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Zusammenfassung

Bei der großtechnischen Verarbeitung von Kunststoffen wirken große Scherkräfte

auf das Material, sodass dessen mechanisches Verhalten sich grundlegend ge-

genüber dem Verhalten bei niedrigen Scherraten unterscheidet. Man spricht von

einem sogenannten nichtlinearen mechanischen Verhalten. Dabei ist diese Nicht-

linearität stark von der molekularen Struktur der enthaltenen Polymere abhängig.

Mithilfe von Rheologie ist es möglich, das mechanische Verhalten von komplexen

Materialien zu untersuchen, und Zusammenhänge zwischen Struktur und me-

chanischem Verhalten aufzuklären. Wichtige Parameter, die die Moleküldyna-

mik beeinflussen sind das Molekulargewicht, die Molekulargewichtsverteilung,

die Topologie und die Art des Polymers selbst.

In dieser Arbeit wurde das nichtlineare mechanische Verhalten von Modellpoly-

mersystemen mithilfe der Fourier-Transformation-Rheologie (FT-Rheologie) un-

tersucht. Zunächste wurde mithilfe der lebenden anionischen Polymerisation

verschiedene lineare Homopolymerschmelzen synthetisiert. Diese Polymere hat-

ten eine enge Molekulargewichtsverteilung und umfassten Molekulargewichte

im Bereich von nicht- oder kaum verschlauften Molekülketten, bis hin zu sehr

gut verschlauften Ketten. Bei der rheologischen Untersuchung im nichtlinea-

ren Scherbereich dieser wohldefinierten Schmelzen, erlaubte es der Ausschluss

weiterer Strukturparameter, wie die Molekulargewichtsverteilung, Korrelationen
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zwischen dem Molekulargewicht und dem nichtlinearen mechanischen Verhal-

ten zu erkennen. Wie sich herausstellte, ist dieses Verhalten allein vom Moleku-

largewicht abhängig, nicht jedoch von der Art des Polymers.

Eine Quantifizierung des nichtlinearen mechanischen Verhaltens konnte mithilfe

der intrinsischen Nichtlinearität 3Q0(ω) erreicht werden. Vorhersagen aus dem

Pom-Pom und dem ”molecular stress function” (MSF) Konstitutivmodell, liefer-

ten die Basis für eine semi-empirische Beschreibung der erhaltenen experimen-

tellen Ergebnisse. Somit konnte eine Gleichung für 3Q0(ω) erhalten werden, die

nur das Molekulargewicht und die Scherfrequenz in Form der Deborah Nummer

als Variablen beinhaltet. Diese Gleichung stellt das wesentliche Ergebnis dieser

Arbeit dar.

Die Komplexität der Polymersysteme wurde anschließend durch Variation der

Molekulargewichtsverteilung erhöht. Dabei stellte sich heraus, dass der zuvor

gefundene Ansatz und die semi-empirische Gleichung für 3Q0(ω) ihre Gültigkeit

behält, jedoch das erweiterte Spektrum der Moleküldynamiken beachtet werden

muss. Die scherratenabhängige Untersuchung von polydispersen Schmelzen im

nichtlinearen mechanischen Bereich steht dabei erst am Anfang. Eine Erweite-

rung des aktuell eingeschränkten Messbereichs kann durch technische Weiterent-

wicklung im intrumentellen Bereich erreicht werden.

Neben der Polymerisation von linearen Polymerschmelzen, wurde die Synthese

von engverteilten, verzweigten Polyisoprensystemen innerhalb dieser Arbeit re-

alisiert. Als geeignet erwies sich dabei die sogenannte ”grafting-onto” Met-

hode, wobei ein Polyisoprenrückrat mittels Epoxidierung funktionalisiert wurde,

und lebende Polyisopren-Makroanionen als Seitenketten aufgepfropft werden

konnten. Messungen der intrinsischen Nichtlinearität 3Q0(ω) eines Polyisopren-

Kamms zeigten eine Retardierung der Rückratmobilität durch die Seitenketten,

ähnlich dem Verhalten im linearen mechanischen Bereich bei kleinen Scherraten.

Ein Zusammenhang zwischen dem Rückrat- bzw. Seitenkettenanteil, und der in-
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trinsischen Nichtlinearität 3Q0(ω) ist dabei gegeben.

Für eine weitere Aufklärung der Molekulardynamik von verzweigten Sytemen,

sollen Messungen der Doppelquanten-Kernspinresonanz (DQ-NMR) mit rheolo-

gischen Ergebnissen verglichen werden. Zur Realisierung dieses Vorhabens wur-

den erste Synthesen für deuteriertes Isopren unternommen, das als Monomer für

teildeuterierte Polyisopren-Kämme dient.

Die Dissertation zeigt den Zusammenhang zwischen nichtlinearem mechanis-

chen Verhalten von Polymerschmelzen und deren molekularer Struktur mithilfe

einer quantitativen Beschreibung durch die intrinsische Nichtlinearität 3Q0(ω).

Basierend auf den erhaltenen Ergebnissen, eröffnen sich neue Möglichkeiten für

Entwicklungen im Bereich der Konstitutivmodelle und der Molekulardynamik-

Simulation.
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1. Introduction

Motivation

In the 21st century, plastics have become one of the most dominant materials

used in everyday live. The global plastic resin and plastic fiber production dou-

bled over the last 20 years and reached the 380 million tons threshold in 2015

[1]. Europe’s yearly demand alone exceeded 49 million tons of polymeric mate-

rials in 2015 [2]. Main market sectors include agriculture, electronics, automo-

tive, building and construction and packaging, next to consumer and household

goods. With more than 100 million tons, packaging is by far the largest sector [1].

Packaging is used to protect products for storage, transport, sale and use. Espe-

cially transport and warehousing of food has become a critical factor for the gro-

wing population of mankind (around 1% per year). The most used polymers in

packaging are low density polyethylene (LDPE, 64 Mt/year), high density poly-

ethylene (HDPE, 52 Mt/year), polypropylene (PP, 68 Mt/year) and polyethylene

terephthalate (PET, 33 Mt/year) [1]. Processing of these polymers include in-

jection molding, blow molding, extrusion, pressing, calendering, spinning, and

foaming [3, 4]. The molecular properties of the polymer are important toward

processing. Besides, temperature of the material and temperature of the related

tools, as well as the pressure (up to 3000 bar), utilized for applying a deforma-

tion force, are substantial. The processing temperature influences the viscosity,
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1. Introduction

crystallinity and overall mobility of the polymer, while the processing pressure

induces a flow in shear and elongation. The science, describing how a material

mechanically reacts to a deformation that induces a flow or a stress to the mate-

rial, is called rheology. Rheological methods are used to investigate materials like

polymers, liquids, emulsions, dispersions, and even solids. They are complex

fluids as quantified by rheological properties. Rheology thereby classifies mate-

rials in a range of viscous and solid amounts (see chapter 3). Liquids like water

can be described by Newton’s law, since they are only viscous, and the viscosity

is independent of the shear rate. On the other hand, a solid like iron or steel are

elastic bodies and can be described by Hooke’s law. Polymers are neither pure

viscous nor pure elastic. They are a superposition of both properties in polymer

melts and are therefore called viscoelastic. Depending on temperature and shear

rate, polymeric materials can be manipulated to be more in the viscous or elastic

range of the spectrum. This is crucial for polymer processing, and interesting for

the final products. For example, a plastic chair should not give in under load in

daily use, colloquially spoken it is solid (elastic). However, the material needs

to be more ’liquid’ (viscous) in production, to be able to be formed via injection

molding.

The before mentioned primary forming techniques of injection molding, blow

molding, extrusion, pressing, calendering, spinning, and foaming involve high

shear rates (up to 1000 s−1) in a greater or smaller extent. The mechanical beha-

vior of the processed polymers under these conditions cannot be described with

models of linear mathematical equations, containing only a material constant like

the G modulus (Hooke) or the viscosity η (Newton) (see section 3.1.1). Instead,

the mechanical stress is described more precise by nonlinear equations, which in-

volve shear rate dependent parameters (see section 3.4.2). Correlations between

nonlinear mechanical behavior and molecular structure are still being investiga-
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ted with rheological experiments (rheometry), and molecular models (constitu-

tive and numeric) are being developed that can describe and help to understand

this behavior.

Nonlinear Mechanical Behavior in Literature

An established method to reach nonlinear behavior in rheometry is large am-

plitude oscillatory shear (LAOS). Variable, oscillating shear rates are achieved

straightforward by varying oscillation frequency ω/2π, the deformation (strain)

amplitude γ0 and measurement temperature T . Several methods have been uti-

lized to analyze LAOS results [5]. The relaxation modulus G(t) is obtained from

the measured time-dependent shear stress signal σ(t) [6]. As a function of strain

amplitude, the relaxation modulus shows shear thinning or shear thickening of

the material by a sudden decrease or increase of G(γ0) at higher deformations [7].

Converting the periodic stress signal σ(t;ω, γ0) into so called Lissajous-Bowditch

figures, σ(γ; γ̇) [8], allows an identification of nonlinear behavior by deviations

from the pure sinusoidal signal. The stress decomposition approach was used

as a geometrical interpretation of LAOS data [9]. Following this decomposition

approach, Ewoldt et al. [10, 11] expressed the nonlinear stress response by Che-

byshev polynomials, where the coefficients were used to describe nonlinear beha-

vior via Lissajous-Bowditch plots and Pipkin diagrams [12]. Rogers et al. [13, 14]

used a different approach of analyzing Lissajous-Bowditch plots with a sequence

of physical processes (SPP) method.

The torque signal from rheometers can also be interpreted differently. Instead

of using the stress-time data σ(t) or calculating the moduli G′ and G′′ , it is also

possible to directly use the frequency spectrum after Fourier Transformation (FT).

This approach is called FT rheology (see section 3.4). It was shown that the higher

3



1. Introduction

harmonic contribution, with regard to frequency and amplitude of the respective

phase of the excitation frequency, can be identified with the nonlinear mechani-

cal behavior [15]. Higher harmonic intensities have already been used to analyze

complex fluids [11, 16–19] under large and medium amplitude oscillatory shear

(LAOS and MAOS). The third harmonic intensity I3, as the dominant contribu-

tion, was chosen as a measure for nonlinearity in several publications, for exam-

ple by Neidhöfer et al. [20], Fleury et al. [18], Schlatter et al. [21], Vittorias et al.

[22] and Hyun et al. [23], who investigated the relative ratio I3/1(γ0, ω) := I3/I1

within a magnitude spectra of the stress versus frequency ω/2π with regard to

branched structures and long chain branching (LCB). The intrinsic nonlinearity

3Q0(ω), as defined by Hyun et al. [5, 23] (see section 3.5), is only a function of the

excitation frequency (ω1/2π). It allows to quantify the influence of relaxation pro-

cesses, as for instance reptation, stretching, contour length fluctuation (CLF) and

constraint release (CR) mechanisms [24]. Molecular relaxations in polymer melts

are related to stretch and orientation [25, 26], and are strongly affected by molecu-

lar weight distribution (PDI) and topology of the polymer. Linear homopolymers

are reasonable simple molecular models to investigate the dynamics in the non-

linear mechanical regime. The intrinsic nonlinearity 3Q0(ω) was chosen in this

work to quantify the mechanical nonlinear behavior under oscillatory shear as a

function of molecular weight and PDI of a large variety of linear homopolymer

melts.

With the time-temperature superposition (TTS) principle [27], it was possible to

generate ’nonlinear master curves’ for 3Q0(ω), using the shift parameters from

respective linear master curves. In previous publications, it was shown that these

nonlinear master curves are sensitive to molecular topology, e.g. long chain bran-

ching (LCB) of polystyrene combs [23, 28]. Interpretation of the results however

stayed on a qualitative level.
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Several research groups conducted simulations of I3/1(γ0),
3Q(ω, γ0) and especi-

ally 3Q0(ω), using different constitutive models [24–26, 29]. The Pom-Pom model

was used to predict the nonlinear behavior of branched polymer systems [24, 30,

31] and comparisons between experiments and model prediction already were

used to re-evaluate the existing model [29]. Wagner et al. [26, 32] developed

a molecular stress function (MSF) model. They could show, that a linear depen-

dence of 3Q0(ω) toward the difference between the orientational effect (parameter

α) calculated from the Doi-Edwards model and the stretching effect (parameter

β), obtained from the MSF model, exists (Q ∝ α − β). Using the MSF model,

Abbasi et al. [25] were able to predict the LAOS behavior, as well as start-up

shear and extensional deformations of different LDPE samples, with a single set

of nonlinear parameters. Constitutive models, like the Pom-Pom and MSF mo-

del, are based on fundamental physical characteristics of macromolecules. They

were chosen in this thesis as templates for a quantitative, analytical description

of the obtained results, and can help to understand fundamental dynamics of

polymers.

Objective and Outline of this Thesis

The quantification of mechanical nonlinear behavior and its correlation to the

molecular structure of molten polymers are the main objective of this thesis. Me-

chanical nonlinearity of simple model systems, i.e. linear homopolymer melts as

a function of monomer, molecular weight and polydispersity, have not been stu-

died systematically before. Rheology, and especially FT rheology, is a sensitive

method to give insights into the microscopical, molecular level of a viscoelastic

material, yet it is itself a macroscopic technique, experimenting on the bulk ma-

terial. Physical interpretation of observed effects is still not clear in the nonlinear

regime. Correlations between underlying relaxation processes and experimental
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1. Introduction

results of the intrinsic nonlinearity Q(ω) can be made with the help of constitutive

modeling, and can also help to expand and refine existing model theories. In a

next step, obtained results can be very useful and can be carried over to molecular

dynamic simulation.

The thesis starts with a presentation of fundamentals in anionic polymerization

(chapter 2), which was the main synthesis method for the preparation of linear

homopolymer melts. Chapter 2 also includes a detailed synthesis route for pre-

paration of polyisoprene combs, as an outlook to branched model systems.

An introduction to shear rheology is given in chapter 3. Basics of linear and

nonlinear rheology (FT rheology) are presented, as well as basics of the polymer

tube model, which describes polymer dynamics in a phenomenological way. The

constitutive models (Pom-Pom and MSF) are lined out in chapter 4. These models

served as a basis for the following interpretation of rheological experiments on

polymer melts, that are presented in the following chapter. In chapter 5 a detailed

experimental approach to obtain and quantify mechanical nonlinear behavior of

linear molten polymers is given (section 5.2). First results on the rheology of

branched polyisoprene are shown in section 5.4.
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2. Synthesis of Model Polymer

Systems

2.1. Principles of Living Anionic Polymerization

The principle of a ”living” polymerization was established in 1956 by Szwarc et

al. based on the work of anionic polymerization of styrene, initiated by a sodium-

naphthalene complex [33]. Szwarc later defined a living polymerization as ”[...]

a chain growth reaction, which takes place in the absence of termination or chain

transfer reactions” [34]. Within this sentence, the advantages and disadvanta-

ges of an anionic polymerization are already mentioned. The disadvantage is at

the same time the advantage, namely that this method is only valid in ”absence

of termination or chain transfer reactions”, meaning no impurities are allowed

within the reaction vessel. This demands meticulous working and thorough pre-

paration of reagents. The absence of termination and chain transfer reactions also

means, that desired molecular weights can be calculated easily, even very high

molecular weights are possible, and that at the same time low polydispersities

can be reached. Anionic polymerization is also a versatile method to produce

polymers with rather complicated but defined molecular structures, e.g. blockco-

polymers, combs and stars, with specific features as for example a given number
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2. Synthesis of Model Polymer Systems

of sidearms. There are also lots of monomers available that can be polymerized

with anionic synthesis (for monomer requirements see section 2.1.1), and com-

mon initiators, e.g. metal organyls, are commercially available. However, the

economical impact of anionic polymerization remained low (ca. 500 000 t/year

production) compared to free radical polymerization and other controlled po-

lymerizations with catalysts (especially Ziegler-Natta), since the two most used

monomers, ethene and propylene, cannot be polymerized via anionic polymeri-

zation. Nevertheless, the method is used by industry to produce polymers with

special material properties that are based on characteristic molecular structures,

such as the aforementioned topologies. An examples where anionic polymeriza-

tion is used are rubbers for tires (cis-1,4-polybutadiene and -isoprene), additives

(star topologies) or adhesives (e.g. poly cyanoacrylate) [35].

2.1.1. Monomers

The capability of a vinyl monomer to undergo living anionic polymerization is

dominated by its carbanion formation and stabilization, after activation of the

monomer double bond through a potent initiator (see section 2.1.2). Substituents

that can stabilize the propagating negative charge, inductively or through reso-

nance, are indispensable to enable the nucleophilic addition onto a next monomer

(fig. 2.1) [36]. The carbanionic species of a monomer can be seen as the conjugate

base of a protonic acid whose pKa can be evaluated [37]. Carbanion stability in-

formation deduced from pKa values for corresponding hydrocarbon conjugated

acids can be used to make predictions regarding the relative reactivity of mono-

mers [38]. This can help to choose appropriate initiators and to gauge relative

polymerization speeds for various monomers. It is also important to predict and

understand the required order of addition of monomers for block copolymer for-
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2.1. Principles of Living Anionic Polymerization

mation and to understand the copolymerization behavior of various monomers

[38].

R

Nu

R
Nu

NO2
O

R'
CN

O

O
R'

CH2
CH3R = , , , , , ,

Figure 2.1.: Vinyl monomer activation by a nucleophile (Nu) in living anionic po-
lymerization, and selected substituents (R) with relative carbanion stabilization in
descending order.

Corresponding conjugated bases of monomers with relatively high pKa, e.g. sty-

rene anions, are very reactive towards electrophilic species. Electron-donating

groups or acidic proton-donating groups, such as amino-, carboxyl-, hydroxyl-,

halogen- or acetylene functional groups will lead to side reactions or termination

of the active species [36]. It is therefore essential to excluded these kind of chemi-

cal functionalities within the reaction environment of anionic polymerization by

choosing a compatible monomer and solvent (for influence of the solvent on the

structure also see 2.1.3).

Aromatic rings, double bonds, carbonyl, ester and cyano groups stabilize the ne-

gative charge of an carbanion [36]. Vinyl and related monomers require an acti-

vation of the monomer double bond, for example by electron withdrawing sub-

stituents, or by those inducing a strongly positive polarization of the β-carbon

atom of the double bond [37]. Heterocyclic monomers can undergo living anio-

nic polymerization through ring opening either by nucleophilic substitution or by

nucleophilic addition onto a carbonyl group, followed by an elimination [37].
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2. Synthesis of Model Polymer Systems

2.1.2. Initiation

The original initiation of an anionic polymerization reaction with sodium naphtha-

lene, as utilized by Szwarc et al. [33], is started by an electron transfer from the

alkali metal to the naphthalene. An aromatic anion-radical is formed, which then

initiates the polymerization (fig. 2.2).

NaNa

Na

+

Na +

Na Na

2

Figure 2.2.: A bifunctional initiator for living anionic polymerization is formed via
electron transfer from sodium to naphthalene.

It is important to choose an initiator reagent that ensures a fast initiation step

compared to the propagation and the absence of side reactions [37]. Only then

the characteristic low polydispersities of living anionic polymerizations can be

achieved. This is a reason why one of the most popular initiation methods is

the application of strong nucleophilic Lewis bases. Usually monofunctional or-

ganometallic species such as the isomers of butyl lithium (n-, sec-, tert-) are used.

Lithium organyls are capable to initiate economically important monomers with

relatively weak electron-withdrawing groups, such as styrene, 1,3-butadiene and

isoprene. The initiation step starts with the addition of the lithium alkyl to the

monomer, followed by propagation (fig. 2.3).
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2.1. Principles of Living Anionic Polymerization

Li
6

6 Li

Kag

Li +
Li

Figure 2.3.: Initiation of styrene with n-butyllithium. Lithium organyls build ag-
gregates (here hexameres) with reduced reactivity in a multi step pre-equilibrium
(rate constant K ag).

It is important to note, that lithium alkyls build aggregates that are substantially

less reactive than the ”monomeric” version. In hydrocarbon solutions, the ag-

gregate and the monomeric molecules are in equilibrium with favor towards the

aggregates. Therefore, reactions in polar solvents (tetrahydrofurane, THF) or ad-

dition of certain reagents (tetramethylethylenediamine, TMEDA) that can break

up the aggregates are used. Formation of solvated ion pairs and free ions incre-

ase initiation speed substantially. However, this also facilitates side reactions, for

example with the solvent.

Independent of the initiator applied, the general reaction scheme for initializing

an anionic polymerization occurs with a nucleophilic attack of the base I− (with

the metal counter ion Me+) at the vinyl double bond of the monomer CH2=CHX

(eq. 2.1, X represents the substituent). In this reaction, a first monomer carbanion

is formed, which acts as active center in the followed propagation.

I−Me+ + CH2 = CHX → I − CH2 − CHX−Me+ (2.1)

11



2. Synthesis of Model Polymer Systems

2.1.3. Propagation

The chain growth proceeds by addition of further monomers (M) to the living an-

ion, which is build by the initiation, or to already existing polyanions (P−

n ). This

results in a repeating reproduction of anionic species at the end of the molecular

chain (eq. 2.2).

P−

n Me+ +M → P−

n+1Me+ (2.2)

I
n

+

I
n+1 MeMe

Figure 2.4.: Propagation on the example of polystyrene. The active center at the
chain end adds to further free monomers, resulting in a continuous chain growth.

The number of reactive ends is defined by the initiator, where for example initia-

tion with sodium-naphthalene leads to two opposing growing ends (fig. 2.2) and

lithium alkyles like n-butyllithium initiate only one active end (fig. 2.3).

Structure of the Propagating Species

The microstructure of the resulting macromolecular chains in living anionic po-

lymerization strongly depends on the electron density on the carbanionic active

center. Therefore three parameters control the structure for vinyl monomers: the

substituents at the double bond, the counterion and the solvent [37].

The substituent has a major influence on the reactivity of the monomer, as well as

the structure and physical behavior of the polymer (also see chapter 3). In gene-

ral, electron-withdrawing groups decrease reactivity, electron-donating groups

increase intrinsic reactivity of the carbanionic active centers [37]. Reactivity is

12



2.1. Principles of Living Anionic Polymerization

also decreased, if the substituent promotes delocalization of the negative charge.

As mentioned before, this is important for the choice of initiator and the over-

all synthesis strategy (monomer sequence order for block copolymers, reaction

temperature and time, etc.).

