-scale MSSM.

3.3.2 Batch mode

The complexity of the calculation requires a high degree of
reproducibility of the results. For this purpose it is possible to
write input files that contain all necessary information for the
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matching to a given EFT model. This includes all informa-
tion already discussed in the interactive mode. In addition,
the correspondence between effective couplings in the low-
energy model and amplitudes in the UV model, as it was
demonstrated for the THDM matching, have to be defined.

The batch mode is invoked during the initialisation by
specifying the input file <FileName> located in the directory
of the loaded SARAH model

The mandatory content of the input file is

Matching.m

The purpose of the different keywords is

– $NameUV: defines a name for the current setup. This also
determines the name of the output directory in which
the results are saved into as well as the file name of the
SPheno binary.

– $ParametrisationUV: the parametrisation in the UV.
This is equivalent to optionParametrisationwhen run-
ning InitMatching without an input file.

– $SimplificationsMatching: a list of simplifications
which are only applied at the matching scale.

– $AssumptionsMatching: a list of assumptions at the
matching scale equivalent to the Assumptions option
when running InitMatching without input file.

– $SolveTadpolesUV: the equivalent to the option
SolveTadpoles of InitMatching.

– $MatchingConditions: a list of matching conditions
which relates a parameter in the EFT to amplitudes in the
high-scale model containing light external fields only,
similar to Eqs. (26) and (27).

Up to $NameUV and $MatchingConditions this is the
same information which is otherwise passed toInitMatching

and EFTcoupLO/EFTcoupNLO in the interactive mode. In
addition, one can define options to control the generation
of LATEX or SPheno output. This is described in more detail
below. First, consider an input file example which defines a
high-scale SUSY scenario

Matching_SimpleHighScaleSUSY.m
�

1 $NameUV="SimpleHighScaleSUSY";
2

3 $ParametrisationUV = {
4 vd −> v Cos[ArcTan[TanBeta]],
5 vu −> v Sin[ArcTan[TanBeta]],
6 v −> epsUV,
7 ... (∗ as in the interactive mode ∗)
8 \[Mu]−>MSUSY
9 };

10

11 $SimplificationsMatching={
12 UVscaleQ−>MSUSY,
13 conj[x_] :> x
14 };
15

16 $AssumptionsMatching={
17 TanBeta>0,
18 MSUSY>0
19 }
20

21 $SolveTadpolesUV = {mHd2, mHu2};
22

23 $MatchingConditions = {
24 \[Lambda] −> −1/3 hh[1].hh[1].hh[1].hh[1]
25 };
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Here, we skipped most of the lines for
$ParametrisationUV because they are similar to the def-
inition of MyParametrisation in the last subsection. For
simplicity, we set here all trilinear sfermion couplings as
well as the matching scale UVscaleQ equal to MSUSY.

If the option
InputFile->"Matching_SimpleHighScaleSUSY.m" is
given to InitMatching, SARAH will calculate all matching
conditions defined in $MatchingConditions. The informa-
tion is stored in the arrays

SA ‘MatchingResultsLO
SA ‘MatchingResultsNLO

and is also written to the destination directory

$SARAH_Directory/Output/$Model/EWSB/
Matching/ $ NameUV

Thus, one can work with the results within other
Mathematica sessions as well.

LATEX Output One can use the batch mode to obtain LATEX
files which give information about calculated masses, rota-
tion matrices and matching conditions in a human readable
format. In order to produce this output, the input file must
contain additional information which maps the additional
symbols onto LATEX symbols

Matching.m
�

11 $EFTcouplingsToTeX = True;
12 $AdditionalTeXsymbols={ ... };

The meaning of these lines is

– $EFTcouplingsToTeX: if set to True, all information
obtained during the matching is exported into a LATEX
file ready to be compiled by standard LATEX compilers.

– $AdditionalTeXsymbols: a list containing replacement
rules that define the correspondence between LATEX and
Mathematica expressions which are for instance used
in the defined parametrisation. This will improve the
readability of the LATEX document significantly.

Thus, for our chosen example, the entries might read

Matching_SimpleHighScaleSUSY.m
�

26 $EFTcouplingsToTeX=True;
27 $AdditionalTeXsymbols={
28 {\[Lambda], "\\lambda"},
29 {TanBeta, "t_{\\beta}"},
30 {MSUSY, "M_{\\text{SUSY}}"},
31 {g1Q, "g_1^{\\rm MS}"},
32 {g2Q, "g_2^{\\rm MS}"},
33 {g23, "g_3^{\\rm MS}"},
34 {YuQ[3,3], "Y_t^{\\rm MS}"},
35 {YdQ[3,3], "Y_b^{\\rm MS}"},
36 {YeQ[3,3], "Y_\\tau^{\\rm MS}"}
37 };

where the additional backslash is a necessary escape char-
acter. The LATEX files are saved in the same directory
$SARAH_Directory/Output/$Model/EWSB/Matching/

$NameUV as the other outputs.

SPhenooutput With little effort, it is also possible to gener-
ate aSPhenoversion which includes the analytical matching
conditions to be used within an iterative running between the
matching and the EW scale. In order to do so, two steps are
necessary:

1. Export the Mathematica expressions into Fortran
code and write a corresponding SPheno.m file

2. Run the EFT model using this SPheno.m

The first step is again steered through the input file of
InitMatching by adding the following information

Matching_SimpleHighScaleSUSY.m
�

38 $ExportToSPheno=True ;
39 $SPhenoEFTmodel="SM" ;
40 $SPhenoMINPAR={
41 {1 , MSUSY} ,
42 {2 , TanBeta} } ;
43 $SPhenoBoundaryHighScale={} ;
44 $SPhenoBoundaryRenScale={} ;
45 $SPhenoTadpoles={mu2} ;
46 $SPhenoMatchingScale={MSUSY} ;
47 $SPhenoRenScale= 1 7 3 . ;
48 $SPhenoMatchingEWSB=Default [OHDM ] ;

The export into SPheno routines is enabled with the first
line. This option is sufficient to obtain Fortran routines for
all matching conditions at the one-loop level. All other infor-
mation must be given to automatically generate a suitable
SPheno.m for the EFT model. Most variables have a 1:1 cor-
respondence to the standard variables (without the $SPheno

prefix) used in SPheno.m files discussed in “Appendix C”.
The new option is $SPhenoMatchingScale which defines
at which scale the matching should be performed.

Running InitMatching with an input file containing
these lines, produces two outputs:

– The file EFTcoupling1_SPhenoEFT_MSSM_Simple

HighScaleSUSY.f90, located in the output directory of
the MSSM model, which contains the matching condi-
tions in Fortran format
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where most of the terms in the sum have been omitted as
they are not important for the discussion.

– a Mathematica file named SPhenoEFT_MSSM_

SimpleHighScaleSUSY.m which is located in the model
directory of the SM. This file may look like

One can see that this file contains the information given
to InitMatching (line 1–12). In addition, the informa-
tion about the matching and the correspondingFortran
routines (using parameter without the Q prefix) have been
automatically added by SARAH (line 14–16 and 21–26).

The second step to generate a numerical code that
includes the computed matching conditions is to run a
new Mathematica kernel and call the SARAH routine
MakeSPheno using the generated SPheno.m, i.e.

This generates all necessary Fortran routines for the
high-scale SUSY implementation. The code is compiled in
the same way as other SARAH generated SPheno modules:
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1. Copy the SARAH output to a new sub-directory of your
SPheno installation4

2. Copy the code to a new SPheno sub-directory

3. Compile the code

4. Run SPheno

For the last step, a Les Houches input file [68] must be pro-
vided which includes the numerical values for MSUSY and
tan β as well as settings for SPheno. SARAH generates also
a template for such a file which is located in

$SARAH_Directory/Output/SM/EWSB/SPheno/

Input_Files/.

