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ABSTRACT

Mutual information is a measure for both linear and non-linear

associations between variables. There exist several estimators of

mutual information for static data. In the dynamic case, one needs

to apply these estimators to samples of points from data streams.

The sampling should be such that more detailed information on the

recent past is available. We formulate a list of natural requirements

an estimator of mutual information on data streams should fulfill,

and we propose two approaches which do meet all of them. Finally,

we compare our algorithms to an existing method both theoretically

and experimentally. Our findings include that our approaches are

faster and have lower bias and better memory complexity.
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1 INTRODUCTION

Capturing associations in data is an important task in virtually

any domain. Nowadays, data often comes in the form of streams.

An example is when measurements take place continuously. An

approach to estimate the dependence between a pair of streams

should meet all of the following requirements:

Generality – Measure. Uses a general (non-parametric) associa-

tion measure.

Efficiency. Fast and memory efficient.

Generality – Queries. Supports many query types.

High Quality. Returns good estimates of associations.

We now discuss these requirements one by one.

Generality – Measure. Various dependence measures exist, for

example, Pearson and Spearman correlation coefficients, Kendall’s

τ and mutual information (MI). Most of them rely on parametric

assumptions. For example, the first three measures only quantify

monotonic dependencies. MI in turn is a very general measure, as it

captures both linear and non-linear as well as monotonic and non-

monotonic relationships. For two continuous random variables X ,

Y with joint probability density function (pdf) f (x ,y) and marginal

pdfs f (x) and f (y), it is defined as:

I (X ;Y ) =

∬
f (x ,y) log

(
f (x ,y)

f (x)f (y)

)
dxdy

Efficiency. Various methods have been developed to estimate MI

from data samples, see for example [5, 14, 16]. These methods are

for static samples, and their extension to streams is not straightfor-

ward. The crucial point is that none of them allows to get rid of the

∗
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individual data points — they are necessary to estimate the data

distribution. However, storing all points is impossible due to the

infinite nature of data streams. Since storing individual points is un-

avoidable, one needs to sample from a stream, to reduce complexity

of the algorithm, both regarding speed and memory consumption.

Generality – Queries. Denoting the current time as tc , a query in

this article is one that asks for an MI estimate in a window [t1, t2],
t2 ≤ tc for a pair of one-dimensional real-valued streams xt and
yt . Most existing sampling schemes that are memory-efficient, i.e.,

maintain a sample of a fixed size, only facilitate restricted classes

of queries, as explained in Section 2 and summarized in Table 1. In

general, one is interested in MI changes at any time in the past and

requires a fine granularity for MI estimates in the recent past, while

accepting larger windows for queries in the more remote past. In

this case, one often samples non-uniformly so that recent points

are more likely to be stored than older ones.

High Quality. Samples obtained from streams in a non-uniform

fashion cannot be considered random. Since MI estimation is based

on the estimate of the joint distribution of X and Y , non-uniform
samples may lead to incorrect estimates of f (x ,y) and consequently
of the MI.

In the rest of the paper we assume that a static MI estimator

applied to the data which consists of all points of the stream in

the query window outputs accurate MI estimates. This estimate is

the reference. We say that an MI estimate from a stream is of high

quality if it is close to the reference.
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Figure 1: 50 points p = (x ,y) of a data stream.

Example 1. Think of a two-dimensional data stream consisting of

50 points pt = (xt ,yt ), as shown in Figure 1. The first 25 points

p1, . . . ,p25 come from the lower region (empty circles), and the last 25

points p26, . . . ,p50 are from the upper region (filled circles). Assume

that one wants to estimate the MI in window t = [1, 50]. Clearly, there
is an association between X and Y in this window. It manifests itself

when all points p1, . . . ,p50 are used to estimate the MI. However, if
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Table 1: Compliance of the approaches with query types

Approaches Rd Rs Sw Sw*

DEMI, ADEMI, DIMID X
Sliding window X X
Reservoir sampling X
MISE X X X X
Our approaches X X X X

recent points are stored with higher probability, one will underestimate

the MI. To see this, assume that only points p26, . . . ,p50 are stored —
they do not resemble any association between X and Y . Hence, the MI

estimate will be close to 0, i.e., no association.

As the next section will show, no currently existing approach

fulfills all requirements in combination. In this paper we propose

such an approach. Specifically, our contributions are as follows.

(1) We formally define the notion of uniformity on average, which

is required to deal with non-uniformity issues. (2) We design two

approaches to estimate MI for streams. The first one, called point-

based (PBA), is entirely new. The second one, dubbed structure-

based (SBA), is amodification of an existing one,MISE [9], to comply

with all requirements. (3) We provide formal guarantees on the

memory consumption and the calculation effort of our approaches.

As accuracy depends on the true MI value [6], attaining a general

model of it is difficult to impossible; we nevertheless provide some

useful qualitative results. (4) We compare the performance of our

methods with MISE experimentally.

Our theoretical results are that our two methods have better

upper bounds for asymptotic memory complexity and calculation

effort, with PBA being better. Our experiments confirm this and

show that they also yield a higher accuracy on the data sets con-

sidered. Moreover, PBA scales linearly with the number of data

streams, as opposed to the quadratic complexity of MISE and SBA.

Paper outline: Both Section 2 and Section 3 cover related work.

Section 2 reviews existing approaches forMI estimation from streams.

Section 3 describes the static estimator of MI we use and the non-

uniformity problem. Section 4 describes PBA. Section 5 describes

MISE and explains why it has non-uniformities and how SBA over-

comes them. Section 6 investigates PBA theoretically. Section 7

features experiments. Section 8 concludes.

2 ESTIMATION OF MI FROM STREAMS

[18] introduces two methods, DEMI and ADEMI, which speed up

calculations significantly, compared to the direct usage of a static

estimator. [4] provides the fast method DIMID, but according to [18]

its accuracy is low. [9] proposes MISE and uses reservoir sampling

and sliding window sampling as baselines.

These approaches rely on different sampling schemes and thus

allow for different types of queries. Let Nmin be the minimal num-

ber of points necessary to answer a query and tc the current time. In

the following we review common sampling schemes and respective

query types.

Sliding window sampling with window sizeW only facilitates

queries of type “Sw”, i.e., t1 ≥ tc −W . DEMI, ADEMI and DIMID

were designed for the special case of queries of type “Sw*”, with t2 =

tc , t1 = t2 −W . Reservoir sampling with reservoir size R can only

deal with queries of type “Rs”, with (t2 − t1)/tc ≥ Nmin/R. MISE

samples according to a reciprocal function, which is an example of a

bias function under biased reservoir sampling [1]. This function can

cope with short windows in the recent past as well as with larger

windows in the remote past. Thus, it allows for a more general

query type, namely “Rd”, comprising “Sw” and “Rs”. To define this

formally, for any query, we can compute ∆ = (tc − t2)/(t2 − t1). For
a query window of a fixed width, ∆ increases when shifting the

window further in the past. Then “Rd” is a query with ∆ ≤ ∆max ,

where ∆max is an exogenous parameter of MISE. MISE however

does not account for non-uniform sampling and may provide low-

quality MI estimates, as we will show. – Table 1 lists the compliance

of the different approaches with the query types.

3 ESTIMATION OF MI FROM SAMPLES

In this section we model the process of estimating the MI of two

variables from a sample. We introduce uniform on average sampling,

necessary for reliable MI estimates from streams. For a specific

static MI estimator we use, we formalize the notions of internal and

external (non-) uniformities, which are deviations from uniform on

average. These non-uniformities influence the bias of MI estimation

on streams.

