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Abstract

The axion is a well-motivated dark matter (DM) candidate which has its origin in Peccei and
Quinn’s solution for the strong CP problem. In the present work, we study phenomenological
implications of axion DM that mainly originate from its cosmological evolution.
We especially focus on scenarios where the Peccei-Quinn symmetry is broken after inflation.

Here, we expect large isocurvature fluctuations in the axion energy density. These can eventually
collapse into gravitationally bound objects, called miniclusters. By calculating the mass function
of the axion miniclusters, we are for the first time able to give predictions on their distribution
in mass and size. We find for a QCD axion with mass ma ∼ µeV, a typical minicluster mass of
∼ 10−13M� and size of ∼ 106 km. The results of this study are also published in Ref. (a).
By numerically simulating the actual collapse of the axion overdensities after they decouple

from the Hubble expansion, we also consider the equilibrium state of the axion miniclusters.
Namely, a so far open question is if the miniclusters collapse into a static axion star configuration
or rather form dilute virialized clouds. In fact, we find hints for the latter and it seems that after
a short period of violent collapse the miniclusters take a quite dilute state which is characterized
by an oscillating ratio of kinetic to potential energy.
In another part, we consider the effects of the axion isocurvature fluctuations on cosmological

large-scale observables, like the cosmic microwave background (CMB). It turns out that these
become only important for ultra-light axion-like particles (ULAs). Using observations of the
CMB primary anisotropy spectrum we can show that due to these effects ULA DM with masses
in a range 10−24 eV− 10−15 eV can be strongly constrained (b).
Further, we also briefly review the experimental possibilities for axion detection experiments.

For example, it is known that in a strong electromagnetic field, the DM axion background field
can induce tiny electric and magnetic fields. In an appendix of the present work, we discuss
a quantum field calculation of these induced fields with the main focus on the impact of the
spatial size of the applied field in comparison to the axion Compton wavelength (c).

(a) J. Enander, A. Pargner, and T. Schwetz, “Axion minicluster power spectrum and mass
function”, JCAP 1712 no. 12, (2017) 038, arXiv:1708.04466.

(b) M. Feix, J. Frank, A. Pargner, R. Reischke, B. M. Schaefer, and T. Schwetz, “Testing post-
inflation Axion Dark Matter using CMB Observations (Working Title)”, in preparation.

(c) M. Beutter, A. Pargner, T. Schwetz, and E. Todarello “Axion-electrodynamics: a quantum
field calculation”, prepared for the submission to JCAP, arXiv:1812.05487.
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Zusammenfassung

Ein guter Kandidat für die Dunkle Materie in unserem Universum ist das Axion. Es hat seinen
Ursprung in der Lösung von Peccei und Quinn für das starke CP Problem. In der vorliegenden
Arbeit, betrachten wir phenomenologische Konsequenzen von Axion-Dunkler-Materie, welche
hauptsächliche durch die kosmologische Entwicklung des Axionfeldes hervorgerufen wird.
Unser Hauptaugenmerk liegt hierbei auf Szenarios in denen die Peccei-Quinn-Symmetry nach

einer inflationären Phase gebrochen wird. Hier erwarten wir starke, so genannte isocurvature
Fluktuationen in der Axionenergiedichte. Diese können schon in einer frühen Phase des Uni-
versums von der kosmologischen Expansion entkoppeln und in gravitativ gebundene Objekte
kollabieren. Diese werden Axion-Minicluster genannt. Indem wir die Massenfunktion dieser
Minicluster berechnen, können wir das erste mal Vorhersagen für ihre Verteilung bezüglich der
Masse und der Größe machen. Für ein QCD Axion mit der Masse ma ∼ µeV finde wir zum
Beispiel typische Miniclustermassen von MMC ∼ 10−13M� und Größen von etwa 106 km. Die
Ergebnisse dieser Betrachtung wurden in Referenz (a) veröffentlicht.
Indem wir den eigentlich Kollaps der Minicluster numerisch simulieren, können wir auch deren

Gleichgewichtszustand betrachten. Denn bis jetzt ist ungeklärt, ob die Minicluster in eine statis-
che Axionstern-Konfiguration kollabieren oder ob sie eher den Zustand ähnlich einer dünnen,
virialisierten Wolke annehmen. In der Tat zeigen unsere Simulation Hinweise für letzteres.
Nach einer kurzen Phase des Kollapses scheint es als ob die Minicluster tatsächlich einer dün-
nen Wolke ähneln, die durch ein oszillierendes Verhältnis zwischen kinetischer und potentieller
Energie gekennzeichnet ist.
In einem anderen Teil dieser Arbeit befassen wir uns mit den Effekten der isocurvature Fluk-

tuation in der Axionenergiedichte für kosmologische Observablen, wie zum Beispiel dem kos-
mischem Mikrowellenhintergrund. Es stellt sich heraus, dass diese nur signifikant sind, falls das
Axion extrem leicht ist. Indem wir die Daten von aktuellen Beobachtungen des kosmologischen
Mikrowellenhintergrunds verwenden, können wir durch diese Effekte bereits einen großen Bere-
ich, in dem extrem leichte Axionen die Dunkle Materie erklären können, ausschließen, nämlich
Axionemassen von 10−24 eV− 10−15 eV (b).
Ferner betrachten wir auch kurz die experimentellen Möglichkeiten zum Nachweis von Axion-

Dunkler-Materie. Es ist bekannt, dass in einem starken elektromagnetischen Feld die Axion-
Dunkle-Materie schwache elektrische und magnetische Felder induziert. In einem Anhang dieser
Arbeit diskutieren wir eine quantenfeldtheoretische Berechnung dieser induzierten Felder. Insb-
sondere betrachten wir den Zusammenhang zwischen der Ausdehnung des elektromagnetischen
Feldes und der Axion-Compton-Wellenlänge (c).

(a) J. Enander, A. Pargner, and T. Schwetz, “Axion minicluster power spectrum and mass
function”, JCAP 1712 no. 12, (2017) 038, arXiv:1708.04466.

(b) M. Feix, J. Frank, A. Pargner, R. Reischke, B. M. Schaefer, and T. Schwetz, “Testing
post-inflation axion dark matter using CMB observations (working title)”, in preparation.

(c) M. Beutter, A. Pargner, T. Schwetz, and E. Todarello “Axion-electrodynamics: a quantum
field calculation”, prepared for the submission to JCAP, arXiv:1812.05487.
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I. Introduction

The need for non-luminous Dark Matter (DM) in our Universe was realized already in the 1930’s
by observing the kinematics of galaxy clusters [1, 2]. Since then, more and more evidence for
DM is accumulating [3]. However, almost a century after the first mention, its true nature is
still one of the biggest puzzles in physics.
One might think that the missing invisible matter has an astrophysical or cosmological origin

and hides in massive compact halo objects (MACHO) or primordial Black Holes (pBH) [4,5]. But
searches for microlensing and other astrophysical signals of MACHOs and pBHs exclude large
parts of the possible parameter space [6,7]. Therefore, it is believed that neither MACHOs nor
pBHs can explain all or even large parts of the observed DM [8]. Also, modifications of General
Relativity are so far not successful in conclusively explaining all the evidences for DM [9,10].
Therefore, we might have to look in another corner. Namely, a different possibility could be

that the DM consists of particles which mainly interact gravitationally with the visible Universe.
Since the Standard Model (SM) of particle physics does not include a suitable candidate, this
calls for an explanation going beyond the known. Typically, the guiding principle for the search
for physics beyond the SM (BSM) is explanations for shortcomings of it, like the unification
of the gauge couplings at high scales or the hierarchy problem. From the 1980’s on, the most
popular explanation for these puzzles have been within supersymmetric (SUSY) models [11]. One
advantage of SUSY is that it can provide excellent DM candidates. These would only weakly
interact with the SM and are therefore called weakly interacting massive particles (WIMPs). An
immense experimental effort was put forward to look for WIMPs in indirect and direct detection
experiments [12]. Today, the latter reach unprecedented sensitivity and soon will be even able to
detect the irreducible background of neutrino fluxes from the sun and other astrophysical sources.
Despite this heroic effort, there is so far no conclusive observation of a detection signal [13, 14].
This non-observation in direct detection experiments and the null-results of SUSY searches at
colliders [15] made the WIMP recently a less and less attractive solution to the DM puzzle [16].
That is why in the last years, another BSM particle regained populartiy and is slowly devel-

oping into the most appealing DM candidate. Originally, it has appeared in Peccei and Quinn’s
solution of the strong CP problem [17]. In the late 1970’s, they found an elegant explanation for
why the strong interactions of the SM do not violate the CP symmetry. A byproduct of their
solution is a pseudo-Nambu-Goldstone (pNG) boson, the axion [18, 19]. It was soon realized
that also many other high energy extensions of the SM contain as well pNG bosons with similar
properties as the axion. For this reason these particles are usually called axion-like particles
(ALPs) [20,21].
The Peccei-Quinn solution of the strong CP problem requires a new global chiral U(1) sym-

metry which gets spontaneously broken at the energy scale fa by the vacuum expectation value
of a complex scalar field. The axion emerges as the phase degree of freedom of this complex
scalar after the Peccei-Quinn symmetry is broken. A potential for the axion is provided via
the mixing with the active mesons, giving it a mass inversely proportional to the breaking scale
fa. The mixing happens around the QCD phase transition when the quark condensates form.
At higher energies, the axion is effectively massless. Also, the axion interaction with the SM
particles is inversely proportional to fa. In Peccei and Quinn’s original proposal, fa coincides
with the electroweak breaking scale, leading to rather sizeable couplings. This scenario was
soon ruled out by beam dump experiments [22]. However, in so-called invisible axion models,
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I. Introduction

fa can be at very high scales, giving the axion very weak interactions and an extremely small
mass [23–26].
Even though being very light, the axion can be an excellent cold DM (CDM) candidate, thanks

to its non-thermal production via the vacuum realignment mechanism [27–30]. When the Peccei-
Quinn symmetry is broken in the early Universe, at high temperatures T ∼ fa, the axion field is
massless and since no specific field value is energetically favored, it simply takes some random
one. At lower temperatures around the QCD phase transition, its potential becomes important
which makes the axion field roll down to the CP conserving minimum and therefore realign with
the vacuum. The energy stored in the coherent oscillations around this minimum behaves like
collisionless matter and makes a good explanation for the DM in our Universe. A typical axion
mass suitable to explain the observed DM density is ma ∼ 10−5 eV [31].

However, there are two fundamentally different scenarios how this production mechanism
could have been realized. Namely, whether the Peccei-Quinn symmetry breaking happens before
or after an inflationary epoch. In the first scenario, the axion field takes one value in the
whole observable universe and the axion energy density is proportional to this single value.
But when the Peccei-Quinn symmetry breaking happens after inflation, the situation is more
complicated. Here, the axion field takes different values in causally disconnected regions which
leads to large isocurvature fluctuations in the axion energy density. This has some interesting
phenomenological consequences for axion DM.
Namely, large overdensities can decouple from the Hubble flow already in the radiation dom-

inated epoch and form gravitationally bound objects. These are called axion miniclusters [32].
When estimating the size of an axion minicluster via the horizon when the field oscillations
commence, a typical minicluster mass is MMC ∼ 10−11 M� for ma ∼ 10−5 eV. If all or big
parts of the axion DM would be clumped in miniclusters, this could have a variety of important
implications. Foremost, it would lower the detection potential of typical axion DM haloscope
experiments dramatically. Still, there might be ways of observing axion miniclusters themselves,
for example via gravitational microlensing or as a source for fast radio bursts [33,34]. But before
drawing definite conclusions it is essential to get a solid understanding of the formation history
and the distribution of axion miniclusters.
Much of the present work is therefore dedicated to shedding light on this issues. By care-

fully following the axion field evolution in the post-inflation Peccei-Quinn symmetry breaking
scenario, we are able to study the formation of axion miniclusters and calculate for the first
time their distribution not only in mass but also in size. Using a semi-analytical approach and
statistical methods allows for a transparent interpretation of the underlying physics and the
dependence on the axion paramters like the mass ma and the Peccei-Quinn breaking scale fa.
Our results give a useful estimate on the properties of the axion miniclusters and can serve as
input for the study of their further evolution.
Namely, we can expect that after their formation, the miniclusters experience a period of

collapse. An interesting question is if they decohere and settle in a virialized configuration or
if they collapse into a coherent object, a so-called axion star [35]. A numerical investigation of
this is also part of the present work.
We further consider the implications of post-inflation Peccei-Quinn breaking in the more

general context of ALPs. It turns out that for ultra-light ALPs, also known as ULAs, the
isocurvature fluctuations in the energy density can have a sizeable effect in cosmological large-
scale observables. By looking at the implications for the anisotropy spectrum of fluctuations in
the cosmic microwave background (CMB), we are able to constrain large parts of the parameter
space where ULAs can be the DM.
This work is structured as follows. We start by briefly reviewing the strong CP problem,

its solution by Peccei and Quinn, and the role of the axion therein, in Ch. II. There, we also
discuss the more general case of ALPs and the interaction of axions with the SM particles. In
App. B, we take a closer look at the axion-photon interaction and present results of a quantum
field theoretical calclation of axion-induced electric and magnetic fields. We discuss the different

2



I. Introduction

cosmological production mechanisms for DM axions in Ch. III with a special focus on the vacuum
realignment mechanism for which we also derive very useful quantitative estimates for the relic
axion abundance. In Ch. IV, we study the formation of axion miniclusters in the post-inflation
vacuum realignment scenario in detail. Chapter V is dedicated to the fate of axion miniclusters
meaning that we consider the subsequent collapse of axion overdensities after their decoupling
from the Hubble flow. This way we can learn about the equilibrium configuration of axion
miniclusters. In Ch. VI, we take a look at the effects of the axion isocurvature fluctuations in
the post-inflation Peccei-Quinn breaking scenario on the CMB power spectrum and derive some
strong limits on ULA DM. We finish in Ch. VII with a summary and an outlook. In App. A,
we discuss the natural unit system and give some useful conversion relations. The appendices
C to F provide further supplement material to the main text.

3





II. Preliminaries

To set the stage for the present work, we briefly introduce the strong CP problem and review
the role of the axion in its solution. We also look at the more general case of axion-like particles
(ALPs) and consider the various interactions of axions and ALPs with the SM.
The following short overview is far from comprehensive. There exists a plethora of great

reviews on the strong CP problem [36–40] as well as on different aspects of axion phyiscs [41–
47]. Many thoughts and arguments presented here are naturally inspired by these ever-helpful
resources.

II.1. The Strong CP Problem and the
Axion

A theory of massive quarks q and strong interactions1

Ls = 1
4GaµνG

aµν − (q̄LmqqR + h.c)− αS
8π θGaµνG̃

aµν (II.1)

has two possible sources for violating parity (P), time reversal (T) and the combined transfor-
mation of charge conjugation and parity (CP). First via the quark masses mq, which can be
complex in general, and second via the term ∼ θGG̃. When SUc(3) was first introduced as the
theory of strong interactions, the second term was not present per choice of the designer. In
this case, it was thought that the theory can easily be made CP symmetric and there was and
is convincing experimental evidence that strong interactions do not violate CP.
So, assuming for a moment the θGG̃ therm would not be present then by writing the mass as

mq = |mq| exp[iθq], it seems like a chiral transformation

qL → eiθq/2qL , qR → e−iθq/2qR (II.2)

would rotate away the phases and make them unphysical. But in fact this is not true since such
a chiral transformation has an anomaly and is therefore not a real symmetry of the theory. This
is also the reason why the only gauge invariant way of writing strong interactions is including
the θGG̃ term, as it was shown by t’Hooft [48]. This is why the parameter θ can be understood
as a phase ∈ [−π, π] describing the choice of a specific gauge invariant vacuum [49].
However, for making the quark masses in the gauge invariant Lagrangian, Eq. (II.1), real we

can still perform a chiral rotation, like in Eq. (II.2). But then the Lagrangian transforms like

Ls → L′s = 1
4GaµνG

aµν − |mq| (q̄LqR + h.c)− αS
8π (θ +Nfθq)GaµνG̃aµν . (II.3)

and the modification of the GG̃ term results from the anomalous character of the transformation.
Note that we consider now the general case of Nf different quark flavors and use a diagonal mass
matrix. Since θ as well as Nfθq are completely arbitrary phases, we expect that θ̄ ≡ θ + Nfθq
can easily be of O(1).

1It is G̃µνa = εµνρσGaρσ/2 the dual of the gluon field strength tensor G and a is the color index.
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II. Preliminaries

From the theory of electroweak interactions we know that CP does not have to be a true
symmetry of nature. Here, the irremovable phases in the quark mixing matrix cause flavor
changing neutral currents which violate CP [50]. In fact, including the full electroweak sector
of the SM with the gauge invariant strong interactions, as described above, leads to [37]

θ̄ = θ + ArgDetMq (II.4)

being the really physically revlevant parameter. Here, Mq is the full quark mass matrix.
The presence of the CP violating θ̄GG̃ term has very profound consequences. Possibly the

most notable one is that it induces an electric dipole moment for the neutron [39]

|dn| ∼ 5.2 · 10−16 θ̄ e · cm . (II.5)

But with stringent experimental constraints on dn, namely |dn| < 0.3 · 10−25 e · cm [51], the θ̄
parameter should be tiny, i.e. we must have θ̄ < 10−9. This is very surprising since, as we have
argued, one would a priori not expect θ to be small, nor ArgDetMq. Even more unreasonable is
to expect that these too completely unrelated parameters cancel in the needed precision. Hence,
the strong CP problem is the puzzle why strong interactions do not violate CP, even though
there is no fundamental reason for it.
A minimal solution to this problem, as we can see easily from Eq. (II.4), would be that one of

the light quarks is massless. But this possibility is strongly disfavored by experiments as well as
lattice calculations, see Ref. [52] and references therein. Another solution could be that a high
energy completion of the SM is indeed CP symmetric and it is only broken spontaneously [53,54].
In this case, the θGG̃ term would not be there, to begin with, since here θ = 0 would be the
only gauge invariant CP conserving choice for the vacuum. The model building challenge of this
mechanism is to still produce the observed phases of the quark mass matrix. In addition, the
needed new degrees of freedom must be usually very heavy to not induce a sizeable θ̄ via loop
effects. In this case, the low energy part of the theory often just reproduces the SM. Therefore,
this type of models “lack a certain kind of predictivity” [55], cf. also Ref. [56].
The most appreciated method explaining the smallness of θ̄ is the solution provided by Peccei

and Quinn [17]. Their main idea was promoting the static θ̄ parameter to a dynamical variable
which should eventually settle in a CP conserving state. To do this, they exploited the very
same source why the GG̃ term is physical to begin with. Namely, the anomalous character
of a chiral U(1) transformation. Thus, Peccei and Quinn introduced a new global chiral U(1)
symmetry in the strongly interacting sector. Such a symmetry is now known as Peccei-Quinn
symmetry, abbreviated as U(1)PQ. But for making θ̄ dynamcial, also new degrees of freedom
and therefore new fields must be added to the SM. In the most minimal and original attempt
by Peccei and Quinn, it suffices to add one new complex scalar field. It basically acts as second
Higgs doublet and it can spontaneously break the U(1)PQ symmetry by acquiring a vacuum
expectation value (vev). As usual, one of the two Higgs doublets couples to the down-type, the
other to the up-type quarks. The potential for the Higgs fields is chosen such that the whole
Lagrangian is symmetric under a chiral rotation of the quark fields2

u → eiθuγ5u , d → eiθdγ5d . (II.6)

To make the gauge invariant Lagrangian truely symmetric under such a tranformation, one also
has to shift the vacuum angle

θ → θ −Nf (θu + θd) (II.7)

because of the anomaly.
After the breaking of the electroweak symmetry, which in this case coincides with the U(1)PQ

symmetry breaking, the neutral components of the Higgs doublets acquire their vevs vu and
2It is γ5 the usual product of the Dirac matrices γi.
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vd with
√
v2
u + v2

d ' 250 GeV and their phases become the Nambu-Goldstones. One linear
combination will be eaten by the Z boson, as usual. But the orthogonal combination becomes
a new massless field, namely the axion a. A kinetic term for a of the form

La,kin = 1
2 (∂µa) (∂µa) (II.8)

follows from the kinetic terms of the Higgs fields. In this model, the axion has a remaining shift
symmetry a → a+ 2πnfa, with fa = vuvd/

√
v2
u + v2

d and n ∈ N [43].
Axion couplings to the quarks arise from the mass terms. However, they can be removed by

again performing a chiral rotation and this eventually leads to the desired coupling of the axion
to gluons:

La,gl ∼ −
αS
8π

a

fa
GaµνG̃

aµν . (II.9)

Now, using the remaining shift symmetry one can redefine the axion field to absorb the θ̄GG̃
vacuum term. Thus, the static θ̄ parameter was successfully promoted to the dynamical axion
field a(x), θ̄ → a(x)/fa.

By removing the axion-quark coupling from the mass terms, more interactions for the axion
arise. Since the quarks are electrically charged, interactions between the axion and the photon
field of the form3

La,ph ∼
α

8π
a

fa
FµνF̃

µν (II.10)

are induced. The kinetic terms of the quark field lead to the derivative couplings

La,qu ∼
(∂µa)
fa

q̄γµγ5q . (II.11)

We will later discuss the interaction between the axions and the SM particles in more detail.
But note that all couplings are suppressed by the Peccei-Quinn breaking scale fa.
It remains to show that the axion field really solves the strong CP problem. Since the term

in Eq. (II.9) causes potentially the same effects as the static θ̄GG̃ term. However, there exists a
theorem by Vaffa and Witten which states that without other sources of CP violation, the QCD
vacuum energy is minimized in a CP symmetric state [57]. Thus, QCD itself solves the strong
CP problem by providing a potential for the axion field which guides it into a CP conserving
minimum. This potential arises when after the QCD confinement the aGG̃ term leads to the
mixing between the axion and the mesons. In chiral perturbation theory, the axion potential is
calcuable at tree level. It has the form [52]4

VcPT(a) = m2
πf

2
π

[
1−

√
1− 4mumd

(m2
u +m2

d)
sin2

(
a

2fa

)]
, (II.12)

which is indeed minimized at the CP conserving minimum, a = 0 mod 2πfa. The potential can
also be calculated by an effective instanton action which describes the non-perturbative effects
of QCD. Using this technique, it is found that [58]:

Vinst(a) = m2
πf

2
π

mumd

(m2
u +m2

d)

[
1− cos

(
a

fa

)]
. (II.13)

3Again, it is F̃µν = εµνρσF
ρσ/2 the dual of the usual field strength tensor F of the photon field.

4Be aware that we have applied a shift such that the minimum of the potential is at zero. Further note that to
avoid any confusion at this point we set the number of degenerate minima NDW in the interval a/fa ∈ [−π, π]
to one. If NDW 6= 1, this has some interisting implications, especially in the comsological context. We will
revisit this topic in Sec. III.3 when discussing topological defects. However, it should be mentioned that the
original Peccei-Quinn model has NDW = 3.
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Besides a slightly different parametric dependence, both results agree in the prediction for the
axion mass:

m2
a = ∂2V

∂a2

∣∣∣∣
min

= m2
πf

2
π

f2
a

mumd

(mu +md)2 . (II.14)

This inverse proportionality of the mass ma to the Peccei-Quinn breaking scale fa is one of the
defining features of the QCD axion. It makes phenomenological studies particularly compact
since fa, or equivalently ma, is the only parameter describing virtually all axion properties.

The axion potential at any given temperature, also above the QCD confinement, can be related
to the topological susceptibility of QCD, χQCD. It is

m2
af

2
a = ∂2VQCD

∂(a/fa)2 ≡ χQCD(T ) (II.15)

and χQCD can be calculated either in an interacting instanton liquid model (IILM) [59], or, as
it was recently done by Borsanyi et al in Ref. [60], with state of the art lattice methods. In
Ref. [60] it was found that χQCD(T . 100 MeV) ≡ χQCD ' (75.5 MeV)4 which leads to the
compact relation

ma ' 5.7 µeV
(

1012 GeV
fa

)
(II.16)

for the zero-temperature QCD axion mass. At high temperatures, well above the QCD phase
transition, χQCD(T ) vanishes, making the axion massless. The temperature dependence of the
axion mass will become important when we discuss the evolution of the cosmological axion field.
With Eq. (II.15), it is

ma(T ) =

√
χQCD(T )
fa

(II.17)

a general relation for the temperature dependent axion mass. In the IILM approach, a param-
terization for χ(T ) can be found. In Ref. [59] it is reported by Wantz and Shellard that

χQCD(T ) = 1.68 · 10−7 Λ4
(Λ
T

)6.68
for T > Λ (II.18)

and they set Λ = 400 MeV. This means that the axion masse “switches on” with a power law
∼ (ΛQCD/T )3.34 for decreasing temperatures. At temperature below T < 400 MeV it approaches
its zero temperature mass, where it settles around T ≈ TQCD ' 100 MeV [59].

Let us come back to the original idea of Peccei and Quinn, where fa is of the order of the
electroweak breaking scale. This does not only lead to quite heavy axions, ma ∼ keV, but more
importantly to sizable couplings to the SM particles. Therefore, the original Peccei-Quinn model
was quickly ruled out by beam dump and other experimental constraints [22].
But the basic idea of the Peccei-Quinn mechanism can easily be expanded by adding more

new degrees of freedom. This allows for pushing the symmetry breaking scale to very high
energies. The most prominent approaches of this kind are the DFSZ [23, 24] and the KSVZ
models [25,26]. In the first, besides the second Higgs doublet, another complex SM singlet field
is added. Whereas in the latter case, additional heavy SM singlet quarks are included. Since in
both models fa can be at virtually arbitrarily high scales, the axion does not only can be made
extremly light, ma ∼ µeV, but also very weakly interacting. This is why the axion emerging in
this models is called invisible.
To summarize this section we repeat the most important properties of the QCD axion. Its

defining feature is the coupling to the gluons of the form (II.9). This interaction is model
independent since it is eventually the reason why the axion solves the strong CP problem.
Therefore, also the relation between the axion mass and the symmetry breaking scale, as in
Eq. (II.14), is model independent. Model-dependent are the actual couplings to the other SM
particles, i.e. photons, quarks, and leptons. A generic feature on the other hand is that all come
with the suppression by fa.
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II.2. Axion-like Particles
When a global symmetry is spontaneously broken, Nambu-Goldstone (NG) bosons naturally
arise and there exist many extensions of the SM where this happens. Examples are models
where family or lepton-number symmetries are introduced. Here, the NGs are called familons
respectively majorons [61]. But since new massless degrees of freedom are in general strongly
constrained, these new scalar or pseudo-scalar particles should be massive. This rather makes
them pseudo-NGs (pNGs). Their mass might be generated dynamically, like in the case of the
QCD axion, or it can be there to begin with, for example by a small explicit symmetry breaking.
We call such particles axion-like particles (ALPs). See e.g. Ref. [62] for a thorough review of
ALPs.
In general, the biggest difference between the QCD axion and ALPs is that the latter do not

have to have a specific relation between their mass mA and the breaking scale fA of the new
global symmetry. Taking a model-independent approach, these two parameters are completely
independent. Nevertheless, if we assume that a potential for the ALP A is generated by some
exotic strongly interacting sector, we might write it as

VALP(A) ∼ Λ4
[
1− cos

(
A

fA

)]
, (II.19)

in analogy to the instanton potential of the QCD axions. This gives a relation for the ALP mass

m2
Af

2
A = ∂2VALP

∂(A/fA)2 = Λ4 . (II.20)

Thus, Λ4 takes the role of the topological susceptibility as χQCD did in the QCD case. But note
that this is just a reshuffling of the parameters since in most cases also Λ is unknown. So, the
ALP can be characterized either by mA and fA or, assuming a certain mechanism for generating
the the ALP potential, by fA and Λ. Thus, there are only two independent parameters in the
end.
Let us come to the interactions of ALPs and SM particles. In principle they have similar

couplings as the QCD axion and the various coupling constants might be calculable in specific
models [61]. In a model-independent approach, they can be treated as free parameters. However,
due to their NG nature, the interactions are in general suppressed by the symmetry breaking
scale fA. Assuming a high fA, this leads to very feeble interactions.

Since the ALP couplings to the photon and fermions are so similar to those in the case of the
QCD axion, most of the experiments that are actually intended to detect the QCD axion are
also sensitive to ALP interactions. This might seem like an advantage since the parameter space
can be probed basically model independently. But on the other hand, a signal caused by the
QCD axion or an ALP could virtually not be distinguished, leading to interesting challenges in
case of an actual detection. In fact, we would need as many signals as possible, from as many
different kinds of experiments, to be sure whether an ALP or the QCD axion was detected. This
is also discussed in Ref. [43].
Finally, we note that ALPs also appear in more ambitious unified theories. For example,

in SUSY theories or string theoretical models [62]. In the latter, scalar fields with axion-like
properties come up in great numbers when the higher spacetime dimensions are compactified.
Here, ALPs appear as Kaluza-Klein modes with a plethora of different masses. This phenomenon
is often dubbed as axiverse [20], meaning that the universe should basically be full of ALPs with
different kinds of roles.
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II.3. Axion and ALP Interactions with the
SM

At low energies, the important interactions of the axion with the SM are the ones with photons,
nucleons, and electrons. We can write the phenomenologically most interesting interactions as

Lint = −gaγγ4 aFµνF̃µν + i
∑

f=n,p,e

gaf
2mf

(∂µa) Ψ̄fγ
µγ5Ψf − i

∑
f=p,n

gafγ
2mf

aFµνΨ̄fσµνγ5Ψf .

(II.21)

Note that for historical reasons gaγγ and gafγ have mass dimension −1, whereas the coupling to
fermions gaf is dimensionless [43].

As we have discussed before, in specific axion or ALP models the value of the coupling
constants might be calculable and related to some other paramters. To express the couplings g
in Eq. (II.21) via dimensionless coupling constants C, we can restore the ∼ 1/fa dependence we
have found in Eq. (II.10) and (II.11), by making the identifications

gaγγ ≡
α

2π
Caγγ
fa

, gaf ≡
Cafmf

fa
, gafγ ≡

Cafγ
fa

. (II.22)

Let us take a brief look at the actual values for the coupling constants in the case of the KSVZ
and DFSZ model for the QCD axion. To calculate the coupling with neutrons and protons,
model independent contributions from the meson mixing are important. For that, careful QCD
calculations are needed. In Ref. [52], Villadoro et al present results of an analysis using chiral
perturbation theory. They report values for the coupling of axions to protons and neutrons in
KSVZ-like models,

CKSVZ
ap = −0.47(3) , CKSVZ

an = −0.02(3) (II.23)

and for DFSZ-like models

CDFSZ
ap = −0.617 + 0.435 sin2 β ± 0.025 , CDFSZ

an = 0.254− 0.414 sin2 β ± 0.025 . (II.24)

The angle β is related to ratio of the Higgs vevs. Note that the uncertainty comes from using
chiral perturbation theory for the low energy QCD calculations.
The axion-photon coupling [52]

Caγγ = E

N
− 1.92(4) (II.25)

has the same form for DFSZ and KSVZ models. But it depends on the ratio of the electro-
magnetic anomaly number E and the color anomaly number N . In hadronic axion models, a
subclass of the KSVZ models, one usually has E/N = 0, whereas in classical DFSZ models
E/N = 8/3. However, it was recently shown by Di Luzio et al in Ref. [63] that these might
not be the only possible values for E/N in DFSZ or KSVZ models which solve the strong CP
problem. This enlarges the possible parameter space for the axion-photon coupling quite a bit.
In the following, we want to give a brief overwiew on the observational implications of the

different axion interactions with the SM particles.