The actual behaviour of the compiled SPheno code is
described and compared with the fully numerical approach
in the next section.

3.3.3 Matching at two scales

The analytical matching procedure discussed so far supports
the derivation of effective scalar couplings from a high-scale
theory at a single matching scale. Thus, towers of effective
theories where the different sets of RGEs are needed between
the different matching scales are not a priori possible in this
approach. On the other side, SPheno always provides the
possibility to perform a pole-mass matching between a given
BSM model and the SM as described in detail in Ref. [25].
Thus, the functionality can be used to obtain precise predic-
tion for scenarios like

BSM2
analytical matching−−−−−−−−−−→ BSM1

pole-mass matching−−−−−−−−−−−→ SM

where large scale separations between the two BSM models
as well as the SM exist. This is for instance the case for
split-SUSY where the electroweakinos are in the multi-TeV
range. Thus, such scenarios are already fully covered. An
even more general implementation to allow for an arbitrary
number of matching scales and an RGE running in-between is
only possible with the numerical approach which we discuss
next. A schematic overview about the numerical evaluation

4 SPheno can be downloaded from spheno.hepforge.org.

of a parameter point when using the analytical calculation of
matching conditions is shown in Fig. 5.

3.4 Numerical approach

The second option to generate aSPhenoversion for an effec-
tive model including the matching conditions to a UV theory
is to set up a suitable SPheno.m for the EFT from the very
beginning. This file must include the following information in
addition to the standard information which is usually defined
in the SPheno.m files, see “Appendix C”:

SPheno.m
�

1 MatchingToModel= { $MODELNAME };
2 MatchingScale= { $LIST_OF_PARAMETERS };
3

4 IncludeParticlesInThresholds={
↪→ $LIST_OF_FIELDS };

5

6 AssumptionsMatchingScale={ $LIST };
7 BoundaryMatchingScaleUp={ $LIST };
8 BoundaryMatchingScaleDown={ $LIST };
9

10 ParametersToSolveTadpoleMatchingScale={
↪→ $LIST_OF_PARAMETERS};

Note, this ansatz is not restricted to a single matching
scale. Therefore, all entries are arrays of the dimension of
the number of matching scales. The purpose of the different
entries is

1. MatchingToModel is used to define the UV model(s),
i.e. the model directory in SARAH.

2. IncludeParticlesInThresholdsdefines the list
of particles which are included in the loop calculations.

3. AssumptionsMatchingScale is used to define
simplifying assumptions at the matching scale. A com-
mon choice is to neglect the contributions from EW VEVs
or other small parameters.
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Fig. 5 Schematic procedure of
the numerical evaluation of a
parameter point with SPheno
when using the analytical setup
to calculate matching conditions
and implement them in SPheno

4. BoundaryMatchingScaleUp defines the boundary
conditions to relate the parameters of the UV theory to
the running parameters of the EFT when the RGEs run
from low to high scales.

5. BoundaryMatchingScaleDown defines the bound-
ary conditions to relate the parameters of the UV theory
to the running parameters of the EFT when the RGEs run
from high to low scales.

6. ParametersToSolveTadpoleMatchingScale
defines the parameters that are fixed by the tadpole equa-
tions in the full theory.

Also one-loop matching conditions for fermionic interactions
are available in the numerical approach. The full one-loop
coupling is also indicated by using EFTcoupNLO, i.e.

�

1 EFTcoupNLO[F1.F2.S][PL]
2 EFTcoupNLO[F1.F2.S][PR]

where F1 and F2 are the involved fermions and S is the
involved scalar. Yukawa-like interactions are chiral cou-
plings. Therefore, the main difference to purely scalar

couplings is the second argument containing PL/PR (for
PL ,R = 1

2 (1 ± γ5)) to define which part of the cou-
pling is meant. Moreover, the keyword ShiftCoupNLO
can be used just to obtain the one-loop shift to a coupling,
e.g.

�

1 ShiftCoupNLO[F1.F2.S][PL]
2 ShiftCoupNLO[F1.F2.S][PR]

Several examples for the usage of these options are given
below.

3.4.1 One matching scale without RGE running above

We start again with the simplest example of high-scale SUSY
without any RGE running above the matching scale. Thus,
the produced SPheno code will generate the same results
as the one with the analytical approach in the last section.
In order to set up a high-scale SUSY version with degener-
ate SUSY masses at the matching scale, the corresponding
lines in the SPheno.m located in the model directory of the
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EFT, i.e. Models/HighScaleSUSY/MSSM/SPheno.m, must
read

SPheno.m
�

1 MatchingToModel= {"MSSM"};
2 MatchingScale = {m0};
3

4 UseParameterAsGUTscale = {m0};
5

6 IncludeParticlesInThresholds={
7 {hh,Ah,Hpm,Su,Sd,Se,Sv,Chi,Cha}
8 };
9

10 AssumptionsHighScale={
11 {
12 {vd,epsUV∗Cos[ArcTan[TanBeta]]},
13 {vu,epsUV∗Sin[ArcTan[TanBeta]]}
14 }
15 };
16

17 BoundaryMatchingScaleUp={
18 {
19 {Yu, Sqrt[1+TanBeta^2]/TanBeta∗Yu},
20 {Yd, Sqrt[1+TanBeta^2]∗Yd},
21 {Ye, Sqrt[1+TanBeta^2]∗Ye}
22 }
23 };
24

25 BoundaryMatchingScaleDown={
26 {
27 {\[Lambda], −1/3

↪→ EFTcoupNLO[hh[1].hh[1].hh[1].hh[1]]}
28 }
29 };
30

31 ParametersToSolveTadpoleMatchingScale={
32 {mHd2,mHu2}
33 };

Note that for simple high-scale theories, without addi-
tional light fields, the SPheno.m could also be stored in
the SM model directory as the two models are technically
the same. The newly introduced models are described in
Sect. 3.5.

The definitions are very similar to the analytical approach:
the symbol epsUV again has been used to neglect spe-
cific parameters at the matching scale. An important dif-
ference is that we have not singled out the contributions
from only third generation Yukawas because this would
not give any performance improvement for the numerical
calculation. Note, that it is also not necessary to define
the matching for the Yukawas when running down. More-
over, we have used the option to define the scale where the
RGE running should stop as function of an input parameter
(UseParameterAsGUTscale={m0}).5 Thus, SPheno will
run the RGEs only to that scale and evaluate the SUSY bound-
ary conditions.

The process to generate the SPheno output and to com-
pile the Fortran code is identical to the final steps for the
analytical approach:

1. Run MakeSPheno of SARAH with the new input file

2. Copy the files and compile SPheno

For a SPheno version generated in that way, two addi-
tional flags are available in the Les Houches input file to have
some control over the calculations:

LesHouches.in

5 The naming of this keyword, which was originally introduced for
other purposes, might be misleading because the chosen scale need not
be connected to any GUT theory.
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Thus, these flags can be used to:

201 Turn on/off all one-loop contributions to the matching.
By default, they are turned on. This might be helpful
to check the size and importance of the one-loop cor-
rections.

202 Turn on/off the contributions from the off-diagonal
wave-function renormalisation. By default, they are
turned off. See Sect. 2.2 for more details.

3.4.2 Running above the matching scale

We can modify the last example easily to include also the
running above the matching scale. This might be for instance
necessary if one wants to apply the SUSY boundary condi-
tions at the scale where the gauge couplings do unify but
not at the matching scale. In order to do so, one needs
to remove UseParameterAsGUTscale = {m0} from
the last example and put instead

SPheno.m.GUT
�

4 ConditionGUTscale = g1 == g2 ;

Thus, SPheno stops the running once the condition
g1(Q) = g2(Q) is fulfilled.