3.1 KSG Estimator

There are several static estimators for Mutual Information. The KSG

estimator [13], which is based on nearest-neighbor information,

often outperforms its competitors [10, 11, 15, 19]. In particular, it

provides good accuracy also for small datasets and hence is well-

suited for samples. We build our approaches on it. This subsection

describes the KSG estimator. There are two versions of it; they both

explore the neighborhood of a data point p = (x ,y) with respect to

the distance function induced by the maximum norm:p − pj = max(|x − x j |, |y − yj |) (1)

In the following we stick to the first version, since it is used in MISE,

allowing for a fair comparison to it. Nevertheless, the approaches

we consider can also be used together with the second version. See

Section E of Appendix
1
.

Let D be a data set. For a data point pt ∈ D, let kNNdist(t) be
the distance from pt to its k-th nearest neighbor.

Definition 1. LetMCt
x be the number of points pti ∈ D with |xt −

xti | < kNNdist(t). We call pti an x-marginal point of pt in D. We

call MCt
x the x-marginal count of pt in D. We define y-marginal

points (count) analogously.

Figure 2 illustrates this. We take k = 1 and consider the point p5.
The nearest neighbor of p5 is p3; p7 and p3 are x-marginal points,

and p2 and p6 are y-marginal points. The marginal counts of p5 are
MC5

x = 2 andMC5

y = 2.

Letψ (·) be the digamma function. We define:

I (pt ,D) = ψ (k) −ψ (MCt
x + 1) −ψ (MCt

y + 1) +ψ (|D |) (2)

1
Sections having a letter as identifier are part of the Appendix
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Figure 2: kNNdist(t),MCt
x andMCt

y for k = 1 and t = 5.

The actual MI estimate for D is:

I (D) =
1

|D |

∑
pt ∈D

I (pt ,D) (3)

i.e., it is obtained by averaging I (pt ,D) over all points pt ∈ D.
The KSG estimator measures MI in nats: one nat equals log

2
e

bits. The value k is an exogenous parameter of the estimator. The

recommendation in [13] is to keep its value small, e.g., k = 2.

3.2 Approximation for Samples

Let Sample be a subset of D. From now on we assume that D is

part of the data stream, i.e., contains all points of the stream in

some window [t1, t2], t1,t2 ∈ N, ordered by the timestamp t . We

assume that timestamps t are sequential natural numbers. For a

point s ∈ Sample , let Samples be a sample ofD. In general, Samples
is different for different s . The main idea, used for instance in [9],

is to use I (s , Samples ) as an approximation of I (s ,D) and

I (Sample) =
1

|Sample |

∑
s ∈Sample

I (s , Samples ) (4)

as an approximation of I (D).
Poor choices of Sample and Samples , as in Example 1, may yield

estimations far from the reference MI value — i.e., the one which

one would have obtained for the whole set D with (3). To avoid

this, we require the points from different parts of D to be equally

represented in Sample or Samples . We call this property uniformity

on average.

Definition 2. Sampleu is formed uniformly on average from D if

∃P ∈ R, w ∈ N, w ≤ (|D | + 1)/|Sampleu |: ∀τ1 ≥ t1, τ2 ≤ t2,
τ2 − τ1 = w : ∑

t ∈[τ1 ,τ2]

Pr (pt ∈ Sampleu ) = P

where Pr stands for ’probability’.

Observe that this definition does not address any property of

the data stream. It describes the process of obtaining Sampleu from

D. We need this process to leave aside the position of points in the

window [t1, t2].

Example 2. Consider D = {p1, . . . ,p50} from Example 1. The set D
is formed uniformly on average (w = 1, P = 1). The sample consisting

of all points from D with even timestamps {p2,p4, . . . ,p50} is formed

uniformly on average (w = 2, P = 1). The sample {p26, . . . ,p50} is
not formed uniformly on average.

Definition 3. An MI estimation is internally uniform if all Samples
in (4) are formed uniformly on average from D.

Definition 4. An MI estimation is externally uniform if Sample in
(4) is formed uniformly on average from D.

Intuitively, ‘uniform on average’ sampling implies that pdf f (x ,y)
is estimated from the entire dataset D and from subset Sampleu
most likely will not differ much even when it evolves over time.

When the uniformity conditions are not satisfied, non-uniformities

occur, making MI estimates unreliable if pdfs evolve. See Section A

for more information.

4 THE POINT-BASED APPROACH (PBA)

Our point-based approach stores the incoming points in several

queues. It does this so that each queue Q contains a set of points

formed uniformly on average from some interval [tQ , tc ], where
tc is the current time. Then PBA uses only one queue to answer a

query so that the interval [tQ , tc ] contains the query window.

4.1 Sampling: Pyramidal Time Frame

For sampling we propose to use a pyramidal time frame [2]. It is

based on the notion of the order of points.

Definition 5. Point pt is a point of the ord-th order (ord ∈ N∪ {0})

if t is exactly divisible by βord , where β > 1 is a fixed integer.

A point pt can be of several orders. For example, if β = 2, Point

p4 is of the orders 0, 1 and 2. To apply this concept to sampling

in our approach, we only keep the last α points of order ord . The
parameters α and β are exogenous. To keep things simple, we store

the points in separate queues of length α for each order. This is, we

allow some points to be stored in more than one queue at a time.

We now justify our choice of the pyramidal sampling scheme.

We do so by showing that (1) sampling according to a reciprocal

function does provide the desired properties for our setting, and (2)

pyramidal sampling resembles the behavior of sampling according

to a reciprocal function.

We define a sampling function f (tc − t) as the probability of a

point pt to be stored. [9] proves the following lemma:

Lemma 1. Sampling according to a reciprocal function fr ec (tc −
t) = α/(tc − t) provides an equal expected number of sampling

elements for queries with the same value of ∆.

This means that any sampling function decaying faster than

the reciprocal function does not satisfy the requirements on our

estimator, see Section 2. On the other hand, any function that decays

slower is less memory efficient. Since sampling with pyramidal time

is deterministic, it is natural to replace ‘probability’ with ‘density’

of points. For example, in a region where one stores points pt so
that t is exactly divisible by 8, the density will be 1/8. In general,

when sampling with pyramidal time, the density is

d(tc − t ,α) =
1

β ⌈logβ max(1,(tc−t )/α )⌉
(5)

This density function decays as fast as the reciprocal function.

In other words, the following holds.

Lemma 2. ∀α ∃α1,α2 : α1/(tc − t) ≤ d(tc − t ,α) ≤ α2/(tc − t), if
tc − t > α
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Algorithm 1 PBA – answering queries

1: data: Qs — list of queues storing stream points

2: functionQueryPBA(t1, t2, tc )
3: ord = ⌈logβ max(1, (tc − t1 + 1)/α)⌉

4: Sample ← {pt ∈ Qs[ord]|t ∈ [t1, t2]}
5: return I (Sample)
6: end function

All proofs are in Section D. – The lemma means that we can

see the pyramidal time frame as a deterministic replacement of

a probabilistic reciprocal sampling function. In other words, the

pyramidal time frame is suitable for sampling.

4.2 Answering Queries

Algorithm 1 shows how PBA answers queries. Let tc denote the

current time, i.e., the time when the query arrives. To estimate MI

in the window [t1, t2], we

(1) compute the order of the queue to be used (Line 3). This

order depends on t1 and on the current time tc ;
(2) create a sample Sample from all points in the window [t1, t2]

stored in this queue (Line 4). Here ’Qs[ord]’ stands for the
ord-th element of Qs;

(3) estimate MI with Formula (4) assuming Samples = Sample
for each s ∈ Sample (Line 5).

The estimate obtained in this way is internally and externally uni-

form. Specifically, the following holds:

Lemma 3. If D consists of all points of the data stream in the inter-

val [t1, t2], the sample Sample specified above is formed uniformly

on average from D.

