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Zusammenfassung

Die gerichtete Erstarrung von eutektischen Legierungen ermöglicht

die Herstellung vielversprechender in situ Verbundmaterialien für
zukünftige Hochtemperaturbauteile, speziell für die Verwendung un-

ter mechanischer Belastung. Um ein umfassendes Verständnis dieser

Legierungen zu erhalten und weitere Optimierungsmöglichkeiten auf-
zudecken, wird ein Simulationsmodell basierend auf der Einkristall-

Plastizitäts-Theorie eingeführt. Zur physikalischen Darstellung des
Übergangs von der theoretischen Festigkeit zur bekannten Taylor-

Festigkeit wird ein neues Verfestigungsgesetz eingeführt. Dieses kann
unter anderem zur Beschreibung der in situ Verstärkungsphase von

gerichtet erstarrtem NiAl-9Mo und NiAl-31Cr-3Mo verwendet werden.
Das Kriechverhalten der gerichtet erstarrten NiAl-9Mo Legierung kann

mit diesem Verfestigungsgesetz und einem Kristallplastizitätsmodell

sowohl für (i) unterschiedliche Belastungen als auch für (ii) unter-
schiedliche Temperaturen und für (iii) verschiedene Faserdurchmes-

ser sehr gut dargestellt werden. Das Kristallplastizitätsmodell wird
anschließend zu einem Gradienten-Plastizitäts-Modell erweitert. Auf

diese Weise können die Effekte der Faser-Matrix Grenzfläche und der
geometrisch notwendigen Versetzungen in der Simulation berücksich-

tigt werden. Die „interface-enriched generalized finite element method“
wurde hierfür im Kontext der Gradienten-Plastizität angewendet. Eine

spannungsabhängige Grenzflächenfließbedingung ist notwendig, um

den Übergang eines rein elastischen Verhaltens zu einem elastisch-
plastischen Verhalten der Fasern darstellen zu können. Es zeigt sich,

dass das mechanische Verhalten der Faser und der Faser-Matrix Grenz-
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Zusammenfassung

fläche das Kriechverhalten des gesamten Verbundes wesentlich be-
einflussen. Darüber hinaus wird die Änderung der Mikrostruktur

infolge von Diffusion untersucht. Hierfür wird ein Simulationsmodell
eingeführt, welches die mechanischen Gleichgewichtsbedingungen

und die Cahn-Hilliard Diffusionsgleichung miteinander koppelt. Die

Simulationsergebnisse zeigen, dass die Orientierung der Lamellen
in Bezug zur Belastungsrichtung eine Rolle für den Diffusionsfluss

spielen.
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Abstract

Directionally solidified (DS) NiAl based eutectic alloys are promising

candidates for further structural applications at elevated temperatures.
A single-crystal plasticity model is established for the understanding

and the optimization of DS NiAl-9Mo and NiAl-31Cr-3Mo eutectics. To

consider the transition from theoretical to bulk strength, a hardening
model was introduced and used to describe the strength of the reinforc-

ing phases. The creep behavior of the DS NiAl-9Mo composite could
be well described by the single-crystal plasticity model, even for (i)

a change of the applied stress, (ii) a change of the temperature, and
(iii) a change of the fiber diameter. To include the effects of the fiber-

matrix interface and the geometrically necessary dislocations within the
simulations, the single-crystal plasticity model was extended to a gra-

dient crystal plasticity model. It was realized by applying the interface-

enriched generalized finite element method, which was originally used
to describe discontinuities resulting from cracks. Further, to rationalize

the transfer from a purely elastic to an elasto-plastic behavior of the
reinforcing fibers, the stress dependent interface flow rule was crucial.

It was found that the fiber phase as well as the fiber-matrix interface
play a particularly important role on the creep behavior of the com-

posite. Moreover, to account for microstructural changes due to ma-
terial flux, a coupled diffusional-mechanical simulation model was in-

troduced. Here, the focus lay on the investigation of the influences of an

inhomogeneous strain distribution on the coarsening process, thus, the
Cahn-Hilliard diffusion equation was coupled with the balance equa-
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tion of linear momentum. It was shown that the lamellar orientation
with respect to the external load can influence the coarsening velocity.
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Chapter 1

Introduction

1.1 Motivation and objective of the thesis

The development of new high temperature materials for structural ap-

plications such as, e.g., turbine blades is a challenging task in material
science and engineering. However, this challenge is worthwhile as the

potential impact of these materials on turbine engines is highly relevant
from an economical and an ecological point of view. Over the past years,

the improvement of these engines was mainly driven by using thermal-
barrier coatings and elaborating improved cooling systems. Neverthe-

less, the deviation from the ideal performance further degrades, partic-

ularly due to the necessary effort of cooling. This also results from the
fact that the operating temperature of engines is further approaching

the melting temperature of the constituent materials. Consequently, the
discovery of a new material with a higher melting temperature is indis-

pensable, to close the gap and to enhance the performance. Here, nu-
merical analysis and simulations can essentially support and abbreviate

the development process. In addition, they deliver an insight into the
material’s behavior, which helps to understand the high temperature

process in general. This gained knowledge can then be used for future

developments and optimizations.
Consequently, the movitation for this work is based on the development

of a new high temperature material for structural applications. It was

1



1 Introduction

embedded in the Helmholtz School Integrated Materials Development for

Novel High Temperatures Alloys at the Karlsruhe Institute of Technology

(KIT). The research focus was set on NiAl-based directionally solidified
eutectics, where the NiAl matrix is reinforced by a refractory metal,

e.g., Cr or Mo. These composites reveal good high temperature prop-

erties in combination with a higher melting temperature compared to
the currently used materials and, thus, are of great interest for further

high temperature structural applications. Even though these direction-
ally solidified composites have been studied at room temperature and

also at high temperatures, a physically motivated model which rational-
izes the composites’ behavior is still lacking. The main objective of the

presented work is, therefore, to establish and verify physical models
which are applicable for NiAl-based directionally solidified eutectics

with lamellar or fibrous in situ reinforcements. These models should

describe the thermo-mechanical behavior under various thermal and
mechanical loads and for different withdrawal rates during directional

solidification. Further, they should provide an insight into the com-
posites’ behavior and reveal the deformation-controlling phases and

mechanisms. Preferably, the simulation models are able to clarify and
to explain uncertainties within experimental observations. Moreover,

they can be used to optimize and to further enhance the composites’
high temperature properties. An additional purpose of this work is,

finally, to reveal the effects from external loads on the diffusion process

leading to microstructural changes.
Within this work, several originalities were developed, whereas the

main highlights are:

• The motivation of a size-dependent transition law between different
strengthening mechanisms. Compared to the preexisting transition

laws, it fulfills more experimental observations and is valid for an

extended range of dislocation densities. It describes the strength,
decreasing from the theoretical strength for an essentially vanishing

2



1.1 Motivation and objective of the thesis

dislocation density and reaching the normal square root Taylor hard-
ening for high densities. In addition, it rationalizes several exper-

imental findings on the material strength. Finally, it was used to
describe the reinforcing phases of the DS eutectics, however, it is also

valid for other materials.

• The development of a single-crystal plasticity model to describe the

creep behavior of NiAl-based directionally solidified eutectics with
in situ reinforcements, validated for NiAl-9Mo and NiAl-31Cr-3Mo.

The model is applicable for various thermal and mechanical loads

and for different withdrawal rates during directional solidification.
The simulation model allows an insight into the materials’ behavior

and reveals the creep-controlling phase.

• The extension of the local simulation model by the gradient crys-

tal plasticity model to account for the effects of geometrically nec-
essary dislocations. The model incorporates the pile-up stress at the

fiber-matrix interface, which leads to the transfer/activation of slip.
The corresponding interface flow rule is stress dependent and was

validated by comparing simulated creep curves with experimentally
measured ones from literature.

• The application of the interface-enriched generalized finite element
method (IGFEM) in the context of gradient plasticity. This method

allows for discontinuities at interfaces and is well-suited for moving
interfaces. It was validated in the context of gradient plasticity by

comparing the simulation results with an analytical solution.

• The preliminary results of the Cahn-Hilliard diffusion coupled with

the balance equation of linear momentum. The coarsening process of
colonies, which contain fine lamellas, is numerically investigated and

the impact of an external load on the diffusion process is discussed.

3



1 Introduction

1.2 Outline of the thesis

The experimental background of the directionally solidified eutectics is
given in Chapter 2, together with an overview of the characterization of

the materials’ properties at elevated temperatures. Fundamental infor-
mations about the plastic deformation based on dislocations and the ba-

sics of continuum mechanics are presented in Chapter 3 and Chapter 4,
respectively. The numerical implementations are described in Chap-

ter 5 and are necessary for the realization of the simulation models. In
Chapter 6, the transition law of the material strength between different

strengthening mechanisms is motivated. This transition law is crucial

for the single-crystal plasticity model to describe the creep behavior of
DS NiAl-based eutectics presented in Chapter 7. An extension of this

local model is given in Chapter 8 by a gradient crystal plasticity model.
Amongst others, it considers the effects of the geometrically necessary

dislocations and the slip transfer/activation at the fiber-matrix interface.
To account for a microstructural change due to diffusion, the coupled

diffusional-mechanical simulation model is introduced in Chapter 9.
Here, the focus lies on the investigation of the influences of an inhomo-

geneous strain distribution on the coarsening process. Finally, the work

is concluded and the main highlights are summarized in Chapter 10.
Further, it includes also a brief discussion of remaining open questions

and possible further investigations.

1.3 Notation

In this work, a direct tensor notation is preferred. Vectors and second-
order tensors are denoted by lower- and uppercase bold letters, e.g., a

and A, respectively. The scalar product is marked by A · B = sp(ATB),
whereas the dyadic product is marked by A ⊗ B. The linear mapping

of a first-order tensor by a second-order tensor and the linear map-

4



1.3 Notation

ping of a second-order tensor by a fourth-order tensor C is identified
as t = σn and A = C[B], respectively. A superimposed dot, e.g., ˙̌γ,

indicates the material time derivative of the quantity. 〈·〉 stands for
the Macaulay bracket with the properity 〈·〉 = max (·, 0). The jump of a

quantity is denoted by [[−γ̌]]− = γ̌+ − γ̌− and the normal vector of the inter-

face nΓ is pointing from V− to V+, whereas the mean value of a quantity
is denoted by 〈〈φ̌〉〉. The Frobenius norm is identified as ||A|| =

√
A · A.

5





Chapter 2

Experimental background of
directionally solidified eutectics
for high temperature applications

2.1 Characterization of creep behavior

2.1.1 General overview

Under an applied stress, a material deforms permanently at elevated
temperatures, even though the applied stress is lower than the yield

point of this material. This phenomenon is called creep and usually
appears for T > 0.4 Tm, where T stands for the temperature and Tm for

the melting temperature of the specific material. The most common
way to examine a material’s creep behavior is the uni-axial creep test.

Here, a specimen is heated up to a specific temperature and loaded by
a normal stress σ̄. Temperature and applied stress are kept constant

during the creep test and the strain ε in loading direction is plotted

versus time t. An exemplary creep curve is shown schematically in
Fig. 2.1 a). After an instantaneous elastic strain as a response to the

applied stress, the material starts to deform plastically. The creep curve
can be divided into three typical creep regimes: the primary I, the sec-

ondary II, and the tertiary III creep regime. In the primary creep regime,
the creep rate decreases to the minimum creep rate. The secondary

7



2 Experimental background of DS eutectics for high temperature applications
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Figure 2.1: a) Exemplary creep curve with three typical creep regimes: the primary I,
the secondary II, and the tertiary III creep regime. b) Creep rate versus creep strain for a
material with a steady-state creep regime (creep curve marked with A©) and for a material
without a steady-state creep regime (creep curve marked with B©).
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creep regime is characterized by an approximately constant creep rate,

which increases in the tertiary creep regime. Finally, the creep curve
is limited by the creep rupture of the specimen. Another possibility to

depict the creep curve is shown in Fig. 2.1 b), where the creep rate is
plotted over the creep strain. The creep strain is defined as the differ-

ence between the measured strain and the elastic strain (Naumenko and
Altenbach, 2016). The classical creep curve (marked with A©) contains

all three creep regimes. Such creep curves can be observed for several
materials, e.g., for pure metals (Naumenko and Altenbach, 2016). The

creep rate in the secondary creep regime stays approximately constant

over a wide range of creep strain and is called steady-state creep rate
ε̇ss. In this regime, the hardening and the softening/recovery effects

are canceled out by each other. For many structural materials, however,
such a secondary creep regime is not visible (Naumenko and Altenbach,

2016). The creep rate decreases to a value of minimum creep rate ε̇min

and immediately increases after that minimum point. An exemplary

creep curve for such a material is shown in Fig. 2.1 b) and marked with
B©.



2.1 Characterization of creep behavior

material at elevated temperatures, e.g., the coarsening of dislocation
subgrains (Blum, 2008) or of precipitates (Abe, 2009; Blum, 2008), the

lattice diffusion (Nabarro, 1948; Herring, 1950), the grain boundary dif-
fusion (Coble, 1963), the grain boundary sliding, e.g., (Nabarro and

de Villiers, 1995), and the climb-plus-glide of dislocations, e.g., (Frost

and Ashby, 1982; Nabarro and de Villiers, 1995). The controlling creep
mechanism of the overall behavior depends on the material, the un-

derlying microstructure, and the external creep conditions (e.g., the
temperature and the applied stress).

For the characterization of the creep behavior of a material and the de-
sign of structures, the steady-state/minimum creep rate is an important

characteristic value (Naumenko and Altenbach, 2016). Furthermore,
the dependencies of the steady-state/minimum creep rate on stress and

temperature are of primary interest and will be addressed in the fol-

lowing section. Additionally, the duration of each stage as well as the
time and strain to fracture are important properties (Naumenko and

Altenbach, 2016).

2.1.2 Temperature and stress dependent creep behavior

The minimum creep rate strongly depends on the applied stress and
the temperature. Exemplary minimum creep rates for different applied

stresses are shown in a full-logarithmic graph (Fig. 2.2 a)). For several
materials a constant stress exponent m̄ over a range of applied stresses

can be observed. The value of the stress exponent is helpful to identify

the creep mechanism, e.g., metallic materials possess a stress exponent
in the range of 3 to 10 for climb-plus-glide based creep (Naumenko and

Altenbach, 2016). The temperature dependency of the minimum creep
rate is depicted exemplarily in a natural logarithmic versus T −1 graph

(Fig. 2.2 b)). Analog to the stress exponent, a constant activation energy
for creep Q̄C can be observed over a range of different temperatures.

9
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2 Experimental background of DS eutectics for high temperature applications

applied stress as well as the temperature can, thus, be described by
a product of two separate functions (Naumenko and Altenbach, 2016;

Mukherjee, 2002). Several functions describing stress and temperature
exist (Naumenko and Altenbach, 2016), whereas in the context of this

work the power-law function for the stress and an Arrhenius function

for the temperature were used, thus,

ε̇min ∝ exp

(

− Q̄C

RT

)

(σ̄)
m̄

. (2.1)

Here, the temperature T is in Kelvin and R is the universal gas constant.

m̄
|Q̄C|

b)a)

Applied stress

ε̇ m
in

T −1

ln
(ε̇

m
in

)

Figure 2.2: a) Minimum creep rate versus applied stress for a constant creep test
temperature in a full-logarithmic representation. The slope of the fitted straight line
corresponds to the stress exponent m̄. b) Exemplary minimum creep rates showing
the temperature dependency for a constant applied stress. The absolute value of the
activation energy for creep Q̄C corresponds to the slope of the fitted straight line.
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For many materials, the dependency of the minimum creep rate to the
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2.2 Directional solidification

2.2.1 General overview of the directional solidification

At high temperatures, grain boundaries can affect the creep resistance
in an unfavorable way (e.g., by lattice diffusion (Nabarro, 1948; Herring,

1950) or grain boundary diffusion (Coble, 1963)). An overview of those
weakening effects is given by Naumenko and Altenbach (2016). To

avoid these grain boundaries, the directional solidification (DS) pro-
cess can be employed to create a single-crystal material. During the

DS process, a controlled solidification front moves through the sample
which can be achieved by using, e.g., a Bridgman type (Misra et al.,

1997) or an optical floating zone furnace (Bei and George, 2005). A

schematical representation of an optical floating zone furnace is shown
in Fig. 2.3 on the left. The upper and the lower rod are connected by

the melt. To achieve a planar solidification front and a homogeneous
melt, the upper and the lower rod are rotating in contrary directions.

The solidification front moves from top to bottom by lowering both
rods. For eutectic alloys, the directional solidification process can fur-

ther be used to create a well aligned fibrous or lamellar microstructure
(e.g., NiAl matrix reinforced by Cr fibers (Walter and Cline, 1970), Mo

fibers (Bei and George, 2005), and Cr-Mo lamellas (Yu et al., 2014)). A
review of DS intermetallic composites for high temperature structural

applications is given by Bei et al. (2004). The fibers and the lamellas

are aligned parallel to the growth direction (schematically depicted for
a fibrous microstructure in Fig. 2.3 on the right), which leads to a strong

enhancement of the creep resistance in growth direction.

11
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Lamp

Reflector
Melting zone

Solidification zone

Homogeneous
material

Fiber

Growth direction

Melt

Figure 2.3: Schematical representation of an optical floating zone furnace on the left and
the alignment of the fibers parallel to the growth direction due to the DS process on the
right side.

2.2.2 Directionally solidified NiAl based eutectic alloys

Intermetallic compound NiAl

In the past, the intermetallic compound NiAl was a promising can-

didate for further applications at elevated temperatures (Haenschke

et al., 2010; Frommeyer and Rablbauer, 2008; Darolia, 1994). This
is due to (i) the high oxidation resistance, (ii) the high thermal con-

ductivity as well as (iii) the higher melting temperature, and (iv) the
lower density compared to currently used single-crystal nickel-based

superalloys (Noebe et al., 1993; Miracle, 1993). The B2 crystal structure
of NiAl can be described by one Al primitive cubic cell interpenetrating

one Ni primitive cubic cell and is depicted in Fig. 2.4. This crystal
structure exists over the composition range of 45-60 at.-% Ni (Noebe

et al., 1993). Within this work, the compositions are given in atom-%
(at.-%). The observed active slip systems of this crystal are given in

Tab. 7.1 (Noebe et al., 1993; Miracle, 1993). Based on the slip systems,

12
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Figure 2.4: B2 crystal structure of NiAl consisting of one Al primitive cubic cell interpen-
etrating one Ni primitive cubic cell depicted by the blue and yellow atoms, respectively.

single-crystal NiAl exhibits two different types of slip behavior. The

so called soft-orientation includes all non-〈001〉 loading directions and
has a dominant slip vector in the 〈001〉 direction. Contrary, the 〈001〉
hard-orientation exhibits a combination of 〈111〉, 〈110〉, and 〈100〉 slip
vectors, depending on the temperature (e.g., Noebe et al. (1993)). Noebe

et al. (1993) summarized the yield stress of near stoichiometric single-

crystal NiAl for different orientations as a function of the temperature.
The compound exhibits a relatively low ductile to brittle transition

temperature (Haenschke et al., 2010), which is summarized for various
compositions in Noebe et al. (1993). Frommeyer et al. (2010) deter-

mined the elastic constants for polycrystalline NiAl and Rusović and
Warlimont (1977) used the ultrasonic pulse-echo method to reveal the

elastic constants for a single-crystal.
However, the low creep resistance and the low room temperature

fracture toughness currently limits the use of NiAl for high temperature
structural applications, e.g., Noebe et al. (1993). The high tempera-

ture plastic flow behavior of stoichiometric NiAl was examined for

a polycrystalline microstructure by Whittenberger (1987; 1988), for a

13
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single-crystal by Forbes et al. (1996) and for off-stoichiometric Ni-40Al
by Whittenberger et al. (1991). Arzt and Grahle (1998) studied the

creep behavior of oxide-dispersion strengthened NiAl. Nevertheless,
all studied cases reveal the low creep resistance compared to currently

used single-crystal nickel-based superalloys. Moreover, experimental

measurements reveal that, in addition to the low creep resistance,
the low room temperature fracture toughness of approx. 8 MPa

√
m

(Noebe et al., 1993; Miracle, 1993; Hu et al., 2012) constrains the use of
NiAl for structural applications. Depending on the crystal orientation

for single-crystals and on the grain size for polycrystals, the fracture
toughness is summarized in Noebe et al. (1993); Miracle (1993). One

possibility to simultaneously enhance the creep resistance and the room
temperature fracture toughness is the employment of the directional

solidification of eutectic alloys, where near-stoichiometric NiAl can be

reinforced by a refractory metal, e.g., Cr, Mo, W, Re (Frommeyer and
Rablbauer, 2008).

Directional solidified NiAl-Mo

Depending on the growth rate, the directional solidification of the eutec-

tic NiAl-9Mo creates a well-aligned fibrous or cellular microstructure

(Seemüller et al., 2013; Zhang et al., 2013). The minimum creep rate
of well-aligned fibrous microstructures can be considerably lower than

for cellular microstructures (Seemüller et al., 2013), making the former
more interesting for high temperature structural applications. A more

detailed analysis by Bei and George (2007) reveals that the chemical
composition of the fibers is Mo-10Al-4Ni, whereas that of the matrix is

Ni-45.2Al. In the context of this work, they will be referred to as fibers
and matrix, respectively. The fibers are placed in a regular hexagonal

arrangement (Zhang et al., 2013; Bei and George, 2005). Depending
on the growth conditions, the area-equivalent fiber diameter of the DS

NiAl-9Mo eutectic lies in the range of 80 nm − 900 nm (Seemüller et al.,

14



2.2 Directional solidification

2013; Dudová et al., 2011; Bei and George, 2005; Zhang et al., 2013; Bei
et al., 2005; Brady et al., 2014; Albiez et al., 2016a). Additionally, high as-

pect ratios of the Mo fiber length to fiber diameter were experimentally
measured (> 200 in Bei et al. (2008a), > 100 in Haenschke et al. (2010),

and ≈ 100 in Hu et al. (2013)). As a result of the DS process, a very good

alignment of the fibers parallel to the growth direction was observed
(Barabash et al., 2010a; Bei et al., 2008a) with the 〈100〉-orientation of

the fibers as well as the matrix parallel to the growth direction (Dudová
et al., 2011; Hu et al., 2012; Bei and George, 2005; Hu et al., 2013). A

cube-on-cube orientation relation exists between these two phases with
the interface boundary parallel to the {011} crystal-plane (Hu et al.,

2012; Bei and George, 2005; Hu et al., 2013; Joslin et al., 1995). Due to
the eutectic composition, the volume fraction of the fibers is constrained

to approx. 14 % (e.g., Bei et al. (2005); Bei and George (2005); Dudová

et al. (2011)). A further advantage of the eutectic composition is the
thermodynamical stability. As a result, the eutectic morphology stays

stable under isothermal conditions (Johnson et al., 1995). Zhang et al.
(2012) successfully produced a well-aligned fibrous microstructure

with up to approx. 17.6 vol.-% fibers, by the directional solidification
of off-eutectic compositions. Following the Jackson and Hunt relation

λ2ϑ = C1, (2.2)

the fiber spacing λ and the velocity of the solidification front ϑ are

coupled by the constant C1, which depends on the experimental con-
ditions (Jackson and Hunt, 1966). Due to the volume fraction of the

fiber cf and the hexagonal arrangement, the fiber spacing is linked to
the area-equivalent fiber diameter d by

λ =

√

πd2

2
√

3cf

. (2.3)

A comparison of measured fiber diameters over growth rate is given in

Albiez et al. (2016a).
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The high temperature properties of DS NiAl-9Mo were investigated by
bending and compression tests in Haenschke et al. (2010). Tension tests

at elevated temperatures for various volume fractions were performed
in Zhang et al. (2015) and for various fiber diameters in Hu et al.

(2012); Bei and George (2005; 2007). Compression creep tests reveal

a stress exponent of the composite m̄ ≈ 10-14 (Albiez et al., 2016a;
Dudová et al., 2011; Dudová et al., 2011) and an activation energy of

Q̄C ≈ 400-420 kJ/mol (Albiez et al., 2016a; Dudová et al., 2011), whereas
for tension creep tests the stress exponent lies in the range of m̄ ≈ 3.5-5

and the activation energy is Q̄C = 291 ± 19 kJ/mol (Hu et al., 2013).
However, all creep tests indicate the superior creep resistance of the DS

NiAl-9Mo, where the minimum creep rate can be more than five orders
of magnitude lower compared to the monolithic NiAl (Dudová et al.,

2011).

The shape of the creep curve follows the exemplary creep curve of
Fig. 2.1 (creep curve marked with B©), where after a sharp reduction

of the creep rate in the primary creep regime the creep rate imme-
diately increases after passing the minimum creep rate. Thus, the

secondary creep regime with a distinct constant creep rate over creep
strain is not visible. The room temperature fracture toughness is

nearly doubled from 8 MPa
√

m of [100]-oriented single-crystal NiAl
to approx. 15 MPa

√
m for the well-aligned [100]-oriented DS NiAl-9Mo

(Misra et al., 1998; Misra and Gibala, 2000; Hu et al., 2012; Misra et al.,

1997). Furthermore, Zhang et al. (2012) measured an even higher room
temperature fracture toughness of 19.36 MPa

√
m for a DS NiAl-16Mo

material. No dominant toughening mechanism could be identified,
therefore, the increased toughness is attributed to a combination of

several mechanisms, such as crack trapping, crack bridging, and the
intrinsic toughening of the NiAl matrix by generation of dislocations

from the interface source (Misra et al., 1997; 1998). The ductile-to-brittle
transition temperature was found to lie somewhere between 650-700 ◦C

(Bei and George, 2005; 2007). Brady et al. (2014) investigated the

16
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oxidation behavior of the composite at dry and wet air. They concluded
that the oxidation resistance increases with decreasing fiber diameter.

The effect of rhenium (Re) addition was investigated by Misra et al.
(1997; 1998), however, it leads to poor alignment of the fiber and, thus,

to a loss of strength and toughness. Bei et al. (2005) investigated the

thermal expansion of the fiber and the matrix parallel and transverse to
the growth direction. Transverse to the growth direction, both phases

expand independently over the entire range of temperature. However,
parallel to the growth direction, the two phases co-expand up to 650 ◦C

with an average coefficient of thermal expansion of 12.8 · 10−6 ◦C−1

(Bei et al., 2005). Beyond this temperature, the expansion of the fiber

increases, which is a result of the free plastic flow of the NiAl matrix
(Bei et al., 2005).

The yield strength of the fibers at room temperature (RT) was thor-

oughly investigated by Bei et al. (2007). They produced micro-pillars
of the fiber by etching the matrix away and measured a yield strength

close to the theoretical one (Bei et al., 2007). Such a high yield strength
was also observed in the case of defect-free whiskers (Brenner, 1956).

Hence, Bei et al. (2007) concluded that the fibers are essentially free of
dislocations, which was later confirmed by others (Sudharshan Phani

et al., 2011; Chisholm et al., 2012; Kwon et al., 2015). Further, by pre-
straining the micro-pillar, Bei et al. (2008c) measured a decrease of the

yield strength from ≈ 9.3 GPa at 0 % to ≈ 1 GPa at 11 % pre-strain for

a constant fiber diameter of 500 − 550 nm. This pronounced softening
is depicted in Fig. 2.5 and indicates a transition from the defect-free

behavior to a bulk material behavior (Bei et al., 2008c). A possible
transition law will be discussed in Chapter 6. Similar results were

obtained by tensile testing of the fiber material. Here, the effects of the
considered volume of the fiber, thus, the amount of dislocations within

17

tested fiber samples, were investigated and the results were explained
by a Monte Carlo simulation (Johanns et al., 2011). Furthermore, the

effects of the strain rate to the yield strength of the fiber were examined
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(Loya et al., 2014). Dislocation measurements revealed a strong increase

of the dislocation density with increasing pre-strain from ≈ 9 · 108 1/m2

at 0 % to ≈ 2.5 · 1014 1/m2 at 16 % pre-strain (Sudharshan Phani et al.,
2011). Additional measurements of the dislocation density in the fibers

as a function of the pre-strain were done by Chisholm et al. (2012);
Barabash et al. (2010a) and the results are shown together with the

results of Sudharshan Phani et al. (2011) in Fig. 2.5. The description
of the dislocation evolution will be discussed in Section 7.2.4. The

inhomogeneous dislocation density distribution at medium pre-strain
(≈ 4-8 %) was explained by Sudharshan Phani et al. (2011) by cracks

in the matrix as a result of the pre-straining or by strain localization

due to strain softening of the fiber. Recent results, however, show the
inhomogeneous activation of 〈111〉 slip in the fibers as a consequence

of the stress due to the 〈100〉-type dislocations in the matrix, which
are swept towards the interphase boundary with increasing pre-strain

(Kwon et al., 2015). Barabash et al. (2010a) concluded that the de-
formation behavior of the composite material depends on the strain

partitioning between both phases and that the fiber-matrix interface
plays an important role. Furthermore, no elastic strain in the NiAl

phase was measured above 650 ◦C, thus, the fiber phase essentially

supports the entire applied load (Bei et al., 2008a;b). These results lead
to the assumption that the strength of the fiber and the fiber-matrix

interface controls the deformation behavior of the composite, whereas
no interface debonding in the as-grown state was observed (Barabash

et al., 2011).
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Figure 2.5: Yield strength (green curve) and dislocation density (red curve) as a function of
the pre-strain. The dislocation densities were measured with TEM by Sudharshan Phani
et al. (2011); Chisholm et al. (2012) and with a spatially resolved differential aperture
X-ray microscopy by Barabash et al. (2010a). The measured values at 4 % pre-strain
represent the maximum and minimum measured dislocation densities. Description of
the dislocation evolution by the Kocks-Mecking dislocation evolution (Eq. (7.7)) is shown
by the dashed line. The yield strength of the fibers was measured by Bei et al. (2008c)
with micro-pillar experiments, revealing a yield strength close to the theoretical strength
for the as-grown fibers. The continuous line shows the calculated strength by Eq. (6.3)
and can be regarded as an upper limit. (Albiez et al. (2016a): Fig. 2)

aligned fibrous microstructure with ≈ 34 vol.-% Cr fibers (e.g., Misra
and Gibala (2000)). Contrary to the DS NiAl-9Mo, the shape of the

rods is non-faced (Misra and Gibala, 2000). Between the fibers and the
matrix exists a cube-on-cube orientation, where the 〈001〉-orientation

of both phases lies parallel to the growth direction (e.g., Misra and

Directional solidified NiAl-Cr(Mo)

The directional solidification of the eutectic NiAl-34Cr creates a well-
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Gibala (2000)). Walter and Cline (1970) examined the fiber spacing for
several withdrawal rates and concluded that it follows the Jackson and

Hunt relation in Eq. (2.2) (Jackson and Hunt, 1966). Misra and Gibala
(2000) measured a yield strength of the composite at RT of ≈ 1200 MPa

and observed for strains lower than ≈ 0.5 % only dislocations in the
NiAl phase. However, at higher strains (≈ 2 %), also dislocations inside

the fibers were observed (Misra and Gibala, 2000). Consequently, one
may assume that the Cr fibers are essentially defect-free, similar to

the previously discussed Mo fibers. The room temperature fracture

toughness of ≈ 20 MPa
√

m (Johnson et al., 1995) exceeds the one of
pure NiAl and DS NiAl-9Mo. However, it may also depend on the di-

rectional process method (Misra and Gibala, 2000). The ductile to brittle
transition temperature was found to be around 300 ◦C (Haenschke et al.,

2010). An improved creep resistance compared to monolithic NiAl
was observed (e.g., Johnson et al. (1995); Haenschke et al. (2010)). In

summary, the directional solidification of the NiAl-34Cr eutectic leads
to a simultaneous improvement of the creep resistance and the room

temperature fracture toughness compared to the monolithic NiAl.