In addition, the matching conditions for the Yukawas are
changed to

SPheno.m.GUT

The need for the normalization onto the tree-level rotation
matrix elements ZH is described in the next section. In that
way, we can include the one-loop shifts to all Yukawa cou-
plings which are necessary to have a consistent RGE running

with two-loop SUSY RGEs between the matching and GUT
scale, see also the discussion in Sect. 2.4. Note, we did not
consider any generation indices for the involved fermions,
i.e. the result of ShiftCoupNLO is a 3 × 3 matrix. If one
wants to safe program run-time it is possible to consider the
one-loop shifts to the top Yukawa couplings only.

SPheno.m.GUT

Moreover, the shifts for the gauge couplings are applied
automatically.

3.4.3 Several matching scales

With the above settings one can now implement an arbi-
trary number of matching scales. However, as we have noted
already in Sect. 3.3.3, the pole-mass matching to the SM
is automatically included in the SPheno output. Thus, if a
second matching scale, which is not too far away from the
EW scale, is needed, one can simply rely on that. However, if
more than two matching scales are needed, or if the matching
to the SM should take place at such a high scale where the
pole-mass matching might suffer from numerical problems,6

one can now start to build up towers of EFTs by defining more
matching scales in SPheno.m. For instance, the full input
to define the tower

SM → THDM → THDM + electroweakinos →
MSSM

is given in “Appendix D”. In this example we also make use
of the functionality to calculate new fermionic couplings at
the one-loop level below a matching scale:

6 We elaborate a bit on that issue in Sect. 4.1.2.
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SPheno.m
�

142 BoundaryMatchingScaleDown={
143 ...
144 {g1u,−2∗(EFTcoupNLO[Chi[fB].Chi[FHu0].hh[2]][PL])},
145 {g2u,2∗(EFTcoupNLO[Chi[fW0].Chi[FHu0].hh[2]][PL])},
146 {g1d,2∗(EFTcoupNLO[Chi[fB].Chi[FHd0].hh[1]][PL])},
147 {g2d,−2∗(EFTcoupNLO[Chi[fW0].Chi[FHd0].hh[1]][PL])},
148 ...
149 }

Here, gu,d
1,2 are the split-SUSY couplings between the

Higgs boson and a Higgsino-Gaugino pair, see e.g. Ref. [10].
We include these corrections by considering the one-loop
amplitude between the Higgs boson and a pair of neutralinos.
In this example we have also used another feature: we have
not explicitly defined the generation indices of the involved
neutralinos. The reason for this is: even if the neutralino mass
matrix contains only zero’s under the given approximations
(μ, Mi � MSUSY), it is not clear how the mass eigenstates
are ordered in the numerical run. Therefore, we have used
the name of the gauge eigenstates. By doing that, SPheno
checks during the numerical evaluation which of the mass
eigenstates has the biggest contribution of the given gauge
eigenstate. Of course, if the rotation matrix for the neutrali-
nos is not equivalent to the unit matrix, i.e. if some mixing
appears for instance because of effects of non-vanishing μ,
one needs to define

Thus, the rotation to mass eigenstates, which should take
place just at the weak scale, is divided out.

3.4.4 Summary

A summary of the numerical evaluation of a parameter point
with SPheno which includes several matching scales MMn

and optionally also the running to the GUT scale MG is given
in Fig. 6.

3.5 Included models and input files in SARAH

Several models which make use of the new functionality
have already been implemented and are part of the publicly
available SARAH version. All hierarchies considered for the
MSSM so far are summarised in Fig. 7. Also for the NMSSM
with very heavy particles two models exist: the high-scale
NMSSM, where all SUSY fields are integrated out and a

split-NMSSM, where the singlet and the SUSY fermions are
kept.

The names of the new models that make use of the numer-
ical approach are listed in Table 1. Also for the analytical
approach several input files are now included in SARAH.
Those are summarised in Table 2. Based on these examples
and by the explanations in this section, it is now straight-
forward for the users to implement their own scenarios.

4 Examples, self-consistency checks and comparisons
with other codes

The following section describes realistic examples of practi-
cal applications of the presented framework. We consider
different high-scale SUSY scenarios which were already
studied intensively in literature. In particular comparisons
between predictions for the SM Higgs boson mass derived
with our generic setup against dedicated tools and calcu-
lations are made. In this context, we demonstrate also the
perfect agreement between the two available options to use
SARAH/SPheno for numerical studies. Finally, we also
show that one can easily obtain precise results for other high-
scale extensions for which no other tool existed so far.

4.1 Low-energy limits of the MSSM

In the introduction it was already mentioned that SUSY mod-
els with a SUSY breaking scale well above the electroweak
scale became more popular in the recent years. While in these
scenarios the direct observation of SUSY states is difficult
or even impossible, these models are severely constrained
by the Higgs boson mass measurements. For instance, if the
masses of all superpartners are degenerate, the highest pos-
sible SUSY breaking scale in the MSSM is about 1010 GeV
[10]. For higher scales, the predicted mh always becomes
too large. Since the Higgs boson mass in these models is the
crucial observable, a precise calculation is mandatory and
specialised codes have been developed to get reliable pre-
dictions. We are going to consider three different cases: (i)
split-SUSY in which all SUSY scalars are very heavy, but
electroweakinos might stay moderately light, (ii) high-scale
SUSY in which all SUSY masses and the additional Higgs
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Fig. 6 Schematic procedure of
the numerical evaluation of a
parameter point with SPheno
when using the numerical setup
to calculate matching conditions
and implement them in SPheno

boson masses are large and degenerate, (iii) high-scale SUSY
with a second light(ish) Higgs doublet. In all three cases we
work with the following reduced set of input parameters

m0, Mχ , MA, A0 and tan β, (30)

with

m2
ũ = m2

d̃
= m2

q̃ = m2
l̃

= m2
ẽ ≡ 1m2

0, (31)

M1 = M2 = M3 = μ ≡ Mχ , (32)

Bμ ≡ M2
A

tan β

1 + tan2 β
, (33)

Ti ≡ A0Yi and i = {e, d, u}. (34)

Here, m2
f̃

are the soft masses squared for all chiral super-

fields, MA is the mass of the heavy Higgs doublet, Mi are
the soft gaugino masses, μ is the Higgsino mass term in the
superpotential, and Bμ, Ti are the soft-breaking equivalents
of the μ-term and the Yukawa couplings in the superpoten-
tial.

