

Nuclear Data Activities of the EUROfusion Consortium

U. Fischer, KIT Co-ordinator PPPT Neutronics & Nuclear Data

: IJS

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Contributors

M. Avrigeanu, V. Avrigeanu – IFIN-HH, Bucharest, Romania

M. Fleming – NEA Data Bank, Paris, France

- M. Gilbert CCFE, Culham, UK
- I. Kodeli JSI, Ljubljana, Slovenia
- A. Konobeev, P. Pereslavtsev, S. Simakov KIT, Karlsruhe, Germany
- H. Leeb TUW, Vienna, Austria
- D. Rochman PSI, Würenlingen, Switzerland
- H. Sjöstrand, G. Schnabel UU, Uppsala, Sweden
- P. Sauvan UNED, Madrid, Spain

UPPSALA UNIVERSITET

DUED

PAUL SCHERRER INSTITU

Outline

- Background
- DEMO and IFMIF-DONES
- Neutronics simulations in fusion technology
- Nuclear data for fusion applications
- Nuclear data in EUROfusion/PPPT
- Summary & Outlook

Background

European Fusion Roadmap

- Realization of fusion as energy source for electricity by ~2050
 - \Rightarrow Fusion Power Plant (FPP) providing electricity to the grid
- Eight missions, three major facilities: ITER, DEMO, neutron source
- **EUROfusion** Consortium for the Development of Fusion Energy in Europe

⇒ **Power Plant Physics and Technology (PPPT)** programme

DEMO power plant

- Conceived as single step between ITER and commercial FPP
- Demonstrate tritium breeding capability, production of net electricity, all technologies required for the construction of commercial FPP
- D-Li neutron source IFMIF-DONES
 - Provide material irradiation data required for the construction of DEMO
- ⇒ Implemented in PPPT projects including design activities & supporting R&D

PPPT projects

- PMI System Engineering, Design and Physics Integration
- BB Breeder Blanket
- SAE Safety and Environment
- MAT Materials
- DC Diagnostic and Control
- DIV Divertor
- RM Remote Handling
- ENS Early Neutron Source
- S2 Stellarator Engineering

Neutronics serves all these projects:

- \Rightarrow **Provides data required for nuclear design of plant, systems & components**
- ⇒ Evaluate & proof nuclear performance incl. licensing & safety related issues

DEMO 2017 Baseline

"EU DEMO1 2017" Cut-away CAD model

PMU Garching, May 2019

Main reactor parameters

No. of TF coils	16
Major radius [m]	8.938
Minor radius [m]	2.883
Aspect ratio	3.1
Plasma elongation, κ_{95}	1.65
Plasma triangularitry, δ_{95}	0.33
Average neutron wall loading [MW/m ²]	1.05
Fusion power [MW]	1998
Net electric power [MW]	500

Neutronics - Issues & nuclear responses

• Tritium breeding capability

- − Tritium Breeding Ratio (TBR); net TBR \ge 1.0
 - \Rightarrow To be evaluated, optimized and proven
- Nuclear power generation
 - Total power produced in nuclear reactions, spatial distributions
 ⇒ Reponses to be provided
- Shielding performance
 - Radiation loads to superconducting magnets, structural and sensitive components/elements
 - \Rightarrow To be evaluated, optimized and proven

• Irradiation effects: Activation, transmutation, decay radiation

- Activity & nuclide inventories, decay heat, radiation damage to materials/components, radiation doses to materials & personnel
 - ⇒ To be evaluated & minimized for operation, maintenance, safety, decommissioning and waste management

\Rightarrow Suitable computational approaches, tools and data needed to provide the required response data with sufficient accuracy.