Finally, we observe the following: As mentioned, we focus on MI

estimation between two one-dimensional data streams. However,

there often are many streams, much more than two, and one may

be interested in the MI of each pair. In this case, it is enough to

have just one PBA instance, sampling simultaneously from each

data stream.

5 MISE AND THE STRUCTURE-BASED

APPROACH

In this section we review MISE. We explain why it has internal

and external non-uniformities and give an intuition of how SBA

overcomes these issues. Due to space limitations, the full description

of SBA is in Section B.

MISE uses the KSG estimator as a basis andmaintains a collection

of data structures, the so-called query anchors. Each query anchor

QAt maintains the list of nearest neighbors and marginal points

of pt for all possible query windows. QAt also includes the list of

points which existed at the moment it was created.

Online processing is as follows. When a new point pt arrives,

(1) a new query anchor QAt is created;
(2) each existing query anchor QAti stores this point pt if it is

a new nearest neighbor of pti ;
(3) QAt in turn stores points pti , if there currently exists query

anchor QAti , and if pti alter the nearest neighbors or the
marginal counts of pt . This is the case, if pti is closer to

pt than any other point stored in QAt so far, or if pti is a
marginal point. QAt also stores timestamps ti of all existing
QAti ;

(4) Sampling removes some existing query anchors so that the

timestamps of the remaining ones follow a reciprocal dis-

tribution. This is, the probability of QAti being stored is

proportional to 1/(t − ti ).

To answer queries, MISE uses all available information, i.e., all

existing query anchors. So it does not account for the reciprocal

sampling scheme it relies on. Thus, when calculating theMI, Sample
is formed from the points pt where t ∈ [t1, t2], and QAt exists.

The query anchors QAt exist according to the reciprocal sampling

function, i.e., with increasing probability towards t2. This means

that MI estimation with MISE is externally non-uniform.

Recall that MI estimation according to Equation (4) requires

several samples, referred to as Samples . In MISE, such a sample

Samplest is the list of points pti stored in QAt which are in the

query window [t1, t2]. For ti < t , QAt considers only points pti
which have existed at time t . Since the points exist according to the
reciprocal probability function, Samplest is not formed uniformly

on average. This is, MI estimation with MISE also is internally

non-uniform.

Our structure-based approach modifies MISE to get rid of bias

in MI estimates caused by non-uniformities. To do so, we adopt the

idea of [8], i.e., use weights to take external non-uniformity into

account. However, this idea cannot be used to cope with internal

non-uniformity, since it is unclear how to account for weights in the

nearest neighbor search. To get rid of internal non-uniformity, we

again deploy a pyramidal time frame. This allows to obtain samples

formed uniformly on average when calculating MI, similarly to

PBA. It also allows us to arrive at complexity guarantees for the

memory consumption of SBA. They are better than those of MISE,

as we will show.

Finally, observe that to calculate MI between n one-dimensional

data streams, one needs to establish n(n − 1)/2 MISE or SBA in-

stances. This is because these approaches do a big share of the

calculations online.

6 PERFORMANCE MODEL OF THE

APPROACHES

In this section we derive the memory requirements, the asymp-

totic maintenance speed, i.e., the time needed to add a point, and

the worst case query-answering speeds for PBA. We derive the

corresponding bounds for SBA and MISE in Section C. Finally, we

say how to choose values of parameters α and β for PBA to meet

user requirements regarding the number of points used to answer

queries.

Memory Requirements. PBA stores up to α points of each order.

The maximal order of the existing points at time T is logβ T . Thus,

the memory requirements of the approach are in O(α logβ T ).

Maintenance Speed. To insert a point with PBA, one needs to

calculate its order and insert it into the respective queues. In the

worst case, each existing queue is updated. The number of the

queues as well as the time to calculate the order is in O(logβ T )
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Table 2: Characteristics of the estimators in terms of their

parameters α and β and of stream length T . Me — memory

consumption; Ma — maintenance complexity; Qa — query

answering speed.

PBA SBA MISE

Me O(α logβ T ) O(α2 log2β T ) O(αT+

α2 log2T )

Ma O(logβ T ) O(α logβ T ) O(α logT )

Qa O(log logβ T+ O(α2 log2β T ) O(αT+

α logα) α2 log2T )

Query-answering Speed. For any query window, PBA uses only

one of the logβ T queues containing α points. To find this queue,

PBA performs a binary search, which takes O(log logβ T ) time.

This search to find points inside the window then requiresO(logα)
operations. One can easily show that the number of returned points

is nquery ≤ ⌈α/(∆+1)⌉, ∆ = (tc −t2)/(t2−t1) for query [t1, t2] and
current time tc . Another expensive operation in our implementation

is to build a kD-tree in order to speed up the k-nearest neighbor
search and the counting of marginal points [17]. Building the tree

takes O(nquery log(nquery )) time. Note that this result is in line

with Theorem 4.3 in [18].

Table 2 is a summary of PBA, SBA and MISE.

Insights Regarding Estimation Accuracy. The approximation (4)

of I (D) affects the accuracy of the estimator in two ways. First, the

size of Sample affects the variance of the estimate. In case Sample
is small, the average in (4) is calculated over a small number of

terms, which leads to a high volatility. Second, the size of Samples
mainly affects the bias of the estimate. For a rather small number

of points in Samples , the expected bias is likely to be high [10, 13].

Moreover, the bias depends on the true MI. The number of points

required to obtain accurate estimates grows exponentially with the

true MI [6, 7]. Section E demonstrates the dependence of bias and

variance of the KSG estimator on the number of points.

This means that, to attain an understanding of the accuracy one

can expect, one needs to establish the dependence between the

parameters of the approach and the effective sizes of Sample and
Samples . We derive this in the following.

Lemma 4. With PBA, |Sample | = |Samples | ≥ α/β(∆ + 1) − 1 as
long as tc − t1 > α .

Assume now that one is interested in queries with ∆ not higher

than ∆max and requires the sizes of Sample or Samples to be at

least Nmin to estimate MI with acceptable quality. Then one should

choose the parameters so that

Nmin ≤
α

β(∆max + 1)
− 1

For example, assume that one is interested in MI estimation from

windows with values of ∆ not greater than ∆max = 1. This includes

any window of the width of n seconds (hours, days etc.) shifted not

more than n seconds (hours, days etc.) in the past, where n is an

arbitrary number. Now assume that estimates based on Nmin = 100

points of the stream are sufficiently accurate in a given scenario.

Then PBA with β = 2 and α = 404 provides the required accuracy.

7 EXPERIMENTS

In the following we compare the performance of PBA and SBA

with MISE and with storing the entire data stream. We provide the

results of additional experiments in Section F; their results do not

provide significant insights additional to the ones presented here.

So far we have a general description of the algorithms, with

various parameter values to be set. Specifically, one must choose

the value of k (parameter of the KSG estimator) and of α for all

algorithms and of β for PBA and SBA. A further degree of freedom

is the choice of the data. On the other hand, we want to compare

the algorithms according to the following performance measures:

memory requirements, maintenance and query answering speed,

and accuracy. The last two measures further require specifying the

query, in terms of, say, ∆ and query-window width. A complication

is that each parameter affects all performance measures, and the

effect usually is nonlinear.

To reduce the number of degrees of freedom, we fix some param-

eters values. We set k = 1, as this value leads to the lowest memory

consumption of SBA and MISE and to the fastest query answering

time for all algorithms. Next, we set β = 2, as it provides smoother

sampling and again requires less memory for a similar accuracy of

PBA and SBA. Then we set parameter α to 250 or 500 for SBA and

MISE, depending on the data size, and to 2000 for PBA. In the plots,

the value of α will come after the name of the algorithms so that

there is no ambiguity. In the following we use only queries with

∆ = 0. We do so as it demonstrates the worst case performance of

approaches.

