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Abstract Eight clusterings of a lower back pain dataset were submitted to
the IFCS Benchmarking Cluster Analysis Challenge. The aim of the challenge
was to find clusterings of the 112 baseline variables that help with predicting 9
outcome variables. These clusterings are compared here, using data visualisation
(multidimensional scaling and discriminant coordinates on both baseline and
outcome variables), outcome means and uncertainty intervals, and four cluster
validation indices, namely the Average Silhouette Width, the Pearson correlation
version of Hubert’s I', the Calinski/Harabasz index, and the Adjusted Rand
Index. The different comparison approaches give quite different assessments of
the clustering quality.
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1 Introduction

This paper presents an evaluation of the eight clusterings that were submitted
to the cluster analysis challenge of the IFCS Cluster Benchmarking Task
Force. The challenge was to carry out a cluster analysis of a dataset that had
won an earlier dataset submission challenge. The dataset was provided by
Werner Vach and colleagues. The dataset contains a baseline assessment and
outcome measures from a longitudinal study of adult low back pain patients who
consulted chiropractors. The research question was rooted in a need for a better
understanding of the mechanisms underlying the very heterogeneous conditions
of low back pain. This was translated into a search of a clinically useful
grouping of patients (based on their 112 variables of baseline characteristics
only, “baseline variables” in the following) that could help to predict the
development of low back pain through therapy. Furthermore there were three
different outcome measurements, namely global perceived improvement, a
Roland Morris disability score, and a lower back pain intensity score (LBP),
taken after 2 weeks, 3 months and 12 months. These measurements could be
used to assess the predictive quality of a clustering. In this sense, the clustering
task is semi-supervised. There were many missing values, including in the
outcome variables, and the baseline variables were of mixed types, i.e., nominal
(including binary), ordinal and interval scaled. Of the outcome variables, the
Roland Morris scores can be seen as interval scaled (which may be controversial),
whereas the other two measures are ordinal. More information on the dataset
and the challenge is given in van Mechelen and Vach (2018). The dataset, along
with some documentation and a questionnaire giving information about the
background and characteristics of a desirable clustering, is available on
https://ifcs.boku.ac.at/repository/.

This dataset was to be analysed in a second challenge. There were eight teams
of contributors to this challenge who analysed the dataset in question, namely
Hanneke van der Hoef, Yordan Raykov & Reham Badawy, Mario Fordellone,
Fengmei Liu & Suchara Gupta & Cristina Tortora, Michael Greenacre, Le Phan
& Hongzhe Liu & Cristina Tortora, Vladimir Makarenkov & Alexandre Gondeau,
Joseph Fitch & Nazia Khan & Cristina Tortora. Most of these contributors
provided submissions for the current Special Issue of Archives of Data Science,
in which their clusterings are explained in detail (Hennig et al (2018)). In the
present paper, the final clusterings from each contribution are evaluated in
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various ways. I will not focus on ranking the contributions here. There was
actually a prize winner in the challenge, but a central criterion for the prize was
the justification of the proposed clustering, and its connection to the background
information, and the prize was not awarded based on formal rankings. The aim
of the present paper is rather a less formal exploration of how the clusterings
differ, and to what extent they grasp various features of the data, although some
of the evaluation given here pertains to the predictive task and can therefore be
taken as basis for ranking the clusterings, if required. One issue with this is that
there are nine outcome measurements (or rather three measurements over three
time points each) with different observations missing, so any ranking would
either be based on a single measurement only, or on aggregating measurements,
for which there are many ways conceivable.

There were 928 patients in the dataset. A clustering would normally have
assigned each patient to a cluster, although it was permissible to classify some
observations as “outliers”. Furthermore, some observations were discarded by
contributors because of too many missing values.

Table 1: Number of clusters K and number of observations in all clusters for the eight clusterings.
Cluster column “0” refers to observations classified as outliers. The last column is the number of
observations discarded (because of too many missing values).

Observations in cluster
K 1 2 3 4 5 6 7 8| outliers discarded
van der Hoef 5| 108 165 377 106 169 0 3
Raykov/Badawy* 8| 168 208 66 149 57 50 70 97 63 0
Fordellone 3] 277 360 291 0 0
Liu/Gupta/Tortora 8| 219 166 138 118 114 75 62 36 0 0
Greenacre 6| 90 189 191 177 47 234 0 0
Liu/Phan/Tortora 3| 240 463 212 0 13
Gondeau/Makarenkov 5| 73 198 440 59 151 7 0
Fitch/Khan/Tortora 41 225 257 168 278 0 0

(*) The original clustering of Raykov/Badawy had 17 clusters, but they singled out the eight biggest ones
as potentially meaningful, so observations in the smaller ones (fewer than 20 observations per cluster) were
declared outliers.