IFMIF-DONES Neutron Source

<u>International</u> <u>Fusion</u> <u>Material</u> <u>Irradiation</u> <u>Facility</u> <u>Demo</u> <u>Oriented</u> <u>Ne</u>utron</u> <u>Source</u>

- Early Neutron Source (ENS) project of EUROfusion for a D-Li neutron source for material irradiations
- ⇒ **Main mission**: To provide irradiation data for the construction of DEMO
- Design based on IFMIF using only one deuteron accelerator (125 mA, 40 MeV)
- Lithium target, Test Cell and HFTM, etc. are (almost) identical, no other modules
- ⇒ Neutronics key issue: Essential data to be provided for design, optimization, performance and safety evaluation

IFMIF-DONES Neutron Source

Major neutronics issues/tasks

- D-Li neutron source producing neutrons up to 55 MeV McDeLicious approach
- Nuclear performance of High Flux Test Module (HFTM)
 - Neutron/photon flux distribution & spectra
 - Nuclear heating in HFTM container & specimens (Eurofer steel)
 - Radiation damage & gas production in specimens
- Target & Test Cell (TTC)
 - Nuclear design of Li target assembly, Li loop with quench tank, Test Cell with steel liner, concrete walls & plugs
 - Issues: nuclear heating (cooling), activation, radiation doses in/around TTC & Li loop during operation & maintenance \Rightarrow radiation maps
- Accelerator System (AS)
 - Radiation during operation due to deuteron beam losses and subsequent activation of AF components ⇒ deuteron transport (MCUNED code) & interaction with AF materials (activation, neutron generation)
 - Back streaming neutron radiation, shield design & optimization, beam dump

Neutronics simulations approach

Neutronics simulations approach

- Neutron (and photon) transport simulations
 - Basis for providing all nuclear responses needed for the design and performance evaluation of fusion technology facilities.
 - Suitable computational approaches, tools and data required:
 - Method/tool for simulation of neutron transport in complex 3D geometry ⇒ Monte Carlo (MC) particle transport technique (MCNP, TRIPOLI, Serpent, etc.)
 - Nuclear cross-section data to describe the nuclear interaction processes
- Coupled activation and radiation transport calculations
 - Basis for assessment of activity inventories and radiation fields after shut-down as required for safety, licensing, waste management
 - Computational approaches/tools and required:
 - Nuclide inventory calculation with coupling to particle transport
 - Large amount of neutron induced **<u>activation cross-section data</u>**
- ⇒ Neutronics simulations rely on variety and multitude of nuclear cross-section data and their quality !

Nuclear data for fusion technology

- Neutron cross-sections for transport simulations
 - Neutron absorption and total cross-sections: $\sigma_a(E)$, $\sigma_{tot}(E)$
 - Total neutron emission cross-section $\sigma_{nem}(E,E',\mu)$ [E = neutron energy, $\mu = cos(\theta)$, $\theta = scattering angle$]

 \Rightarrow Includes elastic scattering and inelastic reactions (n,n' γ), (n,2n),...

- Cross-sections for photon transport simulations
 - Neutron induced γ production cross-sections and spectra
 - γ interaction cross-sections
- Nuclear data for calculating reaction rates ("nuclear responses")
 - Cross-sections σ_x (E) for specific reactions (tritium, gas production, etc.), and energy deposition (heating)

 \Rightarrow <u>Complete data evaluations required</u> : all reactions, all data types, covering the entire energy range $10^{-3}eV - 20$ MeV, for all nuclides of interest to FT, sufficient quality (!)

Nuclear data for fusion technology

- Nuclear data evaluations & libraries
 - Evaluated nuclear cross-section data compiled in libraries, processed for application calculations, benchmarked and validated – as far as possible.
- Nuclear data libraries for fusion technology
 - FENDL Fusion Evaluated Nuclear Data Library
 - Developed under auspices of IAEA, tailored to the needs of ITER
 - Current version FENDL-3.1d includes a set of sub-libraries,
 - (n, p, d, activation, co-variances, etc.), up to 200 MeV
 - JEFF Joint Evaluated Fusion and Fission File
 - Organised and maintained by NEA Data Bank, Paris, addressing needs of European nuclear fusion and fission communities
 - EU fusion data evaluations are fed into JEFF and its sub-libraries