Table 2 suggests that PBA is better in memory consumption

and worst case query answering speed than SBA, and that SBA is

better than MISE. Thus, the primary target of our experiments is

to confirm the derived asymptotic complexity of the algorithms

and to check the quality of the MI estimates they provide. To do

so, we do the following: (1) We scale axes on the plots so that

some complexity functions from Table 2 are straight lines in the

coordinates. (2) When absolute performance values differ much, we

introduce a separate vertical axis. On these plots (Figures 3–7), one

should compare the curvatures of the lines – straight is better than

convex. The absolute figures for algorithm performance should be

taken with care, as even the same α values do not imply the same

quality.

We have implemented all estimators in C++ and perform the

experiments on an Intel Core i7-3520M processor at 2.90 GHz with

8 GB RAM.

7.1 Data for the Experiments

In this section we perform experiments on one real-world dataset

and two synthetic ones designed specifically to demonstrate the

worst case scenarios. Our real world dataset consists of columns W,

F of PAMAP data
2
, rows 20000–40091, with NaN values removed

(20000 points).

To generate the dataset Increasing MI (20000 points), we iterate

between uniform and high dependence distributions, gradually

2
http://www.pamap.org/demo.html

http://www.pamap.org/demo.html
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increasing from 0 to 1 the probability to have a point from the latter

one. These distributions are as follows:

• Uniform: we sample xt and yt uniformly and independently

from the interval [0, 1000].

• High dependence: we sample xt andyt uniformly from eight

equal squares [0, 125]×[0, 125]∪ · · · ∪ [875, 1000]×[875, 1000]

Finally, we generate the so-called Special dataset as follows:

xt = t , yt = 1 − 10−5/t . This dataset is of length 100000.

7.2 Memory Requirements
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Figure 3: Memory consumption on PAMAP data.
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Figure 4: Memory consumption on Special data.

Figure 3 graphs the memory consumption contingent on stream

size for PAMAP data. Hereafter, the lines are the median results in

series of 50 experiments, and “(R)” in the legend means “right axis”.

We have scaled the horizontal axis logarithmically. We do this to

obtain straight lines for PBA, as predicted theoretically, see Table 2.

To compare the memory consumption of MISE and SBA, we

plot it as well as the one to store the entire stream for Special data

(Figure 4). The horizontal axis is scaled squared logarithmically,

and the SBA memory consumption is a straight line. MISE however

has a convex memory-consumption curve with these axes and does

not provide any benefit with Special data, compared to storing the

entire stream.

One can see that experimental results are in line with those

derived theoretically.
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Figure 5: Maintenance speeds on PAMAP data.

7.3 Computation Speed

Figure 5 shows the maintenance speed of all three algorithms for

PAMAP data. The horizontal axis is scaled logarithmically. After a

stabilization period, the maintenance speeds for SBA and MISE are

straight lines, as predicted by our analysis, see Table 2. This data

is way too short to notice an increasing maintenance complexity

of PBA. In our experiments it consumes somewhat more time in

the beginning, since it needs to create new queues more frequently

in an early stage. In absolute numbers, PBA with α = 2000 is

approximately 2000 times faster than SBA with α = 500 and 5000

times than MISE with α = 500, after 20K points.
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Figure 6: Query answering speeds for PAMAP data.
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Figure 7: Query answering speeds for Special data.

Figure 6 plots query answering speeds for ∆ = 0 for PAMAP.

The abrupt jumps in the curve for PBA reflect sudden changes in
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the number of points used for MI calculation, due to changes of the

queue, see Line 3 of Algorithm 1.

To compare the speed of SBA and MISE, we plot the query an-

swering times of these methods on Special data (Figure 7). We do

so for queries in the window [1, tc ] (∆ = 0). The horizontal axis is

scaled squared logarithmically. One can see that query answering

times for SBA scale almost linearly with these axes, while the curves

for MISE are convex. This is in line with the last row of Table 2.

Note that MISE does not provide any benefit over the static KSG

estimator on the entire dataset.

7.4 Accuracy

5000 10000 15000 20000

0.
5

1.
0

1.
5

2.
0

Window size, points

M
I e

st
im

at
e

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

● PBA 2000
SBA 500
MISE 500
KSG

Increasing MI, ∆= 0

Figure 8: MI estimates on Increasing MI data.

Figure 8 shows the MI estimates obtained on the Increasing MI

dataset for ∆ = 0 contingent on the size of the query window.

Shadows indicate the areas between 10 and 90 percentiles of these

estimates in a set of 50 experiments. We compare these estimates

with those obtained with the KSG estimator using all points in the

window — our reference point. One can see that MISE produces

gross errors of up to 150%. The other estimators in turn follow

the reference line quite well, not introducing bias caused by non-

uniformities.

8 CONCLUSIONS

In this work, we have studied the problem of estimating mutual

information on a pair of one-dimensional data streams. We have

formulated a list of requirements and have shown that no existing

approach satisfies them all. We have focused on the accuracy prob-

lems which occur when applying a static MI estimator to sampled

data in a straightforward manner. To avoid these problems, we

have defined the notion of uniformity on average, a characteristic

a sample must satisfy.

We then have proposed two new approaches, PBA and SBA,

to compute MI on data streams. At their core is the static KSG

MI estimator, one of the best existing options. PBA and SBA sat-

isfy uniformity on average by design. We have compared these

approaches to the closest competitor, MISE, both theoretically and

experimentally on synthetic and real-world datasets. In all respects,

our approaches are at least comparable with MISE, which also has

uniformity issues, and often are much better.

PBA is a clear winner regarding asymptotic memory consump-

tion and worst case query answering speed. Its maintenance speed

is better by up to three orders of magnitude, and it provides MI

estimates close to the reference values. PBA can calculate many

pairwise MI estimates and scales linearly with the number of one-

dimensional streams, as opposed to the quadratic complexity of SBA

or MISE, where one needs to have different SBA or MISE instances

for each pair of streams.
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A INFLUENCE OF NON-UNIFORMITIES

In the following, we briefly review the properties of KSG MI es-

timator and investigate the effects of internal and external non-

uniformity separately in two studies. To demonstrate the effects of

internal non-uniformity, we choose Sample = D (see Section 3.2)

and form Samples without uniformity on average. Afterwards, to

demonstrate external non-uniformity, we use Sample formed not

uniformly on average and choose Samples = D for all s ∈ Sample .

A.1 KSG Properties

In [12], an estimator of differential entropy (an ancestor of the KSG

estimator) was proven to be asymptotically consistent and unbiased

if the observations are drawn independently. That is why, by using

MI calculated on D as reference, we assume that D is some random

sample from two-dimensional distribution, for which one wants to

obtain mutual information. If this distribution evolves over time,

any non-uniform on average sample from D can not be considered

random anymore, violating the assumptions behind MI estimator.

A.2 The Data for the Studies

For our studies we use the distribution, shown in Figure 11. From

it we generate a dataset D consisting of 4N = t2 − t1 − 1 points

pt = (xt ,yt ), where t1, t2 are as described in Section 3.2. We sample

the first 2N points (t1 ≤ t < t1 + 2N ) from the lower left big square,

the next N points (t1 + 2N ≤ t < t1 + 3N ) from the middle square,

and the last N points (t1+3N ≤ t ≤ t2) from the upper right square.