Dependent on the withdrawal rate, the addition of Mo with more
than 0.6 at.-%, however, results in a morphology change from the

fibrous to a lamellar or cellular microstructure (Johnson et al., 1995). A
lamellar/cellular microstructure is obtained for a low/high processing

rate, respectively (Whittenberger et al., 1999). This morphology change
can be favorable in terms of fracture resistance due to a superior

20

≈ 400 nm for the NiAl layer and the Cr-based layer, respectively. Wang
et al. (2018) investigated the Jackson and Hunt relationship for a DS

NiAl-28Cr-6Mo compound. Similar to the previous case, a cube-on-
cube orientation relationship was found (e.g., Chen et al. (2004)), how-

ever, for the lamellar microstructure, the 〈111〉-orientation of both

fracture toughness of a lamellar microstructure compared to a fibrous
microstructure (Chen et al., 2004). For the DS NiAl-31Cr-3Mo, Yu

et al. (2014; 2016) measured a lamellar thickness of ≈ 800 nm and
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phases is aligned parallel to the growth direction (e.g., Chen et al.
(2004); Yu et al. (2016)). The lamellar microstructure before and after

heat treatment was investigated by Wang et al. (2018) for different
withdrawal rates and at different temperatures. They showed that the

heat treatment has no significant effect on the microstructure produced
by low withdrawal rates, whereas the stability becomes poor for high

withdrawal rates (Wang et al., 2018). Yu et al. (2016) measured the
thermal expansion behavior, where a co-expansion parallel and an

independent expansion transverse to the growth direction was ob-

served. Further, above ≈ 800 ◦C, the coefficient of thermal expansion
of the NiAl matrix becomes larger than that of the lamella, indicating

creep of the matrix at those temperatures (Yu et al., 2016). The room
temperature fracture toughness was investigated for the DS NiAl-33Cr-

1Mo by, e.g., Yang et al. (1997), for the DS NiAl-31Cr-3Mo by, e.g.,
Whittenberger et al. (1999); Johnson et al. (1995), and for the DS NiAl-

28Cr-6Mo compound by, e.g., Johnson et al. (1995). Despite the different
chemical compositions and different growth rates, all investigations

reveal a superior fracture toughness compared to monolithic NiAl.

Compression tests were conducted in the work of Whittenberger et al.
(1999) at 1200 K (≈ 930 ◦C) and 1300 K (≈ 1030 ◦C) for specific strain

rates. In addition, the yield strength was investigated by tensile tests at
elevated temperatures in the work of Yang et al. (1997). The improved

creep properties due to the directional solidification are shown for
the DS NiAl-28Cr-6Mo compound in Johnson et al. (1995). The phase

21

to be much higher than the ultimate strength of a single-phase bulk
sample with the same chemical composition as for the lamella (Yu et al.,

2014). Therefore, due to the similarities to the DS NiAl-9Mo, Yu et al.
(2014) stated that the lamella may be essentially defect-free. However,

the investigation in Yu et al. (2016) reveals strain hardening behavior

specific stress during compression was investigated by in situ neutron
diffraction tests at room temperature in Yu et al. (2014) and up to 800 ◦C

in Yu et al. (2016). The stress in the Cr-based lamella was observed
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in the matrix at relatively low temperatures and a strain softening at
high temperatures, whereas the lamella hardens at all temperatures.

To increase the volume fraction of the reinforcing phase, Shang et al.
(2014) directionally solidified the hypereutectic alloy NiAl-32Cr-6Mo

at different withdrawal rates. This investigation can be motivated by
the fact that the strength of the composite is mainly controlled by the

strength of the reinforcing phase (Johnson et al., 1995).
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Chapter 3

Fundamentals of plastic
deformation based on
dislocations

3.1 Dislocation-induced plastic deformation

A metallic single crystal material consists of a highly ordered atomic
structure. It is known from experimental work that such a material,

loaded over a material-specific strength (yield strength), leaves the elas-
tic state and starts to deform irreversibly. A schematical representa-

tion of this deformation is shown in Fig. 3.1.

τ

τ

τ

τ

Figure 3.1: Theoretical plastic deformation without dislocations. The resolved shear stress
τ shifts the total upper part of the crystal at once by one atom.
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strength for this deformation was estimated to

τ∞ ≈ µ

30
(3.1)

by a crystal of bubbles (Cottrell, 1953). Here, µ stands for the material
specific shear modulus. However, τ∞ is immensely greater than the

usually observed strength of metals (≈ 10−4µ − 10−8µ (Hull and Bacon,
2011)). The striking difference between the theoretical strength and

the experimentally observed strength was explained by the presence
of dislocations (Orowan, 1934a;b;c; Taylor, 1934). A deformation based

on dislocation glide allows a crystal to deform at significantly lower
stresses and is schematically shown in Fig. 3.2. It is distinguishes be-

Crystal

slip plane

τ τ τ τ

ττττ

Figure 3.2: Plastic deformation by an edge dislocation on a crystal slip plane. The resolved
shear stress τ for such a stepwise deformation is several times smaller compared to the
theoretical strength.

24

The necessary theoretical

tween two basic types of dislocation geometry: an edge and a screw
dislocation, depicted in Fig. 3.3 a) and c), respectively. An important

characteristic of a dislocation is the Burgers vector b, which can be deter-
mined by a Burgers circuit. A Burgers circuit is a closed atom-to-atom

loop, depicted in Fig. 3.3 a) and c) for an edge and a screw dislocation,
respectively. It is taken in a clockwise fashion, when looking along the

dislocation line. By repeating the same atom-to-atom sequence in a

perfect crystal (shown in Fig. 3.3 b) and d)), two options are possible.
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Burgers vector exists. Whereas, in the second case, the loop in the
perfect crystal does not close. The required vector to close the loop

represents the Burgers vector b. With the help of the Burgers vector,
the following two rules can be used to distinguish between the edge

and screw dislocation:

• The Burgers vector lies parallel to the line of a screw dislocation.

• The Burgers vector lies normal to the line of an edge dislocation.

a) b)

c) d)

Positi
ve

Positi
ve

Burgers vector

Burgers vector

lin
e sense

lin
e sense

Figure 3.3: Burgers circuit around a) an edge dislocation and c) a screw dislocation as well
as the same Burgers circuit in a perfect crystal depicted in b) and d), respectively.
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In the first case, the loop in the perfect crystal is closed, meaning no

In the most general case, however, the Burgers vector lies arbitrarily to

the dislocation line. Further, it has a fixed length and direction for a
single dislocation. At a meeting point of Ndis dislocations, the Burgers
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vector has to be conserved, thus,

Ndis∑

α=1

bα = 0. (3.2)

Possible start and end points of dislocation lines are the surface of the

crystal or grain boundaries, however, they can never start or end in-
side a crystal. The movement of dislocations can be classified into two

basic types, glide and climb. Glide describes the movement in the sur-
face which contains its dislocation line and the Burgers vector, whereas

climb describes the motion out of this surface. The accumulation of
several gliding dislocations results in slip, which is the most commonly

observed plastic deformation (Hull and Bacon, 2011). It does not occur
randomly within a crystal, but rather on specific slip systems, described

by the normal vector of the slip plane nα and the slip direction dα of

the slip system α. Thus, the slip system α can be described by a Schmid
tensor Mα = dα ⊗ nα. The average glide velocity vα of dislocations in

the slip system α depends on the applied stress via

vα ∝ |τα|m, (3.3)

where τα and m correspond to the Schmid stress of the slip plane and

the stress exponent, respectively, e.g., Hull and Bacon (2011). The
Schmid stress can be calculated by

τα = σ · Mα (3.4)

and corresponds to the projection of the Cauchy stress tensor σ to the

slip system. By using Eq. (3.3) with the Orowan expression (Hirth and
Lothe, 1992) for plastic slip

γ̇α = ραbvα, (3.5)

a relation between the plastic slip rate γ̇α and the Schmid stress of the

slip system is achieved

γ̇α ∝ ραb|τα|m. (3.6)
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Here, b is the absolute value of the Burgers vector and ρα the dislocation
density in the slip system α, which is defined as the total length of the

dislocation line per unit volume.
Two competing forces act on a dislocation which moves by glide. The

glide force Fglide, acting on an element dl of the dislocation line of the

Burgers vector b reads

Fglide = τbdl (3.7)

and results from the applied Schmid stress. It can be calculated by the

work done by an element of a dislocation dl moving a unit distance (e.g.,
Hull and Bacon (2011)). In addition, a dislocation has a line tension

which arises due to its strain energy. To minimize the total energy, the

line tension intends to straighten the dislocation, where the induced
force reads

Ftens = ᾱµb2, (3.8)

with ᾱ ≈ 0.5-1 (Hull and Bacon, 2011). To calculate the necessary
Schmid stress τ to keep a dislocation curved with a radius of Rdis, an

element of a dislocation shown in Fig. 3.4 is considered. For an angle

dϕ

B dl

Rdis

Rdis

A

Ftens

Ftens

dϕ/2

dϕ/2

Figure 3.4: Curved dislocation-segment dl with radius Rdis. The line tension forces Ftens

intend to straighten the dislocation in order to minimize the total energy (adapted from
Hull and Bacon (2011)).
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dϕ = dl/Rdis ≪ 1, the force acting on the element due to the Schmid
stress along the direction AB is τ0bdl.
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force acting due to the line tension is

2Ftens sin (dϕ/2) ≈ Ftensdϕ, for small dϕ. Thus, the two forces will be

in equilibrium when

τ ≈ ᾱµb

Rdis
. (3.9)

This equation is crucial, since it can be used to explain the necessary

stress to activate a dislocation source, which will be discussed in the
next section. Further, it helps to explain several strengthening mecha-

nisms as shown in Section 3.3.

3.2 Origin and multiplication of dislocations

The dislocation creation is seperated into two basic natures, the homoge-

neous nucleation, where the dislocation is created in a region of the crys-

tal that is free of any defects, and the heterogeneous nucleation, where

the dislocation is created with the help of defects. In the first case, the
homogeneous nucleation, high stresses in the order of approximately

µ/30-µ/10 are necessary (Hull and Bacon, 2011). Such high stresses
were observed in the case of defect-free whiskers (Brenner, 1956) and

as-grown Mo fibers (Bei et al., 2007), indicating a homogeneous creation
of dislocations. However, generally dislocation creation appears by the

movement and the multiplication of preexisting dislocations. This is
based on the fact that the required stress is considerably lower and

that most materials possess dislocations even in the as-cast state. Sev-
eral heterogeneous dislocation multiplication mechanisms are possible

and discussed in, e.g., Hirth and Lothe (1992); Hull and Bacon (2011).

Therefore, only the relevant mechanisms for this work will be discussed
in this section. A schematical representation of the Frank-Read source

mechanism is depicted in Fig. 3.5 a) to d). The Burgers vector of the
dislocation-segment AB lies in a slip plane and the dislocation is fixed

at both points A and B (Fig. 3.5 a)). Possible reasons for such a fixation

28

In the opposite direction, the



a) b)

c) d)

slip
plane

L

A

B
Rmin

Figure 3.5: Schematical representation of the Frank-Read source mechanism, a) to d),
following Hull and Bacon (2011). An applied Schmid stress bows the dislocation-segment
which is fixed at both points A and B. Until the minimum radius (Rmin = L/2) is reached,
the dislocation expansion is stable. The further expansion of the dislocation is unstable
and it increases until meeting itself. The necessary stress for this mechanism is given by
Eq. (3.10).
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Schmid stress forces the dislocation to bow out until the radius of cur-

vature reaches its minimum point (Rmin = L/2), depicted in Fig. 3.5
b). As the dislocation expands further, it becomes unstable and grows

until meeting itself (Fig. 3.5 c) to d)). Using the minimum radius of
Rmin = L/2 and Eq. (3.9) leads to the necessary stress τ for this Frank-

Read source mechanisms

τ ≈ ᾱµb

L
, (3.10)

with L as spacing between the two fixing-points A and B (Hull and
Bacon, 2011). Thus, this stress can be considerably lower than the theo-

retical strength due to b/L ≪ 1/30.

are for example dislocation intersections or precipitates. An applied

3. Origin and multiplication of dislocations2
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crystalline materials. This source can be activated by the large stress
concentrations at the grain boundary due to pile-up stresses.

3.3 Dislocation strengthening mechanisms

The properties of a material depend, in general, on two competing dif-

ferent characteristic sizes. Arzt (1998) called these two length scales
the characteristic length and the size parameter. The characteristic length

describes the length of the physical phenomenon, thus, in the case of

dislocations the absolute value of the Burgers vector, whereas the size
parameter corresponds to a microstructural dimension. As discussed

in Section 3.1, the equilibrium Schmid stress for a curved dislocation
depends inversely on the radius of the dislocation (Eq. (3.9)). Therefore,

one possibility to strengthen a material is to reduce the radius of the dis-
location, which can be achieved by inserting obstacles into the material.

A well-known strengthening mechanism, called Orowan mechanism, is
the interaction between a dislocation and an array of hard particles,

as depicted in Fig. 3.6 a). The particles are assumed impenetrable for
dislocations and the bypassing stress (also called Orowan stress) can be

calculated with the help of Eq. (3.9) to

τOr ≈ ᾱµb

L
, (3.11)

where L corresponds to the spacing between two particles. Therefore,
the Orowan stress is equal to the Frank-Read source stress (Eq. (3.10)).

Assuming a constant volume fraction of particles, the spacing is propor-
tional to the radius of the particles Rpart, thus, L ∝ Rpart. Consequently,

one would expect a monotonic increase of strength with a decreasing
particle radius. However, experimental measurements indicate that a

reduction of the particle size smaller than a critical radius R̂part leads

to a loss in strength. This can be rationalized by considering the par-
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Another possible source of dislocations are grain boundaries in poly-



3.3 Dislocation strengthening mechanisms

a) b)

L

2R > L 2R = L τ

R̂part R

∝ R−1
part

∝
√

Rpart

L

2R 2R

Figure 3.6: a) Schematical representation of the strengthening mechanism by an array of
impenetrable particles (Orowan mechanism). The dislocation can overcome the particles
for a maximal radius 2R = L. b) In the case of penetrable particles, the cutting and the
bypassing of the particles depend on its radius Rpart , whereas the cutting stress scales

with
√

Rpart and the bypass stress with R−1
part. Assuming a constant volume fraction of

particles, the maximal strengthening occurs for a particle radius R̂part .
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cutting. The cutting stress follows the relation τcut ∝
√

Rpart, therefore,

it decreases with a decreasing particle radius (Arzt, 1998). The two
dependencies are depicted in Fig. 3.6 b) and it follows that the maximal

strength occurs for a particle radius R̂part.

ticles not as impenetrable, but rather with a certain strength against

An important and special case of the Orowan mechanism is the phe-

nomenon of work hardening. In this case, the obstacles are forest dislo-
cations, where the relevant size parameter corresponds to the average

dislocation spacing, thus, L = 1/
√

ρ with ρ as the dislocation density,
e.g., Arzt (1998). With the help of Eq. (3.9), this leads to the classical

Taylor equation for work hardening

τ ≈ ᾱµb
√

ρ. (3.12)
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can be explained by the pile-up of dislocations against grain bound-
aries (Hall, 1951; Petch, 1953). Here, d̄ corresponds to the average grain

diameter. However, as stated in, e.g., Arzt (1998); Zhu et al. (2008), sev-
eral other possible explanations exist. Furthermore, in the case of thin

films (film thickness < 100 nm (Zhu et al., 2008)) and ultra-fine grained

polycrystals, the Hall-Petch relation is no longer valid (reviewed in
e.g., Kraft et al. (2010); Zhu et al. (2008)). This can be rationalized by

the fact that at least one dislocation loop has to fit into a grain or into
the film (Arzt, 1998). Therefore, the size parameter corresponds to the

average grain diameter or the film thickness (also referred to as d̄) and
scales

τ ∝ 1

d̄
. (3.14)

This d̄−1 behavior was shown in the case of thin films by Arzt et al.

(2001); Kraft et al. (2010); Zhu et al. (2008) and was motivated by
the multiple activation of Frank-Read sources within the film by von

Blanckenhagen et al. (2001; 2003). Nevertheless, for even smaller
sizes, one observes a so-called inverse Hall-Petch effect, which can

be described by

τ ∝ 1

d̄
ln

(
d̄

r0

)

, (3.15)

with r0 as cut-off distance, e.g., Arzt (1998).
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A further crucial size parameter which affects the plastic behavior in
polycrystalline materials is the grain size. The classical Hall-Petch effect

on the yield stress

τ ∝ 1√
d̄

(3.13)



Chapter 4

Basics of continuum mechanics

4.1 Kinematics

Within continuum mechanics, the smooth movement of a material body

B in time t through a three-dimensional euclidean space R3 is consid-
ered. The material body consists of material points and includes a

singular interface S (depicted in Fig. 4.1). Further, it is limited by its
boundary A.

t = 0 t > 0

S0
S

B0

B

A0
AX

x

u

F

X1, x1

X2, x2

X3, x3

Figure 4.1: Representation of a material body (B0, B) with its boundary (A0, A) in the
reference placement (for t = 0) and the current placement (for t > 0), respectively. The
body contains a singular interface (S0, S). The position of each material point can be
described by X and x in the reference and the current placement, respectively.
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vector X in the

reference placement (for t = 0) and by the vector x in the current place
ment (for t > 0). The current position x can be specified as a function of
X and t by

x = χ(X , t), (4.1)

whereas the function χ(X, t) has to be continuous and differentiable,
e.g., Bertram (2008). Respectively, the function

X = χ−1(x, t) (4.2)

describes the reference position X and depends on the current position
as well as the time. The displacement vector u is defined as the differ-

ence of the position of a material point in the current and the reference

placement, thus,

u = x − X = χ(X, t) − X. (4.3)

The velocity of a material point can be calculated by

vL(X , t) =
∂χ(X, t)

∂t
(4.4)

in the Lagrangian description. Replacing the argument X by x with
help of Eq. (4.2) leads to the Eulerian description

vE(x, t) = vL(χ−1(X , t), t). (4.5)

Both descriptions are, however, mathematically equivalent (Bertram,
2008) and the suffixes (·)L and (·)E will be dropped for brevity, if not

explicitly necessary. In general, the time derivative of a field f of arbi-

trary order

ḟ =
∂fL

∂t

∣
∣
∣
∣
X

=
∂fE

∂t

∣
∣
∣
∣
x

+
∂fE

∂x

∂χ(x, t)

∂t
=

∂fE

∂t
+ grad (fE) v (4.6)

is called material time derivative and is indicated by a superimposed
point. The spatial derivative used in the upper equation corresponds

to the differential operator with respect to the Eulerian variable x. Such
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The position of each material point is described by the

-



grad (·) or div (·)), whereas differential operators with respect to the
Lagrangian variable X are denoted with a capitalized first letter (e.g.,

Grad (·) or Div (·)). The deformation gradient

F = Grad (χ(X , t)) (4.7)

is important for the deformation analysis and can be used for the trans-
formation of a material line element, an area element, and a volume

element from the reference placement (upper case letter) to the current
placement (lower case letter), shown in Box 4.1. A basic concept of

deformation analysis is the decomposition of the deformation gradient
into a rotation tensor (R) and a stretch tensor (right U and left V stretch

tensor), thus,

F = RU = V R. (4.8)

Several possibilities exist to describe the strain and are explained in,

Box 4.1: Transformation of specific quantities between the reference and the current
placement.

Line element dx = F dX

Area element da = det(F )F −TdA

Volume element dv = det(F )dV = JdV

e.g., Bertram (2008). In this work, however, the Green strain tensor

E =
1

2
(F TF − I) (4.9)

with I as identity tensor was used. The time rates of the deformation
can be described by the spatial velocity gradient

L = grad (vE) = Grad (vL) F −1 = Ḟ F −1, (4.10)
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differential operators will be indicated with a lower case first letter (e.g.,

nema cs4. Kinematics1
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which can be additively decomposed in a stretching tensor D = sym(L)

and a spin tensor W = skw(L).

4.2 Balance equations

In this section, the balance equations of mass, linear momentum, an-

gular momentum, total energy, and entropy will be introduced. Each
balance equation is given with respect to the current configuration in its

global and its local form. The balance equations are used to describe the

motion of a material body B in time t and the evolution of the associated
mechanical fields (e.g., mass density) (Hutter and Jöhnk, 2004). The

mass balance of a material body with one component is given by

d

dt

∫

V

̺dv = 0, (4.11)

where ̺ stands for the mass density in the current placement. Here, it

is assumed that no mass flux, no mass production, and no mass supply
exist, e.g., Hutter and Jöhnk (2004). The local form of the mass balance

and its jump condition are given by

˙̺ + ̺div (v) = 0 (4.12)

and

[[−̺(v⊥
S − v⊥)]]− = 0, (4.13)

respectively. Here, v⊥
S = vS · nS and v⊥ = v · nS are introduced with

vS as the velocity of the singular interface Γ and nS as the normal vector
of the singular interface.

Balancing the linear momentum of a material body yields

d

dt

∫

V

̺vdv =

∫

A

σda +

∫

V

̺gdv (4.14)
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in the current placement with σ as the Cauchy stress. The first term on
the right-hand side of Eq. (4.14) describes the flux of linear momentum,

whereas the second term represents the supply of linear momentum
with g as the force density per unit mass. No production of linear

momentum exists, as it is conserved within a body. The local form and

its jump condition are given by

̺v̇ = div (σ) + ̺g (4.15)

and

[[−̺v(v⊥ − v⊥
S ) − σnS ]]− = 0, (4.16)

respectively.

The balance of angular momentum of a non-polar continua in the cur-
rent configuration is given by

d

dt

∫

V

̺x × vdv =

∫

V

̺x × gdv +

∫

A

̺x × σda (4.17)

and leads to σ = σT in its local form. Here, the symbol × represents the

cross product of two vectors.
The balance of total energy

d

dt

∫

V

̺e +
1

2
̺v · vdv =

∫

V

̺ω + ̺g · vdv +

∫

A

(σv − q) · da (4.18)

corresponds to the first law of thermodynamics (e.g., Hutter and Jöhnk

(2004)). Here, the internal energy and the heat flux are denoted by e

and q, respectively. Further, ̺ω corresponds to the energy supply, e.g.,
by heat sources and ̺g · v to the supply of external volume forces. The

local form of the balance of total energy and its jump condition are
given by

̺(ė + v̇ · v) = ̺(g · v + ω) + div (σv) − div (q) (4.19)

37



4 Basics of continuum mechanics

and

[[−̺(
1

2
v · v + e)(v⊥

S − v⊥) + σv · nS − q · nS ]]− = 0, (4.20)

respectively. Simplifying the balance of total energy with the balance of
linear momentum leads to the balance of internal energy

̺ė = ̺ω + σ · L − div (q) . (4.21)

Here, σ · L can be interpreted as production, consequently, the internal
energy e is not a conserved quantity.

The entropy is also not a conserved quantity, therefore, the balance of
entropy includes entropy production terms and is given by

d

dt

∫

V

̺sdv =

∫

V

̺ωs + ̺psdv −
∫

A

qs · da +

∫

S

gsda (4.22)

in the current placement, where s corresponds to the entropy. Here, ̺ωs

and qs stand for the entropy supply and its flux through the surface,

respectively. In contrast to the previously introduced balance equations,

the balance of entropy considers a surface entropy production gs in
addition to the production within the volume (ps). For the mass balance

and the balance of linear momentum, the missing surface production
can be rationalized by considering the singular surface as massless. Fur-

thermore, by stating the total energy to be a conserved quantity, includ-
ing a surface production of total energy is not possible. The local form

of the balance of entropy is given by

̺ps = ̺ṡ + div (qs) − ̺ωs (4.23)

and its jump condition by

gs = [[−qs · nS − ̺s(v⊥
S − v⊥)]]−. (4.24)
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Jöhnk (2004)), thus,

ps ≥ 0, gs ≥ 0. (4.25)

Substituting these inequalities (Eq. (4.25)) into the local form of the
balance of entropy (Eq. (4.23)) and its jump condition (Eq. (4.24)) lead

to the dissipation inequalities

̺ps = ̺ṡ + div (qs) − ̺ωs ≥ 0, (4.26)

gs = [[−qs · nS − ̺s(v⊥
S − v⊥)]]− ≥ 0 (4.27)

in the current placement (e.g., Hutter and Jöhnk (2004)).

4.3 Principles of material theory

Within material theory, it is common to assume certain principles which
help to define the form of a general constitutive equation more precisely.

Following the principle of determinism, the stresses in a material point are
only determined by the current and the past motion of the body, but not

by its future one. Consequently, the principle of determinism reduces

the temporal influence of deformations (Bertram, 2008). Different pos-
sibilities exist to take the past into consideration, whereas within this

work, internal variables with evolution equations will be used. The
spatial influence of deformations is restricted by the principle of local

action, which claims that only a finite neighborhood of a material point
influences its stress. In the limit case, thus, by considering the smallest

possible neighborhood, the materials are called simple materials. Here,
the stresses only depend on the motion of its infinitesimal neighbor-

hood. The assumption of the principle of material objectivity (PMO) states
that the Cauchy stress σ and the heat flux q are objective tensors (e.g.,

Bertram (2008); Hutter and Jöhnk (2004)). Consequently, if one observer
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The second law of thermodynamics states that for all permissible ther-

modynamic processes, entropy cannot be annihilated (e.g., Hutter and
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under superimposed rigid body motions (PISM) (Bertram, 2008). Follow-
ing this principle, a rigid body motion only rotates the Cauchy stress.

However, this principle is quite controversial due to counterexamples
of, e.g., mechanics and thermodynamics (e.g., Bertram (2008); Krawietz

(1986)). Nevertheless, for most materials under technical applications,

it is accepted and applicable (Bertram, 2008). Finally, the principle of form

invariance (PFI) states that the constitutive equations are invariant to a

change of the observer (e.g., Bertram (2008)). It is noteworthy that two
of the mentioned principles (PMO, PISM, or PFI) imply the third one.

4.4 Implications of the dissipation inequality

The equations introduced in Section 4.2 are quite general, however, they

do not include any information about the materials (e.g., Hutter and
Jöhnk (2004)). Furthermore, a determinate system can only be achieved

by including constitutive equations. To ensure thermodynamical con-
sistency, these constitutive equations should fulfill the second law of

thermodynamics, thus, the dissipation inequalities given by Eq. (4.26)
and Eq. (4.27). To identify indications of restrictions on the constitu-

tive equations, the dissipation inequality in the reference placement is

considered. Consequently, the balance of internal energy

̺0ė = ̺0ω + S · Ė − Div (q⋆) (4.28)

with respect to the reference placement as well as the entropy balance

̺0ps = ̺0ṡ + Div (q⋆
s ) − ̺0ωs ≥ 0 (4.29)

in the reference placement are necessary. They are derived from the

corresponding balance equations (Eq. (4.21) and Eq. (4.26)) by using the
transformations listed in Box 4.1. Here, q⋆ = JF −1q and q⋆

s = JF −1qs
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identifies a constitutive equation for σ and q, it can be used by any
observer (Bertram, 2008). A further principle is the principle of invariance



with ̺0 = J̺. Furthermore, S = JF −1σF −T corresponds to the second
Piola-Kirchhoff stress and E = (F TF − I)/2 to the Green strain tensor.

The entropy flux is modeled by

q⋆
s =

q⋆

T
, (4.30)

following the classical thermodynamics (e.g., Hutter and Jöhnk (2004)).

In Chapter 9, however, the entropy flux will be modified following the
classical irreversible thermodynamics (e.g., Groot and Mazur (1984)).

The entropy supply is assumed as

̺0ωs = ̺0
ω

T
. (4.31)

Introducing the free energy density

W = ̺0 (e − T s) (4.32)

in the reference placement and using Eq. (4.28), Eq. (4.29), Eq. (4.30) as

well as Eq. (4.31) leads to the inequality

S · Ė − Ẇ − ̺0sṪ − q⋆

T
· Grad (T ) ≥ 0. (4.33)

Considering the simplifications of the isothermal case with a homoge-

neous temperature distribution, the inequality reduces to

S · Ė − Ẇ ≥ 0. (4.34)

The further constitutive equations used in this work are introduced in

the following chapters, as they depend on the considered material and
the specific physical problem. However, to ensure thermodynamical

consistency, they all have to fulfill the inequality given by Eq. (4.29).