 \Rightarrow JEFF serves as reference data library for PPPT nuclear analyses

EUROfusion

Nuclear data for fusion technology

• Activation cross-section data

- Excitation function $\sigma_x(E)$ for any open reaction channel producing a radioactive product nuclide
- Calculated by nuclear model codes using experimental data, benchmarked and validated for important reactions
- European Activation File (EAF) developed by CCFE/NRG in the frame of EU fusion programme, <u>serving both JEFF and FENDL</u>
- EAF- 2010 latest version (frozen): 816 target nuclides
 ¹H to ²⁵⁷Fm, 66,256 excitation functions up to 60 MeV.

Deuteron induced cross-section data

- Required for IFMIF-DONES nuclear analyses
 - Neutron generation in Li target and accelerator components
 - Activation of deuteron beam facing materials of accelerator $\frac{\widehat{a}}{E_{2}}$
- TENDL deuteron library, based on automated model calculations

\Rightarrow To be updated with specific data evaluations/improvements

J.-Ch. Sublet, L. W. Packer, J. Kopecky¹, R. A. Forrest², A. J. Koning and D. A. Rochman³

Nuclear Data in EUROfusion/PPPT

- Nuclear Data tasks implemented in PPPT programme (starting 2017, previously conducted in Task Agreements with F4E, Barcelona, Spain)
 - \Rightarrow To satisfy the needs for DEMO and IFMIF-DONES
 - Transversal actions in PPPT projects PMI, BB, SAE, ENS, MAT
 - Starting in 2019, combined PMI task on "<u>Nuclear Data Evaluation (NDE) and</u> <u>Nuclear Experiments</u>".

• NDE tasks/activities:

- General purpose neutron cross section evaluations (ENDF), incl. co-variances
- Special purpose nuclear data evaluations & libraries: neutron activation, displacement damage, gas production, deuteron cross-sections
- Methods/tools developments
- Testing and benchmarking (V&V, S/U analyses)

<u>Contributing research institutions:</u> CCFE – Culham, UK; IFIN-HH – Bucharest, Romania; JSI – Ljubljana, Slovenia ; KIT – Karlsruhe, Germany; PSI - Würenlingen, Switzerland; TUW – Vienna, Austria, UNED – Madrid, Spain; UU – Uppsala, Sweden

General Purpose Nuclear Data Evaluations

Complete ENDF data files with co-variance data up to 200 MeV neutron energy

- **n** + ^{180, 182, 183, 184, 186}**W**
 - Evaluation by KIT, Germany, applying **Bayesian approach** taking into account experimental and model uncertainties.
 - Nuclear model calculations based on modified TALYS code for prior calculations and GLS technique for generation of co-variance data and updating of evaluation.
- n + ⁵⁶Fe
 - Trial evaluations by PSI, Switzerland, and UU, Sweden, using advanced evaluation methodologies
 - Randomly generated data files (varying models and parameters), validation against criticality and shielding benchmarks.
 - Simulation of model defects based energy-dependent TALYS parameters modelled by Gaussian Processes (GP).
- n + ¹⁶O
 - Hybrid R-matrix approach to model reaction channels in resonance region by TUW, Austria
 - Unified evaluation procedure utilizing combined prior co-variance matrix from statistical and R-Matrix regimes and GLS approach for the Bayesian updating of the evaluation.

