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Abstract—In this paper, we propose a decentral-
ized scalable, plug-and-play control of voltage-source
inverters (VSIs) in islanded, inverter-based ACmicro-
grids at primary level. Particularly in islanded mode
without inertia from conventional generators in the
main grid, voltage and frequency stabilization must
be performed exclusively by these VSIs. In contrast
to existing approaches, we propose a systematic pro-
cedure that does not require the proposition of a
Lyapunov function as well as avoids computationally
expensive and possibly infeasible numerical optimiza-
tion. It follows passivity techniques, namely intercon-
nection and damping assignment passivity-based control
(IDA-PBC) on the basis of port-Hamiltonian sys-
tems (PHSs) theory. By employing the Hamiltonian
naturally obtained from the PHS approach as Lya-
punov function and analyzing load dynamics, we prove
microgrid-wide asymptotic voltage and frequency sta-
bility. A simulation validating our theoretical results
concludes our work.

I. INTRODUCTION
Inverter-based AC microgrids have been identified as

a key element of future electrical energy supply systems
[1][2][3]. They provide a systemic approach to cope with
the rising integration of flexible loads, and intermittent
renewable energy sources and storage devices summa-
rized as distributed generation units (DGUs), at distri-
bution (medium and low voltage) level. These DGUs
commonly operate in DC and thus interface with the
remaining AC microgrid via DC-AC inverters comprising
controllable VSIs and RLC filters (see Fig. 2) [1][2][3].

Among the manifold control challenges in inverter-
based microgrids, reliable operation in islanded mode
represents one of the most demanding scenarios. In
absence of the stabilizing effect of conventional gener-
ators in the main grid, ancillary services, predominantly
comprising voltage and frequency stabilization, must be
performed exclusively by local VSI controllers at primary
level to ensure proper active and reactive power flows
[3][4]. A further challenge of integrating a high share of
DGUs is their varying availability due to the intermittent
nature of most renewable energy sources, which can in
worst case lead to plug-in and -out operations [5].

Thus, primary level control design for microgrids
with multiple interacting DGUs focuses on decentralized
methods (cf. Fig. 2 [6]). Decentralized control approaches
only rely on local DGU information and measurements
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for the corresponding local VSI control design which (i)
makes them independent of the overall microgrid size and
thus scalable; (ii) drastically simplifies the control design
by decomposing the microgrid into more manageable,
modular subsystems; (iii) allows for the addition or
removal of DGU units in a plug-and-play fashion without
requiring changes to any existing local controllers.

The most common decentralized control approaches
are based on conventional droop control and extensions
thereof (see for example [3][4][7]). Their main issues
are load-dependent voltage and frequency deviations,
propagation of voltage errors along resistive lines, and
poor performance at distribution level, where a low
X/R ratio results in a non-negligible coupling of active
and reactive power. Thus, droop-based methods neces-
sitate a secondary control layer, along with some form
of communication, to guarantee offset-free stabilization
of voltages and frequency [3][4]. Alternative decentral-
ized, plug-and-play control approaches are based on the
concept of neutral interactions which give control laws
via numerical optimization [5][8][9][10]. However, they
require information about the lines connected to each
DGU and they obtain control gains from linear matrix
inequalities which are not always numerically feasible.
In [11], a line-independent extension of [8] is proposed
using a classical Lyapunov function approach which,
however, necessitates solving an even more cumbersome
optimization problem. This leads to [12] whose control
design for DC microgrids avoids numerical optimization
entirely by employing passivity theory and exploiting its
link to Lyapunov stability (cf. [13, pp. 40]). However,
heuristically proposing a suitable Lyapunov function re-
mains a significant stumbling block.

In this work, we circumvent the proposition of a
Lyapunov function while still employing passivity theory
and exploiting its link to Lyapunov stability by following
an IDA-PBC approach based on PHSs. For the voltage
and frequency control of single VSIs, comprehensive
IDA-PBC designs have been proposed for example in
[14][15][16]. In contrast to these works, we extend our
perspective to an AC microgrid level and propose a
new design for an IDA passivity-based voltage and fre-
quency control law for DGU VSI interfaces. The resulting
proportional controller achieves asymptotic voltage and
frequency stability at each DGU under inequality con-
ditions. These conditions are obtained by analyzing the
closed-loop system subject to ZP load dynamics. By em-
ploying the modularity of passive systems and using the
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Hamiltonian naturally obtained from the PHS approach
as a Lyapunov function, we prove global asymptotic
voltage and frequency stability for the whole microgrid.