The number of clusters K was not given, so all contributors had to decide this
number. Table 1 gives information on K, the cluster sizes, and discarded/outlying



4 Christian Hennig

observations in the eight clusterings. Here is a list of decisions that had to be
made by the contributors:

* What to do with missing values?

* How to handle the mixed types of variables?

* Transformation and standardisation

* Variable selection and/or dimension reduction
* What clustering method to choose?

* How to select the final solution (including K)?
* How to interpret the solution?

* How to validate the solution externally?

Contributors were invited to submit to this Special Issue, and six of them
explained their clustering in detail, see above. Raykov and Badawy used a
Bayesian Dirichlet process approach for clustering, in which missing values
were estimated from the same Bayesian model, see Raykov et al (2016).
Fordellone used multiple imputation, a factorial analysis for mixed type data
(Pages (2004)) and K-means clustering. The latter two did not submit papers for
the Special Issue.

In Section 2 I discuss some issues with the evaluation. In Section 3, the
clusterings are visualised in three different ways, looking at both baseline and
outcome variables. In Section 4 the clusterings are compared by use of four
cluster validation indices. Section 5 provides a conclusion.

2 Some evaluation issues

The IFCS Cluster Benchmarking Task Force states as their philosophy (IFCS
Task Force for Benchmarking (2016)): “In cluster analysis (...) different aims of
clustering may lead to different clusterings on the same dataset that could be
optimal according to different criteria (e.g., overall low within-cluster distances,
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or optimal representation of every object by the centroid object of the cluster to
which it is assigned, or optimal fit by a mixture probability model). (...) It is
therefore particularly important for benchmarking clustering to define properly
the clustering problem that a method aims to solve, by specifying as precisely
as possible what kinds of clusters are of interest.” (See also Hennig (2015)).
The evaluation of clusterings therefore should take into account the aim
of clustering and the available background information. There are certain
specifications given in the questionnaire accompanying the dataset, such as

* “to ensure clinical acceptance, it is desirable to have between 3 and about
12 clusters/groups”,

» “asmall group of patients classified as "unclassifiable’ may be accept-
able”,

* “clusters can vary in size. A large number of small clusters (< 2 %) would
limit the clinical acceptability”,

 “a sufficient degree of similarity, which allows a conceptual labelling” is
required for observations in a cluster or

* ultimately the aim of clustering is the prediction of the future outcomes,
in a clinically interpretable way.

These specifications can be used for evaluation in different ways. Some can
just be checked to see whether they are fulfilled, e.g., whether the number
of clusters is in the required range. Some are essentially informal: various
contributions discussed clinical interpretability, but it is hard to define a
quantitative measurement of this aspect; one could look at cluster purity
regarding certain variables but selecting these would benefit from collaboration
with a practitioner.

There is some other background information, e.g., the fact that the baseline
variables include both summary scores for a number of a patient’s characteristics,
and the detailed scores of which the summary scores are made up, or the meaning
of the different categories of nominal and ordinal variables, with implications
on whether for example it could be appropriate to treat the ordinal variables
as continuous. How these aspects have been taken into account can hardly be
evaluated from the clustering alone.
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The predictive power of the clustering for the outcome variables can in principle
be measured, although there are various ways of doing it, particularly because
of the non-trivial structure of the outcome variables. Another aspect that can be
measured is that within-cluster homogeneity (similarity regarding the baseline
variables) is required and far more important than separation between clusters.
There is not much reason to believe that there are clusters in this dataset that are
clearly and meaningfully separated (splitting clusters along any discrete variable
technically introduces separation, but this would be an artefact).

A general issue with formal performance evaluation in a competition in
the absence of a given “true” clustering unknown to the contributors is the
following. If there was a transparent evaluation criterion, contributors could just
try to optimise it directly, rather than applying and adapting existing clustering
methods, which therefore would not be “benchmarked”. Also, one would expect
clustering methods to perform better, the closer their rationale matches the
evaluation criterion.