Furthermore, the introduced principles (Section 4.3) are considered
within the formulations of the constitutive equations.
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denote the fluxes q and qs with respect to the reference placement. In
addition, ̺0 stands for the mass density in the reference placement

4. Implications of the dissipation inequality4
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4.5 General procedure for introducing

micro-morphic variables

Forest (2009) proposed the micromorphic approach to introduce a general

micromorphic variable φ̌ as internal degree-of-freedom. This micromor-
phic variable can be a tensor variable of arbitrary rank and is associated

with the state or internal variable φ (Forest, 2009). The approach leads
to a general form of a partial differential equation used as equilibrium

condition, which describes most strain gradient models in literature
(Forest, 2009). The introduction of a penalty energy assures the cou-

pling between the micromorphic variable and its associated variable.
The general form of the partial differential equation is derived in the fi-

nite deformation framework, however, it follows the approach of Forest

(2009) in the infinitesimal deformation framework. Therefore, a body
in its reference placement B0 and its current placement B containing a

material singular interface (Γ0, Γ) is considered (depicted in Fig. 4.2).
Quantities in the reference placement are indicated by an additional

(·)0 suffix. The consideration of a material singular interface simplifies
the jump conditions discussed in Section 4.2 due to vS · nS = v · nS .

The body is exposed to a macroscopic surface traction (t̄0, t̄) and to a
micromorphic surface traction (Ξ̄G0, Ξ̄G) at the external boundary At0,

At and AΞ0, AΞ, respectively. Possible body forces acting on the body

are neglected. The outward unit vector of the boundary is denoted by
n, whereas the orientation of the interface is described by the normal

vector nΓ pointing from V− to V+. The displacement field u and its
gradient are continuous through the interface, however, this does not

necessarily count for the micromorphic variable φ̌. Virtual quantities
are denoted by δ(·) and the virtual solution fields {δu, δφ̌} are selected

from the space of trial functions, thus, vanish at their respective Dirich-
let boundaries.
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V−

V+V−
0

V+

0

Γ0 Γ

nΓ

n

At0
At

AΞ0 AΞ

t = 0 t > 0

F

Figure 4.2: Body exposed to a macroscopic surface traction (̄t0, t̄) at the external boundary
(At0, At) and to a micromorphic surface traction (Ξ̄G0, Ξ̄G) at the external boundary
(AΞ0, AΞ) in the reference and the current placement, respectively. The unit vector nΓ

describes the orientation of the material interface.

ied arbitrarily
(Gurtin et al., 2010). The procedure can be sectioned as follows:

1. The internal variable φ which carries the targeted gradient effect is

chosen. For sake of simplicity, it is treated as a scalar quantity. Fur-

ther, the associated micromorphic variable φ̌ is introduced, having
the same tensor rank and same physical dimension as its correspond-

ing internal variable (Forest, 2009). The micromorphic variable will
be considered as an additional degree-of-freedom.

2. The virtual power of internal forces δPint is extended by the power
which is done by the micromorphic variable and its corresponding

gradient, thus,

δPint =

∫

V

σ · δL + πGδ
˙̌
φ + ξG · grad

(

δ
˙̌
φ
)

dv

+

∫

Γ

Ξ+

Gδ
˙̌
φ+ + Ξ−

Gδ
˙̌
φ−da.

(4.35)

Here, the first integral term describes the internal virtual power in
the bulk material with the symmetric Cauchy stress σ = σT, the

scalar micromorphic stress πG, and the vector valued micromorphic
stress ξG. The second term considers the interface Γ with a micro-
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morphic traction Ξ+

G conjugated to ˙̌
φ+ and Ξ−

G conjugated to ˙̌
φ−. An

alternative form of this integral reads
∫

Γ

Ξ+

Gδ
˙̌
φ+ + Ξ−

Gδ
˙̌
φ−da =

∫

Γ

Ξs
G〈〈δ ˙̌

φ〉〉 + Ξj
G[[−δ ˙̌

φ]]−da (4.36)

with Ξs
G = Ξ+

G + Ξ−
G and Ξj

G = 1/2(Ξ+

G − Ξ−
G). This form offers a

clear interpretation of the virtual power induced by the virtual jump

[[−δ ˙̌
φ]]− and the virtual mean value 〈〈δ ˙̌

φ〉〉 of the micromorphic variable.

3. Similar to the virtual power of internal forces, the virtual power of

external forces δPext is extended and has the form

δPext =

∫

At

t̄ · δu̇da +

∫

AΞ

Ξ̄Gδ
˙̌
φda. (4.37)

4. The balance of the virtual power of internal and external forces,

δPint = δPext, leads to the necessary equilibrium condition in form
of a partial differential equation, boundary conditions, and jump

conditions, which are summarized in Box 4.2. The derivations are
given in detail in Appendix A.1.

As stated and summarized by Forest (2009), the choice of the micromor-
phic variable and its associated internal variable depends on the stud-

ied physical problem (e.g., microdamage, microstrain gradient plastic-
ity, or microdiffusion). Therefore, they are defined in the following

sections depending on the considered investigations. Furthermore, the
exact form of the generalized micromorphic stresses πG, ξG, Ξs

G, and Ξj
G

will be derived and specified in the corresponding section by regarding
the dissipation inequality.
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Box 4.2: Equilibrium conditions, jump conditions, and boundary conditions for the
displacement field u and a general micromorphic variable φ̌.

Field
variable

Equilibrium con-
dition ∀x ∈ V

Jump condition
on Γ

Boundary condi-
tion on At ∨ AΞ

u div (σ) = 0 [[−σ]]−nΓ = 0 σn = t̄

φ̌ πG = div (ξG) Ξs
G = [[−ξG]]− · nΓ,

Ξj
G = 〈〈ξG〉〉 · nΓ

ξG · n = Ξ̄G

4.6 Simplifications in case of infinitesimal

deformations

The theory of infinitesimal deformations (also called geometrically lin-

ear theory) is a special case of the above introduced theory for finite
deformations. The name geometrically linear theory results from the

linearization of the strain tensors, e.g., Bertram (2008). It offers several
advantages, especially in the case of readability and implementation,

however, it is only valid in a small range of possible deformations. The

norm of the displacement gradient ||H|| =
√

H · H , with H = F − I ,
is a possible measure for the deformation of a material line element.

It contains the strain deformations and the rotations. For sufficiently
small deformations, thus, ||H || ≪ 1, the theory of infinitesimal defor-

mation conforms with the theory of finite deformation and, therefore,
is applicable. As a result, no distinction between the position of a ma-

terial point in the current placement (x) and the reference placement
(X) is made. Consequently, the differential operators (e.g., grad (·) and

Grad (·)) are equal and are denoted by a lower case first letter. Finally,
the material time derivative (Eq. (4.6)) reduces to ḟ = ∂f/∂t.
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Chapter 5

Numerical implementation

5.1 Time discretization

For the numerical integration of ordinary differential equations, e.g.,

ẏ(t) = g(y(t)), y(0) = yn (5.1)

the so-called generalized midpoint rule can be used (Simo and Hughes,
1998). Here, g : R → R describes a smooth function and y represents

the field variable. Depending on the parameter υ ∈ [0, 1], the general-

ized midpoint rule

yn+1 = yn + ∆tg(yn+υ), (5.2)

yn+υ = υyn+1 + (1 − υ)yn (5.3)

leads to the explicit Euler scheme for υ = 0, the midpoint rule scheme
for υ = 1/2, and to the implicit Euler scheme for υ = 1 (Simo and

Hughes, 1998; Hairer et al., 1993). Here, yn+1 corresponds to the
algorithmic approximation of the correct value y(tn+1) at the time

tn+1 = tn + ∆t (Simo and Hughes, 1998). In this work, the numerical

time discretization was conducted by the implicit Euler scheme, thus,
υ = 1. Furthermore, adaptive time step control was used during the

simulations, whereas the maximal and minimal time steps were limited.
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5 Numerical implementation

5.2 Spatial discretization

5.2.1 Motivation

In the context of the finite element method (FEM) a spatial discretiza-
tion is necessary. Therefore, the body is divided into finite elements

(also just called elements) which are connected by nodes, e.g., Fish and
Belytschko (2007). The description of the field variable, for example the

micromorphic variable φ̌, within an element (e) is realized with shape
functions N

(e)
β of the nodes β and reads in the one-dimensional case

φ̌(x) ≈
N

(e)

el∑

β=1

N
(e)
β (x)φ̂β . (5.4)

Here, x represents the spatial coordinate, φ̂β is the nodal degree-of-
freedom, and N

(e)
el corresponds to the number of nodes of the element

(e). Several possible standard shape functions with different properties
exist and the reader is referred to text books, e.g., Fish and Belytschko

(2007) for further information. In the context of this work, however,
non-standard finite elements were used due to the micromorphic ap-

proach and the possible discontinuity due to the interface as explained
in Section 4.5. These non-standard finite elements consider the interface

Γ and the additionally required degree-of-freedoms (DOF) to describe

the micromorphic variables. In the case of a scalar micromorphic
variable φ̌, only one additional DOF is necessary. Even though, the

displacement and its gradient are continuous through the interface,
thus common shape functions would be sufficient, this is not necessar-

ily the case for the additional micromorphic variable φ̌, which might
contain discontinuities at the interface.

A discontinuity can be classified into two basic types, namely strong

and weak discontinuities. A field variable φ̌ containing a strong dis-

continuity and a weak discontinuity is depicted in Fig. 5.1 for the
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5.2 Spatial discretization

one-dimensional case. An important research field containing strong
and weak discontinuities at interfaces are crack simulations, thus, it

was thoroughly explored in this context. The extended finite element
method (XFEM) was introduced by Moës et al. (1999), where the discon-

tinuous fields are incorporated by enriched shape functions. One of the

advantages of this approach is the mesh-independent representation of
the discontinuities (such as cracks), making this approach well-suited

for moving interfaces (Belytschko et al., 2001). The generalized finite

x

φ̌

strong

weak

Figure 5.1: Schematical representation of a weak (green curve) and a strong (red curve)
discontinuity of the field variable φ̌.

Following the experimental results of Johnson et al. (1995), stating

that the NiAl based eutectic morphology stays stable under isothermal
conditions, the interfaces are regarded as fixed. Hence, no phase

transformation and its resulting effects are accounted for, as observed,
e.g., in the case of martensitic phase transformations (e.g., Bartel et al.

(2011)). Additionally, only weak discontinuities of the micromorphic
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element method (GFEM) was presented by Strouboulis et al. (2000) as
an alternative to the XFEM and was later extended to the interface-

enriched generalized finite element method (IGFEM) by Soghrati et al.
(2012). Nevertheless, as stated by Fries and Belytschko (2010), the

XFEM and the GFEM method are merging and the differences between

these two methods are vanishing.



5 Numerical implementation

variable φ̌ across the interfaces are considered, thus, the φ̌-field is
continuous, whereas its gradient field not necessarily. To profit from the

advantages of a commercial software, the implementation of additional
DOFs was realized within the ABAQUS UEL subroutine. The necessary

shape functions and the numerical integration will be introduced in the

following sections.

5.2.2 Finite element shape functions without

discontinuities

To discretize the field variable within an element containing no inter-

face, standard shape functions can be used. In the context of the mi-
cromorphic approach, however, the considered DOFs may be of dif-

ferent physical sort. For example, the micromorphic variable repre-
sents plastic slip in the gradient plasticity framework, e.g., Albiez et al.

(2018); Wulfinghoff and Böhlke (2012), thus, the shape functions of the

displacement should be one polynomial degree higher compared to
the shape functions of the micromorphic variable. As a consequence,

both, the plastic slip and the strain tensor ε = sym(grad (u)) (for infinite
deformation) have the same polynomial degree. Therefore, it can be

favorable to use different polynomial degrees for the DOFs. A quasi-
isoparametric 20-node hexahedral element in the reference coordinate

space (ξ, η, ζ) is depicted in Fig. 5.2. Quadratic shape functions consider
all nodes, whereas the linear shape functions only account for the vertex

nodes. This is similar to the work of Waffenschmidt et al. (2014), where
the displacement field and an additional non-local damage variable was

discretized with quadratic and linear shape functions, respectively.
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ξ

η

ζ

vertex node

central node

Figure 5.2: Quasi-isoparametric 20-node hexahedral element in the reference coordinate
space (ξ, η, ζ). The position of the vertex nodes and the central nodes are indicated by
the stars and by the circles, respectively. All nodes are considered for the quadratic shape
functions, whereas only the vertex nodes are used for the linear ones.

The discretization of field variables within an element containing an

interface will be discussed in the following section. In this work, the

displacement and its gradient are continuous through the interface,
thus, common shape functions as described in the previous section (Sec-

tion 5.2.2) can be used. However, a weak discontinuity is considered
for the additional micromorphic variable φ̌. Therefore, the enrichment

of the shape functions in the context of the IGFEM will be introduced
and explained for a one-dimensional problem. The idea of the IGFEM

formulation was introduced by Soghrati et al. (2012) and is based on the
introduction of nodes at the intersection of the interface and element

edges, which possess generalized degrees-of-freedom.
The one-dimensional problem depicted in Fig. 5.3 is considered to ex-

plain the approach. Here, the field variable φ̌(x) should be discretized.

The problem is discretized by three linear elements (e) and includes an
interface Γ within the element (2) at x = 0. The field variable φ̌(x) can

be discretized using standard shape functions N
(e)
β (x) of the nodes β in
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5.2.3 Enrichment of shape functions

for weak disontinuities
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(3)
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⋆

x̂1 x̂2 x̂3 x̂4

x̂5

x

Figure 5.3: Discretization of the considered one-dimensional problem with a weak
discontinuity of the field variable φ̌ at the interface Γ. Following the IGFEM approach,

the space is discretized by two elements (e = 1, 3) with standard shape functions N
(e)
β

(x)

and one element (e = 2) with enriched shape functions M
(e)
β

(x). An additional node
was created at the interface to consider the weak discontinuity (marked by the ⋆ symbol).
(Albiez et al. (2018) Fig. 1)

elements without an interface. The weak discontinuity at the interface Γ

is included by creating an additional node (marked by the ⋆ symbol in

Fig. 5.3). Further, the shape functions of the element with the interface
are enriched by this additional node. These enriched shape functions

M
(e)
β (x) read

M
(2)
2 (x) =

1

2
(1 − sgn (x − x̂5))

(
x − x̂5

x̂2 − x̂5

)

,

M
(2)
3 (x) =

1

2
(1 + sgn (x − x̂5))

(
x − x̂5

x̂3 − x̂5

)

,

M
(2)
5 (x) =

1

2
(1 + sgn (x − x̂5))

(
x̂3 − x

x̂3 − x̂5

)

− 1

2
(sgn (x − x̂5) − 1)

(
x̂2 − x

x̂2 − x̂5

)

,

(5.5)
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5.2 Spatial discretization

where x̂β represents the nodal coordinate. Further, they confirm the
condition

N
(e)

el∑

β=1

M
(e)
β (x) = 1, (5.6)

with N
(e)
el as the number of nodes of the element (e). As a result, the

field variable φ̌(x) can be discretized over the considered space by

φ̌(x) ≈
∑

e∈IV






N
(e)

el∑

β=1

N
(e)
β (x)φ̂β




+

∑

e∈IΓ






N
(e)

el∑

β=1

M
(e)
β (x)φ̂β




 . (5.7)

Here, the sets of elements with and without an interface are represented
by IΓ and IV , respectively. Further, φ̂β corresponds to the nodal degree-

of-freedom. Although the enriched shape functions M
(e)
β (x) were in-

troduced in the global coordinate system x, in this exemplary problem,

they can also be defined in a reference coordinate system, thus, only one
reference element is necessary. Exemplary enriched shape functions are

shown in Fig. 5.4 in a two-dimensional plane, where the red marked
nodes correspond to the additional interface nodes. The black nodes are

the vertex nodes, whereas the grey nodes are necessary for quadratic

shape functions (as discussed in Section 5.2.2). Consequently, the grey
nodes are not essential for the enriched shape functions. The partition

between the elements with and without an interface and, consequently,
the enriched shape functions differ from the framework proposed by

Soghrati et al. (2012). Nevertheless, the fundamental idea and the ben-
efits of the IGFEM formulation remain. Furthermore, the introduced

approach is favorable to include interface properties, which is necessary
for the simulations described in Chapter 8.
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y

y

replacements

1

5 2
6
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74
8

M4 M7

M3

Figure 5.4: Exemplary enriched shape functions in a two-dimensional plane. The vertex
nodes, the additional interface nodes, and the central nodes are marked by the black, the
red, and the grey circles, respectively. The central nodes (grey circles) are necessary for
the quadratic shape functions and are not considered for the enriched shape functions.

5.2.4 Numerical integration

The numerical integration is performed by a standard integration
scheme

∫

V

g(x, y, z)dv = Jref

NIP∑

α=1

wIP
α · g(ξIP − α, ηIP

α , ζIP
α ), (5.8)

where wIP
α and ξIP

α , ηIP
α , ζIP

α correspond to the weight and the coordinates
of the integration point α in the reference element with a total of NIP

integrations points. Further, Jref corresponds to the determinant of the

Jacobian matrix, which relates the physical coordinates (x, y, z) with the
coordinates in the reference element (ξ, η, ζ) (Fish and Belytschko, 2007).

For elements without an interface, the well-known weights and coor-
dinates of the Gauss quadrature (also called Gauss-Legendre integra-

tion) were chosen. To reduce possible errors induced by the numerical
integration, those elements include NIP = 27 integration points (IP) as

depicted in Fig. 5.5 a). However, the standard Gauss quadrature in the
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5.3 Periodic boundary conditions

weak form requires smoothness of the integrands (Fries and Belytschko,
2010), which is not necessarily given for the elements containing an

interface. Thus, as a result of the discontinuity in the shape functions
at the interface, the numerical integration demands special attention.

Several possible approaches are explained and summarized by Fries

and Belytschko (2010). In this work, the numerical integration for dis-
continuous shape functions is conducted by the decomposition of the

elements, originially proposed by Moës et al. (1999). This approach
is based on the decomposition of the elements along the discontinuity

(thus along the interface) into subdomains, as depicted in Fig. 5.5 b).
Within each subdomain, the smoothness of the integrand is ensured,

thus, the standard Gauss quadrature can be applied for each subdo-
main. Therefore, each subdomain can be considered individually and

27 integration points are placed in each subdomain with the standard

Gauss quadrature weights and positions. Furthermore, to consider the
interface properties, additional integration points at the interface were

introduced (Fig. 5.5 b)). Consequently, an element with an interface
includes a total of 63 integration points (54 volume IP and 9 interface

IP).

5.3 Periodic boundary conditions

The effective material response of heterogeneous materials can be
estimated by numerical homogenization, besides others possibilities.

Typically, not the complete geometry is discretized, but rather a repre-
sentative part, called representative volume element. This representative

part has to fulfill certain restrictions, such as the statistical homogeneity
and ergodicity as well as the independence of boundary conditions

(e.g., Hill (1963); Ostoja-Starzewski (2002)). However, the statistical

homogeneity is obviously satisfied by considering a unit cell (UC) in the
special case of a periodic microstructure. Exemplary cross-sections for
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a) b)
Standard FE
discretization

Interface GFE
discretization

Volume IP

Volume IP subdomain I

Volume IP subdomain II

Interface IP

Figure 5.5: a) Standard finite element discretization for the numerical integration with
27 integration points. b) Decomposition of the element along the interface into two
subdomains. The standard Gauss quadrature can be applied for each subdomain,
whereas the interface properties are considered by the creation of additional integration
points at the interface. (Albiez et al. (2018) Fig. 2)

a) b) c)

Figure 5.6: Exemplary unit cells of a) an hexagonal fiber arrangement, b) a quadratic fiber
arrangement, and c) a lamellar microstructure. In each case, the unit cell is marked by the
red rectangle.
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unit cells with hexagonal and quadratic fiber arrangements are marked

by the red rectangle and shown in Fig. 5.6 a) and b), respectively. In the
case of an equal fiber spacing, the unit cell of the hexagonal arrange-

ment is twice as large as the unit cell of the quadratic arrangement,

making the quadratic arrangement numerically less expensive. Further,
a unit cell of a lamella is depicted in Fig. 5.6 c). The independency of
boundary conditions can be supported by the use of periodic boundary
conditions, which are superior to homogeneous boundary conditions.



5.3 Periodic boundary conditions

In fact, the periodicity can get lost by applying homogeneous boundary
conditions (e.g., Xia et al. (2003)). The basic idea of the periodic

boundary condition is the coupling of the degree-of-freedom on the

individual surfaces of the UC with each other. Here, the partition into
master and slaves nodes is necessary and the coupling between those is

forced by equations, summarized in Appendix A.2. They are explained
in the case of the DOF for the displacement, however, they can be

applied for any desired DOF.

Furthermore, the effective stress or strain field of the UC is realized by

considering the DOF of specific master-nodes. To explain this approach,
the rectangle with the dimensions Lx, Ly, and Lz in the x, y, and z

direction is considered (depicted in Fig. 5.7). As a consequence of the

0

1

2

3

4

5

6

7

x
y

z

Ly

Lx

Lz

Figure 5.7: Node numbering for the independent nodal displacements as well as the
dimensions Lx, Ly , and Lz of the rectangle.

symmetric property of the effective strain tensor εeff = sym(grad
(
ueff

)
)

with ueff as the effective displacement, the number of independent
nodal displacements reduces to nine. It is, however, important to

choose the nodal displacement such that any loading case can be
obtained. Here, the displacements ux0, uy0, uz0, ux1, uy1, uz1, ux2,

uy
2, and ux

4 were chosen, whereas the first index corresponds to the
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axial direction of the displacement and the second index to the node
number according to Fig. 5.7. Hence, the components of the effective

strain tensor can be adjusted by



5 Numerical implementation

εeff
xx =

ux4 − ux0

Lx
, εeff

xy = εeff
yx =

ux2 − ux0

Ly
,

εeff
yy =

uy2 − uy0

Ly
, εeff

xz = εeff
zx =

ux1 − ux0

Lz
, (5.9)

εeff
zz =

uz1 − uz0

Lz
, εeff

yz = εeff
zy =

uy1 − uy0

Lz
.
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Chapter 6

Transition law between different
strengthening mechanisms

The strength of a single-phase material is usually described by the well-
known square root Taylor hardening model (Eq. (3.12)). This hard-

ening model is based on the self-interaction between individual dislo-
cations and suggests direct proportionality between the strength and

the dislocation density. Thus, one would expect a monotonic loss of
strength with a decreasing dislocation density. However, experimental

investigations reveal a significant increase in strength for a vanishing

dislocation density, up to the theoretical strength τ∞ in the case of an
essentially dislocation free material (e.g., for defect-free whiskers (Bren-

ner, 1956) and as-grown Mo fibers (Bei et al., 2007)). This increase
of strength with decreasing dislocation density can be explained by

the exhaustion of dislocations and dislocation sources, e.g., El-Awady
(2015); Chisholm et al. (2012). Therefore, the Taylor hardening model is

only valid in the case of a significantly high dislocation density, whereas
the theoretical strength can only be achieved in the defect-free case.

To bridge this gap between no dislocations and a significantly high

dislocation density, a transition law is necessary (Lilleodden and Nix,
2006). A statistical model was proposed by Johnson and Ashby (1968),

where the increase of strength with decreasing dislocation density was
motivated by an increasing distance between jogs. They concluded that
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τF ∝ ρ−3/2 for ρcrit > ρ,

τF ∝ √
ρ for ρcrit ≤ ρ

(6.1)

with the critical dislocation density ρcrit. Thus, the strength increases
with decreasing dislocation density as a result of the dislocation source

strengthening mechanism for a dislocation density below a critical
value. Furthermore, the strength increases with increasing dislocation

density due to the Taylor hardening for densities above this critical
value. A similar approach was conducted in Parthasarathy et al. (2007)

by considering the stochastics of dislocation source lengths and by a
Monte Carlo simulation considering the randomness of the Schmid

factor by Sudharshan Phani et al. (2013). More recently, a generalized

size-dependent, dislocation-based transition model which predicts the
transition from dislocation-source strengthening to forest-dominated

strengthening was proposed by El-Awady (2015). The dependency of
the yield strength on the initial dislocation density ρ and the intrinsic

size parameter d was found by evaluation of over 200 discrete disloca-
tion dynamics simulations supported by micro-pillar experiments. The

function which gives the best fit reads

τF =
β̃µ

d
√

ρ
+ α̃µb

√
ρ (6.2)

and is depicted in Fig. 6.1. Here, α̃ as well as β̃ correspond to dimen-
sionless constants and b is the length of the Burgers vector. However,

it is well known that the strength of a defect-free material is limited by

its theoretical strength τ∞ ≈ µ/30 (Cottrell, 1953), which can neither be
fulfilled by the approach of Johnson and Ashby (1968) (Eq. (6.1)) nor by

the approach of El-Awady (2015) (Eq. (6.2)). Therefore, the flow stress of
a physical transition law should decrease starting from the theoretical

strength for low dislocation densities and reach the normal square root
Taylor hardening for high densities (as suggested by Lilleodden and
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Nix (2006)). A possible regularization of Eq. (6.2) was motivated in
Albiez et al. (2016a) and reads
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Figure 6.1: Comparison of the size-dependent transition models proposed by Albiez
et al. (2016a) (green curve) and El-Awady (2015) (red curve). Contrary to the model
of El-Awady (2015), the transition model of Albiez et al. (2016a) fulfills the limit of the
theoretical strength for a defect-free crystal. In addition, the experimentally observed
independence of the intrinsic size d for very low and very high dislocation densities is
well reproduced (compare dotted blue curve with the continuous green one). (Albiez
et al. (2016a) Fig. 1)
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τF =
τ∞

d
√

ρ + 1
+ ᾱµb

√
ρ. (6.3)

Here, τ∞ = µ/30 stands for the theoretical strength, thus, all parameters
have a physical meaning. In addition, the limit case limρ→0 τF = τ∞
with τ∞ = µ/30 is fulfilled (Fig. 6.1). Nevertheless, the investigations
by El-Awady (2015) have been performed in the range of d

√
ρ ≫ 1 only,

where both approaches (Eq. (6.2) and Eq. (6.3)) are similar (Fig. 6.1

for ρ > 1014 1/m2). Thus, the transition law proposed by Albiez et al.
(2016a) is valid for an extended range and does not disagree with the

results of El-Awady (2015).

6 Transition law between different strengthening mechanisms
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The transition law proposed by Albiez et al. (2016a) couples the size

parameter d with the dislocation density. This coupling is crucial

to explain several experimental findings. Usually, the yield strength
dependency of the intrinsic size d is described by a model of type

τF ∼ k̃d−n. Here, k̃ is assumed to be a material constant and one
obtains the Hall-Petch type strengthening for n = 0.5. Nevertheless, k̃

collapses into a single value for different materials by using an inverse
relationship, thus, n = 1 (Dunstan and Bushby, 2014). As discussed

in Section 3.3, an inverse relationship was also found in the case of
thin films by Arzt et al. (2001); von Blanckenhagen et al. (2001; 2003);

Kraft et al. (2010); Zhu et al. (2008). However, as stated in Rinaldi

(2011), the exponent n depends on the initial dislocation density. Such
a dependency can be described by Eq. (6.3) and is depicted in Fig. 6.2.

Here, τF is shown in a double-logarithmic plot over the size parameter
d for two different initial dislocation densities. The negative slope

of the curve corresponds to the exponent, which obviously depends
on the combination of the size parameter and the initial dislocation

density. For example, a lower initial dislocation density leads to a
lower exponent at d ≈ 2 · 10−5 m−2 (Fig. 6.2). Thus, the coupling of the

initial dislocation density with the exponent can be well described by

Eq. (6.3). Furthermore, as shown for example by Bei et al. (2008c) in
the micro-pillar experiments of Mo fibers, no size effect can be seen in

case of the as-grown fibers (essentially dislocation free) as well as in
case of the 11 % pre-strained fibers (dislocation density of ≈ 1014 m−2

measured by Sudharshan Phani et al. (2011)). Consequently, the yield
strength of a defect-free material is given by the theoretical strength

and, thus, is independent of the size parameter d. Further, for materials
containing a high enough dislocation density, the size parameter d is no

longer dominating, but the average spacing 1/
√

ρ between individual
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dislocations is controlling the flow stress. These experimental findings

are well described by the transition law proposed in Albiez et al. (2016a)
as shown in Fig. 6.1 by the dashed line, which was calculated with a



eplacements

101

102

103

104

10−7 10−6 10−5 10−4 10−3

−0.42

−0.86

Eq. (6.3) with ρ = 106 m−2

Eq. (6.3) with ρ = 108 m−2

d in m

τ
F

in
M

P
a

Figure 6.2: The transition model (Eq. (6.3)) describes the dependency of the exponent n
on the initial dislocation density (based on experimental observations by Rinaldi (2011)).

In addition, the regime where an effect of the size parameter can be

observed decreases for an increasing initial dislocation density. This
is shown in Fig. 6.3, where the red circles indicate the limit of this

regime. On the left side of the red circles, the size parameter has an

effect, whereas on the right side of the circles, the effect of the size
parameter vanishes. This is in good agreement with the work of Rinaldi

(2011). Moreover, the experimentally observed softening of the Mo
micro-pillars, as shown in Fig. 2.5, can be described by the transition

law proposed in Albiez et al. (2016a). This calculated yield strength can
be considered as an upper limit and describes the strong softening in
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twice as high size parameter. Essentially no effects of the increased
size parameter for low dislocation densities as well as high dislocation

densities are visible.

the beginning with an asymptotical character for higher pre-strain, as

observed by Bei et al. (2008c). Here, the dislocation density evolution

6 Transition law between different strengthening mechanisms
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Figure 6.3: The size parameter d has an impact on the strength τF on the left side of the
red circles, whereas the impact vanishes on the right side. The regime where an impact of
the size parameter can be observed decreases for an increasing initial dislocation density.

In conclusion, the transition law proposed in Albiez et al. (2016a) fulfills
the following experimental findings:

• The strength is limited by the theoretical strength in the case of a
defect-free material.
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shown in Fig. 2.5 together with the material properties of pure molyb-

denum listed in Tab. 7.1 were used. The applied dislocation density

evolution will be discussed in Section 7.2.4. A similar trend of such
a strong softening was observed by nanoindentation measurements,

where the indentation load for the first pop-in event decreases with
increasing pre-strain (reported for Mo in Bei et al. (2016), for Au wire in

Guglielmi et al. (2018), and reviewed for several materials in Gao and
Bei (2016)).