A.3 Internal Non-uniformity

For this study we assume that Sample = D. For each point st ∈
Sample we form Samplest consisting only of the points from the

corresponding square, see Figure 11. Formally,

• Samplest = {pτ |t1 ≤ τ < t1 + 2N }, if t1 ≤ t < t1 + 2N
• Samplest = {pτ |t1 + 2N ≤ τ < t1 + 3N }, if t1 + 2N ≤ t <
t1 + 3N
• Samplest = {pτ |t1 + 3N ≤ τ < t2}, if t1 + 3N ≤ t < t2

By construction, samples Samplest are not formed uniformly on

average from D.
Then we calculate I (st , Samplest ) and estimate I (Sample) using

equation (4). We define

ϵ(t) = ψ (k) −ψ (MCt
x + 1) −ψ (MCt

y + 1) +ψ (η(t)) (6)

whereMCt
x ,MCt

y are marginal counts of st in Samplest and

η(t) =

{
2N , if t1 ≤ t < t1 + 2N

N , if t1 + 2N ≤ t < t2
(7)

When comparing (6), (7) to (2), one observes that I (st , Samplest ) =
ϵ(t) in the case described. Indeed, the first three terms in right-hand

sides of equations (6) and (2) coincide by definition of I (st , Samplest );
η(t) = |Samplest |, given the description of Samplest above.

Since the mutual information of the distribution, described by

any square in isolation, equals zero, we expect ϵ(t) to be around

zero regardless of the timestamp t . This means that we expect the

whole MI estimate I (Sample) in our example to be close to zero.

To demonstrate this experimentally, we set N = 1000, k = 1 and

independently generate 1000 sets D. We obtain the average value

4 · 10−4 of I (Sample) with standard deviation 0.025.

So we have shown that internally non-uniform MI estimation

can result in an MI estimate far from the real value of MI.

A.4 External Non-uniformity

To demonstrate the effect of external non-uniformity, we assume

that Samplest = D for any st ∈ Sample . Sample only consists of the
points from the two upper squares (see Figure 11), i.e., is not formed

uniformly on average. Formally, Sample = {pτ |t1 + 2N ≤ τ < t2}.
Let st belong to one of the square areas in Figure 11. For high

values ofN it is very unlikely that the points from the other squared

areas influence marginal counts of st in Samplest . This means that

|Samplest | = 4N and

I (st , Samplest ) ≈ ϵ(t) −ψ (η(t)) +ψ (4N ),

where ϵ(t), η(t) are defined in (6) and (7). We have shown previously

that ϵ(t) tends to have values around zero. Using Formula 4 from

[3], we can write limN→∞(ψ (4N ) − ψ (η(t))) = ln(4N /η(t)). This
means that we expect I (st , Samplest ) to be around 0.69 for η = 2N
and around 1.39 for η = N . On average, I (st , Samplest ) will be
close to 1.04 = (2N · 0.69+ 2N · 1.39)/4N , the true MI value for our

distribution

In our case, Sample does not include the points from the lower

square (t1 ≤ t < t1 + 2N ). Thus, we expect I (Sample) to be close

to 1.39 = 2N · 1.39/2N . To confirm this experimentally, we set

N = 1000, k = 1 and generate 100 sets D independently. We obtain

the average value 1.37 of I (Sample) with standard deviation 0.034.

So we have shown that externally non-uniform MI estimation

can yield results far from the real value.

B THE STRUCTURE-BASED APPROACH

Here we present our structure-based approach SBA inspired by

MISE [9]. It relies on a new data structure called local estimator.

Internally, a local estimator has procedures InsertLeft and Inser-

tRight to collect the points of the data stream and the Query pro-

cedure to calculate an estimate of I (pt ,D) (equation 2). Operations

Insert andQueryMI of the SBA create new local estimators and

govern the procedures of the existing ones. Finally, the Clear oper-

ation deletes certain local estimators. The only purpose of having

the data structure is to store the results of preliminary calculations,

which will speed up query processing.

B.1 Data Structure — Local Estimator

Our structure-based approach relies on the notion of local estimator.

Definition 6. A local estimator (LE) is a data structure associated
with some point pt . It stores the point pt and a sample of points

required to track the history of pt ’s nearest neighbors and marginal

points. The procedures of a local estimator are as follows:

(1) InsertRight(pti ), which adds a point pti with ti > t to the
sample,

https://doi.org/10.1007/978-3-642-02962-2_49
https://doi.org/10.1007/978-3-642-02962-2_49
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Algorithm 2 InsertRight procedure in LEt

1: procedure InsertRight(pti )
2: lowordR ← ⌈logβ max(1, |t − ti |/α)⌉

3: if lowordR > maxord(pti ) then
4: exit procedure

5: end if

6: upd ← 0

7: for all ord in {lowordR, . . . ,maxord(pti )} do
8: upd ← UpdateRVD(ord ,pti ) OR upd
9: end for

10: if upd = 1 then

11: LEt .RNN.Append(pti )
12: end if

13: UpdateRMP(LEt )
14: end procedure

(2) InsertLeft(pti ), which adds a point pti with ti < t to the

sample,

(3) Query(t1, t2), which defines the sample subsequently referred

to as Pointst and returns I (pt , Pointst ) calculated on it.

ti < t ti > t
t

marginal points (MP)

nearest neighbors (NN)

vector of NN distances (VD)

. . . 2 1 0 0 1 2 . . . orders of VD

. . .

. . .. . .

. . .

. . . . . . RVD

RNN

RMPLMP

LNN

LVD

Figure 9: Structure of Local Estimator.

Figure 9 shows a local estimator for k = 1. It stores the nearest

neighbors (NN) and marginal points (MP), in dynamic arrays. It

also contains a vector of distances (VD) to the nearest neighbors

of different orders. The arrays for right (forward) and left (back-

ward) directions are separate, and we will use prefixes “R” and “L”

respectively to refer to them, e.g. RMP, LMP, RVD, LVD etc.

For simplicity, we will describe SBA for k = 1 in the following. Its

generalization for larger values of k is straightforward: one needs

to change ψ (1) → ψ (k) in Query procedure (Algorithm 3) and

replace vectors of distances VD with matrices of distances where

the number of rows equals k .
When emphasizing that a local estimator LE is associated with

point pt , we write LEt . We rely on the notion of order and on the

pyramidal sampling to maintain local estimators (cf. Section 4.1).

That is, LEt is of order ord if pt is of this order; and we keep only

the last α estimators of each order. In the following, maxord(p)
denotes the maximal order of p.

B.2 Local Estimator — procedures

In this section we describe the procedures InsertRight, In-

sertLeft andQuery of the local estimator, which collect the points

of the stream and calculate an estimate of I (pt ,D) (equation 2),

respectively. These methods are used by operations Insert and

QueryMI of the SBA, which we describe in the next section.

InsertRight (Algorithm 2) is invoked in each existing local

estimator LEt each time a new point pti arrives in the stream. It

first computes the auxiliary value lowordR (Line 2) and updates

the vector of distances in the right direction RVD (Lines 7–9). The

value lowordR controls the memory consumption of the SBA. It

increases with |t − ti | so that for timestamps t far in the past, pti
can be stored in LEt only ifmaxord(pti ) is sufficiently high. That

is, the points pti , which are far from pt in time, will rarely lead

to any update. The function UpdateRVD (Line 8) sets the ord-th
element of RVD to

pt − pti  and returns 1 if the distance from pt
to pti is less than the current value of the ord-th element of RVD,

or if the element is empty. Otherwise, the function does not make

any update and just returns 0.

Next, if any of the elements has been updated, InsertRight ap-

pends the point pti to the array of nearest neighbors RNN (Line 11).

Finally, UpdateRMP adds the point to the array of marginal points

RMP if necessary (Line 13). In particular, let MaxDist denote the
greatest value of elements of RVD in the positions {lowordR, . . . ,
maxord(pti )}. Then the point pti is added to the marginal points

array RMP of LEt if either |xt − xti | ≤ MaxDist or |yt − yti | ≤
MaxDist .