In the present situation this issue plays out in the following way. In order to
optimise prediction performance, the outcome variables could be used to choose
the final clustering, for example using cross-validation or even some kind of
within-sample prediction error. This could either be somehow implemented in
the clustering method, or could serve at least to pick one out of several candidate
clusterings, generated by possibly different methods, in the end. Contributors
were explicitly asked not to use the outcome variables for producing the actual
clustering but could use them for validation, which most of them did. Actually,
on the one hand, better clusterings in terms of prediction performance could
probably be achieved by using the outcome variables for finding the clustering,
but on the other hand, there is a certain danger that this may lead to over-optimism
regarding the final (optimised) prediction performance.

3 Visualisation of clusterings

In this section, the clusterings are visualised in ways that allow comparing them.
There are three visualisations. The first one uses discriminant coordinates and
multidimensional scaling on the variables to be clustered. The second one shows
the clusterwise means of the outcome variables with uncertainty intervals. The
third one shows discriminant coordinate plots of the outcome variables.
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3.1 Discriminant coordinates of baseline variables

The first visualisation shows the clusterings on discriminant coordinate plots of
a multidimensional scaling representation of the baseline variables. Discrim-
inant coordinates are connected to linear discriminant analysis; the first two
discriminant coordinates are the two dimensions (orthogonal with respect to the
pooled within-cluster covariance matrix) along which the ratio of the projected
pooled within-cluster variance and the projected pooled between-cluster vari-
ance is minimum, see Rao (1952) (where they are called “canonical variates™)
and other standard textbooks on multivariate analysis. They serve to find a
two-dimensional linear projection of the data along which a given clustering is
most clearly expressed in the sense explained above.

This should give some ideas about the homogeneity of clusters, to what extent
there are separated clusters in the data, and to what extent they coincide, or do
not coincide, with the clusterings. Because the data are of mixed format and
there are many missing values which cannot be handled by standard discriminant
coordinates, multidimensional scaling was performed first in order to achieve a
Euclidean representation of the data.

For the distance measure and particularly the treatment of mixed type data, I
followed Hennig and Liao (2013). The nominal variables are coded as dummy
variables (one for each category). The ordinal variables are used as Likert coded
(i.e., subsequent numbering of categories). The continuous variables are scaled
to unit standard deviation, and the ordinal and dummy variables are standardised
in order to make their contributions to the overall distance comparable, see
Hennig and Liao (2013) for details and justification. A Euclidean distance
between these standardised variables is then computed. In case of missing
values, variables with missing values between a pair of observations are ignored
for that pair, and variables without any missing value between the pair are
scaled up accordingly. I do not claim that this is the optimal distance that can be
defined on these data; in particular, shared information between variables and
dependence could be taken into account as well as variable importance, which
however would require more complex decisions than I wanted to make for this
evaluation.

Multidimensional scaling was carried out using ratio MDS in the R-package
“smacof” (de Leeuw and Mair (2009)). This approach preserves the quantitative
information in the distances (which is advisable if one’s interest is to look
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for “gaps” in the data corresponding to clusters) whereas the distances to
approximate are not squared as in classical MDS, giving less weight to the
largest distances and potentially outlying observations (see Borg et al (2012) for
more discussion). A 20-dimensional MDS output (stress 5.8 %) was used as
basis of computing the discriminant coordinates.

Discriminant coordinates baseline variables van der Hoef
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Figure 1a: Discriminant coordinates/ratio MDS plots of baseline variables, clusterings by van der
Hoef, Raykov/Badawy, Fordellone, Liu/Gupta/Tortora (symbol “0” refers to observations not assigned
to any cluster).
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Discriminant coordinates baseline variables Greenacre Discriminant coordinates baseline variables Liu/Phan/Tortora

dc2

Figure 1b: Discriminant coordinates/ratio MDS plots of baseline variables, clusterings by Greenacre,
Liu/Phan/Tortora, Gondeau/Makarenkov, Fitch/Khan/Tortora (symbol “0” refers to observations not
assigned to any cluster).