Axion-Photon Coupling

The first term in Eq. (II.21) leads to the coupling of axions to two photons which makes in
principle a decay of the axion into two photons possible. The photons resulting from the process
a → 2γ would have a very clear signature with frequencies ω = ma/2 each. However, for large
breaking scales, say fa ∼ 1012 GeV, the lifetime of the axion is longer than the age of the
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Universe. This makes it cosmologically stable, which is also necessary for being a DM contender
by the way.
But the gaγγ coupling also leads to the mixing of the axion and photons in strong electro-

magnetic fields. This is known as the Primakoff effect and is experimentally the most accessible
axion detection channel. In a seminal work by Sikive [64], two experiments exploiting the Pri-
makoff effect were proposed. In so-called light shining through a wall (LSW) experiments, a
laser is directed through a strong magnetic field onto a wall. In the magnetic field photons
from the laser can turn into axions. The very weakly interacting axions easily penetrate the
wall. If behind the wall again a strong magnetic field is applied, the axions turn back into de-
tectable photons. The currently best limits by a LSW experiment come from OSQAR at CERN,
excluding |gaγγ | > 10−7 GeV for ma < 10−4 eV [51].

Sikivie also proposed a setup to detect DM axions using the Primakoff effect. Assuming that
the DM halo consists of axions permeating the Earth constantly, the idea is to use a microwave
cavity with a strong magnetic field as a haloscope. In the cavity, axions could resonantly mix with
the photons from the magnetic field and produce a microwave signal. The ADMX experiment
(University of Washington) is the longest running axion DM haloscope using this technique [65].
Recently, first exclusion limits on the axion-photon coupling in a parameter range predicted
by KSVZ as well as DFSZ models were reported [66]. In App. B we take a closer look at the
axion-photon interaction. There we also present results of a quantum field calcuatlion for the
induced electric and magnetic field caused by the interaction of an axion background field and
a strong external magnetic field [67].
Finally, the Primakoff effect can be used to detect axions coming from astrophysical sources

like the Sun [68, 69]. Assuming the axions are produced inside the Sun, be it via Primakoff or
another interaction process, they could easily escape due to their weak interactions and travel to
the Earth. The idea of a so-called axion helioscope is to point a strong magnetic field to the Sun
and incoming axions could be turned into photons therein. The CAST experiment at CERN is
the first of its kind, using discarded LHC prototype magnets [70]. Currently, an upgrade of the
CAST setup, called IAXO, is in its first stages [71].
The axion-photon mixing also offers an anomalous cooling mechanism for stars. By observa-

tions of horizontal branch stars and their lifetime, severe contraints on the cooling via axions
can be made [72]. This excludes couplings |gaγγ | > 6.6 ·10−11 GeV−1 for a wide mass range [51].
Also the analyis of the spectrum of cosmic gamma rays can be used to test the axion-photon
mixing. Therefore, observations by the H.E.S.S. and the Fermi-LAT collaborations put further
constraints on the coupling gaγγ [73, 74].

Axion-Nucleon Coupling

From the second term in Eq. (II.21), we learn that the axion, even tough being very light,
cannot transmit scalar long-range interactions between macroscopic bodies. Therefore, the axion
evades usual fifth force constraints. Nevertheless, the pseudo-scalar axion coupling might lead
to interactions between two polarized probes [75]. For now, the constraints coming from such
experiments are much weaker than the ones from astrophyssical considerations [76].
Namely, the most important implication from the axion-nucleon coupling is that it leads to

another anomalous cooling mechanism for hot stars and especially supernovae. Here, the crucial
process is nucleon-Bremsstrahlung like n+n → n+n+a. With the latest results from neutron
star cooling observations it is found that it must be g2

an < 6 · 10−19 [77].
Despite the axion nucleon coupling being not as easy experimentally accessible as the coupling

to photons, there were recently some interesting new concepts put up which could test it anyway.
For example, the pseudo-scalar interaction of the DM axion background field with a spinning
nucleon could have a similar effect as in nuclear magnetic resonance [78].
Interstingly, the last term in Eq. (II.21) has the very same consequences as for why the axion

was brought up to begin with. Namely, it causes an electric dipole moment for the neutron.
But now, the effect is highly suppressed by the coupling scale fa. Still, there exist ideas for
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Figure II.1.: Parameter Space for ALP-Photon Coupling. The constraints (blue, orange, and
purple regions) for the helioscope, light shining through a wall (LSW) experi-
ments, and the astrophysical constraints (supernovae, H.E.S.S., FermiLAT) are
extracted from Ref. [51], where similar plots can be found. The projection of the
haloscope sensitivity (light red) is inspired by Ref. [43]. The red lines indicate
the theory prediction for the photon coupling in case of KSVZ respectively DFSZ
models, cf. Eq. (II.25). The band corresponds to variations of Caγγ in different
model setups.

experiments using this effect to detect effects of the DM axion field [78].

Axion Parameter Space

All the different couplings and interactions of the axion can be used to elucidate its properties.
As an example, we show in Fig. II.1 a sketch of the gaγγ − ma parameter space with recent
experimental constraints [51] and projections for future sensitivity of upcoming experiments [43].
We also add the DFSZ and KSVZ model predictions for the photon coupling of the QCD axion.
We see that the various astrophysical as well as experimental observations test and constrain
the parameter space already quite well. However, as we have stated in our introduction, the
field of axion detection is very fastly growing. Thus, the picture in Fig. II.1 might change again
soon. For an excellent review of the axion-SM interactions and the recent experimental efforts
to detect the axion see Ref. [43].
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In the previous chapter, we have discussed how the axion emerges as the Nambu-Goldstone,
i.e. the phase degree of freedom, of a complex scalar field when the global U(1)PQ symmetry
is spontaneously broken. This happens at some high energy scale fa. Put in the cosmological
context, this means in the hot and early Universe.
There exist different cosmological production mechanisms for relic axions. Besides the usual

thermal freeze-out, there are also very efficient non-thermal ones. These are the axion production
via the so-called vacuum realignment mechanism and, in certain scenarios, via the decay of
topological defects. In the following, we discuss the different sources for relic axions in some
detail. The most attention is paid to the realignment mechanism, where we also derive useful
quantitative estimates for the relic abundance of the QCD axion as well as for ALPs. We will
see that the axions produced in this way are excellent candidates for explaining the observed
DM in our Universe.

III.1. Thermal Production
Axions can be produced by different thermal processes in the SM plasma of the early Universe.
After hadronization and at temperatures T . 200 MeV, the most important process is pion-
axion conversion π + N ↔ a + N , with N being some nucleon. When the interaction rate
of this process drops below the Hubble expansion, a number of relic axions freezes-out of the
cosmological expansion. This is, for example, nicely discussed by Kolb and Turner in Ref. [79].
They estimate the number density of thermal relic axions to be

na,th '
83 cm−3

g∗(TF)/10 , (III.1)

which depends on the number of degrees of freedom g∗ at time of freeze-out TF.
If the freeze-out happens at TF > ma the axions behave as dark radiation. As soon as the

temperature drops below their mass, they evolve as non-relativistic matter. So, we note that
thermal axions are not only produced in comparable numbers as massive neutrinos but also
behave similarly. Hence, they would rather act as hot or warm DM than cold DM.
But for thermally producing axions in relevant numbers, the axion-SM interactions cannot be

too weak. Recall that they scale inversely with fa. It can be shown that we need fa . 1012 GeV
to establish thermal equilibrium with the SM plasma, to begin with [44]. Otherwise, the thermal
production is not possible or very inefficient. Furhter, in Ref. [79] it is shown that for having
a relic abundance of thermally produced axions with Ωa,thh

2 ∼ 0.1, i.e. comparable with the
observed amount of DM, the axion must be as heavy as ma ∼ eV. Such heavy axions are
not cosmologically stable and also strongly cosntrained from beam dump experiments [80]. For
lighter axions, the contribution of thermally produced axions to the energy budget of the universe
is completely negligible [44].
Therefore, we conclude that thermally produced axions are not a good candidate to explain

the DM density in our Universe for various reasons. If they would be produced in large enough
numbers, they would behave as hot DM which is strongly constrained by observations of large-
scale structures [81] or they would not even be stable [80]. For masses ma . eV they will only
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be a subdominant component of the relic axions since there are much more effective production
mechanisms, as we will show in the following.

III.2. Vacuum Realignment
Vacuum realignment is a largely model-independent way of producing relic axions and it results
basically only from the cosmological evolution of the axion field, as we will discuss now in some
detail. A sketch of the situation is depicted in Fig. III.1. Reviews on the axion production via
vacuum realignment can be found in Refs. [44,79,82]. Some of the original works on this topics
are Refs. [27–30].

We start by considering the evolution of the axion field in an expanding universe. Its only
interactions should be gravitational and all couplings with the SM particles are neglected. From
our discussion considering the thermal production of axions, we know that this is a reasonable
working assumption. The Lagrangian of the axion field is then simply

La = −1
2 (∂µa) (∂µa)− V (a) . (III.2)

Following Eq. (II.19), we can write the potential as

V (a) = m2
af

2
a

[
1− cos

(
a

fa

)]
. (III.3)

It turns out to be convenient to work with the dimensionless field θ(x) ≡ a(x)/fa, which is often
called the misalignment field. With Eq. (III.2), its Lagrangian is

Lθ = f2
a

[
−1

2 (∂µθ) (∂µθ)− V (θ)
]

(III.4)

with the potential

V (θ) = m2
a (1− cos θ) . (III.5)

The geometry of the spacetime is defined via the metric gµν and we take it to be that of an
expanding Friedman-Robertson-Walker universe. Assuming zero curvature, gµν is defined via
the line element1

ds2 = −dt2 +R2(t)
(
dr2 + dΩ2

)
, (III.6)

with R being the scale factor. Its evolution is determined by the Friedmann equation

H2 = 8πG
3 ρc , (III.7)

where the Hubble rate H is defined as H = Ṙ/R, and ρc is the energy density of the universe.
As usual, dots denote derivatives with respect to time. Note that for now, we assume that the
axion field only barely contributes to the overall energy density, i.e. it should not influence the
evolution of H.
The equation governing the dynamics of θ can be derived by varying the action

Sθ =
∫

d4x
√
−gLθ . (III.8)

With Eq. (III.3) and (III.6) we find the equation of motion:

θ̈ + 3Hθ̇ − 1
R2∇

2θ + dV
dθ = 0 . (III.9)

1Note that Eq. (III.6) implies that we are using the convention where gµν has mostly positive entries on its
diagonal.
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Figure III.1.: The Vacuum Realignment Mechanism. At temperatures T = fa the complex
Peccei-Quinn scalar field develops its vacuum expectation value and breaks the
global U(1)PQ symmetry. This can be pictured as the complex scalar falling into
the valley of its Mexican hat potential. It can fall basically in any given direction
since none is energetically favored. We say the potential is flat in this direction.
This means that the axion, which is identified as the phase of the complex scalar,
is massless and can have any value in a/fa ∈ [−π, π]. At high temperatures the
axion field is essentially frozen at this value. But when the universe cools down
to temperatures T ∼ TQCD around the QCD phase transition, a potential V (a)
and therefore a mass for the axion is generated. This can be pictured as the
Mexican hat being slightly tilted. This implies that the axion field is driven away
from its initial value and it has to realign with the CP conserving minimum of
its potential, the vacuum state with the lowest energy. Therefore, as soon as it
can overcome the so-called Hubble drag of the cosmological expansion, the axion
field will start to roll down to the potential minimum. It will slightly overshoot
it and start to oscillate around it. The energy stored in this coherent oscillations
behaves as collisionless matter and can explain the observed DM energy density.

15



III. Producing Relic Axions

The axion energy density ρa, as well as the pressure Pa, can be calculated from the stress-
energy tensor

Tµν = f2
a∂

µθ∂νθ + gµνLθ (III.10)

and we find with ρa = T 0
0 and Pa = T ii:

ρa = f2
a

[1
2 θ̇

2 + 1
2R2 (∇θ)2 + V (θ)

]
, (III.11)

Pa = f2
a

[1
2 θ̇

2 − 1
6R2 (∇θ)2 − V (θ)

]
. (III.12)

Using the full cosine-potential of the axion makes the evolution equation of θ nonlinear and
therefore difficult to study, at least analytically. However, we note that for small θ the potential
becomes approximately harmonic, namely

V (θ) ' 1
2m

2
aθ

2 . (III.13)

Using this harmonic approximation linearizes the evolution equation and simplifies things a lot.
On the other hand, since θ can in principle have any value in [−π, π], the assumption that θ is
small might seem very ad hoc. Further, in the harmonic approximation the information that θ
is in fact a periodic variable is completely lost and therefore potentially important effects for the
field evolution are neglected. We will encounter this problem later, when we discuss toplogical
defects in Sec. III.3. Nevertheless, the advantages of the harmonic approximation outweigh these
shortcomings since it allows us to study the Eq. (III.9) analytically. This makes it possible to
not only understand the axion field evolution qualitatively but also to derive robust quantitative
estimates on the energy density of the axions produced thereby.
In the harmonic approximation the equation of motion is given by

θ̈ + 3Hθ̇ − 1
R2∇

2θ +m2
aθ = 0 , (III.14)

which is similar to that of a damped harmonic oscillator, where H plays the role of the friction
and the gradient term plus the mass term that of the frequency.
Recall that the axion mass is a function of temperature, ma = ma(T ). At early times, long

before the QCD effects become important, we have ma(T ) ∼ 0 and the axion is massless. This
means that H � ma and the Hubble friction term in the evolution equation dominates. Thus
for early times T � TQCD and Eq. (III.14) becomes

θ̈ + 3Hθ̇ − 1
R2∇

2θ = 0 . (III.15)

Rewriting this in terms of the Fourier transform θk =
∫

d3k/(2π)3θ(~x), we see that the equations
of the single modes k decouple and we have

θ̈k + 3Hθ̇k + k2

R2 θk = 0 . (III.16)

For now, we are mostly interested in gaining a qualitative understanding of the cosmological
evolution of the axion field and calculating the energy density. For the latter, we see from
Eq. (III.11) that the contribution from axions with k 6= 0 will be redshifted away quickly
compared to the contribution of the zero-mode. Therefore, we focus for the moment on the
evolution equation of the zero-mode only. However, in Sec. IV we will revisit the equation of
motion of θ and include the gradient terms in a conclusive solution. We will see that in certain
scenarios these are important for the acutal evolution of the field and lead to very interesting
phenomenological consquences.
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For k = 0, i.e. the homogeneous θ field, Eq. (III.15) becomes

θ̈ + 3Hθ̇ = 0 for H > ma (III.17)

and therefore θ is frozen at is intial value θ = θI, as we have already anticipated in our sketch
in Fig. III.1.
But how do we chose θI? Recall that when the Peccei-Quinn symmetry is broken, the mis-

alignment field can take some random value from [−π, π] in causally disconnected regions. If this
happens before an inflationary epoch of the universe, let us call this the pre-inflation scenario,
one of these causal regions with uniform θI value is blown up by inflation and will eventually
occupy the whole visible universe. Hence, after inflation the θI value of the axion field is the same
everywhere and fixed at some random value. On the other hand, in a post-inflation Peccei-Quinn
breaking scenario the situation is quite different. Here, the visible universe consists after Peccei-
Quinn breaking of many patches with different θI values. But before discussing this interesting
situation, let us start by considering the first and more simple scenario, where Peccei-Quinn
breaking happens before the end of inflation.

Pre-Inflation Scenario

Before continuing, we note that as long as the field is frozen at θ = θI, we have ρa = −Pa.
Hence, it has the same equation of state, w ≡ P/ρ = −1, as dark energy. But as long as its
contribution to the energy budget is negligible, it will not influence the overall cosmological
evolution. However, if the axion field would be frozen at θI still in the late universe it could
eventually become relevant compared to the radiation and matter energy contributions and
therefore drive an accelerated expansion. For making this possible the axion must essentially
be massless, such that H � ma holds also at late times or today where we indeed observe
the accelerated expasion of our Universe. For the QCD axion this is basically impossible since
Peccei-Quinn breaking scales fa beyond the Planck scale would be needed, as a quick check
with the value for the Hubble rate today H0 ∼ 10−33 eV [83] and the relation for the zero-
temperature axion mass ma in Eq. II.16 shows. But even for ultra-light ALPs explaining the
accelerated expansion of our Universe is rather difficult since other cosmological observations
strongly constrain such light axions. In Sec. VI we take a closer look at the limits on the mass
of ultra-light axions. See also, for example, Ref. [82] and references therein for a more in-depth
discussion of possible axion explanations for the observed cosmological constant.
For the moment, we conclude that it is safe to expect that at some point in the cosmological

evolution the mass term in

θ̈ + 3H(T )θ̇ +m2
a(T )θ = 0 (III.18)

eventually overcomes the Hubble friction. In our sketch of the axion field evolution in Fig. III.1
we have identified this as the time the field starts to roll down to the potential minimum. From
Eq. (III.18) we see that as soon asH(T ) . ma(T ), the field will start to oscillate with a frequency
given by ∼ ma. This motivates an ansatz of the WKB form:

θ(t) = A(t)eiΦ(t) . (III.19)

The functions A(t), Φ(t) are real valued and we should keep in mind that θ is also real. Plugging
this ansatz in Eq. (III.18), we find:

Ä

A
− Φ̇2 + 3H Ȧ

A
+m2

a =0 , (III.20)

Ȧ+A

(
3
2H + Φ̈

2Φ̇

)
=0 . (III.21)
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As usual for the WKB approach, we assume that A(t) is a slowly varying function relative to
Φ(t) and the dynamics in Φ(t) are of the order of the frequency, i.e. ma in our case. This means,
we can use that Ä/A,HȦ/A� Φ̇2

a,m
2
a. Doing so, Eq. (III.20) becomes2

Φ̇2 = m2
a ⇒ Φ(t) =

∫
dt′ma(t′) + const . (III.22)

Using this intermediate result in Eq. (III.21), we find3

Ȧ+A

(3
2H + ṁa

2ma

)
=0 , (III.23)

which is solved by

A(t) = C

R3/2
√
ma(t)

(III.24)

and C is some real constant. Using these results in our ansatz and taking the real part, we find
that θ(t) is of the form

θ(t) = C

R3/2
√
ma(t)

cos
∫
t0

dt′ma(t′) , (III.25)

where still the constant C must be determined by the initial conditions. For finding these let
us take a look at the behavior of the energy density ρa. Before the field starts to oscillate, it is
frozen at its initial value θI and ρa is constant. Therefore, we have

ρa(t) = 1
2f

2
am

2
a(t)θ2

I for H > ma . (III.26)

After the field starts to oscillate our solution for θ(t) in Eq. (III.25) should apply. It has a
rapidly oscillating part, with the characteristic frequency ∼ ma, and a slowly evolving envelope.
Taking the mean 〈·〉 over the fast oscillations, we find for the energy density

〈ρa(t)〉 = C2

2ma(t)
f2
am

2
a(t)

R3 for H < ma . (III.27)

These two limiting expressions for the energy density ρa should be patched together at the time
the field starts to oscillate. Let us call this time t = tosc, which we can equivalently expressed by
a temperature T = Tosc. This temperature can be estimated by setting 3H(Tosc) = ma(Tosc), i.e.
when Hubble friction and mass term become equally important. Equating (III.26) and (III.27)
at T = Tosc gives

C2 = ma(Tosc)R3(Tosc)θ2
I (III.28)

and therefore the energy density at temperatures T < Tosc is

ρa(T ) ' 1
2f

2
ama(Tosc)ma(T )

(
R(Tosc)
R(T )

)3
θ2

I . (III.29)

This result can of course only be an estimate since we bravely patched together the two limiting,
very different behaviors of θ(t). In reality, there should be a smooth transition between the
two. However, an important result is that the energy density behaves as ρa ∝ ma(t)/R3(t).

2Note that in fact Φ̇2 = m2
a leads to two possible solutions. Without loss of generality we chose Φ̇ = ma. Using

that ma is a function growing in time, it can be easily shown that taking the minus sign instead leads to to
the very same result in the end.

3Note that the axion mass should switch on adiabatically in the sense that ṁa/ma exists and is well behaved.
A sudden switch on of the mass would imply that ṁa → ∞ at some point. This corresponds to a first order
phase transition. Such a scenario must be treated differently, see e.g. Ref. [84].
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This means that the comoving number density of axions na ≡ ρa/ma ∝ R−3 produced via this
realignment mechanism is conserved, as soon as the field starts to oscillate.
Further, we can use our result for θ(t) to calculate the pressure and we find

〈Pa(t)〉 = 0 , (III.30)

where we took again the average over the fast oscillations. Thus, with the comoving number of
axions na being conserved and an equation of state w = 0, we conclude that the realignment
axions behave just as non-realtivistic matter, i.e. like CDM.
However, to complete this statement we should also show that the fluctuations in the axion

energy density can explain the observed large-scale structures. This means that the fluctuations
δ ≡ (ρa − ρ̄a)/ρ̄a, ρ̄a being the spatial mean of the axion energy density, should basically start
to grow linearly after matter-radiation equality, as in the standard CDM lore. Noh et al gave a
proof in a series of papers [85–88] that this is indeed the case. Still, it should be noted that the
evolution equation of the linear axion fluctuations is slightly modified compared to usual CDM.
Without going into too much detail, we simply quote the result for the equation governing the
dynamics of δ in linear order cosmological perturbation theory [85]:

δ̈ + 2Hδ̇ −
(

4πGN ρ̄a −
1
4

k4

m2
aR

2

)
δ = 0 , (III.31)

with GN being Newton’s constant. From this we see that the evolution equation contains an
effective soundspeed c2

s 6= 1, depending on the scale k of the fluctuations. This defines the axion
Jeans scale kJ = (16πGρ̄am2

a)1/4 and modes k < kJ will grow linearly after matter-radiation
equality, as standard CDM fluctuations do. On the other hand, modes with k > kJ oscillate
and therefore suppress structure formation on very small scales. However, for axion masses
ma > 10−22− 10−21 eV this scale is cosmologically completetly irrelevant. Hence, as long as the
axion is heavy enough it reproduces the same behavior for the matter power spectrum as we
woul expect for standard CDM. But for ultra-light axions with ma ∼ 10−22 eV the suppression
effect might become relevant and observable [89–91]. Again, we revisit the issue of ultra-light
axions in Sec. VI. At this point, we conclude that as long as we consider axions with masses
ma > 10−22 eV we can treat them as normal CDM.

Before moving to the post-inflation scenario, we want to point out that we learn from our
result in Eq. (III.29) that the energy stored in the axion field oscillations depends on the initial
misalignment angle θI. This is very intuitive since it simply means that the stored energy is
sensitive to the point from where the field started to roll down to its potential minimum. Recall
that in the pre-inflation scenario, θI is just some arbitrary value in [−π, π]. Allowing for some
fine-tuning in this free parameter, one can set ρa to almost any desired value. One could argue
that this makes the pre-inflation scenario rather less predictive, cf. Ref. [92] for a discussion of
this topic and Ref. [93] for a very recent in-depth global analysis in view of the axion being the
DM in a pre-inflation scenario. We will see that the ambiguity of choosing θI vanishes in the
post-inflation Peccei-Quinn breaking scenario.

Post-Inflation Scenario

Recall that in the post-inflation scenario the universe after Peccei-Quinn symmetry breaking
consists of many patches with different values for θI. The size of this patches is basically
fixed by the causal horizon and therefore the Hubble rate H(T ). It turns out that this very
inhomogeneous initial conditions for the axion field lead to large isocurvature fluctuations in the
energy density, see e.g. Ref. [94].4 Following the field evolution in this scenario and calculating
ρa is very non-trivial. The so far neglected gradient terms and also the nonlinearity of the

4We will later, in Ch. VI, define more carefully what is meant by isocurvature fluctuations. Till then, we simply
use this term to indicate that these are fluctuations in the axion component only.
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potential have important consequences. We will discuss this interesting topics in more detail in
Sec. III.3 and Ch. IV. But for now, let us focus on calculating the mean energy density

ρa = 1
V

∫
d3x ρa(~x) (III.32)

of the axion energy density in the post-inflation scenario.
To get an estimate for it, let us assume that also at the time the oscillations commence, the

axion field consists of many independent patches with different values for θI. Then, the energy
density of every patch depends on its initial misalignment angle θI but else should be of the form
as found Eq. (III.29). This means that taking the spatial mean of the energy density corresponds
to summing over all the patches, which is in fact equivalent to summing over all the random
draws of θI [79, 94].5 Hence, the mean energy density is

ρa(T ) ' 1
2f

2
ama(Tosc)ma(T )

(
R(Tosc)
R(T )

)3
θ

2
I (III.33)

with

θ
2
I =

∫
dθ F(θ)θ2 = π2

3 (III.34)

being the variance of θI. To calculate this quantitiy, we have assumed a flat probability distri-
bution function F(θ) = 1/(2π) for θ. This is reasonable since no specific choice for θI in the
interval [−π, π] is preferred.

Thus, in contrast to the pre-inflation scenario the realignment axion energy density does not
depend on a free parameter, but is essentially fixed by fa and ma. This makes the post-inflation
scenario very predicitive, at first glance. Setting ρa to the observed DM density in principle fixes
a specifc DM axion mass, at least for for the QCD scenario. However, unfortunately there is a
remaining uncertainty in predicting ρa in the post-inflation scenario coming from the number of
axions produced in the decay of topological defects, cf. Sec. III.3 for more details.

A Quantitative Estimate

Neglecting for a moment this uncertainties, we turn to a more quantitative estimate of the relic
abundance of axions produced in the realignment mechanism. Since the form of ρa is basically
the same in the pre- and post-inflation scenario we can cover both cases at once. Further, we will
be as general as possible for assuming the actual relation of the axion mass ma and Peccei-Quinn
breaking scale fa, such that our results also apply for ALPs.
For calculating the axion energy density today ρa0 ≡ ρa(T0), it is convenient to express

the ratio of R(Tosc)/R(T0) appearing in the expressions for ρa via the entropy conservation
in the radiation component, i.e. we use s(Tosc)R3(Tosc) = s(T0)R3(T0). For the temperature
dependence of the entropy density it holds that [79]

s(T ) = 2π2

45 gs∗(T )T 3 , (III.35)

where g∗s(T ) are the properly weighted relativistic degrees of freedom. With that we find

ρa0 ≡ ρa(T0) = 1
2f

2
ama(Tosc)ma(T0) gs∗(T0)

gs∗(Tosc)

(
T0
Tosc

)3
{
θ

2
I = π2

3 post-inflation
θ2

I ∈ [0, π2] pre-inflation
. (III.36)

For making further progress we obviously have to determine Tosc. To do so, we must specify
an explicit temperature dependence for the axion mass ma. For the QCD axion, this is set by
the topological susceptibility of QCD χQCD(T ) which is only known numerically. But to also

5A sketch of the post-inflation realignment scenario can be found in Fig. IV.1 at the beginning of Ch. IV.
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include the case of ALPs and to study the parametric dependence of Tosc and therefore ρa on the
fundamental model parameters fa and ma, let us rather assume a power law for ma(T ) which for
low temperatures becomes constant and goes to the zero-temperature mass ma = Λ2/fa. Recall
that in the case of the QCD axion Λ = χ

1/4
QCD(T . 100 MeV) ≈ 75.5 MeV [60] and for ALPs Λ is

a yet arbitrary scale. Thus, we use as a parameterization for the temperature dependent axion
mass6

ma(T ) =min
[

Λ2

fa
, b

Λ2

fa

(Λ
T

)n]
(III.37)

=

b
Λ2

fa

(
Λ
T

)n
, T ≥ b1/nΛ

Λ2

fa
, T < b1/nΛ

, (III.38)

introducing the parameter b ' 0.1 . . . 10 to take into account that the transition to the zero
temperature mass might not be exactly at T = Λ. The parameter n ∈ R+ controls how sudden
the mass is switched on.
Now, we are able to determine Tosc using its definition, 3H(Tosc) = ma(Tosc). For that we have

to consider different cases: First, we have to distinguish if the oscillations start in a radiation
or matter dominated epoch. Note that in the latter case, the axion cannot serve as the DM
in our Universe since it has no time to provide the gravitational potential wells for the visible
matter and therefore to explain structure formation in the usual way [95]. However, in the
present work we are especially interested in scenarios where the axion can be the DM. Thus, we
want to focus on scenarios where the oscillations start already in radiation dominated epoch,
i.e. at temperatures T > Teq ∼ 9 · 103 K ∼ 1 eV. This allows us to derive a lower bound on
the axion mass for which it still can be the DM. Since H(Teq) ∼ 10−28 eV this constraint is
ma & 10−27 eV [82]. In the following we will always assume the axion to be heavier than this.
Thus, with oscillations starting already at relatively high temperatures we can use the known
relation for the Hubble rate H(T ) in a radiation dominated universe [79]

H(T ) =
[

8π3g∗(T )
90M2

Pl

]1/2

T 2 ' 1.66
√
g∗(T ) T

2

MPl
, (III.39)

where the relativistic degrees of freedom are given by g∗(T ). For the explicit temperature
dependence of g∗(T > 100 MeV) as well as gs∗(T > 100 MeV) we use the tabulated values from
the recent lattice calculations by Borsanyi et al presented in Ref. [96] and apply an interpolation
with the cubic spline method. Below T = 100 MeV we set g∗ = 3.36 and gs∗ = 3.91 to be
constant [79].
The next distinction we have to make is if Tosc is before or after the mass reaches its zero

temperature value. With our parameterization for ma in Eq. (III.38) the first scenario means
Tosc < b1/nΛ. This can be translated to a constraint on fa:(

MPl
fa

)1/2 1
2.23 g∗(Tosc)1/4 < b1/n (III.40)

⇒
(
Mpl
fa

)1/2
. 1 . (III.41)

To get to the second line, we have assumed that g∗(Tosc) ∼ 100 and b ∼ 1. So, as long as the
Peccei-Quinn breaking scale is well below the Planck scale, i.e. fa < MPl, oscillations should
always commence before the axion reaches its zero temperature value.