• The effects of the size parameter for an essentially dislocation free
material as well as for a material with a high dislocation density

vanishes.

• Coupling between the dislocation density and the size parameter

results in a nonconstant exponent n.

• Agreement with the results of El-Awady (2015), but also validity in

an extended range.

• The regime where the size parameter affects the material’s response

depends on the dislocation density.

• Good agreement with the experimentally measured yield strength of
Mo micro-pillars.
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6 Transition law between different strengthening mechanisms





Chapter 7

Physically motivated crystal
plasticity creep model for
directionally solidified eutectics

7.1 Motivation

The reinforcement of near-stoichiometric NiAl with Mo fibers by direc-
tional solidification is of great interest for high temperature structural

applications. This results from the increased creep resistance and the
improved room temperature fracture toughness compared to the mono-

lithic NiAl. Even though the fibers’ behavior was explored intensively
at room temperature and the creep behavior of the composite has been

investigated at elevated temperatures several times (see Section 2.2.2),

a physically motivated model which rationalizes the composite’s be-
havior under various thermal and mechanical loads for different fiber

diameters is still missing. There are some similarities between the
short fiber reinforced Al matrix composites with the present NiAl-9Mo

composite, however, the model introduced by Dlouhý et al. (1995)
may not be valid here. This model describes a broad secondary creep

range with fine oscillations as well as a tertiary creep regime due to
fiber-breakage. Both phenomena, however, are not visible for the DS

NiAl-9Mo.
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(2016a) will be presented. This model describes the creep behavior
of the DS eutectic NiAl-9Mo and was validated by comparing simu-

lated creep curves with experimentally measured ones (measured by
I. Sprenger, C. Seemüller, and M. Heilmaier and published in Albiez

et al. (2015; 2016a)). With the help of the simulation, the shape of the

creep curve can be explained by considering the load transfer between
the fiber and the matrix. Finally, the model and the insights due to the

simulation will be discussed and summarized.

7.2 Balance equation and constitutive

relationships

7.2.1 Balance equation

In the context of the simple physical model proposed in Albiez et al.

(2016a), no micromorphic variable will be introduced. It follows that
only the equilibrium condition of the displacement variable u has to be

fulfilled (see Box 4.2). Thus, the considered conditions are given by

0 = div (σ) for ∀x ∈ V ,

t̄ = σn on At.
(7.1)

Further, no additional degree-of-freedom is necessary, allowing the im-

plementation in the ABAQUS UMAT subroutine.

7.2.2 Basic constitutive relationships

Following Bertram (1998; 2005), the deformation gradient F is multi-

plicatively decomposed under the assumption of the existence of the
elastic isomorphism F p

−1 = P into an elastic part F e and a plastic part
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In this chapter, a simple physical model proposed by Albiez et al.

F p.



7.2 Balance equation and constitutive relationships

F = F eF p. (7.2)

The multiplicative combination of the mean rotation of the lattice
Re ∈ Orth and the stretch of the lattice U e ∈ Sym leads to the elastic

part of the deformation gradient, thus, F e = ReU e. The plastic part
F p ∈ Unim contains the slip caused by dislocation movement on slip

systems. Under the assumption of small elastic strains, the St. Venant’s

F = F eF p

F eF p

Reference placement
Current placement

Intermediate configuration

gRP
1

gRP
2

gIC
1

gIC
2

gCP
1

gCP
2

Figure 7.1: Schematical illustration of the multiplicative decomposition of the deforma-
tion under the assumption of the existence of the elastic isomorphism.
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elastic law

Se = C0[Ee] (7.3)

can be applied in the unloaded intermediate configuration. Here, the

Green strain tensor is calculated by Ee = (F e
TF e − I)/2 with I as iden-

tity tensor and C0 denotes the stiffness tensor. The plastic deformation

is based on the movement of dislocations, consequently, the plastic de-
formation process is assumed as isochoric, i.e. J = det(F ) = det(F e)

and det(F p) = 1.

The decomposition is depicted in Fig. 7.1 and is given by
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the Cauchy stress

σ = J−1F eSeF e
T (7.4)

are defined in the current placement. In contrast, the plastic velocity
gradient is obtained by Lp = Ḟ pF −1

p in the unloaded intermediate con-

figuration and is associated to the slip rate γ̇α of mobile dislocations on
the slip plane α such that

Lp =

NGS∑

α=1

γ̇αM̃α. (7.5)

Here, the Schmid tensor M̃α of the slip system α is defined in terms
of the constant slip direction d̃α and the constant slip plane normal ñα

in the intermediate configuration and reads M̃α = d̃α ⊗ ñα. The total
number of slip systems NGS depends on the material and is summa-

rized in Tab. 7.1. As stated in Section 3.1, the plastic slip rate γ̇α of the
slip system α is governed by the corresponding Schmid stress τα in a

power-law way (compare Eq. (3.6)). Consequently, the slip rate is given
by the temperature-compensated power-law equation

γ̇α = γ̇0sgn (τα) exp

(

− QC

RT

)( |τα|
τF

α

)m

(7.6)

with the stress exponent m, the reference shear rate γ̇0, and the harden-
ing variable τF

α . Further, the Arrhenius term in Eq. (7.6) describes the

dependency of the slip rate on the temperature. Here, T corresponds to

the creep test temperature in Kelvin, QC is the activation energy for
creep, and R is the universal gas constant. For a creep mechanism

limited by climb of edge dislocations, the activation energy for creep
QC corresponds approximately to the activation energy of self-diffusion

QSD, e.g., Raj (2002). An isotropic hardening approach τF
α = τF is ap-

plied due to the difficult experimental identification of the hardening

behavior of each slip system (Bertram, 2005). The hardening variable
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Further, the total velocity gradient L = Ḟ F −1 and

τF depends, however, on the total dislocation density ρ =
∑NGS

α=1 ρα and
will be discussed in the following section.
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7.2.3 Hardening model of the matrix and the fibers

Hardening model of the matrix

The elastic strain in the NiAl matrix was measured by tensile testing

of the composite at 800 ◦C by Bei et al. (2005) with in situ neutron

diffraction. They observed the absence of elastic strain in the matrix,
revealing its free plastic flow at high temperatures. This was confirmed

by further investigations in Bei et al. (2008a;b). In addition, no signif-
icant hardening of [100]-oriented single-crystal Ni-40Al was observed

by Whittenberger et al. (1991) during compression testing at 1100 K

(≈ 830 ◦C). Consequently, an ideal plastic behavior τF = τ0 was used

to model the plastic deformation of the matrix.

Hardening model of the fibers

The fiber size of the DS eutectic NiAl-9Mo depends on the growth

conditions and lies in the range of 80 nm − 900 nm (see Section 2.2.2).
For this reason, a hardening evolution accounting for the size effects

is required to model the hardening behavior of the fibers. Further-
more, Bei et al. (2008c) observed a dramatic loss in strength due to

pre-straining. They measured a decrease of the yield strength from

≈ 9.3 GPa at 0 % to ≈ 1 GPa at 11 % pre-strain for a constant fiber
diameter of 500 − 550 nm. Further investigations by Sudharshan Phani

et al. (2011) revealed an increase of the dislocation density with increas-
ing pre-strain (from ≈ 9 · 108 1/m2 at 0 % to ≈ 2.5 · 1014 1/m2 at 16 %

pre-strain). Both investigations indicate a transition from theoretical
strength to dislocation-based strengthening mechanisms. It follows that

the hardening of the fiber material can be described by the transition
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law proposed by Albiez et al. (2016a), which was discussed in detail in
Chapter 6.



7 Physically motivated crystal plasticity creep model for DS eutectics

7.2.4 Dislocation density evolution in the fibers

Results of experimental dislocation measurements of Sudharshan Phani
et al. (2011); Chisholm et al. (2012); Barabash et al. (2010a) are sum-

marized in Fig. 2.5. The as-grown fibers, essentially, do not possess
any defects (Sudharshan Phani et al., 2011), which explains the mea-

sured yield strength near to the theoretical one (Bei et al., 2007). The
dislocation density increases by pre-straining the fibers, leading to a

strongly inhomogeneous distribution. At higher pre-strain values, how-
ever, a more uniform dislocation distribution was observed (Sudhar-

shan Phani et al., 2011; Kwon et al., 2015). Although the inhomoge-
neous distribution as well as the impact of the interface are not yet

fully understood, the strong increase of the dislocation density at small

pre-strain values and the saturation at larger pre-strain values is clearly
visible (compare Fig. 2.5). This behavior can be described by the dislo-

cation evolution according to Mecking et al. (1976); Mecking and Kocks
(1981); Kocks and Mecking (2003); Estrin (1996) and reads

ρ̇ = (k1
√

ρ − k2ρ) γ̇acc. (7.7)

Here, γ̇acc =
∑NGS

α=1 |γ̇α| corresponds to the total shear rate. This dislo-

cation density evolution includes two physical dislocation interaction
phenomena, the effective dislocation storage and the annihilation of dis-

locations described by the first and the second term, respectively. Calcu-
lating the dislocation density evolution with the help of Eq. (7.7) repre-

sents the discussed trend of the measurements with an initial strong
increase as well as a final saturation (shown in Fig. 2.5). Here, the

two parameters k1 and k2 are given in Tab. 7.1 and were identified by
fitting to the experimentally measured values. The mean value of the

two measured dislocation densities by Sudharshan Phani et al. (2011)
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at 4 % pre-strain were used for the identification of k1 and k2. Barabash
et al. (2010a) estimated the dislocation density values, thus, these values

were not incorporated.
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The dislocation storage process is athermal and k1 is of statistical na-

ture, therefore, the identified parameter can be used at high tempera-

tures (Mecking and Kocks, 1981), although the pre-strain was induced
at room temperature. Contrary, the dislocation annihilation process

is affected by thermal activation. Consequently, the determined dis-
location annihilation parameter k2 is useless at elevated temperatures.

However, k2 increases with increasing temperature, resulting in the
condition

kRT
2 < k1000 ◦C

2 , (7.8)

as stated in Mecking and Kocks (1981); Estrin (1996).

7.2.5 Simulation setup

The experimental microstructural investigations of several authors re-

vealed:

1. The regular hexagonal arrangement of the fibers perpendicular to

the growth direction (e.g., Bei and George (2007; 2005); Zhang et al.
(2013); Haenschke et al. (2010)).

2. The perfect alignment of the fibers parallel to the growth direction
(e.g., Barabash et al. (2010a); Bei et al. (2008a)).

3. The high aspect ratio of fiber length to fiber diameter (e.g., Hu et al.

(2013); Haenschke et al. (2010); Bei et al. (2008a)).

Due to these findings, a periodic microstructure can be assumed (Albiez

et al., 2016a), resulting in the possible use of a representative unit cell to
describe the microstructure (discussed in Section 5.2). The microstruc-

ture of the DS NiAl-9Mo is depicted in the transverse section normal to
the solidification direction (Fig. 7.2 a)) together with the representative
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unit cell (Fig. 7.2 b)). To benefit from the periodic microstructure, the
finite element simulation was carried out by using the periodic dis-

placement boundary conditions discussed in Section 5.3. Following
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a) b)

2µm
λ

Figure 7.2: a) Transmission electron microscopy image showing the fibers embedded in
the matrix (Albiez et al., 2016a). b) Geometrical discretization of the microstructure by
assuming a perfect hexagonal fiber arrangement. The representative unit cell is marked
with the rectangle. (Albiez et al. (2016a) Fig. 3)
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the experimental results of, e.g., Dudová et al. (2011); Hu et al. (2012);
Bei and George (2005); Hu et al. (2013), the 〈100〉-orientation of the

fibers and the matrix were set parallel to the growth direction. Further,
the cube-on-cube orientation relation of both phases with the interface

boundary parallel to the {011} crystal-plane (experimentally shown by
Hu et al. (2012); Bei and George (2005); Hu et al. (2013)) was considered.

True stress was applied and the strain was calculated as Hencky strain

by using the displacement of a master node. Finally, due to the exper-
imental challenge of identifying the precise zero point of plastic creep

strain, the simulated minimum creep strain is set to the experimentally
measured one.



7.3 Determination of material parameters

7.3 Determination of material parameters

The previously introduced simulation model for the description of the
creep behavior of DS NiAl-9Mo is based on measured quantities or

material parameters restricted to a reasonable range of physically mo-
tivated values. For this reason, the required material parameters can

be extracted from literature except for the reference shear rate of the
fiber γ̇0 and the dislocation annihilation parameter k2 at elevated tem-

peratures, which were not present in literature. A stress exponent of
m = 10.5 for the fiber material was chosen which is close to the value

found in a one-dimensional model by Albiez et al. (2015). Further, it is

close to the stress exponent of pure molybdenum (Pugh, 1955). The in-
trinsic size corresponds to the area-equivalent fiber diameter. To deter-

mine the two missing material parameters, namely γ̇0 and k2, the sim-
ulation was fitted to one creep experiment from Albiez et al. (2015) at

1000 ◦C, an applied stress of 250 MPa, and a fiber diameter of 0.729µm.
The simulated creep curve is in good agreement with the experimental

measured one, shown in Fig. 7.3 a). Tab. 7.1 summarizes the two identi-
fied parameters together with the necessary input parameters from lit-

erature. The identified dislocation annihilation parameter k2 at 1000 ◦C

exceeds the value at RT, thus, fulfills the condition described in Eq. (7.8).
Furthermore, due to the increased temperature, the dislocation densi-

ties are considerable lower than the ones measured at RT by Sudhar-
shan Phani et al. (2011); Barabash et al. (2010a); Chisholm et al. (2012).

Finally, as shown in Fig. 7.3 b), the fiber’s flow stress is approximately
half of the theoretical strength for > 4 % creep strain.
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Figure 7.3: a) Comparison of the predicted creep curves with the experimentally mea-
sured ones for a fiber diameter of d = 0.729 µm at 1000 ◦C and an initial dislocation
density of ρ0. The experimentally measured creep curve at an applied stress of 250 MPa
was published in Albiez et al. (2015) and was used to identify the two missing parameters
(γ̇0 and k2). The creep curve for an applied stress of 150 MPa is predicted and
is in good agreement to the experiment (Albiez et al., 2016a). b) Evolution of the
hardening τF (green curve) and the dislocation density ρ (red curves) of the fiber during
creep deformation (at 1000 ◦C, an applied stress of 250 MPa, and a fiber diameter of
d = 0.729µm). An increase of the initial dislocation density by a factor of 10 only has a
minor influence on the dislocation density evolution after reaching the minimum creep
rate. (Albiez et al. (2016a) Fig. 4)
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7.4 Evaluation of the creep model

7.4.1 Evaluation approach

To evaluate the simulation model proposed in Albiez et al. (2016a), the
predicted creep curves were compared with experimentally identified

ones. Only measured quantities or parameters which are restricted to
a reasonable range of physically motivated values were used in this

model. As emphasized earlier, a physically motivated model should be
able to rationalize (i) the influence of a change of the applied stress, (ii) a

modification of the temperature, and (iii) a change of the intrinsic size,
thus, the fiber diameter. Further, the role of the inhomogeneous dis-

tribution of dislocations in the as-grown fibers on the minimum creep

rate will be investigated. Finally, due to the use of the elastic constants
of stoichiometric NiAl and pure Mo, the effects of the elastic constants

on the creep behavior are considered.

7.4.2 Change of the applied stress

As discussed in Section 7.3, the reference shear rate of the fiber γ̇0 and
the dislocation annihilation parameter k2 were missing in literature,

and, thus, were identified by fitting the simulation to one creep experi-
ment published in Albiez et al. (2015). This deliberately picked creep

experiment was conducted at 1000 ◦C, an applied stress of 250 MPa,

and a fiber diameter of d = 0.729µm. To evaluate the predictions of
the simulation model, the temperature as well as the fiber diameter are

kept constant while the applied stress is decreased to 150 MPa. The
predicted creep curve and the experimentally measured one show a

good agreement, as depicted in Fig. 7.3 a). Further, Fig. 7.4 shows the
simulated minimum creep rate of the composite ˙̄εmin together with the

experimentally one vs. the applied stress. Both, the predicted stress ex-
ponent and the experimentally measured one are around m̄ ≈ 10, thus,
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match perfectly. Consequently, one can conclude that for the range of
applied stresses covered by the experiments, the model reproduces well

the effects of a change of the applied stress.
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Figure 7.4: Experimentally measured minimum creep rates as well as simu-
lated/predicted ones at 1000 ◦C and a fiber diameter of d = 0.729µm, represented in a
Norton-plot. Both stress exponents are in perfect agreement. (Albiez et al. (2016a) Fig. 7)

7.4.3 Change of the temperature

The temperature has a strong impact on the slip rate as described by

the Arrhenius term in Eq. (7.6). Consequently, evaluating the effects
of a change in temperature to the response of the model is crucial.

For this reason, the temperature was reduced from 1000 ◦C to 900 ◦C,
while keeping the applied stress of 250 MPa and the fiber diameter of

d = 0.784µm close to the simulation of the parameter identification.

The predicted creep curve at 900 ◦C is shown in Fig. 7.5 b) together
with the experimentally measured one. The minimum creep rate, an
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important characteristic value for a material under high temperature
structural applications (Naumenko and Altenbach, 2016), can be well

reproduced by the simulation model. The activation energy for creep
of the composite was calculated as Q̄Sim

C = 418 kJ/mol, which is close to

the value of Dudová et al. (2011), who measured an activation energy

of Q̄Exp
C = 401 kJ/mol experimentally. It is significantly higher than the

value reported by Hu et al. (2013) (Q̄Exp
C = 291 ± 19 kJ/mol), however,

this value was measured by tension creep tests instead of compression
creep tests. Even though the creep rate after exceeding the minimum

is slightly underestimated, one can conclude that the predicted creep
curve is in an acceptable agreement with the experimentally measured

one. The difference between the simulation and the experiment in
the tertiary regime can be explained by considering the dislocation

annihilation parameter k2. Although the temperature dependency of k2

is known (e.g., Mecking and Kocks (1981); Kocks and Mecking (2003);
Estrin (1996)), the value identified at 1000 ◦C was also used for the

prediction of the creep curve at 900 ◦C.

7.4.4 Change of the fiber diameter

The growth conditions strongly affect the fiber spacing and the fiber
diameter of the DS NiAl-9Mo, where the latter lies in the range of

80 nm − 900 nm (discussed in Section 2.2.2). The results of creep sim-
ulations for specific fiber diameters are shown in Fig. 7.5. Here, the

temperature of T = 900 ◦C and the applied stress of 250 MPa remain

equal to the previously discussed predictions, thus, all changes can
be attributed to the modification of the fiber diameter. To account for

the fiber diameters covered by the experiments, it was reduced by a
factor of ≈ 1.55 from 0.784µm to 0.504µm. However, to consider the

experimentally feasible range of withdrawal rates during directional
solidification, two additional creep curves with a smaller diameter

of 300 nm and a larger diameter of 1µm are plotted in Fig. 7.5. This
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reveals the possible impact by a modification of the fiber diameter on
the creep behavior. The minimum creep rate ˙̄εmin remains unchanged

with a reduction of the fiber diameter. Further, the decrease of the
fiber diameter leads to a smoother increase of the creep rate after

the minimum point. Both experimental observations can be well

reproduced by the model. As emphasized in Section 7.4.3, the slightly
underestimated increase of the predicted creep rate after the minimum

point compared to the experimental creep rate can be attributed to
the dislocation annihilation parameter k2. In spite of this deviation,

the model proposed in Albiez et al. (2016a) is applicable to various
withdrawal rates during directional solidification of NiAl-9Mo.

7.4.5 Role of the initial dislocation density

on the creep behavior

In order to account for the effects of the strongly inhomogeneous distri-

bution of dislocations in the as-grown fibers, the initial dislocation den-
sity ρ0 = 9 · 108 m−2 measured by Sudharshan Phani et al. (2011) was

increased and decreased by a factor of 10. The simulated creep curves
are shown in Fig. 7.6 and one observes a higher/lower minimum creep

rate ˙̄εmin due to a higher/lower initial dislocation density, respectively.
The dashed line in Fig. 7.3 b) shows the corresponding dislocation evo-

lution for an initial value of 10 · ρ0, which approaches the dislocation
evolution for an initial value of ρ0 after exceeding the minimum creep

rate. An increase of the initial dislocation density value from 0.1 · ρ0 to
10 · ρ0 leads to a change in the minimum creep rate from 5.4 · 10−6 1/s

to 9.3 · 10−6 1/s, consequently, the role of the initial dislocation density

value on the minimum creep rate is small. This can be rationalized
by considering the minor dependency of the hardening variable τF on

the dislocation density for values below 1010 1/m2 (shown in Fig. 6.1).
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Figure 7.5: Predicted creep curves for different fiber diameters compared to experimen-
tally measured ones at 900 ◦C and an applied stress of 250 MPa. (Albiez et al. (2016a)
Fig. 6)
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Figure 7.6: Analyzing the impact of the initial dislocation density at 1000 ◦C by increas-
ing/decreasing the measured initial dislocation density value ρ0 by a factor of 10. (Albiez
et al. (2016a) Fig. 8)

a modification of the initial dislocation density ρ0 has no significant

effects on τF.

7.4.6 Role of the elastic constants on the creep behavior

For the elastic constants of the fibers and the matrix, the experimen-

tally determined values of pure molybdenum (Wern, 2004) and stoichio-
metric NiAl (Rusović and Warlimont, 1977) were taken, respectively.

The investigation of Bei and George (2007) reveals, however, that the
chemical composition of the fibers is Mo-10Al-4Ni, whereas that of the

matrix is Ni-45.2Al. This deviation of the chemical composition may
affect the elastic properties. Therefore, creep curves were simulated for

increased and decreased elastic constants of the fiber and the matrix,

shown in Fig. 7.7. Obviously, an increase from 0.5 · cijkl to 2 · cijkl, thus,
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7 Physically motivated crystal plasticity creep model for DS eutectics

an increase of the elastic constants by a factor of 4 only has a minor
effect on the creep behavior.
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Figure 7.7: Analyzing the impact of the elastic constants on the creep behavior at 1000 ◦C.

Directional solidification of the eutectic NiAl-(Cr,Mo) leads to a NiAl

based matrix with (Cr,Mo) fibrous or lamellar reinforcements which are
aligned parallel to the growth direction. As emphasized in Section 2.2.2,

those DS eutectic composites exhibit an increased room temperature
fracture toughness and an enhanced creep resistance simultaneously.

The consideration of the transition from theoretical strength of the
fibers to bulk strength was crucial in the case of the DS NiAl-9Mo,
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where the fibers are essentially dislocation free. As stated in Walter

7.5 Applicability of the creep model

to directionally solidified eutectics

with a lamellar microstructure
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and Cline (1970), this is also the case for the DS NiAl-34Cr with fi-

brous reinforcements, therefore, it is likely that the lamellas within the
DS NiAl-(Cr,Mo) are also essentially dislocation free. Consequently,

the model originally proposed for the DS NiAl-9Mo might also be

applicable for the DS NiAl-(Cr,Mo), even though one has a fibrous and
one a lamellar microstructure. An initial attempt to apply this model

also for lamellar materials was made in Albiez et al. (2016b). Here,
the DS NiAl-31Cr-3Mo composite was used, which possesses a NiAl

matrix reinforced by (Cr,Mo) lamellas. For the simulation, a periodic
unit cell of perfectly aligned lamellas parallel to the load direction

was used. Further, periodic displacement boundary conditions were
applied. Consistent to the DS NiAl-9Mo case, an ideal plastic behavior

τF = τ0 was used to describe the plastic deformation of the matrix.

The hardening of the lamellas follows the transition law discussed
in Chapter 6 (Eq. (6.3)), whereas the dislocation evolution was de-

scribed by the well-known Kocks-Mecking formulation (Eq. (7.7)). The
used material parameters are listed in Tab. 7.2. The simulated and

the experimentally measured creep curves of the DS NiAl-31Cr-3Mo
composite are shown in Fig. 7.8. The experiment was conducted by

I. Sprenger and M. Heilmaier and published in Albiez et al. (2016b).
Despite the difference between the simulation and the experiment in

the primary creep regime, the minimum creep rate and the tertiary

creep regime are in good agreement (Albiez et al., 2016b). Based on
this acceptable agreement, one can assume a similar creep mechanism

for the DS NiAl-31Cr-3Mo as observed for the DS NiAl-9Mo, even
though the first has a lamellar reinforcing phase and the latter a fibrous

reinforcing phase. The interplay between the NiAl matrix and the
(Cr,Mo) lamellas can be explained as follows. In the initial stage, the

(Cr,Mo) lamellas are essentially dislocation free, thus, the yield strength
is close to the theoretical strength. Hence, the lamellas behave nearly

linear elastic and the free plastic flow of the NiAl matrix results in a load
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transfer from the matrix to the lamellas. At the minimum creep rate, the
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Table 7.2: Identified and input parameters for the simulation of the DS NiAl-31Cr-3Mo.

Parameter Value

Lamella

k1, k2 7 · 107 m−1, 13

initial dislocation density 109 m−2

m, γ̇0 4.6, 0.4 s−1

ᾱ, µ, b unity, 97.7 GPa, 2.5 · 10−10 m (Frost and Ashby, 1982)

d 0.409µm

C1111, C1122, C1212 350.0, 67.8, 100.8 GPa (Wern, 2004)

nα, dα {110}〈111〉, {112}〈111〉, {123}〈111〉
Matrix

m, γ̇0, τ0 5.75, 0.001 s−1, 37.25 MPa (Whittenberger, 1987)

c1111, c1122, c1212 182, 120, 85.4 GPa (Wern, 2004)

nα, dα {001}〈100〉, {011}〈100〉, {011}〈110〉

7.6 Discussion of the crystal plasticity

creep model

The evaluation in Section 7.4 reveals the capability of the model to
reproduce the influences of (i) a change of the applied stress, (ii) a

modification of the temperature, and (iii) a change of the fiber diameter
in the experimentally investigated range. To describe the softening of

the fiber, a transition law proposed by Albiez et al. (2016a) as discussed
in Chapter 6 was used. It was motivated by a regularization of the
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stress in the lamellas reaches a critical value, which activates the slip
of dislocations. Therefore, the dislocation density within the lamellas

increases and thus, results in the softening of the lamellas (described by
Eq. (6.3)). As a result of this softening, a reverse load transfer from the

lamellas to the NiAl matrix occurs, which induces the increase of the
creep rate in the tertiary creep regime.
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Figure 7.8: Comparison of the simulation with the experiment for a eutectic DS NiAl-31Cr-
3Mo. The microstructure consists of a NiAl matrix reinforced by fine (Cr,Mo) lamellas.
The results were obtained at 1000 ◦C and for an applied stress of 200 MPa. (Albiez et al.
(2016b) Fig. 1)

hardening law proposed by El-Awady (2015). It is noteworthy that

a combination of the transition law proposed by Albiez et al. (2016a)
and a classical Arrhenius term for the temperature dependency can be

used to describe the plastic behavior of the fiber in the case of elevated
temperatures. The simulations and the experiments reveal a stress

exponent m̄ ≈ 10 and an activation energy for creep Q̄Sim
C = 418 kJ/mol

of the composite (Albiez et al., 2016a). These values are close to
the values of pure molybdenum (mMo ≈ 10.5 and QMo

C = 405 kJ/mol),

consequently, it was concluded that the creep behavior of the composite
is mainly defined by the plastic behavior of the fiber (Albiez et al.,

2016a). Further, they are in agreement with the experimental results by
Dudová et al. (2011). In contrast, the results by Hu et al. (2013) indicate

an activation energy for creep close to the value of the NiAl matrix,
however, those results were obtained by tension creep tests instead of
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compression creep tests, thus, are not directly comparable to the values
of Dudová et al. (2011); Albiez et al. (2016a). A change of the fiber

diameter d does not affect the minimum creep rate ˙̄εmin remarkably,
exemplified in Fig. 7.5. This can be well explained by considering the

low dislocation density within the fibers. The strength of a defect-free

material is given by its theoretical strength (limρ→0 τF = τ∞), thus, it
is independent of the intrinsic size. This behavior was experimentally

shown for the fiber material by Bei et al. (2007); Sudharshan Phani et al.
(2011); Chisholm et al. (2012); Kwon et al. (2015) and discussed in gen-

eral in Chapter 6. Both, the dislocation multiplication parameter k1 and
the dislocation annihilation parameter k2 were modeled independently

of the fiber diameter. Consequently, the smoother increase of the creep
rate with a decreasing fiber diameter can be referred to the transition

law (Eq. (6.3)). Mathematically this can be rationalized by regarding

the inequality (∂γ̇acc/∂γacc)|d=d1 ≥ (∂γ̇acc/∂γacc)|d=d2 which is fulfilled
for d1 ≥ d2, ρ ≤ 1/(d1d2) and ρ ≤ (1/d2

2)(
√

(d2)τ∞/(ᾱµb) − 1)2. Hence,

for the fiber material, the increase of the total shear rate γ̇acc with
increasing shear γacc is larger with increasing fiber diameter. The

shape of the composite’s creep curve can be emphasized by analyzing
the interplay between the matrix and the fiber. In the primary creep

regime, the sharp reduction of the creep rate to the minimum point
results from the load transfer from the matrix to the fiber. Here, the

stress in the fiber increases with increasing creep strain as a result of

the essential linear-elastic behavior. As a consequence of the essential
linear-elastic behavior of the fiber, the dislocation density and therefore

the hardening variable τF remain constant in the primary creep regime,
shown in Fig. 7.3 b). In contrast, the stress in the matrix decreases

due to its free plastic flow at elevated temperatures (experimentally
shown by Bei et al. (2005)). It follows that the load is transferred

from the matrix to the fiber within this regime. The load transfer
was experimentally approved by the work of Dudová et al. (2011)

as work hardening zones (WHZ) around the fiber. Investigations

88



7.6 Discussion of the crystal plasticity creep model

of the dislocations in the matrix by scanning transmission electron
microscopy indicate the presence of 〈100〉-type dislocations in the NiAl

matrix, which are swept towards the interphase boundary due to the
deformation and, thus, creating the observed WHZ (Kwon et al., 2015).