The resulting plots are shown in Figures 1a and 1b. None of these projections
shows clearly separated clusters in the sense of density gaps (neither do some
other plots not shown such as a 2-dimensional MDS configuration, looking at
further dimensions, “rotating” through the data etc.), therefore, it seems that
such clusters do not exist in the dataset and consequently the contributors cannot
be expected to find such clusters.
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From these plots, the clusterings of Fordellone, Liu/Phan/Tortora and Fitch/Khan/
Tortora show the clearest homogeneity in terms of the distance measure used here;
clearly, clusters bring together most similar points and within-cluster distances
are smaller. These clusterings have small K (3 or 4); with a higher number
of clusters homogeneity seems to be more difficult to achieve for all clusters,
although most clusters still look homogeneous in the clusterings of Greenacre
and Raykov/Badawy with larger K. The remaining clusterings do not show much
within-cluster homogeneity regarding the given distance measure. This does
not necessarily mean that they are bad, as long as one can argue that they are
homogeneous regarding other potentially more appropriate distance measures.
The main issue here seems to be variable selection and dimension reduction.
Van der Hoef, Liu/Gupta/Tortora and Gondeau/Makarenkov apparently selected
information that characterised the similarity structure quite differently from the
distance measure used here. Greenacre and Gondeau/Makarenkov have one or
two apparently quite heterogeneous clusters besides some more homogeneous
ones, and also in van der Hoef’s clustering there seem to be differences in
within-cluster variation. This may indicate that the selected variables for these
clusterings did not represent all the variation, which is not necessarily a problem
as long as the represented information is still suitable for prediction.

3.2 Means and uncertainty of outcome variables

Some of the original contributions to the challenge showed the within-cluster
means of the outcome variables over time, which look reasonably different for
most clusterings. But this does not take into account how much uncertainty there
is in these means. In Figures 2a-c (which contain a lot of sometimes overplotted
information and may therefore be hard to decipher initially) the within-cluster
means are shown over time along with uncertainty intervals (thin lines of the
same colour below and above the fat mean line). The uncertainty interval borders
are defined as mean plus/minus 1.96 times their estimated standard error, based
on the number of non-missing observations in the cluster. Technically these
are invalid as confidence intervals, because this standard formula does not take
into account that data dependent clustering was carried out first. However, the
outcome variables were not used for clustering, and the intervals may therefore
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be reasonable approximations. In any case they give an idea about the relative
uncertainty compared over clusters and clusterings.

Global Improvement Clustering van der Hoef Roland-Morrs Clustering van der Hoef LBP Clustering van der Hoef
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Figure 2a: Cluster means (fat) and uncertainty intervals of outcome variables for van der Hoef and
Raykow/Badawy. The time points are 2 weeks, 3 months and 12 months.

The plots show that there is a quite strong amount of overlap between the
uncertainty intervals, indicating that often the differences between within-
cluster mean curves may not be statistically significant, although the differences
between the most extreme clusters seem significant in most cases. The clusters are
best distinguished regarding the Roland-Morris score and worst regarding global
improvement. Fordellone’s clusters show the clearest differences, particularly
regarding the Roland-Morris score, followed by Liu/Phan/Tortora. It does not
look coincidental that these are the clusterings with K = 3, the lowest number of
clusters. Clusterings with more clusters predict a larger range of outcome values,
but this comes with larger uncertainty, which is in all likelihood caused by lower
numbers of observations per cluster. For Gondeau/Makarenkov’s clustering,
all intervals overlap for the LBP score. Fitch/Khan/Tortora’s clustering looks
as if three out of four cluster mean lines are well separated; the mean lines of
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two of their clusters cross for the Roland-Morris score, which is the clearest
crossing of within-cluster developments over time. Van der Hoef’s cluster with
largest means (light blue) seems to predict higher values of global improvement
and LBP clearly separated from the other clusters’ means, but not regarding the
Roland-Morris score, which is remarkable given that generally Roland-Morris
seems to be the easiest score to predict from clusters.
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Figure 2b: Cluster means (fat) and uncertainty intervals of outcome variables for Fordellone,
Liu/Gupta/Tortora and Greenacre. The time points are 2 weeks, 3 months and 12 months.
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Global Improvement Clustering Li/Phan/Tortora. Roland-Morris Clustering Liu/Phan(Tortora LBP Clustering Liu/Phan/Tortora.