In summary, our main contributions comprise (i) the
proposition of a scalable, plug-and-play voltage and fre-
quency control law for inverter-based AC microgrids,
which directly delivers (ii) a Lyapunov function allowing
for a subsequent proof of global asymptotic voltage and
frequency stability.

II. Basic Procedure and Fundamentals
In the first part of the paper (Section III), we formulate

the subsystems DGU and electrical line comprising any
AC microgrid as port-Hamiltonian dynamics of the form

ẋ = [J(x)−R(x)] ∂H(x)
∂x

+ g(x)u+ k(x)d (1)

where x ∈ Rn is the state vector, u ∈ Rm is the
control input vector, d ∈ Rd is the disturbance vector
[17, p. 69]. The conjugated outputs are omitted in the
models as they will not be necessary for the following
design. Note that they do not necessarily correspond
to measurements, but are simply power-conjugated vari-
ables to u and d. J(x), R(x), g(x), and k(x) are real-
valued matrices of respective sizes with J(x) = −JT(x)
and R(x) = RT(x) < 0 (positive semidefinite). The
Hamiltonian H(x) : Rn → R is a smooth function of the
states representing the total stored energy in the system.
Its minimum represents the equilibrium x∗ of the system.

Remark 1: Equilibrium variables will be denoted by ∗.
In the second part of the paper (Section IV), we

formulate an IDA-PBC for a general VSI interface fol-
lowing the approach detailed in [18] to achieve stability
of the voltage and frequency setpoints. Initially, the
undisturbed dynamics in (1), i.e. d = 0, are split into
actuated (α) and unactuated (ν) parts[

ẋα
ẋν

]
=
[
fα(x)
fν(x)

]
+
[
Gα(x)

0(n−m)×m

]
u , (2)

using a suitable transformation. The matrix Gα(x) is a
square matrix of size (m×m). Then, in order to solve the
IDA-PBC matching equation (cf. (3) [19]) for the desired
Hamiltonian Hc(x), design parameters are chosen to be
state-independent

Fc := Jc −Rc =
[
Fα
Fν

]
, (3)

with the natural choice for the full-rank left annihilator

G⊥ =
[
0(n−m)×m I(n−m)×(n−m)

]
. (4)

Remark 2: Functions and matrices of the desired
closed-loop system are denoted with the subscript c.
With (3) and (4), the matching equation (cf. (3) [19]) can
be simplified to the linear system of first-order PDEs

Fν
∂Hc(x)
∂x

!= fν(x) , (5)

dependent on the desired Hamiltonian Hc. Solving (5)
for all x is possible if and only if
∂fν,k(x)
∂x

νl −
∂fν,l(x)
∂x

νk
!= 0, k, l = 1 . . . n−m, (6)

which will yield restrictions on the control design. The
IDA-PBC law for the transformed α-ν-system in (2) is
then given by

u(x) = G−1
α

[
Fα

∂Hc(x)
∂x

− fα(x)
]
. (7)

For a later stability analysis, we establish the following
lemma:

Lemma 1: If Q � 0 and R(x) = RT(x) � 0 (positive
definite), then a PHS (1) with quadratic Hamiltonian
H(x) = 1

2x
TQx is strictly passive and globally asymp-

totically stable in the equilibrium x∗ = arg minxH(x),
with H(x) used as a Lyapunov function.

Proof: (a) If Q � 0, then H(x) is a positive definite
function (cf. [20, p. 117]) with a minimum at x∗ such
that H(x∗) = 0 and H(x) > 0 for all x 6= x∗.
(b) Furthermore, with R(x) � 0 we can show

dH(x)
dt = ∂TH(x)

∂x
ẋ (8)

= −∂
TH(x)
∂x

R(x)∂H(x)
∂x

< 0 ∀x 6= x∗ . (9)

The strict passivity of (1) follows from (a) and (b) [20,
p. 236] where H(x) is a Lyapunov function. The radially
unbounded and positive definite nature of H(x) at x∗
and strict passivity ensure the global asymptotic stability
of the equilibrium x∗ of (1) for u ≡ 0, d ≡ 0 via
Lyapunov’s direct method [21, pp. 44–45].