The effects of the pile-up stress at the interphase boundary cannot be

considered within the simulation model, however, the load transfer
leads to a strong increase of the stress in the fiber. At the minimum

point, the stress reaches a critical value inducing the activation of slip,
which leads to a sharp increase of the dislocation density in the fiber.

This activation was experimentally observed by Kwon et al. (2015) as
Hairpin-like dislocations which nucleated at stress concentrations at

the fiber-matrix interface. The sharp increase of the dislocation density
induces a strong softening of the fiber (depicted in Fig. 7.3 b)) and,

as a consequence, an increase of the creep rate of the composite in

the tertiary creep regime. The pronounced increase of the dislocation
density results from the dislocation multiplication with creep strain,

described by the first term in Eq. (7.7). Within the model, the slope
of the creep curve right after the minimum point is controlled by the

dislocation multiplication factor k1 of Eq. (7.7) and the diameter d via
the hardening τF (shown in Fig. 7.5). As emphasized in section 7.2.4

and following Mecking and Kocks (1981), the dislocation multiplica-
tion factor was assumed to be of purely statistical nature. Hence, it

was assumed to be temperature independent and it was identified by

fitting the experimentally obtained values at RT. Nevertheless, this
is only true for the material’s volumetric part, thus, the dislocation

nucleation resulting at the fiber-matrix interface should be considered
as an additional contribution. Further, this additional part should

be modeled temperature dependent. The temperature dependent
dislocation nucleation at the interface boundary can be motivated by

Fig. 7.9 a), which shows the measured creep rates normalized by the
corresponding minimum creep rate ˙̄εmin over the ternary creep strain.
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Figure 7.9: Creep rate normalized by the corresponding minimum creep rate ˙̄εmin

vs. ternary creep strain at an applied stress of 250 MPa. The slope of the curve directly
after the minimum increases for a decreasing temperature and for an increasing fiber
diameter. (Albiez et al. (2016a) Fig. 9)

is reached quickly and the strength of the fiber is still about half of

the theoretical strength (shown in Fig. 7.3 b)). The transition law

proposed in Albiez et al. (2016a) and described by Eq. (6.3) captures
two strengthening mechanisms. To reveal the impact of those on the
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applied stress and almost the same fiber diameter, while changing the
temperature. In a similar manner, Fig. 7.9 b) shows two curves, where

the applied stress and the temperature remain equal, isolating the effect
of a changing fiber diameter. The comparison of the slopes of the corre-

sponding two creep curves right after the minimum in Fig. 7.9 a) and b)

motivates that the dislocation multiplication should increase with de-
creasing temperature and with increasing fiber diameter (Albiez et al.,

2016a). The saturation value of the dislocation density ρsat = (k1/k2)2

The two curves depicted in Fig. 7.9 a) were measured for the same
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fiber strength, the saturated dislocation density can be used, which is
about ρsat ≈ 2.3 · 1012 1/m2 at 1000 ◦C. Despite this maximal possible

dislocation density, the dislocation-forest strengthening term in Eq. (6.3)
only has a minor impact due to ᾱµb

√
ρsat ≪ τ∞/(

√
ρsatd + 1). In

order to rationalize this finding, the mean dislocation spacing 1/
√

ρsat

is compared with the intrinsic size d. Estrin (1996) stated that the
fiber diameter corresponds to the smallest characteristic length if the

inequality d < 10/
√

ρsat ≈ 6.6µm is fulfilled. Even at the saturated
dislocation density, this inequality is clearly satisfied, thus, the fiber

diameter can be identified as the smallest characteristic length. How-
ever, as the dislocation-forest strengthening mechanism is negligible,

the nucleation and absorption of dislocations from the fiber-matrix
interface should be considered in future studies. The second term

in the Kocks-Mecking formulation (Eq. (7.7)) represents the mutual

dislocation annihilation mechanism. The minimal mean dislocation
spacing of 1/

√
ρsat ≈ 0.66µm is, however, in the order of the fiber

diameter, making the mutual dislocation annihilation questionable.
Consequently, the dislocation annihilation due to the interface bound-

ary should be considered. As proposed in Albiez et al. (2016a), this
annihilation mechanism should scale as 1/d, leading to a more likely

dislocation annihilation for fibers with a smaller diameter. Fig. 7.10
shows the results of creep simulations, where the original dislocation

density evolution (Eq. (7.7)) was replaced by

ρ̇ =

(

k̃1
√

ρ − k̃2

d
ρ

)

γ̇acc. (7.9)

Here, k̃1 = 1.6 · 108 m−1 and k̃2 = 51 · 10−6 m were identified by fitting.

The comparison between the simulation and the experiment for the
two different fiber diameters shows a good agreement. For this reason

one may conclude that the dislocation density annihilation scales by
1/d. This behavior can be motivated by the interaction between the
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Figure 7.10: Results of the simulation model with a modified dislocation density evolu-
tion (Eq. (7.9)) are in good agreement with the experiments of Albiez et al. (2016a) (at
900 ◦C and an applied stress of 250 MPa). The adjusted dislocation evolution considers
the 1/d scaling dislocation annihilation mechanism.
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dislocations with the interface boundary and improves the simulation
model of Albiez et al. (2016a).
The Kocks-Mecking formulation (Eq. (7.7)) does not account for static

recovery. This can be rationalized by considering the duration for
reaching the minimum creep rate for an applied stress of 150 MPa

and 250 MPa at 1000 ◦C. The duration of the experiment for an applied
stress of 150 MPa is more than 60 times longer compared to the duration

for an applied stress of 250 MPa, however, the simulations agree per-
fectly with the experimentally measured creep curves. For this reason,

the static recovery effects can be neglected. This was expected due to

the low dislocation density in the fiber, where the same arguments can
be used as for the mutual dislocation annihilation term (Albiez et al.,

2016a). The mean spacing between the dislocations is in the order of
d, therefore, the annihilation of two dislocations with opposite Burgers

vectors is unlikely.



matrix Ni-45.2Al (Bei and George, 2007). For the simulation, however,
the elastic constants of pure Mo and NiAl were used for the fiber and

the matrix, respectively. This simplification is valid due to the minor
effect of the elastic constants on the creep behavior (compare creep

curves with increased and decreased elastic constants in Fig. 7.7). The

minor effect can be rationalized by the small elastic strains and the low
yield strengths within a creep test.

Investigations by Zhang et al. (2012) revealed the possibility to increase
the fiber content while keeping the fibrous microstructure. They in-

creased the volume fraction of the fiber up to approx. 17.6 vol.-% by the
directional solidification of off-eutectic compositions. Fig. 7.11 shows

the possible impact of the increased fiber content on the creep behavior
of the composite by simulated creep curves. Here, the parameters

identified in Section 7.4 and listed in Tab. 7.1 were used. For both

applied loads, the minimum creep rate reduces by a factor of ≈ 10

with an increasing volume fraction from 14 vol.-% to 18 vol.-%. This

behavior clearly shows the possible improvement of the directionally
solidified material by using the approach proposed by Zhang et al.

(2012). However, the off-eutectic composition may lead to a disturbed
fiber alignment, thus, the increase of the creep resistance should be

confirmed by experimental measurements, as the simulation assumes
perfectly aligned fibers.

Finally, the simulation model was applied with a good agreement to the

DS eutectic NiAl-31Cr-3Mo compound, even though this composite has
a lamellar microstructure. Consequently, one can assume that the creep

mechanism of both DS eutectics shows a similar behavior. Further, it
is likely that the (Cr,Mo) lamellas are essentially dislocation free in the

as-grown state.
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The chemical composition of the fibers is Mo-10Al-4Ni and that of the

7.6 Discussion of the crystal plasticity creep model
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Figure 7.11: Simulated creep curves for different specific fiber contents at 1000 ◦C. An
increasing fiber content leads to an improved creep resistance.

7.7 Summary and conclusion of the

local simulation model

The new findings and insights due to the simulation model on the creep
behavior of the DS NiAl based eutectic alloys will be summarized in

this section. First, it is noteworthy that the model is based on measur-
able quantities or parameters restricted to a physically reasonable range.

To evaluate the model, the experimentally measured creep curves

were compared with predicted creep curves at different temperatures,
applied stresses, and fiber diameters. The evaluation demonstrates the

possibility to describe the creep behavior of DS NiAl-9Mo with the
three-dimensional single-crystal plasticity model in the experimentally

investigated range by Albiez et al. (2016a). The effects of (i) a change
of the applied stress, (ii) a change of the temperature, and (iii) a change

of the fiber diameter could be well described by the model. Further, it
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was applied to the DS NiAl-31Cr-3Mo with a lamellar microstructure
with good agreement between the simulation and the experiment

(Albiez et al., 2016b). The experimentally observed transition from
the theoretical strength to the bulk strength of the fiber material was

described by the transition law discussed in Chapter 6. With the help of

the simulations, a closer insight into the state of the fibers and the matrix
during the creep experiment is possible. One can conclude that the

creep of the composite is controlled by the fibers, as the stress exponent
and the activation energy for creep were in the order of the values of

pure molybdenum. This is in line with the findings of Johnson et al.
(1995). Moreover, the shape of the creep curve could be rationalized by

considering the load transfer resulting from the interactions between
the fibers and the matrix. Furthermore, the influences of the elastic

properties on the creep curve were investigated. Finally, the impact of

an increased fiber content on the creep behavior could be estimated.
The simulations reveal that an increase of the volume fraction from

14 vol.-% to 18 vol.-% reduces the minimum creep rate by a factor of
≈ 10. However, the dislocation density evolution within the fiber, as

depicted in Fig. 7.3 b), should be investigated experimentally to identify
the dominant annihilation mechanism of dislocations for the fibers. In

addition, the role of the interfaces on the creep behavior has to be
further investigated.
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Chapter 8

Gradient crystal plasticity model
with interface yielding for creep
of DS NiAl-9Mo

8.1 Introduction and motivation

The interplay between dislocations and microstructural constraints
strongly affects the mechanical properties of single- and polycrys-

talline metals. As discussed in Section 3.3, the refinement of the
grain size in polycrystals results in an increase of the yield strength,

phenomenologically well described by the Hall-Petch relation (Hall,
1951; Petch, 1953). Despite this phenomenological theory, Zhu et al.

(2008) concluded that many theories are still incomplete or only valid

in a rather small domain of experimentally observed size effects. Con-
sequently, a further improvement of the current theories is necessary.

To explain the size effects in a physically motivated way, multiple
gradient plasticity theories accounting for an internal length scale

have been proposed (e.g., Fleck et al. (1994)). As stated by Ashby
(1970), geometrically necessary dislocations (GNDs) are essential if two

phases deform inhomogeneously. They affect the work hardening in
two ways: as obstacles to hinder the movement of other dislocations

and by causing long-range back stresses. To describe the GNDs, the

Nye’s dislocation density tensor (Nye, 1953) and the gradient of plastic
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8 Gradient crystal plasticity model with interface yielding for creep of DS NiAl-9Mo

slip can be used. Gurtin (2002) introduced a defect energy dependent
on the Nye’s dislocation density tensor, as an extension of the classical

quadratic strain energy. Ohno and Okumura (2007) chose a defect
energy based on the self-energy of GNDs and they were able to describe

the d−1 grain size dependency of the initial yield strength. Svendsen

and Bargmann (2010) discussed several GND models. Reddy et al.
(2008) reformulated the gradient plasticity model proposed by Gurtin

and Anand (2005a) as a variational inequality and showed the existence
of a unique solution. The model of Gurtin and Anand (2005a) was valid

for small deformations and later expanded for finite deformations in
Gurtin and Anand (2005b). Specific possible defect energies including

both, recoverable and non-recoverable terms are discussed in Reddy
(2011a) for polycrystals and in Reddy (2011b) for single-crystals. A

regularization of the logarithmic defect energy was introduced by

Wulfinghoff et al. (2015), which captures the initial increase of the
yield strength as well as the hardening effects. Anand et al. (2015)

formulated a thermo-mechanically coupled gradient theory. However,
higher order boundary conditions as a consequence of the extension

of the gradient plasticity theories by an internal length scale are still
necessary. The consideration of a microscopically powerless boundary

condition leads to two important choices, namely the microscopically

free and microscopically hard condition (Gurtin and Needleman, 2005).

Energetically, the first one corresponds to the lower and the latter

one to the upper limit case, respectively. No tractions of the gradient
stresses (also called microstresses by several authors) at the boundary

are implied in case of the microscopically free condition, consequently,
the boundary does not hinder the dislocation flow. Contrary, disloca-

tion transfer across the boundary is prohibited by the microscopically

hard condition, thus, there is no plastic slip on the boundary. By

considering a boundary energy, however, a behavior in between these
two limit cases can be realized. Several approaches exist and could

be used to explain experimentally observed size effects. With the
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help of the one-dimensional models described in Aifantis et al. (2006);
Aifantis and Ngan (2007), the experimentally observed strain bursts

during nanoindentation could be explained. Here, continuous slip
across the grain boundaries with a quadratic boundary energy was

considered. Further, to describe the Burgers vector production at the

grain boundary, Gurtin and Needleman (2005) introduced the Burgers
vector density of the grain boundary per unit length (also called grain

boundary Burgers tensor). The rate of the Burgers vector density of
the grain boundary corresponds to the Burgers vector production (e.g.,

Gurtin (2008)). Gurtin (2008) proposed a grain boundary energy which
accounts for the grain misorientation and the boundary orientation.

This framework, originally introduced for infinitesimal deformations,
was later expanded by McBride et al. (2016) for finite deformations.

In addition, Gottschalk et al. (2016) investigated the computational

and theoretical aspects of this framework and reformulated it in a
variational form. A rate and temperature dependent grain boundary

flow rule was proposed in the work of Voyiadjis et al. (2014). The
dependency of the dislocation nucleation and transmission on the stress

state was investigated with several simulation methods. Bachurin et al.
(2010); Tschopp et al. (2008) used atomistic simulations, De Koning

et al. (2002) a combination of a molecular dynamic simulation with a
line tension model, and Dewald and Curtin (2007) a coupled atomistic

discrete-dislocation method. However, none of them can completely de-

scribe the currently observed strain rate sensitivity of slip transmission
and the experimental observations (Malyar et al., 2017). Bayerschen

et al. (2016) provide a review on the slip transmission criteria.
Several theoretical frameworks address the grain boundary behavior,

however, comparisons between the simulation results and experimen-
tally observed results are still challenging, especially in the three-

dimensional case. This is also caused by the difficulties to extract the
influences of the grain boundary from other effects. Therefore, a reliable

and repeatable sample fabrication with a well-defined grain boundary
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structure, e.g., boundary orientation and grain misorientation is neces-
sary. As discussed in Section 2.2.2, the directional solidification of the

eutectic NiAl-9Mo offers such a well-defined phase boundary due to
the following microstructural properties:

1. Adjustable fiber diameter in the range of approx. 100 nm (Bei et al.,
2005) to approx. 900 nm (Zhang et al., 2013) with a constrained vol-

ume fraction of approx. 14 % due to the eutectic composition.

2. Well-defined cube-on-cube orientation relation between the fibers

and the matrix, with the interface parallel to the {011} crystal-plane
(Bei and George, 2005; Hu et al., 2012; 2013).

3. Regular fiber arrangement with the 〈100〉-orientation of both phases
lying parallel to the growth direction (Bei and George, 2005; Dudová

et al., 2011; Hu et al., 2012; 2013).

The creep behavior of the composite could be well described by the sim-

ulation model proposed by Albiez et al. (2016a) and was discussed in
Chapter 7. However, the effects of the fiber-matrix interface including

potential dislocation transfer/nucleation have not been considered.
In this chapter, a three-dimensional gradient plasticity model with one

accumulated plastic slip is used to account for the effects of dislocation
pile-ups at the fiber-matrix interface. The simplification of accounting

for only one accumulated plastic slip was originally proposed by Wulf-

inghoff and Böhlke (2012). Further, the activation of slip in the fibers as
a result of the pile-up stress from the matrix dislocations is investigated.

This was experimentally observed by Kwon et al. (2015). The disloca-
tion transfer from the matrix into the fibers is modeled by a grain bound-

ary yield condition. The evaluation of the grain boundary flow rule
at the interfaces is performed by using the weak discontinuous shape

functions introduced in Section 5.2.3. They are realized in the ABAQUS
UEL finite element implementation. Even though, one cannot expect

the same physical insights by using the simplification of considering
only one accumulated plastic slip instead of taking all plastic slips into
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account individually, promising results have been received with this
simplification (e.g., Wulfinghoff et al. (2013)). In addition, the numerical

costs and the effort of considering all plastic slips individually exceed
those of the simplified model several times.

8.2 Equilibrium conditions and

constitutive relationships

8.2.1 Equilibrium conditions for the gradient

plasticity theory

Contrary to the model introduced in the previous chapter, a micromor-

phic variable will be considered to account for the non-local effects
of an inhomogeneous plastic deformation. The general procedure de-

scribed in Section 4.5 can be used to derive the necessary equilibrium
conditions, the jump conditions, and the boundary conditions of the

gradient plasticity framework. Here, the micromorphic variable will

be associated with the accumulated plastic slip γacc, thus, the general
internal variable φ corresponds to γacc and the general micromorphic

variable φ̌ to γ̌. Further, the continuity of the micromorphic variable γ̌

across the interface Γ is assumed (e.g., as in Wulfinghoff et al. (2013)),

whereas this is not necessarily true for its gradient field (grad (γ̌)). Due
to the continuity of the micromorphic variable, the jump condition on

Γ reduces to Ξ = [[−ξ]]− · nΓ, where the general variable Ξs
G was replaced

by Ξ. All necessary conditions for the simplified gradient plasticity

framework are summarized in Box 8.1. Here, the suffix (·)G, indicating

the general variables, was dropped.
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Box 8.1: Equilibrium conditions, jump conditions, and boundary conditions for the
gradient plasticity framework accounting for only one accumulated plastic slip.

Field
variable

Equilibrium con-
dition ∀x ∈ V

Jump condition
on Γ

Boundary condi-
tion on At ∨ AΞ

u div (σ) = 0 [[−σ]]−nΓ = 0 σn = t̄

γ̌ π = div (ξ) Ξ = [[−ξ]]− · nΓ ξ · n = Ξ̄

8.2.2 Kinematical assumptions

In the gradient plasticity framework at hand, only infinitesimal defor-
mations will be considered for sake of improved readability. Conse-

quently, the simplifications discussed in Section 4.6 can be applied. The
framework, however, can be easily expanded to finite deformations.

The infinitesimal strain corresponds to the symmetric part of the dis-
placement gradient tensor and is additively decomposed into an elastic

part εe as well as a plastic part εp, thus,

ε = sym(H) = εe + εp. (8.1)

The plastic part of the infinitesimal strain tensor reads

εp =

NGS∑

α=1

γαMS
α (8.2)

and is defined by the slip in each slip system γα =
∫

γ̇αdt. Further,

M S
α = sym(dα ⊗ nα) corresponds to the symmetric part of the Schmid

tensor of the slip system α. The accumulated plastic slip is defined

as γacc =
∫

γ̇accdt, whereas the rate of the accumulated plastic slip ac-

counts for the amount of the rates of plastic slip for all slip systems,
thus,

γ̇acc =

NGS∑

α=1

|γ̇α|. (8.3)
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The number of slip systems NGS depends on the material and is listed
in Tab. 8.1.

8.2.3 Stored energy density for the matrix and the fibers

In this section, the constitutive assumptions for the matrix as well as for
the fibers will be derived in a thermodynamically consistent framework.

The free energy density in the bulk WV includes an elastic We, a defect
W∇, and a penalty Wχ energy contribution. As stated in Ortiz and

Repetto (1999), an additive decomposition between the elastic and the
plastic contributions of the free energy is a good first approximation for

metals. Therefore, following this suggestion, the free energy density in
the bulk is given by

WV = We + W∇ + Wχ. (8.4)

Here, contrary to the work of, e.g., Wulfinghoff et al. (2013), no hard-

ening energy contribution is considered. This can be rationalized by
considering the high temperatures during creep tests, where local hard-

ening effects may be dissipated in time. Therefore, they do not con-
tribute to the stored energy of the bulk. In addition, despite the possible

description of the classical isotropic hardening in an energetical way, it
can also be described in a dissipative way (Gurtin and Reddy, 2009).

The elastic contribution to the free energy density is given by

We =
1

2
εe · C[εe]. (8.5)

Here, C corresponds to the elastic stiffness tensor with the elastic con-

stants summarized in Tab. 8.1 for the matrix and the fibers. Several de-
fect energies exist to include the internal length scale (e.g., Bayerschen

and Böhlke (2016); Reddy (2011b)), however, in the gradient plasticity

model at hand, a quadratic defect energy

W∇ =
1

2
k∇grad (γ̌) · grad (γ̌) (8.6)
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is chosen with a constant defect parameter k∇. This defect energy leads
to a gradient stress ξ linear in the gradient grad (γ̌). Furthermore, the

gradient grad (γ̌) can be understood as an approximation for the geo-
metrically necessary dislocation density, consequently, a quadratic de-

fect energy leads to a gradient stress ξ linear in the geometrically nec-

essary dislocation density (Wulfinghoff et al., 2013). As discussed in
Section 4.5, the coupling between the micromorphic variable γ̌ and its

counterpart γacc is realized by a penalty energy

Wχ =
Hχ

2
(γacc − γ̌)2, (8.7)

where the penalty parameter Hχ has to be chosen sufficiently large.

Resulting from the existence of the interface, an energy density per unit

area contribution on the interface WΓ is considered. This contribution
is assumed to depend linearly on γ̌, thus,

WΓ = kΓγ̌, (8.8)

where the material parameter kΓ corresponds to the constant resistance
of the interface against slip transfer. Consequently, no hardening of

the interface is considered (in contrast to, e.g., Bayerschen et al. (2016)).

This can be rationalized by the same arguments as for the bulk free
energy density. In the high temperature case, possible hardening effects

of the interface can dissipate in time. Further, this linear dependency is
consistent to previous investigations (e.g., Wulfinghoff et al. (2013)).

8.2.4 Dissipation inequality

By reformulating the general expression of the power of internal forces

(Eq. (4.35)) by replacing the general variables with the corresponding
variables of the gradient plasticity framework at hand, the power of
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Pint =

∫

V

(
σ · ε̇ + ξ · grad

(
˙̌γ
)

+ π ˙̌γ
)

dv +

∫

Γ

Ξ ˙̌γda. (8.9)

Here, the continuity of γ̌ across the interface Γ as well as the simpli-

fications of the infinitesimal deformation framework were used. The
internal power in the bulk material with the Cauchy stress σ conju-

gated to ε̇, the micromorphic stress ξ conjugated to grad
(

˙̌γ
)
, and the

micromorphic stress π conjugated to ˙̌γ is given by the first integral

term. Further, the second integral term describes the interface with a
micromorphic traction Ξ conjugated to ˙̌γ.

The total dissipation Dtot reads in the isothermal case

Dtot = Pext −
∫

V

ẆVdv −
∫

Γ

ẆΓda

=

∫

V

σ · ε̇ + ξ · grad
(

˙̌γ
)

+ π ˙̌γdv

+

∫

Γ

Ξ ˙̌γda −
∫

V

ẆVdv −
∫

Γ

ẆΓda ≥ 0.

(8.10)

Here, the power of external forces Pext was expressed by the power of
internal forces Pint due to the relation Pext = Pint. First, the dissipation

in the bulk material DV will be addressed. Substitution of the stored
energy density of the bulk (Eq. (8.4)) into the dissipation inequality

(Eq. (8.10)) and applying the material time derivative leads to

DV =

∫

V

(

σ − ∂We

∂ε

)

· ε̇ +

(

ξ − ∂W∇
∂grad (γ̌)

)

· grad
(

˙̌γ
)

+

(

π − ∂Wχ

∂γ̌

)

˙̌γ −
(

∂We

∂εp
· ε̇p +

∂Wχ

∂γacc
γ̇acc

)

dv ≥ 0.

(8.11)

The stresses σ, ξ, and π are considered to be purely energetic. Fur-
thermore, by assuming arbitrariness of the rates ε̇, ˙̌γ, and grad

(
˙̌γ
)
, the
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σ =
∂We

∂ε
= C[εe],

ξ =
∂W∇

∂grad (γ̌)
= k∇grad (γ̌) ,

p̌ :=
∂Wχ

∂γacc
= −∂Wχ

∂γ̌
= Hχ (γacc − γ̌) ,

π =
∂Wχ

∂γ̌
= −p̌.

(8.12)

Here, the abbreviation p̌ as the generalized stress is introduced. By

using the previous relations (Eq. (8.12)), the dissipation inequality of

the bulk material DV reduces to

DV =

∫

V

σ · ε̇p − p̌γ̇accdv =

∫

V

NGS∑

α=1

(sgn (γ̇α) τα − p̌)|γ̇α|dv ≥ 0. (8.13)

Here, in addition to equations (3.4), (8.2), and (8.3), the relations

∂We

∂εp
= −σ, (8.14)

∂Wχ

∂γacc
= p̌ (8.15)

were used. The reduced dissipation inequality can help to motivate a

thermodynamically consistent flow rule. This will be addressed in the
following section (Section 8.2.5).

By considering the interface terms of the total dissipation (Eq. (8.10)),
the dissipation of the boundary interface DΓ can be obtained

DΓ =

∫

Γ

(

Ξ − ∂WΓ

∂γ̌

)

˙̌γda

=

∫

Γ

(Ξ − Ξen) ˙̌γda =

∫

Γ

Ξdis ˙̌γda ≥ 0.

(8.16)

Here, analog to the approach for the bulk dissipation, the material
time derivative of the stored energy density of the boundary interface

(Eq. (8.4)) was substituted into the dissipation inequality (Eq. (8.10)).
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into an energetic part Ξen and a dissipative part Ξdis. It follows for the
energetic part

Ξen =
∂WΓ

∂γ̌
= kΓ (8.17)

due to the linear dependency of WΓ on γ̌ (compare Eq. (8.8)).

8.2.5 Flow rules

A thermodynamically consistent flow rule for the bulk material is given

by

γ̇α = γ̇0sgn (τα)

( 〈|τα| − p̌〉
τF

α

)m

(8.18)

and can be motivated by regarding the reduced dissipation inequal-

ity (Eq. (8.13)). Similar to the local model discussed in Chapter 7, the
stress exponent, the reference shear rate, and the hardening variable

in each slip system are denoted by m, γ̇0 , and τF
α , respectively. The

simplification of an isotropic hardening approach τF
α = τF is again used

(rationalized in Section 7.2.2). The long-range back stresses, induced by
the GNDs, will be considered in the flow behavior (Eq. (8.18)) by p̌ and

the effects of the SSDs are included by τF. Therefore, both impacts are

accounted for seperately. In addition, the simplification of accounting
for only one accumulated plastic slip leads to a unique p̌ stress value,

thus, it is equal on all slip systems.
The yield condition for plastic slip at the boundary interface

0 =
(
Ξdis − ΞF

)
˙̌γ =

(
Ξ − kΓ − ΞF

)

︸ ︷︷ ︸

=: fΓ

˙̌γ = fΓ
˙̌γ (8.19)

can be motivated by considering the boundary interface dissipation
inequality (Eq. (8.16)). Here, fΓ as an abbreviation and ΞF ≥ 0 as a

dissipative contribution to the yield strength were introduced. Further,
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are given by

fΓ ≤ 0, ˙̌γ ≥ 0, ˙̌γfΓ = 0. (8.20)

Several investigations focused on the dependency of the dislocation
nucleation and the slip transfer at the boundary on the stress state. De

Koning et al. (2002) used a combination of a molecular dynamic simu-
lation with a line tension model. They revealed the impact of the ratio

of resolved stress on the incoming to that on the outgoing slip system
on the nucleation of dislocations at the grain boundary. In addition,

Tschopp et al. (2008) investigated the nucleation process with the help
of an atomistic simulation and concluded that the normal stress on

the nucleation slip system influences the nucleation process. Finally,

by using a coupled atomistic discrete-dislocation method, Dewald and
Curtin (2007) stated that nucleation of dislocations is affected by the nor-

mal stress on the grain boundary. The exact effect of the stress state on
dislocation nucleation and slip transfer at the boundary interface is still

unclear, however, stresses other than the residual shear stress should be
considered (Bachurin et al., 2010). Following the suggestion of Dewald

and Curtin (2007), a dissipative contribution to the yield strength of the
interface accounting for the normal stress on the interface

ΞF = kσ〈−σ · (nΓ ⊗ nΓ)〉 (8.21)

is considered. Here, due to the Macaulay bracket, only a compres-

sive stress on the interface is taken into account and scales with the
parameter kσ . This compressive stress dependency is in agreement

with the results of Dewald and Curtin (2007), who revealed a strong
increase of the necessary nucleation stresses due to the pressure at the

interface. Further, it can be rationalized by considering the volume of a
disturbed crystal structure at the interface. This volume is relevant for

the dislocation nucleation process. Therefore, a compressive stress on

the interface hinders the nucleation process due to the reduction of this
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were derived for the bulk material (Eq. (8.18)) as well as for the interface
(Eq. (8.19)) by regarding the dissipation inequality.

8.2.6 Hardening model of the matrix

As emphasized in Section 7.2.3, hardening within the NiAl matrix can
be neglected. Therefore, the plastic deformation of the matrix is mod-

eled by an ideal plastic behavior, thus, τF = τ0. However, accumula-
tion of GNDs in the matrix at the interface due to an inhomogeneous

plastic deformation was experimentally observed after creep tests (e.g.,
Dudová et al. (2011)). Consequently, the effects of the GNDs in the

matrix phase, inducing long-range back stresses, are considered by p̌

in the flow rule (Eq. (8.18)).

8.2.7 Hardening model of the fibers

To describe the yield strength of the fibers, a transition law from the
theoretical strength to bulk strength is necessary. A physically moti-

vated transition law is given by equation (6.3) and was introduced in
Chapter 6. It describes the transition of the flow stress between differ-

ent strengthening mechanisms and suggests that the flow stress should
decrease starting from the theoretical strength for low dislocation den-

sities and should reach the Taylor hardening for high dislocation den-
sities. Good agreement between predicted creep curves and experi-

mentally measured ones was achieved by using this transition law to

describe the fibers’ behavior during creep simulations (shown in Albiez
et al. (2016a) and discussed in Chapter 7).