6See also Eq. (II.18) and for example the work by Visinelli and Gondolo in Ref. [31] for a similar parameterization
of ma in case of the QCD axion. But note that an important difference is that in this parameterization of
Gondolo et al the zero-temperature mass is always reached at T = Λ, whereas in ours this happens at
T = b1/nΛ.
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Figure III.2.: Temperature dependent Axion mass and the Hubble Rate. We use the pa-
rameterization in Eq. (III.38) for ma(T ) and different values for Λ, b and n
to show the temperature dependent axion mass. The Pecci-Quinn breaking
scale is set to fa = 1012 GeV. We also show the evolution for the QCD axion
maQCD(T ) = χ

1/2
QCD(T )/fa, dashed gray line, using the result for the toplogical

susceptibility from lattice calculations in Ref. [96]. We normalize ma to the
zero temperature QCD axion mass maQCD ' 5.6 · 10−6 eV for a better com-
parison. The purple line shows the Hubble rate also normalized to maQCD. At
temperatures T = Tosc, where 3H = ma, the axion field starts to oscillate.

Assuming that fa < MPl and therefore Tosc > b1/nΛ, we find for the oscillation temperature:

Tosc =b1/(2+n)Λ
(
MPl
fa

)1/(2+n) 1
(4.98)1/(2+n)g∗(Tosc)1/(4+2n) (III.42)

=b1/(2+n)m1/2
a M

1/(2+n)
Pl fn/(4+2n)

a

1
(4.98)1/(2+n)g∗(Tosc)1/(4+2n) , (III.43)

which has still a very non-trivial dependence on the number of relativistic degrees of freedom
g∗(T ). Therefore, Tosc can in general only be determined numerically. Note that in the second
line we have expressed Λ by the zero temperature mass ma via Λ2 = mafa.

In Fig. III.2, we show ma(T ) for different choices of the parameters Λ, b, and n, while fix-
ing fa = 1012 GeV. We also add the temperature dependent QCD axion mass maQCD(T ) =
χ

1/2
QCD(T )/fa to the plot, using the lattice results from Ref. [96] for the temperature dependence

of toplogical susceptibility. It turns out that when setting Λ ' χ1/4
QCD(T = 0) ' 75.5 MeV, n = 4,

and b = 10 we are able to parmeterize the temperature dendence of the QCD axion mass quite
well. By showing also the Hubble rate H(T ), using the expression Eq. (III.39), we can identify
the intersection of the curves ma and 3H at T = Tosc. We see that this is indeed well before the
mass becomes constant.
With the explicit form for ma(Tosc), we can write the energy density as

ρa0 = b

2Λ4
( Λ
Tosc

)n gs∗(T0)
gs∗(Tosc)

(
T0
Tosc

)3
{
θ

2
I = π2

3 post-inflation
θ2

I ∈ [0, π2] pre-inflation
(III.44)

= b

2
m

(n+4)/2
a f

(n+4)/2
a

Tnosc

gs∗(T0)
gs∗(Tosc)

(
T0
Tosc

)3
{
θ

2
I = π2

3 post-inflation
θ2

I ∈ [0, π2] pre-inflation
(III.45)
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Figure III.3.: Axion Properties explaining DM Abundance in post-inflation Realignment Sce-
nario. With the relation for the axion energy density ρa discussed in the text
we calculate contours in the ma − fa plane where Ωah

2 = 0.1. To parameter-
ize the temperature dependence of the axion mass we use Eq. (III.38) and set
n = 2, 4, 8. The solid lines correspond to b = 10 and the dashed lines to b = 0.1.
We also add the fa−ma relation of the QCD axion. Since the parameter choice
n = 4, b = 10, reproduces the temperature dependence of the QCD axion quite
nicely, we identify the point where these two curves meet, indicated by the red
circle, as the QCD axion explaining the DM in our Universe, i.e. for axion masses
ma ∼ 10−5 eV.

Note that in the first line, before using Λ2 = mafa, it becomes obvious that the Peccei-Quinn
breaking scale fa enters only implicitly via Tosc. If we use our explicit relations for Tosc, we
arrive at the main result for ρa0:

ρa0 =b−1/(n+2)

2 ΛT 3
0
gs∗(T0)
g∗s(Tosc)

[
fa 4.98 g1/2

∗ (Tosc)
MPl

](n+3)/(n+2){
θ

2
I = π2

3 post-inflation
θ2

I ∈ [0, π2] pre-inflation
(III.46)

=b−1/(n+2)

2 m1/2
a f (3n+8)/(2n+4)

a T 3
0
gs∗(T0)
g∗s(Tosc)

·
[

4.98 g1/2
∗ (Tosc)
MPl

](n+3)/(n+2){
θ

2
I = π2

3 post-inflation
θ2

I ∈ [0, π2] pre-inflation
, (III.47)

which can be used to find the relic abundance Ωa = ρa0/ρcrit depending on the scale fa, ma

or Λ, and the parameters b and n. It is ρcrit = 8πH2
0M

2
Pl/3, and H0 = h 100km/(Mpc · s)

is the Hubble rate today. Recall that the observed amount of DM in our Universe today is
ΩCDMh

2 ' 0.1 [51].
In Fig. III.3, we show contours in the ma − fa plane for the post-inflation Peccei-Quinn

breaking scenario where the axion can explain all of the observed DM in our Universe, i.e. we
set Ωah

2 = 0.1 and θI = π3/3, and we consider different paramter choices b and n. Note that
the lines can also be understood as exclusion limits on fa since for larger fa we would have
Ωah

2 > 0.1 and the the axion energy density would overclose the Universe.
The dashed line in Fig. III.3 marks the relation between the Peccei-Quinn breaking scale

fa and the zero temperature mass ma for the QCD axion. As we have seen in Fig. III.2, a
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parameterization with b = 10 and n = 4 fits the temperature evolution of the QCD axion mass
quite well. Therefore, the point where the QCD fa−ma relation and our curve for b = 10, n = 4
meet, can be understood as the QCD axion mass giving the correct DM abundance. Therefore,
we find as an estimate for the DM QCD axion mass

maQCD ∼ 10−5 eV (III.48)

which corresponds to a Peccei-Quinn breaking scale

fa ∼ 1012 GeV . (III.49)

Finally, we note that with our result for ρa in Eq. (III.47), we can reproduce the known
relation for the relic abundance of the QCD axion [31,59,97]

Ωah
2 ' 0.1

(
fa

1012 GeV

)7/6
. (III.50)

by again setting Λ = χ
1/4
QCD ' 75.5 MeV, b = 10, and n = 4. Therefore, this choice of paramters

marks our QCD benchmark model.7

III.3. Decay of Topological Defects
In the harmonic approximation of the axion potential, important nonlinear effects are neglected.
These become important in the cosmological evolution of the axion field in the post-inflation
Peccei-Quinn scenario. In the following, we briefly discuss how this comes about.
Using the full nonlinear potential, it turns out that the field equation of the complex Peccei-

Quinn scalar allows for stable classical string-type solutions, after the symmetry is spontaneously
broken. Such classical stable field solutions are known as topological defects. See Refs. [99–101]
for original works, thorough reviews of this topic and consequences for cosmology.
In terms of the axion field, we can understand the formation of cosmic strings the following

way. As we have pointed out before, when the Peccei-Quinn symmetry gets spontaneously
broken, the complex field can roll down in any direction in field space, see also our sketch in
Fig. III.1. The direction in which the field rolls down and therefore the θI value of the axion
field can be different from one causal horizon to another. However, there might exist points in
space which are surrounded by the axion field wrapping around all values from −π to π. At
this specific point the complex scalar “does not know” in which direction it should roll down
and we can picture it as being trapped at the top of its Mexican-hat potential. This field
configuration is obviously different from the vacuum, which corresponds to the field sitting in
the valley. However, it is stable as long as the axion is massles. In three spatial dimensions
these points where the complex field still sits on top of the potential line up as the cosmic string.
When the universe expands and cosmic strings cross, they can form loops which quickly lose
their stored energy by radiating relativistic axions [100]. In this way the number of strings goes
into a so-called scaling behavior and we expect about one long string per Hubble volume, cf.
Ref. [102] for a recent discussion of this topic.
If the Peccei-Quinn breaking happens before or during inflation and one causal horizon with

a specific θI is blown up, we expect only one string in the whole universe. Its contribution to
the overall energy density can safely be neglected. However, in the post-inflation scenario the
eventual decay of the strings leads to another important source for relic axions. Since in this

7Note that, for example, Visinelli and Gondolo in Ref. [31] or O. Mena et al in Ref. [98] choose a different choice
of paramters for the temperature dependent QCD axion mass. They also set n = 4 but b = 0.01. However, the
reason for that is, as was pointed out earlier, a slightly different parameterization for ma(T ). Again, in their
approach the zero-temperature mass is always reached at T = Λ. Therefore, their choice of Λ ' 170 MeV is
approximately equivalent to b1/nΛ, for our setup b = 10, n = 4, and Λ ' 75.5 MeV.
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scenario the axion field after Peccei-Quinn symmetry breakings is very inhomogeneous and as
we can picture it consisting of many patches with different field values, we also expect many
strings. Soon as the axion mass becomes important, they become unstable and start to decay.
In fact, they become the boundaries of so-called domains or domain walls. Recall that the axion
field has values in [−π, π] and is periodic, i.e. the endpoints of the interval might be identified.
Thus, we can picture the decay of the string-wall system the following way. When the axion
potential becomes important and the field starts to roll down to the minimum of the potential
at θ = 0, patches in space which have θI = ±π can choose a path from −π along negative values
to reach the minimum or along π and the positive values. This we can understand as creating
two different domains in the universe. The strings, being the boundaries of these domain walls,
start to “unzip” them when the axion field settles to its minimum everywhere and this leads
eventually to the decay of the string-wall system [44].
Calculating the amount of axions produced in this decay of the topological defects is a long-

standing issue. It can only be conclusively studied by numerical simulations of the evolution of
the complex Peccei-Quinn scalar. However, the main problem is resolving the actual thickness of
the strings [103]. As a matter of fact, it should be of the order of the Hubble horizon at the time
of Peccei-Quinn breaking. But since the axion potential becomes only important much, much
later, one would have to cover many of orders magnitude in time and therefore in space in a
simulation following from the formation to the decay of the strings. This is virtually impossible
and therefore approximations for the numerical simulations are unavoidable. Unfortunately, this
leads to the fact that estimates on the number of axions produced in the string-wall decays cover
almost four orders of magnitudes. Results in the classical literature for Ωa,str when compared
to realignment production Ωa,re only are [82,104–106]:

Ωa,strh
2 = (0.15 . . . 186) Ωa,reh

2 . (III.51)

The interested reader is referred to Refs. [102,103,107,108] for recent discussions on this issue.
It seems that the community is still far away from a conclusive solution. However, if the

uncertainty in understanding the decay of the string-wall system could finally be overcome, it
would indeed be possible to give a concrete prediction for the DM axion mass in the post-inflation
scenario, as we have pointed out before. Klaer and Moore for example suggest with the results
of their simulations, including realignment axions and axions from the string-wall decay, a DM
mass for the axion which is ma ' 26.2 µeV [103]. This is of the same order as our estimate in
Eq. (III.48) with the realignment axions only.
However, a final word of caution for the post-inflation Peccei-Quinn breaking scenario is in

order. Namely, the above described decay of strings and domain walls is only possible if there
exists only one unique minimum of the axion potential in the intervall [−π, π]. As soon as there
is a number NDW 6= 1 of degenerate minima, the domain walls are stable and they tend to
quickly dominate the energy density leading to a very different universe than we observe. This
is called the domain wall problem. Scenarios with stable domain walls are therefore basically
ruled out [109]. Ways to circumvent this issue, besides a pre-inflation Peccei-Quinn breaking,
are models in which NDW = 1 or models with a small explicit symmetry breaking which lifts
the degeneracy between the NDW minima [44].
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As was already pointed out in the previous chapter, the inhomogeneous initial conditions for
the axion field in the post-inflation Peccei-Quinn breaking scenario cause large isocurvature
fluctuations in the axion energy density [94]. A sketch of the situation is presented in Fig. IV.1.
The characteristic size L of the energy density fluctuations is of the order of the causal horizon

when the field starts to oscillate and can therefore be related to the comoving Hubble volume
at Tosc, i.e. the characteristic comoving size is L ∼ 1/(H(Tosc)R(Tosc)). This corresponds to a
physical size of these fluctuations today of L0 ∼ R(T0)/(R(Tosc)H(Tosc)).

Let us estimate L0 with our result for Tosc. In the following, we focus exclusively on the case
of the QCD axion. ALP scenarios will be discussed in Sec. IV.5 and Ch. VI. Therefore, we use
our benchmark values b = 10, n = 4, and Λ = 75.5 MeV for paramterizing the temperature
dependence of the axion mass ma(T ) via Eq. (III.38). With that, the oscillation temperature is
given by

Tosc ' 1.2 GeV 1
g∗(Tosc)1/8

(
1012 GeV

fa

)1/6

(IV.1)

and the size of the fluctuations today can be estimated as

L0 ∼0.1 pc
(
gs∗(Tosc)
gs∗(T0)

)1/3 1
g∗(Tosc)

(
fa

1012 GeV

)1/6
(IV.2)

∼0.05 pc
(

fa
1012 GeV

)1/6
, (IV.3)

which is much smaller than any cosmological relevant scale if fa ∼ 1012 GeV, as needed for
the axion to explain the observed amount of DM in our Universe. In the second line we have
approximated g∗,s∗(Tosc) ∼ 100 and g∗s(T0) ∼ 3.
Even though, being not relevant on cosmological scales the isocurvature fluctuations in the ax-

ion energy density have other interesting phenomenological consequences for axion DM. Namely,
the large overdensities can decouple from the Hubble expansion already at high redshifts and
collapse very early into dense gravitationally bound objects, called axion miniclusters. This
makes the DM a clumpy stew instead of the usually assumed homogeneous fluid which has very
profound consequences, especially for direct detection experiments like axion DM haloscope, as
we will shortly see.
We can estimate the size of a typical minicluster RMC by assuming that it originates from

a fluctuation which has collapsed around matter-radiation equality, i.e. we can assume RMC ∼
R(Teq)/(R(Tosc)H(Tosc)). With an analogue calculation as in our estimate for L0, we find

RMC ∼ 106 km
(

fa
1012 GeV

)1/6
, (IV.4)

which is comparable to the radii of the large planets in our solar system.
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Figure IV.1.: Vacuum Realignment in the post-inflationary Scenario. When Peccei-Quinn
symmetry breaking happens at temperatures T ∼ fa the complex scalar develops
its vacuum expectation value and it rolls down into the valley of the Mexican
hat potential. The axion field, identified as the phase θ(x) = a(x)/fa of the
complex scalar, can take any value between −π and π in causally disconnected
regions since no specific value is energetically favored. This is sketched in the
first picture. In the snapshot of θ(x), the dark blue colors might correspond to
negative values and the light blue colors to positive. However, it should simply
highlight that the axion field after Peccei-Quinn symmetry breaking basically
looks like white noise since its field values are completely uncorrelated from one
horizon to another. As long as the field is massless, at temperatures T > TQCD,
this picture does not change too much. While the universe keeps expanding
and cooling, the gradient terms in the evolution equation of θ(x) will always
smooth the field on scales of the Hubble horizon dH . This is shown in the
second picture. Around the QCD phase transition, at temperatures T ∼ TQCD,
the axion potential is generated and it will make the field roll down to the CP
conserving minimum. The energy stored in the oscillations around the minimum
locally depends on the value from which the field started to roll down. Hence, the
inhomogeneous field leaves its imprint as large fluctuations in the energy density
ρ(x). This is depicted in the bottom panel. Here, red colors might correspond to
high density and blue color to low density regions. The large overdensities can
decouple very early from the Hubble expansion to form gravitationally bound
axion miniclusters.
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The mass of a miniclusterMMC is provided by the energy density of the axions inside a Hubble
patch at Tosc. We can therefore estimate a typical mass via MMC ∼ 4

3πρa(Tosc)(π/H(Tosc))3.
With our results for the mean energy density ρ we find1

MMC ∼2π6 f2
a

ma(Tosc)
(IV.5)

∼10−11 M�

(
fa

1012 GeV

)7/3
, (IV.6)

which is about the mass of an asteroid [110]. It might seem like a surprising result that higher
Peccei-Quinn breaking scales and therefore lighter axions, lead to heavier miniclusters. But recall
that the lighter the axions the later the field starts to oscillate since the oscillation temperature
is set by the equality 3H(Tosc) = m(Tosc). This means that smaller m lead to a smaller Hubble
rate at Tosc, and therefore to larger fluctuations ∼ 1/H(Tosc) which eventually lead to more
massive miniclusters.
With the estimate for the mass and the size of the miniclusters, we can calculate the escape

velocity vesc =
√
GM/R for axions gravitationally bound inside such an object. Plugging in the

numbers, we find vesc � 1, suggesting that the axions inside a minicluster are non-relativistic.
Hence, we can calculate the particle density na inside a minicluser simply via na = ρa/ma. With
our estimates for MMC and RMC, we find that na inside a minicluster is huge:

na ∼ 1028 cm−3
(

fa
1012 GeV

)3
. (IV.7)

This means that in case of a direct encounter of the earth with a minicluster, the signal in
a DM haloscope, being sensitive to na, would by highly enhanced. However, an event like
this is incredibly rare, unfortunately. Namely, we can estimate the encounter rate of the earth
with a minicluster assuming that a fraction fMC of the DM is bound in objects with mass
MMC ∼ 10−11M�. The number density nMC of miniclusters in our local neighberhood can then
be calculated with the value for the local DM energy density ρDM ' 0.01 M� pc−3 [111] and we
expect nMC ∼ (0.01 · fMC)/AU.2 Adopting the predictions of the DM flux of a 100 GeV WIMP,
ΦWIMP ∼ 6.6 · 104 cm−2 s−1 [111], to a MMC ∼ 10−11 M� minicluster, we find a flux at earth
ΦMC ∼ fMC 10−40 cm−2 s−1. With that the encounter rate νMC = ΦMCR

2
MC is given by

νMC ∼ 0.01 fMC
τuniv

(
RMC

106 km

)2
(IV.8)

and τuniv ' 4.1 ·1017 s is the lifetime of the Universe. This means that if the axion DM would be
mainly bound in miniclusters, the idea of direct detection with conventional haloscopes would
be virtually doomed and we might have to think about novel techniques to find axion DM or
try to observe the miniclusters themselves.
A naive attempt for minicluster detection might be to use them as graviational lenses. How-

ever, with our estimates for the mass and size it is obvious that they cannot act as strong lenses
since they are too dillute. Namely, their Einstein radius

RE ∼ 4.3 · 104 km
(

MMC
10−11 M�

)1/2 ( D

Mpc

)
(IV.9)

1Note that there is some discrepancy in the literature on how to define the size dH corresponding to a Hubble
patch. A definition of dH = 1/H instead of dH = π/H might only lead to small differences for dH itself but as
severe impacts on the mass of the miniclusters, in fact it changes about π3 which is about a factor 30. Note
that the factor π appears when relating k = aH, the comoving wave number corresponding to the Hubble
horizon, with the size dH . A wavelength λ can be expressed via a wavenumber k as k = 2π/λ. Then, the
radius of the Hubble horizon dH might be identified as half the wavelength, i.e. k = π/dH .

2AU stands for astronomical unit and it is approximately the distance between the sun and the earth, 1 AU =
1.496 · 108 km.
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is well inside their phsyical radius; D being the distance between observer and source. However,
they might serve as pico- or microlenses, as suggested in Ref. [33]. More recently, in Ref. [112,113]
Fairbairn et al even claim that already with existing data from lensing surveys, like the one
presented in Ref. [114], limits on fMC can be derived. But to do so they have to make some ad
hoc assumptions for the formation and especially the evolution of the miniclusters.
But there might be further observable implications of axion miniclusters. For example, in

Ref. [34] it is speculated that axion miniclusters could be sources for fast radio bursts and
in Ref. [115] it is discussed that if the clumps are tidally disrupted during galaxy formation,
remnant axion streams might increase again the chance for a direct detection in haloscope
experiment. Very recently the interest in more exotic objects, called axion stars, revived, cf.
Refs. [35, 116–119] and it is discussed if the axion miniclusters could give the proper soil for
forming these coherent axion states [120,121].
However, for all these proposals a solid understanding of the formation history and especially

the distribution of axion miniclusters is essential. The estimates for RMC and MMC, found
above, can only provide an intuition for the typical minicluster properties. In fact, it is natural
to expect a variety of miniclusters with different masses and sizes. Deriving their distribution
will be the main goal of this chapter and is one of the major outcomes of the present work.
A first in-depth study of minicluster formation was done by Kolb and Tkachev [122, 123] in

the early 90’s. They have solved the evolution equation of the real axion field numerically in
an expanding background including the full nonlinear potential. A similar analysis was later
repeated by Zurek et al [124]. Both groups observed in their simulation besides the formation
of typical miniclusters even denser objects, they called axitons. These can be understood as
pseudo-soliton solutions of the nonlinear field equations, see our discussion in Ch. V. However,
it turns out that they are not stable and decay quickly into semi-relativistic axions [125, 126].
Since the simulations by Kolb and Tkachev, as well as Zurek et al, were limited to the real axion
field only, the effect of the strings and the domain walls is neglected. A conclusive analysis of the
minicluster formation including the topological defects can be only done by numerically following
the evolution of the complex Peccei-Quinn scalar from the moment of symmetry breaking till
around matter-radiation equality. Very recently, a first attempt for this was done by Vaquero et
al in Ref. [108]. Still, the authors had to use some ad hoc approximations to overcome the issue
of the huge discrepancy between the scales of the string thickness and the size of the Hubble
horizon at TQCD.

In the present work, we take a different approach and investigate the formation of miniclusters
in a semi-analytic way. The idea is that in the harmonic approximation for the potential the
evolution equation of the axion field linearizes which allows us to use statistical methods to
derive the power spectrum of the energy density fluctuations. The power spectrum can then be
used in a Press & Schechter-like approach for calculating the minicluster mass function.
The results of this study are published in Ref. [127]. Here, we focus on discussing the intricacies

of the calculations which have not been discussed in detail in this reference. For points that
have already been elaborated exhaustively in Ref. [127], we reserve our right to refer the reader
to the discussion therein.

IV.1. Revisiting the Axion Field Evolution
In the harmonic approximation for the axion potential, i.e. V (θ) ' m2

aθ
2/2, the evolution

equation of the misalignment field θ(x) is given by

θ̈ + 3H(T )θ̇ − 1
R2∇

2θ +m2
a(T )θ = 0 . (IV.10)

Now we want to include the gradient terms to correctly capture the effect of the inhomogeneous
initital conditions on the field evolution and the impact on the energy density.
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Recall that in the harmonic approximation it turns out that a decomposition of θ(x) in terms
of Fourier modes3

θk =
∫

d3x θ(~x)ei~k~x ⇔ θ(~x) =
∫ d3k

(2π)3 θke−i~k~x (IV.11)

is useful since the evolution equations of the θk’s decouple and we have

θ̈k + 3H(T )θ̇ + k2

R2 θk +m2
a(T )θk = 0 , (IV.12)

which can be solved mode by mode. This motivates an ansatz for θk of the form

θk(t) = θkfk(t) , (IV.13)

where the information on the initial conditions can be encoded in θk ≡ θk(ti), t = ti being the
initial time, and the function fk(t) acts as transfer function, describing the time evolution of the
k-th mode. Note that fk can in prinicple be a complex valued function. However, choosing real
initial conditions or to be explicit, fk(ti) = 1 for all k, then fk is real also at late times.

Choosing the proper initial Conditions

After the Peccei-Quinn symmetry breaking, the misalignment field θ(x) can be understood
as random field with a value picked from the interval [−π, π] and distributed in the different
Hubble patches. We can try to describe this situation using statistical methods. I.e. we try to
characterize θ(x) by its statistical moments. Assuming a flat probability distribution function
F(θ) = 1/(2π) for θ in [−π, π], we can calculate its mean4

〈θ(x)〉 =
∫ π

−π
dθ F(θ)θ = 0 , (IV.14)

the first moment, and its variance

〈θ(x)2〉 =
∫ π

−π
dθ F(θ)θ2 = π2

3 , (IV.15)

the second moment.
Further insight on the properties of θ(x) can be found by calculating the two-point correlation

function ξ(~x, ~y) = 〈θ(~x)θ(~y)〉, where 〈·〉 can be understood as a spatial or statistical mean. In
our case this is equivalent. If we assume isotropy, ξ should be a function of the distance |~x− ~y|
between the two points only. This has important implications for the statistics of the Fourier
modes θk. Namely, if

〈θ(x)θ(y)〉 = ξ(|~x− ~y|) (IV.16)

it is easy to show that for the Fourier modes θk it must hold that

〈θkθ∗k′〉 = (2π)3δ3(k − k′)Pθ(k) , (IV.17)

with Pθ(k) being the Fourier transform of the two-point correlator. The function Pθ(k) is known
as the power spectrum of the Fourier modes.

3The integrals are taken over comoving coordinates ~x and wave vectors ~k. Since θ(x) is a real field, we have the
constraint θk = θ∗−k for the Fourier modes.

4In Ref. [127] it was noted that when choosing θ ∈ [−π, π] we already encounter the first subtle consequence of
the harmonic approximation. Indeed the misalignment field θ should be a periodic variable. So any interval
of length 2π should be equally appropriate to describe the physics. But when approximating V (θ) ' m2

aθ/2
and therefore giving up the periodicity, the only reasonable choice for θ is the interval sweeping over θ = 0,
i.e. the minimum of the potential.
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We know that the initial misalignment field should resemble white noise, at least on scales
larger than the Hubble horizon. For perfect white noise the two-point correlator is a delta-
function, meaning that the values of two neighboring points are completely uncorrelated. Note
that a delta-shaped correlator leads to a constant power spectrum. For our initial misalignment
field, on the other hand, we expect only white noise beyond the scales of the causal horizon, but
a complete correlation on scales smaller than that, i.e. on these scales ξ should be constant. A
constant correlation function yields a power spectrum which is a delta-pulse. Combining these
two different behaviors for the initial misalignmet field motivates an ansatz for Pθ(k) of a top-hat
form

Pθ(k) = CΘ(K − k) , (IV.18)

with Θ(·) being the Heaviside function and K is a cut-off scale defined by the comoving size of
the Hubble horizon

K ≡ R(ti)H(ti) , (IV.19)

where t = ti is again the time where the initial conditions are set. With this ansatz the power
spectrum is flat for large scales, k < K, and drops to zero for k > K.
The normalization constant C can be determined via the variance of θ. Using 〈θ2〉 = π2/3,

we find C = 2π4/K3 and therefore

PTH
θ (k) = 2π4

K3 Θ(K − k) . (IV.20)

A disadvantage of this ansatz is that the two-point correlator ξ(|~x− ~y|) in fact takes the form

ξ(|~x− ~y|) ∼ sin (K|~x− ~y|)−K|~x− ~y| cos (K|~x− ~y|)
K3|~x− ~y|3

, (IV.21)

which has long range correlations beyond scales of the Hubble horizon 1/K only dropping off
like one over the distance squared.
As an alternative we use a Gaussian ansatz for the power spectrum

PG
θ (k) = 8π4

3
√
πK3 exp

(
− k2

K2

)
, (IV.22)

where again the normalization is determined via the variance of θ. Using this power spectrum
for the Fourier modes, the long range correlations in the two-point correlation function are
exponentially suppressed. Thus, this might be the more physically appropriate choice and we
use it as our standard setup. However, whenever it turns out to be helpful we also consider the
top-hat power spectrum since it lets us nicely keep track of the impact of the cut-off scale K in
our calculations.
Another important aspect in our approach is choosing the inital time t = ti. Optimally it

should be at the time of Peccei-Quinn symmetry breaking. But the problem is that in the
harmonic approximation we do not include the effects of the strings, which are essential for the
early evolution of the axion field [99]. However, according to Kibble’s seminal work in Ref. [99]
we can expect that the gradient terms in the evolution equation of θ will always smooth the
field on scales of the causal horizon, as long as it is massless. Beyond the Hubble horizon, the
values should still be uncorrelated, see also our sketch in Fig. IV.1. Following this reasoning
we conclude that our ansatz for describing the white noise character of θ(x) should also hold
at any time after Peccei-Quinn symmetry breaking, as long as the mass can still be neglected.
Therefore, we choose as an initial time for our calculations a time slightly before the field starts
to oscillate, i.e. ti < tosc or equivalently we can define an initial temperature for our calculations
Ti > Tosc. Again, we should set Ti not too large due to our ignorance of the string effects.
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Therefore, as our standard setup we fix Ti = 3Tosc, to properly cover on the one hand the time
where the field starts to oscillate, and on the other hand to be as insensitive to the nonlinear
effects as possible. The actual value for Tosc depends on the chosen breaking scale fa and we
can estimate it via Eq. (IV.1). But it is roughly of the order Tosc ∼ 1 GeV. We will later study
the impact of choosing different Ti’s and how this affects our results.

Solving the Evolution Equation

With the initial power spectrum Pθ(k) of the Fourier modes fixed, we can now turn to solving the
actual evolution equation. The dynamics of the Fourier modes is determined by the evolution
of the fk’s which follows from

f̈k + 3H(T )ḟ + k2

R2 fk +m2
a(T )fk = 0 . (IV.23)

Instead of using time as the independet variable, we can equivalently choose the temperature
T . After this change of variables, Eq. (IV.23) becomes

d2fk
dT 2 +

(
3H(T ) dt

dT −
d2t

dT 2 /
dt
dT

)
dfk
dT +

(
k2

R2(T ) +m2
a(T )

)( dt
dT

)2
fk = 0 (IV.24)

and dt/dT can be determined via the Friedman equations. We find:

dt
dT = −MPl

√
45

64π3
1

T 3gs∗
√
g∗

(
4g∗ + dg∗

dT T
)
. (IV.25)

The Friedman equations also relate the evolution of the scale factor to the temperature
dR
dT = −1

4
1

gs∗T

(
4g∗ + dg∗

dT T
)
R (IV.26)

and the Hubble rate as a function of temperature is given by H(T ) = 1/R(dR/dT )(dT/dt).
Details on deriving the expressions in Eqs. (IV.24)-(IV.26) can be found in App. C.
For getting continous functions for the relativistic degrees of freedom g∗(T ) and gs∗(T ) we

again use the values given in Ref. [96] and apply a cubic spline interpolation method. For the
evolution of the mass ma(T ) we do not use our own parameterization but rather implement
the numerical results from the lattice calculations of χQCD(T ) in Ref. [96] for using the more
realistic evolution of the axion mass. Making use of these exact relations, Eq. (IV.24) can be
solved only numerically.
Before doing so, we should make the equation for the fk’s dimensionless by expressing the

wave numbers with respect to some reference scale. It turns out that a reasonable choice is the
comoving wave number

K1 ≡ RH(T = 1 GeV) , (IV.27)

which is about the scale of the Hubble horizon at T = Tosc. When expressed in terms of K1 all
wave numbers of interest are of order one. For example, as a rule of thumb for the cut-off scale
K we find:

K

K1
= RH(T = 3Tosc)
RH(T = 1 GeV) ' 3

(
Tosc

1 GeV

)
. (IV.28)

To arrive at this estimate we have used the approximations R ∝ T−1 and H(T ) ∝ T 2 in a
radiation dominated universe.
The evolution equation in terms of the dimensionless wavenumbers k̃ ≡ k/K1 takes the form

d2fk̃
dT 2 +

(
3H(T ) dt

dT −
d2t

dT 2 /
dt
dT

)
dfk̃
dT +

(
k̃2

R2(T )K
2
1 +m2

a(T )
)( dt

dT

)2
fk̃ = 0 . (IV.29)

⇔ f ′′
k̃

+ 3H̄(T )f ′
k̃

+ ω̄2
k(T )fk̃ = 0 . (IV.30)
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The primes denote derivatives with respect to temperature and in the second line we have
introduced abbreviations for an effective Hubble rate H̄ and frequency ω̄k̃.