The counterion has less of an effect on the mircostructure than the substituent

or the solvent. Usually, alkali or earth alkali metal ions are used as counterions,

especially lithium, because of the popular use of butyllithium as initiator. The

main influence of the counter ion is due to its size. Small ionic radii favor a

partial covalent character of the bond between the counterion and the anionic

active center [37]. Bigger cations lead to a separation of charges, an therefore to

a different coordinative environment of the growing chain end. Figure 2.5 shows

the range of possible ion pairs. Contact ion pairs (b) and solvent-separated ion

pairs (c) most likely occure in living anionic polymerization, because of the cation

size and solvent choice (see below).

BMe B B BMe Me Me+

(a) (b) (c) (d)

Figure 2.5.: Range of ion pair behaviors from covalent (a), tight/contact ion pair
(b), solvent-separated/loose ion pair (c) to highly solvated/free ion pair (d).

The solvent choice is of utmost importance in living anionic polymerization. As

already mentioned, because of the very high reactivity of the anionic species,

protic solvents cannot be used. The solvent fulfills up to three roles in anionic

polymerization [37]. First it serves as a diluent, so that the reaction heat can be

removed and controlled. Sometimes aggregates of the reactive centers vary also

with the range of concentration (e.g. polystyryllithium dimers). The second role

of the solvent is that of a solvating agent for the reactants. This is especially

interesting in combination with the nature of the counterion and therefore the

13



2. Synthesis of Model Polymer Systems

formation of ion pairs or free ions (see fig. 2.5). The role of the solvating agent

can also be fulfilled by additives that coordinate the cation and stretch the ion

pair distance (e.g. TMEDA, crown-ether, fig. 2.6).

N
N

O

O

O

O

O

O

(TMEDA)
18-crown-6N,N,N',N'-Tetramethylethane-1,2-diamine

Figure 2.6.: Examples of solvating agents for counter ions, used in anionic synt-
hesis to enhance reactivity of the living species.

Third, the solvent can serve as dissociating agent, when its permittivity is suffi-

ciently high (e.g. THF 7.8 at 20 ◦C) [37]. In this case, it is even possible to separate

the anion and counterion and form free ions. The reactivity of free ions is ex-

tremely high and even in small concentration have a remarkable impact on the

reaction kinetics [37].

Anionic Polymerization of 1,3-Dienes

The influence of the mentioned three parameters, substituent, counterion and

solvent, on the sterochemistry of polymers is especially important for the anionic

polymerization of 1,3-dienes. Four possible stereochemistries of the monomer

are possible with 1,3-dienes (example for polyisoprene in fig. 2.7).

Table 2.1 lists possible microstructure ratios for polybutadiene and polyisoprene

with varying counterions and solvents.

14



2.1. Principles of Living Anionic Polymerization
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cis-1,4 trans-1,4 3,4 1,2

Figure 2.7.: Polyisoprene can take on four different microstructures, depending
on solvent and counterion during synthesis. Every microstructure inherits diffe-
rent glass transition temperatures, e.g cis-1,4 has a Tg of −70 ◦C, and trans-1,4
has a Tg of −58 ◦C [39].

structure of polymer (%)

counterion solvent cis-1,4 trans-1,4 3,4 1,2

Isoprene (at 25 ◦C)
Li n-hexane 93 0 7 0
Na n-hexane 0 47 45 8
Li THF 0 30 54 16
Na THF 0 38 49 13

1,3-Butadiene (at 0 ◦C)
Li n-pentane 35 52 13
Na n-pentane 10 25 65
Li THF 0 4 96
Na THF 0 9 91

Table 2.1.: Solvent and counterion effect on stereochemistry of polyisoprene and
polybutadiene [40]. By choosing a certain combination of solvent and counterion,
the microstructure amount can be manipulated.

The cis-1,4 microstructure demands a highly coordinated system of the reactive

anion, the counterion and a monomer [41, 42]. As a consequence, cis-1,4 con-

tent is higher in unpolar solvents with small counterions, where the ion pair is

tight. With increasing size of the counter ion, this coordinative system is loo-

sened up and the cis-1,4 ratio is generally decreasing to even diminishing low

contents. In THF, a slightly polar solvent, the propagating center is free and 3,4-

polymerization for isoprene is highly favored over any 1,4 stereochemistry [40].

Butadiene in polar solvents favors 1,2 polymerization instead, which shows the

influence of the substituent. Table 2.1 shows empirical data for the stereochemi-
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2. Synthesis of Model Polymer Systems

stry of 1,3-dienes, which can typically be obtained by adjusting counterion and

solvent. However, there is no mechanism that adequately explains all features of

the anionic polymerization of 1,3-dienes [40].

The stereochemistry of the penultimate monomer is given by its structure du-

ring addition of the last monomer. For poly-1,3-diene anions, the allylic end is in

equilibrium between the cis- and the trans- form (provided 1,4 addition). The ste-

reo equilibrium is shifted to cis-1,4 in polar solvents, and to trans-1,4 in unpolar

solvents [43]. This is contrary to the dominant microstructure for anionic poly-

merization of 1,3-dienes in respective solvents (see tab. 2.1). Polyanions in hydro-

carbon solvents exist as aggregates in equilibrium with the monomeric form. The

isomerization of the end-group mainly takes place while the polyanion is in its

aggregated form, while monomer addition occures only in the monomeric form.

Therefore, it can be conculded, that monomer addition in unpolar solvents pre-

fers cis, and that the transition between aggregate and monomeric form is faster

than the end group isomerization. In polar solvents the situation is reversed. Me-

chanisms that try to explain this outcome for polyisoprene in presence of lithium

as counterion have been proposed [41, 42, 44] and discussed [38, 43], however no

satisfying explanation has been found, as influences are complex and manifold.

2.1.4. Termination and Side Reactions

The living character of the anionic polymerization implies that no termination re-

actions occur. A deliberately end of the propagation can be induced with proton

donating reagents like water or alcohols that react with the carbanions, after all

monomers have reacted. However, all impurities, especially water, should be re-

moved from the reaction vessel prior to initiation. Additionally to its termination

character, water is an active chain-transfer agent and even small concentrations,
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2.2. Synthesis of Model Comb Polymers

present during polymerization, have a negative effect on molecular weight and

limit the polymerization rate [40]. The reactivity of the carbanions towards acidic

reagents is so high, that atmospheric humidity and residual absorbed water on

glassware leads to unwanted termination and side reactions.

CH
RR

P
H2O CH2

RR

P
HO

CH
RR

P
CO2

H
C
RR

P COO

+

+

+

Figure 2.8.: Termination of living carbanions with water and carbon dioxide.

Anionic polymer chain ends also react with oxygen (20 %) and carbon dioxide

(0.04 %) within air (fig. 2.8). Especially the reaction with oxygen has a noticeable

impact, since it leads to a chain coupling, and can be noticed as an increase in

double molecular weight, for example in a GPC measurement (fig. 2.9). It is also

possible to exploit a termination reaction to functionalize or couple chain ends

[38].

2.2. Synthesis of Model Comb Polymers

Comb polymers are grafted macromolecules with one backbone and at least two

branches. The difference to random branched polymers like LDPE is, that defi-

ned branches are constructed on purpose by special synthesis strategies. These

reaction routes allow the chemist to control certain parameters of the polymer

comb, for example the number and length of the branches. It is therefore pos-

sible to synthesis model systems that can be investigated for their chemical and

physical behavior.
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Figure 2.9.: Oxygen from air leads to several termination and side reactions with
living anions.

In general, there exist three main strategies for graft polymer synthesis: grafting

through (also called macromonomer method), grafting from and grafting onto

[36, 45, 46].

2.2.1. Grafting Through

End functionalized polymers can be copolymerized with other monomers and

lead to a comb like molecular structure (fig. 2.10). The macromonomers form side

chains in the final polymer, giving this method also the name macromonomer

method.

It is important to at least have an idea about the copolymerization parameters

of the involved conventional monomers and the macromonomers, to exploit this

method to its full potential. Usually, an even or random distribution of the bran-

ches is desired, where the ratio of comonomer concentration controls the number

of branches. The difference in reactivity ratios of the involved comonomers are
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2.2. Synthesis of Model Comb Polymers

monomer

macromonomer

Figure 2.10.: Grafting Through approach. Copolymerization of macromonomers
with monomers leads to a comb-like polymer structure.

generally greater in anionic polymerization than in free radical polymerization

[46]. This may lead to a more brush-like AB block copolymer structure, where

one comonomer reacts completely through before the next one starts. A popular

strategy to enhance control over branch location within a polymer comb via the

grafting through method is the utilization of diphenylethylene (DPE) endcapped

macromonomers [47]. DPE endfunctionalized macromonomers do not homopo-

lymerize and can be added sequentially with the other monomer [46].

An advantage of the macromonomer method is that no fractionation is needed

after completed synthesis to isolate the comb polymer. With appropriate conditi-

ons, it is also possible to obtain a wide variety of well-defined structures [45].

Characterization of polymer systems synthesized with grafting through is chal-

lenging, since only the molecular weight and polydispersity of the macromono-

mer and of the complete comb can be determined directly. The exact composition

of the backbone is not easily ascertainable.

2.2.2. Grafting From

The grafting from method utilizes active sites that are introduced along the poly-

mer chain of a backbone. These active centers are able to initiate the polymeriza-

tion of another monomer, leading to branch formation (fig. 2.11).
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backbone

active centers

monomer

Figure 2.11.: Scheme of the grafting from approach. Branches grow from active
centers at the backbone by addition of monomer.

Classically, grafting-from employs some form of acid/base chemistry [48]. Aci-

dic hydrogens within the backbone, for example phenols, amides or alcohols,

can be removed by a base (e.g. tert-BuOK or lithium diisopropylamide) [49, 50].

The created active sites then initiate anionic polymerization of added monomers.

Another possibility utilizes metallation of allylic, aromatic or benzylic protons on

the backbone with organolithium compounds (e.g. sec-BuLi) [51, 52].

The grafting-from method has several disadvantages, such as that the sidechains

cannot be characterized independently from the backbone. This impedes identifi-

cation of exact branch length and density. Initiation of sidechain polymerization

is often slow, so that molecular weight distribution of the branches are higher

compared to other grafting techniques, which makes it also more difficult to plan

molecular weights in advance.

2.2.3. Grafting Onto

The grafting onto method utilizes a reaction between nucleophilic chain ends (i.e.

the branches) and electrophilic functional groups along a backbone (fig. 2.12). The

functional groups can be introduced into the backbone post-polymerization. A

randomly branched molecular comb is then formed by a coupling reaction (graf-

ting).
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2.2. Synthesis of Model Comb Polymers

backbone

functional
groups

branches

Figure 2.12.: Schematic representation of the grafting onto approach. Branches
grafted onto functional groups lead to formation of a polymeric comb-like struc-
ture.

Several post-polymerization modifications, that are suitable for coupling with

living anionic sidechains have been reported. The most common approach is

functionalization of polystyrene (PS) with chloromethylation [53–55]. Hydrosily-

lation is a versatile route to grafted polymers from materials that contain double

bonds, especially polybutadiene (PB) and polyisoprene (PI). Silane groups are in-

troduced, involving platinum (e.g. H2PtCl6) [56, 57] or rhodium catalysts (e.g.

Rh(PPh3)3Cl) [58].

The main advantage of the grafting onto method is the possibility to synthesize

and characterize backbone and sidechains independently. Branched structures

from this route are therefore very well defined in terms of molecular weight of

the backbone and sidechains, the number of branches and PDI. It is even possible,

to graft arborescent polymers by repeated functionalization of already obtained

branched structures [59, 60]. The obtained comb-like structures are also nearly

monodisperse, since the backbone and the sidechains can be prepared by anionic

polymerization. Main challenges are side reactions (e.g. crosslinking) due to

the high reactivity of the living anions or low grafting yields, because of steric

barriers or non-compatibility of functional group and nucleophilic chain end.
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2. Synthesis of Model Polymer Systems

2.3. Synthesis of Isotopically Labeled Polymer

Combs

The investigation of linear homopolymer systems offer the possibility to correlate

observed viscoelastic behavior with few variable properties, such as the molecu-

lar weight, polydispersity or the effect of the monomer (see chapter 3). Therefore,

the focus of this work lies on these most simple polymer systems.

In a further project cooperation with Prof. Kay Saalwächter, University of Halle-

Wittenberg, the molecular dynamics of branched polymers are investigated with

FT rheology (Prof. Wilhelm’s group) and double quantum NMR (Prof. Saalwäch-

ter’s group). Results, obtained from the investigation of the simple linear poly-

mer melts from the here presented work, are the foundation for enlightening the

hierarchical relaxation processes of polymer combs. The synthesis of first model

comb polymers for this project were also conducted as part of this work.

The synthesis of model comb polymers from styrene monomers is well establis-

hed and examination of their nonlinear mechanical behavior was already pre-

sented in various publications. First FT rheology experiments on polystyrene

(PS) model combs were already presented by Hyun and Wilhelm [23] with intro-

duction of the intrinsic nonlinearity 3Q0(ω) (see section 3.4.3). Later, Kempf et al.

[28, 61] continued the rheological research on self-synthesized branched polysty-

rene and polystyrene derivatives. Polystyrene combs are however not suitable

for the usage with a low field NMR spectrometer as demanded by the named

cooperation with Prof. Saalwächter, and explained in the following. The inves-

tigation of molecular relaxation times with NMR techniques require the sample

to be very mobile, meaning the polymer must be heated to typically 100 ◦C to

150 ◦C above the glass transition temperature Tg. The Tg of polystyrene is around
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2.4. Polyisoprene Model Combs

100 ◦C, which demands a measurement temperature of at least 200 ◦C and above.

This temperature is not only too high for some parts of the instrument, but may

lead to oxidation and thermal degradation of the polystyrene sample, and also

to possible depolymerization (the ceiling temperature for styrene is 310 ◦C [40]).

Alternatively, pure cis-1,4-polyisoprene (PI) has a Tg of around −70 ◦C (also see

fig. 2.7) It can be synthesized via anionic polymerization with more than 90 %

cis microstructure content (see table 2.1), which makes it a suitable substitute for

polystyrene.

The synthesis strategy chosen in this work to build up branched polyisoprene

structures, was a functionalization of a PI backbone and then use the grafting

onto method (see section 2.2.3) to form the desired comb.

2.4. Polyisoprene Model Combs

A polymer comb molecule consists of the backbone (bb) and a certain number of

sidechains (sc). The polyisoprene backbone precursor and the sidechains were

prepared with anionic polymerization, utilizing sec-butyllithium (s-BuLi) as ini-

tiator and cyclohexane as solvent (fig. 2.13). The synthesis was conducted in

Schlenk reactors on a high-vacuum line, that allowed exclusion of air and moi-

sture, which lead to unwanted sidereactions (also see section 2.1.4).

Hs-Bu
nm1 4

3
4cyclohexane, rt

1. s-BuLi
2. MeOH

Figure 2.13.: Anionic polymerization of polyisoprene, initiated with s-BuLi. The
dominant microstructure is cis-1,4 with more than 90 mol% expectedly (m≫ n).
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In case of backbone synthesis, the living polymers were terminated with degas-

sed methanol, then precipitated in methanol, dried and characterized afterwards.

Living sidechains were freshly synthesized for comb formation, and kept within

the reaction vessel until needed. For sidechain characterization, only a small sam-

ple was taken in an Argon counterstream with a syringe, and terminated with

methanol.

The choice of solvent and counterion influences the microstructure of the re-

sulting polyisoprene (see section 2.1.3). Typically, the use of cyclohexane and

s-BuLi resulted in a 95 mol% 1,4- and 5 mol% 3,4- microstructure for the mono-

mers (fig. 2.14, literature values are given in tabel 2.1 in section 2.1.3).
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Figure 2.14.: 400 MHz 1H-NMR of anionic synthesized polyisoprene with cyclo-
hexan as solvent and s-BuLi as initiator. Peak signals at 5.13 ppm are assigned
to the cis-1,4 microstructure (A, one proton), 3,4 protons result signals between
4.66-4.76 ppm (B, two protons) [60].

2.4.1. Functionalization of Polyisoprene

The grafting-onto method demands the introduction of functional groups into

the backbone, which are reactive to the living, anionic endgroups of the side-

chains. Functionalization of the C-C double bonds of the backbone was achieved

by epoxidation.
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2.4. Polyisoprene Model Combs

The advantage of epoxidation compared to other possible reactions like hydrosi-

lylation is, that it is a highly selective and experimentally simple method. Hyd-

rosilylation was proven to be a potent strategy for the formation of various bran-

ched molecules [62]. However, reagents include silicon tetrachloride, which is

classified as toxic, and consequently should be avoided. The preparation of the

educts also require an increased workload due to additional distillation, and lon-

ger reaction times (around 8 hours).

Epoxidation of the inner double bonds of PI can be accomplished by adding a

reaction mixture of formic acid and hydrogen peroxide (H2O2) to the polymer

at room temperature (fig. 2.15). For this, the assigned backbone was dissolved

in toluene. Formic acid was then given to the polymer, and H2O2 was added

dropwise. The separation between organic phase (polymer solution) and aque-

ous reagents (peracid) demanded a constant stirring control. The heterogeneous

reaction was stopped after one hour by washing the reaction mixture with dis-

tilled water until pH 6 was reached. The organic phase, containing the functio-

nalized backbone, was then separated, dried with magnesiumdichloride (MgCl2)

and precipitated in methanol. The reaction yield was determined to be 20 % to

30 % via 1H-NMR.

Hs-Bu

O

nm-ee
Hs-Bu
nm

toluene, rt

HCOOH
H2O2

Figure 2.15.: Epoxidation of anioniclly synthesized polyisoprene. Only double
bonds of the cis-1,4 microstructure (m ≫ n) get functionalized, due to kinetic
control of the reaction.

The epoxidation of dienes is an electrophilic reaction. A higher electron den-

sity and additional alkyl substituents increase reactivity. A tri-substituted alkene,

like the intrachain double bond of PI, reacts 6500 times faster, and a di-substituted
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double bond, similar to the terminal double bonds of 3,4-PI, reacts 500 times faster

than ethene [63]. A selective functionalization of the 1,4-PI double bonds is con-

sequently kinetically controlled. The high amount of intrachain double bonds in

anionic PI (95 %) offers the possibility for synthesis of dense branched-like struc-

tures via the epoxidation route.

Side reactions, such as ring opening of the epoxide, take place at high reaction

temperatures and high acid concentrations [64]. The chosen reaction conditions

therefore minimize unwanted byproducts (alcohols). Figure 2.16 shows the 1H-

NMR spectrum of an epoxidized PI (ePI). The peak signal at 2.7 ppm is assigned

to the proton, bound at the epoxi ring [65, 66].
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Figure 2.16.: 400 MHz 1H-NMR of partly epoxidized polyisoprene. The single
proton at the epoxide ring (C) gives a peak signal at 2.7 ppm (A, one proton
for cis-1,4, B, two protons for 3,4). Integration of the peak areas results the mi-
crostructure content of the functionalized PI backbone, with approximately 0.9 %
epoxidized double bonds (m≫ n≫ e, compare to fig. 2.14).

2.4.2. Comb Formation

The grafting reaction of the PI anions onto the epoxidized backbone is a nucle-

ophilic ring opening reaction (fig. 2.17).
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Hs-Bu

O

nm-ee
+ PI

1. THF/cyclohexane
LiBr

2. H2O
Hs-Bu

OH

nm-ee

PI

Figure 2.17.: Comb formation reaction via nucleophilic attack of living polyiso-
prene (sidechains) onto an epoxidized polyisoprene backbone.

The reactivity of the anionic sidechains can be enhanced by separating the counte-

rion from the reactive chain end (see section 2.1.3). The synthesis of the sidechains

was conducted in cyclohexane, an unpolar solvent, which means, that addition

of solvating agents (see fig. 2.6) or a polar solvent is needed to improve reaction

speed. The backbone was therefore dissolved in dry THF, so that a solvent ratio

of cyclohexane:THF of 2:1 was achieved. Further improvement of reactivity was

attained by adding a Lewis acid to the reaction mixture. Lithium salts are weak

Lewis acids, that can increase the reactivity of the epoxide rings by coordination.

Simultaneously, they decrease the reactivity of the living anions by a common ion

effect. Yuan et al. [60] obtained the highest reaction yields with lithium bromide

as promoter for coupling of PI anions onto epoxide rings.

The final comb formation setup in this work consisted of the the main reactor

with the backbone dissolved in THF, and lithium bromide (LiBr) as promoter.

Attached to the main reactor, connected via a glass joint, was an excess of li-

ving sidechains, dissolved in cyclohexane. The sidechains were added slowly

to the backbone/LiBr mixture at room temperature, upon which the solvent co-

lor immediately turned into a bright yellow. The distinct color of the surplus

PI anions served as indicator for the reaction stability. Without termination due

27



2. Synthesis of Model Polymer Systems

to unwanted side reactions (impurities or ring opening of THF), the bright color

got preserved over more than two days at room temperature. The reaction was

then terminated by addition of degassed methanol. The polymer mixture, consis-

ting of PI combs and linear PI, was separated by precipitation fractionation from

THF/methanol.
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Figure 2.18.: SEC-MALLS of a synthesized polyisoprene comb and linear po-
lyisoprenes, which were used as backbone and sidechains. The calculated num-
ber of sidearms from this measurement results 5.8 in average.

Figure 2.18 shows the SEC-MALLS (size exclusion chromatography combined

with multi angle laser light scattering) result for the different components of an

example PI comb formation. At 34 kg/mol the sidechains can be identified in the

sample, taken directly from the sidechain reactor. They also remain in the un-

fractionated polymer mixture after the grafting reaction, since they have been ad-

ded in excess. The functionalized backbone has a molecular weight of 142 kg/mol

(Mw/Me = 30). The disappearance of the backbone signal after comb formation
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2.5. Synthesis of Isoprene-d8

indicates the successful reaction between functional groups (epoxides) and living

anions. At 340 kg/mol the newly formed PI comb is detected with a PDI of 1.07.

Determination of Number of Sidearms

In general, SEC calibrations are not available for comb polymers, which demands

SEC-MALLS as preferred method for molecular weight and sidearm number de-

termination. The PI comb depicted in figure 2.18 has an average number of 5.8

sidearms per molecule, as calculated from SEC-MALLS. The number of sidearms

and the total molecular weight of the comb can also be calculated from the stoi-

chiometry of the reaction, when no light scattering is available for SEC [60, 67].