III. MODELING
Section III-A introduces the islanded AC microgrid

along with its subsystems and defines the framework on
which the subsystem models are based. Sections III-B
and III-C present PHS models of the DGU and line sub-
systems, respectively. Finally, the passivity and stability
of the islanded microgrid is discussed in Section III-D.

A. System description
We consider an islanded AC microgrid comprising

DGUs, lines and loads in the dq reference frame rotating
at ω0 = 2π 50 Hz. The zero-sequence is neglected by
assuming a balanced network as in [11]. Furthermore,
a load-connected topology is considered in which loads
are mapped to the DGU terminals, denoted as the Point
of Common Coupling (PCC), via Kron Reduction as
in [5][8][10][11]. The DGUs are connected by π-model
electrical lines to form a bipartite graph as in Fig. 1,
a single connection of which is illustrated in Fig. 2. Note
that a DGU may connect to multiple lines.

Remark 3: The subscripts d and q denote the re-
spective components of a variable in the dq coordinate
frame. The subscript dq denotes a vector of the d and q
components, i.e. Vdq := [Vd, Vq]T.
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Fig. 1. Bipartite graph representation of an islanded AC microgrid
with DGUs, Kron-reduced loads associated with the respective
DGUs, and lines interconnecting the various DGUs; dotted lines
indicate the plug-and-play nature of the microgrid

Remark 4: Variables in the dq frame (rotating at fre-
quency ω0) can be considered Cartesian representations
of phasors in polar coordinates, i.e. V ∠θ. Asymptotically
stable dq systems imply θ = const., and are therefore
also asymptotically stable as phasors with the frequency
of the rotating phasors ω = θ̇ + ω0 = ω0, since θ̇ = 0.
Asymptotic frequency stability is therefore implicitly
present in an asymptotically stable dq system.

B. DGU Inverter Interface Model
Fig. 2 depicts a DGU circuit diagram in dq coordinates

at a node i in the microgrid. The DC voltage source
represents a renewable energy source or storage device,
connected to the AC microgrid through a VSI and an
RLC filter. The VSI and filter inductance losses are
lumped together in Rti. To simplify the control design
in the sequel, we assume the DC source to be an uncon-
strained power source or sink [5][11] and the saturation
limits of the VSI are ignored [11]. Furthermore, we model
the VSI using the averaged switch modeling technique
[1], since VSIs usually operate at very high frequencies
compared to the microgrid frequency and the RLC filter
sufficiently suppresses the VSI switching dynamics. The
disturbance current results from the sum of the load and
line currents, i.e. IZ,dq,i = IL,dq,i + Idq,ij . Following [16],
we model a DGU at node i as port-Hamiltonian dynamics
Ltiİd,i
Ltiİq,i
CtiV̇d,i
CtiV̇q,i

=


−Rti ω0Lti −1 0
−ω0Lti −Rti 0 −1

1 0 0 ω0Cti
0 1 −ω0Cti 0



Id,i
Iq,i
Vd,i
Vq,i



+


1 0
0 1
0 0
0 0

[Vt,d,i
Vt,q,i

]
−


0 0
0 0
1 0
0 1

[IZ,d,i
IZ,q,i

]
,

(10a)

(cf. (1)) with Hamiltonian

Hi(xi) = 1
2x

T
i Diag

[
1
Lti

,
1
Lti

,
1
Cti

,
1
Cti

]
xi , (10b)

state variables xi = [LtiId,i, LtiIq,i, CtiVd,i, CtiVq,i]T,
input ui= [Vt,d,i, Vt,q,i]T, disturbance di= [IZ,d,i, IZ,q,i]T,

and interconnection and damping matrices

Ji =


0 ω0Lti −1 0

−ω0Lti 0 0 −1
1 0 0 ω0Cti
0 1 −ω0Cti 0

 ,
Ri = Diag [Rti, Rti, 0, 0 ] .