In the motivation of the transition model, Albiez et al. (2016a) consid-
ered the total dislocation density ρ and did not distinguish between

the statistically stored dislocations ρssd and the geometrically necessary
dislocations ρGND. In the gradient plasticity framework at hand, how-
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ever, the impact of the GNDs due to the long-range back stresses are
accounted for in the flow rule (Eq. (8.18)) by p̌. Consequently, the local

hardening model (Eq. (6.3)) will only consider the statistically stored
dislocations, thus,

τF =
τ∞

d
√

ρssd + 1
+ ᾱµb

√
ρssd. (8.22)

It follows that due to this partition, the impacts of the statistically stored

dislocations and the geometrically necessary ones are considered seper-
ately through τF and p̌, respectively.

8.2.8 Dislocation evolution in the fibers

The development of the dislocation density within the fibers is de-

scribed by an evolution law. As discussed in Section 2.2.2 and depicted
in Fig. 2.5, the experimental investigations show that (i) the as-grown

fibers essentially possess no defects (Sudharshan Phani et al., 2011) and
(ii) the dislocation density saturates at higher pre-strains (Barabash

et al., 2010a; Chisholm et al., 2012; Sudharshan Phani et al., 2011).

During sample preparation for dislocation density measurements, the
matrix was etched away, thus, the geometrical constraints on the fibers

were eliminated (Barabash et al., 2010a). Therefore, the accumulated
pile-up dislocations at the interface during pre-straining can escape

through the free surface after this etch process. Consequently, the
measured dislocation densities can be interpreted as SSDs (Albiez et al.,

2018), even though the distinction between SSDs and GNDs is not
possible within the dislocation density measurements.

The dislocation evolution was described in Albiez et al. (2016a) by the
well-known Kocks-Mecking dislocation evolution (Eq. (7.7)) accord-

ing to Estrin (1996); Kocks and Mecking (2003); Mecking and Kocks

(1981); Mecking et al. (1976). As discussed in detail in Section 7.2.4,
this dislocation evolution captures the effective dislocation storage
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by k1
√

ρssd and the annihilation of dislocations by k2ρssd. Therefore,
it describes two physical dislocation interaction phenomena. Both

necessary parameters, k1 and k2, were identified by Albiez et al. (2016a).
However, they analyzed the validity of the k2 parameter and concluded

that the dislocation annihilation due to the fiber-matrix interface is more

likely than the mutual dislocation annihilation mechanism. For this
reason, and also to keep the model simple, the dislocation annihilation

is neglected, thus k2 = 0. In the infinitesimal deformation framework
at hand, this assumption is reasonable, since the mutual dislocation

annihilation is only relevant for higher dislocation densities. Those high
density values occur only at high plastic slips, which cannot be inves-

tigated within the infinitesimal deformation framework. Nevertheless,
the value for the dislocation multiplication (k1), which was identified

through fitting by Albiez et al. (2016a), can be used in the current

gradient plasticity model. Consequently, the dislocation evolution

ρ̇ssd = k1
√

ρssd
˙̌γ (8.23)

is used in this model with the k1 parameter listed in Tab. 8.1.
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8.3 Validation of the IGFEM approach in the

context of gradient plasticity

The enriched shape functions described in Section 5.2.3 are able to

discretize field variables containing weak discontinuities at interfaces.
They were derived following the interface-enriched generalized finite

element method (IGFEM) introduced by Soghrati et al. (2012). However,
in order to validate this approach in the context of gradient plasticity,

the simulation results using the enriched shape functions are compared
to an analytical solution. Therefore, a periodic laminate under simple

shear is considered, as depicted in Fig. 8.1 b). To obtain the exact
analytical solution, stationary single slip (γacc(x) = γ(x)) as well as

homogeneous shear stress are assumed. Further, the ideal case of

perfect coincidence between the micromorphic variable γ̌(x) and its
associated variable γ(x) is considered, thus, γ̌(x) = γ(x). The analytical

solution is solved separately for each lamella β in its local coordinate
system xβ , depicted in Fig. 8.1 b). To keep the analytical solution simple,

the same material and the same lamella thickness is chosen for both
lamellas. Consequently, no distinction between the two lamellas, if not

necessary, will be made. In addition, the shear stress is assumed to be
monotonic and positive (τ ≥ 0). The necessary equilibrium conditions

as well as the jump conditions are summarized in Box 8.1 for the

general three-dimensional case and simplified for the one-dimensional
single-slip case to

dτ

dx
= 0, π(x) − dξ(x)

dx
= 0, Ξ = [[−ξ(x)]]−nΓ = (ξ+ − ξ−)nΓ. (8.24)
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Here, nΓ points from V− to V+. The constitutive equations

ξ(x) =
∂W∇

∂grad (γ̌(x))
= k∇grad (γ̌(x)) , (8.25)

π(x) =
∂Wχ

∂γ̌(x)
+

∂Wh

∂γ̌(x)
= khγ̌(x) + τ0 − p̌, (8.26)

Ξ = kΓ (8.27)

are derived following the thermodynamically consistent approach by
considering the dissipation inequality (described in Section 8.2.4 for

the three-dimensional case) with the stored energy densities summa-

rized in Box 8.2. Further, the reduced dissipation inequality moti-
vates the flow rules for the bulk and for the interface as listed in

Box 8.2. Here, contrary to the high temperature case, an isotropic
hardening energy Wh was assumed. In the stationary single slip case

Box 8.2: Stored energy densities and flow rules for the numerical and analytical solution
of a laminate under single slip to validate the IGFEM approach in the context of gradient
plasticity.

Stored energy density Flow rule

We = 1
2 εe · C[εe] γ̇ = γ̇0

〈
τ−p̌
τ D

〉m

W∇ = 1
2 k∇ (grad (γ̌) · grad (γ̌)) fΓ := Ξ − kΓ and

WΓ = kΓγ̌ for x ∈ Γ fΓ ≤ 0, ˙̌γ ≥ 0, ˙̌γfΓ = 0 for x ∈ Γ

Wh = kh (γ̌)
2

+ τ0γ̌

Wχ = 1
2 Hχ (γacc − γ̌)

2
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(i.e. ˙̌γ(x) = γ̇(x) = 0), the flow rule

γ̇(x) = γ̇0

〈
τ − p̌

τD

〉m

(8.28)
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leads to τ − p̌ = 0 and, thus, by using Eq. (8.25), Eq. (8.26), and the
second equation in Eq. (8.24) to

d2

dx2
(k∇γ̌(x)) − khγ̌(x) = τ0 − τ. (8.29)

By considering the two conditions

∂γ̌(x)

∂x

∣
∣
∣
∣
x=0

= 0, γ̌(x)|x=xΓ
= γ̌Γ, (8.30)

the second-order differential equation can be solved to

γ̌(x) =
g(x)

g(xΓ)

(

γ̌Γ − τ − τ0

kh

)

+
τ − τ0

kh
. (8.31)

Here, xΓ and γ̌Γ correspond to the interface’s coordinate and the plastic

slip of the interface, respectively. Further, for sake of improved read-
ability, the abbreviation

g(x) = exp

(√

kh

k∇
x

)

+ exp

(

−
√

kh

k∇
x

)

(8.32)

was introduced. By using the two relationships

∂g(x1)

∂x1

∣
∣
∣
∣
x1=xΓ

= −∂g(x2)

∂x2

∣
∣
∣
∣
x2=−xΓ

:= g′(xΓ) (8.33)

and g(x1 = xΓ) = g(x2 = −xΓ), the jump condition can be reformulated
to

−2k∇g′(xΓ)

g(xΓ)

(

γ̌Γ − τ − τ0

kh

)

= kΓ. (8.34)

Finally, the plastic slip of each lamella β can be calculated by using
Eq. (8.31) and the interface’s plastic slip evolution

γ̌Γ =







0, for τ ≤ kΓkhg(xΓ)

2k∇g′(xΓ)
+ τ0

τ − τ0

kh
− kΓg(xΓ)

2k∇g′(xΓ)
, otherwise.

(8.35)
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This analytical solution of a lamella with stationary single slip and ho-
mogeneous shear stress was already used by Bayerschen and Böhlke

(2016) for microscopically hard interfaces.
All necessary assumptions to derive the analytical solution could be

transferred to the simulation directly, except for the stationary condi-

tion. Consequently, to account for an approximation of the station-
ary condition, a low shear loading rate of 6 · 10−6 MPa/s was chosen

(thus 300 MPa in 5 · 107 s). Isotropic elastic behavior is assumed for the
lamella with the Poisson’s ratio ν and the shear modulus µ. All material

properties are summarized in Tab. 8.2 and were chosen in order to keep
the error of the non-stationary slip small. The impact of the specific ma-

Table 8.2: Used parameters for the numerical and the analytical solution of a laminate.

Parameter Value Parameter Value Parameter Value

k∇ 35 · 10−6 N kΓ 10 Nm−1 kh 5 · 103 MPa

τ0 200 MPa ν 0.22 µ 42 GPa

τD 50 MPa m 2 γ̇0 5 · 10−3 s−1

Hχ 1015 MPa
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terial properties on the error is given in Appendix A.3 together with an

estimation of the difference between the stationary and non-stationary
slip. The results of the simulation are depicted in Fig. 8.1 a) together

with the analytical solution for specific shear stresses. The location
of the interface boundaries are marked by the vertical dotted lines (at

x̃ = ±0.25µm). For the stresses τ = 225 MPa and τ = 250 MPa, the re-

sistance of the interface is still sufficiently high to prevent plastic slip.
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Figure 8.1: a) Comparison of the analytical results with the numerical ones of a periodic
laminate for single slip. The plastic slip γ̌ of the numerical calculation is in perfect
agreement with the analytical solution for various applied shear stresses τ . b) One-
dimensional periodic laminate microstructure applied to a homogeneous shear stress τ
with periodic boundary conditions. (Albiez et al. (2018) Fig. 3)

tance was chosen for this exemplary problem, leading to a constant
jump of grad (γ̌) across the interface (compare grad (γ̌) at τ = 275 MPa

and τ = 300 MPa). In conclusion, both results show perfect agreement,

therefore, the IGFEM approach with the enriched shape functions de-
scribed in Section 5.2.3 and the numerical integration of Section 5.2.4 is

applicable in the context of gradient plasticity.

117

The increase from τ = 225 MPa to τ = 250 MPa, however, increases the

micromorphic stress ξ, which scales with the jump of grad (γ̌). A fur-
ther increase of the shear stress induces a plastic flow of the interface,

shown for τ = 275 MPa and τ = 300 MPa. At these stress values, the
interface flow rule is fulfilled. In addition, a constant interface resis-

8.3 Validation of the IGFEM approach in the context of gradie
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8.4 Simulation results for creep compared

to experimental data

8.4.1 Method for revealing the effects of the interface

resistance and the slip transfer/activation

The interplay during deformation between the fiber and the matrix is

schematically depicted in Fig. 8.2 for specific deformation states. Here,

experimentally and numerically obtained observations from literature
were combined. The fibers possess essentially no defects, consequently,

Load transfer

DislocationMatrix material

Fiber material Position of stress concentration
due to pile-up

Figure 8.2: Schematical illustration of the suggested interplay between the fiber and the
matrix during creep. From left to right: The free plastic flow of the matrix leads to a
load transfer from the matrix to the fiber; the dislocations in the matrix accumulate at the
fiber-matrix interface and form dislocation pile-ups; stress concentration due to the load
transfer and the pile-up stress leads to the transfer/activation of slip in the fiber; reverse
load transfer from the fiber to the matrix results from the softening of the fiber. (Albiez
et al. (2018) Fig. 4)

This load transfer is macroscopically visible by a sharp reduction of the

creep rate in the primary creep regime (Albiez et al., 2016a). Further,
the GNDs accumulate in the matrix at the fiber-matrix interface due to

118

the mechanical behavior is purely elastic in the beginning. The free

plastic flow of the matrix, however, leads to a load transfer from the

matrix to the fibers (indicated by the red curved arrows in Fig. 8.2).



8.4 Simulation results for creep compared to experimental data

the inhomogeneous deformation, which was experimentally observed
as work hardening zones (WHZ) by Dudová et al. (2011). Shortly before

reaching the minimum creep rate, the increased stress in the fiber due to
the load transfer and the pile-up stress at the interface result in the trans-

fer/activation of slip in the fiber. This was experimentally observed by

scanning transmission electron microscopy investigations of Kwon et al.
(2015) and is indicated with the yellow straight arrows in Fig. 8.2. The

transfer/activation of slip in the fiber leads to the transition of an elastic
to an elasto-plastic fiber’s behavior and, therefore, induces a softening

of the fiber. This is macroscopically observable as the increase of creep
rate, thus, the passage through the minimum point in a creep curve.

Furthermore, the dislocation density in the fiber increases quickly due
to the creation and activation of further dislocation sources. As a result

of the fiber’s softening, a reverse load transfer from the fiber to the ma-

trix takes place (marked by the red curved arrows in the sketch on the
right in Fig. 8.2). This induces a further increase of the creep rate in the

tertiary creep regime. In order to include these observations within the
simulation model, the fiber is modeled purely elastic in the beginning.

The matrix phase is described by an elasto-plastic behavior and, thus,
induces a pile-up stress at the fiber-matrix interface due to the inho-

mogeneous deformation. However, as long as the pile-up stress does
not reach the critical interface resistance value, no transfer/activation

of slip in the fiber is permitted. Nevertheless, with increasing plastic

deformation, the pile-up stress at the interface rises. By reaching the
critical interface resistance and satisfying the loading condition, the in-

terface flow rule is fulfilled leading to the transfer/activation of slip in
the fiber. Consequently, this induces the transition of an elastic to an

elasto-plastic fiber’s behavior. This transition is induced abruptly and
all over the fiber material. Furthermore, the dislocation multiplication

modeled by Eq. (8.23) requires an initial dislocation density value ρ0,
therefore, the dislocation density is set to an almost negligible value

(listed in Tab. 8.1) imitating an essentially defect-free state.
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8.4.2 Boundary conditions and geometrical discretization

of the microstructure

As stated in Section 7.2.5 the DS NiAl-9Mo microstructure allows the
use of a representative unit cell. In the local simulation model of Al-

biez et al. (2016a), a unit cell with a hexagonal fiber arrangement was
chosen. Compared to a quadratic fiber arrangement, the hexagonal

arrangement leads to increased numerical costs, therefore, a quadratic
one is chosen in this study and depicted in Fig. 8.3 a) (Albiez et al., 2018).

The unit cell was discretized with an adaptive mesh with an increas-

ing element-density towards the interface, shown in Fig. 8.3 b). The
fiber spacing of λ ≈ 2µm and the volume fraction of the fiber material

(14 vol.-%) are kept consistent to the experimentally measured values.
Hence, due to the link between the fiber spacing, the fiber diameter,

and the volume fraction described by Eq. (2.3), only the fiber diameter
is influenced by the microstructural change within the discretization. In

addition, as shown in Fig. 8.3, the cross-section of the fiber is described
as a perfect circle. To profit from the periodic microstructure, periodic

boundary conditions for the displacement u and the plastic slip γ̌ were
used within the finite element simulation. These boundary conditions

were discussed in Section 5.3. The 〈100〉-orientation of both phases is

aligned parallel to the growth direction (Bei and George, 2005; Dudová
et al., 2011; Hu et al., 2013; 2012) and constant true stress σ̄ was applied

during creep simulation. The creep curves were obtained by calculating
the Hencky strain based on the displacement of a master node. As

discussed in Section 7.2.5, the determination of the exact zero point of
plastic creep strain is difficult. Therefore, the simulated creep strain at

the minimum point is set equal to the measured one.
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b)a)

Figure 8.3: a) Geometrical discretization of the microstructure by assuming a perfect
quadratic fiber arrangement. The representative unit cell is marked with the square.
b) Representation of the mesh for the discretization of the unit cell, which includes
approximately 2.7 · 104 nodes. (Albiez et al. (2018) Fig. 5 b) and c))

8.4.3 Material parameters for the matrix and the

fibers of the DS NiAl-9Mo

The necessary material parameters for the simulation model of the

DS NiAl-9Mo composite are physically motivated, thus, they are mea-

surable or restricted to a reasonable range of physically motivated
values. Therefore, experimental and numerical investigations out of

literature provide most of the parameters (listed in Tab. 8.1). The
elastic properties were calculated by the rule of mixture for the fiber

and for the matrix, whereas the values are close to the experimental
measured values of pure Mo and stoichiometric NiAl from Wern (2004)

and Rusović and Warlimont (1977), respectively. Further, the impact
of the elastic properties on the overall creep behavior is rather small

(discussed in Section 7.4.6 and illustrated in Fig. 7.7). The reference

shear rate of the fiber γ̇0, however, is not given in literature for a model
considering inhomogeneous plastic deformation. Further, the two

parameters for the interface resistance kΓ as well as kσ are not given.
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m̄ ≈ 10

Sim: ˙̄εmin

Sim: ˙̄εGF

Exp: ˙̄εmin (Albiez et al., 2016a)

Figure 8.4: Simulated and experimentally measured minimum creep rates of the compos-
ite ( ˙̄εmin) vs. the applied stress. The creep rates ˙̄εGF where the interface flow rule has
been fulfilled for the first time are marked by the triangles. The interface flow rule is
fulfilled shortly before reaching the minimum creep rate, initiating softening of the fiber.
The experimental results at an applied stresses of 100 MPa and 250 MPa were used to
identify the missing material parameters, however, the results for the applied stresses of
150 MPa and 200 MPa were predicted by the simulation model. Both, the stress exponent
of the simulation and the experimentally measured one are in perfect agreement. (Albiez
et al. (2018) Fig. 6)

1000 ◦C for an applied stress of 250 MPa and 100 MPa, respectively. The
details of the experiments and the sample preparation are given in

Albiez et al. (2016a). The simulated and the experimental minimum

creep rate ˙̄εmin are in good agreement for both applied loads (shown
in Fig. 8.4). Further, the experimentally measured creep curve and the

simulated one coincide for an applied stress of 250 MPa (depicted in
Fig. 8.5).
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In order to identify the missing material parameters, the simulation

was fitted to the creep experiments from Albiez et al. (2015; 2016a) at
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Curtin (2007); Tschopp et al. (2008); Bachurin et al. (2010) and was
discussed in Section 8.2.5. It can be evaluated by comparing the

experimentally measured minimum creep rates with the predicted
ones for specific applied stresses. Shortly before reaching the minimum

creep rate ˙̄εmin, the interface flow rule should be fulfilled, initiating

the transfer/activation of slip in the fiber, which can be interpreted
as transfer/nucleation of dislocations. As a consequence of those

dislocations, the fiber material softens and, thus, the creep rate of
the composite increases. This was emphasized in Section 8.4.1 and

illustrated by the scheme in Fig. 8.2. In the work at hand, however, no
balance equation for the dislocations is used (contrary to the work of

Wulfinghoff and Böhlke (2015)). Consequently, a distinction between
transfer and activation of dislocations at the interface is not possible.

The material parameters for the interface resistance (kΓ and kσ) were

identified by fitting the simulations for applied stresses of 100 MPa

and 250 MPa to the corresponding creep experiments. For intermediate

applied stresses the minimum creep rates were predicted and are in
perfect agreement with the experimentally observed ones (shown in

Fig. 8.4). Furthermore and most importantly, the interface flow rule
is fulfilled shortly before reaching the minimum creep rate for all

investigated applied stresses. This is shown in Fig. 8.4 by the creep
rate of the composite in the moment of fulfilling the interface flow rule

for the first time (denoted by ˙̄εGF). Consequently, one can conclude that

the gradient plasticity model and the stress dependent interface flow
rule reproduce well the experimental observations.
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8.4.4 Evaluation of the interface flow rule

The stress dependent interface flow rule (Eq. (8.19)) could be motivated

by several investigations, e.g., De Koning et al. (2002); Dewald and
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Figure 8.5: a) Simulated and experimentally measured creep curve at 1000 ◦C, an applied
stress of 250 MPa, and a fiber diameter of d = 0.729 µm (Albiez et al., 2018). The
comparison shows a perfect agreement. The interface flow rule is fulfilled shortly before
reaching the minimum creep rate, leading to the softening of the fiber. b) Micromorphic
plastic slip γ̌ curves for a cut through the microstructure at different macroscopic strain
values which are depicted in a). The position of the cut is highlighted in the left top corner
by the continuous yellow line. (Albiez et al. (2018) Fig. 7)
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8.5 Discussion of the gradient crystal

plasticity model

The above performed evaluation clearly shows the capability of the

gradient crystal plasticity model with the stress dependent interface
flow rule to reproduce the mechanical behavior of the DS NiAl-9Mo

composite. Within this section, the gained insights into the compos-
ite’s behavior due to the simulation model will be discussed and

summarized. The schematically depicted interplay between the fibers
and the matrix, shown in Fig. 8.2, is well reproduced by the model.

This suggested interplay arises due to experimental and numerical
investigations from the literature, however, it was not fully validated

up to now. This interplay can be further reviewed by analyzing the mi-

cromorphic plastic slip γ̌ distribution within the composite. Therefore,
Fig. 8.5 b) shows the micromorphic plastic slip γ̌ for a cut through the

microstructure, whereas the position of the cut is depicted by the yellow
continuous line in the left top corner of Fig. 8.5 b). Each of the γ̌ curves

in Fig. 8.5 b) can be related to a macroscopic strain value of the com-
posite A©- D©, which are marked in the creep curve in Fig. 8.5 a) for sake

of improved comprehension. In the primary creep regime (at strain
A©), the interface flow rule has not been fulfilled yet. Consequently,

due to the defect-free as-grown state of the fiber, they behave still

purely elastic (γ̌=0). Contrary, the matrix flows freely (experimentally
observed by Bei et al. (2008a;b; 2005)) but inhomogeneously. As an

indicator for the GNDs, the gradient of the micromorphic plastic slip
(grad (γ̌)) can be used, which has its maximum at the fiber-matrix

interface. The accumulation of GNDs at the interface can be interpreted
as pile-up, inducing stresses at the interface. If these pile-up stresses

reach the interface resistance and the loading condition is fulfilled,
the dislocation transfer/nucleation in the fiber is activated. This was

experimentally observed by Kwon et al. (2015) in form of Hairpin-
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8 Gradient crystal plasticity model with interface yielding for creep of DS NiAl-9Mo

like dislocations nucleating at stress concentrations at the fiber-matrix
interface. Strain B© corresponds to the point of minimum creep rate.

Here, the interface flow rule has already been fulfilled for the first time.
Consequently, a small amount of defects are present in the fiber, thus,

the behavior of the fiber changed from purely elastic to elasto-plastic.

Those defects soften the fiber (described by Eq. (8.22)) and from now
on the creep rate starts to increase. The softening behavior results from

the transition from a dislocation-source strengthening mechanism to a
forest-dominated strengthening mechanism with increasing dislocation

density (discussed in Chapter 6). Even though the micromorphic plastic
slip γ̌ in the fiber is still small and quite homogeneous at strain B©, it

increases and starts to generate GNDs at the interface. This is visible
for the γ̌ curve at strain C© in Fig. 8.5 b). The accumulation of GNDs

on both sides of the interface due to its resistance is shown for the final

strain D© and was experimentally observed by Barabash et al. (2010a).
To analyze the load transfer between both phases, the calculated Cauchy

stress σ can be decomposed into its eigenvalues σ̂i and eigenvectors êi,
thus,

σ =
3∑

i=1

σ̂iêi ⊗ êi. (8.36)

It is possible to find one eigenvector lying parallel to the fiber’s direc-
tion at each point within the simulation, whereas the other two eigen-

vectors are positioned in the plane perpendicular to the fiber’s direction.

The eigenvetor parallel to the fiber’s direction and the corresponding
eigenvalue are denoted by ê

‖ and σ̂‖, respectively. Within the simula-

tions and the experiments the load was applied parallel to the fiber’s
direction, consequently, the stress σ̂‖(ê‖ ⊗ ê

‖) carries most of the ap-

plied stress. The absolute value of this stress is shown in Fig. 8.6 a) for
the different strains A©- D©, where due to symmetry only a quater of the

microstructure is depicted. An inhomogeneous stress distribution in
the matrix with the maximal value at the fiber-matrix interface is visible
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in the beginning (at strain A© depicted in the left top corner of Fig. 8.6 a)).
It results from the inhomogeneous plastic deformation in the matrix

with the accumulation of GNDs at the interface. The fiber, however, is
essentially defect free and, thus, behaves purely elastic. Consequently,

the stress is homogeneously distributed and is obviously greater than

the stress in the matrix. The subfigure depicted in the right top corner
of Fig. 8.6 a) shows |σ̂‖| at the minimum creep rate (strain B©). Here,

the interface flow rule was fulfilled, inducing defects in the fiber and
changing the fiber’s behavior from purely elastic to elasto-plastic. The

stress distribution of the fiber contains already small inhomogeneities,
however, they are more apparent at strain C©. Finally, at strain D©, the

inhomogeneous stress distribution is visible for both phases with in-
creasing values towards the interface.

To explain the shape of the creep curve, the ratio of the load carried by

the fiber σ̄
‖
f to the load carried by the matrix σ̄

‖
m is shown in Fig. 8.6 b),

with

σ̄
‖
f =

1

Vc

∫

Vf

σ̂‖dv, σ̄‖
m =

1

Vc

∫

Vm

σ̂‖dv, (8.37)

so that σ̄ = σ̄
‖
f + σ̄

‖
m. Here, the composite’s volume Vc = Vf + Vm is

composed of the fiber’s volume Vf and the matrix’s volume Vm. Until

strain B© is reached, the ratio σ̄
‖
f /σ̄

‖
m increases indicating the load

transfer from the matrix to the fiber (Fig. 8.6 b)). This load transfer

leads to a decrease of the creep rate to the minimum point (depicted in
Fig. 8.5 a)). At the minimum creep rate (strain B©) the maximal value of

σ̄
‖
f /σ̄

‖
m is reached. Here, the load carried by the fiber is approx. 6.5 times

the load carried by the matrix, which agrees with the observations of

Bei et al. (2005). They stated that the fiber phase essentially carries the
entire applied load. By considering the volume fraction of the fiber, it

can be shown that the mean stress in the fiber is approx. 6 times higher

than the applied stress. This is in good agreement with the results of
the shear lag model of Hu et al. (2013), which revealed that the mean

127



8 Gradient crystal plasticity model with interface yielding for creep of DS NiAl-9Mo

stress in the fiber is approx. 7 times higher than the applied stress. The
interface flow rule was fulfilled for the first time shortly before reaching

strain B©, leading to the softening of the fiber. As a result of the loss of
fiber’s strength, a reverse load transfer from the fiber to the matrix

takes place, shown in Fig. 8.6 b) by the decrease of the σ̄
‖
f /σ̄

‖
m-ratio. The

composite’s creep resistance decreases by the fiber’s softening, leading
to an increase of the composite’s creep rate in the tertiary creep regime.

In summary, one can conclude that the composite’s creep behavior
strongly depends on the load partitioning between both phases. This is

in line with the observations from Barabash et al. (2010b). Further, the
analysis of the load partitioning between both phases helps to explain

the shape of the creep curve. Finally, the simulated creep agrees well
with the experimentally measured one (see Fig. 8.5 a)), leading to the

conclusion that the model represents the most important characteristics

of the composite quite well.
The stress dependent interface flow rule (Eq. (8.19)) was motivated in

Section 8.2.5 by considering the dissipation inequality of the interface.
The two necessary parameters (kΓ and kσ) were identified by fitting

the simulated minimum creep rate to the experimental one for applied
stresses of 100 MPa and 250 MPa. In Fig. 8.4, however, the predicted

results for applied stresses of 150 MPa and 200 MPa are compared
with experimental results. Also for the predicted creep curves, the

interface flow rule is fulfilled for the first time shortly before reaching

the minimum creep rate, as shown in Fig. 8.4. Here, the triangles
correspond to the creep rates of the composite ˙̄εGF where the interface

flow rule has been fulfilled for the first time. Those creep rates are close
to the simulated and measured minimum creep rates, depicted by a

star and a circle, respectively. Consequently, for all investigated applied
stresses, one can conclude that shortly before reaching the minimum

creep rate the interface flow rule is fulfilled and initiates the softening
of the fiber.
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eplacements

a)

b)

A©

B©
C©

D©

Creep strain in %

|σ̂
‖ |

in
M

P
a

|σ̂
‖ |

in
M

P
a

|σ̂
‖ |

in
M

P
a

|σ̂
‖ |

in
M

P
a

σ̄
‖ f
/
σ̄

‖ m

0

0

0

0

0

0

0

0

0.4
0.4

0.4
0.4

0.4
0.4

0.4
0.4

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0.8

0

00

00

1000

10001000

10001000

2000

20002000

20002000

3000

30003000

30003000

0.2 0.6 1.2 1.6

6

4

2

at strain A© at strain B©

at strain C© at strain D©

Figure 8.6: a) σ̂‖ at different macroscopic strain values which are depicted in Fig. 8.5 a).
Due to symmetry, only a quater of the microstructure is shown for sake of improved
illustration. The fiber supports higher loads compared to the matrix for all considered

strain values. The initial homogeneous distribution of σ̂
‖
f

in the fiber results from the
linear-elastic behavior and changes to an inhomogeneous one at higher strains. b) The

ratio σ̄
‖
f

/σ̄
‖
m illustrates the load partitioning between the fiber and the matrix during the

creep deformation. (Albiez et al. (2018) Fig. 8)
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The calculated stress exponent of the composite m̄ ≈ 10.4 corresponds
to the slope of the linear fit of ˙̄εmin and is close to the slope m̄GF ≈ 10.2

of ˙̄εGF. Both stress exponents are in the range of the experimentally
measured values of pure Mo (mMo ≈ 10.5). Consequently, in addition

to the statement of Albiez et al. (2016a) that the creep behavior of the

composite is mainly controlled by the fibers, one may conclude that the
fiber’s interface behavior is important, too. This is in agreement with

the work of Barabash et al. (2010b), who stated that the fiber-matrix
interface plays a particularly crucial role. Furthermore, it is noteworthy

that by neglecting the stresses at the interface and, thus, using a con-
stant interface flow rule, the model would not lead to m̄ ≈ m̄GF. There-

fore, considering the stresses at the interface is necessary to describe the
composite’s behavior.