4.1.1 Split-SUSY: MSSM → SM & electroweakinos &
gluinos

Split-SUSY with very heavy SUSY scalars but significantly
lighter SUSY fermions keeps most of the nice SUSY proper-
ties like gauge coupling unification and provides a viable dark
matter candidate. In this setup, the full MSSM is matched to
the SM extended by additional fermions. The Lagrangian of
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Fig. 7 Hierarchies for the
MSSM so far included in
SARAH. For the NMSSM
versions similar to a and c exist
as well. The zigzag line
represent a large energy gap
which is bridged with two-loop
RGEs. The fields of the different
mass symbols are explained in
Sect. 4
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Table 1 The names of the new models which are part of SARAH 4.14.0. The hierarchy in the last column refers to Fig. 7. For the split-NMSSM
also a light singlet is present, i.e. the hierarchy is similar to (c), but not identical

Model name EFT UV model(s) Hierarchy

HighScaleSUSY/MSSM SM MSSM (a)

HighScaleSUSY/NMSSM SM NMSSM (a)

HighScaleSUSY/MSSMlowMA THDM MSSM (b)

SplitSUSY/MSSM SM+EWkinos MSSM (c)

SplitSUSY/NMSSM SM+singlet+EWkinos SMSSM ∼(c)

SplitSUSY/MSSMlowMA THDM+EWkinos MSSM (d)

SplitSUSY/MSSM_2scale SM MSSM → SM+EWkinos (e)

SplitSUSY/MSSM_3scale SM MSSM → THDM+EWkinos → THDM (f)

Table 2 Input files for the analytical approach which are now delivered with SARAH. The hierarchy in the last column refers to Fig. 7. For the
split-NMSSM also a light singlet is present, i.e. the hierarchy is similar to (c), but not identical

File name EFT UV model Hierarchy

MSSM/Matching_HighScaleSUSY.m SM MSSM (a)

NMSSM/Matching_HighScaleSUSY.m SM NMSSM (a)

MSSM/Matching_SplitSUSY.m SM+EWkinos NMSSM ∼(c)

MSSM/Matching_THDM.m THDM MSSM (b)

SMSSM/Matching_SplitSUSY.m SM+singlet+EWkinos SMSSM (c)

the effective theory reads

LEFT =LSM −
(

1

2
M3g̃

α g̃α + 1

2
M2W̃

aW̃ a

+1

2
MB B̃ B̃ + μH̃ T

u ε H̃d + h.c.

)

−
[

1√
2
H†

(
g̃2uσ

aW̃ a + g̃1u B̃
)
H̃u

+ 1√
2
HT ε

(
−g̃2dσ

aW̃ a + g̃1d B̃
)
H̃d + h.c.

]
,

(35)

where the Yukawa couplings gu,d
1,2 are as in the example of

Sect. 3.4.3, σ a are the pauli matrices and α = 1, ..., 8. In
order to calculate the Higgs boson mass in this model, the
common approach is to (i) decouple the SUSY scalars at the
scale MSUSY and calculateλSM (MSUSY) including important
higher-order corrections, (ii) run the split-SUSY RGEs to the
scale Mχ of the remaining SUSY states and calculate the
shift in λSM (Mχ ), (iii) run the SM RGEs to mt and calculate
mh(mt ) at the two-loop level. The full results for the one-
loop matching conditions at MSUSY and Mχ were given in
Ref. [10]. Also the dominant two-loop corrections to λSM of

123



Eur. Phys. J. C           (2019) 79:163 Page 23 of 40   163 

Fig. 8 Prediction for the SM Higgs boson mass mh in split-SUSY as
function of MSUSY, which is the mass scale of all SUSY scalars, and
for two different values of Mχ , which is the mass scale of all SUSY
fermions. In addition, we used here tan β = 3. The blue and purple lines
show the results of SPheno using the analytical or numerical approach
to obtain the matching conditions at MSUSY, while the green line cor-

responds to the results of SusyHD. For SPheno and Mχ = 1 TeV, we
show also the result when turning on the two-loop corrections at the
low scale. The first row shows the calculated values for mh , while the
second give the differences between the calculations compared to the
numerical approach

order O(α2
t αs) have been included in this reference. These

results were implemented into the code SusyHD [23] and
also FlexibleSUSY [69,70] uses the matching conditions
from literature.

We have compared the analytical expressions of Ref. [10]
for the one-loop thresholds with the results of SARAH and
found perfect agreement. Thus, we can immediately go to
the discussion of the comparison of the numerical results of
SPheno andSusyHD. Even if the expressions for the thresh-
olds agree, there are many other ingredients which enter the
Higgs mass prediction. Most importantly, the determination
of the top Yukawa coupling which affects all comparisons
shown here. Also higher-order corrections for high-scale
SUSY scenarios are implemented to some extent in other
codes which are not (yet) available in our generic setup. The
corresponding model in SARAH which we have set up for
this scenario is

SplitSUSY/MSSM

We show in Fig. 8 the calculated Higgs boson mass by
SusyHD7 and SPheno as function of MSUSY for two dif-

7 During this comparison we found a bug in the two-loop RGEs of
λSM for split-SUSY as implemented in SusyHD. The contribution

ferent choices of Mχ . First of all, one can see that the over-
all agreement is very good between all calculations: for the
two calculations implemented in SARAH/SPheno we find
agreement up to the numerical precision, while the biggest
difference between SPheno and SusyHD is well below one
GeV for all considered values of MSUSY.

For the case of electroweakino masses of 1 TeV we show
also the SPheno result when using a two-loop fixed-order
calculation in the EFT. We see, in agreement with a previ-
ous study in Ref. [64], that the two-loop contributions of the
additional fermions have only a mild effect on the SM-like
Higgs boson mass.

4.1.2 High-scale SUSY: MSSM → SM

An even more extreme setup than split-SUSY is high-scale
SUSY in which all SUSY partners are very heavy. Thus, the
effective model is just the SM, i.e.

Footnote 7 continued
21
2 g̃2

2d g̃2u(g̃2
1d + g̃2

1u) misses one power of g̃2u . We fixed that and in all
following results the patched version of SusyHD is used.
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Fig. 9 Comparison between SPheno and SusyHD for high-scale
SUSY as function of the SUSY scale MSUSY = m0 = Mχ = MA.
Here, we used tan β = 10 and two different values of A0. For SPheno
we give the results using the analytical and numerical approach to per-
form the matching at the SUSY scale. Also the results of a fixed-order

calculation and using a pole-mass matching are included. For SusyHD
the results with and without the two-loop corrections in the matching
of λSM are depicted. The first row shows the calculated Higgs boson
mass of all codes, while the second row gives the differences between
the different calculations w.r.t. the numerical approach

LEFT = LSM, (36)

and the only visible impact of SUSY is the prediction of λSM

at the matching scale MSUSY � Mχ � MA. The matching
conditions at the SUSY scale are just the combination of the
two matching conditions for split-SUSY applied at a single
matching. Thus, it is obvious that also for this case a full
agreement between our analytical results and those of Ref.
[10] exists. However, Ref. [10] includes also the dominant
two-loop corrections in the case of high-scale SUSY which
also entered the code SusyHD. Therefore, it’s worth to dis-
cuss also the numerical differences between SPheno and
SusyHD for the case of high-scale SUSY. The model imple-
menation in SARAH is called

HighScaleSUSY/MSSM

The results are summarised in Fig. 9. In addition to the com-
parison to SusyHD we also compare the results to two other
calculations: a standard fixed-order calculation as well as an
EFT calculation based on the pole-mass matching [25]. In the
pole-mass matching, the quartic coupling λSM is calculated
from the condition

m2,pole SM
h (MSUSY) ≡ m2,pole MSSM

h (MSUSY) (37)

which can be translated into

λSM (MSUSY) = 1

v2(MSUSY)

(
m2,pole MSSM

h (MSUSY)

−ΠSM
h (MSUSY)

)
, (38)

where ΠSM
h are the loop corrections to mh known from the

SM. The pole-mass matching has the advantage that also
terms v

MSUSY
are included and that only two-point functions

need to be calculated instead of four-point functions, see
Ref. [24] for more details. On the other side, this approach
has also some drawbacks. It is mainly restricted to the SM
as EFT, but it is not straightforward to be used in models
with several light scalars. Also a consistent matching at the
two-loop level needs some fiddling with the running param-
eters which enter the different parts of Eq. (38), see Ref.
[70]. While SPheno by default used MS parameters to cal-
culate ΠSM

h and DR SUSY parameters in the calculation

of m2,pole MSSM
h (MSUSY), we also give the results for using

YMS
t in both calculations. This is called ‘modified pole-mass
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matching’ in the left plot of Fig. 9. The difference between
both results is a two-loop effect and could be taken as esti-
mate of the remaining uncertainty in the one-loop pole-mass
matching.