0 1 2 . . .

. . .

. . .

. . .

RVD

RNN

RMP

4 3 5 5

p3 p4 p5

orders of RVD

y

x

p5

p3
p6

p7 p4
p2

p6p3 p4 p5

Figure 10: Procedure InsertRight at work.

The following example illustrates the process.

Example 3. We set k = 1, α = 3 and β = 2 and demonstrate how

InsertRight at LE2 associated with point p2 fills the arrays of the
local estimator as the stream progresses from t = 3 to t = 8 (Figure 10).

At t = 2 all right arrays are empty

(1) For p3 ∥p2 − p3∥ = 4, maxord(p3) = 0 and lowordR = 0,

thus InsertRight sets the value of RVD in Position 0 to 4 and

appends p3 to RNN and RMP.

(2) maxord(p4) = 2, and the distance from p4 to p2 is 5. Inser-
tRight sets the values of the element of RVD in Positions 1

and 2 to 5 and adds p4 to RNN and RMP.

(3) maxord(p5) = 0. The first element of RVD is set to ∥p2 − p5∥ =
3, and p5 is added to RNN and RMP.

(4) At this step, lowordR increases to 1. For Pointp6,maxord(p6) =
1. As ∥p2 − p6∥ = 6 is greater than 5, the value of RVD in

Position 1, RVD and RNN are not updated. As |y2−y6 | = 3 < 5,

UpdateRMP adds p6 to the array of marginal points RMP.

(5) maxord(p7) = 0, and lowordR = 1. The procedure exits at

Line 4.
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Algorithm 3Query procedure in LEt

1: functionQuery(t1, t2)
2: ord ← ⌈logβ max(1, |t − t1 |/α , |t − t2 |/α)⌉

3: Pointst ← {pti ∈ LEt |ti ∈ [t1, t2],maxord(pti ) ≥ ord}
4: {MCx ,MCy } ← MarginalCounts(pt , Pointst )

5: SS ← ⌊t2/β
ord ⌋ − ⌈t1/β

ord ⌉ + 1

6: if maxord(pt ) < ord then

7: SS ← SS + 1
8: end if

9: LMIEt ← ψ (1) −ψ (MCx + 1) −ψ (MCy + 1) +ψ (SS)
10: return LMIEt
11: end function

(6) Finally, the Clear operation deletes LE2 at time t = 8 as SBA

keeps only the last α estimators of each order (see Section B.3).

For the order 1 at t = 8 these would be LE4, LE6 and LE8.

InsertLeft works in the same way with arrays in the left di-

rection. It is called in each newly created LEt for every already

existing LEti as we show in Section B.3.

Procedure Query (Algorithm 3) works as follows. For a given

query window with boundaries t1 and t2 and local estimator LEt ,
it calculates the order ord of points to be used (Line 2). Then it

forms the sample Pointst consisting only of points of order ord ,
which are in the query window and are stored in LEt (Line 3).

Next, the procedure finds the nearest neighbor and computes x-
and y-marginal counts of pt in Pointst (Line 4) and the number

SS of points of order ord in the query window (Line 5). Finally,

it calculates and returns LMIEt based on these values (Line 9),

which we use as approximation of I (pt ,D) (equation 2). Note that

theQuery procedure implicitly contains pt in the sample used to

calculate LMIEt . That is why it increases the value of SS by one, if

pt is not the point of the order ord (Line 7).

B.3 SBA Framework

SBA internally stores a set of local estimators, and there is the

Clear function that keeps updating them. This function simply

deletes the superfluous local estimators so that only the last α
ones of each order are stored. In addition, the approach provides

operations Insert and QueryMI. The Insert operation adds a data

point from the stream to the set of local estimators (SetO f LEs); the
QueryMI operation returns the MI estimate for a defined window.

See Algorithm 4 and Algorithm 5, respectively.

Insert first creates a new local estimator associated with the

incoming point pt . Then it performs forward and backward initial-

ization by invoking InsertRight of existing LEs and InsertLeft

of the new local estimator (Lines 4–5). Finally, it invokes the Clear

operation. To process the points one by one with the procedure

InsertLeft in LEt we need them to be sorted by ti in descending

order. That is, the cycle (Lines 3–6) begins with larger timestamps

and ends with lower ones.

TheQueryMI operation has three parameters: the boundaries

of query window t1 and t2 to calculate Mutual Information and the

current time tc . It first determines the local estimators contained in

the query window (Line 2). Then it queries each local estimator in

the window to obtain the LMIE (Line 5). After that the operation

Algorithm 4 Insert operation

1: procedure Insert(pt )
2: LE ← new local estimator at pt
3: for all LEti ∈ SetO f LEs do
4: LEt .InsertLeft(pti )
5: LEti .InsertRight(pt )
6: end for

7: SetO f LEs ← SetO f LEs ∪ {LEt }
8: Clear(SetO f LEs)
9: end procedure

Algorithm 5 QueryMI operation

1: functionQueryMI(t1, t2, tc )
2: inW indow ← {LEt ∈ SetO f LEs |t ∈ [t1, t2]}
3: estimates ← {}
4: for all LE ∈ inW indow do

5: LMIE ← LE.Query(t1, t2)
6: estimates .Append(LMIE)
7: end for

8: weights ← GetWeights(inW indow , tc )
9: return WeightedMean(estimates ,weights)
10: end function

calculates weights (Line 8). Specifically, the function GetWeights

calculates a weight for each LEt ∈ inW indow with the formula

weightt = β
⌈logβ max(1, |tc−t |/α )⌉ .

The next section describes the rationale behind this equation. Fi-

nally, QueryMI returns the weighted mean of the LMIEs.

B.4 Uniformity of SBA

An analogue for Sample (4) in SBA is the set of points associated

with LEs in inW indow (Algorithm 5, Line 2). To avoid external

non-uniformity, we could have used only LEs of specific order like
in PBA. Nevertheless, we expect that using all LEs in the query

window will provide more robust results, and weights will allow us

to cope with external non-uniformity. Essentially, we use Horvitz–

Thompson estimator [8]. The idea behind this is that local estimators

of lower orders have more densely grouped timestamps. Weights of

their LMIE values are then inversely proportional to their density.

We will demonstrate that SBA provides accurate results by means

of experiments.

Given a fixed pt ∈ [t1, t2], consider sample Pointsord consisting

of all points of the data stream of order ord in [t1, t2], where ord

is as in Line 2 of Algorithm 3. Next, letMCordx andMCordy be the

marginal counts of pt in Pointsord . In the following we show that

Pointsord ∪ pt is the effective analogue of Samples (4) in SBA.

Lemma 5. Assume that the procedure Query(t1, t2) of some LEt
calculates internally the valuesMCx ,MCy and SS (Algorithm 3, Lines

4–8). Then MCx = MCordx , MCy = MCordy and SS = |Pointsord ∪

{pt }|

proof is in Section D. Since Pointsord is formed uniformly on

average (w = βord , P = 1), and Samples differs from it by at
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most one point. Thus, it is clear that SBA copes with internal non-

uniformity.

C PERFORMANCE MODEL OF SBA AND MISE

In this section we provide upper bounds of the memory require-

ments for our algorithm SBA. We derive such a bound for MISE as

well, since the respective publication does not feature such a result.

Next, we derive the asymptotic maintenance and the worst case

query-answering speeds of both algorithms. Finally, we say how to

choose values of parameters α and β for SBA to meet user require-

ments regarding the number of points used to answer queries, in

the same way we have done in Section 6,

C.1 Memory Requirements

Similarly to PBA, SBA stores up to α local estimators of each order

(O(α logβ T )). Each local estimator stores internally α points of

each order at most in every (right or left) direction — O(α logβ T )

in total. The memory requirements of SBA are in O(α2 log2β T ).