(10c)

Remark 5: Using [17, p. 107], we can analyze the
voltage and frequency stability of interconnected PHSs,
i.e. the microgrid, by combining the passivity properties
of the individual PHSs, i.e. the DGUs and lines. The
interconnection variables obtained by decomposing the
overall PHS, are exogenous inputs to the individual PHSs
and may thus be neglected for the stability analysis
of the individual PHSs. The current Idq,ij is such an
exogenous, interconnecting input to the DGU, which we
may therefore set to Idq,ij = 0 when analyzing the DGU
stability. However, the load current IL,dq,i is part of the
DGU subsystem and furthermore dependent on Vdq,i.
Since V̇dq,i is in turn dependent on IL,dq,i, a feedback
effect occurs between the dynamics of the voltage Vdq,i,
the controlled variable, and the load current IL,dq,i. This
effect must be considered when analyzing the voltage and
frequency stability of the DGU.

1) Load Model: To account for the dynamics caused
by the feedback effect discussed in Remark 5, a model of
the load is required. Due to space limitations, we restrict
ourselves in this work to ZP loads [22, p. 111] comprising
constant impedance (Z ) and constant power (P) loads
with

P = PP + ZP

(
V

V0

)2
, Q = PQ + ZQ

(
V

V0

)2
(11)

the respective real and reactive powers of the load. The
nominal voltage amplitude of the load is V0 and the
amplitude of the voltage phasor is

V 2 = V 2
d + V 2

q . (12)

C. Electrical Line Model
Consider the π-model of the line in Fig. 2 com-

prising two C legs connected by an RL branch with
Cij , Rij , Lij > 0. As the dynamics of the C legs only
depend on the PCC voltages of the DGUs they connect
to, the C legs are considered part of the respective
DGU subsystems. Furthermore, C legs are treated as
constant Z loads (cf. (11)) to ensure the local VSI con-
trollers are independent of these unknown parameters.
Consequently, the port-Hamiltonian line dynamics in dq
coordinates are given by the RL branch dynamics[
Lij İd,ij
Lij İq,ij

]
=
[
−Rij ω0Lij
−ω0Lij −Rij

][
Id,ij
Iq,ij

]
+
[
Vd,i − Vd,j
Vq,i − Vq,j

]
, (13a)

with Hamiltonian

Hij(xij) = 1
2x

T
ij Diag

[
Lij
2 ,

Lij
2

]
xij , (13b)
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Fig. 2. Circuit diagram of a DGU comprising a VSI, a filter and a voltage-dependent current source representing a load, connected to a
π-model line (blue); the legs of the line are considered part of the respective DGUs

states xij = [LijId,ij , LijIq,ij ]T, inputs uij =
[Vdq,i,Vdq,j ]T, and interconnection and damping matri-
ces

Jij =
[

0 ω0Lij
−ω0Lij 0

]
, Rij =

[
Rij 0
0 Rij

]
. (13c)

D. Microgrid Voltage and Frequency Stability
The strict passivity of the microgrid model and thus

its asymptotic stability can be ascertained by analyzing
the passivity of the subsystems DGU and line, and their
interconnections.

Proposition 2: An islanded AC microgrid represented
by a bipartite graph as in Fig. 1 consisting of π-model
lines and strictly passive DGU PHSs is itself strictly
passive with an asymptotically stable equilibrium given
by the combined equilibria of the individual subsystems,
x∗ij and x∗i , respectively.

Proof: According to Lemma 1, the line PHS in (13)
is strictly passive. If the DGUs, with their respective
loads, are strictly passive (possibly through appropriate
control), then the microgrid comprises only strictly pas-
sive subsystems interconnected by ideal flow (current)
constraints which are power-conserving Dirac structures
[17, p. 100]. The strict passivity of the microgrid then
directly follows from [17, p. 107]. Finally, the asymptotic
stability of the strictly passive microgrid is inferred from
Lyapunov’s direct method [21, p. 44] by using the Hamil-
tonian of the microgrid, i.e. the sum of the subsystem
Hamiltonians, as a Lyapunov function.
From Proposition 2 and Remark 4 we conclude that

the voltage and frequency regulation of the microgrid
reduces to controlling the local VSIs such that their
corresponding DGUs are strictly passive and that their
Hamiltonians have minima at the equilibria given by the
desired dq voltage references V ∗dq,i, i = 1, . . . , N .

IV. Frequency and Voltage Control Design
In Section IV-A, a voltage and frequency controller for

the initially undisturbed DGU model (10), i.e. IZ,dq =
0, is designed. The design combines non-parameterized
IDA-PBC [19] with the systematic approach in [18]. In
Section IV-B, we then analyze the robustness of the
designed controller by means of the stability of the
controlled DGU under disturbances IZ,dq 6= 0.