Moreover, we find that the pole-mass matching becomes
also numerically unstable – at least in SPheno– once
MSUSY � v is used because the loop functions used for
the pole-mass calculations are not optimised for these cases:
we see in Fig. 9 that the pole-mass matching breaks down
at MSUSY � 5 · 105 GeV. Nevertheless, we find that the
agreement between the pole-mass matching and the direct
matching procedure presented here is very good for SUSY
scales up to 100 TeV. One finds also that the fixed-order cal-
culation agrees perfectly with the pole-mass matching for
MSUSY below 1 TeV. Of course, for larger SUSY scales, the
discrepancy between the fixed-order calculation and all EFT
calculations grows very rapidly.

We come back to the comparison with SusyHD: we see
that the agreement between SPheno and SusyHD is also
very good and the differences are always of the level of 1 GeV
or below. The 1 GeV differences appear only for the choice
A0 = 2MSUSY and MSUSY around the TeV scale. In that
case, the two-loop corrections missing inSPheno play some
role. However, for larger MSUSY or smaller trilinear terms,
these two-loop corrections cause only a moderate shift – or
become even completely negligible. Thus, we think that it is
not a substantial drawback of our setup that ‘only’ one-loop
corrections are included so far.

4.1.3 High-scale SUSY with intermediate MA : MSSM →
THDM

In the last example we have assumed that all BSM particles
are very heavy and degenerate. An important deviation of
this ansatz is the possibility that the second Higgs doublet
remains light, i.e. only fields with negative R-parity are very
heavy. In this case, the low-energy theory of the MSSM is a
Two-Higgs-Doublet-Model type-II.8 The Lagrangian of the
EFT is

−LEFT =m2
1|H1|2 + m2

2|H2|2 + λ1|H1|4 + λ2|H2|4
+ λ3|H1|2|H2|2 + λ4|H†

2 H1|2

+
(
m12H

†
1 H2 + 1

2
λ5(H

†
2 H1)

2

+λ6|H1|2H†
1 H2 + λ7|H2|2H†

1 H2 + c.c.
)

8 Strictly speaking, one obtains a THDM type-III when integrating out
all SUSY fields in the MSSM because the ‘wrong’ Yukawa couplings
∼ H∗

d q̄u are loop-induced. However, this becomes mainly important for
flavour violating observables and has no visible impact on our discussion
of the Higgs boson mass prediction here.

+
(
Yd H

†
1 d̄q + YeH

†
1 ēl − YuH2ūq + h.c.

)
.

(39)

One can make the following association between fields at the
SUSY scale to calculate the matching conditions

H1 ≡ −iσ2H
∗
d and H2 ≡ Hu . (40)

However, this choice is not unique as there is no preferred
basis of Higgs doublets in a general THDM, i.e. one could
also interchange H1 and H2 or take any linear combination
of them. With the common choice made in Eq. (40), one
can simultaneously apply a rotation into the mass basis on
(H1, H2) and (Hu,−iσ2H∗

d ) so that the tree-level mixing
angle tan β of the MSSM coincides with the effective THDM.

The dominant threshold corrections to λ1–λ7 involving
third generation Yukawa couplings are available in litera-
ture [29]. We have double checked the analytical expressions
derived by SARAH and found full agreement.

The importance of the proper matching to the THDM for
the case MA � MSUSY has been pointed out in Ref. [36].
It was found that in particular for small tan β very large dif-
ference to a one-scale matching appear. In order to demon-
strate that, we compare in Fig. 10 the Higgs boson mass
prediction using the proper matching of the MSSM to the
THDM against the simplified ansatz of decoupling the sec-
ond Higgs doublet together with all other BSM states at
MSUSY. First of all, one can check that the results for the
matching to the SM change only moderately when using the
actual value of MA in the one-scale matching compared to
the fully degenerate case MA = m0 = MSUSY. This only
causes a shift of at most ∼1 GeV for tan β = 1. On the
other side, there are big difference showing up when per-
forming the matching to the THDM. For values of tan β

close to 1, the discrepancy can be as large as 10 GeV, while
it rapidly decreases with increasing tan β. For tan β = 10,
the differences between both matching approaches are about
1 GeV.

Since we have demonstrated the importance of performing
the matching to the THDM properly for the case of a light
second Higgs doublet, it is clear that codes were developed
to include these effects. The first tool in this direction was
MhEFT which uses a purely EFT ansatz [36]. In a recent
update of FeynHiggs a hybrid ansatz combining the fixed-
order calculation with higher-order terms was implemented
[40].The overall agreement between both codes turned out
to be good once a careful translation between the parameters
in both renormalisation schemes was done. Since MhEFT is
much closer to the ansatz of SARAH/SPheno we are going
to compare our results with this tool.9 For this purpose, we
have set up the model

9 For simplicity, we modified MhEFT to take At as input instead of
XMS
t .
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Fig. 10 The Higgs boson mass prediction as function of tan β for a
high-scale SUSY scenario with low MA and two different values of A0.
The blue lines show the results for a proper matching of the MSSM to
the THDM-II. The green lines correspond to the matching of the MSSM

to the SM where either all scalars, including the additional Higgs states,
are assumed to be degenerate, or in which the actual value of MA has
been used. The figure on the right show the difference between the
matching to the THDM and to the SM

Fig. 11 Comparison between MhEFT and SPheno for a variation of tan β (left) or MA (right). All SUSY masses are assumed to be degenerate
and identical to MSUSY, and the results for two different values of A0 are shown

HighScaleSUSY/MSSMlowMA

in SARAH. We show in Fig. 11 the results of MhEFT and
SPheno when varying tan β or MA for a fixed SUSY scale
of 100 TeV. The agreement between both codes is always
good. The maximal difference for comparable calculations

is about 0.5 GeV and can be even smaller for MA below
500 GeV and arbitrary values of tan β. The differences are
due to the three-loop RGEs which are included in MhEFT in
the running between mt and MA while SPheno uses always
two-loop RGEs. This explains the flattening of the difference
as the top quark Yukawa coupling runs fastest near the weak
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scale. One can also see that the impact of the additional two-
loop corrections implemented in MhEFT is very moderate.
Thus the main source of the difference is the determination of
the running top Yukawa coupling. In contrast, the additional
one-loop corrections due to gauginos, which were presented
very recently also in Ref. [40], can be easily included in
SPheno using the numerical matching interface. For the
considered choice of parameters these have numerically a
bigger effect than the two-loop corrections and cause a shift
of 1–1.5 GeV.

4.2 High-scale NMSSM

Up to now we have only discussed examples of models
involving very heavy BSM particles which could already be
studied with public tools like SusyHD, MhEFT,
FlexibleSUSY or FeynHiggs. These are just different
low-energy limits of the MSSM. However, our framework is
not restricted to this case and in principle any SUSY or non-
SUSY model could be considered as high-scale theory. We
show that crucial differences compared to the MSSM show
already up in the case of the NMSSM. The NMSSM involves
an additional gauge singlet superfield Ŝ which leads to the
following superpotential after imposing a Z3 symmetry to
forbid all dimensionful parameters

WNMSSM = λS Ŝ Ĥd Ĥu + 1

3
κ Ŝ3 + WY , (41)

where WY represents the terms involving Yukawa couplings
that are identical to the MSSM. The NMSSM-specific soft-
SUSY breaking parameters are

− LSB, NMSSM = m2
S|S|2 + (TλSHd Hu + 1

3
Tκ S

3 + c.c.).