ENDF data files include all information/data required for fusion technology applications (transport simulation, nuclear responses, uncertainties), neutron energy up to 200 MeV

U. Fischer | ND-2019 | Beijing, China | May 19-24, 2019 | Page 16

\Rightarrow A. Konobeev, R037

 \Rightarrow G. Schnabel, R033

 \Rightarrow H. Leeb, R046

Evaluated n + ^{180, 182, 183, 184, 186}W cross-section data

- Nuclear model calculations: Modified TALYS code using geometry dependent hybrid (GDH) model for pre-equilibrium reactions
- Resonance parameters from JEFF-3.3 (^{182, 183, 184, 186} W) and Mughabghab (¹⁸⁰W)
- Generalized Least Square (GLS) technique for covariance data generation and Bayesian updating of evaluation

^{nat}W neutron emission cross-section

 \Rightarrow A. Konobeev, R037

U. Fischer | ND-2019 | Beijing, China | May 19-24, 2019 | Page 17

Evaluation of n + ¹⁶O cross-section data using Hybrid R-Matrix approach

- Hybrid R-matrix fit in energy range 1 keV 14 MeV using TUW code system GECCCOS
- Statistical model fit using TALYS with optimized optical potentials (1 keV – 200 MeV)
- Unified Bayesian evaluation accounting for model defects (in resonance and statistical energy range) providing co-variance matrices
- \Rightarrow Production of full ENDF prototype data file for use in benchmark analyses \Rightarrow H. Leeb, R046

U. Fischer | ND-2019 | Beijing, China | May 19-24, 2019 | Page 18

Evaluation of fast n + ⁵⁶Fe cross-sections using advanced evaluation methodologies

U. Fischer | ND-2019 | Beijing, China | May 19-24, 2019 | Page 19

1000 (a

Benchmark and validation analyses

To support running general purpose evaluations and testing of specific JEFF data of major interest to fusion applications in EUROfusion/PPPT

Current focus on O, Fe, W: Benchmarking against FNS experiment (liquid O slab), Fe spherical shells (IPPE, KfK, NIST, Rez with 14 MeV + ²⁵²Cf neutron source, ASPIS IRON-88, Oktavian spherical shell (W)

 \Rightarrow To be extended for running data evaluations on ¹⁶O (TUW), ⁵⁶Fe (UU/PSI), stable W isotopes (KIT)

1,4

1,3

1,2

1,1 믱1,0

> 0,9 0,8

0.7

0,6

0

/B-V

U. Fischer | ND-2019 | Beijing, China | May 19-24, 2019 | Page 20

: IJS

Activation Cross-Section Data Library

European Activation File (EAF):

• EAF series developed by CCFE/NRG in the frame of EU fusion programme, EAF-2010 latest version (frozen, no further development)

<u>Strategy adopted in PPPT programme:</u> Establish TENDL as reference data library for activation calculations

- TENDL "TALYS based Evaluated Nuclear Data Library"
 - Developed previously by NRG, now PSI, in collaboration with IAEA, CCFE, CEA and others
 - Very comprehensive and complete data library, largely based on automated TALYS calculations with default and adjusted parameters and data from other source
 - Includes cross-section data for n, p, d, t, ³He, α and γ induced nuclear reactions
- ⇒ TENDL to preserve or increase quality of EAF-2010 for activation calculations by including validated cross-sections and removing observed deficiencies
- Deficient cross-sections identified and prioritised according to needs of fusion programme (DEMO, IFMIF-DONES, ITER) improved and included in TENDL-2017
- ⇒ Dedicated Activation Data File ("EAF format") produced from TENDL-2017, adopted as JEFF-3.3 activation data library ,
- ⇒ 211 group data library to be adopted as reference for PPPT programme (after successful completion of V&V analyses), <u>superseding EAF-2010</u>.