We can now try to solve this equation mode by mode for a large number of k̃. However, it turns
out that soon after the mass term becomes important, the rapid oscillations in fk̃ cause numerical
problems. We find that a workaround for this issue is using the following hybrid approach of a
numerical and a semi-analytical method. At high temperatures between Ti = 3Tosc and T ∼ Tosc
we can use straightforward numerical methods to solve Eq. (IV.30). To circumvent the problem
of the rapid oscillations, we use that at temperatures T < Tosc we are effectively dealing with
the equation of an underdamped harmonic oscillator, since ma > H. Hence, we can proceed
similar as in Sec. III.2, by making a WKB ansatz for fk̃ of the form

fk̃(T ) = 2Ak̃(T ) cos Φk̃(T ) for T < Tosc . (IV.31)

The functions Ak̃ and Φk̃ are determined by

A′
k̃

+ 1
2

(
H̄ +

ω̄′
k̃

ω̄k̃

)
= 0 (IV.32)

and

Φ′2
k̃
− ω2

k̃
= 0 (IV.33)

and the initial conditions for these equations must be found by matching the WKB ansatz and
its derivative to the full numerical solution. Let us call the time of matching TWKB. The values
for Ak̃(TWKB) and Φk̃(TWKB) are determined by

2Ak̃(TWKB) cos Φk̃(TWKB) = fk̃(TWKB) , (IV.34)

2Ak̃(TWKB) sin Φk̃(TWKB) =
f ′
k̃
(TWKB)

ω̄k̃(TWKB) . (IV.35)

To arrive at the second equation we made use of the WKB condition A′/A < ω.
Hence, the algorithm for finding the time evolution of fk̃ can be summarized as follows:

1. Solve Eq. (IV.30) for a given k̃ numerically, starting at Ti = 3Tosc down to T = TWKB <
Tosc.

2. At T = TWKB solve the system of equations (IV.34)-(IV.35) to find Ak̃(TWKB) and
Φk̃(TWKB).

3. Use Ak̃(TWKB) and Φk̃(TWKB) as the initial conditions for solving Eq. (IV.32) and (IV.33)
numerically. Then, determine fk̃(T ) = 2Ak̃(T ) cos Φk̃(T ) for T < TWKB.

It turns out that by choosing TWKB = 0.5Tosc we achieve very good numerical stabilty and an
excellent fit to a full numerical approach. In Fig IV.2 we show fk̃ as a function of temperature,
for the modes k̃ = 0 and k̃ = 3. The Peccei-Quinn breaking scale is fixed at fa = 1012 GeV, i.e.
Tosc ∼ 1 GeV and the dimensionless cut-off wavenumber is K̃ ∼ 3. We observe that the WKB
approximation nicely matches to the numerical solution at T ∼ 0.5Tosc. Further, we see that the
high k̃ mode begins to oscillate already before Tosc. At this point the period of the oscillations
is not yet set by the mass only but also depends on k̃. Obviously, the earlier a mode starts to
oscillate, the more the amplitude is damped compared to the zero-mode. Of course, this does
not hold for arbitrary high k̃. But note that the modes beyond the cut-off scale will be further
suppressed by the power spectrum Pθ. As soon as the mass reaches its zero temperature value,
all modes will eventually oscillate with the same frequency ∼ ma.
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Figure IV.2.: Evolution of the Axion Field Fourier Modes. The zero mode (thin line) starts
to oscillate as soon as the mass term becomes dominant, around Tosc ∼ 1 GeV.
The higher modes on the other hand, oscillate already before Tosc. Therefore,
their amplitude is suppressed compared to the zero-mode. As an example, we
show the evolution of the mode with k̃ = k/K1 = 3. Soon after the rapid
oscillations commence we apply a WKB approximation for temperatures T <
TWKB = 500 MeV. The WKB solution is shown in blue. We see that it nicely
matches to the numerical solution, shown in red. Details on the technicalities of
the matching are given in the text.

IV.2. Power Spectrum of the Density
Fluctuations

We can use our results for the evolution of the Fourier modes to calculate the energy density ρ
of the axion misalignment field and its evolution. It is

ρ(x) = 1
2 θ̇

2 + 1
2R2 (∇θ)2 + 1

2m
2
a(T )θ2 (IV.36)

⇔ ρ(x) = f2
a

2

∫ d3k

(2π)3
d3k′

(2π)3 θkθ
∗
k′F (k, k′)e−i(~k−~k′)~x (IV.37)

with F (k, k′) = ḟkḟk′ +
(
~k · ~k′

R2 +m2
a

)
fkfk′ , (IV.38)

where we made use of the relation θk = θ∗−k. We note that Fourier transform of the energy
density can be written as

ρq = f2
a

2

∫ d3k

(2π)3 θkθ
∗
k−QF (k, k −Q) , (IV.39)

which will be useful when we consider the density fluctuations. But first let us start by calculating
the mean energy density ρ.
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Mean Energy Density

Since taking the spatial average of the energy density ρa is equivalent to calulating the statistical
mean 〈·〉 of ρa(x), it follows from Eq. (IV.37) that

ρ = 〈ρ(x)〉 = f2
a

2

∫
d3k Pθ(k)F (k, k) . (IV.40)

Hence, the mean energy density is determined by the power spectrum of the Fourier modes
Pθ(k) and its evolution via F (k, k).
For times T < Tosc, we can express fk via the WKB ansatz and bring the expression for ρ in

an even more familiar form. As we can see from Fig. IV.2, fk rapidly oscillates at late times
with the frequency ∼ ma and has an envelope that scales as R−3/2, cf. also the disucssion in
Sec. III.2. We can factor this overall scaling of fk out of F (k, k) and further make it dimensionless
by dividing through the zero temperature mass. Thus, we define the dimensionless quantitiy
F̃ ≡ (R(T )/R(T∗))3F/m2

a and T∗ is an a priori arbitrary temperature scale below Tosc. For
convenience we chose T∗ = 100 MeV since here the mass reaches its zero temperature value and
the evolution of F̃ should therefore approach a constant behavior. This is confirmed by explicit
numerical calculations for F̃ as a function of temperature. Introducing F̃ , we can rewrite the
mean energy density as

ρ = 1
2f

2
am

2
a

(
R(T∗)
R(T )

)3 ∫
d3k Pθ(k)F̃ (k, k) , (IV.41)

Now, using the power spectrum Pθ of the top-hat form from Eq. (IV.20) the integral is cut
off at k = K and we find

ρ = 1
2f

2
am

2
a

(
R(T∗)
R(T )

)3
π2
∫ 1

0
dk̃ k̃2F (k̃, k̃) , (IV.42)

where the factor 1/K3 in the normalization of Pθ was absorbed in the integration measure to
make the integral over the Fourier modes dimensionless. It is k̃ = k/K for this instance.
The result for ρ in Eq. (IV.42) has the same parametric dependence as our previous expression

in Eq. (III.33). However, the variance of the misalignment angle 〈θ2
I 〉 = π2/3 from before is now

replaced by the proper weighted contribution of the non-zero k modes via the integral over
F̃ (k̃, k̃).

Doing the calculation for different Peccei-Quinn breaking scales fa, we are also able to repro-
duce the relation for the relic abundance

Ωah
2 ' 0.1

(
fa

1012 GeV

)7/6
. (IV.43)

However, it turns out that in our approach the numerical factor somewhat dependends on the
initial time Ti. When choosing Ti = 2Tosc instead of the default assumption Ti = 3Tosc, the
energy density is about a factor two larger. This can be understood as the high k modes not
having enough time to red-shift away before the mass becomes constant and the evolution of
F̃ is frozen. Thus, their contribution to the energy density is still large compared to the zero-
mode which should actually make up the main contribution to ρ. We also note that another
shortcoming of our method is that the result for Ωah

2 differs about 30% depending on the chosen
initial power spectrum, top-hat or Gaussian.

Energy Density Fluctuations

Recall that the fluctuations in the energy density are definded as

δ(x) ≡ ρ(x)− ρ
ρ

, (IV.44)
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i.e. as the local variation of the energy density compared to its mean. The Fourier transform of
δ(x) reads

δq = ρq
ρ

for Q 6= 0 (IV.45)

and it can be related to the power specturm P (q) of the fluctuations [128]. With a similar
calculation as for the power spectrum of the field modes, we find:

〈δqδ∗q′〉 = (2π)3 δ
(
~q − ~q′

)
P (q) (IV.46)

and therefore it is

P (q) = 〈|δq|2〉/V . (IV.47)

Note that evaluating the Dirac distribution at zero can be done by using its definition

(2π)3δ3(~k) =
∫
V

d3x ei~k~x . (IV.48)

With this, we have

δ(~k = 0) = V

(2π)3 , (IV.49)

where V is some large volume.
The interpretation of the power spectrum P (q) is that it tells us how much power sits in

fluctuations of a given mode. It has the dimensions of a volume. A quantity with a more
transparent meaning is the dimensionless power spectrum [128]

∆2 = q3

2π2P (q) . (IV.50)

Values of ∆2(q) ∼ 1 indicate that fluctuations are of O(1) at the given scale q. We will shortly
see that the power spectrum of the density fluctuations is a necessary input for deriving the
miniclusters mass function.
With our results for ρq and ρ, we can determine P (q) via

P (q) = 1
V

〈|ρq|2〉
ρ

. (IV.51)

But first we note that

〈|ρq|2〉 = f2
a

4

∫ d3k

(2π)3
d3k′

(2π)3 〈θkθ
∗
k−Qθ

∗
k′θk′−Q〉F (k, k −Q)F (k′, k′ −Q) (IV.52)

can be evaluated using Wick’s theorem [129]. Namely, by applying this theorem the expectation
value under the integral can be written as

〈θkθ∗k−Qθ∗k′θk′−Q〉 = 〈θkθ∗k−Q〉〈θ∗k′θk′−Q〉+ 〈θkθ∗k′〉〈θ∗k−Qθk′−Q〉+ 〈θkθk′−Q〉〈θ∗k−Qθ∗k′〉 , (IV.53)

i.e. a sum of products which each can be evaluated via the relation 〈θkθ∗k′〉 = (2π)3δ(~k−~k′)Pθ(q)
and using the power spectrum Pθ(q) of the Fourier modes of the misalignment field.

We note that the last term in Eq. (IV.53) drops when using q 6= 0 and as an intermediate
result we have

〈θkθ∗k−Qθ∗k′θk′−Q〉 = (2π)6Pθ(|~k|)Pθ(|~k − ~q|)
{[
δ3(~k − ~k′)

]2
+
[
δ3(~k + ~k′ − ~q′)

]2}
. (IV.54)
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When performing the integral, the first term gives |F (k, k − q)|2 and the square of a Dirac
distribution can be evaluated with the relation in Eq. (IV.49). The second term yields |F (q −
k,−k)|2. With the realness condition for θ(x), we have fk = f−k and therefore |F (q−k,−k)|2 =
|F (k, q− k)|2 using the definition of F . Hence, both terms give the same result when eventually
plugged into 〈|ρq|2〉. With this, we find the following expression for the power spectrum of the
energy density fluctuations

P (q) = 2(2π)3
∫

d3k Pθ(|~k|)Pθ(|~k − ~q|)F (k, k − q)2

[
∫

d3k Pθ(k)F (k, k)]2
. (IV.55)

Before showing actual results for P (q), let us summarize the main features of our approach.
By using statistical methods to describe the physical situation of the misalignment field, we were
able to express the energy density as well as the fluctuations therein via the power spectrum of
the field modes. Their dynamics is encoded in the effective factor F (k, k′) which is derived by
solving the evolution equation with a hybrid method of a full numerical and a WKB approach.
As soon as the mass reaches its zero-temperature value, F will scale as R−3. This is independent
of k and therefore the evolution in the nominator and the denominator in our expression for
P (q) cancel. Thus, the power spectrum is frozen for temperaturs T < 100 MeV.

However, note that since we are using the harmonic approximation for the axion potential we
do not expect to observe the very high density fluctuations with δ � 1 which have been seen in
full numerical simulations with the nonlinear potential [108,122–124]. Also by not including the
effect of the topological defects, we are not able start our calculations at arbitrary high scales.
Rather, we had to make an educated guess for the acutal form of the power spectrum Pθ at
temperatures briefly before the field starts to oscillate. Further, note that for normalizing the
power spectrum we use the mean energy density ρ from our calculations, i.e. we include only
the axions from the realignment mechanism. Thus, additional axion production channels might
suppress the relative fluctuations, if they do not add additional power themselves. The possible
shortcomings of our approach are also discussed in more detail in Ref. [127].

Results

In the upper panels of Fig. IV.3 we show the power spectrum P (q) (left) and the dimensionless
power spectrum ∆2(q) (right) of the energy density fluctuations for three different choices of
the Peccei-Quinn breaking scale, fa = 1010, 1011, 1012 GeV, at a time T < 100 MeV where the
axion mass has reached its zero-temperature value and therefore P (q), as well ∆2, are frozen.
For our choices of fa, the realignment axions make up ∼ 1− 100% of the observed DM density,
respectively, cf. Eq. (IV.43). As a reference scale for the wave numbers in our plots we use K1,
cf. Eq. (IV.27) for the definition. Further, note that for calculating P (q) and therefore ∆2(q),
we use the Gaussian power spectrum PG

θ from Eq. (IV.22) for the field modes.
Figure IV.3 corresponds to Fig. 2 and 3 in Ref. [127] where the important aspects of the power

spectrum are already discussed in detail. Here, we want to repeat some of the main observations.
Obviously, P (q) shows the characteristic constant behavior of white noise on large scales, i.e.
small q. This means fluctuations for each mode are equally likely. However, for larger q the
power spectrum has a very sharp drop-off at some charatcteristic scale which is different for the
different choices of the symmetry breaking scale fa. Looking at the plot of ∆2 we learn that
this scale corresponds to the position of the peak and therefore to the characteristic size of the
fluctuations.
Let us study the position of the peak in ∆2 more carefully. For the breaking scale fa =

1012 GeV, we know that Tosc ∼ 1 GeV. This means that in this case the position of the peak at
∼ 4K1 corresponds to a scale about four times smaller than the Hubble horizon at the time the
oscillations commence. Therefore, the characterstic size of the fluctuations in the axion energy
density should be about L ∼ 1/(4R(Tosc)H(Tosc)). This is in contrast to what we have assumed
in our estimates for the typical fluctuation size at the very beginning of this chapter. There,
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Figure IV.3.: Power Spectrum of the Realignment Density Fluctuations. This figure corre-
sponds to Fig. 2 respectively 3 in Ref. [127]. The upper left panel shows the
power spectrum P (q) of the energy density fluctuations for different choices of
fa. The constant behavior for large scales (small q) is typical for white noise.
The sharp drop-off in the power spectrum happens at the characteristic size of
the fluctuations. This scales also correspond to the positon of the peaks in the
dimensionless power spectrum ∆2 (upper right panel). The height of the peak
indicates that the fluctuations in the axion energy density are of O(1). In the
lower panels we study the impact of choosing different power spectra for the
Fourier modes, top-hat versus Gaussian, and the influence of the initial time Ti.
Details can be found in the text. As reference scale for the wavenumber we use
K1 = RH(T = 1 GeV).
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we naively expected that the horizon at Tosc defines the characteristic size of the fluctuations.
However, our calculations show that they are somewhat smaller. This effect must be accounted
to the correct treatment of the gradient terms in our calculation of the evolution equation of the
axion field. Note that for the other choices, fa = 1010, 1011 GeV, the oscillation temperature is
higher, i.e. Tosc > 1 GeV, which means that the horizon at the time the oscillation commence is
smaller and therefore the peak of ∆2 is shifted to higher q’s.
We now turn to the low q behavior of the power spectrum P (q) and ∆2. Recall that low q

mean large spatial scales. A numerical fit shows that for very low q � K1 the dimensionless
power spectrum ∆2 can be paramerized via

∆2 ∼ [0.12, 0.39, 1.2] · 10−1
(
q

K1

)3
for fa = [1010, 1011, 1012] GeV . (IV.56)

This underlines that P (q) ∝ ∆2/q3 becomes indeed constant for large scales. It turns out that
when getting closer to the peak, the shape of ∆2 is better fit by a parabola. From the height of
the peak in ∆2 we learn that the fluctuations are about O(1).

Note that if the fluctuations would be exactly of the size of the comoving Hubble horizon at
Tosc, we would expect the dimensionless power spectrum to be ∆2 = (k/Kosc)3. However, our fit
in Eq. (IV.56) shows again that the actual sizes of the fluctuations is smaller than that. This can
be nicely seen for the choice fa = 1012 GeV, where Kosc ∼ K1. With our result ∆2 < (q/Kosc)3,
we find that the characteristic mode q of the fluctuations is larger than Kosc.

With the plots in the lower panels of Fig. IV.3 we can study the influence of the choice of Pθ
(left), as well as the initial time (right), on ∆2 while fixing fa = 1012 GeV. Note that a change
of the initial time also influences the cut-off K. Therefore, we observe the expected shift of ∆2

towards lower q in the lower left right, when setting Ti = 2Tosc instead of the default assumption
Ti = 3Tosc. Looking at the influence of Pθ in the lower left panel, we see that when choosing the
top-hat power spectrum PTH

θ for the field modes, ∆2 quickly goes to zero at around q = 6K1.
Recall that PTH

θ (k) ∝ Θ(k−K) and therefore our result for ∆2 implies that even though we have
no power in high modes q > K ∼ 3K1 in the Fourier coefficients θq of the field, we do so in the
spectrum of the density fluctuations. This must be an effect of the gradient terms which appear
squared in the expression for the energy density. Note that for the Gaussian power spectrum
this cut-off is smeared out.

Comparison with Results from numerical Simulations of Vaquero et al [108]

In the following, we compare our results to the outcome of the recent numerical simulations
by Vaquero et al in Ref. [108] where the complex Peccei-Quinn scalar with the full nonlinear
potential was considered. This means that in the simulations from Vaquero et al effects of
the strings as well as the nonlinearities in the axion potential are included. In Fig. IV.4 we
reproduce Fig. 11 from Ref. [108], where the dimensionless power spectrum ∆2 from both, our
semi-analytic approach as well as the full numerical result is shown.
It turns out that for the low wavenumber region, both results are roughly consistent. Espe-

cially, the position of the first peak and also the rise of ∆2 are comparable. Thus, Vaquero et al
confirm our observation that the size of the fluctuations is smaller than naively expected. They
also find the same white noise behavior of the power spectrum for large scales. Namely, they
report a fit for ∆2 in the low q region [108]

∆2
string ∼ 0.3 · 10−1

(
q

K1

)3
for fa = 1012 GeV , (IV.57)

which parametically agrees with our result in Eq. (IV.56). However, the numerical factor is
about four times smaller.
Looking at Fig. IV.4, it becomes clear that for higher q values, beyond the first peak in ∆2,

the two results start differ notably. Where our result for ∆2 quickly drops to zero, the full
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Figure IV.4.: Comparison with Results from Numerical Simulations in Vaquero et al. [108].
The thin lines correspond to the results from Ref. [108] and the thick lines to the
results from our calculations. We observe that for low q’s our semi-analytic and
the numerical results roughly agree in position of the first beak and the cubic
growth. For higher modes on the other hand, the numerical results have a much
more richer structure due to including the string effects. We see that these also
lead to less power in the modes and an overall reduction of the height of ∆2.
Note that this figure is a reproduction of Fig. 11 in Ref. [108]. As reference scale
for the wavenumber we chose K1 = RH(T = 1 GeV).

numerical simulations lead to a much richer structure, which must be an effect of the strings
and the nonlineartiy of the axion potential. Another important difference is that the overall
height of ∆2 is significantly lower for the full numerical results compared to our approach. The
reason for this seems to be that by using the white noise initial conditions for the misalignment
field, we have overestimated the power in the high modes, close to our cut-off scale K. In fact,
it looks like the strings, actually acting as the boundaries of the inhomogeneous patches of the
misalignment field, reduce the power on the smallest scales, as can also be seen in Fig. 6 in
Ref. [108]. However, also the overall normalization of the power spectrum should play a role,
as we have already pointed out before. Recall that we use only the realignment axions for
normalizing the fluctuations δ, whereas Vaquero et al automatically include the axions from the
string and domain wall decays.
Another interesting observation from the results of the full numerical simluations is that even

though Vaquero et al do observe the formation of the high density axitons with δ � 1, they
find that the power spectrum of the energy density is dominated by the mild δ ∼ 1 fluctuations,
cf. especially Fig. 7 in Ref. [108]. Interestingly, this is somewhat in contrast to the results of
Kolb & Tkachev in Ref. [33], where they speculate that the δ � 1 overdensities might lead to
very dense miniclusters, possibly observable as graviational femtolenses. The results by Vaquero
et al, on the other hand, rather suggest that the typical miniclusters should mainly arise from
the O(1) fluctuations.
Thus, we conclude that despite the indisputable importance of the nonlinear effects of the

axion potential, we can capture with our harmonic approximation the dominant part of the power
spectrum, namely the low wavenumber region, and therefore the important part responsible for
the minicluster formation.
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IV.3. Decoupling from the Hubble Flow
So far, when studying the evolution of the axion field we have neglected all gravitational effects
besides the expansion of the universe. However, as soon as the power spectrum is frozen the
overdense regions in the axion energy density can decouple from the Hubble flow and start to
collapse. From our results for the power sepectrum in the previous section, we have learned that
the fluctuations in the axion energy density are not small and therefore should not be treated
perturbatively. Further, when considering the collapse of the axion overdensities we have to take
into account that they can decouple already very early, i.e in the radiation dominated epoch.
Recall that the power spectrum becomes constant already at T ∼ 100 MeV.
To study the actual decoupling of axion density fluctuations, we can use results presented

by Kolb and Tkachev in Ref. [130] where they have developed a spherical collapse model for
arbitrary large overdensities which holds in matter as well as radiation dominated universes.
In the following, we briefly recap their approach and reproduce the results which are most
important for us.
We start by considering the evolution of a sphere with physical size r which includes the DM

massM in an expanding universe. If the size of the sphere is equal to or smaller than the Hubble
horizon, we can assume the radiation encapsuled is homogeneous. The equation of motion for
the radius r is simply

r̈ = −8πG
3 ρradr −

GM

r2 , (IV.58)

i.e. the sum of the pressure in the relativistic component and the attractive Newtonian force.
We can assume that the mass M stays constant during the decoupling from the Hubble flow.
The radius r might be written as

r = abζζ , (IV.59)

where for now, a is the scale factor5, ζ is the initial comoving coordinate, and bζ is the so-called
deceleration parameter. It denotes the deviation of the evolution of r from the overall Hubble
flow.
We are interested in the time a fluctuation δ corresponding to a given mass M and size R

starts to collapse. For a spherically symmetric fluctuation, the relation between M , R, and δ is

M = 4
3πρ(1 + δ)R3(ti)ζ3 , (IV.60)

where ti is an initial time where we start to consider the collapse and R = R(ti) is the initial
comoving size. Note that for small fluctuations δ � 1, we find that M ∝ R3, i.e. there is a
one-to-one relation between the mass and the size. For the axion density fluctuations we can not
draw this conclusion, since δ is of O(1) and it cannot be neglected. This will become important
later, when we want to calculate the minicluster mass function.
The start of the collapse of a fluctuation δ can be identified with the time when the radius

decouples from the Hubble expansion and starts to turn around, i.e. when ṙ = 0. Using the
scale factor x ≡ a/aeq instead of time as the independent variable, the relation defining the time
of turnaround becomes

b+ x
db
dx = 0 . (IV.61)

Note that we dropped the subscript ζ.

5Note to avoid confusion with variables describing spatial sizes, we denote in the following the scale factor with
a instead of R, as we have done so far.
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Rewriting the equation of motion in Eq. (IV.58) in terms of the deceleration parameter b as
a function of x, we find:

x(x+ 1) d2b

dx2 +
(

1 + 3
2x
) db

dx + 1
2

(
δ + 1
b2
− b
)

= 0 . (IV.62)

This equation can be solved numerically for different δ. As initial conditions we can chose for
example b(xi) = 1 and b′(xi) = 0. However, it turns out that the result is not very sensitive
the actual choice of the initial condtions. Nevertheless, it must be noted that the initial time
has to be xi � 1 to produce the correct behavior of b(x). For our purposes, this means that
the exact initial time we start considering the decoupling of the axion overdensities should not
matter too much, as long as it is well before matter-radiation equality. For convenience we take
T∗ = 100 MeV. Recall that at this temperature the axion reaches its zero temperature value and
hence the power spectrum is frozen. This means that from this time on, only the gravitational
interactions should dictate the evolution of the density fluctuations.

With the result for b(x) in terms of a given δ we can determine the time of turnaround xta
via Eq. (IV.61). With our numerical results, we can confirm the approximate relation

xta ≈
0.7
δ

(IV.63)

already found by Kolb and Tkachev in Ref. [130].
For considering the axion overdensities, we interpret this result the following way. At a given

time x all fluctuations larger than a critical value

δc ≈
0.7
x

(IV.64)

should have started to collapse and a fluctuation δ can be characterised by a mass M and a
radius R via

δ(R,M) = 3M
4πR3ρ

− 1 (IV.65)

which is just a reformulation of Eq. (IV.60). It is important to note that R is the comoving
size of the fluctuation at ti. Thus, in our case at T = 100 MeV. We want to point out again
that Eq. (IV.65) does not give one-to-one relation between M and R. This implies that there
exist different tupels (M,R) which lead to the same δ. Together with our result for the power
spectrum of the fluctuations, Eq. (IV.64) and (IV.65) are the main incredients for deriving the
mass function of the miniclusters.
Note that it is not advisable to describe the evolution of a minicluster after the time of

turnaround with Eq. (IV.62). Because it does not contain a term which can stop the collpase,
the late time solution will always be a collapse into a singulartiy. Kolb and Tkachev speculate
that the collapse should stop at about half the turnaround radius due to virialization [130].
However, it is questionable if this is the case for axion overdensities. We postpone a more
in-depth discussion of the evolution of the axion miniclusters after their decoupling from the
Hubble flow to Ch. V.

IV.4. Distribution of Axion Miniclusters
In the standard DM matter scenario, the Press & Schechter method [131] and similar ap-
proaches [132, 133] can be used to calculate the mass distribution of collapsed objects, the
so-called mass function. See, for example, Refs. [128, 134] for thorough reviews of this topic.
The Press & Schechter method provides an analytic handle on predicting the distribution of DM
halos using a spherical collapse model as input. Even though, N-body simulations [135] show
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that the actual collapse might be far from spherical [134], the analytic approaches succeed in
reproducing the correct DM halo mass functions, at least qualitatively. In the following, we dis-
cuss how we can apply and modify the Press & Schechter method for calulating the distribution
of axion miniclusters. We start by briefly reviewing the basic features of the original approach
and pointing out what modifications are needed in the case of the axion miniclusters.

According to Ref. [128], the mass function can be written as

dn
dM = f(δc, σR) ρ

M2

∣∣∣∣d log σR
dM

∣∣∣∣ , (IV.66)

where n(M) is the comoving number density of objects with mass M . We can interpret
Eq. (IV.66) as a relation for the distribution of the number density of callapsed objects in
the intervall dM . On the right hand side of Eq. (IV.66), we have, besides the mean energy
density ρ, the quantitiy

σ2
R ≡ 〈δ2

R(x)〉 = 1
2π2

∫
dk k2P (k)|W̃R(k)|2 , (IV.67)

which is the variance of the density fluctuations smoothed over some scale R [127, 128]. The
smoothing is done by applying a window function WR(x) and W̃R(k) is its Fourier transform.
Different shapes can be used for the window function. A natural choice would be a sphere
in real space, but it turns out that it is often more convenient to use a top-hat in k space,
W̃R(k) = Θ(1−kR). We will comment on the reason and the implications of this specific choice
later. Together with the window function comes a smoothing volume VR depending on the scale
R and the actual shape of the window function. Usually, for small fluctuations, the scale R is
directly identified with the mass contained in the volume the fluctuations were smoothed over,
i.e. MR = VRρ. This makes M and R basically equivalent. However, this relation does not hold
in the case of the axion density fluctions which are expected to be large, following our results
from before. Therefore, we have to stick to the general expression in Eq. (IV.60) for a relation
between the fluctuations δ and M and R.

Coming back to the definition of dn/dM in Eq. (IV.66), the function f(δc, σR) is included
to represent the probability for finding a fluctuation in the smoothed fluctuation field which is
larger or equal than a critical height δc. Assuming that δ is a Gaussian random variable, Press
& Schechter used the form6

f(δc, σR) =
√

2
π

δc
σR

exp
[
− δ2

c

2σ2
R

]
. (IV.68)

In the standard spherical collapse model where the fluctuations are treated perturbatively and
the collapse only happens after matter-radiaton equality, it is found that the critical density is
δc ' 1.686 and δc can be related to the redshift via the usual growth factor [134]. However, for
our purposes, where we have to consider the collapse of nonlinear fluctuations in matter as well
as radiation dominated eras, we should replace the usual expression for δc by our result from
before, namely δc(x) ≈ 0.7/x.
Before going into the further details of the mass function for the axion miniclusters, we want

to comment on some general features of the mass function in the usual CDM scenario. It should
be noted that in the Press & Schechter approach an overdensity identified with mass M is
understood as collapsed as soon as its corresponding smoothed variance σR = σ(M) ≥ δc. This
means that there is at any time a characteristic mass scale, let us call itMc, at which σ(Mc) = δc
holds [128] and for masses larger than Mc the mass function will be suppressed due to the form
of f(δc, σR). This large M suppression is more or less independent of the underlying power

6In fact f(δc, σR) should not be mistaken with a proper probability distribution function since it is not normalized
correctly. Note that there is an issue of a missing factor two which was put in by hand in the original work by
Press & Schechter. This is known as the cloud-in-cloud problem, see for example Ref. [128] for a discussion of
this issue and solutions for it.
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spectrum and the shape of σR. For small masses, on the other hand, we find that the mass
function diverges as 1/M2 if |d log σR/dM | in Eq. (IV.66) does not go to zero fast enough. So,
the small M behavior of the mass function does depend on the shape of σR. However, it turns
out that for usual CDM, the mass function still diverges for M → 0. We will shortly see that
this changes in the case of axion miniclusters.