The area ratio of the comb and sidearm signals from the unfractionated reaction

mixture from SEC, using linear PI standards as calibration, was calculated and

compared to the mass ratios of the grafting educts. In the presented example,

the number of sidearms was determined as 5.8 in average, and therefore a total

molecular weight of around 332 kg/mol for the final comb. The calculation of

sidearms and comb molecular weight via area ratio yielded a similar result to

SEC-MALLS in this example.

2.5. Synthesis of Isoprene-d8

A macromolecule has a wide spectrum of relaxation times, that can be assigned

to dynamics of different segments of the molecule (also see section 3.3). The in-

ner part will behave and relax differently than the chain ends. The investigation

of these different molecule segment dynamics via 1H-NMR can be achieved by

”hiding” other respective parts with deuterons. Therefore, only the protonated

chain segments will be detected. It was shown in the previous section, that the
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synthesis of branched polyisoprene structures is possible with anionic polyme-

rization methods. It can be assumed, that the synthesis of partly deuterated PI

combs with this method is also viable. The needed monomer isoprene-d8, where

all protons are exchanged with deuterons, is consequently a very valuable mole-

cule. This is indicated by the rare commercial availability and a price of around

1000 USD per gram. The successful synthesis of isoprene-d8 can therefore be an

advantage for current and future research projects.

In literature [68] a synthesis for isoprene-d8 is documented, starting from carbide

and deuterated water (see reaction scheme in fig. 2.19).
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Figure 2.19.: The reaction scheme shows a five step synthesis of isoprene-d8,
starting from carbide and water.

First steps for a full synthesis of isoprene-d8, following the reaction scheme from

figure 2.19 were conducted in the frame of this work. The reaction was conducted

with protonated substrates, to be able to evaluate formation and reaction yield

with 1H-NMR, but can be performed with deuterated substrates analogously. A

more detailed reaction scheme of the executed synthesis is shown in figure 2.20.

Acteylene was generated by adding H2O to slivers of calcium carbide (CaC2).

The gas was transferred to a round flask with cold THF (−70 ◦C), where it dissol-

ved almost completely (no increase in gas volume within the reaction setup was
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Figure 2.20.: Detailed reaction scheme for synthesis of the isoprene precursor,
starting from acetylene.

detected by the connected bubble counter). After the reaction was completed and

all acetylene was collected in the THF, n-butyl lithium (n-BuLi) was carefully ad-

ded dropwise. The reaction mixture was kept below −70 ◦C to avoid formation of

di-lithio acetylide. Afterwards, acetone was added dropwise, keeping the tem-

perature below −70 ◦C. The solution was stirred for another 15 min before the

cooling bath was removed and the mixture was stirred overnight at room tem-

perature. H2O was added slowly to form the final alcohol, 2-methyl-but-3-yn-ol.

Upon addition of water, the reaction mixture became thick due to precipitating

lithium hydroxide. The mixture was filtered, washed with pentane and distil-

led afterwards. Analysis of the distillate with 1H-NMR showed the successful

formation of the isoprene precursor (fig. 2.21).

Signal peaks at 1.50 ppm (-CH3), 2.39 ppm (-H) and 2.54 ppm (-OH) are assigned

to the precursor molecule. Strong signals for the reaction solvent THF (1.83 ppm

and 3.72 ppm) and the acetone educt (2.14 ppm) remain even after distillation.

Therefore, the reaction yield could not be determined, since it was not possible

to separate the alcohol from the solvent completely within the framework of this
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Figure 2.21.: 400 Mhz 1H-NMR of the isoprene precursor. The reaction scheme
is shown in figure 2.20.

thesis (see THF signals in fig. 2.21).

2.6. Conclusion

The synthesis of polyisoprene (PI) model combs with a low branching degree is

possible with the grafting-onto method. Introduction of epoxide ring functional

groups into the 1,4- microstructure of the backbone was achieved with reprodu-

cible reaction yields of 20-30 %. Comb formation was then conducted by ring

opening of the epoxide rings. These first experiments show, that the synthesis of

partly deuterated polyisoprene combs for investigation on molecular dynamics

via double quantum NMR an FT rheology (see section 3.4) is in principle possi-

ble. The synthesis and availability of isoprene-d8 monomer is a challenging issue,

which is already tackled and partly solved within this thesis.
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3. Rheology

Rheology is the science of flow and matter [6, 97, 101]. Through deformation of

a body, material specific forces are initiated, that can be detected and investiga-

ted. Matter is categorized in a range between ideal viscous (e.g. water) and ideal

elastic (e.g. iron). Most materials are partial viscous and partial elastic, so called

viscoelastic. This is especially true for polymeric materials. Through rheological

experiments, correlations between material response and the molecular structure

are revealed. Informations such as molecular weight, molecular weight distri-

bution, various relaxation times, glass transition temperature, and topology are

accessible.

Underlying fundamental physics of the polymeric material and the effects on the

mechanical behavior, especially at deformations that lead to high shear rates (i.e.

the nonlinear regime) are still not fully understood. This chapter focuses on the

basics of shear rheology of polymer melts.

3.1. Introduction to Shear Rheology

The basics of rheology can be explained by a two-plate model. A material is

placed between two parallel plates of a distance h. The upper plate, having an
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A

h
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Figure 3.1.: Two-plate shear experiment. A material is placed between two pla-
tes, from which the upper plate is moved constantly with a force F [87].

area A, is moved with a constant force F over a distance s. The resulting stress σ,

or shear stress, is given by the following equation.

σ =
F

A
(3.1)

The strain γ is calculated by the deformation s and the distance h of the plates.

γ =
s

h
(3.2)

The velocity v of the shear movement in this example is decreasing from the up-

per, moving plate to the bottom plate. Therefore, a time-independent shear rate

γ̇ is defined, which is normalized to the distance h [101].

γ̇ =
dγ

dt
=

v

h
(3.3)

3.1.1. Phenomenological Models

Elasticity - Hooke’s Law

The one-dimensional spring model of Hooke can be used for the description of

ideal elastic materials (fig. 3.2).
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3.1. Introduction to Shear Rheology

Figure 3.2.: Hooke’s spring model for ideal elastic matter. A rotational movement
with a constant angular frequency ω is transfered as sinusoidal deformation to an
elastic spring.

In this most simplified case, the material stress σ is directly proportional to the

deformation γ. The material characteristic proportionality constant G is called

the relaxation modulus.

σ = G · γ (3.4)

In oscillatory shear, a sinusoidal deformation γ is performed over a time t, with

the maximum deformation amplitude γ0, and the excitation frequency ω1.

γ(t) = γ0 · sin(ω1t) (3.5)

The time-dependent stress σ(t) in phase with the deformation is obtained by com-

bination of eq. (3.5) and eq. (3.4) (see fig.3.3).

σ(t) = G · γ0 · sin(ω1t) (3.6)
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3. Rheology

Figure 3.3.: Ideal elastic deformation γ(t) and the stress response σ(t) in oscilla-
tory shear.

Viscosity - Newton’s Law

Ideal viscous matter can be described by a linear dash-pot model, where the force

is proportional to the displacement, and energy gets dissipated completely (New-

tonian fluid).

Figure 3.4.: Dash-pot model for ideal viscous materials [101]. A piston is mo-
ved back and forth by an initial sinusoidal rotation. The dash-pot damps the
movement, which results in a phase shift of the piston towards the movement
initiation (see fig. 3.5).

The proportionality between σ and the shear rate γ̇ is only given, if the tempera-

ture is constant. The shear viscosity η is then a material specific property.

σ = η · γ̇ (3.7)
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3.1. Introduction to Shear Rheology

The shear rate γ̇ in oscillatory shear is the derivative of the time-dependent de-

formation γ from eq. (3.5).

γ̇(t) =
dγ

dt
= γ0 · ω1 · cos(ω1t) (3.8)

The time-dependent shear stress σ(t) is obtained accordingly.

σ(t) = η · γ0 · ω1 · cos(ω1t) (3.9)

σ(t) = η · γ0 · ω1 · sin(ω1t+ 90◦) (3.10)

From eq. (3.10) it can be seen, that ideal viscous materials respond with a shear

stress σ(t) that has a phase shift of 90◦ to ideal elastic materials (fig. 3.5).

Figure 3.5.: Ideal viscous deformation in oscillatory shear. Stress σ(t) and strain
γ(t) are phase shifted by 90◦ [101].

Viscoelasticity

Ideal elastic and ideal viscous are marginal cases of reality. Almost every sub-

stance contains an elastic and a viscous part. This is called viscoelasticity and can

be described by a combination of the linear spring model (Hooke) and the linear
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dash-pot (Newton). The linear, one-dimensional combination is the Maxwell mo-

del, the parallel combination is the Kelvin-Voigt model (fig. 3.6).

Figure 3.6.: (a) Kelvin-Voigt model for elastic solids with viscous part. (b) Maxwell
model for viscous liquids with elastic part [6][87].

Kelvin-Voigt Model

The Kelvin-Voigt model describes an elastic body with low viscous rate (fig. 3.6

a). These bodies are called Kelvin-Voigt solids. The model puts an elastic spring

and a dash-pot into parallel position. Relaxation after a strain is complete but

time-delayed. The total stress σ consists of the stress σe from the spring , and the

stress σv from the dash-pot (dampener).

σ = σe + σv (3.11)

The deformation γ and shear rate γ̇ are equal in both components over a wide

range of cases.

γ = γe = γv; γ̇ = γ̇e = γ̇v (3.12)
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3.1. Introduction to Shear Rheology

Hooke’s law (3.4) is valid for the elastic part, and Newton’s law (3.7) for the vis-

cous part. Through the combination of both laws, equation (3.11) results a diffe-

rential equation for the total stress of the system.

σ = σe + σv = η · γ̇v +G · γe = η · γ̇ +G · γ (3.13)

Maxwell Model

Viscous liquids that own an elastic amount stay partly deformed after an app-

lied strain. This behavior can be described by a dash-pot and a spring in series

(fig. 3.6). Substances that follow this model behavior are called Maxwell liquids.

The stress τ is equally distributed over all parts of the model.

σ = σe = σv (3.14)

The total strain γ and the total shear rate γ̇ are the summation of spring and dash-

pot.

γ = γe + γv (3.15)

γ̇ = γ̇e + γ̇v (3.16)

Through insertion of Hooke’s law (3.4) and Newton’s law (3.47) into equation

(3.16), Maxwell’s differential equation is obtained.

γ̇ = γ̇v + γ̇e =
σv

η
+

σ̇e

G
=

σ

η
+

σ̇

G
(3.17)
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Upon consideration of equation 3.8, the following expression results for the time-

dependent shear rate γ̇(t) in oscillatory shear.

γ̇(t) =
σ

η
+

σ̇

G
= γ0ω1 cos(ω1t) (3.18)

Following the mathematical solution of this equation, the oscillatory shear stress

is calculated, with τ = η/G being the relaxation time.

σ(t) = γ0

(

G
(ωτ)2

1 + (ωτ)2
sin(ωt) +G

ωτ

1 + (ωτ)2
cos(ωt)

)

(3.19)

= γ0 (G
′ sin(ωt) +G′′ cos(ωt)) (3.20)

The storage modulus G′ describes the reversible deformation energy (elastic amount).

The so called loss modulus G′′ measures the dissipating deformation energy (vis-

cous amount). G0
n is called the plateau modulus (see section 3.2.3). The quotient

of the two moduli is the dissipation factor tan δ.

tan δ =
G′′

G′
(3.21)

tan δ has values between zero and ∞. For tan δ = 0 an ideal elastic behavior is

described. Ideal viscous behavior is reached at tan δ = ∞. Long relaxation times

τ , or short frequencies ω respectively, show a proportionality for the storage and

loss modulus from equation (3.19), G′ ∝ ω2 and G′′ ∝ ω1.

The Maxwell model is valid for monodisperse polymer melts at high measure-

ment temperatures or small excitation frequencies. Polymer melts behave ap-

proximately like viscoelastic liquids at small shear rates [101].
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3.2. Small Amplitude Oscillatory Shear (SAOS)

3.2. Small Amplitude Oscillatory Shear (SAOS)

Rheometry utilizes small amplitude oscillatory shear (SAOS) to investigate poly-

mer melts in the linear mechanical regime, i.e. at small deformations and shear

rates. These experiments yield the storage and loss modulus depending on fre-

quency. From linear master curves of G′(ω) and G′′(ω), relaxation times of diffe-

rent segment lengths of the molecular chain are accessible. The frequency range

of the measurements can be extended with the time-temperature-superposition

(TTS) principle.

The following sections describe important material specific features like the en-

tanglement molecular weight Me, which are obtainable through SAOS experi-

ments of linear polymer melts.

3.2.1. Time-Temperature-Superposition Principle (TTS)

The time-temperature-superposition (TTS) principle enables rheological exami-

nation of viscoelastic materials over a wide range of frequencies. Measurements

are conducted at different temperatures. The obtained data can then be shifted

with respect to a reference temperature Tref , which results a single master curve

(fig. 3.7). This is possible because relaxation phenomena depend equally on tem-

perature for viscoelastic materials. The horizontal shift factor aT along the fre-

quency axis is correlated to the measurement temperature T and to Tref via the

William-Landel-Ferry (WLF) equation [128].

log aT =
−C1 (T − Tref)

C2 + T − Tref
(3.22)
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C1 and C2 are empirical parameters, that become very similar for polymers that

are also dynamically similar. For Tref = Tg they become constants for a wide

range of materials, C1 = 17.44 and C2 = 51.6K.

Next to the horizontal shift factor aT , there is a vertical shift factor bT . Through bT

small vertical differences can be compensated, utilizing the temperature depen-

dent polymer density ρ.

bT =
T0 · ρ0
T · ρ (3.23)
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Figure 3.7.: Master curve of the storage (G′) and loss modulus (G′′) obtained via
TTS (linear polystyrene Mw = 154 kg/mol, Tref = 160 ◦C). In the terminal regime,
at small frequencies, the moduli show scalings of G′ ∝ ω2 and G′′ ∝ ω1, following
the Maxwell model (see eq. 3.19). The plateau modulus G0

N is obtained via the
minimum of tan δ.

3.2.2. Critical Molecular Weight and Zero-Shear Viscosity

The dynamics of short polymer chains are governed by Rouse behavior [109].

This means relaxation occurs along the chain, without interference of an outer
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3.2. Small Amplitude Oscillatory Shear (SAOS)

Figure 3.8.: The zero-shear viscosity η0(Mw) for polybutadiene (PB) and polyiso-
prene (PI). Three different scaling laws are observed, which correspond to three
different relaxation mechanisms for polymer melts. The scaling crossovers mark
the critical molecular weight Mc and the reptation molecular weight Mr (Mc < Mr).
Adapted from Unidad and Fetters et al. [118].

matrix. Above a certain molecular weight however, the presence of entangle-

ments dominates mechanical behavior. This becomes very apparent in the zero-

shear viscosity η0 (fig. 3.8). Following Rouse theory, at low molecular weight the

zero-shear viscosity is predicted to be proportional to Mw.

η0 ∝Mw for Mw < Mc (3.24)

Above a certain threshold, called the critical molecular weight Mc, the scaling

changes to 3.4 for typical linear homopolymer melts. In this region, reptation,

contour length fluctuation (CLF, section 3.3.4) and constraint release (CR, section

3.3.5) are used as explanation [77, 86, 89]. As the molecular weight increases

above Mc, entanglements restrict dynamic movements of the molecular chains
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and thus the zero-shear viscosity increases.

η0 ∝M3.4
w for Mc < Mw < Mr (3.25)

The critical molecular weight Mc varies between values of 2 - 4 Me [27], where Me

is the entanglement molecular weight.

For sufficiently long chains, again a different scaling exponent of 3 is observed.

The usual explanation is, that the influence of CLF and CR is diminishing, and

the mechanical behavior is based purely on reptation. This second transition is

marked by the reptation molecular weight Mr.

η0 ∝M3
w for Mr < Mw (3.26)

For cis-1,4-PI the reptation molecular weight Mr is above 220 kg/mol [70]. Equati-

ons (3.24), (3.25) and (3.26) allow to infer the molecular weight for a monodisperse

polymer from the zero-shear viscosity η0.

3.2.3. Plateau Modulus

The storage modulus G′(ω) of well entangled polymer melts shows a constant

value (a plateau) over a wider frequency range. This plateau is called the plateau

modulus G0
N , and extends with increasing molecular weight of the polymer. G0

N

is proportional to the density of entanglements of the polymer melt, and is po-

lymer specific as well [6]. This can be seen in G′(ω) plots of varying molecular

weight (fig. 3.9).

For low molecular weight polymers, a plateau cannot be observed, because they

are not entangled. With increasing molecular weight, the entanglements delay

44



3.2. Small Amplitude Oscillatory Shear (SAOS)

10-6 10-4 10-2 100 102 104 106
101

102

103

104

105

106

107 PS 25k (1.03)
PS 43k (1.04)
PS 83k (1.04)
PS 154k (1.07)
PS 340k (1.15)

PS 107k (2.00)
PS 112k (1.66)
PS 186k (2.33)
PS 602k (4.7)

G
' [

P
a]

angular frequency  [rad/s]

T = Tg+ 60°C

2

Figure 3.9.: Storage shear modulus G′ of linear polystyrene melts with different
molecular weight and PDI (given in brackets) as a function of angular frequency
ω, nominated to a reference temperature of Tg + 60 ◦C (adapted from [76]).

the final relaxation of the polymer chains, which results in a wider plateau of

G′(ω). Compared to the viscosity η(ω) and the relaxation time τ(ω), G0
N is relati-

vely independent of temperature (see also section 3.2.1) and the absolute molecu-

lar weight, if Mw ≫ Mc. However, since the terminal relaxation time τ0 is roughly

proportional to the zero-shear viscosity η0, i.e. η0 ∝ G0
Nτ0 (see section 3.3.3), τ0 is

also proportional to the molecular weight Mw above the critical molecular weight

Mc [6].

τ0 ∝ η0 ∝ M3.4
w for Mw > Mc (3.27)

Differently long molecular chains can escape their entanglements at different ti-

mes, meaning they have varying relaxation times τ0. Hence, polydisperse melts

show a gradual slope of G′(ω) instead of a flat plateau. The shape of G′(ω) espe-

cially, contains therefore information about the molecular weight distribution.
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3.2.4. Entanglement Molecular Weight

Following the remarks of section 3.2.3, the plateau modulus G0
N is related to the

entanglements of a polymer melt (also see fig. 3.10 in section 3.3). It can be used

to calculate the entanglement molecular weight Me.

MF
e =

ρRT

G0
N

(3.28)

Me =
4

5

ρRT

G0
N

(3.29)

Equation (3.28) was defined by Ferry [27], whereas equation (3.29) considers fast

Rouse modes which allow re-equilibration of tension along the chain before en-

tanglements come into effect [85, 88]. This reduces the value of G0
N by one fifth

[6, 110, 115].

In this work, definition (3.29) is used for the calculation of the entanglement mo-

lecular weight Me from linear rheology.

3.3. Dynamics of Entangled Polymers

The majority of investigated samples in this work are well-entangled polymer

melts with Mw > Me. The following sections about polymer dynamics therefore

focus on entangled polymers.

The motion of a single polymer chain in highly concentrated polymer solutions

or polymer melts is impeded by topological constrains (fig. 3.10) [6]. A polymer

chain is unable to cross through its neighboring chains and thus has to perform

certain movements to be able to relax after a deformation. The most important
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3.3. Dynamics of Entangled Polymers

Figure 3.10.: An entangled polymer chain (black line), surrounded by a matrix of
other polymer chains (blue lines).

relaxation processes are reptation, primitive path fluctuations and constrain rele-

ase, and are described in the following sections.

3.3.1. Tube Model

Edwards introduced the idea of a fixed polymer chain, which is ”hedged in by

the other chains” [84]. This theory was later extended by deGennes [86], and by

Doi and Edwards [78–81], and is known as the tube model. This model imagines

the dynamics of a polymer chain as a motion confined in a tube. The tube is build

by surrounding molecules that put a topological constrain on the movement of

a given polymer strand because they cannot cross (entanglement). This forces

the chain to move along the axis of the tube, called the primitive path or contour

length (fig. 3.11). This simple tube model already allows to describe the proper-

ties, such as the viscosity, of entangled polymers , e.g. polymer melts, quantitati-

vely to a large degree [115].

The width of the confining tube is the tube diameter a. If the molecular chain has

time to relax (i.g. no shear flow), it will have the configuration of a random walk,

and so will the tube. Within the tube, the polymer chain meanders and thus
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<R >2
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Figure 3.11.: Surrounding constrains form a tube-like region, in which the en-
tangled polymer chain meanders. The primitive path of the tube is a random walk
with step size a, equal to the diameter of the tube. The contour length of the
tube is much smaller than the contour length of the molecular chain, which has a
statistical segment length b. Adapted from Graessley [89].

the contour length Ltube of the tube is shorter than the contour length L of the

molecule [6]. On the other hand, the tube diameter a is wider than the statistical

segment length b of the chain. It can be interpreted as the end-to-end distance of

an entanglement strand of Ne monomers [110]:

a = b
√

Ne (3.30)

Where b ≡
√

〈R2〉0/N is the statistical segment length, which is defined by the

mean-square end-to-end distance 〈R2〉0 and the degree of polymerization N of

the molecule. An entanglement strand is the molecular distance between two

constraints of the surrounding matrix and thus directly proportional to the en-

tanglement molecular weight Me (see section 3.2.4). Therefore, the tube diameter

a is directly related to Me and the molecular weight of the monomer M0, and
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equation 3.30 can be rewritten as follows.

a2 = b2
Me

M0

= b2
4

5

ρRT

G0
N

1

M0

(3.31)

According to eq. 3.31 the smaller Me, the smaller the tube diameter a. This agrees

with the general rule of thumb, that bigger substituents on a monomer lead to

larger entanglement molecular weights and wider tube diameters; for example

for 1,4 - polybutadiene a = 36.8 Å and for polystyrene a = 76 Å [6]. Typically, this

results in 100 to 200 monomers between two entanglements (Me).

3.3.2. Equilibration Time

In tube theory it is assumed, that all relaxation processes in the melt are control-

led by the monomeric friction coefficient ζ . The monomeric friction coefficient

ζ is independent of molecular weight, polymer specific and mainly depends on

temperature. It is used to define the equilibration time τe, which is the Rouse reo-

rientation time required to relax a chain part, that occupies a single tube segment

a [6].