Roland-torrs

T T T T T T T T T
2 am 12m 2 3 12m 2 am 12m
Time point Time point Time point

Global Improvement Clustering Gondeau/Makarenkov Roland-Morris Clustering Gondeau/Makarenkov LBP Clustering Gondeau/Makarenkov

Y

T T T T T T T T T
20 am 12m 2 am 12m 2 e 121
Time point Time point Time point

Global Improvement Clustering Fitch/khan/Tortora Roland-Morris Clustering Fitch/Khan/Tortora LBP Clustering Fitch/Khan/Tortora

|
[
f

2
H
B
1
g
B
¥
E
B

Time point Time point Time point

Figure 2c: Cluster means (fat) and uncertainty intervals of outcome variables for Liu/Phan/Tortora,
Gondeau/Makarenkov and Fitch/Khan/Tortora. The time points are 2 weeks, 3 months and 12 months.

I also produced similar plots (not shown) but with uncertainty intervals based
on standard deviations instead of standard errors to see to what extent the
actual values of the outcome variables overlap between clusters (rather than the
uncertainty in the estimated means). This overlap is generally very strong.
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3.3 Discriminant coordinates of outcome variables

The uncertainty intervals from Section 3.2 illustrate the uncertainty in the
within-cluster means. They do not show the within-cluster variation of the
observations on the outcome variables. The homogeneity, or heterogeneity,
respectively, of the clusters regarding the outcome variables can be visualised
in the same way as in Section 3.1. There are only nine outcome variables with a
considerable number of missing values. I excluded all observations with five
or more missing values (i.e., more than half) on the nine outcome variables.
The resulting sample size is 742. Distances, ratio MDS (9 dimensions, stress
8.7 %) and discriminant coordinates have then been applied as in Section 3.1.
The resulting plots are shown in Figures 3a and 3c.

Discriminant coordinates output variables van der Hoef Discriminant coordinates output variables Raykov/Badawy

Figure 3a: Discriminant coordinates/ratio MDS plots of outcome variables, clusterings by van der
Hoef, Raykov/Badawy (symbol “0” refers to observations not assigned to any cluster).

As could be expected because the outcome variables were not used for clustering,
the clusters look much more heterogeneous than in Figures 1a and 1b. In some
of these plots one needs to look quite hard for systematic differences between
clusters. The clusterings with more clusters seem to have an advantage here in
the sense that at least the differences between the more extreme clusters can be
clearly seen (e.g., clusters 3/4 vs. 6/8 in Raykow/Badawy). In practice, it may be
useful to know that in the same clustering different clusters may be more or less
informative when it comes to the prediction of the outcomes. One message of
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the plots is that the ability of the clusters to “locate” patients in outcome space
and thus predict the patient’s process is quite limited. Obviously in these plots
the global improvement, Roland-Morris and LBP scores have been aggregated,
and prediction of the Roland-Morris score alone may work somewhat better.
The correlation between the vectors of distances (stacking the distances for all
pairs of patients) in baseline space and outcome space is 0.289, showing that
the baseline variables should have an existing though limited predictive power.

Discriminant coordinates output variables Fordellone Discriminant coordinates output variables Liu/Gupta/Tortora
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Figure 3b: Discriminant coordinates/ratio MDS plots of outcome variables, clusterings by Fordellone,
Liu/Gupta/Tortora, Greenacre, Liu/Phan/Tortora (symbol “0” refers to observations not assigned to
any cluster).
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Discriminant output variables Discriminant coordinates output variables Fitch/Khan/Tortora

Figure 3c: Discriminant coordinates/ratio MDS plots of outcome variables, clusterings by
Gondeau/Makarenkov, Fitch/Khan/Tortora (symbol “0” refers to observations not assigned to any
cluster).

4 Validation indices

Many indices have been proposed in the literature to measure the “validity” or
quality of a clustering, see, e.g., Halkidi et al (2015). “Internal” cluster validity
in the literature usually refers to measurement of the clustering quality just
based on the clustering and the clustered data, without any reference to some
underlying (known) “true clustering”. In contrast, “external” validation uses
information external to the data that was clustered. A number of indices is
available for these tasks. For the lower back pain data analysed here, computing
such indices can be of interest for both the baseline data and the outcome
data (with in both cases using the clusters that were derived from the baseline
variables). Note that computing such indices on the outcome data constitutes an
“external” validation of the clusterings on the baseline data. Obviously, in the
latter case one would expect a lower clustering quality.