Remark 6: For clarity in the subsequent design, the
subscript i is dropped from all variables and parameters
in this section, i.e. Vdq := Vdq,i and Rt := Rti etc.

A. IDA-PBC Design

Initially, the matching equation is set up (IV-A.1)
and solvability restrictions are placed on the design
parameters (IV-A.2). This leads to a simplified matching
equation which is solved for a desired Hamiltonian estab-
lishing V ∗dq (IV-A.3). Finally, the control law required to
realize the desired system is calculated (IV-A.4).

1) Matching Equation Setup: Conveniently, the sys-
tem described by (10) is for IZ,dq = 0 already of form
(2) with states xα = Idq and xν = Vdq, Gα(x) = I2×2,
and

fα(x) =
[
−RtId + ω0LtIq − Vd
−RtIq − ω0LtId − Vq

]
, (14a)

fν(x) =
[
Id + ω0CtVq
Iq − ω0CtVd

]
. (14b)

Then (6) is established with (14b) and (3), which is in
this case

Fc := Jc−Rc =
[
Fα
Fν

]
=


α11 α12 α13 α14
α21 α22 α23 α24
ν11 ν12 ν13 ν14
ν21 ν22 ν23 ν24

 . (15)
2) Design Restrictions: Evaluating the solvability re-

quirement (6) for (10) yields

ν12, ν13, ν21, ν24 = 0 (16)

in (15). Port-Hamiltonian theory further requires [18]

Rc = −Fc + F T
c

2
!
� 0 , (17)

which restricts the available degrees of freedom to

α14 = 0, α12=− ν21, α11 ≤ 0,
α23 = 0, α13=− ν11, α22 ≤ 0,
α24 = 0, ν14 =− ν23 .

(18)

With the restrictions in (16) and (18), (15) becomes

Fc =


α11 −α21 −ν11 0
α21 α22 0 −ν22
ν11 0 0 −ν23
0 ν22 ν23 0

 (19)



guaranteeing that (5) is solvable and that (17) is satisfied.
The matrices Jc and Rc are calculated as the skew-
symmetric and symmetric parts of (19), respectively:

Jc =


0 −α21 −ν11 0
α21 0 0 −ν22
ν11 0 0 −ν23
0 ν22 ν23 0

 ,
Rc = Diag [−α11, −α22, 0, 0 ] .

(20)

With (19), (5) can be written as[
ν11 0 0 −ν23
0 ν22 ν23 0

]
∂Hc(x)
∂x

!=
[
Id + ω0CtVq
Iq − ω0CtVd

]
. (21)

3) Desired Hamiltonian: Having simplified the match-
ing equation (5) to (21), we now solve (21) for

Hc(x) = Ψ(x) + Φ(x) (22)

with the patricular and homogeneous solutions, Ψ(x) and
Φ(x), respectively. We obtain the particular solution

Ψ(x) = Lt

2ν11

(
I2

d + 2ω0CtVqId
)

+ Lt

2ν22

(
I2

q − 2ω0CtVdIq
)

(23)
of (21) by means of computer algebra software under the
restriction

ν23 = 0. (24)

The choice (24) further results in a homogeneous solution
of the form

Φ(x) = h(Vd, Vq), (25)

whose generality affords great freedom in shaping the
Hamiltonian (22) such that its minimum is reached at
the desired equilibrium x∗, i.e.

∂Hc(x)
∂x

∣∣∣∣
x∗

!= 0 ,
∂2Hc(x)
∂x2

∣∣∣∣
x∗

!
� 0 . (26)

Furthermore, a passive system requires that Hc be
bounded from below [21, p. 116]. To this end, we choose
the homogeneous solution in (25) as

h(Vd, Vq) = Lt

2ν11
(ω0CtVq)2 + Ct

2 (Vd − V ∗d )2

+ Lt

2ν22
(ω0CtVd)2 + Ct

2 (Vq − V ∗q )2.