τe =
ζa2Me

3π2kTM0
(3.32)

3.3.3. Reptation

A polymer chain can dynamically move out of its tube by reptation [86]. In this

process the chain meanders, which leads to a partial abandonment of the old tube

by escaping its entanglements (fig. 3.12).

At the same time, new entanglements are formed, thus a new tube is created. If

reptation is the only considered relaxation of an entangled polymer chain, the
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Figure 3.12.: Reptation of a polymer chain out of its tube. During the process,
the chain escapes its old tube (dotted line) and forms new entanglements with
surrounding polymer chains.

relaxation modulus G(t) is given by the following equation.

G(t) =
∑

iodd

Gie
−t/τi (3.33)

The distributions of relaxation modes Gi results the plateau modulus G0
N , and

the relaxation times τi are defined by the reptation time or disengagement time

τd, which is also the longest relaxation time τ0.

Gi =
8

π2

G0
N

i2
iodd (3.34)

τi =
τd
i2

iodd (3.35)

The disengagement time τ0 is the time, the molecule needs to fully escape its for-

mer tube. It can be calculated, using the monomeric friction coefficient ζ , the

statistical segment length b, the degree of polymerization N , and the tube diame-

ter a.

τ0 =
ζN3b4

π2kTa2
= 3Z3τe (3.36)

The zero-shear viscosity η0 can be calculated from the discrete relaxation times

spectrum.

η0 =
∑

iodd

Giτi (3.37)
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Taking into account, that the sum in equation (3.37) converges rapidly, it is stated

that the zero-shear viscosity η0 is dominated by the first term, which implies the

longest relaxation time τ0. From equation (3.36) is can be seen, that the longest re-

laxation time τ0 is very sensitive to the number of entanglements Z3, what carries

over to the zero-shear viscosity η0 due to equation (3.37). This perfectly agrees

with experimental results of η0(Mw) for very high molecular weights above the

reptation molecular weight Mr (see section 3.2.2).

The storage modulus G′(ω) and the loss modulus G′′(ω) for pure reptation can

also be predicted from the discrete relaxation times spectrum {Gi, τi} by the fol-

lowing equations (also compare to Maxwell model, eq. 3.19).

G′(ω) =
∑

i

Gi
(ωτi)

2

1 + (ωτi)2
(3.38)

G′′(ω) =
∑

i

Gi
(ωτi)

1 + (ωτi)2
(3.39)

Predictions of G′(ω) and G′′(ω), considering only pure reptation from equations

(3.38) and (3.39) are plotted in figure 3.13. It can be seen that for higher frequen-

cies, or more precisely for relaxation times smaller than the longest relaxation

time τ0, G
′′(ω) falls off too rapidly compared to experimental data. Therefore,

other relaxation processes besides pure reptation need to be considered [6, 110,

115].

3.3.4. Primitive Path Fluctuations

Another possible relaxation process for polymer chains is primitive path fluctua-

tion (PPF) or contour length fluctuation (CLF). In section 3.3.1 the primitive path

or contour length was defined as the length of the occupied tube of the chain. The

diameter a of the tube is much smaller than the length Ltube. Because the chain
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Figure 3.13.: Storage and loss modulus of a monodisperse polybutadiene melt
(Mw ≈ 360 kg/mol). The dashed lines show prediction of G′ and G′′ with only
reptation as relaxation process. Solid lines include reptation and primitive path
fluctuations (see section 3.3.4). Adapted from Pearson [106].

meanders within the tube, it gets folded, starting from each end (fig. 3.14). Due

to Brownian motion the degree of folding changes randomly. By chance, the end

of the chain therefore can fold more than usual and vacates the outer part of the

tube. In this moment, the stress associated with the now vacated part is released.

When the chain end pushes outwards again, new random tube segments are cre-

ated. Primitive path fluctuations relax the ends of a molecular chain very rapidly,

but the inner parts not so fast, because it is very unlikely for the chain to fold up

this much, as this is entropically unfavored.

For linear polymers, reptation and PPF occur simultaneously. Because PPF are

slow for the middle part of a chain, its relaxation is dominated by reptation. The

outer ends of the molecule however relax at shorter times (higher frequencies)

due to PPF. The PPF mechanism shortens the effective tube for the molecule,

which leads to a faster relaxation time for the inner segment, too. As a result,

the longest relaxation time and the zero-shear viscosity are lower than without

the consideration of PPF. Predicted values of the zero-shear viscosity η0 with and

without PPF merge at high molecular weights, where the influence of PPF is di-
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center

PPF

Ltube

Ltube,PPF

Figure 3.14.: Primitive path fluctuation of a linear chain. The outer ends of the
chain (blue) move towards the center. During this process, the terminal ends of
the tube get lost and the chain ends relax. When the ends extend again, new
random tube regions are formed.

minishing (M/Me > 100, fig. 3.15). Between the critical molecular weight Mc

and the reptation molecular weight Mr, Mc < Mw < Mr (see also section 3.2.2),

reptation plus PPF can predict the experimentally observed scaling of η0 ∝ M3.4
w .

The inclusion of PPF also broadens the relaxation time spectrum, which leads

to a less steep decrease of G′′(ω) in the rubber region, than with reptation alone

(fig. 3.13).

3.3.5. Constraint Release

Reptation and primitive path fluctuation regard a test chain in a tube, entangled

with a static matrix of surrounding polymer chains. However, each one of the

surrounding chains is also moving, and is undergoing reptation and primitive

path fluctuation at the same time. When a surrounding chain reptates, it releases

constraints on the test chain (fig. 3.16). The test chain can relax more easily as a

result. It should be mentioned, that this simple reptation model is not self consis-

tent, as the polymer matrix chains are considered static and reptating at the same

time.
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Figure 3.15.: Predictions of the zero-shear viscosity η0 as function of the number
of entanglements M/Me. The empirical formula η0 ∝ M3.4 (dashed line) is com-
pared to pure reptation (dotted line) and reptation with primitive path fluctuations
(solid thick line). Adapted from Larson [6].

The effect of constraint release (CR) is very complex and most important for po-

lydisperse linear or branched polymers. Dynamics of monodisperse, linear po-

lymers turned out to be only slightly influenced [6]. Simply explained, shorter

chains diffuse much faster than long chains can reptate, and release constraints

more readily [94].

3.4. FT Rheology in the Nonlinear Mechanical

Regime

The application of Fourier Transformation on a time-dependent stress σ(t) or nor-

mal force signal Nf(t) of an oscillatory shear experiment with the excitation fre-

quency ω1/2π is called FT rheology. It is important to optimize the recording of

the time signal with regard to external disturbance, meaning minimizing signal

54



3.4. FT Rheology in the Nonlinear Mechanical Regime

(1)

(2)

(3)

Figure 3.16.: Illustration of constraint release (CR) of a polymer test chain (thick
line). Circles represent sidewise constrains via the polymer matrix. Due to relaxa-
tion of some polymer chains (full circles), relaxation of the test chain is increased.

contributions that are not coming from the sample response. Only then will it

be possible to identify nonlinear material effects, which appear in the spectrum

besides the excitation frequency. Techniques to increase the signal to noise ratio

(S/N) in FT rheology, and to improve the recording of raw time data and obtain

artifact-free spectra are provided elsewhere in detail [5, 15, 82, 91, 125, 127].

3.4.1. Fourier Transformation - Introduction

This section covers the basic fundamentals of Fourier Transformation (FT) that

are needed to utilize FT rheology. Detailed description is given in several articles

and textbooks [15, 73, 74, 102, 125–127, 129].

With Fourier Transformation it is possible to decompose any continuous, aperio-

dic function f(x) into its continuous spectrum F (y) with equation (3.40) [74]. It

is also possible to recover the original function by a reverse Fourier transform,
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called Fourier synthesis, eq. (3.41).

F (y) =

∫ +∞

−∞

f(x)e−iyxdx (3.40)

f(x) =
1

2π

∫ +∞

−∞

F (y)e+iyxdy (3.41)

It is mostly used in signal processing to transform a discrete signal from the time

domain into the frequency domain f(t)→ F (ω). In this case, instead of a continu-

ous function, a dataset consists of discrete, limited points. The Discrete Fourier

Transformation (DFT) simply assumes a periodic continuation of the recorded

data.

For experimental FT rheology, a half sided, discrete, complex, magnitude FT is

used on the time-dependent stress signal σ(t) of an oscillatory shear experiment

[15]. It is presumed that the sample composition does not change significantly

during the time scale of the deformation period T . This means that σ(t) can be

projected in a spectrum with respect to the different frequencies ω/2π, amplitudes

and phases [15]. It is possible because of an important mathematical property of

the FT, its linearity.

a · f(t) + b · g(t)←→ a · F (ω) + b ·G(ω) (3.42)

This means, that a superposition of different signals in the time domain will result

in a superposition in the frequency domain. The FT is inherently complex. As a

result, even a real data set s(t) will result a complex spectrum S(ω) with a real

(Re) and imaginary part (Im). A complex spectrum can also be represented by a
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magnitude m(ω) and a phase φ(ω) (eqs. 3.43, 3.44 and fig. 3.17).

m(ω) =
√

Re(F (ω))2 + Im(F (ω))2 (3.43)

tan(φ(ω)) =
Im(F (ω))

Re(F (ω))
(3.44)

Im

Re
r(ω)

i(ω)
m(ω)

φ(ω)

Figure 3.17.: Depiction of a complex number with real (Re) and imaginary part
(Im), or magnitude (m) and phase (φ) in the complex plane, respectively.

Due to the Euler relation exp(iφ) = cos(φ)+i sin(φ), eq. (3.40) can also be separated

into a Fourier cosine and a Fourier sine.

F (y) =

∫ +∞

−∞

f(x) cos(yx) + f(x)i sin(yx)dx (3.45)

Experimental data is recorded digitally in discrete data points (where N is the

number of recorded points) with a fixed increment tdw (dwell time, or inverse

sampling rate) for a total time taq = tdw · N (acquisition time) of the experi-

ment. Therefore, a discrete FT (DFT) is used along half the integral limits t = 0 to

t = +∞ (half sided FT). The DFT generates N discrete complex points in the fre-

quency spectrum, when N discrete real or complex points in the time domain are

transformed. The spectral width, respectively the maximal detectable frequency,
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is called the Nyquist frequency νmax and is given by the sampling rate [15].

νmax =
ωmax

2π
=

1

2tdw
(3.46)

The spectral resolution, meaning the interval between two points in the frequency

spectrum, is defined by ∆ν = 1/taq .

3.4.2. Fourier Transformation of a Time-Dependent Stress

Signal

The most simple one dimensional flow of a viscous fluid under a constant shear

rate is described by Newton’s law (also see eq. 3.7).

σ = η · γ̇. (3.47)

For non-Newtonian fluids, the viscosity η is a function of the applied shear rate

γ̇. Due to symmetry, the viscosity η is independent of direction of shear, and

therefore: η = η(γ̇) = η(−γ̇) = η(|γ̇|). For small shear rates, respectively small

strain amplitudes, the viscosity can be expanded via an even Taylor series with

respect to shear rate.

η(γ̇) = η0 + c1 · γ̇2 + c2 · γ̇4 + · · · . (3.48)

In oscillatory shear, η0, c1, c2, ... might become complex numbers to account for

the relative phase shift. The time-dependent strain for oscillatory shear experi-

ments is given in a simplified complex notation:

γ(t) = γ0 · eiω1t (3.49)
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{

dwell time tdw

aquisition time taq

number of discrete
points, N = 10

t

{

spectral resolution = 1/tΔν aq

Nyquist frequency νmax

ν

FT

mirror

Figure 3.18.: Schematic discrete Fourier Transformation (DFT) of a sinusoidal
signal. Exemplary, the recording of 10 data points of two cycles for an acquisition
time taq = 1 s leads to 10 points in the frequency spectrum with a spectral resolu-
tion of 1 Hz, a Nyquist frequency of 5 Hz and a signal at the excitation frequency
ν1 = 2 Hz.
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The shear rate is given by the time derivative of eq. (3.49):

γ̇(t) = iω1γ0 · eiω1t. (3.50)

Insertion of eq. (3.48) in eq. (3.47) results in the shear stress σ given as a function

of shear rate γ̇:

σ(γ̇) =
(
η0 + c1 · γ̇2 + c2 · γ̇4 + · · ·

)
· γ̇. (3.51)

Substitution of the shear rate γ̇ by eq. (3.50) results in a time-dependent shear

stress:

σ(t) =
(
η0 + c1 · i2ω2

1γ
2
0 · ei2ω1t + c2 · i4ω4

1γ
4
0 · ei4ω1t + · · ·

)
· iω1γ0e

iω1t

= η0 · iω1γ0
︸ ︷︷ ︸

I1∝ω1γ0

eiω1t + c1 · i3ω3
1γ

3
0

︸ ︷︷ ︸

I3∝ω3
1γ

3
0

ei3ω1t + c2 · i5ω5
1γ

5
0

︸ ︷︷ ︸

I5∝ω5
1γ

5
0

ei5ω1t + · · · . (3.52)

Fourier Transformation of the time dependent stress should consequently consist

of peak signals at the odd higher harmonics of the excitation frequency ω1/2π in

the frequency spectrum.

The intensity of the third harmonic I3 from eq. eqrefeq:shearStress was chosen as

a sensitive quantity toward mechanical nonlinearity. To partly compensate ex-

perimental variations, I3 is normalized to the stress response I1 at the excitation

frequency ω1, which results in an intensive property I3/1(γ0, ω1) := I3/I1. This en-

hances reproducibility in a way, that these experimental errors, as for example in-

homogeneities of the sample or incorrect loading and trimming, are mainly com-

pensated, since they equally influence the different harmonic intensities. From

eq. (3.52) it is expected, that I1 ∝ γ1
0 and I3 ∝ γ3

0 , which concludes in a quadratic

scaling law of I3/1 ∝ γ2
0 at low strain amplitudes.
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3.4.3. Intrinsic Nonlinearity

The nonlinear parameter 3Q(ω, γ0) and the intrinsic nonlinearity 3Q0(ω), at low

strain amplitudes, were defined by Hyun et al. [23] as follows.

lim
γ0→0

3Q(ω, γ0) ≡ 3Q0(ω) with 3Q(ω) ≡ I3/1
γ2
0

(3.53)

Using the simplified definition of I1 and I3 from eq. (3.52), an expression for

3Q0(ω) is obtained:

3Q0(ω) ∝
c1
η0
ω2 (3.54)

From eq. (3.54), it can be seen, that the intrinsic nonlinearity 3Q0(ω) is expected to

be a function of the zero shear viscosity η0, and therefore a function of the molecu-

lar weight and the measurement temperature. With the use of the TTS principle

(section 3.2.1), intrinsic nonlinear master curves can be generated in analogy to

linear master curves, using the same WLF parameters [23, 28]. The TTS principle

is expected to be applicable for the intrinsic nonlinearity, since the nonlinear para-

meter 3Q0(ω) is a back-extrapolation of 3Q(ω, γ0) to the linear viscoelastic regime

at very small amplitudes (limγ0→0) [82].

3.4.4. Experimental Aspects of FT Rheology

Experimental measurements of polymer melts show, that I3 is dominated by a

constant noise at low strain amplitudes γ0, originating from the rheometer. Con-

sequently at low γ0, when I1 ∝ γ0 and I3 ≡ noise, I3/1(γ0) decreases [108] with

I3/1 ∝ γ−1
0 , and reaches a minimum before it increases with the expected sca-

ling of 2, when I3 ∝ γ3
0 (fig. 3.19). In this work on polymer melts, this quadra-

tic scaling was observed at medium strain amplitudes (MAOS region), generally
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Figure 3.19.: Typical dynamic strain sweep measurement of a linear homopoly-
mer melt (adapted from [76]). At medium strain amplitudes (MAOS) a proportio-
nality of I3/1 ∝ γ2

0 is observed (sample PI 87k, T = 20 ◦C, ω1 = 4 rad/s).

between 0.1 ≤ γ0 ≤ 1.0 (see fig. 3.19). However, the exact MAOS region also

depended on the polymer, molecular weight, measurement temperature related

to Tg, and excitation frequency. Finally, I3/1 typically levels off at values around

I3/1 ≈ 0.1− 0.2 at high strain amplitudes (LAOS) [126]. The minimum value that

can be reached for I3/1(γ0) highly depends on the signal to noise ratio S/N of the

instrument, which limits the application of FT rheology to quantify nonlineari-

ties. For this reason, thorough optimizations have been conducted to maximize

S/N up to 107 for I3/1 of emulsions [127]. Hyun et al. [23] assessed the nonli-

near regime for I3/1(γ0) ≥ 5 · 10−3 in their oscillatory shear tests of polymer melts.

With newer instrumentation used in this work, it was possible to reach values for

I3/1(γ0) of around one decade lower, with I3/1(γ0) ≥ 5 · 10−4 (see fig. 3.19). This

value is currently a practical limit for the beginning of the medium amplitude os-

cillatory shear (MAOS) region, followed by the large amplitude oscillatory shear

(LAOS) region, where I3/1(γ0) is not proportional to γ2
0 anymore. The proportio-

nality I3/1(γ0) ∝ γ2
0 was observed for all linear homopolymer melt samples in this

study, regardless of molecular weight, PDI or polymer type.
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The general procedure to obtain nonlinear master curves is illustrated schemati-

cally in figure 3.20. The raw stress time data of an oscillating shear experiment is
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Figure 3.20.: Scheme of a five step procedure from raw data (1) to nonlinear
master curve (5). (1) Nonlinear stress time data of an oscillatory shear experi-
ment. (2) After Fourier Transformation of the time data, a magnitude frequency
spectrum with odd higher harmonics can be obtained. (3) The ratio I3/1(γ0, ω1) of
the first and third harmonic is proportional to γ2

0 in the MAOS region. (4) Extrapo-
lation of 3Q(γ0, ω1) to small amplitudes gives the intrinsic nonlinearity 3Q0(ω1). (5)
A nonlinear master curve can be created by plotting several 3Q0(ω1) values of dif-
ferent excitation frequencies, that are shifted to a reference temperature, utilizing
the TTS principle. Adapted from Cziep et al. [76].

recorded and transformed into a frequency spectrum via Fourier Transformation

(fig. 3.20, scheme 1 and 2). From the intensities of the first and third harmonics

(I1 and I3), I3/1 is calculated and plotted against the strain γ0 (fig. 3.20, scheme

3). This procedure is repeated for different frequencies and/or different tempe-

ratures to cover a maximum experimental range in the 3Q0(ω) frequency space.

From each I3/1(γ0) plot, the MAOS region with I3/1 ∝ γ2
0 is identified and the pa-

rameter 3Q(ω, γ0) = I3/1/γ
2
0 is calculated. In a 3Q versus γ0 plot, a plateau can be

identified, whose average value is extrapolated to infinite small strains, γ0 → 0,
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and eventually yields 3Q0(ω), see fig. 3.20, scheme 4. Each 3Q0(ω) value is plot-

ted against the frequency and a nonlinear master curve is obtained via the TTS

principle (fig. 3.20, scheme 5).
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4. Intrinsic Nonlinearity in

Pom-Pom and MSF Constitutive

Equations

Modeling and simulation in polymer rheology has proven to be extremely worth-

while over the last decades [31, 32, 93, 100]. Mathematical and numerical models

help to understand and reveal underlying physics of rheological behavior, corre-

lated to polymer properties, such as the monomer, molecular weight, dispersity

and topology. The development and refinement of these models and simulations

certainly require a close collaboration between experimentalists and theorists. An

active communication between both sides is therefore the foundation of further

progress in polymer science.

In this chapter, two constitutive models are introduced. Predictions of the Pom-

Pom model are compared to the molecular stress function (MSF) model, which

leads to a more generalized prediction for the intrinsic nonlinear behavior of li-

near polymer melts. The new generalized expression then can be used to inves-

tigate results from nonlinear shear experiments in chapter 5. The predictions in

this chapter were performed by Dr. Mahdi Abbasi.
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4.1. Pom-Pom Model

4.1.1. Fundamentals

The Pom-Pom model is a molecular based constitution equation model, and was

developed by McLeish and Larson [31] to predict rheological behavior of model

branched polymers. An idealized branched molecule, called a ”pom-pom”, con-

sists of a backbone with two branching points at each end, with a number of q

dangling arms per side, respectively (fig. 4.1).

backbone

branching pointq dangling arms

Figure 4.1.: Idealized model Pom-Pom molecule. A number of q dangling arms
(”pom-poms”) are attached to each end of a linear backbone.

The advantage of the Pom-Pom model is that smaller relaxation times, originating

from chain end effects, can be neglected and focus on the slower backbone dyn-

amics is given. The branches are entangled with surrounding molecules, which

allows to examine backbone behavior due to orientation and relaxation times in

shear and extensional deformation.

The Pom-Pom model features three important relaxation times. The stretch relax-

ation time of the backbone τs and the longest relaxation time (orientation) of the
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backbone τb, as well as the longest relaxation time of the branches τa.

τs = Zbτa(0)q (4.1)

τb =
4

π2
Z2

bΦbτa(0)q (4.2)

τa = τ0 exp

[
15

4
Za

(
(1− x)2

2
)− (1− Φb)

(1− x)3

3

)]

(4.3)

The backbone relaxation τb, eq. (4.2), not only depends on the backbone molecu-

lar weight Zb (in terms of number of entanglements) and the volume fraction of

the backbone Φb, but is also influenced by the number of dangling arms q and

the relaxation time τa of the fraction x of one arm segments that is drawn into the

backbone tube at a given time. It is therefore time-dependent. The arm relaxation

time τa, eq. (4.3), is also time-dependent and changes with x. The stretch relax-

ation time τs of the backbone, eq. (4.1), has a fixed timescale and depends only

on the molecular weight Zb of the backbone and the longest arm relaxation time

τa(0), while not being drawn into the backbone tube.

Using the multi-mode variation of the Pom-Pom model, suggested by Inkson et

al. [92], the stress tensor is given by the following equation, where second rank

tensors are represented by bold letters.

σ = 3

N∑

i

Giλ
2
i (t)Si(t) (4.4)

Where Gi are the elastic moduli and λi are the stretch ratios of the backbone. S

is the orientation tensor, which is given by the unit tensor, and K is the velocity

gradient.