(42)

The scalar singlet S can receive a VEV even without EWSB

〈S〉 = 1√
2
vS (43)

which causes an effective Higgsino mass term

μeff = 1√
2
λSvS . (44)

We can now study what the impact of the additional gauge
singlet in a high-scale SUSY scenario is. For this purpose,
we impose the following relation among the parameters

κ = 1

2
λS (45)

μeff = m0 (46)

Tκ = −1

3
λSm0 (47)

Tλ = 1

2
λSm0 (sin(2β) − 1) . (48)

Fig. 12 The Higgs boson mass in a high-scale SUSY scenario based
on the NMSSM with fixed tan β = 4. All SUSY fields including the
singlets are (nearly) degenerate with a mass of MSUSY. The given values
of λS determine the coupling strength of the gauge singlet and the two
Higgs doublets in the NMSSM at the matching scale

This leads to a nearly degenerate spectrum of SUSY fields
with masses of m0 apart from one CP-even singlet which has

a mass of
√

2
3m0. Thus, the EFT model is again the SM, i.e.

LEFT = LSM (49)

The full high-scale model has three free parameters

m0, λS, tan β. (50)

The MSSM limit is obtained for λS → 0. We have imple-
mented this model in SARAH as

HighScaleSUSY/NMSSM

The predicted mass for the SM-like Higgs boson as function
of the SUSY scale MSUSY is shown in Fig. 12 for different
values of λS . Thus, one can see that there are significant shifts
in the Higgs boson mass already for values of λS of 0.2 or
0.3. In general, one finds that the Higgs boson mass decreases
with increasing λS . The main reason for this are tree-level

contributions proportional to
T 2
λ

m2
S

� 1
4λ2

S which dominate for

small tan β over the D-term contributions. Thus, the conclu-
sion that the maximal possible SUSY scale in agreement with
mh is about 1010 GeV only holds for the MSSM, while in
the NMSSM one can push MSUSY towards the Planck scale
without being in conflict with Higgs boson mass measure-
ments.

Of course, one could now start to consider also other low-
energy limits of the NMSSM. However, this is beyond the
scope of this paper here and interesting applications are given
elsewhere [71].
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5 Summary

We have presented an extension of theMathematica pack-
age SARAH which derives the one-loop matching conditions
for effective scalar couplings based on a UV theory. Two
different approaches exists, which are based on either an
analytical or fully numerical calculation. The full agreement
between both calculations and analytical results available in
literature has been pointed out. Furthermore, good agreement
with specialised codes to study Split- or High-scale SUSY
like SusyHD or MhEFT was shown. Since our approach is
completely general, it can be used to study UV completions of
a large variety of BSM models with and without an extended
Higgs sector.
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A: Generic diagrams

In this appendix we provide a complete list of all possible
one-loop diagrams with 2, 3 and 4 external scalars and inter-
nal fermions or scalars. The results were obtained in the limit
of vanishing external momenta using the computer programs
FeynArts and FormCalc [72,73].

We distinguish between topologies, where neither the sta-
tistical nature (spin=0,1,1/2) nor the mass (light or heavy i.e.
zero or non-zero) of internal fields is specified and generic
diagrams, where the spin of all fields is specified but not their
mass hierarchies. This is still a model-independent graph
but gives the possibility to write down a model-independent
generic amplitude. Couplings and masses appearing in the
expression of a generic amplitude are seen as generic cou-
plings that do not have any relation to parameters used in
other generic amplitudes.

As already mentioned in Sect. 3, SARAH’s analytical
matching interface does not only compute the full one-loop
contribution but is also able to compute a subset of dia-
grams based on e.g. a choice of topologies. For this rea-

son, a notation with a successive structure is introduced. A
topology is described by a string consisting of maximum
four characters. It starts with the specification of the dia-
gram type which can be tree-level (T), self-energy (S), WFR
(W) or ordinary one-loop diagram (blank) followed by a let-
ter specifying the type of the involved loop integral defined
in Appendix B. In the next digit, the number of external
fields is specified. If the diagram contains an internal sin-
gle propagator additional to a loop (2) or a loop only (1)
is denoted by the next digit (blank means that no diagrams
with additional internal lines exist). The last digit is a count-
ing index (blank means only one diagram of that type exists).
An example explanation of the notation is given in Fig. 13.
The Topologies options of the matching routines can either
select certain topologies, like {B[4][2][1],B[4][2][2]},
or successively select topology groups, like {B[4][2]} or
just {B[4]}. All possible topologies and groups are stored in
the list TopoNotation. In the following, we list the analytical
expressions for all generic amplitudes as well as the topolo-
gies they belong to in the format used in theSARAHmatching
routines.

A.1: Tree-level contributions

A.1.1: Quartic couplings

There are two tree-level topologies with four external scalars.
The first one is a local quartic coupling which could for
example be given by supersymmetric D-terms and/or F-terms
while the second one has one internal propagator, necessarily
heavy and of bosonic nature. Thus, fermions can only enter
one-loop and higher-order corrections.

(A.1)

(A.2)
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(a) (b)

Fig. 13 Notation on topologies appearing in generic one-loop diagrams. The example expression explained in a corresponds for instance to the
diagram shown in b

A.1.2: Cubic couplings

Since there is only one three-point topology, the matching of
trilinear couplings at tree level is trivial.

(A.3)

A.1.3: Bilinear parameters

The two-point function is necessary for the matching of scalar
sectors that involve non-Higgs scalar fields i.e. scalars that
do not develop a VEV. In this case the scalar masses and cou-
plings are independent parameters and have to be matched
separately.

(A.4)

A.2: One-loop contributions

At the one-loop order, we distinguish between irreducible
diagrams and reducible diagrams which contain an additional
internal propagator line.

A.2.1: Irreducible diagrams

Quartic couplings Since we consider renormalisable theo-
ries, fermions can only enter the one-loop corrections to quar-
tic couplings in box diagrams (topology D, note that D[4] is
not a valid topology as it is a reserved Mathematica sym-
bol). The generic diagrams and amplitudes are
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(A.5)

(A.6)

(A.7)

(A.8)

with

M4
F =

(
cR1 c

L
2 c

R
3 c

L
4 + cL1 c

R
2 c

L
3 c

R
4

)
B0(m

2
3,m

2
4)

+
[
(cR1 c

L
2 c

R
3 c

L
4 + cL1 c

R
2 c

L
3 c

R
4 )(m2

1 + m2
2)

+cL4 (cL1 m1(c
L
2 c

R
3 m2 + cR2 c

R
3 m3 + cR2 c

L
3 m4)

+cR1 (cL2 c
L
3 m3m4 + cR2 m2(c

R
3 m3 + cL3 m4)))

+cR4 (cR1 m1(c
R
2 c

L
3 m2 + cL2 c

L
3 m3 + cL2 c

R
3 m4)

+cL1 (cR2 c
R
3 m3m4 + cL2 m2(c

L
3 m3 + cR3 m4)))

]

C0(m
2
2,m

2
3,m

2
4) + +m1

[
cL1 (cL2 m2(c

L
3 m3(c

R
4 m1 + cL4 m4)

+cR3 m1(c
L
4 m1 + cR4 m4)) + cR2 m1(c

L
3 m1(c

R
4 m1 + cL4 m4)

+cR3 m3(c
L
4 m1 + cR4 m4))) + cR1 (cL2 m1(c

L
3 m3(c

R
4 m1

+cL4 m4) + cR3 m1(c
L
4 m1 + cR4 m4)) + cR2 m2(c

L
3 m1

(cR4 m1 + cL4 m4) + cR3 m3(c
L
4 m1 + cR4 m4)))

]

D0(m
2
1,m

2
2,m

2
3,m

2
4, (A.9)

where cR,L
i are the left- and right-handed fermion couplings

corresponding to the vertices ci in (A.8).