Improved Activation Cross-Sections in TENDL-2017

U. Fischer | ND-2019 | Beijing, China | May 19-24, 2019 | Page 22

Validation of TENDL-2017 Activation Cross-Sections

V&V analyses for range of integral measurements in fusion/accelerator systems, decay heat simulations, MACS and statistical checks using CCFE validation data base

10⁻¹²

1.0E+06

TENDL2017: EAF 2010

TENDL-2017 (709 groups, ENDF format)

C/E ratios for all integral measurements

Conclusion:

- TENDL-2017 provides superior agreement with experimental data
- Recommended as basis for activation data library in fusion applications

⁵¹V(n,p) ⁵¹Ti 10^{-2} C/E 10^{-4} ⁵¹V(n,p)⁵¹Ti xs (barns) 10^{-6} 10-8 Genor 10⁻¹⁰ 0.8

TENDL-2017 (211 groups, EAF format)

TENDL-2017 ENDF/709g vs. EAF/211g:

neutron energy (eV)

differential data T-17 ENDF6 total

Overall good agreement, except for (n,t) and (n,h) reactions

1.0E+07

-- T-17 EAF g

0.7 0.0

- Minor effects due to different group structures
- Some inconsistent data identified (low mass nuclides) and fixed, V&V running

DUED

α -particle Optical Model Potential (OMP)

Improved OMP for α -particle emission in neutron induced reactions

- OMP elaborated previously (M.+V. Avrigeanu), implemented as default option in TALYS 1.9.
- \Rightarrow Continued studies to further improve α -emission data on the basis of consistent nuclear model calculations
- \Rightarrow Including low energy proton data to understand open questions in α -particle OMP
- ⇒ Taking into account all available data for reaction channels and isotopes of Eurofer and SS-316 steels

n data

 \Rightarrow V. Avrigeanu, R022

U. Fischer | ND-2019 | Beijing, China | May 19-24, 2019 | Page 24

Displacement Damage Cross-Section Data

Dedicated displacement damage cross-section data for major steels used in DEMO and IFMIF-DONES as structural materials: Eurofer (low activation) and SS-316

- Advanced DPA cross-section data up to 150 MeV for steel constituents based on atomistic modelling approach.
 - Molecular Dynamics (MD) and Binary Collision Approximation (BCA) model simulations for the calculation of number of lattice defects
 - ⇒ Better agreement with experimental point defect production data.

- Displacement damage cross-sections available through IAEA/NDS: Eurofer: <u>https://www-nds.iaea.org/public/download-endf/DXS/EUROFER_dpa-XS/ACE</u>
 SS-316: <u>https://www-nds.iaea.org/public/download-endf/DXS/SS-316_dpa-XS/ACE/</u>
 - ⇒ Provided as ACE data files for use with MCNP as dosimetry cross-sections
 - ⇒ Recommended for use in PPPT neutronics ("Guidelines for for Neutronic Analyses")

Displacement Damage Cross-Section Library

DPA cross-section data library for individual elements

- Complete data library for elements Li to U up to 200 MeV neutron energy based on JEFF-3.3 neutron cross-section data (A. Konobeev, KIT)
- DPA cross sections prepared with standard NRT damage model and Arc^(*) ("athermal recombination corrected") dpa approach to take into account lattice defects surviving thermal annealing.
- Provided as JEFF-3.3 sub-library by the NEA Data Bank: <u>http://www.oecd-nea.org/dbdata/jeff/jeff33/#dpa</u>

Arc dpa vs NRT dpa

(*) K. Nordlund et al., NEA/NSC/DOC(2015)9, OECD 2015

U. Fischer | ND-2019 | Beijing, China | May 19-24, 2019 | Page 26

Gas Production Data Library

Gas production important for material performance (DEMO, IFMIF-DONES)

- Systematically evaluated gas production cross-sections for nuclides Z=12 to 83 up to 200 MeV neutron energy
 - Based on experimental data, evaluated data, nuclear model calculations and systematics, and statistical combination of experimental and theoretical data
 - Includes production of protons, deuterons, tritons, ³He, and α -particles in neutron induced reactions on 262 stable nuclides
- Data available at:

https://www.inr.kit.edu/img/gas_production_files.zip

U. Fischer | ND-2019 | Beijing, China | May 19-24, 2019 | Page 27

Deuteron Induced Cross-Section Data

Required for IFMIF-DONES neutron source facility – ENS (Early Neutron Source) project in PPPT programme