S =
A

trA
(4.5)

DA

Dt
= K ·A+A ·KT − 1

τb
(A− I) (4.6)
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An evolution of the originally proposed Pom-Pom model was given by Blackwell

et al. [72] and McLeish et al. [99], which discusses a branch point displacement.

The stretch relaxation time τs, and the backbone stretch itself, is reduced by an

exponential factor. Consequently, the stretch equation is nonlinear in λ(t).

Dλ(t)

Dt
= λ(t)K : S− 1

τs
(λ(t)− 1)e

2(λ(t)−1)
q−1 for λ < q (4.7)

A subsequent modification by Lee et al. [96] accounts for the reversing flow of

entangled chains.

1

τ ∗b
=

1

τb
+

λ̇

λ
−K : S for λ < 1 (4.8)

This is especially important for the investigation of oscillatory shear, since a re-

versal of flow is applied repeatedly to the molecules.

4.1.2. Pom-Pom Model Predictions for Nonlinearity in MAOS

Hyun et al.[24] and Hoyle et al.[29] simulated the single mode Pom-Pom consti-

tutive equation in the LAOS/MAOS regime within the framework of FT rheology

analysis. In order to focus on molecular weight effects, a single mode Pom-Pom

model is used [24]. The slowest mode in the relaxation spectrum {Gi, τi} is chosen

for this, since it is the most dominant. This is the longest relaxation time τ0. The

single mode Pom-Pom constitutive equation is given by the following equation,

with G0
N being the plateau modulus.

σ = 3G0
NΦ

2
bλ

2(t)S(t) (4.9)

The volume fraction of the backbone Φb equals 1 for linear polymers. Simulation

of the single mode Pom-Pom model in MAOS showed that the stress response
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depends on the ratio of orientation time τb (respectively the longest relaxation

time τ0 for linear polymers), and the stretch relaxation time τs, of the backbone,

which are proportional to the number of effective entanglements Zb along the

backbone.

r =
τb
τs

=
4

π2
Zb (4.10)

Hoyle et al. [29] concluded that for q > 1, the predictions of I3/1(γ0) in MAOS

are more sensitive to changes in the ratio of relaxation times, r = τb/τs, than to

changes in the degree of branching, q.

In this work, the main focus lies on the investigation of nonlinear behavior of

linear polymer melts. The backbone orientation time τb is correlated to, and ter-

med as the longest relaxation time τ0 within the framework of linear, monodis-

perse polymers, to ensure a distinct and consistent nomenclature in the following

remarks.

One method to predict the rheology of a linear molecule using the Pom-Pom

constitutive model is to set the branching degree q = 1, and the stretch relaxation

time to zero, τs = 0, meaning r →∞. Another possible viewpoint is that a linear

molecule could also exhibit chain stretch relaxation and therefore τs > 0. With

respect to the latter assumption τs > 0, the ratio of relaxation times r in the limit

of a linear polymer could be presented as [24]:

r =
τ0
τs

=
4

π2

Mw

Me
≈ 0.4Z (4.11)

Where Z = Mw/Me is the number of entanglements of the linear molecule, and

the volume ratio Φb of the backbone from eq. (4.10) approaches 1.

With respect to this criterion, the Pom-Pom model with a single relaxation time

is used with Z as the only fitting parameter, to predict the rheological behavior
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of linear polymer melts in the MAOS regime. Single mode models result in an

approximation for monodisperse polymers. However, even linear monodisperse

polymers show a relaxation time spectrum due to different relaxation mecha-

nisms of the polymer chain (see also chapter 3.3). Nevertheless, a single mode

version was used to gain an analytical solution for 3Q0 in the MAOS region with

an explicit formula as a function of molecular weight (respectively Z) and the

Deborah number De = ωτ0.

An asymptotical solution of the Pom-Pom differential equation at low strain am-

plitudes (γ0 ≤ 1) results in the intensity of the first and third harmonics of the

stress response σ(t) with the Deborah number De, and the number of entangle-

ments Z in the following equations (see appendix B and [25] for detailed calcula-

tion).

γ(t) = γ0 sin(ωt)

σ(t) =
∑

n=odd

I ′n sin(nωt) + I ′′n cos(nωt) (4.12)

I ′1 = G0
N

(
De2

1 +De2

)

γ0 (4.13)

I ′′1 = G0
N

(
De

1 +De2

)

γ0 (4.14)

I ′3 = G0
N

(
De4(1− 2.5Z−1)(De2 + 12.5De2Z−1 − 2− 2.5Z−1)

π(1 + 25De2Z−2)(1 + 4De2)(1 +De2)2

)

γ3
0 (4.15)

I ′′3 = G0
N

(
De3(1− 2.5Z−1)(10De4Z−1 − 5De2 − 20De2Z−1 + 1)

2π(1 + 25De2Z−2)(1 + 4De2)(1 +De2)2

)

γ3
0 (4.16)

Where G0
N is the rubber plateau modulus and I ′1 and I ′′1 , are proportional to the

storage and loss modulus, respectively. I ′3 and I ′′3 are the real and imaginary parts

of the absolute value of the intensity of third harmonics in the shear stress. With

respect to the definition of 3Q0(ω) (eq. 3.53) and eqs. (4.13) to (4.16), the intrinsic

nonlinearity 3Q0(De) is calculated as follows, where I1 =
√

I ′1
2 + I ′′1

2 and I3 =
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4.1. Pom-Pom Model

√

I ′3
2 + I ′′3

2.

3Q0(De) =
De2(1− 2.5Z−1)

2π(1 + 25De2Z−2)0.5(1 + 4De2)0.5(1 +De2)0.5
for Z > 2.5 (4.17)

Please note, that 3Q0(ω) cannot be smaller than 0, and equation (4.17) is therefore

limited to Z > 2.5. Detailed calculations of 3Q0(De) from the single mode Pom-

Pom model are given in the appendix.

Figure 4.2 presents the normalized storage and loss modulus, G′/G0
N and G′′/G0

N ,

calculated from eqs. (4.13) and (4.14), along with 3Q0 vs De (eq. 4.17) for various

number of entanglements (Z = 5, 10, 40, 630 and∞).
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Figure 4.2.: Predictions of the single mode Pom-Pom model for the intrinsic non-
linearity 3Q0(De) along with predictions for normalized loss and storage modulus
as a function of different entanglement numbers Z (modified from [76]).

It is shown that for low Deborah numbers, De < 1 (De = 1 is the crossover of

G′/G0
N and G′′/G0

N ) the intrinsic nonlinearity 3Q0 scales to De2, where it behaves

like the storage modulus G′. At high Deborah numbers, De≫ 1, 3Q0 scales with

De−1, which is the same scaling as the loss modulus G′′. Figure 4.2 depicts that an

increasing molecular weight results in a broader peak for 3Q0, utilizing the Pom-
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4. Intrinsic Nonlinearity in Pom-Pom and MSF Constitutive Equations

Pom model. For polymers with Z ≤ 2.5 the simplified Pom-Pom model predicts

negative intensities (see eq. 4.17), that are clearly without physical meaning. An

asymptotical simplification of eq. (4.17) for low and high Deborah numbers De

results in the following equations.

3Q0(De) =
1

2π

(1− 2.5Z−1)De2

1
for De→ 0 (4.18a)

3Q0(De) =
1

2π

(1− 2.5Z−1)De−1

10Z−1
for De→∞ (4.18b)

Combination of eqs. (4.18a) and (4.18b) result in a simplified equation with the

correct asymptotic limiting function.

3Q0(De) =
1

2π

(1− 2.5Z−1)De2

1 + 10Z−1De3
for Z > 2.5 (4.19)

This expression can be used as an approximation of 3Q0(De) for low and high

Deborah numbers.

The prediction for the maximum value 3Q0,max of the intrinsic nonlinearity can be

calculated from the derivative of eq. (4.19).

3Q0,max =
(1− 2.5Z−1)(Z/5)2/3

6π
(4.20)

lim
Z−→∞

3Q0,max =
1

4π
≈ 0.08 (4.21)

Detailed calculations for 3Q0(ω) and 3Q0,max from the Pom-Pom model are given

in the appendix B.

It is worth mentioning, that the simplified eq. (4.19) cannot predict 3Q0,max around

De ≈ 1 properly, as this equation is an approximation, optimized for low and

high Deborah numbers. Figure 4.3 shows a comparison of 3Q0(De) with Z = 10

between the asymptotic equation (4.19) and the exact solution (eq. 4.17) as pre-
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4.2. Molecular Stress Function (MSF) Model

dicted from the single mode Pom-Pom model. The maximum deviation, referred

to the exact equation, is given at De = 1 with almost 77%. For small (< 0.02) and

high (> 50) Deborah numbers the deviation diminishes below 0.1% nevertheless.
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Figure 4.3.: Single mode Pom-Pom model predictions of 3Q0(De) for Z = 10
from the exact equation (4.17) and the simplified asymptotic equation (4.19). The
maximum deviation between the exact and the simplified solution is given at De =
1, with almost 77% (adapted from [76]).

4.2. Molecular Stress Function (MSF) Model

4.2.1. Fundamentals

The molecular stress function (MSF) model is alike the Pom-Pom model (section

4.1) a molecular based constitutive model. It is based on the Doi-Edwards (DE)

theory [78] and includes backbone stretching along with the sidechain orientation

of comb-like molecules during deformation. It was developed by Wagner et al.

[120–123] as a tube segment model, originating from a slip-link model [120]. In

contrast to the original tube model of Doi and Edwards, the MSF model respects
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4. Intrinsic Nonlinearity in Pom-Pom and MSF Constitutive Equations

a variable tube diameter a(t) during deformation (fig. 4.4). At small deformati-

ons the tube diameter is inversely proportional to the average stretch of the tube

[120]. The MSF model successfully predicted nonlinear phenomena, e.g. strain

hardening in extensional flow and stress overshoot in transient shear flow, for

linear [120, 121] and branched [121–123] polymers.

undeformed tube

deformed tube

Figure 4.4.: Deformed and undeformed tube in theroy of the MSF model. Adap-
ted from Wagner et al. [122].

The extra stress tensor in the MSF model is given by the following equation.

σ(t) =

∫ t

−∞

m(t− t′)f 2(t, t′)SIA
DE(t, t

′)dt′ (4.22)

Where m(t− t′) is the viscoelastic memory function, which can be obtained from

the relaxation spectrum {Gi, τi} of linear rheological data.

m(t− t′) =
δG(t− t′)

δt′
=

N∑

i=1

Gi

τi
exp

(

−t− t′

τi

)

(4.23)

The molecular stress function f is the relative tube diameter at equilibrium state

(a0) and after deformation (a).

f(t, t′) =
a0

a(t, t′)
(4.24)
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4.2. Molecular Stress Function (MSF) Model

The time t′ indicates the time when the tube segment was created with an equili-

brium tube diameter, and t is the present time, when the stress is measured.

In a more recent work, Abbasi et al. [69] proposed an evolution equation for f

with respect to long chain branching (LCB).

δf 2

δt
= βf 2

(

(K : S)− CR

f 2 − 1

)

− (β − 1)
δf 2

s

δt
(4.25a)

Where f and fs represent the backbone and sidechain stretching, respectively.

Abbasi et al. [25] concluded in a further work, that for fs << f , i.e. short arms,

the sidechain stretch equals 1, fs = 1, and therefore eq. (4.25a) can be reduced .

δf 2

δt
= βf 2

(

(K : S)− CR

f 2 − 1

)

(4.25b)

This equation respects constraint release (CR) due to motion of the surrounding

polymer matrix.

CR =
(f 2 − 1)2

f 2
max − 1

√
D2 : S+ a2(f

2 − 1)2
√

|WD : S| (4.26)

The parameter β is associated with the isotopic stretch of the polymer chains (ra-

tio of number of all entanglements to number of entanglements of the backbone,

β = Mw/Mb), and was shown to be sensitive to the topology of the molecule. It

is also connected to the rate of strain hardening in extensional flow. Parameter a2

is related to the overshoot in transient shear flows, and fmax predicts the maxi-

mum (steady-state) viscosity. Correlation of molecular structure to the nonlinear

parameters fmax, β and a2 is presented in [32].

SIA
DE is the strain measure of the Doi-Edwards (DE) model, using the independent

alignment (IA) assumption [124], and was approximated by Curries’s formula
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4. Intrinsic Nonlinearity in Pom-Pom and MSF Constitutive Equations

[75].

SIA
DE(t, t

′) = 5S = 5

[(
1

J − 1

)

B−
(

1

(J − 1)(I2 + 13/4)0.5

)

C

]

(4.27)

with J = I1 + 2
√

I2 + 13/4) (4.28)

C and B are the Cauchy and Finger tensors, respectively, I1 is the trace of B, and

I2 is the trace of C. Please note, that in this context, I1 and I2 may not be mistaken

for the higher harmonic intensities from chapter 3.

4.2.2. MSF Model Predictions for Nonlinearity in MAOS

The MSF model was extended to predict the nonlinear behavior of linear and

long chain branched molecules (e.g. strain hardening in extensional flows) in

different nonlinear deformations with a maximum of three nonlinear parameters

β, fmax and a2 (see eq. 4.25a and 4.26) [32]. Wagner et al. [26] used the MSF

model to predict 3Q0(ω) data of entangled linear and model comb polystyrenes,

which before had been experimentally provided by Hyun and Wilhelm [23] in

the framework of FT rheology. The strain measure S for small deformations from

eq. (4.27) could be expressed in a general form as a function of a series of odd

strain powers.

S = γ − (α− β)γ3 +O(γ5) (4.29)

They concluded that 3Q0(ω) is proportional to the difference of the orientatio-

nal effect α and the stretching effect β, whereas fmax (maximum tension in a

chain segment, governs the steady state extensional viscosity) and a2 (governs

the overshoot in transient shear viscosity) had no distinct effect on 3Q0(ω). The

consideration of the DE model for linear polymers with the independent align-

ment assumption (DE-IA) resulted in a constant α = 5/21. The stretching effect
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4.2. Molecular Stress Function (MSF) Model

β was used as a fitting parameter for polymer combs by Wagner et al. [26], whe-

reas βW = 0.12 resulted for linear polystyrenes (see below, as notation was later

modified by Abbasi et al. [25]).

Abbasi et al. [25] extended this idea and presented an evolution equation to pre-

dict the extensional, transient shear and MAOS behavior simultaneously with a

single set of nonlinear material parameters. In this evolution equation, the pa-

rameter β is changed by its numerical value and represents the ratio of number

of entanglements in the whole molecule to the number of entanglements in the

backbone, and controls the rate of strain hardening in extensional flow. Based on

this definition, β is equal to 1 for a linear polymer and increases monotonically

with increasing long chain branching content. In the final evolution equation,

βW = 0.12 from Wagner et al. [26] was replaced with βA/10 = 0.1 by Abbasi et al.

[25], to gain a consistency between the predicted β for linear polymer topologies

and the fitting of the model on the extensional viscosity, and 3Q0 in MAOS defor-

mation. Within this thesis, from now on, the definition of Abbasi et al. β = βA

will be used, where a non-branched polymer has β = 1 per definition.

An asymptotical solution of the single mode MSF model for linear polymers in

MAOS results, in analogy to the single mode Pom-Pom model (eq. 4.12 to 4.16), in

the intensity of first and third harmonics as a function of Deborah number, De =

ωτ0, and of the difference of the orientation and stretch parameters (α− β/10).

I ′1 = G0
N

(
De2

1 +De2

)

γ0 (4.30)

I ′′1 = G0
N

(
De

1 +De2

)

γ0 (4.31)

I ′3 = G0
N

3

4
(α− β/10)

(
De2

1 +De2
− 4De2

1 + 4De2
+

3De2

1 + 9De2

)

γ3
0 (4.32)

I ′′3 = G0
N

3

4
(α− β/10)

(
De

1 +De2
− 2De

1 + 4De2
+

De

1 + 9De2

)

γ3
0 (4.33)
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4. Intrinsic Nonlinearity in Pom-Pom and MSF Constitutive Equations

With respect to the definition of the intrinsic nonlinearity 3Q0(De) (eq. 3.53) and

eqs. (4.30) to (4.33), 3Q0(De) is calculated for the single mode MSF model (for

detailed calculation see Appendix):

3Q0(De) =
3

2
(α− β/10)

De2

(1 + 9De2)0.5(1 + 4De2)0.5
(4.34)

An asymptotical simplification of eq. (4.34) for low and high De, in analogy to

equations (4.18a) and (4.18b), results in:

3Q0(De) =
3

2
(α− β/10)

De2

1 + 6De2
(4.35)

Figure 4.5 shows predictions for 3Q0(ω) for a linear (β = 1) and a slightly bran-

ched polymer (β = 1.75). The single mode MSF model predicts a scaling of 2 for
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Figure 4.5.: Single mode MSF model predictions of 3Q0(De) for β = 1 (linear
polymer) and β = 1.75 (slightly branched) from eq. (4.34).

small frequencies, 3Q0(ω) ∝ De2. This agrees with the behavior of the storage

modulus G′ in the flow regime. Around De = 1, a constant value for 3Q0(ω) is
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4.2. Molecular Stress Function (MSF) Model

reached, which is maintained for higher frequencies as well.

3Q0,max = lim
De→∞

3Q0(ω) =
1

4
(α− β/10) (4.36)

An increasing parameter β for more branched polymers, decreases the maximum

plateau value of 3Q0,max, linearly (fig. 4.5).

Using α = 5/21 and β = 1.0 for a linear polymer topology, eq. (4.35) will be

simplified even further (for detailed calculation see appendix B).

3Q0(De) = 0.207
De2

1 + 6De2
(4.37)

3Q0,max = lim
De→∞

3Q0(De) = 0.0345 (4.38)

The deviation between eq. (4.37) compared to the exact equation (4.34) is at max-

imum, at around De = 0.4, below 2 % (fig. 4.6).
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Figure 4.6.: Single mode MSF model predictions for 3Q0(ω) from the exact eq.
(4.34) and the asymptotic simplification eq. (4.35) for linear polymers (β = 1). The
maximum deviation between both solutions is 2 % at maximum (normalized to the
exact equation).
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4.3. General Prediction for Nonlinear Behavior from

Constitutive Models

Equations (4.13) and (4.14) in the Pom-Pom model and eqs. (4.30) and (4.31) in

the MSF model show, that these models predict similar Maxwell behavior for the

loss and storage modulus at low enough strain amplitudes. Figure 4.7 compa-

res eq. (4.34) from the MSF model (with constant parameter α = 5/21 and two

different β = 1.0 and 1.75) with Pom-Pom model predictions (eq. 4.17). The

MSF model predictions, as well as the Pom-Pom model, scale with De2 at low

frequencies. After the crossover point of the normalized loss and storage modu-

lus, the MSF predictions level off at a plateau value of 3Q0,max = 0.25(α − β/10),

where for a linear polymer 3Q0,max ≈ 0.03, for α = 5/21 and β = 1. This leve-

ling off at high frequencies is similar to the predictions of the Pom-Pom model

(3Q0,max = 1/4π ≈ 0.08) with infinitive number of entanglements (Z → ∞, see

eq. 4.21). However, the MSF model predicts the same value 3Q0,max for all linear

polymers, and has no parameter to adapt for varying molecular weights.

A comparison between equations (4.19) and (4.37), as well as in view of figure 4.7,

it can be assumed that a general equation could predict the intrinsic nonlinearity

3Q0(De) at low and high De as with three fitting parameters.

3Q0(De) = a
De2

1 + b ·De2+k
(4.39)

Here a, b and k are the material characteristics, that might depend on the mono-

mer type, molecular weight, and/or polydispersity.

For the Pom-Pom model, a and b show a dependence on the entanglement num-

ber Z, a = 1/(2π)(1 − 2.5Z−1) and b = 10Z−1. In the MSF model, a and b are
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Figure 4.7.: Predictions of the Pom-Pom and MSF model for 3Q0(ω) in compa-
rison (adapted from [76]). For small frequencies, both models predict similar
nonlinear behavior for monodisperse polymers (3Q0(ω) ∝ De2).

constants instead, a = 1.5(α− β/10) and b = 6, with α = 5/21 and β = 1. In other

words, for a linear polymer, the MSF model predicts 3Q0(De) as a function only

of the longest relaxation time τ0. This longest relaxation time τ0 can be predicted

by polymer reptation theories (τ0 ∝ M3.4) or by direct measurements of loss and

storage modulus data [6].

lim
ω→0

(
G′′

ω

)

=
∑

i

Giτi (4.40)

lim
ω→0

(
G′

G′′2

)

=
∑

i

Giτ
2
i

(Giτi)2
(4.41)

lim
ω→0

(
G′′

ω
· G

′

G′′2

)

= lim
ω→0

(
G′

ωG′′

)

= τ0 (4.42)

In contrast to the MSF model, 3Q0(De) depends not only on the longest relaxation

time τ0 in the Pom-Pom model, but also on the molecular weight Mw.
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5.1. Methodology

All rheological characterizations were conducted with an ARES G2 strain control-

led rotational rheometer from TA instruments. Parallel plate geometries (13 mm

and 25 mm diameter) were used to measure the linear behavior. Nonlinear os-

cillatory shear (MAOS) tests were partly conducted with cone-plate geometries

(13 mm and 25 mm diameter, both with 0.1 rad cone angle) to maintain a homo-

genous shear field, partly with a self-made 10 mm partitioned plate geometry in

combination with a 13 mm, 0.1 rad cone geometry. The partitioned plate setup

was chosen to obtain high shear rates without edge fracture affecting the measu-

rement [113]. However, the partitioned plate-cone (ppc) setup was not optimal

for all samples and measurement temperatures, since percolation of the sample

into the split between geometry and surrounding plate occurred. The small di-

ameter of 10 mm, and a resulting low torque also lead to sensitivity issues, es-

pecially for low entangled polymers. Therefore, if not stated otherwise, the here

presented results were measured with a simple plate-plate (SOAS) or cone-plate

(MAOS) geometry.

The ARES G2 rheometer, used in this work, is provided with the TA Instruments

TRIOS software, which is capable of directly calculating I3/1 from raw stress time
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data (correlation mode). The nonlinear master curves were then created from

3Q0 values with the TTS principle, utilizing WLF parameters from corresponding

linear master curves. Reinheimer et al. [127] rated the reliability of the TRIOS

software correlation mode, compared to raw tima data measurements, as most

accurate for nonlinear experiments. Nevertheless, raw stress time data was re-

corded additionally in the transient mode and Fourier transformed with a home-

written MATLAB routine, to gain access to the frequency spectra of stress and

normal force.