(27)

This completes the squares in (23) such that with (23)
and (27), (22) becomes

Hc(x) = Lt

2ν11

(
Id + ω0CtVq

)2 + Ct

2
(
Vd − V ∗d

)2

+ Lt

2ν22

(
Iq − ω0CtVd

)2 + Ct

2
(
Vq − V ∗q

)2
(28)

which is quadratic. Under the condition

ν11 > 0, ν22 > 0, (29)

Hc in (28) is convex and thus bounded from below. By
further choosing the current reference[

I∗d
I∗q

]
:=
[
−ω0CtVq
ω0CtVd

]∣∣∣∣
V ∗

dq

=
[
−ω0CtV

∗
q

ω0CtV
∗

d

]
(30)

for the undisturbed system dependent on the voltage
reference V ∗dq, we see that Hc in (28) fulfills (26) for the
equilibrium

x∗ =
[
LtI
∗
d , LtI

∗
q , CtV

∗
d , CtV

∗
q
]T

. (31)

4) Control Law: The control design is concluded by
computing the IDA-PBC control law. With the design
matrix (19), the desired Hamiltonian (28) and the origi-
nal α-system (14a), (7) yields

u(x)
(2×1)

=


RtId − ω0LtIq +ω0Ltν11−α21

ν22
(Iq − ω0CtVd)

+Vd − ν11(Vd − V ∗d ) + α11
ν11

(Id + ω0CtVq)

RtIq + ω0LtId−ω0Ltν22−α21
ν11

(Id + ω0CtVq)
+Vq − ν22(Vq − V ∗q ) + α22

ν22
(Iq − ω0CtVd)

.
(32)

To prevent undesirable coupling between the LtIdq states
of the controlled system, the parameters choices

ν22 = ν11, α21 = ω0Ltν11 (33)

are made. With (33), the control law (32) simplifies to

u(x)
(2×1)

=


RtId − ω0LtIq + Vd

−ν11(Vd − V ∗d ) + α11
ν11

(Id + ω0CtVq)

RtIq + ω0LtId + Vq

−ν11(Vq − V ∗q ) + α22
ν11

(Iq − ω0CtVd)

 , (34)

where α11, α22, ν11 are control parameters, V ∗d , V ∗q , ω0 are
references, and the states or rather their corresponding
currents and voltages Vd, Vq, Id, Iq are measurements.

Remark 7: Considering (20), it would appear that the
α21 choice in (33) causes a coupling of the states rather
than preventing it. This counter-intuitive choice can be
explained by considering the coupling present in the
gradient of Hc, cf. (28).

B. Closed-Loop Voltage and Frequency Stability
In this subsection, we analyze the dynamics of the

controlled DGU and set up inequalities for the control pa-
rameters and load characteristic to ensure strict passivity
of the DGU subsystem as required by Proposition 2. Ap-
plying (34) to (10a) gives the controlled DGU dynamics
Ltİd
Ltİq
CtV̇d
CtV̇q

=


−ν11(Vd − V ∗d ) + α11

ν11
(Id + ω0CtVq)

−ν11(Vq − V ∗q ) + α22
ν11

(Iq − ω0CtVd)
Id + ω0CtVq
Iq − ω0CtVd

−


0
0
IZ,d
IZ,q

,
(35)

in the form (1) with Hc in (28) and the Jc and Rc
matrices in (20). Since the undisturbed system in (35),
i.e. with IZ,dq = 0, is linear with the Jc and Rc matrices
constant and Hc in (28) convex under (29), it also
displays the shifted passivity property [21, p. 136]. From
this, we may define the error

ε =
[
εIdq

εVdq

]
:=
[
Idq − I∗dq
Vdq − V ∗dq

]
(36)
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Fig. 3. Phasor diagram depicting voltage V , current I and powers
P,Q in the dq frame; Measured variables are displayed in purple,
desired variables in blue, intermediate variables in red and the
load powers are in yellow

with εIdq =
[
εId , εIq

]T and εVdq =
[
εVd , εVq

]T, to obtain
the error dynamics
Ltε̇Id

Ltε̇Iq

Ctε̇Vd

Ctε̇Vq

=

−ν11εVd + α11

ν11
(εId + ω0CtεVq)

−ν11εVq + α22
ν11

(εIq − ω0CtεVd)
εId + ω0CtεVq

εIq − ω0CtεVd

−


0
0

IL,d(εVdq)
IL,q(εVdq)

,
(37)

in PHS form (1). The Hamiltonian of (37) is

Hc(ε) = Lt

2ν11

(
εId + ω0CtεVq

)2 + Ct

2
(
εVd

)2

+ Lt

2ν11

(
εIq − ω0CtεVd

)2 + Ct

2
(
εVq

)2
(38)

and the Jc andRc matrices remain unchanged from (20).
Note that only the load currents IL,dq influence the error
dynamics (37) as discussed in Remark 5.