[9] features only a partial complexity analysis of MISE. They

show that the expected number of structures, the so-called query

anchors, is in O(α logT ). Each query anchor stores internally the

history ofk-nearest neighbors andmarginal points. It also stores the

timestamps of all other query anchors which existed at creation time

of the anchor. This means that MISE requires at least O(α2 log2T )
memory to store timestamps. As the worst case, think of the stream

pt = (t , 1/t). In this case, each query anchor stores all subsequent

points, which become visible as marginal points after the query

anchor has been saved. Then the entire algorithm requires the

following amount of memory at time T :

α∑
j=1

j +
T∑
j=α

j ·
α

j
∼ O(αT )

For MISE, since the sampling is probabilistic, this is an expected

value. This means that there is no guarantee that MISE asymptoti-

cally (T →∞) consumes less space than the data stream itself.

C.2 Maintenance Speed

In SBA, the Clear operation function iterates through all local

estimators in SBA, the number of which is O(α logβ T ). Similarly,

the complexity of updates of NN and MP arrays take O(α logβ T )

time. Consider the complexity of the Insert operation in VD arrays.

By construction, the InsertLeft procedure affects each position

in the LVD array of the new local estimator at most α times. The

number of positions in this array is restricted by the highest order of

the existing local estimators, which is inO(logβ T ). As InsertRight

works symmetrically, a point of order 0 influences only the last α
LEs and one position of RVD in each local estimator; a point of

order 1 affects the last 2α LEs: two positions of RVD in the last α
local estimators and one position in preceding LEs, etc. At the same

time, the probability that the point is of order ord equals 1/βord .
This gives us the amortized complexity of InsertRight.

⌊logβ T+1⌋∑
i=1

α(1 + 2 + · · · + i)

βi−1
∈ O(α logβ T )

The amortized insert complexity of a query anchor in MISE is

O(1), and the number of query anchors is O(α logT ). The Sam-

pling function iterates through all query anchors. Thus, the MISE

maintenance complexity is O(α logT ).

C.3 Query-answering Speed

In the same way as PBA, SBA and MISE spend O(log(α logT ))
time to find data structures (local estimators or query anchors

respectively) inside the query window. In the worst case, the whole

set of data structures is returned, and theQuery procedure inside

each data structure goes through all marginal points saved. The

complexity of this search (in all data structures) is proportional to

the memory requirements of SBA or MISE, i.e., is bounded with

O(α2 log2β T ) for SBA and with O(αT + α2 log2T ) for MISE.

In principle, the answering speed for SBA can be improved as

follows. First, to limit the number of LEs in a query window for

∆ = 0, one can use only LEs of a given order (like in PBA), instead of
weights. Second, one can store points of different orders in separate

arrays within LEs. It will result inO(α log logβ T + α
2) time for an-

swering queries and will not affect asymptotic memory complexity

or maintenance speed. We will not consider this optimization in

our experiments though.

C.4 Insights Regarding Estimation Accuracy

SBA stores LEs in the same way as PBA stores points. It then uses

all local estimators in the query window to provide the MI estimate.

Thus, α/β(∆ + 1) − 1 is the lower bound of the size of Sample with
SBA as well as in PBA (Lemma 4). In the following, we show that it

is also the lower bound of Samples .

Lemma 6. With SBA, |Samples | ≥ α/β(∆ + 1) − 1 as long as

tc − t1 > α .

Given this, the guideline for choosing the values α and β pre-

sented in Section 6 applies to SBA as well.

D PROOFS

Lemma 2. ∀α ∃α1,α2 : α1/(tc − t) ≤ d(tc − t ,α) ≤ α2/(tc − t), if
tc − t > α

Proof. For α1 = α/β and α2 = α and using (5):

α1
tc − t

=
1

β logβ (
tc −t
α )+1

< d ≤
1

β logβ (
tc −t
α )
=

α2
tc − t

,

where d = d(tc − t ,α) �

Lemma 3. If D consists of all points of the data stream in the inter-

val [t1, t2], the sample Sample specified above is formed uniformly

on average from D.

Proof. Note that if Sample consists of all points of the order

ord in D, then Sample is formed uniformly on average from D

(w = βord , P = 1).

1) If t1 ≥ tc − α + 1, Sample includes points from the queue of

order 0, which contains all points of the interval [t1, t2].
2) If t1 < tc − α + 1, assume that ∃pt ∈ D, pt < Sample , pt is

of order ord (Line 3 of Algorithm 1). This means that the interval
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[t1, tc ] contains more than α points of order ord . That is,

tc − t + 1

βord
> α =⇒ ord < logβ

tc − t + 1

α

which contradicts equation in Line 3 of Algorithm 1. �

Lemma 4. With PBA, |Sample | = |Samples | ≥ α/β(∆ + 1) − 1 as
long as tc − t1 > α .

Proof. Equation in Line 3 of Algorithm 1 yields the order of the

points to use for the estimation. The window [t1, t2] contains

⌊
t2 − t1

β ⌈logβ max(1,(tc−t1)/α )⌉
⌋ ≥

t2 − t1

β logβ ((tc−t1)/α )+1
− 1 =

α

β(∆ + 1)
− 1

points �

Lemma 5. Assume that the procedure Query(t1, t2) of some LEt
calculates internally the valuesMCx ,MCy and SS (Algorithm 3, Lines

4–8). Then MCx = MCordx , MCy = MCordy and SS = |Pointsord ∪

{pt }|

Proof. The number of points of the order ord in the Region

(0, t2] equals ⌊t2/β
ord ⌋; in Region (0, t1): ⌈t1/β

ord ⌉ − 1. Thus, the

number of points of orderord in the Region [t1, t2] equals⌊t2/β
ord ⌋−

⌈t1/β
ord ⌉ + 1 and SS = |Pointsord ∪ {pt }| (compare to Line 5 of

Algorithm 3).

Next, the InsertLeft and InsertRight procedures store any

point which changes the nearest neighbors or is a marginal point

of any order, defined in Algorithm 2 Line 7. Thus, to prove that

MCx = MCordx and MCy = MCordy it is sufficient to show that

Line 4 of Algorithm 2 was not executed for any point of Order ord
in Region [t1, t2]. As procedures work in a symmetric way, w.l.o.g.,

we consider only InsertRight and the Region (t , t2]. Assume, that

∃pti , ti ∈ (t , t2] for which Line 4 of the Algorithm 2 have been

executed. This means that

⌈logβ max(1, |t − ti |/α)⌉ > ord

Given the definition of ord (Algorithm 3 Line 2), this means that |t −
ti | > |t − t2 |, i.e., ti < (t , t2], which contradicts our assumption �

Lemma 6. With SBA, |Samples | ≥ α/β(∆ + 1) − 1 as long as

tc − t1 > α .

Proof. According to Lemma 5, |Samples | ≥ |Pointsord |

|Pointsord | = ⌊
t2 − t1

β ⌈logβ max(1, |t−t1 |/α , |t−t2 |/α )⌉
⌋ ≥

t2 − t1
max(1, β(t2 − t1)/α)

− 1 ≥
α

β(∆ + 1)
− 1

�
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Figure 11: Data distribution for the case study. Dark regions

have twice the probability density of the light region.
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Figure 12: MI estimates obtained with the first (squares) and

the second (circles) versions of the KSG estimator in depen-

dence on a number of points.

E COMPARING KSG ESTIMATOR VERSIONS

In the following we demonstrate the relative performance of the

two versions of the KSG estimator [13] depending on the relative

scales of variables and number of points. To this end, we use the

synthetic distribution proposed in [11], shown in Figure 11. In the

figure, dark blocks represent twice the probability density of the

light block. The true Mutual Information for this distribution is

I ≈ 1.04 nats.