Most of the presented results of linear homopolymer melts in this chapter were

published in Cziep et al. [76].

5.2. Linear homopolymer Melts

All polymer samples have been specifically synthesized with anionic polymeri-

zation (see chapter 2), free radical polymerization or emulsion polymerization,

with the exception of high density polyethylene (HDPE), which was donated

and characterized (Mw, Mn, PDI) by LyondellBasell, and poly(ethylene oxide)

(PEO), which was kindly donated and characterized by Polymer Standards Ser-

vice GmbH (PSS). Table 5.1 lists the investigated samples.

5.2.1. Small Amplitude Oscillatory Shear (SAOS) Experimen ts

Oscillatory shear experiments were conducted in the linear regime for all poly-

mer melts in this work. The linear viscoelastic region of each sample was de-

termined with strain sweep experiments under oscillatory shear. Linear master

curves of G′(ω) and G′′(ω) have been acquired via the TTS principle [27] (see also
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5.2. Linear homopolymer Melts

sample* Mw Mn PDI Z Polymerization
[g/mol] [g/mol] (Mw/Me)

** method

PS 25k 24 600 23 700 1.03 1.5 anionic
PS 43k 43 000 41 800 1.03 2.6 anionic
PS 83k 83 400 81 100 1.03 5.0 anionic
PS 154k 154 300 146 100 1.06 9.2 anionic
PS 340k 340 100 294 500 1.15 20.2 anionic
PS 107k 106 700 53 600 2.00 6.4 free radical
PS 112k 112 200 67 500 1.66 6.7 free radical
PS 186k 186 400 79 900 2.33 11.0 emulsion
PS 602k 602 000 127 400 4.70 35.5 emulsion

PI 22k 22 300 21 600 1.04 4.5 anionic
PI 42k 42 500 41 100 1.03 8.6 anionic
PI 87k 86 800 84 300 1.03 17.6 anionic

PpMS 32k 31 900 30 500 1.04 1.4 anionic
PpMS 210k 210 100 199 700 1.05 9.3 anionic

P2VP 83k 82 900 71 500 1.16 3.4 anionic

PMMA 89k 89 400 85 400 1.05 16.7 anionic

PEO 220k 220 000 197 000 1.11 110 anionic∗∗∗

PEO 1020k 1 020 000 884 000 1.15 510 anionic∗∗∗

HDPE 155k 155 000 10 300 15.0 187 ∗∗∗

HDPE 338k 338 400 12 500 27.2 409 ∗∗∗

* sample nomenclature comprises polymer abbreviation (e.g. PS for poly-
styrene) and rounded weight average molecular weight Mw (e.g. 25k ≡
24 900g/mol)

** entanglement molecular weights of referred polymers in kg/mol: (PS) 16.8,
(PI) 4.6, (PpMS) 22.5, (P2VP) 24.3, (PMMA) 5.4, (PEO) 2.0, (HDPE) 0.8

*** PEO provided by PSS; HDPE provided by LyondellBasell

Table 5.1.: Linear homopolymer melt samples, used in this thesis. The table lists
molecular weights and PDIs as obtained by SEC.
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tab. 5.1 and section 3.2.1). The purpose of SAOS measurements was to attain

information about material specific dynamics in the linear regime, such as the

discrete relaxation spectrum {Gi, τi}, including the longest relaxation time τ0, the

modulus crossover frequency where, ω1τco = 1, and the plateau modulus G0
N as

another important property. The obtained WLF parameters C1 and C2 (tab. 5.2)

were used in the creation of nonlinear master curves of the intrinsic nonlinearity

3Q0(ω) for each respective sample (see following section 5.3). Features from li-

near viscoelastic data were also compared directly to nonlinear measurements, to

help determine correlations between nonlinear mechanical behavior and molecu-

lar properties.

The longest relaxation time τ0 can be predicted by polymer reptation theories

(τ0 ∝ M3.4) or by direct measurements of loss and storage modulus data, re-

spectively the zero-shear viscosity η0 and steady-state compliance Je
0 [6].

η0 = lim
ω→0

(
G′′

ω

)

=
∑

i

Giτi (5.1)

Je
0 = lim

ω→0

(
G′

G′′2

)

=
∑

i

Giτ
2
i

(Giτi)2
(5.2)

τ0 = η0J
e
0 = lim

ω→0

(
G′′

ω
· G

′

G′′2

)

= lim
ω→0

(
G′

ωG′′

)

(5.3)

Discrete relaxation spectra {Gi, τi} from the same linear oscillatory shear data

were used for predictions from the Pom-Pom and MSF constitutive models (see

section 4). It was possible to calculate the entanglement molecular weight Me

from the plateau value G0
N of the storage modulus G′(ω) for most of the here

presented polymers, using the definition of equation (3.29) from Graessley and

Fetters [85, 88].

The storage modulus G′(ω) of monodisperse samples showed a plateau modu-

lus G0
N in the rubber plateau region, while for samples with a PDI ≥ 1.2 only a
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shoulder could be examined (see fig. 3.9 in section 3.2.3). For all monodisperse

polymers, the expected proportionality of G′ ∝ ω2 and G′′ ∝ ω1 were reached

at low frequencies. The plateau value G0
N was determined by the minimum of

tan δ = G′′/G′ in the rubber plateau region [130]. From this plateau value G0
N ,

the entanglement molecular weight Me was calculated with equation (3.29). For

samples synthesized from the same monomer, Me was taken from the sample

with the highest molecular weight and a PDI ≤ 1.2. Where possible, self mea-

sured values for Me were used in this work to calculated the average number of

entanglements Z = Mw/Me. The exact values for Me may therefore differ slightly

from literature values. However, values from literature [85] were used for HDPE

and PEO, that did not allow to determine Me with the mentioned method.
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Figure 5.1.: Longest relaxation time τ0(Z) for linear monodisperse homopo-
lymers. Dotted lines show the expected scaling with molecular weight with
τ0 ∝M3.4

w for polystyrene (PS) and polyisoprene (PI).

The longest relaxation times τ0, calculated with eq. (5.3) for monodisperse sam-

ples are presented in figure 5.1. The expected scaling of τ0 ∝ M3.4
w was achieved,

which approves the obtained data for further investigation in the nonlinear re-

gime.
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sample Tref C1 C2 G0
N Tg τ0

a

[◦C] [K] [kPa] [◦C] [s]

PS 25k 160 7.455 131.4 287.7 103.6 0.0013
PS 43k 160 5.396 98.8 217.1 105.4 0.0085
PS 83k 160 6.087 104.6 178.8 105.5 0.13
PS 154k 160 6.153 104.7 153.0 107.8 1.3
PS 340k 160 6.199 104.8 169.2 106.7 33
PS 112k 160 6.149 105.5 166.0 105.7 na
PS 107k 160 6.044 104.4 140.0 106.0 na
PS 186k 160 6.146 103.6 135.2 106.3 na
PS 602k 160 5.853 103.6 167.6 106.7 na

PI 22k -10 6.245 104.3 339.1 -65.0 0.0048
PI 42k -10 6.651 106.6 335.6 -61.5 0.066
PI 87k -10 6.370 104.7 357.7 -58.2 0.84

PpMS 31k 160 5.374 84.2 156.6 90.6 0.058
PpMS 210k 160 6.770 96.8 129.9 113.5 33

P2VP 83k 160 6.828 121.4 135.0 86.5 2.7

PMMA 89k 160 10.782 140.4 605.0 125.6 10

PEO 220k 80 2.469 203.2 na na 0.25
PEO 1020k 80 1.206 91.5 na na na

HDPE 155k 140 2.246 212.4 na 133.9b na
HDPE 338k 140 2.835 270.9 na 130.3b na

a relaxation times are listed for Tg + 60 ◦C with exception of PEO
220k, which is given for T = 80 ◦C

b no Tg was measured for HDPE, instead the melt temperature Tm

is listed

Table 5.2.: Obtained material and rheometry properties from linear viscoelastic
shear experiments of linear homopolymers, presented in this work. The list is
completed by the glass transition temperature Tg for each sample, obtained by
DSC. Except for the PEO and HDPE samples, all polymers were synthesized
within this thesis. For further material characterization, see table 5.1.
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5.3. Medium Amplitude Oscillatory Shear (MAOS) Experiments

5.3. Medium Amplitude Oscillatory Shear (MAOS)

Experiments

Nonlinear mechanical data was obtained for all samples by Fourier Transforma-

tion of measured stress time data in medium amplitude oscillatory shear (MAOS).

The used step by step method to obtain nonlinear master curves of 3Q0(ω) is des-

cribed in section 3.4.4.

The obtained 3Q0(ω) values yielded nonlinear master curves for each polymer

sample, when the WLF parameter from corresponding linear master curves were

used (for more parameters see Tab. 5.2). The linear and nonlinear master curve

of polystyrene sample PS83k, with Mw = 83 kg/mol, a PDI of 1.03 and Z = 5 is

shown as an example in figure 5.2. The nonlinear mastercurve of 3Q0(ω) was me-

asured at three different measurement temperatures and and constructed, using

the TTS principle with WLF parameters that were obtained from the respective

linear master curve of the storage and loss modulus, G′(ω) and G′′(ω). This ex-

ample also contains two different data processing routines for 3Q0(ω), the cor-

relation and transient mode of the used TA ARES-G2 rheometer software (see

section 5.1). Especially for lower frequencies below the modulus crossover fre-

quency, and around the crossover, reproducibility of 3Q0(ω) from both methods

was achieved with an average deviation of less than 10 %.

Experience showed that measurement frequencies between ω1 = 1 rad/s and

10 rad/s constituted the ”best” data in a reasonable time. The meaning of this

assessment is discussed in the following description of a typical measurement

routine for nonlinear mastercurves 3Q0(ω).

A typical measuring routine for nonlinear mastercurves started at a certain tem-

perature with a fresh sample and a first strain sweep test at a low frequency (usu-

89



5. Rheological Experiments

0,1 1 10 100
10-4

10-3

10-2

101

102

103

104

105

correlation mode:
 180.6°C
 147.2°C
 161.7°C

transient mode:
 180.6°C
 161.7°C

 

3 Q
0 [

-]

angular frequency [rad/s]

C1 = -6.09
C2 = 104.6 K

 

 

G
', 

G
'' [

Pa
]

 G'
 G''

0 = 0.13 s

Tref = 160°C
Z = 5

Figure 5.2.: Linear (top) and nonlinear (bottom) mastercurve of monodisperse
polystyrene (PS83k). The nonlinear mastercurve was constructed by applying
the given WLF shift parameter to the measured 3Q0(ω) values from different me-
asurement temperatures. Results for 3Q0(ω) from correlation and transient mode
of the rheometer software are shown (also see fig. 3.20).
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5.3. Medium Amplitude Oscillatory Shear (MAOS) Experiments

ally 1 rad/s). The test ended with a high frequency at the same temperature and

with the same sample, at which a scaling of 2 (I3/1 ∝ γ2
0) was no longer observed.

Reasons for the non-quadratic scaling could be sample failure, for example due to

edge fracture. The experiment could also not be continued, when the torque was

too high for the instrument. Longer waiting times (up to 20 min) between two

measurements, improved our data with regard to the observation of the expected

scaling of I3/1 ∝ γ2
0 . Samples had to be fully relaxed before the next measurement,

else a scaling exponent smaller than 2 was found (typically I3/1 ∝ γ1.4−1.7
0 ). Re-

producibility of the nonlinear master curves was given in our experiments, with a

typical standard deviation for 3Q0(ω) values of estimated 4% for low frequencies,

and up to 15% for higher frequencies. Appearing scattering of 3Q0(ω) values at

higher frequencies after the observed local maximum, 3Q0,max, occurred because

of experimental difficulties. These intricacies originated from low measurement

temperatures close to the glass transition temperature Tg of the polymer melts, or

high measurement frequencies, which led to possible wall slip and other sample

failures, torque overload or low S/N of the higher harmonics, i.e. I3.

Nonlinear Master Curves of Chemically Different, Linear Mo nodisperse

Polymers

Nonlinear master curves of linear homopolymers with a low PDI ≤ 1.08 were

examined with respect to molecular weight and monomer. Investigated linear,

monodisperse homopolymers in this study were polystyrene (PS), poly(methyl

methacrylate) (PMMA), cis-1,4-polyisoprene (PI), poly-p-methylstyrene (PpMS),

poly(2-vinylpyridine) (P2VP), poly(ethylene oxide) (PEO), and polydisperse high-

density polyethylene (HDPE). For detailed sample properties see Tab. 5.1. In the

measured frequency range, the nonlinear master curves of samples with a low

PDI showed a scaling at limω→0
3Q0(ω) ∝ ωn with typically n = 2 ± 0.4 (n = 2
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expected from Eq. 4.39) and scaling exponents k between 0.06 and 0.49 for higher

frequencies, limω→∞

3Q0(ω) ∝ ω−k, after reaching the maximum 3Q0,max (Fig. 5.3;

see also Eq. 4.39). The large variety of different scaling exponents for 3Q0(ω) at
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Figure 5.3.: Nonlinear master curves of low PDI polystyrene (PS) and cis-1,4-
polyisoprene (PI) samples. For low frequencies approximately 3Q0(ω) ∝ ω2 was
found for all monodisperse polymer melts (dotted lines). Adapted from Cziep et
al. [76].

higher frequencies is based on the experimental problems described in section

3.4.4 (e.g. edge fracture), so that only few measurement points could be acqui-

red in this region. However, high frequency 3Q0(ω) data could be obtained for a

couple of polymer melt samples (PS 154k, PS 83k and PpMS 210k). These measu-
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5.3. Medium Amplitude Oscillatory Shear (MAOS) Experiments

rements resulted a scaling exponent k between 0.30 and 0.37.

A characteristic feature in the experimental data of all nonlinear master curves

of monodisperse, linear homopolymer melts is the maximum 3Q0,max. Set expec-

tations from constitutive modeling are either a dependence on the entanglement

number Z (Pom-Pom), or a constant value (MSF). The experiment reveals a cor-

relation to Z, however neither of the constitutive models presented in chapter

4 (Pom-Pom and MSF model) could predict the found scaling of approximately

3Q0,max ∝ Z0.35 (fig. 5.4.
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empiric equation 
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MSF model 
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3 Q
0,
m
ax
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]
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 PS
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 P2VP
 PpMS
 PMMA
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Figure 5.4.: Experimentally determined nonlinear master curve maxima 3Q0,max

of monodisperse, linear homopolymer melts presented in this thesis (also see
fig. 5.6). 3Q0,max scales with the entanglement number (∝ Z0.35). Predictions
from the simplified Pom-Pom (eq. 4.19) and MSF models (eq. 4.35), as well as
expectations from the anticipated empiric equation (eq. 5.5) are shown.

The nonlinear relaxation time τQ is calculated via τQωmax = 1 at the maximum

3Q0,max and is, within experimental limits, similar to the longest linear relaxation

time τ0 (fig. 5.5), which is obtained from respective linear master curves (eq. 5.3).

The found correlation of τQ = τ 0.9o was confirmed by Song et al. [114]. This
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Figure 5.5.: Comparison of the longest relaxation time τ0 with the relaxation time
τQ = 1/ωmax (see fig. 5.3). The experimentally determined scaling of 0.9 and
the the expected scaling of 1 (τQ = τ0) are displayed. Entanglement range from
Z = 1.4 to 17.6 (also see Tab. 5.1).

similarity, between nonlinear and linear relaxation times, shows that they can be

associated with similar molecular dynamics and processes.

For further analysis with respect to the Pom-Pom and MSF constitutive models,

as well as the proposed general equation (4.39) derived from these models, all

nonlinear master curves are plotted against the Deborah number, De = ωτ0. This

results in a shift on top of each other of those 3Q0(De, Z) master curves, where

the low frequency slopes, with a scaling of 2, coincide (fig. 5.6).

The obtained picture can be compared with the predicted general equation (4.39)

from the Pom-Pom and MSF constitutive model. Figure 5.6 shows the fit of

eq. (4.39) to all nonlinear master curves of low PDI polymers, with k = 0.35 as

mean value for the decreasing slope after 3Q0,max. This yielded the parameters

a and b, which were plotted against the number of entanglements Z (fig. 5.7). A

weak scaling law, related to the entanglement number Z for a and b, was found
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Figure 5.6.: Nonlinear master curves of monodisperse (PDI ≤ 1.07) linear melts
and related fits via eq. (4.39). Adapted from Cziep et al. [76].

for all investigated polymers, a = A · Z−0.5 and b = B · Z−1.

In a next step, an iteration (eq. 5.4) of equation (4.39), with the new scaling laws

for a and b, was fitted on the experimental data with respective entanglement

numbers for Z, and resulted average values for A and B.

3Q0(De, Z) = A · Z−0.5 De2

1 +B · Z−1De2+0.35
(5.4)

The values of A and B can be used in a final, empiric equation for 3Q0(De, Z),

where the molecular weight, i.e. the entanglement number Z is a fitting parame-

ter, and the Deborah number De, specifically the angular frequency ω, is used as

variable for a unifying equation (eq. 5.5).

3Q0(De, Z) = 0.32 · Z−0.5 De2

1 + 33.8 · Z−1De2+0.35
(5.5)

3Q0,max(Z) ≈ 0.01Z0.35 (5.6)

This equation approximately describes all monodisperse, linear homopolymer
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Figure 5.7.: Parameters a and b from eq. (4.39) for polymer samples with
PDI ≤1.16, along with predictions from the Pom-Pom constitutive model (pointed
line) and MSF model (point-dash lines) as a function of Z. For exact parameter
expressions see also tab. 5.3. Dashed lines indicate the power law behavior of
each parameter from the experiment as a ∝ Z−0.5 and b ∝ Z−1 (adapted from
[76]).

melts, independent of chemical composition within the investigated samples, and

might be of high importance especially for molecular dynamic simulations.

The different parameters a, b and k from eq. (4.39) are presented in table 5.3 for

the Pom-Pom and MSF model, and are compared to the semi-empiric equation

(5.5).

Figure 5.8 shows the predictions from the Pom-Pom and MSF model with expe-

Model a b k 3Q0,max

Pom-Pom 1/(2π)(1− 2.5Z−1) 10Z−1 1 1/(4π)*

MSF 1.5(α− β/10) 6 0 0.25(α− β/10)
Experiment 0.32Z−0.5 33.8Z−1 0.35 ∝ Z0.35

* for Z →∞; see also fig. 5.4

Table 5.3.: Parameters for eq. (4.39), as predicted by the Pom-Pom and MSF
constitutive model, as well as results from fits on experimental data as presented
in eq. (5.5).
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Figure 5.8.: Predictions of the simplified single mode Pom-Pom (dashed lines,
eq. 4.19) and simplified single mode MSF (dotted lines, eq. 4.37) model, measu-
red data (symbols) and predictions from the here presented semi-empiric equa-
tion (full lines, eq. 5.5). Adapted from Cziep et al. [76].

rimental data, and the here presented semi-empiric equation (5.5) in comparison.

For low frequencies, all three methods are able to depict the expected scaling

of 2, but for high frequencies, only the semi-empiric expression is able to des-

cribe the full behavior of the experimental data. It should be mentioned, that the

Pom-Pom model cannot predict 3Q0(De) for samples below a certain threshold

of Mw ≤ 2.5Z (for example PS25k), since the entanglement number is too low or

nonexistent (see also section 4.1.2).
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It was experimentally shown, that A = 0.32 and B = 33.8 from eq. (5.4) do not de-

pend on the monomer for monodisperse, linear homopolymers, but rather only

on the entanglement number Z. Therefore, eq. (5.5) seems to be a unifying quan-

tification of nonlinear shear under MAOS conditions for these kind of polymer

melts. The introduced simplified, single mode constitutive models are able to ap-

proximately predict these parameters (chapter 4). Nevertheless, for small poly-

mers below a molecular weight with Z ≤ 3, which is close to the critical molecular

weight Mc (section 3.2.2), major discrepancies occur, especially for the Pom-Pom

model (fig. 5.7). It was also shown that k is experimentally around 0.35 for mono-

disperse samples, where its predicted value is either k = 0 (MSF model), or k = 1

(Pom-Pom model).

Please note, that the sample PEO 1020k (see tab. 5.1), which has an extremely high

number of entanglements with Z = 510, was excluded from the here presented

iterative step-by-step evaluation. The reason is, that the measured 3Q0(ω) master

curve of this sample, could not be predicted by the found semi-empiric equation

(5.5), using the parameter values of A = 0.32 and B = 33.8 (fig. 5.9).

Fetters and coworkers [70, 118] stated, that the transition from a dominating

Rouse behavior and contour length fluctuation (CLF) to pure reptation of a poly-

mer chain takes place at a reptation molecular weight Mr (see also section 3.2.2),

which is a function of the polymer specific packing length p. From all inves-

tigated polymer samples in this work, only the sample PEO 1020k exceeds the

threshold of Mr. Therefore, a change in molecular dynamics is assumed due to

the extremely high molecular weight [119] (Mw = 1020 kg/mol ≫ Mr(PEO) ≈

680 kg/mol). The influence of chain end dynamics to the overall molecular relaxa-

tion spectrum diminishes for ultra-high molecular weight polymers, which could

be of interest for further investigation of nonlinear mechanical behavior.
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Figure 5.9.: Linear and nonlinear master curve of PEO1020k. The prediction
from eq. (5.5) (full line) does not conform the measured 3Q0(ω) master curve
(symbols). Instead 3Q0,max has a lower value and appears at a lower frequency
than expected.

