

Karlsruhe Institute of Technology

Institute of Engineering Mechanics Chair for Dynamics / Mechatronics

A novel analytical foot rollover model for planar walking

Ulrich J. Römer, Alexander Fidlin

Motivation: established foot rollover model

- Rigid (convex) feet model rolling kinematics
 Established parameterization: radius $r(\varphi)$
- Contact point: implicit problem $\mathbf{n}(\varphi) \cdot \mathbf{e}_z = -1$
- Dynamics: differential algebraic equation (DAE) of index 2
- Simulation:
 - Contact point iteration
 - Time integration of DAE

- Parameterization: ankle trajectory $\mathbf{r}_{\mathrm{P}}(\theta)$ with orientation θ
- Velocity: in tangential direction $\mathbf{v}_{\mathrm{P}}(\theta)$
- Contact point: explicit solution $x_{\rm C} = x_{\rm P} + z'_{\rm P}$
- Dynamics: ordinary differential equation (ODE)

Simulation:

- Contact point via explicit equation
- Time integration of ODE

Example parameterizations

- Seven segment walker with rigid feet and hybrid zero dynamics-based controller*
 Single support phase + impact of swing foot
 Gait generation via optimization of cost of transport (input of mechanical work) c_T = 1/mgL ∑_{i=1}⁶ ∫₀^T max (u_iq̇_i, 0)dt
- Two ankle trajectory parameterizations:
 circular foot contour
 - Bézier polynomial (fit to human data**)
- Comparison of both parameterizations:
 Model & controller complexity identical

Contours/rollover shapes very similar

Significant influence on c_T
 Bézier fit (human data) ≈45% better

*) Martin, A. E., Post, D. C., and Schmiedeler, J. P. (2014). Design and experimental implementation of a hybrid zero dynamics-based controller for planar bipeds with curved feet. *Intl. J. Robot. Res.*, 33(7): 988-1005.

**) Hansen, A. H., Childress, D. S., and Knox, E. H. (2004). Roll-over shapes of human locomotor systems: effects of walking speed. *Clin. Biomech.*, 19(4): 407-414.

KIT – The Research University in the Helmholtz Association