Example 4. We generate the dataset D from the probability distri-

bution just described. Then we scale the x values by multiplying with

100 and calculate MI using both versions of the KSG estimator on

the resulting dataset Dscaled . We perform the procedure for different

numbers of points in D and for 200 independently generated datasets

D of each size. In Figure 12, the horizontal axis (log scale) stands

for the size of Dscaled and the vertical axis for the MI estimate. The

bars on the lower lines are proportional to the standard deviation of

respective estimates.

When relative scales of variables differ significantly, the second

version (KSG2) converges faster to the true value. This is because

the scaling affects the values of marginal countsMCx andMCy in

the second version only if it changes the nearest-neighbor relation.

In the first version (KSG1) in turn, values may change even if the

nearest neighbor does not. At the same time the first version has

lower variance. These results have been featured in [13] as well.
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Table 3: Description of the real world datasets

Name Modification Period Length

IBMGE
3

Revenues 02.01.1962– 13639

08.03.2016

USDRUB
4

Revenues 30.06.2014– 15260

01.03.2017

PAMAP
5

Differences rows 20000– 20000

40091
6

Table 4: Synthetic datasets types

Name Number of points

Uniform

High dependence 20000

Periodic 100, 1000, 5000

Increasing/Decreasing MI

Uniform long 100000

Special

F ADDITIONAL EXPERIMENTS

In this section we provide additional experimental results. We per-

form our experiments for a variety of datasets, different parameter

values of the approaches and queries.

F.1 Data

In our experiments, we use three real-world and various types of

synthetic datasets. We convert these datasets to differences (xt =
at+1 −at ) or revenues (xt = at+1 −at )/at , where at is the original
time-series. Table 3 is a summary of the real-world datasets.

Table 4 lists the types of synthetic data. To form the Uniform

dataset, we sample xt and yt uniformly and independently from

the interval [0, 1000]. For the High dependence dataset, we sample

xt and yt uniformly from eight equal squares [0, 125]×[0, 125]∪

· · · ∪[875, 1000]×[875, 1000]. To generate the dataset Increasing MI,

we iterate between uniform and high dependence distributions,

gradually increasing from 0 to 1 the probability to have a point

from the latter one. The Decreasing MI dataset is just the inverse of

the previous one. In PeriodicX datasets we periodically increase and

decrease the probability to have a point from the high dependence

distribution with period 2X , where X = 100, 1000, or 5000. We also

generate the Uniform Long dataset from the uniform distribution,

but it consists of more points.

F.2 Memory Requirements

Figure 23 graphs the memory requirements with the stream size

for the short streams and all three algorithms. We have scaled the

horizontal axis on the left panel logarithmically and on the middle

and right panel squared logarithmically. Memory consumption

6
Stocks IBM and GE, obtained from https://finance.yahoo.com/

6
Pair USD/RUB and Brent, obtained from https://www.finam.ru/

6
Subject102, columns W, F, obtained from http://www.pamap.org/demo.html

6
excluding NaN values
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Figure 13: Memory consumption on Uniform Long data.
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Figure 14: Memory consumption of on Uniform data.

of PBA does not depend on the data and is in O(logT ). SBA and

MISE consume the least memory for the High dependence data

stream and require more for the Uniform or the real world data.

The memory requirement of SBA is in O(log2T ). MISE with the

same α value consumes more memory than SBA and has worse

memory complexity at least for some data. We also plot the memory

consumption of SBA and MISE on Uniform long dataset as well as

the memory requirements to store the entire dataset (Figure 13).

The horizontal axis is scaled squared logarithmically, and the SBA

memory consumption is a straight line here. MISE however has a

convex memory consumption curve with these coordinates.

Finally, Figure 14 graphs the memory consumption of all algo-

rithms for different α on the Uniform dataset. The horizontal axis

is scaled squared logarithmically. As expected, a greater α leads to

a higher memory consumption of any algorithm. For the same α ,
SBA consumes less memory than MISE. PBA needs more than 100

times less memory than SBA and has a better complexity.

F.3 Computation Speed

Figures 15, 16 show the maintenance speed of SBA and MISE. Hori-

zontal axes are scaled logarithmically. The maintenance speeds are

https://finance.yahoo.com/
https://www.finam.ru/
http://www.pamap.org/demo.html
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Figure 15: Insertion speed of SBA various data.
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Figure 17: Insertion speed on Uniform data.

straight lines for both the synthetic and the real-world data, as pre-

dicted by our analysis, see Table 2. For the same α , SBA maintains

its data structures faster than MISE. PBA insertion speed does not

depend on the data. Figure 17 graphs it for different values of α ,
together with the MISE and SBA curves for the Uniform dataset.
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Figure 18: Query answering speed on Uniform data stream,

∆ = 0.
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Figure 19: Query answering speed on Uniform data stream,

∆ = 4.

Figures 24, 25 plot query answering speeds for ∆ = {0, 4} for
short datasets. In general, PBA is faster for ∆ = 0 and as fast as SBA

and MISE on average for ∆. MISE and SBA perform comparably in

both cases, with SBA being slightly faster for ∆. As with memory

requirements, SBA and MISE answer queries faster on the High

dependence dataset than on the Uniform or the real world datasets.

Figures 18, 19 graph query answering times on the uniform data

stream for the three algorithms for ∆ = {0, 4} and different values

of α . One can see that for a window size greater than 13K points
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Figure 20: Query answering speed on Uniform Long data.

already, any algorithm is faster than using the static KSG estimator

on the raw data.

Finally, to compare the speed complexity of SBA and MISE, we

plot the query answering times for these methods on Uniform

long dataset (Figure 20). We do so for queries in the window [1, tc ]
(∆ = 0). The horizontal axis is scaled squared logarithmically. One

can see that query answering time for SBA scales almost linearly

with these axes, while the curves for MISE are convex. This is in

line with the last row of Table 2.
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Figure 21: Accuracy on IncreasingMI (a) and IBM/GE (b) data.

(c) — comparison of the SBA algorithm with and without

weights for Increasing MI data.

We first explain how we investigate the accuracy of the estima-

tors. Let tmax be the length of a certain dataset. For a given delta we

then create query windows [t1, t2], where t1 = 1, . . . , ⌊tmax /1000⌋ ·

1000, and we choose t2 to provide the required ∆ value; t2 =
⌊(tmax +t1∆)/(∆+1)⌋. Then we obtain MI estimates for all datasets

and windows with PBA, SBA and MISE as well as with the static

KSG estimator, our reference point. Finally, we compute the average
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Figure 22: Accuracy on Increasing MI data for different val-

ues of α .

deviation of the result of the stream estimators from the one of KSG

and standard deviations of these differences.

Figure 21(a, b) features the average deviations in relative terms,

i.e., as the share of maximal MI obtained with the static KSG es-

timator. Lines stand for standard deviations for ∆ = 0. For ∆ = 0,

one can see that MISE estimates MI with a strong and statistically

significant bias. This is not the case for SBA or PBA. Figure 21(c)

compares SBA with and without weights. Clearly, weights reduce

the bias of this algorithm.

Bars in Figure 22 represent the decrease of the bias of the MI

estimate with an increased α for all values of ∆ and for each al-

gorithm. As before, lines stand for standard deviations for ∆ = 0.

Even though the bias with MISE decreases with the increased α , it
remains statistically significant.
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Figure 23: Memory consumption on various data.
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Figure 24: Query answering speed on various data for ∆ = 0.
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Figure 25: Query answering speed on various data for ∆ = 4.
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