The mutual dislocation annihilation term k2ρssd within the dislocation

evolution equation (8.23) is questionable (Albiez et al., 2016a) and, thus,
was not considered within the simulations. Analyzing the ratio of the

dislocation evolution rate with and without the mutual dislocation an-
nihilation, thus,

ρ̇k1
ssd − ρ̇k12

ssd

ρ̇k1
ssd

=
(k1

√

ρssd) ˙̌γ − (k1
√

ρssd − k2ρssd) ˙̌γ

(k1

√

ρssd) ˙̌γ

=
k2

k1

√
ρssd

(8.38)

can help to rationalize this simplification. Albiez et al. (2016a) identified

the dislocation annihilation parameter as k2 = 66. Together with the dis-
location multiplication parameter k1 from Tab. 8.1 the ratio is obtained

to

ρ̇k1
ssd − ρ̇k12

ssd

ρ̇k1
ssd

≈ 14 %. (8.39)

Here, the calculated mean statistically stored dislocation density value
of ρssd = ρ̄f

ssd within the fiber at strain C© was used. In the considered

case, the deviation is rather small, thus, it was reasonable to neglect the
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8.5 Discussion of the gradient crystal plasticity model

dislocation annihilation term. This deviation, however, increases with
increasing plastic strain. Consequently, the mutual dislocation annihi-

lation term should be taken into account in the future. Especially sim-
ulations analyzing the ternary creep regime where higher creep strains

are necessary, should incorporate this effect.

The consideration of a hexagonal arrangement of the fibers increases the
numerical costs, therefore, a quadratic arrangement was chosen. Due

to this microstructural change, an adjustment of the fiber’s diameter,
the fiber spacing, or the volume fraction of the fiber is necessary. The

simulation results depicted in Fig. 7.11 reveal the impact of the fiber’s
volume fraction to the creep behavior, thus, the volume fraction was

kept consistent with the experimentally observed value. In addition,
the fiber spacing might also affect the minimum creep rate due to the

inhomogeneous plastic deformation within the matrix phase (shown in

Fig. 8.6 a) for strain B©). As a result, the fiber’s diameter was reduced
by a factor of 3−1/4 ≈ 0.76 in the discretization of the unit cell. It was

shown that the minimum creep rate of the composite is unaffected by a
reduction of the fiber’s diameter by a factor of approx. 0.64, as discussed

in Section 7.4.4 and depicted in Fig. 7.5. This can be rationalized by
the fact that until the interface flow rule is fulfilled, the fiber behaves

purely elastic, thus, independent of its diameter. Consequently, the
modification of the fiber’s diameter does not strongly affect the simu-

lation results in the considered range and a quadratic arrangement can

be used to analyze the interface flow rule. The creep rate in the ter-
tiary creep regime, however, depends on the fiber diameter. Therefore,

to further investigate this regime, a hexagonal arrangement should be
used for a validation of the model, especially in the case of different

microstructures.
The defect energy parameter k∇ can be estimated based on the self-

energy of GNDs (E0 = αµb2) (Ohno and Okumura, 2007; Hull and Ba-
con, 2011). However, this is only valid in the case of a defect energy

density which is linear to the norm of the gradient plastic slip, thus,
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linear to ||grad (γ̌) ||. The linear dependency leads to a constant absolute
value of the gradient stress and, thus, to a gradient stress unaffected by

the amount of GNDs. Therefore, in this work, a quadratic defect energy
is considered, leading to a linear dependency of the gradient stress to

the geometrically necessary dislocation density. However, to enable the

use of the self-energy of GNDs, a normalization constant k0 was used as
suggested in the work of Bayerschen and Böhlke (2016). For the evalu-

ation of the defect energy parameter k∇, the calculated size of the work
hardening zones are compared to the experimentally observed one. A

high/low defect energy parameter k∇ leads to a wide/narrow work
hardening zone and a low/high geometrically necessary dislocation

density, respectively. The relative geometrically necessary dislocation
densities are shown in Fig. 8.7 a) for strain D© and are given by

ρ
f/m
rel =

ρ
f/m
GND

ρ̄GND
=

1

bf/mρ̄GND

√

|grad (γ̌) · grad (γ̌) |. (8.40)

Here, ρ̄GND corresponds to the mean value of ρGND for the whole struc-
ture. Further, the relative geometrically necessary dislocation densities

of the fiber and the matrix are denoted by ρf
rel and ρm

rel, respectively. The
relative geometrically necessary dislocation density of each phase in-

creases towards the fiber-matrix interface Γ, where its maximum values
are reached. The yellow dotted circles indicate the location where the

density value ρGND corresponds to the mean value, thus, ρGND ≈ ρ̄GND.
At each point in between these two circles, the density value is higher

than the mean value, making the enclosed area to an approximation

of the work hardening zones. To evaluate the calculated GND-field
and its work hardening zone, they are compared to the transmission

electron microscopy (TEM) bright-field image of Dudová et al. (2011),
shown in Fig. 8.7 b). Here, the dislocations of a sample subjected to 35 %

compression creep strain at 900 ◦C and an applied stress of 300 MPa are
shown. Despite this different creep test conditions, the similarities of

the calculated work hardening zone and the experimentally observed
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Figure 8.7: a) Calculated geometrically necessary dislocation density normalized by
the mean value ρ̄GND, indicating the dislocation accumulation around the fiber for a
compression creep strain value of < 2 %. A higher density value than the mean value
is observed within the two yellow dotted circles, thus, the GNDs accumulate near the
interface Γ. b) Experimentally observed dislocation accumulation around the fiber after
35 % compression creep strain at 900 ◦C (TEM bright-field image out of the work from
Dudová et al. (2011)). (Albiez et al. (2018) Fig. 9)

133

one are obvious. Furthermore, Hu et al. (2013) investigated the work

hardening zone of a sample deformed at an applied stress of 150 MPa

and at 1100 ◦C near to the minimum creep strain (0.3 %) and measured

a dislocation density of ≈ 2.5 · 1015 m−2. A local dislocation density of

1.77 · 1014 m−2 within the work hardening zone was observed by Du-
dová et al. (2011) (sample subjected to 33 % compression creep strain at

900 ◦C and an applied stress of 200 MPa). Both experimental dislocation
measurements are in line with the calculated maximum value of GNDs

in the matrix (max (ρm
GND) ≈ 1015 m−2) at strain D©, even though the

sample deformation differs. Consequently, due to both agreements, the

size of the work hardening zone and the absolute value of GNDs within
the work hardening zone, one can conclude that the defect energy pa-

rameter k∇ is reasonable.

8.5 Discussion of the gradient crystal plasticity model
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8.6 Summary and conclusion of the gradient

crystal plasticity model

The proposed gradient crystal plasticity model extends the local crystal

plasticity model introduced in Chapter 7 by incorporating:

• The impact of geometrically necessary dislocations in terms of the
gradient field (grad (γ̌)) due to the inhomogeneous plastic deforma-

tion.

• The stress dependency of the slip transfer/activation at the fiber-

matrix interface.

• The initial elastic behavior of the fiber due to its essentially defect-

free state.

Further, the flow rule for the bulk as well as the interface flow rule were

derived in a thermodynamically consistent framework. As a result,
the model incorporates more physical aspects compared to the local

crystal plasticity model introduced in Chapter 7 and, thus, represents
an improvement. The weak discontinuity of the γ̌ field at the fiber-

matrix interface was considered by the enriched shape functions in-
troduced in Section 8.3. This approach was validated in the context

of gradient plasticity by comparing the simulation results of a perfect

lamella with the corresponding analytical solution. The model for the
DS NiAl-9Mo was evaluated by comparing the simulated results to

experimentally obtained ones from literature. Due to the physical mo-
tivation of the simulation model, most of the model parameter were

available in literature. It was shown that the simulated creep curve is
in good agreement with the measured creep curve. In addition, the

predicted minimum creep rates for different applied stresses are in line
with the experimental findings, revealing the need of a stress dependent

interface flow rule. Finally, by comparing the calculated size of the work
hardening zones and their absolute dislocation density values to the

investigations of Dudová et al. (2011); Hu et al. (2013), one can conclude
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that the simulation model which accounts for the stress dependent in-
terface flow rule represents well the behavior and the characteristics

of the composite. It was shown that in addition to the fiber phase,
the fiber-matrix interface controls the composite’s behavior. With the

newly provided insights into the composite by the simulation model,

the experimental findings from literature as well as the shape of the
creep curve could be explained. For a closer analysis of the interfaces’

behavior at elevated temperatures including the transition/activation
of slip, additional simulations and experiments at various temperatures

and with different microstructures are necessary. For this purpose, di-
rectionally solidified NiAl reinforced by a refractory metal, e.g., Cr, Mo

is suitable, due to its regular microstructure and its adjustable fiber
diameter/spacing.
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Chapter 9

Coupling of balance equation
of linear momentum with
Cahn-Hilliard diffusion

9.1 Introduction and motivation

In the previous chapter, the interplay of dislocations with microstruc-

tural constraints, namely the fiber-matrix interface, was discussed.
Hereby, the fiber diameter and the fiber spacing as the characteristic

sizes of the microstructure were considered to be constant during the

simulations and the experiments. This assumption is valid in the case
of the directionally solidified NiAl-9Mo due to the eutectic composition

and its thermodynamic stability (Johnson et al., 1995). However, several
materials exhibit a change of the microstructure over time, especially

at elevated temperatures. One of these materials is the Fe-61Al which
contains a lamellar based microstructure (e.g., Scherf et al. (2015)). The

orientation relationship between the two lamellar phases (FeAl and
FeAl2) was investigated in Bastin et al. (1978); Scherf et al. (2016). Li et al.

(2017) calculated the lamellar coarsening of this composite by a phase
field model and compared the results with experimental observations.

The experimental findings suggest that the lamellar spacing λ increases

with time t as

λ3 = λ3
0 + k̇t, (9.1)
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with the rate constant k̇ and the initial lamellar spacing λ0. One may
suggest that the lamellar coarsening influences the creep behavior, as

observed in the case of γ-TiAl alloys (Appel et al., 2000; Wen et al., 2000).
This was later investigated in Schmitt et al. (2017) and it was concluded

that the instability of the microstructure influences the creep behavior.

To describe the coarsening process of the microstructure, the Cahn-
Hilliard approach can be used. Contrary to the Fick’s law, which

leads to a homogeneous concentration distribution, the equilibrium
state in the Cahn-Hilliard approach is reached for a homogeneously

distributed chemical potential. This implies not necessarily a uniform
concentration distribution (e.g., Ubachs et al. (2004)). The approach is

based on a free energy which takes not only the local order parameter
into account, but also the value of this parameter in its neighborhood

through a gradient energy (Cahn and Hilliard, 1958). Gurtin (1996)

introduced a Cahn-Hilliard equation based on a microforce balance. An
extension of the classical Cahn-Hilliard model is proposed in Ubachs

et al. (2004), where a strongly non-local variable was introduced which
reduces the original fourth order partial differential equation into two

second order ones. This enables the use of C0-continous shape functions
within the finite element context (e.g., Peerlings et al. (1996)). The

approach was later used in the finite deformation framework for the
describtion of the visco-plastic behavior of tin-lead solder (Ubachs

et al., 2005). It is possible to derive the framework of Ubachs et al.

(2004) by the micromorphic approach (Forest, 2009), too. A comparison
between the micromorphic approach and the phase-field approach is

given in Forest et al. (2011). Kaessmair and Steinmann (2016) analyzed
higher-order methods to solve the Cahn-Hilliard equation, whereas

Ammar et al. (2014) investigated the inheritance of plastic deformation
within a phase field model.

In this chapter, the strongly non-local Cahn-Hilliard equation will be
derived in a micromorphic framework. Further, the impact of the

material parameters on the coarsening process and the equilibrium
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state will be shortly investigated. The main part of the work focuses on
the coupling between the diffusion equation and the balance of linear

momentum through the elastically stored energy. Here, the impact of
an inhomogeneous strain distribution on the coarsening process will be

analyzed.

9.2 Equilibrium conditions and

constitutive relationships

9.2.1 Diffusion equation

The diffusion equation can be derived by considering the mass balance

per component α in a material volume
∫

V

∂̺α

∂t
dv +

∫

A

̺αvα · nda = 0. (9.2)

Here, ̺α and vα correspond to the mass density and the velocity of
the component α, respectively. By using the total mass density of the

mixture with Nc components

̺ =

Nc∑

α=1

̺α (9.3)

and the barycentric velocity

v̄ =

Nc∑

α=1

̺αvα

̺
, (9.4)

the total mass balance is obtained by summation over all components,

thus,
∫

V

∂̺

∂t
dv +

∫

A

̺v̄ · nda = 0. (9.5)
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Introducing the mass concentration cα = ̺α/̺ and substituting Eq. (9.5)
in Eq. (9.2) results in the diffusion equation of the component α

∫

V

̺ċαdv = −
∫

A

̺α(vα − v̄) · nda = −
∫

A

jα · nda. (9.6)

Here, the diffusion mass flow jα of the component α was introduced.

By using the transformation relationships between the current and the

reference placement, summarized in Box 4.1, the diffusion equation in
the reference placement is given by

∫

V0

ċαdV = −
∫

V0

Div
(
j̃α

)
dV (9.7)

where the abbreviation j̃α = ̺−1F −1jα is used.

9.2.2 Equilibrium equations for the strongly non-local

Cahn-Hilliard diffusion

Following the approach of Forest (2009), the additional necessary equi-

librium equation for the Cahn-Hilliard model is derived by a micro-
morphic approach. Therefore, the general procedure described in Sec-

tion 4.5 is used. Here, a two-phase material is considered, resulting in
an improved readability with c1 = c and c2 = 1 − c, due to c1 + c2 = 1.

In the Cahn-Hilliard model, the general internal variable φ corresponds
to the mass concentration c and the general micromorphic variable φ̌

to č (also called microconcentration in, e.g., Forest (2018)). The micro-

morphic variable can be regarded as a description of the composition
variance inside the volume element (Forest, 2018). Contrary to the pre-

vious chapter, the interface Γ is considered as a diffuse interface. All
necessary conditions for the Cahn-Hilliard model are summarized in

Box 9.1, whereas the suffix (·)G indicating the general variables, was
replaced by (·)d.
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Box 9.1: Equilibrium conditions and boundary conditions for the coupled Cahn-Hilliard
framework of a two-phase material.

Field
variable

Equilibrium condi-
tion ∀x ∈ V

Boundary condi-
tion on At ∨ AΞ

u div (σ) = 0 σn = t̄

č πd = div (ξd) ξd · n = Ξ̄d

9.2.3 Free energy density and dissipation inequality

The considered free energy density includes an elastic We, a configura-
tional W0, an interface WΓ, and a penalty Wχ energy contribution in an

additive way

W = We + W0 + WΓ + Wχ. (9.8)

The dissipation inequality will be regarded in the reference placement,

therefore, the contributions to the free energy density are described
with respect to this placement. No plastic deformation is considered

within this framework, thus, the elastic free energy density is given by

We =
1

2
E · C[E]. (9.9)

Here, E = (F TF − I)/2 corresponds to the Green strain tensor in the
reference placement. A double-well curve is used for the configura-

tional free energy. Following the approach by Ubachs et al. (2004), such

a double-well curve can be fitted by

W0 = g1 c+g2 (1−c)+g3 c ln (c)+g4 (1−c) ln (1 − c)+g5 c (1−c). (9.10)

This simplification can improve the numerical solution procedure (e.g.,

Ubachs et al. (2004)). The values of g1 to g5 are listed in Tab. 9.1. The
penalty free energy is given by

Wχ =
Hχ

2
(č − c)2 (9.11)
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and a quadratic free energy density for the interface is considered

WΓ =
kd

2
Grad (č) · Grad (č) , (9.12)

where kd stands for the gradient energy coefficient. The entropy flux is
given as

q⋆
s =

q⋆ − µdj⋆

T
, (9.13)

following the classical irreversible thermodynamics (e.g., Groot and

Mazur (1984)). Reconsidering the balance of internal energy (Eq. (4.28))
and the balance of entropy (Eq. (4.29)), as emphasized in Section 4.4,

the dissipation inequality reads (e.g., Müller (1967))

Dtot =

∫

V0

S · Ė + π⋆
d

˙̌c + ξ⋆
d · Grad

(
˙̌c
)

− Div
(
µ̃dj̃

)
− Ẇ dV ≥ 0. (9.14)

Here, π⋆
d = Jπd and ξ⋆

d = JF −1ξd correspond to πd and ξd in the ref-

erence placement, respectively. Further, S stands for the second Piola-
Kirchhoff stress (S = JF −1σF −T) with respect to the reference place-

ment and µ̃d = ̺0µd such that µ̃dj̃ = µdj⋆ with µd as the chemical po-
tential. In addition, the contribution of the micromorphic variable and

the simplifications due to an isothermal case with a homogeneous tem-
perature distribution were considered. Substituting the free energy den-

sity (Eq. (9.8)) into the dissipation inequality (Eq. (9.14)) and applying
the material time derivative leads to

Dtot =

∫

V0

(

S − ∂We

∂E

)

· Ė +

(

ξ⋆
d − ∂WΓ

∂Grad (č)

)

· Grad
(

˙̌c
)

+

(

µ̃d − ∂W0

∂c
− ∂We

∂c
− ∂Wχ

∂c

)

ċ +

(

π⋆
d − ∂Wχ

∂č

)

˙̌c

−Grad (µ̃d) · j̃ dV ≥ 0.

(9.15)

By substituting the specific free energy densities W0, We, WΓ, and Wχ

into Eq. (9.15) as well as by assuming arbitariness of the rates ċ, ˙̌c, and
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Grad
(

˙̌c
)

the following relations are obtained:

S = C[E],

ξ⋆
d = kdGrad (č) ,

π⋆
d = Hχ (č − c) ,

µ̃d =
∂W0

∂c
+

1

2
E

∂C

∂c
[E] − Hχ (č − c) .

(9.16)

Consequently, the dissipation inequality reduces to

− Grad (µ̃d) · j̃ ≥ 0 (9.17)

and can be used to motivate a thermodynamic consistent relationship

for the diffusion mass flow j̃.

9.3 Simulation of the coupled framework

9.3.1 Simulation setup

The results of coupled diffusional-mechanical simulations will be pre-
sented in the following sections. The implementation was realized in

the infinitesimal deformation framework following closely the work of

Ubachs et al. (2004). Consequently, the readability of the framework’s
equations is improved compared to the finite framework. The local

diffusion is given by

̺ċ = −div (j) (9.18)

and the equilibrium equations are given in Box 9.1. Furthermore, the

relations of Eq. (9.16) simplify to

σ = C[ε],

ξd = kdgrad (č) ,

πd = Hχ (č − c) ,

µd =
∂W0

∂c
+

1

2
ε

∂C

∂c
[ε] − Hχ (č − c)

(9.19)

in the infinitesimal deformation framework. Following the approach

by Ubachs et al. (2004), the diffusion mass flow j is modeled by

j = −̺Mdgrad (µd) (9.20)
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9 Coupling of balance equation of linear momentum with Cahn-Hilliard diffusion

and, thus, fulfills the reduced dissipation inequality (Eq. (9.17)). Here,
M d corresponds to the mobility tensor. The necessary parameters are

listed in Tab. 9.1 and the relevant equations are summarized in Box 9.2.

Here, an additional degree-of-freedom was introduced (µe) to avoid the

third order partial derivative of ε with respect to x. This allows the

Box 9.2: Summary of the equilibrium equations for the Cahn-Hilliard model coupled
with the balance equation of linear momentum.

Field variable Equilibrium equation

c ̺ċ = div
(

̺Mdgrad
(

∂W0

∂c
− Hχ(č − c) + µe

))

č č − λ2
ddiv (grad (č)) = c

u div (σ) = 0

µe µe = 1
2
ε ·

∂C

∂c
[ε]

use of standard quadratical shape functions of a 20-node hexahedral
element for the spatial discretization (compare Section 5.2.2). Further,

following Ubachs et al. (2004), the penalty parameter Hχ can be in-
terpreted as an interface tension coefficient and λd =

√
kd/Hχ as the

internal length. The diffusion equation and the linear momentum were
solved fully coupled, contrary to the work of Ubachs et al. (2004) where

the two equations were solved iteratively. The Neumann boundary

conditions grad (c) · n = 0 and grad (č) · n = 0 were applied within all
simulations. An implicit Euler scheme was used and the condition for

the equilibrium state of the simulation is given by

| max (µd(x1)) − min (µd(x2)))| ≤ ǫ | min (µd(x1)))| (9.21)

with ǫ ≤ 2.5 · 10−3 and ∀x1, x2 ∈ V. Thus, the equilibrium state is

reached when the chemical potential is homogeneous throughout the
system. A concentration dependency of the density ̺ and the mobility
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9.3 Simulation of the coupled framework

tensor Md was assumed and modeled by an harmonic and arithmetic
mean, respectively. Further, the stiffness tensor is homogenized with

the lower Hashing-Shtrikman bound by assuming spherical inclusions
with isotropic properties (Gross and Seelig, 2011). The residual vectors

and the element stiffness matrices are given in Appendix A.4.

9.3.2 Simulation results for the Cahn-Hilliard diffusion

The diffusion process without the effects of the elastically stored energy

will be considered in this section, thus, ε = 0. To investigate the influ-
ences of the parameters Hχ and λd on the behavior of the interface, one-

dimensional simulations were performed. The effects of Hχ and λd on
the interface are illustrated in Fig. 9.1 a) and b), respectively. Here, the

equilibrium concentration distribution is shown, which is represented
by a two phase material containing an interface. An increase/decrease

a) b)

00 0.40.4 0.80.8 1.21.2 1.61.6 22
0.20.2

0.30.3

0.40.4

0.50.5

0.60.6

0.70.7

0.80.8

0.90.9

1.01.0

x in µmx in µm

cc

Hχ = 2Hχ,ref

Hχ = Hχ,ref

Hχ = Hχ,ref/2

Hχ = Hχ,ref/8

λ2
d = 2λ2

d,ref

λ2
d = λ2

d,ref

λ2
d = λ2

d,ref/2

λ2
d = λ2

d,ref/8

Figure 9.1: Interface in the equilibrium state for different Hχ and λd values depicted in
a) and b), respectively. In a) λd = 2λd,ref is kept constant while changing Hχ and vice
versa in b) with Hχ = 2Hχ.
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of λd and Hχ leads to a wider/narrower interface. Despite the change
of the interface, the parameters affect the diffusion velocity. This is
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clearly visible by comparing the two-dimensional simulation results of
the microstructure evolution for different kd values, depicted in Fig. 9.2,

where one pixel corresponds to one element of the finite element sim-
ulation. Here, the mass concentration c for three different kd values

(kd = 4kd,ref , kd = kd,ref , and kd = kd,ref/4, sorted in columns) at four

specific times (t1 < t2 < t3 < t4, sorted in rows) are shown. For the
kd-modification, Hχ and λ2

d were changed equally. By considering the

column on the left (kd = 4kd,ref), the lamellar coarsening process with
increasing time t is visible. Approximately only half of the lamellas are

present at t4 compared to the beginning at t1. The shrinkage process of
the lamellas is visible by comparing the times t3 and t4 of the simulation

with kd = kd,ref (middle column). The relevant lamellas are marked by
yellow arrows. All three simulations start with the same concentration

distribution (at t1), however, the diffusion process is slowed down with

decreasing kd (compare left column with right column for t > t1).

146



9.3 Simulation of the coupled framework

Table 9.1: Input parameters for the Cahn-Hilliard diffusion model coupled with the
balance equation of linear momentum.

General

Description Parameter Value

Penalty parameter Hχ 8 · 103 MPa

Gradient energy coefficient kd 2.5 · 10−6 N

Internal length λd =
√

kd/Hχ 17.7 · 10−9 m

Coefficients for the configurational free energy g1 −1.352 · 109 Jm−3

g2 −1.359 · 109 Jm−3

g3 1.199 · 109 Jm−3

g4 0.453 · 109 Jm−3

g5 2.009 · 109 Jm−3

Phase 1 (c)

Description Parameter Value

Mass density ̺1 8 · 103 kgm−3

Shear modulus µ1 40.4 · 103 MPa

Poisson’s ratio ν1 0.3

Isotropic mobility tensor (Md1 = Md1I) Md1 10−25 m5J−1s−1

Phase 2 (1 − c)

Description Parameter Value

Mass density ̺2 16 · 103 kgm−3

Shear modulus µ2 80.8 · 103 MPa

Poisson’s ratio ν2 0.3

Isotropic mobility tensor (Md2 = Md2I) Md2 10−25 m5J−1s−1

Simulation setup for Section 9.3.3

Description Parameter Value

Edge length of the microstructure ld 32 · 10−6 m

Applied external displacement ū 1.28 · 10−6 m
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0 0.2 0.4 0.6 0.8 1

t1

t2

t3

t4

kd = 4kd,ref kd = kd,ref kd = kd,ref/4

Figure 9.2: Simulation results of the Cahn-Hilliard diffusion without external load for
different kd-values (sorted in columns) at specific simulation times (sorted in rows).
An increase of kd leads to an increased diffusion velocity. A termination migration
coarsening process is marked by yellow arrows.
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9.3 Simulation of the coupled framework

9.3.3 Influence of an inhomogeneous strain distribution

to coarsening processes

The diffusion velocity depends on the distribution of the chemical po-
tential µd = ∂W/∂c. As shown in the previous section, the diffusion pro-

cess is slowed down with a decreasing kd or, more specifically, with a
decreasing impact of the surface free energy density WΓ. Consequently,

in such a case, other contributions to the chemical potential may control
the diffusion velocity. A possible impact on the diffusion process may

arise due to the elastically stored energy We through an inhomogeneous

distribution of µe = ∂We/∂c. Such an inhomogeneous distribution ex-
ists for materials under structural applications with e.g., a fine lamellar

microstructure within colonies/grains, where the lamellar orientation
of each colony differs. To investigate the impact of an inhomogeneously

distributed µe on the diffusion process, the microstructure as depicted
in Fig. 9.3 is considered. Here, two colonies of fine lamellas with dif-

ferent orientations are shown (lamellas within colony 1© and colony
2© are parallel and perpendicular to the applied displacement ū, re-

spectively). The size of the microstructure and the extent of the ap-
plied displacement are given in Tab. 9.1. The balance equation of linear

momentum and the Cahn-Hilliard diffusion are solved fully coupled

with the relevant equations summarized in Box 9.1. The used material
parameters are listed in Tab. 9.1. Symmetric displacement boundary

conditions are applied on the left and on the bottom (Fig. 9.3). The
simulation is divided into three time steps: In the first step, with a

total time of 20 s, the initial concentration value is smoothed without
any applied external displacement. Afterwards, in the second step, the

displacement ū is applied with a constant rate over a total time of 20 s.
Finally, the applied displacement ū is kept constant over the third step

with a total time of ≈ 8 · 105 s. Due to the negligible total times of the

first two steps compared to the total time of the third step, one can
conclude that the relevant diffusion takes place within the third step.
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ū

Colony 2©

Colony 1©

Figure 9.3: Schematical representation of the considered microstructure with the dis-
placement boundary conditions. The lamellas of the colonies are oriented parallel and
perpendicular to the external displacement ū, respectively.

The simulation results are shown in Fig. 9.4 for specific times (sorted
in rows). In the first column, the mass concentration c is depicted. At

the start of the simulation (t1), the shape of the lamellas within each
colony is still intact. After the external displacement ū was applied, one

can observe an coarsening at the colony boundary (domain marked by

the dashed line at t2). This coarsening intensifies with time (compare
t3 with t2). The coarsened domain does not grow symmetrically, but

rather into colony 2©. To highlight this unbalanced growth, the initial
colony boundary is depicted with the dotted line at t3. Further, the

amount of lamellas within colony 2© is less than the amount of lamellas
within colony 1©. This difference is even more pronounced at t4.

For sake of comparison, the same simulation was also conducted with-
out an external displacement. The results are shown in the right column

of Fig. 9.4. The diffusion process is slowed down compared to the diffu-

sion process with an external displacement. In addition, the coarsening
in both colonies is symmetrical.
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c-field
(with displacement)

je/max(je)-field
(with displacement)

c-field
(without displacement)

t2

t3

t4

0 0.2 0.4 0.6 0.8 1

t1

Figure 9.4: Simulation results at four specific time steps. Left column: Mass concentration
distribution of the simulation with an external displacement. An increased coarsening
rate is observed at the colony boundary, marked by the dashed line at t2. This regime
growth unsymmetrically, as indicated by the dotted lines at t3 and t4. Middle column:
Absolut value of je normalized by its maximum value of all four illustrated time steps.
The diffusion flux je is greater at lamellas oriented perpendicular to ū compared to
lamellas oriented parallel to ū. Right column: Mass concentration distribution of the
simulation without an external displacement, for sake of comparison.
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9.4 Discussion

The one-dimensional simulations described in Section 9.3.2 show the in-
fluence of the two parameters λd and Hχ on the interface in the equilib-

rium state. Both parameters affect the interface in a similar manner: an
increase/reduction of λd and Hχ leads to a wider/narrower interface,

shown in Fig. 9.1. This is in agreement with the findings of Ubachs et al.
(2004), who investigated the impact of the parameters in detail. The

length λd influences the width of the interface where the surface tension
develops and Hχ controls the intensity of the surface tension (Ubachs

et al., 2004). Moreover, the gradient energy coefficient kd = λ2
dHχ which

controls the impact of the free energy density of the interface, is also
dependent on these two parameters. A reduction of the gradient energy

coefficient slows down the diffusion process (shown in Fig. 9.2). This
can be rationalized by the fact that a decreasing kd lowers the impact of

the free energy density of the interface. Consequently, the diffusion
flux initiated by an inhomogeneous mass concentration distribution

is reduced. A termination migration coarsening process is shown in
Fig. 9.2 for the simulation with kd = kd,ref (middle column). Here, the

reduction of the lamella length between times t3 and t4 is clearly visible

for the two marked lamellas (marked by the yellow arrows). Such a
termination migration coarsening process was also observed for e.g., Ti-

17 alloys (Xu et al., 2015) and can be attributed to the free energy density
of the interface. As motivated in Section 9.3.3, a decreasing free energy

density of the surface WΓ enhances the impact of other contributions to
the chemical potential. Therefore, the effect of an inhomogeneous dis-

tribution of µe = ∂We/∂c was investigated. The considered microstruc-
ture is shown in Fig. 9.3 and the evolution of the mass concentration

is depicted in the left column in Fig. 9.4. It was shown that the coars-

ening of the lamellas is initiated at the colony boundary (Fig. 9.4, left
column at t2). This can be rationalized by considering the free energy

density of the surface WΓ which penalizes strong inhomogeneous mass
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concentrations. Compared to the diffusion process without an external
displacement (right column), the domain with the increased coarsening

grows not symmetrically, but rather into colony 2©. This unsymmetrical
growth is highlighted by illustrating the initial colony boundary with

the dotted line in Fig. 9.4 at t3. It can be explained by considering the

flux

je = −̺Mdgrad (µe) (9.22)

which arises due to the inhomogeneous distribution of µe. The absolute

value of je normalized by its maximum value of all four illustrated time
steps is depicted in Fig. 9.4 in the middle column. At t1, the external

displacement is not applied yet, therefore, the flux je is still zero within

both colonies, whereas for times t > t1 the flux je is visible. Compared
to the simulation without an external displacement, this additional flux

leads to the increased diffusion process (compare the diffusion velocity
shown in the left column with that in the right column in Fig. 9.4).