Cubic couplings The effective trilinear couplings are

(A.10)
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(A.11)

(A.12)

with

MF
3 = (−cR1 (cL2 c

R
3 m1 + cR2 c

L
3 m2 + cL2 c

L
3 m3)

− cL1 (cR2 c
L
3 m1 + cL2 c

R
3 m2 + cR2 c

R
3 m3))B0(m

2
2,m

2
3)

+
[

− m1(c
L
1 (cL2 m2(c

R
3 m1 + cL3 m3)

+ cR2 m1(c
L
3 m1 + cR3 m3)) + cR1 (cL2 m1(c

R
3 m1

+ cL3 m3) + cR2 m2(c
L
3 m1 + cR3 m3)))

]

C0(m
2
1,m

2
2,m

2
3). (A.13)

Bilinear parameters Generic two-point amplitudes are com-
puted with

(A.14)

(A.15)

(A.16)

with

MF
2 = 1

2

(
cR1 c

L
2 + cL1 c

R
2

) (
A0(m

2
1) + A0(m

2
2)

+
(
m2

1 + m2
2

)
B0(m

2
1,m

2
2)

)

+ m1m2

(
cL1 c

L
2 + cR1 c

R
2

)
B0(m

2
1,m

2
2). (A.17)

123



  163 Page 32 of 40 Eur. Phys. J. C           (2019) 79:163 

A.2.2: Reducible diagrams

The reducible diagrams are selected with a “2" in the second
digit of the topology. Diagrams are skipped if the additional
internal propagators are not heavy.

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)
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(A.24)

with

MF
3′ =−2c4

m2
4

[
(−cR1 (cL2 c

R
3 m1 + cR2 c

L
3 m2 + cL2 c

L
3 m3)

− cL1 (cR2 c
L
3 m1 + cL2 c

R
3 m2 + cR2 c

R
3 m3))B0(m

2
2,m

2
3)

+ [ − m1
(
cL1 (cL2 m2(c

R
3 m1 + cL3 m3)

+ cR2 m1(c
L
3 m1 + cR3 m3))

+ cR1 (cL2 m1(c
R
3 m1 + cL3 m3)

+ cR2 m2(c
L
3 m1 + cR3 m3))

)]
C0(m

2
1,m

2
2,m

2
3)

]

(A.25)

and

MSF
4 = − 2c3c4

m2
3m

2
4

[
m1m2(c

L
1 c

L
2 + cR1 c

R
2 )B0(m

2
1,m

2
2)

+
(

1

2
(cR1 c

L
2 + cL1 c

R
2 )(A0(m

2
1) + A0(m

2
2)

+(m2
1 + m2

2)B0(m
2
1,m

2
2))

) ]
. (A.26)

A.2.3: Wave-function corrections

Contributions on external legs are divided into diagonal and
off-diagonal WFR topologies named DiagonalWFRs and
OffdiagonalWFRs. They consist of a Z-factor times the tree-
level amplitude times a combinatorial factor. In the following,
we give the analytical expressions for the Z factors.

(A.27)

(A.28)

(A.29)

with

Zdia
F =1

2
(cR1 c

L
2 + cL1 c

R
2 )

(
(−m2

1 − m2
2)Ḃ0(m

2
1,m

2
2) + B0(m

2
1,m

2
2)

)

− m1m2(c
L
1 c

L
2 + cR1 c

R
2 )Ḃ0(m

2
1,m

2
2) (A.30)

Zoff
F = − 1

m2
i − m2

j

(1

2
(cR1 c

L
2 + cL1 c

R
2 )

(
A0(m

2
1) + A0(m

2
2) + (m2

1 + m2
2)B0(m

2
1,m

2
2)

)

+ m1m2(c
L
1 c

L
2 + cR1 c

R
2 )B0(m

2
1,m

2
2)

)
, (A.31)

where the dotted notation is introduced in “Appendix B”.

123



  163 Page 34 of 40 Eur. Phys. J. C           (2019) 79:163 

B: IR-safe loop-functions

In this appendix we give analytical expressions for all loop
functions used in the matching routines. In particular, we
list the limits for all possible combinations of vanishing and
equal masses as they are needed to provide numerical stability
of the matching routines.

The common prefactor

κD = (2πQ)4−D

iπ2 (B.32)

and the integrand In with vanishing external momenta

In =
n∏

i=1

(q2 − m2
i )

−1 (B.33)

simplify the definitions of the loop integrals

A0(m
2) = κD

∫
dDq I1,

B0(m
2
1,m

2
2) = κD

∫
dDq I2,

C0(m
2
1,m

2
2,m

2
3) = κD

∫
dDq I3,

D0(m
2
1,m

2
2,m

2
3,m

2
4) = κD

∫
dDq I4.

(B.34)

The integrand In is symmetric w.r.t to the masses and thus
also the loop functions are symmetric w.r.t. their arguments.
One can reduce all integrals to the A0 integral by using partial
fractioning and integration by parts. We define the following
abbreviations for finite logarithmic terms

ti ≡ log
m2

i

Q2 , ti j ≡ log
m2

i

m2
j

, (B.35)

as well as for diverging terms

Δt ≡ lim
ε2
UV →0

log
ε2
UV

Q2 ,

Δε ≡ lim
ε2
UV →0

1

−ε2
UV

.

(B.36)

The IR-safe loop functions implemented in SARAH are
obtained by

X = lim
Δt→0

lim
Δε→0

X, X = A0, B0,C0, D0, B1, (B.37)

as these divergences would cancel in the matching condi-
tions.

B.1: One- and two-point integrals

The tadpole integral A0 is given by

A0(m
2) = m2(1 − t), (B.38)

A0(0) = 0, (B.39)

whereas the two-point integral B0 is

B0(m
2
1,m

2
2) = A0(m2

1) − A0(m2
2)

m2
1 − m2

2

(B.40)

= 1 − t2 − m2
1

m2
1 − m2

2

t12, (B.41)

B0(m
2, 0) = 1 − t, (B.42)

B0(m
2,m2) = −t, (B.43)

B0(0, 0) = −Δt . (B.44)

In addition, the tensor integral

B1(m
2
1,m

2
2) = 1

p2 p
μBμ

= κD

p2

∫
dDq pq

[(
q2 − m2

1

)
(q + p)2 − m2

2

]−1
(B.45)

in the limit of vanishing external momentum reads

B1(m
2
1,m

2
2) = − 1

4(m2
1 − m2

2)

[
m2

1 + m2
2 − 2m2

1B0(m
2
1, 0)

+(4m2
1 − 2m2

2)B0(m
2
1,m

2
2)

]
, (B.46)

B1(m
2, 0) = −1

4

(
1 + 2B0(m

2
1, 0)

)
, (B.47)

B1(m
2,m2) = 1

2
t, (B.48)

B1(0, 0) = 1

2
Δt . (B.49)

B.2: Triangle integrals

The three-point function can be simplified with the defini-
tions

q1 ≡ m2
2

m2
1

, q2 ≡ m2
3

m2
1

, (B.50)
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which yields

C0(m
2
1,m

2
2,m

2
3) = B0(m2

1,m
2
3) − B0(m2

2,m
2
3)

m2
1 − m2

2

(B.51)

= − q1 t21 (q2 − 1) + q2 t32 (1 − q1)

m2
1 (−1 + q1)(q1 − q2)(−1 + q2)

,

(B.52)

C0(m
2
1,m

2
1,m

2
2) = m2

2 − m2
1 + m2

2 t12
(
m2

1 − m2
2

)2 , (B.53)