Proposition 3: The current of a ZP load (cf. (11))
as a function of the voltage error εVdq is given in dq
coordinates by

IL,dq(εVdq) = IL,dq(Vdq)− IL,dq(V ∗dq), (39)
which is approximated by

IL,dq(εVdq) ≈W (V ∗dq) εVdq . (40)
For the approximation,

W (V ∗dq) =
[
ZP −ZQ
ZQ ZP

]
−

2V ∗d V ∗q
V ∗2

[
−PQ PP
PP PQ

]
−
V ∗d

2 − V ∗q
2

V ∗2

[
PP PQ
PQ PP

] (41)

is the gradient of the ZP load current at the reference
voltage and V ∗2 = V ∗d

2 + V ∗q
2 is the amplitude of the

voltage phasor.
Proof: Consider the phasors V ∠δV and I∠δI of the

load relative to the dq frame, with the phase difference
θ = δV −δI as depicted in Fig. 3. By projecting I∠δI onto
V ∠δV with a rotation of −θ, we obtain its components
parallel I‖ = I cos(−θ) = I cos(θ) and perpendicular
I⊥ = I sin(−θ) = −I sin(θ) to V ∠δV . Using the defi-
nition of the instantaneous power of phasors, we get

P = V I cos θ ⇒ I‖ = P

V
(42a)

Q = V I sin θ ⇒ I⊥ = −Q
V

(42b)

which may be rotated by δV to obtain dq coordinates[
IL,d
IL,q

]
= 1
V

[
cos δV − sin δV
sin δV cos δV

] [
P
Q

]
. (43)

Substituting V 2 = V 2
d + V 2

q , δV = arctan(Vq/Vd), and
(11) in (43), we get the Vdq dependent current of a ZP
load

IL,dq(Vdq) =
[
ZPVd − ZQVq
ZPVq + ZQVd

]
+ 1
V 2

[
PPVd − PQVq
PPVq + PQVd

]
(44)

with its first-order Taylor approximation

IL,dq(εVdq)≈ ∂IL,dq(Vdq)
∂Vdq

∣∣∣∣
V ∗

dq

εVdq+ IL,dq(Vdq)|V ∗
dq

−
∂IL,dq(V ∗dq)

∂V ∗dq
(εV ∗

dq
)− IL,dq(V ∗dq)

(45)

at the reference voltage V ∗dq, where εV ∗
dq

:= V ∗dq −V ∗dq =
0, and the gradient matrix

W (V ∗dq) := ∂IL,dq(Vdq)
∂Vdq

∣∣∣∣
V ∗

dq

. (46)

Calculating W (V ∗dq) from (46) yields (41) and (45) sim-
plifies to (40).

Proposition 4: The controlled DGU in (35) with error
dynamics (37) is strictly passive and has a globally
asymptotically stable equilibrium at any desired voltage
reference V ∗2 = V ∗d

2 + V ∗q
2 if

ν11 > 0 , (47a)
α11 < 0 , (47b)
α22 < 0 , (47c)

ZPV
∗2 >

√
P 2
P + P 2

Q . (47d)
Proof: The restrictions for strict passivity follow

from the requirements in Lemma 1. Since Hc(ε) in (38)
is convex under (29), (47a) follows from (33) to ensure
Q � 0. Furthermore, we find the damping matrix

R = Rc +RL (48)

of the DGU error dynamics (37) by adding the damping
effects of the nonlinear load currents IL,dq(εVdq) summa-
rized in RL, to that of the undisturbed, linear system in
(20). From (40) in Proposition 3, we can find the load
current interconnection and damping matrices, JL and
RL, as the symmetric and skew-symmetric parts of (41),
respectively:

−IL,dq ≈ −W (V ∗dq)εVdq =: (JL −RL)εVdq . (49)

Note that IL,dq acts negatively on the voltage error
differential equation in (37). With

RL =
W (V ∗dq) +W T(V ∗dq)

2 , (50)