A modified Press & Schechter Method for the Minicluster Mass Function

Let us repeat the necessary modifciations of the standard Press & Schechter method when we
want to calculate the minicluster mass function in a similar approach. First, we should not use
the one-to-one relation between smoothing scale and mass since we are dealing with nonlinear
fluctuations. This implies that the minicluster mass function should in fact be a distribution
in mass and size. Second, we have to use our results from Sec. IV.3 to describe the critical
density δc(x). The actual derivation of the double differential axion minicluster mass function
is presented in great detail in Ref. [127]. At this point, we only want to briefly summarize the
most important steps.
As in the standard Press & Schechter approach, we start with the asssumption that the

smoothed density fluctuation δR is a Gaussian random variable with the variance σR as defined
in Eq. (IV.67). The probability distribution function (PDF) of δR is then given by

fsm(δR;R) = 1√
2π

1
σR

exp
[
− δ2

R

2σ2
R

]
. (IV.69)

Note that δR is understood as the smoothed fluctuation identified with one specific smoothing
scale R.
Let us take a step back and determine the joint distribution f(δ, r) for fluctuations of height

δ and some size r. Equation (IV.69) suggests that only fluctuations with r > R contribute to
the smoothed PDF. This motivates the ansatz [127]

g(R)fsm(δ,R) =
∫ ∞
R

dr f(δ, r) (IV.70)

for deriving f(δ, r). The function g(R) is introduced such that f(δ, r) can be normalized correctly.
For that it should hold that:

g(R) =
∫

dδ
∫ ∞
R

dr f(δ, r) , g(0) = 1 . (IV.71)

Equation (IV.70) together with (IV.71) provides a non-trivial system of equations for deriving
g(R) and therefore f(δ,R). In Ref. [127] it was shown that by differentiating Eq. (IV.70), we
arrive at the equation

fsm(δ;R)
[

dg(R)
dR − d log σR

dR

(
1− δ2

σ2
R

)
g(R)

]
= −f(δ,R) (IV.72)

which is solved by g(R) = σR/σ0 with σ0 ≡ σR=0 is the variance without smoothing. Therefore,
the joint distribution function is given by

f(δ,R) = − 1
σ0

dσR
dR

δ2

σ2
R

fsm(δ;R) . (IV.73)

The physical interpretation of this result and the relation between f and dσR/dR is the following.
If σR is constant, this means that there are no fluctuations of this size and therefore f(δ,R)
vanishes.
In Fig. IV.5 we show the results for σR as well as the normalized derivative 1/σ0(dσR/dR)

using the power spectra P (q) presented in the previous section. As a reference scale we introduce
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Figure IV.5.: Smoothed Variance of the Density Fluctuations. The left panel shows the vari-
ance σR as a function of the smoothing scale R and the right panel its derivative
normalized to the variance without smoothing. The latter is an important in-
put for deriving the mass function of axion miniclusters via the modified Press
& Schechter method presented in the text. This figure corresponds to Fig. 4
in [127].

the comoving size R1 ≡ 1/(aH(T = 1 GeV)). We see that the derivative peaks roughly at the
characteristic scale of the fluctuations, which we have identified before, and qickly goes to zero
for small R. In fact, this should provide a low R cut-off for f(δ,R).

Our results for the variance σR might be compared with the work by Fairbairn et al presented
in Ref. [113] where the standard Press & Schechter method and some ad hoc assumptions for the
power spectrum of the axion density fluctuations are used to determine an estimate for the axion
minicluster mass function. They find a similar constant behavior σR when R→ 0, cf. Fig. 4 in
Ref. [113]. We will later compare our results for the axion minicluster mass function with that
of Fairbarin et al in more detail.
With the probability function f(δ,R) at hand, we can determine the number density n of

collapsed miniclusters similar as in the standard approach. We find

dn
dRdM = 3

2πMR3 f(δ,R)Θ(δ − δc(x)) , (IV.74)

where δ is now understood as a function of M and R via the relation Eq. (IV.65) and the
Heaviside function makes sure that only fluctuations larger than the critical value δc = 0.7/x
are taken into account.
By integrating over R we can find an analogous expression to the usual one-dimensional mass

function:

dn
dM = 3

2πM

∫ Rc(M)

0
dR 1

R3 f(δ,R) . (IV.75)

The critical radius Rc(M) is determined via setting δ = δc in Eq. (IV.65).
Before presenting numerical results, we want to discuss the qualitative behavior of the mass

function in our modified setup and compare it to the standard Press & Schechter result. For
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high masses, we still expect an exponential suppression of n(M), for the same reasons as before.
However, since f(δ,R) drops quickly for R → 0, meaning that fluctuations smaller than some
characteristic size are strongly suppressed, we can expect a different behavior for small masses.
Namley, if f(δ,R) goes to zero fast enough, i.e. faster than 1/(MR3) does, the mass function
should have a cut-off at some low M . Our results show that this is indeed the case. However, it
turns out that the cut-off is only visible if we choose the k space top-hat window function. For
other choices, e.g. a sphere in real space or a Gaussian window function, we have checked that
the mass function still diverges. This unwanted remnant of the choice of the window function is
a known issue of the Press & Schechter method [136]. This problem was also recently discussed
by Fairbairn et al in Ref. [113] in view of the minicluster mass function.

Results

In the following, we present results for the double differential minicluster mass function defined
in Eq. (IV.74). Recall that it was defined as the comoving number density of collapsed objects
at a time x = a/aeq and it is a function of the initial comoving size R and the inital mass M of
the overdensity. Note that we can assume that the mass stays constant during the decoupling
process. However, the size definetly changes. Hence, a quantity which might be of greater
interest than R is actually the physical size of the fluctuation at the time of turnaround. Let us
call it rta. We can determine rta as a function of R from the spherical collapse model described in
Sec. IV.3. With rta = atabtaR and using the approximate result b(x) ≈ 1 + δx/2 from Ref. [130]
together with δxta = 0.7, we find:

rta = 0.4aeq
δ
R . (IV.76)

Expressing δ via the comoving reference scale R1 and a reference mass scale M1 ≡ 4πρ(T =
1 GeV)H−3(T = 1 GeV), we find the useful relation [127]:

rta ' 1.4 · 109 km
(
R

R1

)4 (M1
M

)
. (IV.77)

With our numerical results for ρ(T = 1 GeV), a neat conversion rule from R to rta is given by

rta ∼ [2, 25, 360] · 1010 km
(
R

R1

)4
(

10−14M�
M

)
for fa = [1010, 1011, 1012] GeV , (IV.78)

which we can use to express R in dn/(dMdR) in terms of rta.
For a better visualization of our results for the minicluster mass function, it is useful to

introduce the dimensionless quantitites

XMR = M

ρ

dn
d logMd logR (IV.79)

and

XM = M

ρ

dn
d logM , (IV.80)

which give the contribution of collapsed objects per intervalM and R respectively onlyM to the
mean energy density ρ. Recall that we use ρ of the realignment axions only. Hence, including
other sources for relic axions might again change the normalization. However, we focus in our
discussion mainly on the shape of mass function anyway.
In Fig. IV.6, we show results for the double differential axion minicluster mass function XMR

at the time of matter-radiation equality, using the above described methods and the results from
the previous sections as input. We observe that the distributions are nicely peaked around a
characteristic minicluster mass and size.
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Figure IV.6.: Distribution of Axion Miniclusters in Mass and Size. Using the double differen-
tial mass function described in the text we calculate the relative abundance of
miniclusters as a function of mass and turnaround radius for different Peccei-
Quinn breaking scales fa = 1010, 1011, 1012 GeV. We observe that the distri-
butions are peaked around a characteristic mass and characteristic radius. In
Tab. IV.1 we summarize numerical results. Similar plots are shown in Fig. 5 of
Ref. [127].
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Figure IV.7.: Dimensionless Mass Function of Axion Miniclusters. The different linewidths,
from thin to thick, correspond to different instances in time x = 0.2, 0.5, 1 with
x = a/aeq. For the dashed line we chose x = 5, a time where the mass function
already became almost time independent. This result corresponds to Fig. 6 of
Ref. [127].

Figure. IV.7 shows the evolution of the integrated mass functionXM . Since with the definition
of XM we have factored out the overall expansion of the universe, the evolution of XM therefore
shows how the number density of collapsed objects per comoving volume grows. The distribution
starts to peak around the characterstic mass and grows till around matter-radiation equality,
i.e. x ' 1. After that only the large mass tail keeps evolving. We can intepret this as almost all
fluctuations collapsing before x = 1. Note that with the relation δc = 0.7/x for the critical height,
all fluctuaions eventually collapse when x → ∞. Further, we observe the already anticipated
exponential suppression of the mass function at high masses and the cut-off at low masses.
With our results for XMR and XM , we can extract the peak values for the characteristic turn-

around radius rpeak
ta , as well as the characteristic minicluster mass Mpeak

MC , for the miniclusters
depending on the chosen Peccei-Quinn breaking scale. We can also define typical intervals for

fa [GeV] Mpeak
MC [M�] MMC range [M�] rpeak

ta [km] rta range [km]
1010 4 · 10−16 [2 · 10−17, 1 · 10−14] 4 · 104 [2 · 104, 2 · 105]
1011 2 · 10−14 [5 · 10−16, 3 · 10−13] 2 · 105 [4 · 104, 7 · 105]
1012 8 · 10−13 [6 · 10−14, 2 · 10−11] 2 · 106 [7 · 105, 7 · 106]

Table IV.1.: Results for the Distribution of Axion Miniclusters in Mass and Size as presented
in Ref. [127]. From the distrubtions XM as well as XMR, cf. Fig. IV.6 respectively
IV.7, we can extract peak values for the characteristic minicluster massMMC and
turnaround radius rta. We also extract the intervals for rta and MMC where their
contribution is about 1% of the peak value of the distribution, giving typical
ranges.
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mass and turnaround radii of the miniclusters. This we do by extracting the values for rta and
MMC where XMR is larger than 1% of the peak value. The outcome is summarized in Tab. IV.1.
We note that the characteristic turnaround radii span about one order of magnitude, whereas
the miniclusters masses cover almost three. This property is in good approximation independent
of the Peccei-Quinn breaking scale.
We also note that the minicluster masses we find are smaller than expected with our naive

estimate at the very beginning of this chapter, cf. Eq. (IV.6). However, this was to be expected
since we have already found that the characteristic size of the fluctuations is smaller than the
Hubble horizon at Tosc which was used to derive the estimate for MMC, to begin with. Note
that the fluctuation size enters the minicluster mass cubed. This means that with the actual
fluctuation size being about a quarter of what we expected, this explains the two orders of
magnitude difference for MMC.

With our results we can also try to find a relation between fa and MMC. Fitting the peak
values to a function of fa we find

MMC ∼ 8 · 10−13M�

(
fPQ

1012 GeV

)1.6
. (IV.81)

It should of course be noted that with only three different values for fa, we have very poor
statistics and cannot give a conclusive statement on the actual scaling behavior. However, it is
interesting that we find a somewhat shallower increase with fa when compared to our estimate
in Eq. (IV.6). There, we have found MMC ∝ f

7/6
a . This could very well be due to an effect of

the parameterization for the temperature dependent axion mass when deriving this estimate.
Our results for the turn around radius suggest a relation between rta and fa like

rta ∼ 2 · 106 km
(

fa
1012 GeV

)
, (IV.82)

which is also very different than our naive estimate. Again this could be related to differences
in the temperature dependence of the axion mass. But it could also be an actual effect of the
gradient terms. For a conclusive answer a study of wider range of fa’s would be necessaray.
However, recall that for the QCD axion only breaking scales fa in the range between 1010 −
1013 GeV are really cosmologically relevant in the sense that it can explain a notable amount or
all of the observed DM.

Finally, we want to point out that the turnaround radius we have found should not be mistaken
with the actual size of the miniclusters today. So far, we have only considered the process of
the decoupling from the Hubble flow, but not yet the subsequent collapse. Here, our results for
the minicluster mass function can serve as valubale input for further studies. We ourselves turn
to this topic in the Ch. V, when we consider the fate of the miniclusters. But assuming that
the miniclusters end up in some kind of dilute and virialized state, their size today should be
comparable to rta.

Comparison with Results from Fairbairn et al [112,113]

Before moving on, we want to compare our results for the axion minicluster mass function with
the outcome of the study by Fairbairn et al in Refs. [112,113]. For that, we first have to briefly
review their approach. The big difference to our work is that Fairbairn et al do not consider
the evolution of the axion field itself but focus only on the dynamics of the density fluctuations
δ. For that, they assume similar initial conditions on the power spectrum of δ as we do for the
power spectrum of the Fourier modes of the misalignment field. Namely, they also try to model
the expected white noise behavior. But again, they assume the white noise for the fluctuations
whereas we do that for the misalignment field itself. Doing so, we were able to derive the power
spectrum of the density fluctuations from first principle and did not make any assumptions for
it. Nevertheless, as we see from our results for P (q) in Fig. IV.3, assuming a white noise behavior
also for the density fluctuations and therefore approximating P (q) via a top-hat or a Gaussian
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as Fairbairn et al did was not a bad guess. Still, a problem of their study is that they have
missed that the characterstic size of the fluctuations does not correspond to the Hubble horizon
at Tosc. This they have used as input for defining the power spectrum of the fluctuations. Recall
that we were only able to see that the fluctuations are actually smaller because we followed the
field evolution and properly included the gradient terms.
Further, to derive the mass function for the axion minicluster, Fairbairn et al use the power

spectrum of the density fluctuations in a standard Press & Schechter approach. Hence, they do
not consider the distribution in mass and size, but mass only.
Despite the shortcomings of their approach we find that their minicluster mass function qual-

itatively agrees with our results and the intervals of the characterstic minicluster masses span
similar orders magnitude. The peak values however are not as easy to compare due to the issue
of using different characteristic sizes of the fluctuations. Nevertheless, we conclude that our
study and that of Fairbairn et al in Refs. [112,113] still lead to comparable results for the axion
minicluster mass function.

IV.5. ALP Miniclusters
So far, we have concentrated exclusively on the formation of miniclusters in the QCD axion sce-
nario. However, when the realignment of a scalar field happens after inflation, large isocurvature
fluctuations in the energy density generically occur. Therefore, we expect minicluster formation
also for ALPs. See also Ref. [84] for a more in-depth study of this topic.
Our above-described method to derive the minicluster mass function can readily be applied to

any other axion scenario than the QCD one. The only difference is that instead of temperature
dependent QCD axion mass, a more general parameterization ofma(T ), as for example presented
Sec. III.2, should be used. This implies that for ALPs, the minicluster distribution will not
only depend on the symmerty breaking scale, but also on the ALP mass ma and details of its
temperature dependence,ma(T ). This widens the range for possible minicluster masses and sizes
immensly. An application of our method to various ALP scenarios is presented in Ref. [137].
Here, we only want to give a very brief overwiew on the general properties of ALP miniclusters.
To get an estimate for the mass and size of ALP miniclusters, we proceed in analogy to

the considerations at the very beginning of this chapter. Even though, the actual size of the
fluctuations in the energy density might be smaller than the Hubble horizon at Tosc, it should
at least be of the same order. Hence, as a first guess we again assume for the characterstic size
L of the fluctuations in the energy density are of the order L ∼ 1/(RH(Tosc)).
With our general parameterization of the temperature dependent axion mass in Eq. (III.38),

we find that the oscillation temparature Tosc can be written as

Tosc ∼
[

b

4.98g1/2
∗ (Tosc)

]1/(2+n)

· 10−(n−5)/(n+2) GeV
(

ma

10−5 eV

)1/2 ( fa
1012 GeV

)n/(4+2n)

(IV.83)

which might look a little convoluted due to the complicated dependence on the paramters b and
n. But still it turns out that this a very useful relation for the following calculations.
For example, we can use it to estimate the size of the fluctuations today and we find7

L0 ∼b−1
[

b

4.98g1/2
∗ (Tosc)

]n/n+2

· 102(n−5)/(n+2) pc
(

10−5 eV
ma

)1/2(1012 GeV
fa

)n/(2n+4)

.

(IV.84)

7Note that the inverse proportionality to fa might be somewhat puzzeling since for the QCD axion we found
L0 ∝ f

1/6
a . But using ma ∝ f−1

a for the QCD axion and our benchmark value n = 4, we reproduce the QCD
relation.
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Hence, we see that L0 can be quite large and even cosmologically relevant if the axion is ex-
tremely light. Recall that smaller ma mean that the equality ma(T ) = 3H(T ) is met at lower
temperatures and therefore at larger Hubble horizons.
A similar relation holds for the ALP minicluster size:

RMC ∼ b−1
[

b

4.98g1/2
∗ (Tosc)

]n/n+2

· 102(6n+5)/(n+2) km
(

10−5 eV
ma

)1/2(1012 GeV
fa

)n/(2n+4)

.

(IV.85)

Again smaller ma produce larger miniclusters. Also the stiffness of the switch-on of the mass,
i.e. the paramter n, has a non-trivial impact on the size. It has also great importance for the
minicluster mass:

MMC ∼ b−1
[

b

4.98g1/2
∗ (Tosc)

]n/n+2

10−(9n+32)/(n+2)M�

(
10−5 eV
ma

)(
fa

1012 GeV

)(n+4)/(n+2)
.

(IV.86)

This measn that for very light ALPs, the miniclusters can be as heavy asMMC ∼M�. Note that
the heavier the miniclusters the easier they might be observable in astrophysical observations
like lensing surveys, cf. Ref. [113].
However, a word of caution is in order when considering very light axions in the context of

miniclusters. First, if we stick to the zero-temperature relation ma = Λ2/fa, light axions call for
either very low Λ or very high fa. It can be argued that Λ should not be too low, when put in
the cosmological context. If we understand Λ as a scale of some strongly interacting dark sector
and its confinement happens at Λ . 1 MeV, it might spoil the usual big bang nucleosynthesis
(BBN) [84]. However, this problem can be easily overcome if it is possible that the dark sector
and the visible sector are not in thermal equilibrium [138].
But, on the other hand, the breaking scale fa can indeed not be arbitrary high, at least in

our case of post-inflation symmetry breaking. Here, fa should at least be smaller than the
reheating temperature TRH. With CMB observations, estimates on the scale of inflation and
therefore TRH can be made. In Ref. [139], Abbot and Wise have used the large-scale isotropy of
the CMB to derive a model-independent upper bound on the reheating temperature and they
find TRH . 1017 GeV. This translates into an upper bound on fa in the post-inflation scenario,
fa . 1017 GeV. Still, there might exist scenarios where the mass is generated differently and
can therefore evade such constraints.
However, another perhaps even more important contstraint for very light ALPs in the post-

inflation scenario occurs when they are supposed to explain all the DM. Since for the energy
density we have ρa ∝ mama(Tosc)f2

a , we find that extremly small masses call for very high fa if
we fix ρa = ρDM. Therefore, the upper bound on fa in the post-inflation scenario leads ot a lower
bound on ma. This issue is discussed in more detail in Ch. VI where we look at more general
implications of the post-inflation realignment scenario for cosmological large-scale observables.
At this point, we simply conclude that also for very lights ALPs it is difficult to make the
miniclusters arbitrarily heavy or large. Again, more on this topic can be found in Ref. [137].
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In the previous chapter, we have studied the evolution of the axion density fluctuations from
the onset of the field oscillations till they decoupe from the Hubble flow and start to form the
gravitationally bound miniclusters. However, their evolution should not stop there. Rather,
we can expect the miniclusters to collapse under their own gravity once turned around from
the Hubble expansion and eventually they should settle in some kind of equilibrium state. In
Ref. [130], Kolb and Tkachev state that, after large DM fluctuations decouple from the Hubble
flow, they will virialize at a size about half their turnaround radius. But in case of the axion,
the process of “virialization” might be very non-trivial, if it happens at all. Recall that the
virial theorem and the process of virialization is formulated for a gas or fluid consisting of a
large number of particles. But so far, for our purposes we have described the axion field as a
classical field and not as an ensemble of particles. Thus, it is not clear if the standard lore of
virialization really applies for the collapse of axion density fluctuations.
In the following, we want to address the question of the dynamical collapse of axion mini-

clusters after they decouple from the Hubble flow in some detail. As initial conditions, we can
use our results for the minicluster mass function. Note that this is an ongoing project and the
results presented here are only preliminary. A conclusive discussion of the minicluster collapse
will be presented elsewhere [140].

V.1. Scalar Cloud under Self-Gravity
We start with describing the localized overdensity of the axion field a, let us call it a scalar
cloud, via the action

S =
∫

d4x
√
−g

[
−1

2gµν∂
µa∂νa− V (a) + R

16πGN

]
. (V.1)

The impact of gravity is included as usual via the Ricci scalar R [141]. R depends on the
metric gµν and GN = 1/(8πM2

Pl) is Newton’s constant. Varying the action gives the equation
of motions for a as well as gµν . We find

1
√
g
∂µ
[√
−ggµν∂ν

]
a+ V ′(a) = 0 , (V.2)

Rµν − 1
2g

µν = 8πGNTµνa , (V.3)

which are the Klein-Gordon equation for a scalar field a in a potential V (a) and the Einstein
equation sourced by the axion field itself. The Einstein equation will determine the geometry of
the spacetime. The stress-energy tensor Tµνa was already defined in Eq. (III.10). In the harmonic
approximation of the axion potential, we recover the Klein-Gordon equation of a free scalar field
with mass m. But for studying the collapse of the scalar cloud, we want to include the so far
neglected next-to-leading order term in the axion potential, i.e. we use

V (a) = m2
af

2
a

(
1− cos a

fa

)
' 1

2m
2
aa

2 − 1
4!
m2
a

f2
a

a4 . (V.4)
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The second term describes the quartic self-interactions of the axion field. The reason why we
include it is that it might become dynamically important during the collapse. We will shortly
investigate under what circumstances this could be the case.

Solving the coupled Einstein-Klein-Gordon (EKG) system is a difficult task and can only be
done numerically, as was recently the case in the studies presented in Refs. [142–144]. How-
ever, we will argue in the following that for describing the gravitational collapse of the axion
miniclusters, it should be sufficient to use a non-relativistic approximation of the EKG system.
As already mentioned in the very beginning of Ch. IV, we can estimate the escape velocitiy

vesc for the miniclusters given their mass MMC and their size RMC. Naively, we have said that
axions gravitationally bound in the miniclusters have velocities less than vesc. But as it turned
out speaking about particles is in fact inconsistent with the axion field being described via
a classical scalar. Therefore, we rather say that the classical field should have no modes with
wavenumbers greater than kesc. For the typical miniclusters vesc � 1. This implies for the modes
k that k � kesc ≡ mvesc. Hence, instead of treating the axion particles as non-realativistic, we
can assume a non-relativistic approximation for the axion field itself.
It is known that a classical real scalar field in the non-relativistic limit can be described via

a complex wave function φ as [145,146]

a = 1√
2m

(
φe−imt + φ∗eimt

)
(V.5)

with φ̇ � mφ and φ̈ � m2φ, such that m is the largest energy scale in the problem. To gain
some intuition for the phyiscal meaning of the wave function φ, let us consider the 00 component
of the stress energy tensor Ta. This is nothing but the energy density ρa of the axion field, i.e.

T 00
a = ρa ≈

1
2 ȧ

2 + 1
2m

2a , (V.6)

where we have neglected the gradient terms. This is in line with the non-relativistic approxi-
mation in the sense that we assume a hierarchy k2a2 � ȧ2 ∼ m2a2. Expressing a via the wave
function φ and dropping fast oscillating terms, we find:

ρa = mφφ∗ ⇔ φφ∗ = ρa/m ≡ na . (V.7)

We see that |φ|2 might be interpreted as the “number density” na of particles with mass m
associated with the scalar field a. Again, this interpretation should be taken with a grain of
salt. Namely, a justification for describing the actual quantum field â with a classical field is
that it is in a so-called coherent state, let us call it |a〉, with a macroscopic particle density [147].
Usually, the assumption is then that the expectation value 〈a|â|a〉 behaves as the classical field
a would do. However, it must be noted that the coherent state |a〉 is not an eigenstate of the
number operator, call it N̂ , and therefore the actual number N of particles making the state |a〉
is indefinite. Indeed, it has only a precisely defined phase. Hence, the real scalar we describe
might be pictured a condensate of an indefinite but large number of axions. At this point, we do
not want to go deeper into the interesting discussion of the proper description of the cosmological
axion field. For a more in-depth look at this topic see Refs. [148–150]. We will briefly revisit
this issue when discussing if quantum effects might become important during the collapse.
Still, for our purposes it turns out that “number density” interpretation of |φ|2 provides a

good physical intuition for some of the important quantities. For example, we can calculate the
mass M of a localized scalar cloud in terms of φ and we find that

M =
∫

d3r ρa = m

∫
d3r |φ|2 . (V.8)

With the identification |φ|2 = na, this simply means that the complete mass M of the scalar
cloud is made up of all particles Na ≡

∫
d3r na with mass m.
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Besides the non-relativistic approximation of the field, we can simplify the EKG system even
further. It turns out that with the typical masses and turnaround radii of the miniclusters,
we find for the Newtonian potential ΦN that ΦN ∼ GNMMC/RMC � 1. Thus, it should be
sufficient to consider the weak gravity limit for the minicluster collapse. Here, we can express
the metric as [141]

g00 = − (1 + 2ΦN ) , gi0 = 0 , gij = (1− 2ΦN ) δij , (V.9)

and
√
−g ' 1− 2ΦN .

With this ansatz and the non-relativstic approximation for the field, the action in Eq. (V.1)
becomes

S =
∫
d4x

[
(∇ΦN )2

8πGN
−mΦNφφ

∗ + i
2
(
φ̇φ∗ − φφ̇∗

)
− (∇φ) · (∇φ∗)

2m + 1
16f2

a

(φφ∗)2
]
, (V.10)

cf. Ref. [116] and App. D for details of the derivation. Then, the equations of motion read

i∂tφ = −∆φ
2m +mΦNφ+ 1

8f2
a

φ∗φ2 , (V.11)

∆ΦN = 4πGNmφφ∗ . (V.12)

The first equation is of the form of the Gross-Pitaevskii (GP) equation which is best known in
condensed matter physics describing Bose-Einstein condensation [151]. The second equation is
simply the Poisson equation for the Newtonian potential with the axion energy density as the
source.
Note that the first equation has some formal similarities with the quantum mechanical Schröd-

inger equation. However, in our case it it is in fact a classical field equation. See Ref. [116] for a
very clear explanation. Nevertheless, our classical form of the GP equation shares an important
property with the Schrödinger equation. Namely, that the absolute value of the wave function
|φ|2 is conserved. With our identification |φ|2 = na, this can be interpreted as the number of
particles being conserved, as it should be in the non-relativistic limit.
Still, we can wonder if at some point quantum effects might become dynamically important

during the collapse and the description of the actual quantum axion field via its classical anal-
ogoue would be no longer valid. But in Ref. [152] it was argued by Dvali et al that the time
it takes till the classical field description of the cosmological axion field breaks down is longer
than the lifetime of our Universe. This they showed by comparing the timescale of the non-
linear interactions in the classical field equations, the so-called classical break-time, with the
corresponding timescale in the quantum mechanical equations, the quantum breaktime, see also
Ref. [153]. Hence, we can use the result by Dvali et al not only as an a posteriori justification
for describing the evolution of the axion miniclusters using the classical field equations, but also
it tells us that we do not have to worry about quantum effects becoming dynamically important
during the collapse.
The classical Gross-Pitaevskii-Poisson (GPP) system is usually not studied as a dynamical

problem but in the context of finding static solutions of the scalar cloud. Such solutions are often
called axion stars. These are the eigensolution of the GPP system with a definite eigenenergy
E and a time evolution

φs(~r, t) = φs(~r)e−iEt . (V.13)

Recently, there has been an increased interest in finding these types of solutions, see Refs. [116–
119] and for a very recent review Ref. [154]. Before turning to the dynamical collapse of the
miniclusters, we briefly want to discuss the main features of the axion star solutions. In doing
so, we realize that we cannot expect miniclusters to collapse directly into a static axion star
configuration.
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It is known that there exist two types of eigensolutions for the time-independent GPP system.
In Ref. [117], Visinelli et al call them the dilute and the dense axion stars. For the dilute stars, it
turns out that gravity dominates over the self-interactions. It can be shown that an approximate
relation between the size Rs and the mass Ms of the stable star is of the form

Rs ∼
M2

Pl
m2Ms

. (V.14)

To understand the properties of the axion star solutions and the GPP system a little better,
we want to derive this result with a brief, heuristic analysis, adopting the variational method
from Ref. [118]. See also Refs. [155,156] for similar approaches.
Looking at the action S =

∫
d4xL in Eq. (V.10), we can rewrite the Lagrangian via a Legendre

transformation as a Hamiltonian with a kinetic, gravitational, and self-interaction part, i.e.

H = Hkin +Hgrav +Hself . (V.15)

Assuming spherical symmetry for the wave function φs and φs → 0 for r →∞, as it should for
a localized configuration, we find

Hkin = 1
2m

∫
d3r (∇φs) · (∇φ∗s) = − 4π

2m

∫
dr φs

∂

∂r

(
r2 ∂

∂r
φ∗s

)
, (V.16)

Hgrav = −1
2

∫
d3r mΦNφsφ

∗
s = −4πm

2

∫
dr r2ΦN |φs|2 , (V.17)

Hself = −
∫

d3r
1

16f2
a

(φsφ∗s)
2 = − 4π

16f2
a

∫
dr r2|φs|4 . (V.18)

The idea of the variational method is to guess a form for the wave function φs in terms of the
mass Ms and the size Rs of the star and let one of these act as the variational parameter which
should extremize the Hamiltonian [118]. It is convenient to choose Rs as this free parameter.
As an ansatz for φs, we can take a Gaussian of the form

φs(r) = 33/2

π3/4
M

1/2
s

m1/2R
3/2
s

exp
[
−9

2
r2

R2
s

]
, (V.19)

where the normalization is determined via Ms = m
∫

d3r|φs|2 and we chose Rs as the radius
which contains 99.9% of the mass. With this ansatz, the Newtonian potential can be determined
directly from the Poisson equation. It turns out that ΦN ' −GMs/Rs, and we can calculate
the Hamiltonian analytically. We find

H(Rs) ' 0.7 Ms

m2R2
s

− 0.1 M2
s

M2
PlRs

− M2
s

f2
am

2R3
s

. (V.20)

Details on the calculation are presented in App. D.
It is obvious that for large stars with RsMs � 1, hence dilute configurations, the self-

interaction can be neglected. When extremizing H(Rs) in this limit, we recover the relation
between Rs and Ms in Eq. (V.14), namely Rs ∝ 1/Ms.