Effect of Polydispersity

Polydisperse, linear homopolymer melts were investigated with the MSF consti-

tutive model. Fix values were chosen for the nonlinear parameters, α = 5/21 and

β = 1.0. The summation of a relaxation spectrum from each investigated sample

was used to calculate the real and imaginary parts of the higher harmonic inten-

sities I1 and I3, i.e. I ′1, I ′3, I ′′1 and I ′′3 , for every sample individually. Each spectrum

was calculated, using relaxation spectra of Gi and Dei = ωτi, instead of G0
N and

De = ωτ0 in eqs. (4.30) to (4.33). The relaxation spectra (Gi and τi, see Tab. 5.4)

were experimentally obtained from the storage and loss moduli of respective li-

near master curves. Finally, a linear summation of the obtained spectra were used

to calculate the 3Q0 parameter. Figure 5.10 depicts the simulation along with ex-

perimental 3Q0(ω) data. A wavy form is obtained for the simulation of 3Q0(ω)

instead of a smooth curve, due to the limited and fixed number of relaxation ti-

mes, which were used (see tab. 5.4). Direct comparison shows the accordance
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PS 340k (1.15) PS 186k (2.33) PS 602k (4.70)
Gi[Pa] τi [s] Gi[Pa] τi [s] Gi[Pa] τi [s]

1.89E+7 6.65E−6 8.87E+6 1.11E−5 1.13E+7 9.45E−6
5.85E+5 2.11E−4 5.09E+5 2.26E−4 3.81E+5 3.94E−4
1.69E+5 1.94E−3 1.53E+5 2.13E−3 9.90E+4 4.31E−3
5.59E+4 1.75E−2 6.57E+4 2.00E−2 3.77E+4 5.28E−2
4.08E+4 1.46E−1 4.97E+4 1.68E−1 3.39E+4 5.22E−1
4.50E+4 9.46E−1 3.67E+4 1.23E+0 3.83E+4 4.26E+0
4.90E+4 5.43E+0 2.47E+4 8.40E+0 4.39E+4 3.47E+1
4.83E+4 3.06E+1 1.75E+4 6.02E+1 3.42E+4 3.02E+2
1.04E+4 1.05E+2 7.87E+3 4.47E+2 1.35E+4 2.22E+3

1.27E+3 3.24E+3 3.12E+3 1.56E+4

PS 112k (1.66) PS 107k (2.00) HDPE 155k (15.0) HDPE 338k (27.2)
Gi[Pa] τi [s] Gi[Pa] τi [s] Gi[Pa] τi [s] Gi[Pa] τi [s]

1.34E+7 8.08E−6 1.21E+7 8.53E−6 2.34E+6 4.27E−3 2.39E+5 1.26E−2
5.13E+5 2.57E−4 4.73E+5 2.88E−4 5.35E+5 3.87E−2 9.43E+4 1.10E−1
1.68E+5 2.58E−3 1.53E+5 3.05E−3 1.76E+5 2.81E−1 4.42E+4 1.01E+0
9.08E+4 2.27E−2 7.95E+4 2.69E−2 3.39E+4 2.54E+0 1.30E+4 1.19E+1
5.48E+4 1.52E−1 3.97E+4 1.81E−1
1.89E+4 8.44E−1 1.09E+4 1.03E+0
2.08E+3 4.46E+0 9.93E+2 5.57E+0

Table 5.4.: Relaxation spectra of polydisperse samples at T(PS) = 160 ◦C and
T(HDPE) = 140 ◦C. The data was obtained from respective linear master curves
of G′(ω) and G′′(ω). The polydispersity index is given in brackets.

of the multi mode MSF model prediction with the experimental data within our

experimental window. However, as mentioned before, the MSF constitutive mo-

del cannot predict the decrease of nonlinear master curves, with 3Q0(ω) ∝ ω−0.35,

for high frequencies after the maximum 3Q0,max, even for monodisperse samples.

For smaller frequencies (3Q0(ω) with ω < ωmax) the MSF prediction shows the

expected scaling exponent of 2, 3Q0(ω) ∝ ω2. For increasing ω, a decreasing

slope in 3Q0(ω) is observed until 3Q0(ω) = const. at 3Q0,max and for ω > ωmax.

The MSF constitutive model therefore predicts the same scaling behavior for all

linear polymer melts, independent of dispersity. The experimental window ho-

wever is typically limited to 10−3 ≤ De ≤ 103, and the low frequency ranges, that

are needed to obtain the expected scaling of 2 (see also fig. 5.11), could not be
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Figure 5.10.: Experimental 3Q0(ω) data of polydisperse linear polymer melts al-
ong with respective Molecular Stress Function (MSF) model predictions (PDI gi-
ven in brackets). The low frequency region, where 3Q0(ω) ∝ ω2, is hardly acces-
sible for some polymer measurements because of instrumental and experimental
limitations. This is especially valid for high polydispersities and high molecular
weights. Figure adapted from [76].

approached with our instrumental setup. Within the experimental window, the

prediction overlaps approximately with our experimental data.

In figure 5.11 several 3Q0(De) master curves for polymer samples with different

polydispersities are presented. In this figure, the relaxation time τco, from the

crossover of G’ and G”, was used to calculate De. The high polydispersity shifts

the linear terminal regime to very low frequencies, where very high measurement

temperatures are needed. Therefore it was not possible to obtain reliable data for

the longest relaxation time τ0 via the zero shear viscosity η0 with eq. (5.3) for all

samples, and τco was used instead.

A scaling of approximately 3Q0(De) ∝ De2 for low frequencies, before the max-

imum 3Q0,max, was observed for all linear monodisperse polymers in this work

(see fig. 5.3 or fig. 5.6). With increasing PDI, the slope of 3Q0(De) for low frequen-
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Figure 5.11.: Nonlinear master curves of linear polymer melts with different po-
lydispersities. With increasing PDI, the slope at low frequencies decreases from
2 for monodisperse polymers, to −0.1 for the shown polymer sample with the
highest PDI of 27 (adapted from [76]).

cies decreases, until it levels off at a constant value, which equals 3Q0,max, within

the measured frequency range and accessible intensity range of I3/1(γ0) for sam-

ples with a PDI ≥ 2. The experiments show a dependence of the low frequency

scaling 3Q0(De) ∝ Den on the PDI. The following empiric equation (5.7) can des-

cribe this observation with a minimum set of parameters at De = 0.02, where the

scaling of n = 2 for monodisperse samples (PDI = 1) is still given (fig. 5.12).

n =
2

PDI2.2
for De = 0.02 (5.7)

It is shown by the MSF model for polydisperse polymer melts (fig. 5.10), that the

proportionality 3Q0(De) ∝ De2 for extremely low frequencies is expected. Howe-

ver, to be able to detect this behavior in a very polydisperse sample, a sensitive

measurement at a high temperature above the Tg in combination with a high acti-

vation energy and a low thermal degradation is desirable. This low frequency,

needed to detect the expected quadratic scaling, might not always be accessible
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Figure 5.12.: Scaling exponents n from 3Q0(ω) ∝ ωn for De = 0.02 as a function
of PDI (see related Fig. 5.11, adapted from [76]).

experimentally.

5.4. Rheological Characterization of Polymer

Combs

5.4.1. Linear Mechanical Behavior (SAOS)

Components of a polymer comb behave rheologically different than their linear

counterparts. Chain ends can move freely, while the covalent bonds reduce the

degree of freedom in the inner molecule segments. The relaxation of the backbone

is dominated by reptation (see section 3.3), but it is impeded by the traction of the

sidearms [95, 105]. The linear master curve of the storage and loss modulus of a

polyisoprene (PI) comb with Mw = 340 kg/mol and PDI = 1.06 is shown in figure

5.13 (for synthesis see section 2.4). Compared to its precursors (backbone Mw =

142 kg/mol, sidearms Mw = 34 kg/mol) the comb shows a hierarchical relaxation
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process. At higher frequencies the dynamics of the sidearms are observed. After

full relaxation of the branches, the backbone reptation mechanism occurs at lower

frequencies. The sidearms are partly folded up at these frequencies (primitive

path fluctuations), which leads to a dynamic dilution effect for the backbone. As

a result, the plateau modulus G0
N of the backbone is decreased proportionally to

its volume fraction Φb, compared to a linear chain of same molecular weight [6,

124].
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Figure 5.13.: Linear master curve of a PI comb with Mw = 340 kg/mol (squares).
Master curves of the linear backbone (circles, Mw = 142 kg/mol) and isolated
linear sidechains (triangles, Mw = 34 kg/mol) are also shown, to visualize the
different linear mechanical behavior of the final comb and its educts.

Figure 5.14 shows the van Gurp-Palmen plot of the PI comb (340 kg/mol, 5.8

average number of sidearms with 34 kg/mol, PDI = 1.06) from fig. 5.13. The

reduced van Gurp-Palmen plot can be used to compare different molecular topo-

logies, for example polymer comb molecules with different number of sidearms

and varying molecular weight [90, 116, 117]. Normalization of the complex mo-

dulus |G∗| to the plateau modulus G0
N makes it invariant to temperature and time,
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and therefore differences of these parameters between experiments are tolerated

[112].
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Figure 5.14.: Reduced van Gurp-Palmen plot of a PI comb with Mw = 340 kg/mol,
a linear PI with same molecular weight as the comb backbone, Mw = 142 kg/mol,
and a linear PI with similar molecular weight to the comb sidechains, Mw =
33 kg/mol. Characteristic points for the comb are sidechain relaxations (G1, P1)
and backbone relaxation (G2, P2).

Kempf et al. [28] and Abbasi et al. [67] used the van Gurp-Palmen plot, or redu-

ced van Gurp-Palmen plot respectively, to investigate a wide spectrum of model

combs with varying branching content. Kempf et al. correlated a characteristic

value G2 of the reduced complex modulus Gred = |G∗|/G0
N (fig. 5.14) with the vo-

lume fraction Φsc of the branches. They proposed a linear relationship between

G2 and Φsc, which depends on the entanglement (i.e. slightly or well-entangled)

of the sidearms and a dynamic dilution effect [28]. An increasing volume fraction

Φsc of the sidearms leads to a stronger dynamic dilution, as the number of en-

tanglements also increases.
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Conclusion

The here described rheological results on a well characterized polyisoprene comb,

that were conducted in the linear mechanical regime, indicate that the investiga-

tion of branched structures is still germinal. Especially the influence of the mono-

mer is not yet full understood. A well established synthesis route for model comb

polymers, chemically different to the well investigated polystyrene structures,

will prove to be valuable in further investigations on the dynamics of branched

polymers.

5.4.2. Nonlinear Mechanical Behavior (MAOS)

The mechanical nonlinear behavior of well-defined branched model polymers

was first executed by Hyun et al. [23] and Kempf et al. [28]. Their measurements

of 3Q0(ω) showed two maximum values, which they related to relaxations of the

backbone and the sidechains. However, a quantitative description of the intrinsic

nonlinearity 3Q0(ω) could not be achieved in their early publications.

The newly found semi-empirical equation (5.5) from this thesis, showed good ac-

cordance to experimental data of monodisperse, linear homopolymer melts (see

fig. 5.8). It is therefore possible, to perform predictions of nonlinear master cur-

ves with 3Q0(ω) for various polymer melts with varying molecular weights, even

though a sample is not available for rheological measurements. However, the ge-

neral framework of monodispersity and linear topology needs to be adhered to.

Equation (5.5) was then used to predict the intrinsic nonlinearity 3Q0(ω) of linear

polymers with the same molecular weight, or number of entanglements Z, as the

backbone and sidechains of a polymer model comb from Hyun et al. [23] and
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Kempf et al. [28] (see fig. 5.15), as well as a PI comb, synthesized in this work (see

section 2.4, and fig. 5.16).

The two investigated combs from Hyun and Kempf have a PS backbone with Mw

= 275 kg/mol (Z = 16.4) and 29 PS sidearms with Mw = 47 kg/mol (Z = 2.8, PS

275k-29-47k), and a PpMS backbone of Mw = 197 kg/mol (Z = 8.1) with 14 PpMS

sidearms of Mw = 42 kg/mol (Z = 1.7, PpMS 197k-14-42k). Figure 5.15 shows

the experimental data from Hyun and Kempf [23, 28]. The dashed lines are pre-

dictions from the semi-empiric equation (5.5) for referring linear polymers of the

backbones and sidearms. The Deborah number, needed for eq. (5.5), of each linear

backbone and linear sidearm was calculated with De = ωτ0, using the relation of

τQ = τ 0.90 (see fig. 5.5), where τQ was determined from the two maxima (one max-

imum for the backbone, one for the sidearms) of the measured nonlinear master

curves of the comb (symbols in fig. 5.15). It is apparent, that the predictions for

the backbone imply 5 to 6 times higher values than the experimental data shows.

The sidechain predictions however are very similar to the experiment. A very

simplified conception is to describe a well-defined polymer comb as a bidisperse

melt, in which some molecules are chemically connected. The sum function (5.8)

of the semi-empirical equation (5.5) could therefore be the simplest possible ap-

proach, to describe the intrinsic nonlinearity of a comb, following the multi-mode

MSF model concept for polydisperse melts (see fig. 5.10 in section 5.3).

3Q0(ω) = Φb
3Q0,b(ω) + Φsc

3Q0,sc(ω) (5.8)

Using the volume fraction Φb of the backbone as a multiplying factor, equation

(5.8) results a prediction of 3Q0(ω) similar to the obtained experimental data (full

lines in fig. 5.15). The maximum of 3Q0(ω) for the backbone and the sidechains

only deviate slightly from the measurement and the overall curve is in good ac-

cordance to the experiment.
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Figure 5.15.: Nonlinear master curves of a PS (1) and PpMS (2) model comb
(data from Hyun and Kempf et al. [23, 28]). A sum function (eq. 5.8), which
includes the volume fraction Φb of the backbone, was used to predict the nonli-
near behavior for the combs (line), in contrast to predictions for respective linear
homopolymers (eq. 5.5, dashed lines).
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The synthesized PI comb in this thesis (backbone Mw = 142 kg/mol, sidechain

Mw = 34 kg/mol, number of sidechains 5-6, see fig. 2.18) allowed to directly me-

asure the longest relaxation time τ0 of the not connected, linear backbone and

sidechains independently (section 5.4.1), as opposed to the combs of Hyun and

Kempf, from which the linear data was not accessible. The relaxation time τ0 was

then used in the prediction of the intrinsic nonlinearity 3Q0(ω) with equations

(5.5) and (5.8). This allows to investigate and correlate the influence of the atta-

ched sidechains onto the linear backbone in more detail. The linear and nonlinear

master curve of the PI comb are shown in figure 5.16. Predictions from the semi-

empirical equation (5.5) for the linear backbone and the sidechains, and from the

sum function (5.8) for the comb, are compared to the experimental results of the

linear and nonlinear master curves.

The predicted maximum values of 3Q0(ω) for the backbone and the sidechains are

similar to the measured data. However, the frequency of the predicted maxima is

around two decades to high and, for the backbone, is located near the crossover

frequency of the related linear master curve (ωco = 3 · 10−3 rad/s). The implied

3Q0(ω) maximum, related to the sidechains, is also close to the indicated longest

relaxation of the sidechains, which can be identified by a local maximum of the

tan δ around ω = 1 rad/s in figure 5.16. This behavior was also observed for li-

near homopolymer melts, where the maximum 3Q0,max always resides near the

frequency of the longest relaxation time, as shown by τQ = τ 0.9o (also see fig. 5.5

and 5.2). A correlation between the molecular dynamics in the linear and nonli-

near regime via the longest relaxation time τ0 can therefore be estimated.

These first results show, that the intrinsic nonlinearity 3Q0(ω) could be a sum-

mation of the nonlinear behavior of involved molecules via the volume fraction.

It is assumed that the attached sidechains reduce the backbone mobility, hence

the shift of the backbone maximum to lower frequencies. At the same time, the
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Figure 5.16.: Linear and nonlinear master curves of a PI comb (340 kg/mol,
backbone 142 kg/mol, sidechains 34 kg/mol). The predicted intrinsic nonlinearity
3Q0(ω) from eq. (5.5) (dashed lines) for a linear backbone (bb) and linear side-
chains (sc), and the prediction from eq. (5.8) (dotted line) for a respective comb is
compared to experimental data (symbols).
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sidechain relaxations are also reduced by the backbone, since their 3Q0(ω) maxi-

mum is also shifted to lower frequencies than expected from equations (5.5) and

(5.8).

5.5. Conclusion

The here presented results of linear (G′(ω), G′′(ω)) and nonlinear (3Q0(ω)) mas-

ter curves investigated the molecular dynamics of linear homopolymer melts

with varying molecular weight, molecular weight distribution and polymer. A

successful quantification of the intrinsic nonlinearity 3Q0(ω) was achieved via a

semi-empirical approach, with the help of constitutive models (Pom-Pom and

MSF). The obtained description (eq. 5.5) is independent of the polymer, and only

contains the number of entanglements Z, and the Deborah number De. These

results were then applied to predict the nonlinear mechanical behavior of model

combs (eq. 5.8). Within this attempt, it was revealed, that the quantification of

the intrinsic nonlinearity 3Q0(ω) for branched polymers and clarification of un-

derlying physics has still to be researched.
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Summary

The mechanical nonlinear behavior of homogeneous molten polymers is of high

interest for the processing industry. Correlations between molecular microstruc-

ture, such as the molecular weight, molecular weight distribution, monomer che-

mistry and topology, and the rheological behavior in the nonlinear regime are still

not fully understood. The goal of this thesis was to contribute to this field of rese-

arch by investigating the intrinsic nonlinearity 3Q0(ω) of defined polymer melts.

A series of well-characterized linear homopolymers was synthesized by anionic

polymerization (table 7.1). It was taken care, that a broad variety of chemically

different polymers was chosen. Polystyrene (PS), poly-p-methylstyrene (PpMS)

and cis-1,4-polyisoprene (PI) are unpolar, yet they exhibit very different chain

mobilities and glass transition temperatures Tg (table 5.1). Poly(methyl meth-

acrylate) (PMMA) and poly-2-vinylpyridine (P2VP) introduce heteroatoms in the

substituents, whereas poly(ethylene oxide) (PEO) does this within the chain back-

bone. PEO and heigh density polyethylene (HDPE), even though not polymeri-

zed within this thesis, were included and investigated because of their commer-

cial importance. The total molecular weight of the samples was varied from no-

nentangled (Mw < 3Me), to well-entangled (Mw > 3Me), and even an outlook to

ultra-high molecular weight (Mw > 200Me) was given (section 5.4). The influence
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of polydispersity (PDI) was also investigated (section 5.3). Anionic polymeriza-

tion results polymers with a PDI nearly 1. Utilizing other polymerization techni-

ques (free radical and emulsion polymerization) polymer melts with molecular

weight distributions up to 4.7 were realized, and HDPE samples with a PDI up

to 27 were investigated for their nonlinear behavior. All synthesized polymers

were fully characterized via gel permeation chromatography (GPC) to determine

the molecular weight and polydispersity. Additionally, the microstructure ratio

between 1,4 and 3,4 isomers of PI was identified with 1H-NMR. The glass transi-

tion temperatures Tg were obtained with differential scanning calorimetry (DSC).

Rheological experiments were conducted on all linear homopolymer melts (chap-

ter 5). First, small amplitude oscillatory shear (SAOS) frequency sweeps resulted

linear master curves from G′(ω) and G′′(ω) by exploiting the time-temperature su-

perposition principle (TTS). From these linear master curves material properties

were extracted, such as the Williams-Landel-Ferry (WLF) parameter, the plateau

modulus G0
N , the entanglement molecular weight Me, and the longest relaxation

time τ0 (section 5.1). Second, medium amplitude oscillatory shear (MAOS) strain

sweeps were conducted on all polymer samples (section 5.2). Fourier Transforma-

tion of the time-dependent stress signal σ(t) into the frequency spectrum revealed

higher harmonic intensities of the excitation frequency ω1/2π. These higher har-

monics started to rise out of the noise level with increasing shear rates. Especially

the normalized third higher harmonic intensity I3/1(γ0) was found to be sensitive

to mechanical nonlinearity. Therefore, I3/1(γ0) was used to calculate the nonlinear

parameter Q(γ0) = I3/1/γ
2
0 . Finally, the intrinsic nonlinearity 3Q0(ω) was obtained

as a frequency-dependent zero-shear nonlinearity, limγ0→0Q(γ0) =
3Q0(ω). Using

WLF parameter from respective linear master curves, allowed to create nonli-

near master curves of 3Q0(ω) (figure 5.7). It was observed, that all monodisperse

(PDI < 1.1) homopolymer melts shared the same characteristic curve shape of

3Q0(ω). A scaling of 2 (3Q0(ω) ∝ ω2) was found for low frequencies, transitioning
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into a maximum 3Q0,max. At higher frequencies, after 3Q0,max, values decreased

with a negative scaling of -0.35 (3Q0(ω) ∝ ω−0.35). In order to quantify the obtai-

ned nonlinear master curves, predictions from the Pom-Pom and molecular stress

function (MSF) constitutive models were consulted (see chapter 4). The predicti-

ons match the scaling at low frequencies, though differ at high frequencies from

the experimental findings (figure 5.9). The Pom-Pom model forecasts a scaling of

-1, whereas the MSF model results a constant plateau at the value of 3Q0,max.

A general, combined and simplified equation (eq. 5.4) from the Pom-Pom and

MSF model was able to describe the nonlinear master curves of linear homopo-

lymer melts with low PDI, independent of the investigated monomer, by fitting

this equation to the experimental data. The proposed semi-empirical equation

(eq. 5.5) includes two molecular weight dependent parameters a = 0.32Z−0.5

and b = 33.75Z−1, and a quadratic scaling of 3Q0(ω) for frequencies below the

maximum 3Q0,max, and a scaling of k = 0.35 for the decreasing slope after the

maximum for low PDI polymer melts.

Polymer melts with a PDI higher than 1.1 experimentally revealed a scaling ex-

ponent 3Q0 ∝ Den at low frequencies, that could be experimentally described by

n = 2/PDI2.2 for the measured frequency ranges of the nonlinear master curves

(figure 5.12). Model prediction from the MSF constitutive model for high PDI

polymers show, that at very low frequencies, the scaling of 3Q0 ∝ ω2 should be

seen again (figure 5.10). This prediction however, is not accessible experimentally

due to the potentially very high measurements temperatures, and the broad re-

laxation time distributions respectively, that are needed for such an experiment

in addition to an instrument sensitivity that is currently not available.

In addition to the research on the nonlinearity of linear homopolymer melts, first

steps towards a rheological investigation of topological more complicated poly-
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mers by the synthesis of PI combs was done (chapter 6). For isolated investigation

of backbone and sidearm relaxation, a cooperation project was started to combine

knowledge from low field double quantum NMR experiments and rheology. The

synthesis of branched PI was achieved by oxidizing the inner double bonds of a

linear monodisperse PI and introducing an epoxi functional group (section 2.4).

This epoxi ring served as electrophile for living PI anions, which lead to the graf-

ting of PI sidechains onto the functionalized PI backbone. The molecular weight

of the newly formed comb and average number of sidearms was determined

by SEC-MALLS (figure 2.17). Low field NMR investigation of separated mole-

cule segments calls for partly deuterated PI combs. Therefore, first attempts to

synthesize fully deuterated isoprene-d8 as a monomer were conducted (section

2.5). The precursor molecule could be prepared starting from water and carbide.