C0(m
2,m2,m2) = − 1

2m2 , (B.54)

C0(m
2
1,m

2
2, 0) = − t12

m2
1 − m2

2

, (B.55)

C0(m
2,m2, 0) = − 1

m2 , (B.56)

C0(m
2, 0, 0) = 1

m2 − t

m2 + Δt

m2 , (B.57)

C0(0, 0, 0) = 1

2
Δε. (B.58)

B.3: Box integrals

Analogously we compute the four-point integral in all mass
combinations,

D0(m
2
1,m

2
2,m

2
3,m

2
4)

= 1

m2
1 − m2

2

(
C0(m

2
1,m

2
3,m

2
4) − C0(m

2
2,m

2
3,m

2
4)

)
,

(B.59)

D0(m
2
1,m

2
1,m

2
2,m

2
3)

= 1

m2
2 − m2

3

(
−m2

1 + m2
2 + m2

2 t12
(
m2

2 − m2
1

)2 + m2
1 − m2

3 − m2
3 t13

(
m2

3 − m2
1

)2

)

,

(B.60)

D0(m
2
1,m

2
1,m

2
2,m

2
2)

= 1
(
m2

1 − m2
2

)3

(−2m2
1 + 2m2

2 + (m2
1 + m2

2) t12
)
,

(B.61)

D0(m
2
1,m

2
1,m

2
1,m

2
2) = −m2

1 + m2
2 + 2m2

1 m
2
2 t12

2m2
1

(
m2

2 − m2
1

)3 , (B.62)

D0(m
2
1,m

2
1,m

2
1,m

2
1) = 1

6m4
1,

(B.63)

and with at least one vanishing mass,

D0(m
2
1,m

2
2,m

2
3, 0) = (m2

2 − m2
3) t31 + (m2

3 − m2
1) t32

(m2
1 − m2

2)(m
2
1 − m2

3)(m
2
2 − m2

3)
,

(B.64)

D0(m
2
1,m

2
2,m

2
2, 0) = m2

1 − m2
2 + m2

2 t21

m2
2

(
m2

1 − m2
2

) , (B.65)

D0(m
2,m2,m2, 0) = 1

2m4 , (B.66)

D0(m
2
1,m

2
2, 0, 0) = t2

m2
1m

2
2

+ t21

m2
1(m

2
1 − m2

2)
− Δt

m2
1m

2
2

,

(B.67)

D0(m
2,m2, 0, 0) = − 2

m4 + t

m4 − Δt

m4 , (B.68)

D0(m
2, 0, 0, 0) = 1

m4 − t

m4 + Δt

m4 − Δε

2m2 , (B.69)

D0(0, 0, 0, 0) = 1

6
Δ2

ε . (B.70)

B.4: Derivatives of the loop-functions

Ḃ0(m
2
1,m

2
2) = κD∂2

p

∫
dDq

(
(q + p)2 − m2

2

)−1 (
q2 − m2

1

)−1
∣
∣∣∣
p2→0

(B.71)

= 1

2
(
m2

1 − m2
2

)2

(

m2
1 + m2

2 + 2m2
1m

2
2t21

m2
1 − m2

2

)

.

(B.72)

The different mass combinations read

Ḃ0(m
2,m2) = 1

6m2 , (B.73)

Ḃ0(m
2, 0) = 1

2m2 , (B.74)

Ḃ0(0, 0) = −1

6
Δε, (B.75)

and analogously for the tensor integral

Ḃ1(m
2
1,m

2
2)

=
−2m6

1 − 3m4
1m

2
2

(
2 log

m2
2

m2
1

+ 1

)
+ 6m2

1m
4
2 − m6

2

6(m2
1 − m2

2)
4

,

(B.76)

Ḃ1(m
2
1,m

2
1) = − 1

12m2
1

, (B.77)

Ḃ1(0,m2
2) = 1

6m2
2

, (B.78)

Ḃ1(m
2
1, 0) = 1

3m2
1

, (B.79)

Ḃ1(0, 0) = Δε

12
. (B.80)
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C: SPheno.m for the MSSM

A version of the SPheno.m file to set up the MSSM with
CMSSM boundary conditions is

SPheno.m
�

1 (∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)
2 (∗ General information ∗)
3 (∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)
4

5 (∗ Matching conditions to the SM ∗)
6 DEFINITION[MatchingConditions]=Default[THDMII];
7

8 (∗ List for two− and three−body decays ∗)
9

10 ListDecayParticles = Automatic;
11 ListDecayParticles3B = Automatic;
12

13

14 (∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)
15 (∗ Information for High−Scale input ∗)
16 (∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗)
17

18 (∗ CMSSM input parameters ∗)
19 MINPAR = {{1,m0},
20 {2,m12},
21 {3,TanBeta},
22 {4,SignumMu},
23 {5,Azero}};
24

25 ParametersToSolveTadpoles = {\[Mu],B[\[Mu]]};
26

27 (∗ Choice for the renormalisation scale ∗)
28 RenormalizationScaleFirstGuess = m0^2 + 4 m12^2;
29 RenormalizationScale = Su[1]∗Su[6];
30

31 (∗ Condition to determine the GUT scale ∗)
32 ConditionGUTscale = g1 == g2;
33

34 (∗ GUT conditions ∗)
35 BoundaryHighScale={
36 {T[Ye], Azero∗Ye},
37 {T[Yd], Azero∗Yd},
38 {T[Yu], Azero∗Yu},
39 {mq2, DIAGONAL m0^2},
40 {ml2, DIAGONAL m0^2},
41 {md2, DIAGONAL m0^2},
42 {mu2, DIAGONAL m0^2},
43 {me2, DIAGONAL m0^2},
44 {mHd2, m0^2},
45 {mHu2, m0^2},
46 {MassB, m12},
47 {MassWB,m12},
48 {MassG,m12}
49 };

The content of the SPheno specific input file for SARAH
is the following:

1. Input parameter (MINPAR, EXTPAR): a list of parame-
ters which should be read by SPheno from the block
MINPAR or EXTPAR in a LesHouches file. Note that
there are no hard coded entries for MINPAR or EXTPAR.
This makes it necessary to define these blocks also for
models with already existing SLHA conventions. How-
ever, this also provides more freedom in varying the
model and the free parameters.

2. RealParameters: By default, all parameters defined
in MINPAR or EXTPAR are assumed to be complex, i.e.
it is possible to use also the block IMMINPAR to define
the imaginary part. However, some Fortran functions like
sin cannot be used with complex numbers, therefore is
is necessary to define parameters like tan β explicitly as
real.

3. ParametersToSolveTadpoles: The set of param-
eters that are fixed by the tadpole equations.

4. RenormalizationScaleFirstGuess: For the
first run of the RGEs, before any mass has been calculated
by SPheno, one can define an approximate renormali-
sation scale.

5. RenormalizationScale: For all further runs,
another renormalisation scale can be given which can
be for instance the function of the calculated masses or
running parameters.

6. A condition can be defined to obtain a dynamically
adjusted GUT scale. Here, we defined that the GUT scale
is the scale at which the EW gauge couplings are identi-
cal.

7. Boundary Condition: It is possible to define boundary
conditions at different scales:

– Electroweak scale: BoundaryEWSBScale
– Renormalisation or SUSY scale: BoundarySUSY

Scale/BoundaryRenScale
– GUT scale: BoundaryHighScale

8. Decays: One can tell SARAH that it should make use of
the default conventions to write code to calculate two-
and three-body decays with SPheno. This includes the
decays for all BSM and Higgs states, but not for SM
fermions and vector bosons.

123
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SPheno.m
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