I use four different validation indices here. Note that most competition
participants used one or more of these indices directly or indirectly (for fixed
K, K-means is equivalent to optimising the CH-index, see below) for finding
their clustering. In principle one should expect that a clustering does better on
an index if the index was used for clustering, particularly if the clustering was
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found by optimising the index. However, keeping in mind that the distances used
by the participants were all different from mine, and that some of the indices
were used in a very marginal way (for example, van der Hoef used a voting
scheme out of 30 indices including three of those given below for finding the
number of clusters), it would be hard to interpret the presence or absence of
any connection between the index values given here, and which indices were in
some way used by the participants, which I therefore will not consider.

4.1 Average Silhouette Width

The Average Silhouette Width (ASW, Kaufman and Rousseeuw (1990)) com-
pares for every observation the average distance to observations in the same
cluster with the average distance to observations in the closest different cluster
and aggregates the resulting “silhouette widths”. The resulting value is between
—1 and 1. High values mean that the average distance to the closest different
cluster for all or most observations is much higher than the average distance
to observations in the same cluster. This is desirable in cluster analysis and
means that clusters are homogeneous and separated from their closest neigh-
bours. Values around zero mean that on average, the two average distances are
very similar; negative values mean that many points would be better off in a
neighbouring cluster than in the one to which they were actually assigned.
Average Silhouette Widths can be seen in Figure 4. The correlation between
ASWs on the baseline and the outcome variables is 0.15, which means that the
ASW on the baseline variables is somewhat but not very informative about the
ASW on the outcome variables. Fordellone’s clustering is best regarding both
distances. Van der Hoef’s clustering is the worst on the baseline variables but
does better regarding the outcome variables. Liu/Phan/Tortora do not do so well
regarding the ASW. All ASW values are quite low; actually on the outcome
variables all are negative. This is not a good result, although it does not mean
that the clusterings are all useless. In fact, the definition of the ASW implies a
search of the best neighbouring cluster for all observations. When calculating
ASW on the outcome variables, “best neighbouring” is based on a match in
terms of the outcome variables (whereas the clusterings under study are derived
from just the baseline variables). Nevertheless, as long as the cluster to which
an observation is assigned still allows a prediction of the outcomes that is better
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than prediction from a random cluster, the clustering still is of some use for
prediction.

Average Silhouette Width, correlation=0.15
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Figure 4: Average Silhouette Widths on baseline and outcome variables.

Although the ASW is one of the most popular validation indices, it has too
much of a focus on separation between neighbouring clusters, which is not very
relevant for the data analysed here.

4.2 Pearson correlation version of Hubert’s I'

Hubert and Schultz (1976) introduced a general principle for constructing
validity indices, sometimes referred to as Hubert’s I', one of which is the Pearson
correlation between the vector of dissimilarities for all pairs of observations
and a 0-1 vector which is 0 if the two observations are in the same cluster and
1 if they are in different clusters. I call this index Pearson-I, see Halkidi et al
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(2015). This index measures to what extent the clustering information represents
the information in the dissimilarities. This can be seen as relevant particularly
for the outcome variables, because it addresses the question how strongly the
clusters are informative about the outcomes.

Pearson Gamma, correlation= 0.36
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Figure 5: Pearson-I" on baseline and outcome variables.

The Pearson-I" values are shown in Figure 5. The correlation between Pearson-I'
values on the baseline and outcome variables is 0.36, much higher than for
the ASW. It is remarkable that Liu/Phan/Tortora achieve the best value on the
outcome variables after having scored lowest on the ASW. This shows how
strongly differently these two indices assess the clusterings. Van der Hoef,
Greenacre and Raykov/Badawy have the next highest values. Van der Hoef
again scores lowest on the baseline variables while still achieving a competitive
performance on the outcome variables. All correlations are positive (if rather
low), so the clusterings at least give some information about the outcome
variables.
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4.3 Calinski and Harabasz index

The Calinski and Harabasz index (CH, Calinski and Harabasz (1974)) is another
quite popular index. It is usually used for Euclidean data but can be defined
for general dissimilarities, see Halkidi et al (2015). CH is based on the ratio
of between-cluster and within-cluster variation. This is scaled appropriately to
make clusterings with different numbers of clusters comparable. Larger values
are better. On the other hand, as opposed to the ASW and Pearson-I, it is
hard to attribute absolute meaning to CH values that could be compared across
different datasets. Because the within-cluster variation does not look specifically
at neighbouring clusters or smallest dissimilarities between clusters, CH can be
interpreted as measuring within-cluster homogeneity, standardised by overall
variation, whereas separation does not contribute strongly. I chose CH here
because within-cluster homogeneity is much more relevant than between-cluster
separation, and realistic to achieve.