- Neutron generation in Li target: ^{6,7}Li(d, xn) cross-section data provided with McDeLicious MC code, validated with measured thin and thick target yield data
- Deuteron cross section data for <u>activation</u> calculations:
 - ⇒ Available with TENDL data library, largely based on automated TALYS calculations with default model and parameters lacking sufficient accuracy
 - ⇒ Dedicated effort in PPPT programme to improve nuclear models describing deuteron induced reaction mechanisms
- Deuteron cross section data for <u>transport</u> simulations:
 - \Rightarrow Available with the same TENDL deuteron data library
 - ⇒ Can be used in deuteron transport simulations with MC code code MCUNED (P. Sauvan, UNED) and MCNP-6.
 - ⇒ In general, poor data quality because of deficient reaction models in TALYS, to be improved in PPPT programme !

Deuteron Induced Cross-Section Data

Dedicated evaluation effort to improve deuteron cross-section data for transport simulations and activation calculations \Rightarrow M. Avrigeanu, R016

Advanced modelling approach taking into accounted deuteron break-up, stripping, • pick-up, pre-equilibrium and evaporation processes

 \Rightarrow Implemented in ad-hoc modified TALYS version 1.81

- Evaluation of d-induced reaction cross-sections for ²⁷Al, 50, 52, 53, 54Cr, 55Mn, 54,56,57,58Fe, 58,60,61,62,64Ni, 63,65Cu, 93Nb up to 60 deuteron energy MeV
 - \Rightarrow Very good agreement with experimental data

 \Rightarrow Improved cross-sections to be included in new TENDL deuteron data library, extended to other nuclides & reactions

IFIN-HI

d + ^{nat}Cr cross-sections

Deuteron Induced Cross-Section Data

Complementary approach to improve use of evalutaed deuteron cross-section data in transport simulations

- MCUNED code (P. Suavan, UNED): Parameterised representation of deuteron break-up
- Based on recent Kalbach-Mann formalism to describe angular distributions of secondary particles emitted in deuteron break-up reactions
- \Rightarrow Requires format modification on ENDF data file
- ⇒ Successfully tested with ad-hoc modified TENDL deuteron data library.

P. Sauvan, A. Koning, F. Ogando, J. Sanz, "Implementation of a new energy-angular distribution of particles emitted by deuteron induced nuclear reaction in transport simulations", EPJ Web of Conferences 146, 02010 (2017)

⇒ Option considered for representing deuteron cross-sections in TENDL deuteron data library for use with MCUNED code (not MCNP.6) Cu(d,Xn) Experiment TENDL-original TENDL-Breakup $E_{d} = 33 \text{ MeV}$ $\Theta = 0^{\circ}$ $1 \times 10^{\circ}$ $1 \times 10^{\circ}$ 0 = 5 = 10 = 15 = 20 = 25 = 30

E (MeV)

Summary & outlook

• Nuclear data for fusion technology

 High quality data essential for design optimization, performance evaluation; safety, maintenance and waste management

 \Rightarrow Pre-requisite to ensure reliable analyses and results

- Dedicated development efforts in PPPT/EUROfusion
 - Tailored to PPPT project needs: DEMO, IFMIF-DONES
 - Activities coordinated/aligned with JEFF
 - \Rightarrow Nuclear data for transport simulations neutrons, deuterons
 - \Rightarrow Activation cross-section data neutrons, deuterons
 - \Rightarrow Special purpose data, e.g. displacement damage, gas production
- Supporting experimental activities
 - Benchmark experiments: neutron transport/shielding, breeding, activation
 - Cross-section measurements (high energy range): activation, gas production, dosimetry, displacement damage ,
 - ⇒ New in PPPT/EUROfusion (2019): WCLL breeding blanket mock-up experiment & complementary activities related to gas production and damage cross-sections.