1H-NMR revealed successful preparation (figure 2.20), however separation from

the solvent via distillation kept challenging and could not be achieved within

this thesis. The linear rheological investigation of the synthesized, protonated,

PI comb showed typical branched polymer behavior by separation of backbone

and sidearm relaxation (figure 6.1). The relaxation time of the backbone was also

reduced due to hierarchical relaxation processes.

Perspective

The nonlinear mechanical behavior of viscoelastic polymer melts and solutions

is a field of commercial interest and ongoing research. Within this work it was

possible to describe mechanical nonlinear behavior with a semi-empirical equa-

tion, which includes only the number of entanglements Z and the Deborah num-

ber De. For the first time it was possible to quantify the intrinsic nonlinearity

3Q0(ω) for linear homopolymer melts, independent of the chemical composition
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of the polymer. It can therefore be assumed, that a universal physic is under-

lying all nonlinear motion effects for these class of polymers and topologies. The

influence of various relaxation effects, such as reptation and contour path fluctu-

ations were firstly observed in nonlinear master curves of polydisperse samples

and an ultra-high molecular weight polymer. With these results and further de-

velopments in instrumentation and access to more powerful computation, the

possibility for better knowledge about the macroscopic and microscopic level of

polymeric materials is opened. Using the fundamental synthesis methods from

this thesis, successful preparation of fully deuterated isoprene-d8 was achieved

in the meanwhile, and first partly deuterated PI combs are in preparation, also

utilizing the epoxidation route. These new polymeric materials offer the possibi-

lity to additionally investigate molecular relaxation modes of branched polymers

with low field quantum NMR. Combining rheology and NMR promises to re-

sult deeper insight into molecular motion on different time scales. The results

from this work are especially interesting for polymer processing at high shear

rates. From an academical viewpoint, the presented experimental basic research

can validate and expand existing theories about correlations between rheological

behavior and molecular structure. The detailed investigation and quantification

of the intrinsic nonlinearity 3Q0(ω) on viscoelastic materials of various structures

can lead to new developments in constitutive modeling and computer simulati-

ons, especially molecular dynamic simulations of polymer melts.
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A. Materials and Synthesis

A.1. Monomer and Solvent Purification

Styrene (Acros, 99%), p-methylstyrene (Acros, 98%), methyl methacrylate (Acros,

99%) and 2-vinylpyridine (Aldrich, 97%) were first degassed by three freezing-

evacuation-thawing cycles, then stirred over calcium hydride (CaH2; Acros, 93%)

over night. Afterwards, it was distilled at reduced pressure and stirred over di-

n-butylmagnesium (Aldrich, 1 M in heptane) for 20 minutes. It was then distilled

at reduced pressure into precalibrated ampules and stored under argon at −20 ◦C

until needed.

Isoprene (Acros, 98% stabilized) was stirred over n-butyllithium (n-BuLi; Aldrich,

2.5 M in hexanes) for no longer than 20 minutes in an ice bath. Then it was distil-

led at room temperature, first into a liquid nitrogen cooled flask at reduced pres-

sure, then into precalibrated ampoules and stored under argon at −18 ◦C until

needed.

Tetrahydrofurane (THF; Carl Roth, 99.5%) was first distilled from CaH2 and then

from sodium/benzophenone (Acros, 99%). It was stored over sodium benzophe-

none on the vacuum line prior to use.

Toluene (Carl Roth, 99.5%) was distilled from CaH2 and stored over sodium ben-

zophenone in a flask on the vacuum line.
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A.2. Synthesis of Linear Homopolymers

A.2.1. Monodisperse Polymers by Anionic Polymerization

A high-vacuum technique (≤10−3 mbar) was used to synthesize linear polysty-

rene (PS), polyisoprene (PI), poly(methyl methacrylate) (PMMA), poly(p-methyl-

styrene) (PpMS), and poly(2-vinylpyridine) (P2VP) samples with PDI < 1.2. The

monomer ampoules were directly installed on the vacuum line with ground glass

joints. After removal of the argon used for storage, the monomer was carefully

freezed with liquid nitrogen. Then, toluene was distilled over the vacuum line

and freezed into the ampoule. Once the compounds melted completely, they

were thoroughly mixed and s-butyllithium (s-BuLi; Acros, 1.3 M in cyclohex-

ane/hexane) was added as initiator with a syringe in an argon counterstream

at room temperature. A deep orange (polystyrene) or a slightly yellow (poly-

isoprene) color indicated presence of the living anions of the polymers. After

stirring with a magnetic stirrer at room temperature for several minutes (10 min

for PS and PpMS, 30 min for PMMA and 60 min for PI), the reaction was termi-

nated with degassed methanol (Carl Roth, 99%), at which any color disappeared

immediately. The polymers were then precipitated in methanol (PMMA in wa-

ter), redissolved in THF, and precipitated again in methanol.

For the synthesis of P2VP an initiator solution of s-BuLi in toluene was prepa-

red with an excess of 10 mol% 1,1-diphenylethylene (DPE; Acros, 98%), which

resulted a deep red liquid. Pyridine (Carl Roth, ≥ 99.5%, p.a.) and THF (10:1

pyridine/THF) were distilled into a baked out and argon flushed reactor, where

the 2-vinylpyridine ampoule and also the initiator ampoule were connected with

ground glass joints. The reactor was cooled with an ice bath, and under stirring,

first the initiator solution was dropped in thoroughly, then the 2-vinylpyridine

monomer was added fast. A red color indicated the living polymer. After stirring
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for 24 hours at room temperature, the reaction was stopped by adding degassed

methanol until all color was vanished. P2VP was precipitated in petroleum ether

(Acros, boiling range 40 ◦C to 60 ◦C).

The final products were filtered and dried under reduced pressure at 70 ◦C, and

PMMA at 150 ◦C respectively, for at least three days to remove residual amounts

of solvents. Polyisoprene samples were further stabilized with 0.5 wt% BHT (2,6-

di-tert-butyl-4-methylphenol; Acros, 99%).

A.2.2. Polydisperse Polymers by Free Radical and Emulsion

Polymerization

Polystyrene samples with a polydispersity higher than 1.2 were synthesized with

free radical polymerization or with emulsion polymerization. For free radical po-

lymerization Azobis(isobutyronitrile) (AIBN; Aldrich, 98%) was used as initiator.

Styrene was given into a small flask and after adding the initiator, the mixture

was stirred under argon at 60 ◦C for 24 hours. The reaction was continued for

another two days at room temperature, with stirring as long as possible, before

THF was used to dissolve the product. The polymer was precipitated in fresh

methanol and dried under reduced pressure at 70 ◦C.

For emulsion polymerization, distilled water, a 10 wt% aqueous solution of so-

dium dodecylsulfate (Aldrich, 99%) as emulsifier, and styrene were given into

a flask with a sealed precision glass (KPG) stirrer. After stirring for 30 minutes

under argon, the emulsion was heated to 80 ◦C and the reaction was started by

adding solid potassium peroxodisulfate (K2S2O8; Aldrich, 99%) as initiator. Hea-

ting and stirring was continued for 6 hours. The reaction was stopped by adding

a 4% aqueous solution of 1,4-dihydroxybenzene (hydroquinone; Acros, 99,5%)
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and cooling with an ice bath to room temperature. To remove the emulsifier, con-

centrated hydrochloric acid (Acros, 37% in water) was added. The sediment was

then washed with distilled water until it was neutral (6 ≤ pH ≤ 7) and washed

with methanol until styrene smell could no longer be observed.

A.3. Molecular Characterization

The number and weight average molecular weight (Mn and Mw) and polydisper-

sity index (PDI = Mw/Mn) of the samples were determined with size exclusion

chromatography (SEC). The SEC system consisted of an Agilent 1100 pump, an

Agilent 1200 differential refractive index (DRI) and UV detector with two PSS

SDV Lux 8 mm× 300 mm columns (103 Å and 105 Å pore size). The SEC analysis

was done in THF at 25 ◦C with a flow rate of 1 ml min−1.

1H-NMR spectroscopy was performed in deuterated chloroform (CDCl3) at 25 ◦C

with a Bruker Avance III Microbay 400 MHz spectrometer and 512 scans. The

amount of cis/trans-1,4 and 3,4 microstructure in the polyisoprene samples was

determined by the peak intensity ratio of the =CH- signal from the 1,4 microstruc-

ture (one proton) between 4.9 ppm to 5.2 ppm, and the =CH2 signal from the 3,4

microstructure (two protons) between 4.6 ppm to 4.8 ppm (see fig. 2.14) [107]. The

epoxidation ratio for functionalized polyisoprenes was calculated from the inte-

gral of the single proton signal at 2.7 ppm, which was compared to the above

mentioned 1,4- and 3,4 microstructure signal integrals (see fig. 2.16).

Differential scanning calorimetry (DSC), using a DSC30 from Mettler Toledo, with

a heat rate of 10 ◦C/min over two separated heat runs was used to obtain glass

transition temperatures Tg of each samples.
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B. Model Calculations

This section includes step-by-step calculations of the simplified Pom-Pom and

Molecular Stress Function (MSF) constitutive models for the intrinsic nonlinearity

3Q0(De) (see chapter 4).

B.1. Calculation of the Intrinsic Nonlinearity

B.1.1. Pom-Pom Model

The definition of the intrinsic nonlinearity 3Q0(De), and the real and imaginary

parts of the higher harmonic intensities I1 and I3 in the Pom-Pom model are given

in the following.

3Q0(De) = lim
γ0→0

I3
I1γ2

0

(B.1)

I ′1 = G0
N

(
De2

1 +De2

)

γ0 (B.2)

I ′′1 = G0
N

(
De

1 +De2

)

γ0 (B.3)

I ′3 = G0
N

(
De4C1C

′

3

πC2(1 +De2)2

)

γ3
0 (B.4)

I ′′3 = G0
N

(
De3C1C

′′

3

2πC2(1 +De2)2

)

γ3
0 (B.5)
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with

C1 = 1− 2.5Z−1 (B.6)

C2 = (1 + 25De2Z−2)(1 + 4De2) (B.7)

C ′

3 = De2 + 12.5De2Z−1 − 2− 2.5Z−1 (B.8)

C ′′

3 = 10De4Z−1 − 5De2 − 20De2Z−1 + 1 (B.9)

The higher harmonic intensity I1 can then be calculated.

I1 =

√

I ′1
2 + I ′′1

2 ≥ 0 (B.10)

I1 =

√
(

G0
N

(
De2

1 +De2

)

γ0

)2

+

(

G0
N

(
De

1 +De2

)

γ0

)2

(B.11)

I1 =

√

G0
N

2
γ2
0

(
De4

(1 +De2)2
+

De2

(1 +De2)2

)

(B.12)

I1 =
G0

Nγ0De

1 +De2

√
De2 + 1 (B.13)

I1 =
G0

Nγ0De

(1 +De2)0.5
(B.14)

The same calculation steps can be done to obtain the higher harmonic intensity

I3.

I3 =

√

I ′3
2 + I ′′3

2 ≥ 0 (B.15)

I3 =

√
(

G0
N

(
De4C1C ′

3

πC2(1 +De2)2

)

γ3
0

)2

+

(

G0
N

(
De3C1C ′′

3

2πC2(1 +De2)2

)

γ3
0

)2

(B.16)

I3 =

√

G0
N

2
γ6
0De6C2

1

4π2C2
2 (1 +De2)4

(4De2C ′

3
2 + C ′′

3
2) (B.17)

I3 =
G0

Nγ
3
0De3C1

2πC2(1 +De2)2

√

4De2C ′

3
2 + C ′′

3
2 for Z > 2.5 (B.18)
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B.1. Calculation of the Intrinsic Nonlinearity

Insertion of I1 (eq. B.14) and I3 (eq. B.18) into eq. (B.1) results 3Q0(De) for the

single mode Pom-Pom constitutive model.

3Q0(De) = lim
γ0→0

G0
N
γ3
0De3C1

2πC2(1+De2)2

√

4De2C ′

3
2 + C ′′

3
2

G0
N
γ0De

(1+De2)0.5
γ2
0

(B.19)

3Q0(De) =
De2C1(1 +De2)0.5

2πC2(1 +De2)2

√

4De2C ′

3
2 + C ′′

3
2 (B.20)

3Q0(De) =
De2(1− 2.5Z−1)

2π(1 + 25De2Z−2)(1 + 4De2)(1 +De2)1.5

·
√

4De2(De2 + 12.5De2Z−1 − 2− 2.5Z−1)2

+(10De4Z−1 − 5De2 − 20De2Z−1 + 1)2

(B.21)

3Q0(De) =
De2(1− 2.5Z−1)

2π(1 + 25De2Z−2)(1 + 4De2)(1 +De2)1.5

·
√

(1 + 25De2Z−2)(1 + 4De2)(1 +De2)2
(B.22)

3Q0(De) =
De2(1− 2.5Z−1)

2π(1 + 25De2Z−2)0.5(1 + 4De2)0.5(1 +De2)0.5
for Z > 2.5 (B.23)

B.1.2. MSF Model

The definition of the intrinsic nonlinearity 3Q0(De) and the higher harmonic in-

tensity I1 are the same as in the Pom-Pom model (see eq. B.1 and eq. B.14). A

different definition is used for the real and imaginary part of I3, with the orienta-

tional effect α and the stretching parameter β.

I ′3 =
3

4
(α− β/10)G0

N

(
De2

1 +De2
− 4De2

1 + 4De2
+

3De2

1 + 9De2

)

γ3
0 (B.24)

I ′′3 =
3

4
(α− β/10)G0

N

(
De

1 +De2
− 2De2

1 + 4De2
+

De

1 + 9De2

)

γ3
0 (B.25)
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Calculation of I3 is then done via insertion of I ′3 and I ′′3 into the definition of I3.

I3 =

√

I ′3
2 + I ′′3

2 (B.26)

I3 =

√
(
3

4

(

α− β

10

)

G0
N

(
De2

1 +De2
− 4De2

1 + 4De2
+

3De2

1 + 9De2

)

γ3
0

)2

+

(
3

4

(

α− β

10

)

G0
N

(
De

1 +De2
− 2De2

1 + 4De2
+

De

1 + 9De2

)

γ3
0

)2
(B.27)

I3 =
3

4

(

α− β

10

)

G0
Nγ

3
0

√
(

De2

1 +De2
− 4De2

1 + 4De2
+

3De2

1 + 9De2

)2

+

(
De

1 +De2
− 2De2

1 + 4De2
+

De

1 + 9De2

)2
(B.28)

The intrinsic nonlinearity 3Q0(De) for the simplified single mode MSF model can

then be calculated with eq. (B.14) and eq. (B.28).

3Q0(De) = lim
γ0→0

3
4

(
α− β

10

)
G0

Nγ
3
0

G0
N
γ0De

(1+De2)0.5
γ2
0

√
(

De2

1 +De2
− 4De2

1 + 4De2
+

3De2

1 + 9De2

)2

+

(
De

1 +De2
− 2De2

1 + 4De2
+

De

1 + 9De2

)2

(B.29)

3Q0(De) =
3

4

(

α− β

10

)
1

De

√

(1 +De2)

(
De2

1 +De2
− 4De2

1 + 4De2
+

3De2

1 + 9De2

)2

+(1 +De2)

(
De

1 +De2
− 2De2

1 + 4De2
+

De

1 + 9De2
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(B.30)

3Q0(De) =
3

4

(

α− β

10

)
De2
√
36De6 + 49De4 + 14De2 + 1

(1 + 9De2)(1 + 4De2)(1 +De2)0.5
(B.31)

3Q0(De) =
3

4

(

α− β

10

)
De2

√

(1 + 9De2)(1 + 4De2)(1 +De2)

(1 + 9De2)(1 + 4De2)(1 +De2)0.5
(B.32)

3Q0(De) =
3

4

(

α− β

10

)
De2

(1 + 9De2)0.5(1 + 4De2)0.5
(B.33)
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B.2. Calculation of the Maximum 3Q0,max

B.2.1. General Equation

The maximum 3Q0,max is calculated by the derivative of the intrinsic nonlinearity

3Q0(De) (eq. 4.39).

3Q0(De) = a
De2

1 + bDe2+k
(B.34)

∂(3Q0)

∂De
=

2aDe

1 + bDe2+k
− aDe2bDe1+k(2 + k)

(1 + bDe2+k)2
=

aDe(2− bkDe2+k)

(1 + bDe2+k)2
(B.35)

The maximum can be found by setting eq. (B.35) equal to zero.

0 =
aDe(2− bkDe2+k)

(1 + bDe2+k)2
(B.36)

0 = 2− bkDe2+k (B.37)

Demax =
2+k

√

2

bk
(B.38)

Insertion of eq. (B.38) into the general equation (4.39), with a = 0.32Z−0.5, b =

33.8Z−1 and k = 0.35 (see section 5.3), results 3Q0,max only in dependence of the

number of entanglements Z.

3Q0,max = a
De2max

1 + bDe2+k
max

(B.39)

3Q0,max = 0.32Z−0.5

(
2

33.8Z−10.35

)2/2.35

1 + 33.8Z−1
((

2
33.8Z−10.35

)1/2.35
)2.35 (B.40)

3Q0,max = 0.32Z−0.5

(
2Z

33.8 · 0.35

)2/2.35

1 + 2
0.35

(B.41)

3Q0,max ≈ 0.01Z−0.5Z2/2.35 ≈ 0.01Z0.35 (B.42)

129



B. Model Calculations

B.2.2. Pom-Pom Model

The derivative of the simplified single mode Pom-Pom equation (4.19) is calcula-

ted analogous to eq. (B.42).

3Q0(De) =
1

2π

(1− 2.5Z−1)De2

1 + 10Z−1De3
for Z > 2.5 (B.43)

where

a =
1

2π
(1− 2.5Z−1) (B.44)

b = 10Z−1 (B.45)

and therefore

Demax =
2+k

√

2

bk
=

3

√

2Z

10
=

3

√

Z

5
(B.46)

Insertion of eq. (B.46) in eq. (B.43) results 3Q0,max in dependence of the number of

entanglements Z.

3Q0,max = a
De2max

1 + bDe2+k
max

(B.47)

3Q0,max =
(1− 2.5Z−1)(Z/5)2/3

6π
(B.48)

lim
Z→∞

3Q0,max =
1

4π
(B.49)

B.2.3. MSF Model

As seen from plots of the simplified single mode MSF model equation (4.35) (also

see fig. 4.5 in section 4.2.2), the maximum 3Q0,max can be calculated from the limi-
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ting value at very high Deborah numbers.

3Q0,max = lim
De→∞

3

2

(

α− β

10

)
De2

1 + 6De2
(B.50)

3Q0,max =
1

4

(

α− β

10

)

(B.51)
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(36) Hadjichristidis, N.; Hirao, A., Anionic Polymerization: Principles, Practice,

Strength, Consequences and Applications; Springer Japan: Tokyo, 2015.

(37) Gnanou, Y.; Fontanille, M., Organic and Physical Chemistry of Polymers; Wi-

ley: Hoboken, NJ, 2008.

(38) Hsieh, H. L.; Quirk, R. P., Anionic Polymerization: Principles and Practical

Applications; Plastics engineering, Vol. 34; Dekker: New York, 1996.

(39) Mark, J. E., Physical Properties of Polymer Handbook, 2nd ed; Springer: New

York, 2006.

135



Bibliography

(40) Odian, G., Principles of Polymerization, 4. ed.; Wiley-Interscience: Hoboken,

NJ, 2004.

(41) Gebert, W.; Hinz, J.; Sinn, H. Makromolekulare Chemie 1971, 144, 97–115.

(42) Worsfold, D. J.; Bywater, S. Macromolecules 1978, 11, 582–586.

(43) Szwarc, M.; van Beylen, M., Ionic Polymerization and Living Polymers; Sprin-

ger Netherlands: Dordrecht, 1993.

(44) Worsfold, D. J.; Bywater, S. Macromolecules 1972, 5, 393–397.

(45) Hadjichristidis, N.; Pitsikalis, M.; Iatrou, H. In Block Copolymers I, Abetz, V.,

Ed.; Advances in Polymer Science, Vol. 189; Springer-Verlag: Berlin, 2005,

pp 1–124.

(46) Hong, K.; Uhrig, D.; Mays, J. W. Current Opinion in Solid State and Materials

Science 1999, 4, 531–538.

(47) Fujimoto, T.; Zhang, H. M.; Kazama, T.; Isono, Y.; Hasegawa, H.; Hashi-

moto, T. Polymer 1992, 33, 2208–2213.

(48) Uhrig, D.; Mays, J. W. Polymer Chemistry 2011, 2, 69–76.

(49) Inoki, M.; Akutsu, F.; Yamaguchi, H.; Naruchi, K.; Miura, M. Macromolecu-

lar Chemistry and Physics 1994, 195, 2799–2804.

(50) Jannasch, P.; Wesslén, B. Journal of Polymer Science, Part A: Polymer Chemi-

stry 1995, 33, 1465–1474.

(51) Falk, J. C.; Schlott, R. J. Journal of Macromolecular Science, Part A: Chemistry

1973, 7, 1663–1668.

(52) Hadjichristidis, N.; Roovers, J. Journal of Polymer Science, Polymer Physics

Edition 1978, 16, 851–858.

(53) Altares, T.; Wyman, D. P.; Allen, V. R.; Meyersen, K. Journal of Polymer

Science, Part A: General Papers 1965, 3, 4131–4151.

136



Bibliography

(54) Itsuno, S.; Uchikoshi, K.; Ito, K. Journal of the American Chemical Society

1990, 112, 8187–8188.

(55) Pepper, K. W.; Paisley, H. M.; Young, M. A. Journal of the Chemical Society

1953, 4097.

(56) Cameron, G. G.; Qureshi, M. Y. Macromolecular Rapid Communications 1981,

2, 287–291.

(57) Iraqi, A.; Seth, S.; Vincent, C. A.; Cole-Hamilton, D. J.; Watkinson, M. D.;

Graham, I. M.; Jeffrey, D. Journal of Materials Chemistry 1992, 2, 1057.

(58) Guo, X.; Farwaha, R.; Rempel, G. L. Macromolecules 1990, 23, 5047–5054.

(59) Hempenius, M. A.; Michelberger, W.; Möller, M. Macromolecules 1997, 30,
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