Let us also take a look at small configurations with RsMs � 1. Here, we find a linear
depenence between mass and size:

Rs ∼
Ms

f2
a

. (V.21)

This is the dense axion star branch. However, as it was noted in Ref. [117], the case of dense
stars must in fact be treated relativistically since it turns out that these configurations have
only a very limited lifetime and quickly evaporate into relativistic axions. Therefore, these are
only quasi-stable solutions. In fact, the dense star configurations might be indentified with the
axitons observed in the numerical simulations in Refs. [108,122–124].
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Figure V.1.: Minicluster Distribution and Dilute Axion Stars. The orange line indicates the
dilute axion star solutions. The colored area shows our result for the distribution
of miniclusters as function of turnaround radius and mass. The Peccei-Quinn
breaking scale is set to fa = 1012 GeV. For masses beyond the blue dotted line,
there exist no static axion star solutions.

Another interesting property of the static solutions of the GPP system is that there exists an
upper mass for the stars. Above that, no stable or quasi-stable static solutions can be found.
We can understand this, by trying to extremize the full Hamiltonian in Eq. (V.20) in terms of
Rs. Namely, we find a quadratic equation which solutions are real only if

Ms <
MPlfa
m2 . (V.22)

This limits the maximum mass for an axion star for a given axion mass m and breaking scale
fa. However, we want to stress that this does not immediately imply that there cannot exist
stable axion clouds with masses larger than this. For example, in the case of a QCD axion with
the Peccei-Quinn breaking scale fa ∼ 1012 GeV and a mass ma ∼ µeV, the maximum mass for
axion stars is about 10−11M�. However, if the QCD axion is supposed to be the DM it should
also explain the DM halos around galaxies. Taking for example the Milky Way, this means halo
masses of about 1012M� [157]. Without going into the details of halo formation in the case of
axion DM, which is far beyond the reach of the present work, we simply want to point out that
the maximum axion star mass only limits the static configurations. It should not be mistaken
with a limit on other kinds of stable solution for the axion cloud bound under its self-gravitiy.
These might be equilibrium solutions of the GPP system which are not characterized by a static
eigenenergy. We will shortly define more precisely what we mean with static and equilibrium
configurations.
But before doing so, we compare in Fig. V.1 our results for the distribution of axion mini-

clusters with the dilute star solutions for the QCD axion with a Peccei-Quinn breaking scale
fa ∼ 1012 GeV. We see that the miniclusters sit, for the most part, well above the axion star
branch. It can be shown that the dilute branch acts as an attractor for configurations which
are only slightly perturbed [118]. But in our case, it is clear that the miniclusters cannot be
treated as such small perturbations. Therefore, we cannot expect a direct collapse into an axion
star. Rather, we have to study the collapse as a dynamical problem to see if they might reach
an equilibrium before even getting close to the axion star branch.

Another important observation from Fig. V.1 is that the miniclusters are in an area where
RMCMMC � 1. Therefore, it is a well motivated working-assumption that gravity dominates
the dynamics and the self-interactions should play a minor role. Since even if the miniclusters
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would collapse all the way down into the dilute star configuration we have learned that even
there self-interactions can be neglected. Doing so, simplifies the equations of motion of the scalar
cloud drastically. We find

i∂tφ = −∆φ
2m +mΦNφ , (V.23)

∆ΦN = 4πGNmφφ∗ , (V.24)

which is known as the Schrödinger-Poisson (SP) system.

V.2. Schrödinger-Poisson System for
Minicluster Collapse

It exists plenty of literature on solutions for the SP system, for the static [158–161], as well as
the dynamical problem [162–167]. But since it is a nonlinear system, studying the dynamics of
a certain initial configuration is only possible by a numerical simulation. This means that, if we
want to learn about the fate of our axion miniclusters it is difficult to use known results. We
rather have to set up our own calculations. The details of the actual numerics are presented in
App. E. At this point, we want to make some general remarks on the SP system and discuss it
rather from an analytical side. At the end of this section, we present first results of a simulation
of a scalar cloud collapse and argue that the findings can be generalized to the case of the
minicluster evolution.

Initial Wave Function and Definitions

Let us start by considering the initial conditions for the SP system. First, we have to define an
initial wave function φi. It should describe the minicluster at the time it starts to collapse. A
natural choice is a spherically symmetric Gaussian, as already used in Eq. (V.19). This means
we assume

φi(r) = 33/2

π3/4
M

1/2
0

m1/2R
3/2
0

exp
[
−9

2
r2

R2
0

]
, (V.25)

with M0 and R0 being the initial mass and size. But we have to keep in mind that the configu-
ration we want to describe should already be gravitationally bound. Since this is precisely how
we have defined the minicluster at the time of turnaround, namely as an overdensity which has
decoupled from the Hubble flow due to its own gravity. Thus, we have to make sure that φi
has no modes with k > mvesc, which would correspond to parts which are not gravitationally
bound. Fourier transforming the Gaussian ansatz yields:

φi(k) = 1
π3/431/2

M
1/2
0 R

3/2
0

m1/2 exp
[
−1

2
k2R2

0
9

]
. (V.26)

This means that 99.9% of all modes are smaller than k99 ≡ 9/R0. It turns out that demanding
k99 < mvesc leads to the constraint 1 � GNm

2R0M0 on the initial mass M0 and size R0 for a
given axion mass m. We find that this inequality is fulfilled for the vast majority of minicluster
configurations in our distributions. For example, if we use M0 = 10−12M�, R0 = 106 km, and
m = 10−6 eV, we have Gm2R0M0 ∼ 105 which is indeed much bigger than one. Therefore,
we conclude that with the Gaussian initial wave function in Eq. (V.25) we can describe a
gravitationally bound minicluster.
However, it should be noted that this does not mean that the configuration cannot lose mass

during the collapse, for example via some violent gravitational cooling [162, 163]. Only the
initial configuration is gravitaionally bound. During the collpase, parts of the cloud might
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become accelerated to velocities faster than vesc and be ejected. We will see in the results of our
simulations that this can be indeed the case for the minicluster collapse.
Another important point we have to address is the phase of the initial wave function. So far,

without further motivation, we have assumed the wave function to be real. But in general it
might as well be complex. Recall that the mass M0 only fixes the absolute value of the wave
function, via M0 = m

∫
d3r |φ|2, it does not give any information about the phase of the wave

function. This means we have to make some physically motivated assumptions to fix it for our
initial configuration.
Before doing so, let us try to develop an understanding for the physical meaning of the phase.

For that, we take a look at the continuity equation

∂t|φ|2 +∇ · j = 0 , (V.27)

where the current j is defnied as

j = 1
2mi (φ∗∇φ− φ∇φ∗) . (V.28)

For the minicluster at the exact time of turnaround, we can expect that ∂t|φi|2 = ∂tna = 0, i.e.
the “particle number” inside any given volume should not change. In an hydrodynamic interpre-
tation of the continuity equation, this means that the minicluster behaves as an incompressible
fluid. This implies for the current

∇ · j = 0 . (V.29)

If we write the wave function as

φi = αeiβ , (V.30)

the current becomes

j = α2∇β
m

= nau . (V.31)

In the second equality we used α2 = |φi|2 = na and defined u ≡ ∇β/m. The interpretation of
u is that of a bulk velocity with which the particle density flows.

For an incompressible fluid we have

∇j = 0 ⇒ ∇ (nau) (V.32)

⇔ 1
m

(
2α∇α∇β + α2∆β

)
= 0 , (V.33)

The last equality can be solved if ∇β = 0 and therefore β = const for the whole wave function.
This means we are free to choose β = 0 for our initial wave function and therefore make it real,
without loss of generality. The physical interpretation is that at the beginning of the collapse
the initial bulk velocity is set to zero.
The insights on the meaning of the phase of the wave function can be used to make some

important definitions to fix the nomenclature for the subsequent discussions. For later reference
they are also summarized in Tab. V.1. First, we define a scalar cloud to be in a “coherent
configuration” when the phase of its wave function is the same everywhere. This holds for
the miniclusters at the time of turnaround, as well as for the static axion star solutions. For
example, Davidson and Schwetz found in Ref. [116] that the ground state of a stable axion star
can be described by a real wave function. This implies that we can understand the axion star
configuration as an incompressible fluid, which makes a lot of sense since it is already a static
eigensolution and therefore it cannot or does not have to be further compressed to minimize its
energy. On the other hand, a “virialized configuration” might be characterized as an equilibrium
state that has a non-trivial phase, i.e. ∇β 6= 0 over the size of the object. If on top, the actual
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Static Solution The time evolution of the wave function φ(~r, t) is entirely
described by φ(~r, t) = φ(~r) exp[−iEt] and E is a time-
independent energy.

Equlibrium Solution Equilibrium for a given configuration is reached if the ra-
tio of kinetic and potential energy stays constant when
averaged over some long period of time. This implies that
the size of the configuartion can still change, for example
it can oscillate.

Coherent Configuration The wave function of a coherent configuration has the
same phase over its complete size. This holds for axion
stars and the minicluster at the time of turnaround.

Virialized Configuration We call a configuration virialized if it is in equilibrium and
its wave function has a non-trivial phase in the sense that
it is not correlated over the whole object.

Table V.1.: Definitions on the Nomenclature for the Discussion of the Minicluster Collapse.

phase of the wave function is uncorrelated on scales larger than some characterstic length scale,
we can understand a virialized configuration, as opposed to a coherent one, as a state made up
of several independently-moving wave packages. Note that this picture is in line with a virialized
cloud of particles where the particles move independently of each other with some virial velocity.
We should expect something similar for the virialized classical field. In Tab. V.1 we also add
our definitions for the static and the equilibrium configurations.

It turns out that the two-point correlator ζ(r) of the phase of the scalar cloud wave function is
an appropriate quantitiy to determine whether a configuration is coherent or not. For a spherical
symmetric configuration, we define it as

ζ(r) = 〈β(r1)β(r1 + r)〉 = 1
R

∫ R

0
dr1 β(r1)β(r1 + r) , (V.34)

with R being some scale larger than the size of the cloud. Note that for a coherent configuration
we should have ζ = const, since the phase is the same everywhere. On the other hand, for
a non-coherent configuration, where the phase might only be correlated on small scales, ζ(r)
should give us information precisely on that characteristic correlation length, call it L. In that
case, we can expect ζ(r) to be nonzero only for r < L, and than drop quickly to zero for r > L.
Equipped with the appropriate initial conditions and tools to analyze the scalar cloud during
the collapse, we can now turn to discussing the actual equations governing the dynamics.

Schrödinger Equation and the Problem of Scales

The Schrödinger equation has an inherent scale, namely the mass m, which leads to a char-
acteristic size and time ∼ 1/m for the evolution of the wave function. Hence, if we want to
make the SP system dimensionless we can start by introducing x = mr and τ = mt as the new
independent dimensionless variables. But actually counting the dimensions in the SP system,
we find besides [r] = [t] = −1 and [ΦN ] = 0 that [φ] = 3/2. Recall that m|φ|2 is the energy
density and therefore the dimension of the wave function is clear. Further, we have [GN ] = −2
and [m] = 1. This means for writing the SP system in a dimensionless form, we also have to
rescale the wave funtion. We find that with the redefinitions

τ = mt , x = mr , φ̃ =

√
4πGN
m

φ , Φ̃N = ΦN , (V.35)
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the SP system can be brought into the dimensionless form

i∂τ φ̃ = − 1
2x

∂2

∂x2 φ̃+ Φ̃N φ̃ , (V.36)

1
x

∂2

∂x2 Φ̃N = 4πφ̃φ̃∗ . (V.37)

Interestingly, it turns out that the SP system has a remaining degree of freedom which allows
us to redefine the dimensionless quantities with a real parameter λ. To be concrete this means
that if we have found a solution (φ̃, Φ̃N ), then a whole family of solutions is given via the rescaling(

τ, x, φ̃, Φ̃N

)
−→

(
λτ, λ1/2x, λ−1φ̃, λ−1Φ̃N

)
. (V.38)

A similar behavior was found in, for example, Refs. [164,166].
However, for the case of the miniclusters the inherent scale of the SP system poses some

severe problems which, as it turns out, also cannot be overcome with the help of the freedom
of rescaling. The reason for this is the huge difference between the characteristic length scale
of the Schrödinger equation 1/m and the size of the minicluster. Take for example the axion
mass ma ∼ µeV, then the characteristic length scale of the Schrödinger equation is ∼ m. On the
other hand, the miniclusters at the time of turnaround have a size of about 106 km. This is a
whopping difference of nine orders of magnitude. Obviously, this huge difference is prohibitive
for any attempt of a numerical simulation. As we have already mentioned, despite all our efforts,
we have not been able to solve this problem even using the freedom of rescaling.
A possible way out of this misery could be to rewrite the Schrödinger equation in terms of

scale-free fluid equations. This can be done via a Madelung transformation [168]. Unfortunately,
we will shortly see that this also leads to some difficulties, again of numerical nature.

Fluid Description

Since the seminal work by Madelung in 1927 it is known that the Schrödinger equation can
be interpreted in terms of hydrodynamic quantities [168]. This is also true for the combined
system of Poisson and Schrödinger equation. We can show this by expressing the wave function
as φ = α exp[iβ] with α and β being real functions. Doing so, the SP system can be written as

∇ (ρu) + ∂tρ = 0 , (V.39)

∂tu + (u · ∇) u = −∇
(

ΦN −
∆√ρ

2m2√ρ

)
, (V.40)

∆ΦN = 4πGρ , (V.41)

where again ρ = m|α|2 is the density and u = ∇β/m can be indentified with a bulk velocity.
See App. F for details on the derivation.
The first two equations are of a similar form as the Euler and the continuity equation of a

perfect fluid, the third is again the Poisson equation for the Newtonian potential. Therefore,
this system of equations is known as the Euler-Poisson (EP) system.
On the right-hand side of the second equation, we can identify the inward pressure due to the

Newtonian potential and the outward directed so-called quantum pressure PQ ∝ ∆√ρ/√ρ. The
latter forbids a collapse into a singularity. However, it is also this term which causes trouble in
the fluid picture. Namely, PQ becomes divergent whenever the density vanishes locally which
is identified as the shell-crossing. In contrast to the SP system, the EP system is therefore not
valid at all times but only until the first shell-crossing occurs [169]. The shell-crossing is an
effect which reveals the true underlying wave nature of the scalar field. It can be understood as
an interference effect. If we picture the wave function like an onion made up of different shells,
then during the collapse it can happen that a shell falling inwards interferes with another shell
traveling outwards. This leads to nods or zeros in the wave function and therefore to ρ→ 0.
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Nevertheless, we find that this shortcoming of the fluid picture can be overcome in the case of
extreme dilute configurations. Namely, approximating the density via ρ ∼ M/R3 and plugging
this into Eq. (V.40), we see that for very large configurations we can in fact neglect the quantum
pressure term against the gravity contribution. Doing so, the EP system simply describes the
classical evolution of a fluid under self-gravity. In the cosmological context, this form of the
EP system without quantum pressure is ususally used to describe the evolution of fluctuations
in the DM fluid. If the overdensities are linear, the equations can be solved analytically [79].
Otherwise, they must be studied using, for example, N-body simulations [135]. This means the
fluid is expressed via a large ensemble of particles. Interestingly, it is precisely the equivalence
between the SP and EP system that is sometimes used to bypass N-body simulations and
describe the collapse process rather via wave functions [170, 171]. This may already indicate
that it is not necessarily easier to solve the EP system instead of the SP system.
However, we can try to combine the advantages of both, fluid and wave function description,

to conclusively describe the minicluster collapse. Namely, a possible approach could be the
following. To circumvent the problem of scales in the Schrödinger equation, we could start with
describing the initial configuration rather via the EP system. But since it is very dilute it is
well motivated to neglect the quantum pressure term. Doing so, we can expect a more or less
simple inward collapse reducing the size of the initial configuration. But as soon as the quantum
pressure term becomes important, we should switch back to the description via the SP system to
capture the true wave nature of the problem. Note that a similar procedure is used by Niemeyer
et al in Ref. [121] to study the halo formation of ultralight axions in numerical simulations.
However, it turns out that for our purposes, even though the EP system is scale-free, in the

sense that the characteristic scale m was absorbed in the definition of the bulk velocity u, it
is far from trivial to solve it numerically. As pointed out before, advanced numerical methods
like N-body simulations are needed to resolve the nonlinearity in the evolution equation of u
even when neglecting the quantum pressure. Setting up a full-fledged N-body code goes beyond
what we actually want to achieve. Recall that the initial question was to find out how or if a
minicluster collapses into a virialized equilibrium configuration.
So, instead of using a combined approach of EP and SP system description, we rather try to

answer this question by using as a toy model replacement for the actual minicluster. The setup
of the toy model should be such that it reflects the important properties of the miniclusters but
still can be studied via the SP system. We will shortly discuss what this means in detail. The
idea is then that the result of a toy model simulation can be generalized to understand also the
evolution of the miniclusters.

Toy Model

An appropriate toy model for an axion minicluster should describe a gravitationally bound and
very dilute scalar cloud. We have already found that both of these characteristics are encoded
in the inequality

M0R0m
2GN � 1 . (V.42)

Let us see how this constraint translates into the dimensionless SP system. Recall that in the
spherical symmetric case the mass M0 is determined via

M0 = 4πm
∫

dr r2|φ|2 (V.43)

and therefore it fixes the normalization of the initial wave function. Expressing this relation via
the dimensionless quantities x and φ̃, as defined above, we find that

M̃0 ≡M0mGN (V.44)
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is a useful dimensionless analogue to the initial mass M0. Then, the initial dimensionless wave
function is given by

φ̃i = M̃
1/2
0

π3/4X3/2 exp
[
− x2

2X2

]
, (V.45)

where we have defined the dimensionless length X via

X = R0m

3 , (V.46)

with R0 being the initial size of the cloud.
With the definitions for X and M̃0 the inequality in Eq. (V.42) can be rewritten as

XM̃0 � 1 . (V.47)

This means, if we want to adequately describe the situation of the minicluster via a toy model
characterized by M̃0 and X, we should choose X and M such that XM̃0 � 1.

But this is not the only requirement we have on our parameters. In fact, equally important is
that X � 1 meaning that the initial configuration covers many times the characteristic length
scale of the Schrödinger equation. Recall that in the actual minicluster case we speak of nine
orders of magnitudes.
On the other hand, translating typical minicluster values M0 = 10−12M� and m = 1 µeV,

to M̃0 we have M0mGN ∼ 10−4 which implies that we should not set M̃ too large. Hence,
we conclude that a good toy model for the minicluster should have X � 1, M̃0 � 1, and
XM̃0 � 1. Still, it should circumvent the problem of scales, i.e. X cannot and should not be
chosen arbitrarily large.
When setting up toy models fulfilling all these requirements, we find in our numerical simula-

tions that the larger we choose X compared to M̃0, the longer the simulations need to show any
interesting effects. In fact, if X0 ≫ M̃0, basically nothing happens for a very long time. But
this has an interesting physical interpretation, as we will see in the following. Namely, when
X ≫ M̃ , this simply means that the gravitational potential is very small, i.e. ΦN � 1 as
it should for weak gravity and as it is the case of the miniclusters. So far so good. However,
a very weak gravitational potential has profound consequences for the evolution of the wave
function. This we can understand when looking at the Schrödinger equation in Eq. (V.23). For
the very dilute configurations we are considering, we can neglect the kinetic energy compared
to gravitational potential, at least for the initial configuration. Such that Eq. (V.23) simply
becomes

i∂tφ ' −mΦNφ . (V.48)

This should give us a crude estimate on the initial evolution of φ. Using again the ansatz
φ = α exp[iβ] for the wave function, we find that α = const and for the phase we have

β̇ = mΦN ⇔ β(t) = ΦNmt , (V.49)

where we chose β(t = ti) = 0. Thus, it takes the time T = (ΦNm)−1, or in terms of our
dimensionless coordinate Tτ = Φ−1

N , till the phase starts to significantly differ from its initial
value. We note that this time might also be identified with the onset of the collapse. This is
because we can relate β to the current j ∝ ∇β and this means only if ∇β becomes nonzero, a
current j develops and parts of the initial configuration can start to collapse. After that, the
evolution of the phase will make the wave function start to oscillate and neglecting the kinetic
terms is no longer a good assumption. Hence, our result in Eq. (V.49) must be understood
as valid only at first moments of the evolution of the wave function. However, it does not
only tell us that if ΦN ≪ 1, it will take very long ∝ Φ−1

N till we see the phase and therefore
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the wave function start to evolve, but also it gives us the very general result that every dilute
configuration with β = const which is not yet an eigenstate of the SP system, will eventually
develop a non-trivial phase and starts to collapse, however long this may take. Note that very
long in terms of the dimensionless τ = mt, does not directly imply long in terms of physical
time.
Hence, we conclude from this discussion on the properties of the toy model two important

things. First, we cannot choose the parameters X and M̃ in a way that ΦN is arbitrarily small.
Otherwise, our simulations will take too long. Second, we have learned that we should be able to
generalize the outcome of a toy model with only mild choices for X and M̃0, meaning especially
that M̃0 does not need to be extremely small, to more extreme configurations like the actual
axion miniclusters. Again, the reason for this is that for the latter it might simply take longer
to start to collapse but as soon as they do so, the behavior should be similar to that of the toy
model.

Preliminary Results and Discussion

In the following, we present and discuss the results of a simulation of the SP system with the
numerical methods described in App. E. As our setup for the initial wave function we choose

M̃ = 15 and X = 20 . (V.50)

These values are of course much different than what we would expect for the miniclusters.
However, they should fulfill the requirements for an appropriate toy model, we have found
above. Namely, it has a weak gravitational potential M̃/X < 1 and still it holds that the
gravitational energy dominates the kinetic energy, i.e. XM̃ > 1. The mass however is extremely
different than that of a minicluster. But recall this just means that that the collapse will start
earlier in our simulations. In fact, it turns out that with this values for X and M̃ we observe
that the cloud seems to approach an equilibrium state in a reasonable computation time.
In our simulation, the spatial domain has the size XN = 150, i.e. 7.5 times larger than the

initial cloud, and is divided 600 grid-points. We run our simulations till T = 600 with 2400
timesteps. Note that this results in a resolution ∆x = ∆τ = 0.25. For more detailed studies, a
finer grid should be used to reduce the numerical errors. However, to get a first impression for
the scalar cloud collapse, this should be good enough for our needs. We have also checked that
with this setup we have a good numerical stability.
At the very end of this section, in Fig. V.6, we show snapshots of the evolution of the rescaled

wave function u = rφ. However, we strongly recommend taking a look at a movie of the
simulation which can be found here [172]. Figure V.2 shows a projection of the evolution of the
absolute value |u| in the r − t plane, which also gives a nice picture for the dynamics of the
scalar cloud collapse.
Let us summarize some of the most important observations of our simulation. It seems that

in a first period, up to τ ∼ 100, the absolute value of the rescaled wave function stays almost
constant. However, the real and imaginary part start to show an oscillatory behavior already
very early. This is in line with ΦN being quite sizeable for the configuration we choose, cf. our
discussion above. Around τ ∼ 150 − 200 some drastic events happen and we observe a rapid
infall of parts of the wave. After that, the configuration starts to develop a sharp peak close to
its center. This is also the time where the density develops its first zero, which corresponds to the
first shell-crossing. Then it seems that parts of the wave which have been accelerated during the
infall are ejected and escape the gravitational potential. Note that to avoid unphysical reflections
of the outwards travelling waves, we have implemented absorbing boundary conditions. Details
on this can be found in App. E. Still, it looks like some parts of the ejected waves slow down
and turn around to the center, leading to another period of infall. At times τ > 300, the
configuration seems settled and we only observe some oscillations of the peak close to zero.
To support these observations, we take a look at the evolution of the current j which was

defined in Eq. (V.28). Recall that j tells us how the particle density flows. In our spherically

64



V. Fate of Axion Miniclusters

Figure V.2.: Evolution of a Scalar Cloud under Self-Gravity. We show the evolution of the
absolute value |u| of the rescaled wave function u = rφ in the r − t plane. Time
as well as size are given in terms of the inverse scalar field mass m. A detailed
discussion of this plot can be found in the text.
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Figure V.3.: Evolution of the Current during the Scalar Cloud Collapse. The quantity 4πr2j
gives to the particle current through the surface of a sphere with radius r, see
Eq. (V.28) for the definition of j. Negative values indicate an infall of matter
and positive value to an ejection. In this plot, we show the projection of the
rescaled particle current in the r − t plane corresponding to the evolution of the
wavefunction shown in Fig. V.2. Note that this is a zoom-in into the range from
x = 0 . . . 30. Time as well as radius are given in terms of the inverse scalar field
mass m.
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Figure V.4.: Ratio of Kinetic to Potential Energy during the Scalar Cloud Collapse. For the
initial configuration we have K/|W | � 1 since the potential energy dominates
over the kinetic energy. In the first moments of our simulation the ratio does not
change much. But as soon as the first shell-crossing occurs, a lot of kinetic energy
is gained and K/|W | becomes larger. Then, the ratio starts oscillates back and
forth around an almost constant value.

symmetrics case j = jêr and negative values correspond to an infall towards the center, whereas
positive j indicate an ejection of material. For our purposes it turns out to be useful to look at
the rescaled current 4πr2j which gives the current through the surface of sphere with radius r.
We present snapshots of the simulation in Fig. V.7, at the end of this section. A movie of the
evolution of the current 4πr2j can be found here [173]. In Fig. V.3 we show a projection of the
evolution of 4πr2j in the r − t plane.

We clearly see that in the beginning of our simulation, a negative current builds up at the
outward boundary of the configuration. This corresponds to parts of the wave starting to
collapse. The current grows further and further, till at a sudden point it switches its sign. This
is precisely the time of the first shell-crossing. It also underlines our observation from before
that the first collapse is followed by an explosive ejection of matter. After the first phase of
infall and ejection, we see some smaller eruptions, indicated by the oscillation of j. This we
can again understand as the crossing between shells moving in different directions. Far away
from the center, we see a small positive current travel towards infinity. This corresponds to the
ejected material.
To see if the configuartion approaches an equilibrium according to our definition in Tab. V.1,

we also calculate the ratio of the kinetic energy K and the potential energy W with Eq. (V.16)
and (V.17). In terms of the dimensionless variable x and the dimensionless wave function φ̃,
these become

K = 1
2mGN

∫
dx x2

(
∂φ̃

∂x

)(
∂φ̃∗

∂x

)
. (V.51)

for the kintetic energy and

W = − 1
2mGN

∫
dx x2ΦN φ̃φ̃

∗ (V.52)

for the potential.
The evolution of K/|W | is given in Fig. V.4. Per construction, the potential energy is larger

than the kinetic for the initial configuration. We see that ratio stays almost constant, as long
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Figure V.5.: Correlation of the Phase in the Scalar Cloud Collapse. The quantity ζ measures
the correlation of the phase of the wave function and it is defined in Eq. (V.34).
At the beginning, at t = 0, the phase of the initial wave function is fully correlated
per definition. But soon after we start evolving, it starts to decohere and the phase
becomes uncorrelated on scalers larger than ∼ 1/m. At later times, interference
patterns in the collapse due to the wave nature of the scalar field emerge. This
leaves its impact in oscillations in the correlator.

the density is almost unchanged, i.e. till τ ∼ 100. But as soon as the collapse happens at
τ ∼ 150 − 200, this suddenly changes. This means that kinetic energy is gained during the
period of infall, and the potential energy becomes smaller. After the first infall, we see that the
ratio oscillates back and forth with a smaller and smaller amplitude. It seems that K/|W | tends
towards a constant value 0.3− 0.2 at late times. This would speak for reaching an equilibrium
as we have defined it in Tab. V.1. However, to be sure about that a longer simulation time is
needed. Nevertheless, it is interesting that the configuration seems to approach a ratio different
than K/|W | ∼ 0.5, which we would expect for a potential W ∝ 1/r. A ratio K/|W | < 0.5 might
indicate that the potential is somewhat shallower than the simple 1/r behavior.

To learn if the configuration does not only evolve towards an equilibrium but also virializes,
we study the evolution of the correlator ζ(r) of the phase of the wave function, as defined in
Eq. (V.34). For better comparison of the correlation at different times, it is useful to normalize it
to the value at zero displacement ζ0 ≡ ζ(r = 0). The evolution of |ζ(r)|/ζ0 is shown in Fig. V.5.
For t = 0, when we begin our simulations, ζ = 1 per definition. Immediately after we start
evolving, the phase becomes uncorrelated for large displacement, implying that the correlation
length becomes smaller till it seems to settle at a length ∼ 1/m. However, we still observe some
long range oscillations in the correlation function. We assign this to an effect of the actual wave
nature of the scalar field. Namely, in Fig. V.6 we observe some interference patterns in the late
stages of the simulation which might cause this long range correlations in the phase.
Based on our observations of the evolution of ζ(r) and K/|W |, we are tempted to conclude

that the scalar cloud we have considered in our simulation indeed collapses into an equilibrium
state. We also note that the size of the final configuration is not much smaller than the initial
one. In our special case, it is about a quarter of the initial size, i.e. the same order of magnitude.
Further, we have checked that it seems to have lost only very little of its mass during the collapse.
Even tough, we saw that some parts were ejected, cf. especially Fig. V.2.
Assuming that we can generalize the behavior of our toy model to the collapse of the axion

miniclusters, our findings should also apply to them. This means, looking back at Fig. V.1, that
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the distribution of the miniclusters after their collapse should also be far above the axion star
branch and indeed they rather settle in an equilibrium configuration than directly collapse into
a static star solution. This also implies that since their mass and size should change only little
during the collapse, the results for the miniclusters mass function we have found in Ch. IV also
gives a good estimate for the distribution of the miniclusters today.
However, it must be noted that these results and conclusions are still preliminary. The project

of studying the actual equilibrium configuration is still work in progress. More simulations, a
finer grid and especially longer running times are needed. Further, the question about the actual
virialization is not yet satisfactory answered. Even though, we have found that the phase of the
wave function becomes uncorrelated during the collapse it is not clear if this truely indicates
virialization. Also it can be questioned if the correlator we have defined is the proper quantity to
study the actual effects of virialization. From looking at the final moments of our simulation, one
could also get the impression that the equilibrium state close to the center is still quite coherent
and argue that the inital cloud has only shrinked to a smaller size, settling in some kind of
breathing mode, cf. Ref. [174]. Also it is debatable if, by limiting ourselves to the spherically
symmetric case, we are even able to see a randomization of the phase in our simulations. Recall
that uncorrelated phases was one of the attributes of the virialized configuration following from
our discussion before. Hence, we conclude that there are still some open questions before we can
make conclusive statements about the fate of axion minicluster. Still, the methods and findings
presented here can be extremely valuable for doing so.