Further, as expected due to the different lamellar orientations between
both colonies, the flux in colony 2© exceeds the one in colony 1©, espe-

cially where the lamellas are oriented perpendicularly to the external
displacement. The increased flux in colony 2© leads to the unsymmet-

rical growth of the domain with increased coarsening. In addition, it
causes the faster vanishing of lamellas within colony 2© compared to

colony 1©. This can be seen at t3 and even more pronounced at t4,

where the amount of lamellas within colony 2© is less compared to
colony 1©. As discussed in Section 3.3, the interface of the lamella can

act as an obstacle to hinder the movement of dislocations and, thus,
the amount of lamellar interfaces affects the resistance against plastic

flow. Therefore, to analyze the amount of lamellar interfaces within
each grain, an edge detection algorithm was used. The detected edges

for time steps t2, t3, and t4 are depicted in Fig. 9.5 a) by the lines. Simply
counting the interface points in each colony gives a first approximation

of the total length of interfaces l 1© and l 2© within colony 1© and 2©,
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Figure 9.5: a) Detected interfaces for t2, t3, and t4. b) Ratio of the lengths indicating
an increased coarsening of the lamellas within the colony with the lamellas oriented
perpendicular to ū.

These findings are interesting, especially to describe the creep mecha-
nism for materials under structural applications and at high tempera-

tures which possess an inhomogeneous distribution of µe. This is the
case, e.g., for the Fe-61Al intermetallic compound, which exhibits a fine

lamellar microstructure within colonies, where the lamellar orientation
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respectively. The ratio of both lengths is shown in Fig. 9.5 b) over the
simulation time. It is clearly visible that the total interface length in

colony 1© exceeds the one in colony 2©. Consequently, the resistance

against plastic flow should be higher in colony 1© compared to colony
2©, since a higher number of interfaces can act as dislocation obstacles.



9.5 Summary and conclusion

boundaries. However, the simulation results suggest that due to an
applied external load, the diffusion process is intensified and the fine

lamellar structure gets lost at the colony boundaries. Consequently,
this would lead to a loss in the resistance against plastic flow, which

was experimentally observed for the Fe-61Al intermetallic compound

by Schmitt et al. (2017). Further, the simulation results show that the
lamellar coarsening is more pronounced for colonies with the lamellar

orientation perpendicular to the external load.

9.5 Summary and conclusion

To account for the microstructural change over time, the proposed sim-
ulation model couples the balance equation of linear momentum with

the Cahn-Hilliard diffusion through the elastically stored energy. First,
the diffusion process without an external displacement was analyzed. It

was shown that the parameters λd and Hχ not only influence the inter-
face width, but also affect the velocity of the diffusion process through

kd. The main focus of the work lay on the investigation of the effect of
an inhomogeneous strain distribution on the coarsening process. Here,

the lamellar coarsening of two colonies was considered, which contain

fine lamellas with different lamellar orientations, respectively. By con-
sidering an applied external displacement within the coupled simula-

tions, the main findings are:

• An increased lamellar coarsening at the colony boundary was ob-

served.

• The lamellar coarsening at the colony boundary is more pronounced
in colony 2©. This unsymmetrical behavior is induced by the in-

creased mass flux in colony 2© compared to colony 1©, which results

from the different lamellar orientations.
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of each colony differs. In the beginning, the lamellar structure of each

colony is still intact and the lamellas terminate closely to the colony
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• A colony with the lamellar orientation perpendicular to the external
load shows an increased mass diffusion flux compared to a colony

with lamellas oriented parallel to the external load.

• The diffusion process velocity is increased by an external load.

As discussed in Section 3.3, the interface of a lamella can hinder the
movement of dislocations. Consequently, the described microstructural

change can strongly influence the composite’s resistance against plastic
deformation and, thus, the creep resistance. Further, the lamellar coars-

ening process is often identified experimentally without an external
load only. However, the simulations reveal an increased velocity of the

diffusion process due to the external load, thus, this should also be con-
sidered by the experimental investigations of the coarsening process.

Mesh convergency was investigated for the simulation results depicted

in Fig. 9.1. Nevertheless, mesh convergency of the remaining simula-
tions should be considered within further studies. Furthermore, the

simulation model incorporates elastic deformations only. Therefore,
the model should be expanded to consider plastic deformations. In

addition, the considered microstructure is rather small, consequently,
it would be desirable to analyze the diffusion process within a larger

microstructure. Preferably, this simulation should be based on an ex-
perimentally observed microstructure for sake of validation.
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Chapter 10

Summary and conclusion

Within this work, several open questions of the thermo-mechanical

material behavior at high temperatures were addressed, with the focus

on directionally solidified eutectics. For this purpose, three physical
models were developed, namely the single-crystal plasticity model, the

gradient crystal plasticity model, and the coupled Cahn-Hilliard diffu-
sion model. The relevant equilibrium equations were derived for each

model by following a general micromorphic approach (Section 4.5).
A summary of the three models together with specific constitutive

assumptions are given in Tab. 10.1, whereas the boundary conditions
are not given for sake of readability. For all simulation models, the

validation by a direct comparison to experimental observations has to

be emphasized. The single-crystal plasticity model was used to describe
the creep behavior of the DS NiAl-9Mo and to allow an insight into the

composite effect. It is noteworthy that the model is only based on mea-
surable quantities or parameters restricted to a physically reasonable

range. Consequently, it is also applicable to other DS eutectics, having
the same matrix but different reinforcements (e.g., NiAl-31Cr-3Mo,

shown in Section 7.5). To describe the plastic behavior of the reinforcing
phases, the derived size-dependent transition model which relates the

strength of a material with the dislocation density is crucial. It considers

the transition from the defect-free behavior to a bulk material behavior
and fulfills multiple relevant experimental observations.
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10 Summary and conclusion

Furthermore, it is in agreement with the transition model proposed by
El-Awady (2015), who analyzed over 200 discrete dislocation dynamics

simulations supported by micro-pillar experiments of several materials.
Consequently, the transition model described in this work is not only

applicable to the reinforcing phases of DS materials, but also valid for

other materials. Finally, it is valid in an extended range of disloca-
tion densities compared to the model of El-Awady (2015). The single-

crystal plasticity model was able to describe the creep behavior of the
DS NiAl-9Mo at various creep conditions (changed temperature and

applied load) as well as for different withdrawal rates of the directional
solidification process. Further, the impact of an increased fiber content

on the composite’s behavior was analyzed.
To investigate the effects of dislocation pile-ups at the fiber-matrix inter-

face as well as the slip transfer/activation, a gradient crystal plasticity

model was used. Here, the IGFEM approach with enriched shape func-
tions was applied and validated in the context of gradient plasticity.

This approach is well-suited for moving sharp interfaces. The gradi-
ent crystal plasticity model incorporates not only the impact of the ge-

ometrically necessary dislocations due to the inhomogeneous plastic
deformation, but also a stress dependent interface flow rule. In addi-

tion, the essentially defect-free state of the fibers could be considered.
Both, the single-crystal plasticity model as well as the gradient crystal

plasticity model were compared to experimental measurements and

one can conclude that both models show a good agreement with the
experiments. The simulations reveal that the fiber phase and the fiber-

matrix interface control the composite’s behavior.
The third simulation model considers the coupling between the balance

equation of linear momentum and the Cahn-Hilliard diffusion. Special
emphasis was placed on the diffusion process of a colony based mi-

crostructure with fine lamellas within individual colonies. Here, the
effect of an inhomogeneous strain distribution on the lamellar coarsen-

ing was investigated. Furthermore, the consequences of this diffusion
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process on the creep resistance was discussed. In summary, the high
lights of this work are:

• Size-dependent transition model to describe the strength of a mate-
rial as a function of the dislocation density. The strength decreases

starting from the limit of the theoretical strength in the case of a
defect-free material and reaches the normal square root Taylor hard-

ening for high densities. Further, it fulfills important experimental
findings of the material strength, such as (i) the size-independency

for a material with low or high dislocation densities, (ii) the cou-

pling between the dislocation density and the size parameter, result-
ing in a non-constant exponent n, and (iii) the reduction of the size-

dependent regime with increasing dislocation density.

• Single-crystal plasticity model for DS eutectics having a NiAl based

matrix but different reinforcements, whereas the research focus was
set on the DS NiAl-9Mo. The creep behavior of the composite could

be well described, even for (i) a change of the applied stress, (ii) a
change of the temperature, and (iii) a change of the fiber diameter.

The simulations allow an insight into the composite effect as well as
the prediction of the influences of an increased fiber content and a

further increased/decreased withdrawal rate on the creep behavior.

• The gradient crystal plasticity model extends the local model by in-

corporating the effects of geometrically necessary dislocations. Fur-
ther, it considers the initial elastic behavior of the fibers due to their

essentially defect-free state. The pile-up stress at the fiber-matrix
interface leads to the transfer/activation of slip, initiating the plastic

deformation of the fibers.

• Stress dependent interface flow rule motivated by several investi-

gations from literature. It considers the normal stress on the grain
boundary and was validated at high temperatures.
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boundary of two colonies, which contain fine lamellas with differ-
ent lamellar orientation, respectively. In addition, the colony with

the lamellas oriented perpendicular to the external load showed an
increased lamellar coarsening velocity.

Even though multiple relevant open questions of the thermo-mechanical
material behavior at high temperatures have been addressed within

this work, further investigations are necessary. The dislocation density
evolution as a function of the creep strain should be investigated experi-

mentally to enable the validation of the proposed dislocation evolution

by a direct comparison. In order to analyze the interfaces’ behavior
at high temperatures in more detail, further comparisons between

experiments and simulations at several temperatures and various fiber
spacings/diameters are necessary. Furthermore, an improved physical

insight may arise by considering all plastic slips individually. Finally,
the coupled Cahn-Hilliard diffusion model should be applied to an

experimentally scanned microstructure.
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Appendix A

Appendix

A.1 Equilibrium equations including

micromorphic variables

The balance of virtual power of internal and external forces, thus
δPint = δPext, reads
∫

V

σ · δL + ξG · grad
(

δ
˙̌
φ
)

+ πGδ
˙̌
φdv +

∫

Γ

Ξs
G〈〈δ ˙̌

φ〉〉 + Ξj
G[[−δ ˙̌

φ]]−da

=

∫

At

t̄ · δu̇da +

∫

AΞ

Ξ̄Gδ
˙̌
φda.

(A.1)

Here the virtual powers δPint and δPext given in Eq. (4.35) and Eq. (4.37)
were used. The first term of Eq. (A.1) can be reformulated to

∫

V

σ · δLdv = −
∫

V

div (σ) · δu̇dv

+

∫

At

σn · δu̇da −
∫

Γ

[[−σ]]−nΓ · δu̇da,

(A.2)

by using the relation

div (σδu̇) = σ · δL + div (σ) · δu̇, (A.3)
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the divergence theorem
∫

V

div (σδu̇) dv =

∫

At

(σδu̇) · nda −
∫

Γ

[[−σδu̇]]− · nΓda, (A.4)

and the symmetry of the Cauchy stress σ = σT. Following the same
procedure, the second term of Eq. (A.1) reads
∫

V

ξG · grad
(

δ
˙̌
φ
)

dv = −
∫

V

div (ξG) · δφ̇dv +

∫

AΞ

ξG · nδ
˙̌
φda

−
∫

Γ

[[−ξG]]− · nΓ〈〈δ ˙̌
φ〉〉 + 〈〈ξG〉〉 · nΓ[[−δ ˙̌

φ]]−da.

(A.5)

By considering the two equations (Eq. (A.2) and Eq. (A.5)), the balance
of virtual power of internal and external forces results in

∫

V

−div (σ) · δu̇ + πGδ
˙̌
φ − div (ξG) · δ

˙̌
φdv +

∫

Γ

−[[−σ]]−nΓ · δu̇

+ (Ξs
G − [[−ξG]]− · nΓ)〈〈δ ˙̌

φ〉〉 + (Ξj
G − 〈〈ξG〉〉 · nΓ)[[−δ ˙̌

φ]]−da

+

∫

At

(σn − t̄) · δu̇da +

∫

AΞ

(ξG · n − Ξ̄G)δ
˙̌
φda = 0.

(A.6)

The arbitrariness of the two rates δu̇, δφ̇ yields the equilibrium equa-
tions summarized in Box 4.2.

A.2 Equations for the periodic

boundary conditions

The periodic boundary conditions are derived for the displacement

degree-of-freedom. Nevertheless, they can be applied for any desired

DOF. Here, the rectangle with the dimensions Lx, Ly , and Lz in the
x, y, and z direction, depicted in Fig. 5.7, is considered as the periodic

unit cell. As emphasized in Section 5.3, the independent nodal dis-
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placements are ux0, uy0, uz0, ux1, uy1, uz1, ux2, uy2, and ux4. Here, the
first index represents the axial direction of the displacement and the

second index the node number according to Fig. 5.7. By controlling the
independent nodal displacements, it is possible to adjust the desired

effective strain tensor (Eq. 5.3). In order to facilitate the reading of the

periodic boundary conditions, the nodes are sorted by their position in
the following sets: corner nodes, edges nodes, and surface nodes.

A.2.1 Coupling equation of corner nodes

The remaining displacements of the corner nodes are restricted by equa-

tions (A.7) to (A.21).

uz2 = uz0 +
Ly

Lz
(uy1 − uy0) (A.7)

ux3 = ux1 + ux2 − ux0 (A.8)

uy3 = uy1 + uy2 − uy0 (A.9)

uz3 = uz1 +
Ly

Lz
(uy1 − uy0) (A.10)

uy4 = uy0 +
Lx

Ly
(ux2 − ux0) (A.11)

uz4 = uz0 +
Lx

Lz
(ux1 − ux0) (A.12)

ux5 = ux1 + ux4 − ux0 (A.13)

uy5 = uy1 +
Lx

Ly
(ux2 − ux0) (A.14)

uz5 = uz1 +
Lx

Lz
(ux1 − ux0) (A.15)

165



A Appendix

ux6 = ux4 + ux2 − ux0 (A.16)

uy6 = uy2 +
Lx

Ly
(ux2 − ux0) (A.17)

uz6 = uz0 +
Ly

Lz
(uy1 − uy0) +

Lx

Lz
(ux1 − ux0) (A.18)

ux7 = ux1 + ux2 + ux4 − 2ux0 (A.19)

uy7 = uy1 + uy2 − uy0 +
Lx

Ly
(ux2 − ux0) (A.20)

uz7 = uz1 +
Lx

Lz
(ux1 − ux0) +

Ly

Lz
(uy1 − uy0) (A.21)

A.2.2 Coupling equation of edge nodes

The set of edge nodes contains all nodes on the edge of the unit cell, ex-

cept the corner nodes. This set is further divided into edge node subsets,
depicted in Fig. A.2.1. Here, each subset possesses one master-edge

(green edge in Fig. A.2.1) containing the master-nodes (indicated by the
superscript (·)M) and three slave-edges (red edges in Fig. A.2.1) contain-

ing the slave-nodes (indicated by the superscript (·)S1, (·)S2, (·)S3). The
displacement of each slave-node depends on the displacement of the

corresponding master-node and the independent nodal displacements.

M

M

M

S1

S1

S1

S2

S2
S2

S3

S3

S3

xxx

yyy

zzz

LyLyLy

LxLxLx

LzLzLz

Figure A.2.1: Subsets of the edge nodes.
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Edge node subset x

uS1
x = uM

x + ux2 − ux0 (A.22)

uS1
y = uM

y + uy2 − uy0 (A.23)

uS1
z = uM

z +
Ly

Lz
(uy1 − uy0) (A.24)

uS2
x = uM

x + ux2 + ux1 − 2ux0 (A.25)

uS2
y = uM

y + uy2 + uy1 − 2uy0 (A.26)

uS2
z = uM

z + uz1 − uz0 +
Ly

Lz
(uy1 − uy0) (A.27)

uS3
x = uM

x + ux1 − ux0 (A.28)

uS3
y = uM

y + uy1 − uy0 (A.29)

uS3
z = uM

z + uz1 − uz0 (A.30)

Edge node subset y

uS1
x = uM

x + ux1 − ux0 (A.31)

uS1
y = uM

y + uy1 − uy0 (A.32)

uS1
z = uM

z + uz1 − uz0 (A.33)

uS2
x = uM

x + ux1 + ux4 − 2ux0 (A.34)

uS2
y = uM

y + uy1 − uy0 +
Lx

Ly
(ux2 − ux0) (A.35)

uS2
z = uM

z + uz1 − uz0 +
Lx

Lz
(ux1 − ux0) (A.36)

uS3
x = uM

x + ux4 − ux0 (A.37)

uS3
y = uM

y +
Lx

Ly
(ux2 − ux0) (A.38)

uS3
z = uM

z +
Lx

Lz
(ux1 − ux0) (A.39)
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Edge node subset z

uS1
x = uM

x + ux4 − ux0 (A.40)

uS1
y = uM

y +
Lx

Ly
(ux2 − ux0) (A.41)

uS1
z = uM

z +
Lx

Lz
(ux1 − ux0) (A.42)

uS2
x = uM

x + ux2 + ux4 − 2ux0 (A.43)

uS2
y = uM

y + uy2 − uy0 +
Lx

Ly
(ux2 − ux0) (A.44)

uS2
z = uM

z +
Lx

Lz
(ux1 − ux0) +

Ly

Lz
(uy1 − uy0) (A.45)

uS3
x = uM

x + ux2 − ux0 (A.46)

uS3
y = uM

y + uy2 − uy0 (A.47)

uS3
z = uM

z +
Ly

Lz
(uy1 − uy0) (A.48)

A.2.3 Coupling equation of surface nodes

Analog to the corner nodes and the edge nodes, the remaining nodes

are divided into three surface node subsets, depicted in Fig. A.2.2. Each
subset contains the master-nodes on the master-surface (green surface

in Fig. A.2.2) indicated by the superscript (·)M and the slave-nodes on
the slave-surface (red surface in Fig. A.2.2) indicated by (·)S. The dis-

placements of the slave-nodes are given by equations (A.49) to (A.57).
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x

y

z

Lx

Ly

Lz

x

y

z

Lx

Ly

Lz

x

y

z

Lx

Ly

Lz

M

S M S

M

S

Figure A.2.2: Subsets of the surface nodes.

Surface node subset x

uS
x = uM

x + ux4 − ux0 (A.49)

uS
y = uM

y +
Lx

Ly
(ux2 − ux0) (A.50)

uS
z = uM

z +
Lx

Lz
(ux1 − ux0) (A.51)

Surface node subset y

uS
x = uM

x + ux2 − ux0 (A.52)

uS
y = uM

y + uy2 − uy0 (A.53)

uS
z = uM

z +
Ly

Lz
(uy1 − uy0) (A.54)

Surface node subset z

uS
x = uM

x + ux1 − ux0 (A.55)

uS
y = uM

y + uy1 − uy0 (A.56)

uS
z = uM

z + uz1 − uz0 (A.57)

A.3 Error estimation

The IGFEM approach is validated in Section 8.3 by comparing the nu-

merical simulation result of a laminate for single slip with an analytical
solution. The analytical solution is only true in the stationary slip case,
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thus,

γ̇(x) = γ̇0sgn (τ)

〈 |τ | − p̌

τD

〉m

= 0 (A.58)

and, therefore, |τ | − p̌ = 0. The stationary condition cannot be directly
transferred to the IGFEM simulation. As a result, an additional stress

τerr appears

τ − p̌ −
(

γ̇(x)

γ̇0

)(1/m)

τD

︸ ︷︷ ︸
:= τerr

= τ − p̌ − τerr = 0, (A.59)

where τ ≥ 0 is assumed. To keep the effect of the non-zero plastic slip
rate as small as possible, material parameters which reduce the addi-

tional stress τerr should be chosen. Consequently, it is useful to increase

γ̇0 and to decrease m as well as τD. Additionally, the loading rate
should be chosen infinitesimal to keep the γ̇(x) value small.

A.4 Cahn Hilliard FEM

The weak forms of the equilibrium equations summarized in Box 9.1

read

rc =

∫

V

wc̺(c − cn)

+ ∆tgrad (wc) · (̺Mdgrad (µd)) dv = 0,

(A.60)

rč =

∫

V

wč(č − c) + λ2
dgrad (wč) · grad (č) dv = 0, (A.61)

ru =

∫

V

σ · grad (wu)Tdv −
∫

At

wu · tda = 0, (A.62)

rµ =

∫

V

wµµe − wµ
1

2
ε · ∂C

∂c
[ε]dv = 0 (A.63)
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and correspond to the residual equations of the Newton’s scheme of
the global problem. The trial functions wc, wč, wu, and wµ correspond

to the field variables c, č, u, and µe, respectively. Furthermore, the
implicite Euler scheme introduced in Section 5.1 was used for the time

discretization of ċ. The field variables are spatially discretized by shape

functions, thus, c ≈ N cc, č ≈ N čč , u ≈ Nuu, and µe ≈ Nµµe. Here, a
vector-matrix notation is adapted, where arrays and matrices are indi-

cated by one and two underlines, respectively. Furthermore, the nodal
value of the field variables are denoted by c, č, u, and µe. In addition,

the gradients of the shape functions are denoted by B(·). Following
the Galerkin FEM, the trial functions are discretized by using the same

shape functions as for the corresponding field variables. The spatial
discretization of the residual equations of the finite element (e) read

r(e)
c =

∫

V(e)

NT

c Nc̺(c − cn)

+ ∆tBT

c ̺Md

(

(
∂2W0

∂c2
+ Hχ)Bc c − HχB č č + Bµ µe

)

dv,

(A.64)

r
(e)
č =

∫

V(e)

NT

č N čč − NT

č Ncc + λ2
dBT

č Bččdv, (A.65)

r(e)
u =

∫

V(e)

BT

u C[ε]dv −
∫

A(e)
t

Nu tda, (A.66)

r(e)
µ =

∫

V(e)

NT

µNµ µe − NT

µ

(
1

2
ε

∂C

∂c
[ε]

)

dv. (A.67)
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The Newton’s scheme requires the algorithmic tangent of the residual
equations and reads













∂rc

∂c

∂rc

∂č

∂rc

∂u

∂rc

∂µe
∂rč

∂c

∂rč

∂č

∂rč

∂u

∂rč

∂µe
∂ru

∂c

∂ru

∂č

∂ru

∂u

∂ru

∂µe
∂rµ

∂c

∂rµ

∂č

∂rµ

∂u

∂rµ

∂µe




















dc

dč

du

dµe








= −








rc

rč

ru

rµ








, (A.68)

with the entries

∂rc

∂c
=

∫

V(e)

(

Nc
T

∂̺

∂c
N c(c − cn) + N c

T̺

+ ∆tBT

c

((
∂̺

∂c
Md + ̺

∂Md

∂c

)((

∂2W0

∂c2
+ Hχ

)

Bcc

− HχBčč + Bµµe

)

+ ̺Md

(

∂3W0

∂c3
Bcc

)))

Nc

+ ∆tBT

c Md̺

(
∂2W0

∂c2
+ Hχ

)

Bcdv,

(A.69)

∂rc

∂č
=

∫

V(e)

−∆tBc
T̺MdHχBč dv, (A.70)

∂rc

∂u
= 0, (A.71)

∂rc

∂µe
=

∫

V(e)

−∆tBc
T̺MdBµ dv, (A.72)

∂rč

∂c
=

∫

V(e)

−N č
TN c dv, (A.73)

(A.74)
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∂rč

∂č
=

∫

V(e)

N č
TN č + λ2

dBč
TB č dv, (A.75)

∂rč

∂u
= 0, (A.76)

∂rč

∂µe
= 0, (A.77)

∂ru

∂c
=

∫

V(e)

Bu
T

(
∂C

∂c
[ε]

)

Nc dv, (A.78)

∂ru

∂č
= 0, (A.79)

∂ru

∂u
=

∫

V(e)

Bu
T

∂σ

∂ε
Bu dv, (A.80)

∂ru

∂µe
= 0, (A.81)

∂rµ

∂c
=

∫

V(e)

−Nµ
T

1

2
ε

∂2C

∂c2
[ε]N c dv. (A.82)

∂rµ

∂č
= 0, (A.83)

∂rµ

∂u
=

∫

V(e)

−Nµ
T

(
1

2
BS

u

∂C

∂c
[ε] +

1

2
ε

∂C

∂c
BS

u

)

dv, (A.84)

∂rµ

∂µe
=

∫

V(e)

Nµ
TNµ dv, (A.85)

with BS
uu = sym(Buu).
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Frequently used acronyms,
symbols, and operators

Acronyms

DS Directional solidification

FEM Finite element method
GFEM Generalized finite element method

GND Geometrically necessary dislocation
IGFEM

RT Room temperature
SSD Statistically stored dislocation

UC Unit cell
XFEM Extended finite element method

Latin letters

E Green strain tensor

F e, F p Elastic and plastic part of F

F Deformation gradient

Hχ Penalty parameter
H Displacement gradient

J = det(F ) Determinant of the deformation gradient
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Frequently used acronyms, symbols, and operators

M α Schmid tensor of slip system α

M d Mobility tensor

Nc Number of components in mixture
NGS Number of slip systems

Rdis Radius of curved dislocation
R Universal gas constant

S Second Piola-Kirchhoff stress
T Temperature

W Free energy density
QC Activation energy for creep

v̄ Barycentric velocity

b Burgers vector
b Absolute value of the Burgers vector

cf , cm Volume fraction of the fiber and matrix
č Micromorphic mass concentration

c Mass concentration
d Fiber diameter

C Stiffness tensor
j Mass flux

k1, k2 Dislocation storage and annihilation constant

kd Gradient energy coefficient
m Stress exponent

nα, dα Slip plane normal and slip direction of system α

n, nΓ Normal vector of outer surface and interface

t Time
vα Velocity of compontent α

x, X Position vectors of a material point in the current
and reference placement
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Greek letters

Greek letters

˙̄εGF Creep rate where the interface flow rule has been
fulfilled for the first time

˙̄εmin Minimum creep rate of the composite
ε̇SS Steady-state creep rate

ε, εe, εp Total, elastic, and plastic strain tensor

γacc Accumulated plastic slip
γ̇α Slip rate of slip system α

λd Internal length of Cahn-Hilliard diffusion
µd Chemical potential

µe = ∂We/∂c Chemical potential resulting by We

µ Shear modulus

φ̂β Nodal degree-of-freedom of φ̌

φ, φ̌ Generalized state or internal variables and mi-

cromorphic counterpart

πG Scalar valued generalized micromorphic stress
(specified in the corresponding chapters)

ρGND Geometrically stored dislocation density
ρα Dislocation density of slip system α

̺α Mass density of the component α

̺ Total mass density

ρ0 Initial dislocation density
ρssd Statistically stored dislocation density

ρ Total dislocation density
σ Cauchy stress tensor

τF Flow stress

τ∞ Theoretical strength
τα Schmid stress

ξG Vector valued generalized micromorphic stress
(specified in the corresponding chapters)
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Frequently used acronyms, symbols, and operators

Operators

Div (·) Divergence operator with respect to X

div (·) Divergence operator with respect to x

Grad (·) Gradient operator with respect to X

grad (·) Gradient operator with respect to x

A · B Dot product of two tensors A, B

A ⊗ B Dyadic product of two tensors A, B

A = C [B] Linear mapping of a second-order tensor by a

fourth-order tensor
AB Composition of two second-order tensors
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Directionally solidified (DS) NiAl based eutectic alloys are promising candidates 
for further structural applications at elevated temperatures. A single-crystal 
plasticity model is established for the understanding and the optimization  
of  DS eutectics. To consider the transition from theoretical to bulk strength,  
a hardening model was introduced and used to describe the strength of the 
reinforcing phases. The creep behavior of the DS NiAl-9Mo composite could 
be well described by the single-crystal plasticity model. To include the effects 
of the fiber-matrix interface and the geometrically necessary dislocations 
within the simulations, the single-crystal plasticity model was extended to 
a gradient crystal plasticity model. It was realized by applying the interface- 
enriched generalized finite element method. Further, to rationalize the transfer 
from a purely elastic to an elasto-plastic behavior of the reinforcing fibers, the 
stress dependent interface flow rule was crucial. It was found that the fiber 
phase as well as the fiber-matrix interface play a particularly important role on 
the creep behavior of the composite. Moreover, to account for microstructural 
changes due to material flux, a coupled diffusional-mechanical simulation 
model was introduced. It was shown that the lamellar orientation with respect 
to the external load can influence the coarsening velocity.
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