Calinski/Harabasz index, correlation=0.87

Fordellone o

25

Fitch/Khan/Tortora o

20
|

Liu/Phan/Tortora

o

o Greenacre

15

- o van der Hoef

10

- o Raykov/Badawy

Calinski/Harabasz on outcome variables

o Liu/Gupta/Tortora

o Gondeau/Makarenkov
T T T T T
20 30 40 50 60

Calinski/Harabasz on baseline variables

Figure 6: Calinski/Harabasz on baseline and outcome variables.
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The values are shown in Figure 6. Interestingly, the correlation between the
CH values on the baseline and outcome variables is very high at 0.87, so
homogeneity on the baseline variables seems to be connected to homogeneous
predictions (although the very high correlation can to some extent be an unstable
product of the low number of clusterings). Fordellone has the best results on
both distances. Van der Hoef again looks bad on the baseline variables but better
on the outcome variables. Of course all these quality judgements rely on the
appropriateness of the distances used here, which can be disputed.

4.4 Adjusted Rand Index

The Adjusted Rand Index (ARI; Hubert and Arabie (1985)) is an index that
compares two different partitions. Its value range is between —1 and 1 with
1 indicating a perfect match and O being the expected value when comparing
two random partitions with the same cluster sizes as the two partitions that
are actually compared. Often it is used as a quality measurement comparing a
computed partition to a known “true” clustering. Such a “true” clustering is not
given here, but the ARI can be used to compare all pairs of the eight submitted
clusterings.

This yields ARI values between 0.03 and 0.46. The ARI is a similarity
measure, and I defined a dissimilarity by computing 0.5—ARI, which is between
0 and 1 because no ARI here is larger than 0.5. On this dissimilarity, a ratio
MDS was performed. The result can be seen in Figure 7. I also tried out 1-ARI
but this distributes the clusterings more uniformly in the ratio MDS, giving a
less interesting plot.

The pairs of clusterings of Greenacre and Raykov/Badawy, as well as Fordel-
lone and Fitch/Khan/Tortora are the most similar. The other four clusterings
are more “idiosyncratic”. What is surprising here is that the similarity between
Greenacre, Liu/Gupta/Tortora and Liu/Phan/Tortora is not that high, given that
all of these submissions relied strongly on Correspondence Analysis. On the
other hand, I would have expected Fitch/Khan/Tortora to be more outlying, given
that they used Spectral Clustering, which is quite different and less focused on
within-cluster homogeneity than the clustering methods used by most others,
particularly k-means and clara. What this shows is that preprocessing decisions,
probably particularly variable selection and dimension reduction, perhaps also
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treatment of the mixed types of variables, had more impact on the clusterings
than the finally used clustering algorithm.

MDS based on (0.5-ARI); max ARI=0.46, min ARI=0.03
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Figure 7: Ratio MDS of distances defined as 0.5—ARI between clusterings.

5 Conclusion

I compared the eight clusterings submitted to the IFCS cluster analysis challenge
on the lower back pain dataset in a largely exploratory fashion, not aiming at
generating a quality ranking in the first place, but rather at illustrating differences
and similarities between the contributions.

Besides comparing the specific clusterings, this shows some general features
of the problem, namely that overall the use of the clusters for predicting the
outcome variables is rather limited; no baseline cluster in any of the clusterings
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leads to really homogeneous outcomes, although there is certainly some limited
amount of information about outcomes in the baseline variables.

Preprocessing decisions including variable selection and dimension reduction
may have a stronger impact on the clustering than the clustering algorithm finally
used. To what extent clustering quality on baseline and outcome variables is
related depends strongly on the index used to measure this, and the different
cluster validity indices gave quite different assessments of the clustering quality.
Generally, the different analyses carried out here give quite different pictures of
what the methods achieved and how good they were (if they would be used in
this way), which illustrates the general difficulty of cluster benchmarking and
the importance to carefully think about the used criteria.

Thinking of general cluster analysis benchmarking, I can well imagine that
some of the techniques applied here can be informative when evaluating and
comparing a set of different clusterings on a real benchmark dataset without
given “true” clustering.
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