69



V. Fate of Axion Miniclusters

R
e
u

Im
u

|u
|

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

-
0
.4

-
0
.2

0
.0

0
.2

0
.4

0
.6

r[
m

-
1
]

t=
0
.

R
e
u

Im
u

|u
|

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

-
0
.4

-
0
.2

0
.0

0
.2

0
.4

0
.6

r[
m

-
1
]

t=
4
9
.8

R
e
u

Im
u

|u
|

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

-
0
.4

-
0
.2

0
.0

0
.2

0
.4

0
.6

r[
m

-
1
]

t=
9
9
.8

R
e
u

Im
u

|u
|

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

-
0
.4

-
0
.2

0
.0

0
.2

0
.4

0
.6

r[
m

-
1
]

t=
1
5
0
.

R
e
u

Im
u

|u
|

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

-
0
.4

-
0
.2

0
.0

0
.2

0
.4

0
.6

r[
m

-
1
]

t=
2
0
0
.

R
e
u

Im
u

|u
|

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

-
0
.4

-
0
.2

0
.0

0
.2

0
.4

0
.6

r[
m

-
1
]

t=
2
5
0
.

R
e
u

Im
u

|u
|

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

-
0
.4

-
0
.2

0
.0

0
.2

0
.4

0
.6

r[
m

-
1
]

t=
3
0
0
.

R
e
u

Im
u

|u
|

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

-
0
.4

-
0
.2

0
.0

0
.2

0
.4

0
.6

r[
m

-
1
]

t=
3
5
0
.

F
ig
ur
e
V
.6
.:

Ev
ol
ut
io
n
of

th
e
W
av
e
Fu

nc
tio

n
in

th
e
Sc
hr
öd

in
ge
r-
Po

iss
on

Sy
st
em

.
W
e
sh
ow

di
ffe

re
nt

sn
ap

sh
ot
s
of

ou
r
sim

ul
at
io
ns

of
th
e
Sc
hr
öd

in
ge
r-

Po
iss

on
sy
st
em

.
T
he

or
an

ge
cu

rv
es

co
rr
es
po

nd
to

th
e
ab

so
lu
te

va
lu
e
|u
|o

ft
he

re
sc
al
ed

w
av
e
fu
nc

tio
n
u

=
rφ

,t
he

re
d
to

th
e
re
al

an
d

bl
ue

to
th
e
im

ag
in
ar
y
pa

rt
of
u
.

70



V. Fate of Axion Miniclusters

0
.5

1
5

1
0

5
0
1
0
0

-
0
.2

-
0
.1

0
.0

0
.1

0
.2

r[
m

-
1
]

4πr
2
j

t=
0
.2
5

0
.5

1
5

1
0

5
0
1
0
0

-
0
.2

-
0
.1

0
.0

0
.1

0
.2

r[
m

-
1
]

4πr
2
j

t=
4
9
.8

0
.5

1
5

1
0

5
0
1
0
0

-
0
.2

-
0
.1

0
.0

0
.1

0
.2

r[
m

-
1
]

4πr
2
j

t=
9
9
.8

0
.5

1
5

1
0

5
0
1
0
0

-
0
.2

-
0
.1

0
.0

0
.1

0
.2

r[
m

-
1
]

4πr
2
j

t=
1
5
0
.

0
.5

1
5

1
0

5
0
1
0
0

-
0
.2

-
0
.1

0
.0

0
.1

0
.2

r[
m

-
1
]

4πr
2
j

t=
2
0
0
.

0
.5

1
5

1
0

5
0
1
0
0

-
0
.2

-
0
.1

0
.0

0
.1

0
.2

r[
m

-
1
]

4πr
2
j

t=
2
5
0
.

0
.5

1
5

1
0

5
0
1
0
0

-
0
.2

-
0
.1

0
.0

0
.1

0
.2

r[
m

-
1
]

4πr
2
j

t=
3
0
0
.

0
.5

1
5

1
0

5
0
1
0
0

-
0
.2

-
0
.1

0
.0

0
.1

0
.2

r[
m

-
1
]

4πr
2
j

t=
3
5
0
.

F
ig
ur
e
V
.7
.:

Ev
ol
ut
io
n
of

th
e
Pa

rt
ic
le

C
ur
re
nt

in
th
e
Sc
hr
öd

in
ge
r-
Po

iss
on

Sy
st
em

.
T
he

qu
an

tit
y

jw
as

de
fin

ed
Eq

.(
V
.2
8)
.
It
s
in
te
rp
re
ta
tio

ns
is
th
at

of
a
cu

rr
en
t
w
ith

w
hi
ch

th
e
pa

rt
ic
le

de
ns
ity

flo
w
s.

71





VI. Post-Inflation Realignment and
Large-Scale Observables

In this chapter, we study how the post-inflation vacuum realignment of the axion field impacts
cosmological large-scale observables. We especially focus on the effects in the spectrum of the
primary anisotropies of the cosmic microwave background (CMB).
So far, we have mainly considered the QCD axion scenario where the spatial size of the

isocurvature density fluctuations in the post-inflation Peccei-Quinn breaking scenario are ex-
tremely small compared to cosmological scales, cf. our discussion at the beginning of Ch. IV.
The formation of miniclusters with sizes of ∼ 106 km and masses of ∼ 10−13M� will leave the
cosmological evolution on large scales virtually untouched. Rather, the adiabatic fluctuations in
the axion energy density inherited from inflation will be dominant for shaping, for example, the
CMB spectrum. However, we will show in the following that for very light ALPs with masses
∼ 10−24 − 10−15 eV, the impact of the iscorvuature fluctuations coming from a post-inflation
realignment are not negligible. Further, we note that CMB observations and other cosmological
observables can be sensitive to it. The results of this study will be presented in Ref. [175].
Before we consider the isocurvature fluctuations in the axion energy density in detail, let us

recall some of the basics for discussing energy density fluctuations in the cosmological context.
See, for example, the textbooks Refs. [79, 141, 177, 178] for more details. In Tab. VI.1 we also
summarize some of the most important points.
In general, we can assume that the energy density fluctuations δDM in the DM component

consist of adiabatic and isocurvature fluctuations, i.e.

δDM = δad
DM + δiso

DM . (VI.1)

The adiabatic fluctuations are identified as fluctuations in the spatial curvature seen by a
comoving observer. This means that it affects the energy density fluctuations of all species in
the universe, DM, baryons, and photons, more or less the same and we have δρ 6= 0 in total.
For describing super-horizon modes of the adiabatic fluctuations it is convenient to introduce
the gauge-invariant quantity R ≡ δK indicating the fluctuations in the local curvature K.1
In a radiation dominated universe the following relation between the adiabatic energy density

fluctuations in the different species, DM, baryons b, and photons γ, and R holds [178]:

δad
DM = δb = 3

4δγ = R . (VI.2)

Further, it turns out that R is constant in time. This implies that also the super-horizon
fluctuations in, for example, the DM energy density are frozen as long as the universe is radiation
dominated.
Usually, it is assumed that the adiabatic fluctuations are inherited from the quantum fluctu-

ations in the inflaton field. After inflation and reheating they leave their imprint as fluctuations

1Note that for super-horizon modes the subtelties of choosing a specific gauge which in the context of General
Realtivity means choosing a specific coordinate system become important. See, for example, Ref. [177] for
more details.
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Power Spectrum The power spectrum P (k) is related to the density fluc-
tuations δ(x) = (ρ(x) − ρ)/ρ, ρ being the mean energy
density, via the Fourier transform of the two-point corre-
lation function ζ(x−x′) = 〈δ(x)δ(x′)〉. The dimensionless
power spectrum ∆2 = k3P (k)/(2π2) indicates the fluctu-
ation power in the mode k.

Super- and Sub-Horizon Modes The scale of a fluctuation in the energy density might be
identified with a wave number λ or equivalently with a
mode k ∼ λ−1. Fluctuations with a size λ larger than
the causal horizon (super-horizon), i.e. λ > dH ∼ H−1

or equivalently k < H, despite a decaying solution, do
not evolve and therefore stay constant with time. It is
said, they are frozen. On the other hand, for sub-horizon
modes with k > H, causal processes become important
and this, for example, can lead to the well-known lin-
ear growth of the sub-horizon density fluctuations after
matter-radiation equality.

Adiabatic Fluctuations Adiabatic fluctuations can be identified with local fluc-
tuations in the spatial curvature as seen by a comoving
observer. Since fluctuations in the gravitational potential
affect all particle species the same, this means that for
adiabatic fluctuations a fractional increase in the num-
ber density in one component leads to the same increase
in the other. The name adiabatic results from the fact
that since also radiation participates in this kind of fluc-
tuations, the particle density in a comoving volume stays
constant. Thus, no heat is transferred.

Isocurvature Fluctuations Isocurvature fluctuations cannot be produced via an adi-
abatic process. This means foremost that they cannot be
identified with fluctuations in the local curvature, hence
the name isocurvature. But if the curvature should not
be affected by say the fluctuation of the energy density
in one component, it means that it must be compensated
by the others such that δρ = 0 overall. The consequence
of this is that as soon as an isocurvature fluctuation en-
ters the horizon, energy must be reshuffled between the
different particle species. This is precisely the effect why,
for example, isocurvature fluctuations in the DM leave
their imprint the the radiation component and therefore
eventually in the CMB, cf. Ref. [176]. Note that the dis-
tinction between isocurvature and adiabatic fluctuations
is only meaningful for super-horizon modes.

Table VI.1.: Definitions and Explanations for the Discussion of DM Density Fluctuations. See
also, for example, Ref. [79].
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in the local curvature. Since quantum fluctuations are in general assumed to be scale-invariant,
one usually sets for the spectrum of R [177]

∆2
R = As

(
k

k∗

)ns−1
(VI.3)

with k∗ being some pivot scale, ns ' 1 is the so-called spectral index and As is the amplitude of
the adiabatic fluctuations. Both As and ns can be related to the properties of the inflaton field
in specific inflation models, we will turn to this later at the beginning of Sec. VI.2. Note that
Eqs. (VI.2) and (VI.3) imply that also for the adiabatic DM fluctuations we have ∆ad

DM ' As
for ns ' 1 and this in turn means that the power spectrum P ad

DM(k) ∝ k−3 for the super-horizon
modes.

Isocurvature fluctuations, on the other hand, occurr as fluctuations in the number density ni
of only one of the species i in the universe. Hence, they cannot by identified with fluctuations in
the local curvature. Rather, we must have for isocurvature fluctuations that the overall energy
density fluctuations vanish locally, i.e. this translate into the constraint that δρ = 0 in total [79].
To compare isocurvature and adiabatic fluctuations it is convenient to introduce again a

gauge-invariant quantity, in this case often called Si and i denotes the the species in which the
isocurvature fluctuations sit. Let us focus on the DM component. Then, it is [177]

SDM ≡
δ(nDM/nγ)
(nDM/nγ) = δnDM

nDM
− δnγ

nγ
(VI.4)

which in radiation domination simplifies to

SDM = δDM −
3
4δγ . (VI.5)

Now, using Eqs. (VI.1) and (VI.2) we find in this case

SDM = δiso
DM . (VI.6)

This means that the spectrum of the isocurvature fluctuations SDM is equal to the spectrum of
the DM isocurvature energy density fluctuations, i.e.

∆2
S = ∆2

DM,iso . (VI.7)

To compare the impact of the isocurvature in relation to the adiabatic fluctuations at the
some scale k∗ we introduce the quantitiy

f2
iso ≡

∆2
S

∆2
R

∣∣∣∣
k=k∗

(VI.8)

which for the DM isocurvature fluctuations and when focusing on super-horizon modes is iden-
tical to using

f2
iso =

∆2
DM,iso

∆2
DM,ad

∣∣∣∣
k=k∗

. (VI.9)

Let us now turn to the specific case of the axion isocurvature fluctuations in the post-inflation
Peccei-Quinn breaking scenario. For that we have found in Ch. IV what kind of power spectrum
we can expect. Namely, it is constant on large scales and exponentially suppressed on scales
smaller than the comoving Hubble horizon at the time the field starts to oscillate, i.e. at high
modes k > RH(T = Tosc); R being the scale factor and H the Hubble rate. This reflects the
white noise behavior of the initial fluctuations with a characteristic cut-off length, cf. Fig. IV.1
for a reminder of the situation in the post-inflation Peccei-Quinn breaking scenario. With our
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Adiabatic

Isocurvature

k

P(k)

fiso
2

k*

Figure VI.1.: Sketch of the primordial Power Spectrum for adiabatic and isocurvature Fluc-
tuations in the Axion Energy Density. The power spectrum of the isocurvature
fluctuations (red) is constant for low k modes and exponentially suppressed above
scales k > K, where K corresponds to scales of the comoving Hubble horizon
when the field oscillations commence, cf. the discussion in Sec. IV. The scales of
the fluctuations around the cut-off K are far too small to be accesible with cos-
mological observations. The adiabatice power spectrum (blue) behaves as k−3

for super-horizon modes. We define a scale k∗ where the relative amplitude of
the isocurvature power spectrum with respect to the adiabatic power spectrum
is f2

iso. Note that the power spectra are given in the conformal Newtonian gauge.

results in Sec. IV.2, we have found that in the low k region the dimensionless power spectrum
of the isocurvature fluctuations behaves as

∆2
iso = C

(
k

K

)3
, (VI.10)

with K = RH(Tosc) and the constant of proportionality C must be determined by numerically
following the axion field evolution. Our results, as well as the results from Vaquero et al in
Ref. [108], indicate that C = 0.01 . . . 0.1 and the exact value depends on the actual Peccei-
Quinn breaking scale and details on the explicit temperature dependence of the axion mass. See
Ref. [137] for a more in-depth discussion of this topic also including the general case of ALPs.
Recall that C = 1 can be interpreted as the scale of the fluctutaions being equal to Hubble
horizon at Tosc and smaller C suggest smaller characteristic scales for the fluctuations. With
∆2 for low k modes given in Eq. (VI.10), we may write the power spectrum of the isocurvature
fluctuations symbolically as

Piso(k) =
{

2π2K3 for k < K

exp. suppressed for k > K
. (VI.11)

Note that at T = Tosc, K marks the transition from sub- to super-horizon modes.
Since the power spectrum of the adiabatic density fluctuations is generated long before matter-

radiation equality it usually called primordial [177]. In our case where we on top expect the
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discussed isocurvature fluctuations arising at the time the field starts to oscillate, the spectrum
of the DM fluctuations before matter-radiation equality is in fact composed of Pad(k) and Piso(k)
and as long as there is no correlation between the two, the complete spectrum is simply their
sum. Thus, in our case the primordial spectrum describes the spectrum consisting of the early
generated adiabatic as well as the isocurvature fluctuations arising after the axion field starts to
oscillate.
In Fig. VI.1 we sketch Pad(k), Piso(k), as well as Pad(k) + Piso(k), at an early time, after the

field has started to oscillate, but before matter-radiation equality. Cosmologically relevant is
foremost the region to the very left, i.e. the low k modes. The part on the right is usually far
beyond the reach of any cosmological observable, as we will see in the following.
The scale K where the exponential suppression of the isocurvature power spectrum becomes

important can be calculated with our result in Eq. (IV.84). We find as an estimate for the
comoving scale K today, with R(T0) = 1,

K ∼ b
[

b

4.98g1/2
∗ (Tosc)

]−n/n+2

· 10(4n+22)/(n+2) Mpc−1
(

ma

10−5 eV

)1/2 ( fa
1012 GeV

)n/(2n+4)
,

(VI.12)

where we have used the parameterization for the temperature dependent axion mass, introduced
in Sec. III.2:

ma(T ) =

bma

(
Λ
T

)n
, T ≥ b1/nΛ

ma , T < b1/nΛ
. (VI.13)

The energy scale Λ can be related to zero temperature mass ma and the Peccei-Quinn breaking
scale fa via Λ = m

1/2
a f

1/2
a . Recall that for ALPs, ma and fa are independent parameters,

whereas for the QCD axion they are equivalent. The parameters b and n control how the mass
dynamically switches on via a power law with decreasing temperature.

We see that for a typical QCD DM axion mass, ma ∼ 10−5, the values for the cut-off K are
much larger than what can be observed with either large-scale structure (LSS) surverys of the
matter power spectrum, which are roughly sensitive to scales down to k ∼ 0.1 − 1 Mpc−1 or
CMB observations, where already modes with k & 0.01 − 0.1 Mpc−1 are suppressed by Silk
damping [179].

From our estimate in Eq. (VI.12), it follows that large n are advantageous for getting a small
and therefore observable K. In the large n limit we have

K ∼ 104 Mpc−1
(

ma

10−5 eV

)1/2 ( fa
1012 GeV

)1/2
. (VI.14)

On the other hand, if we want the axion to explain all the DM in the Universe, we find that the
product mafa is essentially fixed. Namely, with our relation for ρa0 in Eq. (III.47), we find

ρa0 ∼
1
2
π2

3 m
1/2
a f1/2

a

(
fa
MPl

)
T 3

0 (VI.15)

for large n and therefore

K ∝ 1
fa
. (VI.16)

This means, the larger the fa, the smaller the cut-off mode K and this in turn corresponds
to larger fluctuation sizes, which may become cosmologically relevant. Note that due to the
relation between fa and ma via the energy density, exremely large fa imply very small ma when
fixing ρa0 = ρDM.
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However, we have to keep in mind that we are considering a scenario where Peccei-Quinn
breaking happens after inflation. Hence, fa should be smaller than the reheating temperature
TRH which forbids arbitrary large fa. This was already briefly mentioned in our discussion of
the ALP miniclusters in Sec. IV.5. There, we noted that a reasonable estimate for the reheating
temperature after inflation is TRH . 1017 GeV, following Ref. [139].
But even though the scales ∼ K−1, where the isocurvature power spectrum dominates over

the adiabatic, might be difficult to observe or even only if fa is extremely high, we can still try
to study the impact of the isocurvature fluctuations on scales larger than K−1. For that, we can
consider its relative contribution in the power spectrum compared to the adiabatic fluctuations
at some low k∗ � K. This is also indicated in Fig. VI.1. But it should be notetd that k∗ does
not need to be at the intersection of Piso and Pad. For convenience, we set k∗ = 0.05 Mpc−1.
Using the explicit forms for the adiabatic, cf. Eq. (VI.3), as well as the isocurvature fluctua-

tions, Eq. (VI.10), in our definition for fiso, Eq. (VI.9), we find.

fiso = C1/2k
3/2
∗

A
1/2
S K3/2

, (VI.17)

The idea is that if it is possible to constrain fiso via, say CMB observations, this will in turn give
a limit on K and therefore on the axion properties like ma, fa, and details on its temperature
dependent mass.

VI.1. Cosmological and Astrophysical
Constraints on Ultra-light Axions

To put our work in the context of the current state of research, we briefly review some existing
cosmological and astrophysical constraints on the axion mass. We focus especially on the case
of ultra-light axions (ULAs) since we have understood that for small ma we can expect the
strongest effects of the isocurvature fluctuations, cf. Eq. (VI.16). Most of the constraints we
will discuss in the following are independent of any specific ALP model and rely mainly on the
comsological evolution of the axion field, which we have discussed in Sec. III.2, or its gravitational
interactions.
Let us start with the low mass end. In Ref. [95], Hlozek et al showed that ULAs with masses

in the range 10−32 eV < ma < 10−25.5 eV can be basically ruled out looking at precision data
from CMB measurements and LSS surveys. To come to this conclusion, Hlozek et al used the
effect that ULAs change the height of the accoustic peaks in the multipole spectrum of the CMB
primary anisotropies if they give a sizeable contribution to the energy density of the universe.
Recall that the peaks are proportional to the matter-to-radiation ratio. Extremely light axions
will only start to oscillate comparably late in the cosmological history and therefore behave quite
long as a dark energy (DE) component. For details, see our discussion in Sec. III.2. In fact,
the longer the axion acts as DE and does not contribute to the matter component, the more it
modifies the matter-to-radiation ratio, i.e. the lighter the ULA the stronger this effect. Recall
that for ma < 10−27 eV, the axion cannot explain the observed DM in our Universe since field
oscillations commence only after matter-radiation equality.
Hlozek et al considered also modifications of the matter power spectrum for the case of ULA

DM. Recall that the evolution equation of the linear fluctuations in the axion energy density are
changed by an effective sound speed which suppresses fluctuations on scales smaller than axion
Jeans scale kJ ∼ 1/ma, cf. Eq. (III.31). For ULAs with ma < 10−25 this becomes important
in the sense that it notably suppresses the high k end of the matter power spectrum, similar
to warm DM. Now, the predictions for the matter power spectrum in an ULA DM scenario
can be compared to actual results from galaxy surveys like WiggleZ [180], to see if ULA DM is
compatible with our obeservations.
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Combining the results from CMB and LSS data, Hlozek et al find the already mentioned
exclusion limit for ULA masses in the range 10−32 eV < ma < 10−25.5 eV. No less important,
they conclude that axions with masses ma > 10−24 are virtually indistinguishable from standard
CDM looking at the observables they choose. For similar studies see Refs. [181–184].
Moving to slightly higher masses, it turns out that ULAs with masses ma ∼ 10−22− 10−20 eV

are exceptionally appealing DM candidates since they might provide a solution to some small-
scale problems of CDM, especially to the so-called cusp-core problem [89]. Axions or more
general scalar DM in this mass range is often called fuzzy DM (FDM) [90]. The reason why
FDM can help to solve the cusp-core problem is that its de Broglie wavelength ∼ 1/(mav) can
be comparable to the core size of galaxy halos. The suppression of fluctuations on these scales
leads to a smooth central halo region which can be compared to the cuspy profile observed in
numerical simulations of halo formation with standard CDM [185]. It turns out that a cored
DM halo is preferred by measurements of stellar dynamics in dwarf galaxies [186].
However, as we have already mentioned before, ULA DM modifies the matter power spectrum

on scales k > kJ and observations of the Lyman-α lines of the neutral hydrogen in the inter-
galactic medium, the so-called Lyman-α forest, can be used as to test this smallest scales. The
Lyman-α observerations are senstitive to much higher k’s in the matter power spectrum than
what is accessible with, for example, galaxy surveys. To predict the matter power spectrum in
an FMD scenario, hydrodynamical simulations are needed and, as it turns out, the results do
not agree with the observed Lyman-α flux power spectrum [187,188]. Therefore, it is concluded
that axions with masses ma . 10−21 eV can be ruled out as the main component of DM and
therefore might be of no help in solving the cusp-core problem [189].
Very recently, Marsh and Niemeyer showed in Ref. [190] that it might be possible to constrain

FDM even stronger. For that, they study the effect of oscillating soliton-like cores in FDM halos
on the heating of star clusters. Comparing the heating rate under the assumption that star
clusters are embedded in an FDM halo, Marsh and Niemeyer used observations on the size and
the lifetime of a star cluster in the center of the dwarf galaxy Eridanus II to set a lower limit on
the axion mass ma > 10−19 eV. They conclude that for lighter axions, the heating of the star
cluster via the soliton-like cores would be too strong or prohibit the formation of Eridanus II at
all. A similar result was found in Ref. [191]. However, it must be noted that these constraints
heavily rely on the assumption that soliton-like cores form inside the FDM halo. This was so
far only observed in simulations for dwarf galaxy halos with axion masses ma ∼ 10−22 eV [185]
and only in Ref. [121] it was observed that the cores are actually oscillating. For larger axion
masses, the formation time of the solitonic cores becomes longer and it is questionable if they
form at all, as was also noted in Ref. [190] by Marsh and Niemeyer themselves. Thus, the
constraints from the observations of Eridanus II should be taken with some caution till results
for halo simulations with axion masses ma ∼ 10−19 eV exist and the formation of the oscillating
soliton-like cores is confirmed.
For heavier axions, it turns out that observations of spinning black holes can be used to test

the allowed mass range. The reason for this is that the scattering of a massive scalar field on a
rotating BH can lead to a so-called superradiant instability and therefore to a spin-down of the
BH. Without going into too much detail, we briefly want to sketch how this works. Recall that
as soon as a particle crosses the event horizon of a BH it will be unavoidably swallowed. Thus,
a BH acts as a perfect absorber for any particle, i.e. also for the axion. Now, it was realized by
Zel’Dovich in the 1970’s that if an absorber is spinning it can actually instead of absorb, reflect
and even amplify an incoming wave [192].2 This is possible by extracting rotational energy. If
the wave or particle can be confined around the absorber by, say a mirror, it is possible that this
process is repeated again and again, till all the rotational energy is extracted and the absorber
spins down. This is called a superradiant instability. It can be shown that this effect also occurs
for the scattering of a massive scalar field on a spinning BH [193]. Here, the confinement is
provided by the gravitational potential of the BH itself. By repeatedly scattering, the axion

2Since this is a classical effect, we speak of waves rather than of particles.
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Mass Range [eV] Source and Comment
10−33 < ma < 10−25.5 Height of accoustic peaks in the CMB and observations

on the matter power spectrum, e.g. Ref. [200]. Note that
axions with ma . 10−27 eV cannot serve as DM.

ma < 10−21 Observations of the small scale matter power spectrum via
the Lyman-α forrest and comparison with hydrodynamic
simulations of FDM, e.g. Ref. [187].

ma < 10−19 Observations of dwarf galaxy Eridanus II [190]. Relies on
the formation of oscillating solitonic cores in the DM halo.

10−19 < ma < 10−14 Spin-down of super-massive black holes via superradi-
ant instability, e.g. Ref. [195]. Limits only appy if self-
interactions are neglected. For fa . 1016 GeV self-
interactions become important and make a bosenove more
likely than a spin-down, see Ref. [196].

Table VI.2.: Exclusion limits on ultra-light Axions.

field is amplified and forms a cloud around the BH similar to the electron cloud in the Hydrogen
atom and eventually will spin down the BH [194]. However, a superradiant scattering of axions
on BHs is only possible if the mass ma and the spin Ω of the BH satify a certain relation, roughly
ma < Ω. See, for example, Ref. [193] for more details on the exact relation. This means that
certain BHs can be used to test a certain mass range ma. In Ref. [195], Stott and Marsh used
observations on the lifetimes of super-massive BHs with MBH ∼ 105 − 109M� to exclude axion
masses in the range 10−19 eV < ma < 10−14 eV. See also Refs. [196,197] for similar studies and
results.
However, it should be noted that for deriving these limits, self-interactions of the axion field are

neglected. Namely, it turns out that if self-interactions are included, the extremely high particle
densities in the axion cloud around the BH allow for a bosenova to occur before extracting the
complete rotational energy of the BH and therefore no spin-down would be observable [198].
A bosenova happens in a Bose-Einstein condensate when the particle density is so high that
nonlinear effects switch attractive interactions to repulsive ones. Assuming that we can treat
the axion cloud around the BH as Bose-Einstein condensate, we can heuristically understand
this effect by looking at the cosine-potential of the axion field and using our insights from
the discussion in Sec. V.1. Expanding the axion potential V (a) = m2

af
2
a [1 − cos(a/fa)] in

powers (a/fa), gives V (a) ∼ m2a2 − m2a4/f2
a + m2a6/f4

a − . . ., where we do not care about
numerical factors for the moment. So, we note that the self-interaction alternates between
attractive and repulsive. Now, in Sec. V.1 we have learned that a2 is proportional to the
number density of axions. Therefore, it is obvious that with increasing particle densities the
self-interactions become more and more important and even can change their sign from attractive
to repulsive. In the axion cloud around the BH where the particle density is steadily increased by
the superradiant scattering, this can lead to an explosive bosenova when some critical density is
reached. See also Ref. [199] for more details. From our brief analysis it is immediately clear that
this effect depends on fa since the lower fa, the stronger the self-interactions and the more likely
it is that a bosenova occurs before the spin-down of the BH. In Refs. [199] and [196] the same
cosine-ansatz for the axion potential is used to show that for fa . 1016 GeV, self-interactions
cannot be neglected and naive SR limits from super-massive BHs do not apply. It turns out that
this limit is in good approximation insensitive to the axion mass ma since the self-interactions,
as well as the superradiance effect, depend in such a way on ma that the dependence cancels.
For later reference, we collect the various exclusion limits on the ULA masses in Tab. VI.2.
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VI.2. Axion Isocurvature Fluctuations and
the CMB

Pre-inflation Peccei-Quinn Symmetry Breaking

Before discussing how we use CMB data to constrain the axion isocurvature fluctuations for the
post-inflation realignment scenario, let us briefly review how CMB observations are usually used
to study the pre-inflation scenario, see for example Refs. [201–204].
When Peccei-Quinn breaking happens before or during an inflationary period, the quantum

fluctuations of the massless axion field lead to isocurvature fluctuations in the energy den-
sity [205]. In this case, as for the fluctuations in the inflaton field, one can assume a scale-
invariant spectrum. But since these kind of flucuations are related to the quantum fluctuations
in the de Sitter vacuum during inflation, the power spectrum should be proportional to the scale
of inflation. Hence, for the QCD axion it is assumed that [79]

∆2
iso,pre = (HI/2π)2

f2
aθ

2
i

, (VI.18)

where HI is the Hubble rate during inflation and θi is the initial misalignment angle. This means
that in the pre-inflation Peccei-Quinn breaking scenario, the power spectrum of the adiabatic
and the isocurvature fluctuations have the same form. This is a much different situation than
for post-inflation realignment.
A general feature of DM isocurvature fluctuations is that they lead to a tilt of the angular

power spectrum of the CMB such that it gets suppressed at small angular separations [176,
201,206]. Without going into details of the actual derivation, we simply quote the result of the
Planck collaboration for the limit on uncorrelated scale-free isocurvature contributions in the
CDM component [202]:

∆2
iso,pre
∆2

ad
< 0.038 (VI.19)

at a pivot scale k∗ = 0.05 Mpc−1. Since ∆2
iso,pre, as well as the adiabatic fluctuations ∆2

ad,
depend on the scale of inflation, the constraint in Eq. (VI.19) leads to an interesting relation
between HI and fa. Let us briefly outline how this comes about.