=
[
ZP 0
0 ZP

]
−

2V ∗d V ∗q
V ∗2

[
−PQ PP
PP PQ

]
−
V ∗d

2 − V ∗q
2

V ∗2

[
PP PQ
PQ PP

]
,

(51)



TABLE I
Electrical Line Parameters

Positive-sequence Zero-sequence
Resistance Rij (Ω/km) 0.01273 0.3864

Inductance Lij (mH/km) 0.9337 4.1264
Capacitance Cij (nF/km) 12.74 7.751

TABLE II
Reference Voltages and ZP Load Parameters of the DGUs

(Parameters in Brackets Indicate Values After t = 3 s)

DGU V ∗
d (pu) V ∗

q (pu) ZP , PP (kW) ZQ, PQ (kVAR)
1 (blue) 0.75 0.65 95, 80 23, 20
2 (red) 0.85 0.55 80, 31 0, 9
3 (yellow) 0.9 0.5 46, 38 30, 25
4 (purple) 0.7 0.7 33, 2 (98, 42) 65, 27 (80, 35)
5 (turquoise) 0.8 0.6 40, 20 10, 20

and (20), (48) is given by

R =
[
Diag [−α11,−α22] 02×2

02×2 RL

]
. (52)

By calculating the eigenvalues of (52),

λ1 = −α11 , λ2 = −α22 , λ3,4 = ZP ±

√
P 2
P + P 2

Q

V ∗2 , (53)

we obtain (47b), (47c) and (47d) since λk > 0 must hold
for all k to give R � 0. Under (47), we therefore fulfill
the requirements for Lemma 1 from which strict passivity
and global asymptotic stability of the equilibrium at the
desired voltage reference V ∗ follows.

With the strict passivity of the controlled DGUs as-
sured by Proposition 4, the global asymptotic voltage
and frequency stability of the microgrid exemplified in
Fig. 1 follows directly from Proposition 2 and Remark 4.

V. Simulation
In this section, we show the viability of the local VSI

P-controller in (34) as well as the performance attained
by simulation in Matlab/Simulink. For this, we use
the islanded microgrid in Fig. 1 comprising five DGUs
connected by π-model lines. Each DGU comprises a VSI,
a filter and a ZP load (cf. Fig. 2). All DGU filters are pa-
rameterized identically with Rti = 0.1 Ω, Lti = 100 µH,
Cti = 62.86 µF. The default Matlab per-kilometer
values are used for the three-phase lines (see Table I) with
lengths as given in Fig. 1. To investigate the robustness of
the controllers, in contrast to the control design model, a
zero-sequence is included in the simulation. Furthermore,
the control parameters are chosen to α11 = α22 = −10−6

and ν11 = 1. The reference voltage of the DGUs are
arbitrarily set with Vamplitude = 325 V (1 pu) and the
load parameters are arbitrarily chosen to satisfy (47d)
(cf. Table II). The simulation starts off with DGU 5
disconnected from the microgrid. To test the feasibility
of a plug-and-play operation, DGU 5 is connected at
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Fig. 4. Simulation results of the local P-controllers; DGU colors
are given in Table II

t = 2 s as indicated in Fig. 1. To test the robustness of
the microgrid, an additional load is connected to DGU 4
(cf. Table II) at t = 3 s. The results in Fig. 4 indicate only
small deviations from the dq references when the system
is disturbed. Furthermore, the total harmonic distortion
(THD) remains below 3 % despite the disturbances and
changes in the microgrid. The frequencies at the PCCs of
the DGUs remain within a 0.1 Hz band around the nom-
inal frequency of 50 Hz. These results compare favorably
to the IEEE 1159-2009 restrictions [23] of THDs less than
5 % and frequency variations smaller than 0.2 Hz.

VI. Conclusion
In this paper, we presented a new approach for the de-

centralized scalable, plug-and-play voltage and frequency
stabilization of islanded inverter-based AC microgrids on
the basis of a systematic IDA-PBC design. By following
the port-Hamiltonian paradigm, we directly obtain a
Lyapunov function used for a subsequent stability anal-
ysis and obviate its possibly cumbersome proposition.
Under inequality conditions obtained from analyzing ZP
load dynamics, we prove global asymptotic voltage and
frequency stability. An extension to ZIP and exponential
loads using the proposed procedure is possible as will be
shown in future contributions.
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