In slow-roll single field inflation models the amplitude As and H2
I are proportional and it

is [82]

As = 1
2ε

(
HI

2πMPl

)2
, (VI.20)

with ε being the so-called slow roll parameter. With the measured value As = 2.97 · 10−9 [207]
we can express ε via (HI/2π)2, such that with Eq. (VI.19) we have

HI < 1.5 · 106 GeV θi

(
fa

1012 GeV

)
. (VI.21)

The initial misalignment angle θi of the axion field, as well as the breaking scale fa, are in
principle unknown. But if the axion is meant to explain all the DM then θi can be fixed with
respect to a given fa. For finding this relation, we generalize our estimate for the relic abundance
Ωah

2 for the QCD axion in the post-inflation scenario in Eq. (III.50) to the pre-inflation scenario.
It is

Ωah
2 ' 0.1

(
fa

1012 GeV

)(
θ2
i

π2/3

)
. (VI.22)
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Fixing Ωah
2 = 0.1 and expressing θi via fa, we find

HI < 2.7 · 106 GeV
(

fa
1012 GeV

)0.42
, (VI.23)

which agrees with the relation given by the Planck collaboration in Ref. [202] and the original
references, for example by Lyth [208] and Seckel and Turner [209].
The relation between HI and fa in Eq. (VI.23) opens up the possibility for testing single field

low scale inflation via axion isocurvature perturbations. Namely, one can use the tensor-to-
scalar ratio rT as an independent probe of the scale of inflation HI and combine this with the
constraint Eq. (VI.23). For single field inflation it is rT = 16ε [82]. A quick check shows that
if Eq. (VI.23) holds, then rT ≪ 1 and the pre-inflation Peccei-Quinn breaking axion scenario
is incompatible with observable values for rT , as for example rT ∼ 10−3 which is the sensitivity
goal of a planned CMB stage IV mission [210]. Thus, an actual observation of a comparably
large rT could rule out a combination of single field inflation and pre-inflation Peccei-Quinn
breaking with the axion being the DM. See also Ref. [203] for a more detailed discussion.
However, these constraints can be easily circumvented in more sophisticated inflation models.

Further, note that we have limited our discussion to the QCD axion. For ALPs the situation is
more complicated due to the independence of ma and fa, see for example Ref. [211]. See also
Ref. [92] for a different approach which gets rid of the isocurvature bounds on the pre-inflation
scenario completely.

Post-inflation Peccei-Quinn Symmetry Breaking

Our goal is to test fiso, as defined in Eq. (VI.17), with the measurement of the power spectrum
of CMB primary fluctuations. The procedure is similar to what is done in pre-inflation scenario
and technical details of our study are presented in Ref. [175]. Here, we want to outline the most
important steps for deriving the consraints in a rather pedagogical way.

The standard method for testing whether a cosmological model is able to correctly reproduce
or predict our observations can be summarized as follows. First, of course, a cosmological model
must be set up. It consists of a certain number of cosmological parameters. In the so-called
cosmological standard model, a flat Friedmann-Robertson-Walker universe, i.e. Ωtot = 1, a
cosmological constant Λ with the equation of state w = −1, and an energy component ΩDM
which behaves like CDM is assumed. This is often called the cosmological standard or ΛCDM
model. The free parameters in this model are usually the Hubble rate H0, the baryon density
Ωb, the total matter density Ωm, the spectral index ns, the amplitude of the adiabatic fluctations
As, and the optical depth τ at time of reionization. In the most minimal model, the sum of
the massive neutrinos

∑
mν is fixed, as well as the running of the spectral index. The latter

parameterizes a dependence of ns on the scale k of the fluctuations. It can be expressed via
αs ≡ dns/d log k. See for example the corresponding review article in Ref. [51] for a more
in-depth discussion of the cosmological standard model.
The ΛCDM model is very successful in predicting the observed CMB anisotropies as well

as the matter power spectrum [207]. However, it can be extended by further cosmological
parameters to check if also other models can do the job. In our case the additional parameter
is obviously fiso. Further, we let

∑
mν as well as αs be free parameters for being sensitive

to possible correlations. In Tab. VI.3 we summarize the parameters of our model of the post-
inflation Peccei-Quinn breaking scenario. Their fiducial values are taken from the recent Planck
data [207].
After setting up a model, the next step is to calculate the actual predictions it makes for the

cosmological observables. This is done by solving the evolution equations of the linear density
fluctuations for specific parameter values. See, for example, Ref. [141] for an introduction to
this topic. Solving the necessary Boltzmann equations to determine the evolution of the linear
fluctuations can be automatized and there exist a handful of excellent public codes doing this
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Parameter Fiducial Value Meaning
h 0.678 Today’s Hubble rate paramterized via H0 =

h 100 km/(s Mpc).
Ωm 0.314 Total matter densiy.
Ωb 0.0486 Baryon density.
As 2.92 · 10−9 Amplitude of the adiabatic fluctuations.
ns 0.963 Spectral index.
αs 0 Running of the spectral index.
τ 0.089 Optical depth.∑
mν 0.05 eV Sum of the neutrino masses.
fiso 0 Strength of the isocurvature fluctuations at the

pivot scale k∗ = 0.05 Mpc−1, cf. Eq. (VI.17).

Table VI.3.: Paramters of the Cosmological Model for the post-inflation Realignment Scenario
and their fiducial Values. The latter are taken from the Planck data [207].

task. Among the most common are CAMB [212] and CLASS [213]. For our studies, we use the
latter.

To solve the Boltzmann equations we have to set initial conditions for the flucutations at a
time after inflation and long before matter-radiation equality. This is usually done by specifying
their power spectrum. The exact time where the initial conditions are set does not matter too
much, as long as all fluctuation modes k of interest are still outside of the horizon. Recall
that in our model we allow for additional isocurvature fluctuations of strength fiso in the DM
component at the pivot scale k∗. But strictly speaking, the axion will only behave as DM after
the field oscillations commence at Tosc. At early times and T � Tosc, as we have discussed
before, it rather behaves like dark energy. However, if we restrict our study to axions with
masses ma > 10−24 eV, the dynamical change of the equation of state has virtually no impact
on the CMB power spectrum, as was concluded in Ref. [95]. Thus, treating the axion energy like
normal CDM right from the get-go makes no difference for our study. Also note that in principle
we should modify the evolution equation of the axion density fluctuations to include the axion
Jeans scale, see Eq. (III.31). However, as we have learned from our discussion in Sec. VI.1,
this becomes only important for axions with masses ma < 10−21 eV and when studying the
matter power spectrum. In our study we want to focus on the CMB spectrum and axions with
ma < 10−21 eV are anyway already strongly constrained by the Lyman-α observations [189].

We should also point out that when implementing the isocurvature power in the CDM com-
ponent in our Boltzmann solver, we do not include the actual cut-off K, but rather we take
it to be flat all the way. The reason for this is that the CMB is anyway only sensitive to the
low k region where the isocurvature power spectrum is constant, as we have discussed above.
However, we have checked that including the cut-off properly, does not modify our results. An
exception would be, of course, if the cut-off would be close to our pivot scale k∗ = 0.05 Mpc−1

or even K < k∗. Even though, our estimate in Eq. (VI.16) suggests that for very light axions
this could be the case, we will later see that for the scenarios of interest we always have K > k∗
or even K � k∗. Also note that around the cut-off the fluctuations can in fact not be treated
perturbatively and therefore here the linear evolution equations would not be valid.
After evolving the initial fluctuations, we can compare the prediction of our cosmological

models for the CMB multipole spectrum with the actual data. For sampling the parameter
space we use a Markov Chain Monte-Carlo (MCMC) approach. See for example Ref. [214] for
an automated application of this method for CMB data and other cosmological observables. In
our study, we use the publicly available code emcee [215]. Via the MCMC sampling we can not
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only extract the best-fit points for our cosmological model, which is not of too much interest in
our study, but also estimate the sensitivity of the CMB data on a single parameter. With that
we can extract a constraint of the recent Planck data [83] on the isocurvature contribution. We
find the limit

fPlanck
iso < 0.3 . (VI.24)

Further, it turns out that there is an interesting correlation between fiso and αs and also
∑
mν .

The reason for this is that these parameters have a similar effect on the power spectrum of the
CMB anisotropies. However, this degeneracy might be broken when we would include other
cosmological observables, like the measurements of baryonic acoustic oscillations (BAO) in LSS.
But this is beyond the scope of the present work. An extensive discussion of the correlations of
fiso with the other cosmological parameters can be found in Ref. [175].
Recall that the angular power spectrum of the CMB can be decomposed into the modes Cl

where l corresponds to the multipole expansion in terms of spherical harmonics. As we have
already mentioned at the beginning of this section, the isocurvature fluctuations lead to a tilt of
the angular CMB power spectrum and therefore to a suppression of power at high l. Also our
caclulations show that the CMBmultipole spectrum is most sensitive to fiso at high l. This is also
clear since the high l in CMB anisotropy spectrum are related to small angular displacements,
i.e. small scales. Here, we expect the biggest influence of the isocurvature fluctuations of the
form as in Eq. (VI.10). However, for high l the instrumental noise in the CMB observations
starts to dominate the data which means a lower sensitivity on the cosmological parameters.
But in the planned Stage IV CMB missions it is expected that the noise level can be significantly
reduced, especially for high frequencies [210]. This motivates us to estimate the sensitivity on
fiso that could be reached in future CMB Stage IV observations. To do this we use the so-called
Fisher matrix formalism. See, for example, Ref. [216] for a thorough review of this method in
view of its application for forecasting the precission with which specific cosmological parameters
can be tested in CMB observations. The technical details for our specific Fisher analysis are
reported in Ref. [175]. Here, we only want to briefly summarize the main ideas of this method.
For that we follow closely the explanations in Ref. [216].
Let us assume that we have a model consisting of the model paramters Θ = (θ1, θ2, . . .) with

which we can predict a measurement consisting of the datapoints x = (x1, x2, . . .). Thinking
of x as a random variable then we say that L(x; Θ) gives the probability distribution of x in
terms of a fixed parameter point Θ. If, on the other hand, we have a given data set x from a
measurement then L(x; Θ) gives the likelihood function for Θ [216]. The best fit value, call it Θ̂,
is the point in the paramter space which maximizes the logarithmic-likelihood L = − logL for
this given data set. The Fisher matrix F is defined as Fij = ∂2L/∂θi∂θj evaluated at the best
fit point, i.e. it gives the curvature of L at Θ̂. It can be shown that if a Gaussian probability
distribution is assumed, F takes a very simple form. This allows, for example, in the case of
a CMB angular power spectrum given in terms of Cl’s and known instrumental noise, for an
easy computation of F , again see Ref. [175] for details. The inverse of the Fisher matrix is the
covariance matrix T of the parameters θi and there exists a theorem by Cramér and Rao that
says that for the diagonal entries of T it holds that ∆θi ≥

√
Tii, ∆θi being the variance of the

model parameter θi. This means by calculating the Fisher matrix and from that the covariance
matrix we can find a lower bound on the expected error bar on θi given a specific data set.
With known noise properties for future CMB observation, we are therefore able to predict the
sensitiviy on specific model paramters.
Applying this method to our case for constraining or testing fiso with a CMB Stage IV

observation, we find a sensitivity on values

fS4,sens
iso > 0.1 . (VI.25)
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VI.3. Implications for Axion Properties
Recall that the isocurvature contribution in the axion energy density, quantified via fiso, depends
on K = RH(Tosc), where the oscillation temperature Tosc is a function ma, fa, and depends on
the explicit temperature dependence of the axion mass, cf. Eq. (III.43). Therefore, a limit on
fiso can be translated to constraints on the axion properties via Eq. (VI.17). Our procedure to
extract these is the following. First, we choose a specific setup for the temperature dependent
axion mass in terms of the paramters n and b, cf. Eq. (VI.13). Then, demanding that the axion
should be all the DM allows us to fix the combination fa and ma via the relation ρa0 = ρDM
and the axion energy density today ρa0 can be calculated via Eq. (III.47). This relation defines
the DM axion mass. Given the fixed pairs (fa,ma) that yield Ωah

2 = 0.1, we can determine the
oscillation temperature Tosc and with that the size of the horizon H(Tosc). This determines fiso
as a function of the DM axion mass ma.

In our expressions for Tosc, as well as for ρa0, the relativistic degrees of freedom as a function of
temperature, g∗(T ) and gs∗(T ), enter. So far, when dealing with the QCD axion, it was always
Tosc > 100 MeV and we could use the results provided by Borsanyi et al’s lattice calculations in
Ref. [60] which apply for these temperatures. But for low mass axions the oscillation temperature
might be below 100 MeV. For having g∗(T ) and gs∗(T ) also for temperatures down to T ∼ 1 eV,
we take the results from Ref. [217] and use a cubic spline interpolation for the tabulated values
therein to get continous functions. Still, we have to keep in mind that Tosc must be above the
temperature at matter-radiation-equality, ∼ 1 eV, for the axion being the DM. But we will see
that for the scenarios we are looking at, this is always the case.
For post-inflation symmetry breaking, the natural upper limit for fa is the reaheating TRH,

as discussed before. For the reheating temperature we use again the estimate TRH < 1017 GeV
from Abbott and Preskill in Ref. [139] as an upper limit. Note that by fixing the axion energy
density to the present DM density, the upper limit on fa implies a lower limit on the axion mass
ma.

Taking all this into account, we can calculate fiso via Eq. (VI.17) as a function of the zero
temperature DM axion mass ma. To include the theoretical uncertainty on the explicit power
spectrum of the isocurvature fluctuations we vary the constant C between 0.01 and 1. The
results are given in Fig. VI.2, VI.3, and VI.4 where we indicate also the limit extracted from the
Planck CMB data, as well as a projection for the sensitivity of future Stage IV obseravtions.
To understand how to read this plots let us take, for example, the parameter choice b = 10

and n = 4 in Fig. VI.2 and start with the lower left panel. All of the red line which lies above
the Planck limit (dotted) can be ruled out for giving a too large isocurvature contribution. In
this specific case, this translate to the limit on the axion mass in the range ma . 10−17 eV
(ma . 10−19 eV) for C = 1 (C = 0.01). From the red curve in the upper left panel of Fig. VI.2
we can read off which breaking scale fa corresponds to a given mass ma, for giving the right
energy density to explain DM. We see that for very low masses, high fa are needed to still fulfill
Ωah

2 = 0.1. With fa < 1017 GeV, we find that a lower bound for our limits on the axion mass
is ma ∼ 10−24 eV. Hence, we conclude that for this choice of parameters, we can exclude axion
masses in a range 10−24 eV . ma . 10−17(10−19) eV when setting C = 1 (C = 0.01). This
means our limits cover five to seven orders in magnitude, with the Planck data alone. Looking
at the intersection of the red curve with the indicated line of the CMB Stage IV sensitivity
(dashed), we see that these limits could be increased about at least one order of magnitude in
the forseeable future.
The plots in the other two panels in Fig. VI.2 underline that for our choice of parameters, the

oscillation temperature, shown on the top right, is always well above the temperature at matter-
radiation equality, T ∼ eV and also K is always bigger than our pivot scale k∗ = 0.05 Mpc.
This means that the axion does not only has the right amount for being the DM but also
that it behaves accordingly, i.e. it starts to oscillate before matter-radiation equality. Knowing
that K > k∗ gives an a posteriori justification that we have assumed an all-the-way flat power
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Figure VI.2.: Post-inflation Peccei-Quinn Breaking and CMB Constraints I. The upper left
panel shows the relation between the zero temperature axion mass ma and the
Peccei-Quinn breaking scale fa when fixing the axion energy density to the
observed DM density in our Universe. We choose different parmeters for the
temperature dependent axion mass, cf. Eq. (VI.13). For all curves we fix b = 10
and vary n = 10, 4, 2 (red, blue, orange). The temperature Tosc where the field
starts to oscillates and begins to behave as DM is shown in the upper right
panel. This is always well before matter-radiation equality where T ∼ eV. In
the lower left panel we present the contribution of the isocurvature fluctuations
with respect to the adiabtic fluctuation at the comoving scale k∗ = 0.05 Mpc−1

in terms of the parameter fiso, cf. Eq. (VI.17) for its definition. Thick lines
corrspond to setting C = 1 and thin lines C = 0.01. We also indicate the limit
on fiso coming from Planck observations and a projection of the sensitivity of
future Stage IV observations. The lower right panel shows the comoving scale K
of the cuf-off in the isocurvature power spectrum to underline that it is always
K � k∗. The shaded areas correspond to possible constraints on the axion mass
coming from Lyman α (Ly α), Eridanus II (Er II), and BH superradiance (BH
SR).

86



VI. Post-Inflation Realignment and Large-Scale Observables

spectrum for the isocurvature fluctuations and did not include the actual cut-off, when setting
the initial conditions for solving the Boltzmann equations, see our discussion in the previous
section.
In the plots we also include the existing constraints on ULA masses which we have reviewed

in Sec. VI.1. We see that a large part of the limits we find lies in a region which is already
strongly constrained from the Lyman-α observation. Here, we should in fact inlcude the axion
Jeans scale in the evolution equation of the density fluctuations. However, as discussed before,
it will mainly affect the matter-power spectrum and not the CMB anisotropies. We expect that
our findings that the axion produces too large isocurvature fluctuations in this mass range will
not be affected. Further, there is an overlap with the recent results from the study of the star
cluster heating in Eridanus II caused by FDM halo cores. Again, in our opinion these results
have yet to be confirmed. Here, our limits give an independent constraint on the ULA mass.
Including also the constraints from BH SR we observe that for our setup fa is always below
∼ 1016 GeV. Recall that this marks a lower limit on fa for the SR limits since for fa < 1016 GeV
the self-interactions of the axion field can spoil the BH spin-down. This means that in our case
the SR constraints on ma do not apply and here we are able to constrain ULA masses in a so
far untouched region.
Looking at the other two curves in Fig. VI.2 as well as at Fig. VI.3 and VI.4, we find that

also for other parameter choices large parts of the low mass end of the parameter space can be
tested or already exluded with our study. The strongest limits are found for choices of low b and
high n, as already anticipated with our estimate in Eq. (VI.12). For n = 10 and b = 0.01 we
find that between eight and ten orders of magnitude for the axion mass can be excluded, this
means the mass range 10−25 eV . ma . 10−15(10−17) eV for C = 1 (C = 0.01).
The parameter choice b = 1 and n = 0 might be understood as the most conservative scenario

since it gives the weakest constraints. Note that in this scenario the mass is not generated
dynamically, but is assumed to be constant. By the weakest constraint we mean that the least
of the axion mass paramter space is excluded. However, these limits include the contstraints
on the models where the mass is generated dynamically. From this we can conclude that a
model-indepedent, most conservative exclusion limit on the axion mass, from our study on the
isocurvature fluctuations and its impact on the CMB can be set to

10−24 eV . ma . 10−21 − 10−19 eV (VI.26)

with the recent Planck data, including the theoretical uncertainty on the actual amplitude of
the isocurvature power spectrum. With our projected sensitiv for future Stage IV sensitivity,
we find that the limit might become

10−24 eV . ma . 10−20 − 10−18 eV (VI.27)

in the foreseeable future.
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Figure VI.3.: Post-inflation Peccei-Quinn Breaking and CMB Constraints II. The information
given in the caption of Fig. VI.2 applies also to these plots. The only difference
is that we choose different paramters for the temperature dependent axion mass.
Note that b = 1 and n = 0 corresponds to a constant axion mass.
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Figure VI.4.: Post-inflation Peccei-Quinn Breaking and CMB Constraints III. The information
given in the caption of Fig. VI.2 applies also to these plots. The only difference
is that we choose different paramters for the temperature dependent axion mass.
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VII. Summary and Outlook

In the present work, we have focused on discussing phenomenological implications for the axion
DM being produced by the vacuum realignment mechanism in a post-inflation Peccei-Quinn
breaking scenario. Figure VII.1 summarizes the main ideas and shows some of the highlights of
the studies we have presented.
After reviewing the Peccei-Quinn solution of the strong CP problem and the origin of the QCD

axion, we have considered the cosmological production mechanisms of axion DM in some detail
with an emphasis on the vacuum realignment. For that, we have derived useful quantitative
estimates for the axion DM abundance valid for the QCD case, as well as for ALPs.
Much of this dissertation is dedicated to the study of the formation of axion miniclusters.

These occur when large isocurvature fluctuations in the axion energy density decouple from
the Hubble flow and collapse into gravitationally bound objects. This is a very generic effect,
expected to happen as long as the Peccei-Quinn symmetry is broken after inflation. By a semi-
analytic solution of the evolution equations of the QCD axion field and by applying statistical
methods, we were able to calculate the power spectrum of the axion energy density fluctuations
in this scenario. Our result for the power spectrum shows the typical characteristics of a white
noise random field on large scales. On smaller scales it has a correlation length a little smaller
than the comoving Hubble horizon at the time the field starts to oscillate. The power spectrum
was used as input for a calculation of the axion minicluster mass function for which we have
derived a modified Press & Schechter method. This has allowed us to not only calculate the
minicluster distribution in mass but also in size. We have found that the two-dimensional
mass function is nicely peaked around a characteristic miniclusters mass and size. For example,
setting the Peccei-Quinn breaking scale at fa = 1012 GeV, the characteristic minicluster mass
is MMC ∼ 10−13M� and a typical size is about 106 km. Note that we find that the typical
minicluster mass is somewhat smaller than naively expected [32].
For deriving the power spectrum of the axion energy density fluctuations we had to make some

physically motivated assumptions on the initial conditions of the axion field. Since we have used
the harmonic approximation of the axion potential all nonlinear effects in the field evolution
have been neglected. By comparing our results with the outcome of Ref. [108] where recently
numerical simulations of the full nonlinear axion field evolution were performed we could identify
some shortcomings of our approach. However, we have concluded that with our method we are
able to describe the part of the power spectrum predominantly responsible for the formation
of axion miniclusters well enough and avoid natural drawbacks of numerical simulations. Still,
it would be interesting to use the power spectrum found in Ref. [108] in our modified Press &
Schechter method and calculate the resulting minicluster distribution, to compare the outcome
with our results.
We have also briefly commented on the possibility of applying our method for deriving the

minicluster mass function to the more general case of ALPs. This is easily possible by just
assuming a different temperature dependence for the axion mass than in the QCD case. We can
expect a much larger variety of possible minicluster masses and sizes. For very light ALPs it
could even be that the miniclusters are as heavy as M�, opening up the possibility for direct
detection via for example gravitational lensing. More detailed studies of ALP miniclusters will
be presented in Ref. [137].
Another hitherto unanswered question was whether axion miniclusters can collapse into an
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axion star, or whether they are more likely to enter an incoherent, virialized state after decoupling
from the Hubble expansion. We have tried to solve this puzzle by numerically simulating the
evolution of an axion overdensity under its own gravity. Since it turned out to be numerically
prohibitive to use the actual properties of the miniclusters we have found before, we have rather
considered a toy model of a scalar cloud, which should serve as a good approximation for the
miniclusters. We have found that a dilute initial cloud eventually collapses into an equilibrium
state which could be characterized by an oscillating ratio of kinetic to potential energy, similar
to what we would expect for a virialized cloud. Thus, our results hint for the miniclusters not
collapsing into a static axion star but indeed rather taking some virialized equilibrium state.
However, the results are not yet conclusive and more simulations are needed. Still, our findings
and especially the methods derived in the present work will be very useful for this.

In the last part of this dissertation, we have discussed the implications of the isocurvature
fluctuations arising in the in post-inflation Peccei-Quinn breaking scenario for the more general
case of ALPs. We have found that for ultra-light ALPs (ULAs) they can have sizeable effects
in cosmological large-scale observables, like the CMB. Using the white noise power spectrum
as input for the axion isocurvature fluctuations we have solved the cosmological Boltzmann
equations and therefore were able to study their impact on the CMB anisotropy spectrum. It
turned out that with the recent Planck data their contribution fiso with respect to the adiabatic
fluctuations in the DM component can already be strongly constrained. We find fiso < 0.3.
Translating the limit on fiso to the properties of the axion DM, we find that we can exclude
ALP DM masses in a range 10−24 eV − 10−15 eV. Where the low mass end is already strongly
constrained by other astrophysical and cosmological observations, the limits on axion masses
ma & 10−20 eV provide new insights.

We can sum up that, with the work presented here, we have made an important contribution
to better understanding the true nature of the DM. Assuming that it is composed of QCD axions,
the formation of miniclusters is a very likely effect and a solid comprehension of their formation
history is essential, especially for interpreting the results of direct detection experiments or for
coming up with new experimental avenues. If, on the other hand, the DM would occur in the
form of very light ALPs, we were able to show that large-scale observables can be used to put
strong constraints on the allowed ALP DM masses.
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Figure VII.1.: Highlights of the present Work. This sketch summarizes the main ideas and out-
comes of the present work. The first panel (cf. Fig. IV.1) sketches the vacuum
realignment of the axion field in a post-inflation Peccei-Quinn breaking scenario
which leads to large isocurvature fluctuations in the axion energy densitiy ρ.
In the following large panels on the right branch, we show the implications in
the QCD scenario where the isocurvature fluctuations are very small in the cos-
mological context. Here, the most interesting effect is the formation of dense
axion miniclusters. The calculation of their distribution in mass and size is
one of the major outcomes of the present work. The result can be compared
with the static axion star configurations. This is indicated in the second panel
(cf. Fig. V.1) on the right-hand side. Since we have realized that the mini-
clusters sit far above the axion star branch, we have considered the dynamical
collapse of the miniclusters in numerical simulations for studying what kind of
equilibrium configuration they take after decoupling from the Hubble expan-
sion. The evolution of the minicluster density and the particle current during
the collapse are shown in the last panel on the right (cf. Fig. V.2 and V.3). In
the left branch, we indicate that for ultra-light ALPs the isocurvature fluctua-
tions have other phenomenological implications. Namely, we have found that
they lead to modifications of the CMB spectrum. We have used this effect to
find some strong constraints on the allowed ALP DM mass. As teased in the
panel on the lower left side (cf. Fig. VI.3). All the plots can be found in full-size
in the corresponding chapters as indicated in the brackets.
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Appendix A.

Units

In this appendix, we discuss the units used in the present work and give some useful relations.

If not stated otherwise, we work in natural units: c = ~ = kB = 1. In this system there is
only one fundamental dimension, namely energy.

With c = 3.0 · 108 m/s, ~ = h/2π = 1.05 · 10−34 kg · m2/s = 6.6 · 1025 GeV · s, and kB =
8.6 · 10−14 GeV/K this implies the conversion rules

1 s = 1.5 · 1024 GeV−1 , (A.1)
1 m = 5.0 · 1015 GeV−1 , (A.2)
1 K = 8.6 · 10−14 GeV , (A.3)

between the SI system and natural units. Recall that 1 eV = 1.6 · 10−19 kg ·m2/s2 and therefore

1 kg = 5.63 · 1026 GeV . (A.4)

The Planck mass is defined as

MPl =
√
c~
GN

, (A.5)

where GN = 6.67 · 10−11 m3kg−2s−2 is Newton’s gravitational constant. In natural units it is

MPl = 1.22 · 1019 GeV . (A.6)

Spatial distances in astrophysics or cosmology are often measured in parsec, abbreviated with
pc. In SI units, it is

1 pc = 3.1 · 1016 m . (A.7)

In natural units, we can express a parsec via an inverse energy, and the following conversion rule
holds:

1 Mpc = 1.55 · 1038 GeV−1 . (A.8)

A handy measure for masses of astrophysical objects is the mass of our sun M�. The solar mass
is about

M� ' 1.99 · 1030 kg (A.9)

or equivalently

M� ' 1.11 · 1057 GeV . (A.10)
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Appendix B.

Axion-electrodynamics for DM
Detection

In this appendix, we discuss the axion-photon interactions, given in the Lagrangian in Eq. (II.21),
in a little more detail. Thereby, we present results of a quantum field theoretical calculation of
the induced electric and magnetic fields caused by the interaction of the axion DM field with a
strong electromagnetic field. The outcome of this study is published in Ref. [67].

First, we notice that the axion-photon interactions of the form ∝ gaγγFF̃ lead to the modi-
fied Maxwell equations:

~∇ · ~E = ρe − gaγγ ~B · ~∇a , (B.1)

~∇× ~B − ∂ ~E

∂t
= ~je − gaγγ

(
~E × ~∇a− ~B

∂a

∂t

)
, (B.2)

where ρe and ~je are the usual electric charge and current density. Assuming a homogeneous
axion field, we see that the axion interaction with an external magnetic field, call it ~Bext, leads
to an electric field

~Eind = −gaγγa ~Bext . (B.3)

If the axion field a is the DM field, we can make the following simplified ansatz:

a = a0 cosmat (B.4)

where the normalization a0 is fixed by setting ρa to the local DM energy density ρDM =
0.3 GeV/cm3. Note that in this case, in a 7 T magnetic field we can expect an induced electric
field with an amplitude of about 10−14 V/m if the axion has a mass of ma ∼ 10−5 eV and a
coupling gaγγ ∼ 10−10 GeV. This is an extremely tiny elctric field. But still it is the idea of the
usual DM haloscopes to make this tiny field visible, usually by some kind of resonance effects [43].

The reason why deal with this topic is that in another project, where general interactions of
SM particles with an axion background field are considered, the idea of using a Penning trap
as an axion DM haloscope was brought up, see Ref. [218] for more details. In short, a Penning
trap is a device with a strong homgeneous magnetic field and an elecrtric quadrupole field which
allows to trap charged particles on a complicated spiral-like trajectory which is characterized
by three different circular frequencies. See Ref. [219] for a comprehensive review of Penning
traps. It turns out that if one of the frequencies is in resonance with the frequency of the axion
background field, i.e. ma, the trapped particle becomes sensitive to the axion-induced electric
field. Using typical circular frequencies of a Penning trap, we have found that an axion mass of
ma ∼ 10−10 − 10−7 eV could lead to a resonant response of the trapped particle.
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Figure B.1.: Feynman Diagram for Electron Interaction with an Axion Background Field and
an external Photon Field. Corresponds to Fig. 1 in Ref. [67].

However, recently there has been a debate about how large the axion-induced electromagnetic
fields actually are in case that the spatial dimension R of the external magnetic field is smaller
than the Compton wavelength λ of the axion, cf. Refs. [220–222]. Ouellet and Bogorad in
Ref. [220], as well as Kim et al in Ref. [221], argue by solving the modified Maxwell equations
with the appropriate boundary conditions that the induced electric field is in fact suppressed by
the small number (R/λ)2. Tobar et al, on the other hand, claim in Ref. [222] that the induced
field should not be suppressed, relying on an earlier work by J.E. Kim [223]. Note that with the
axion Compton wavelength given by

λ = 2π
ma
≈ 12 m

(
10−7 eV
ma

)
(B.5)

this effect becomes important for masses ma < 10−7 eV and therefore also for our idea of detect-
ing DM axions with a Penning trap where the magnetic field has dimensions of about R ∼ cm.

To add to this discussion and to understand if the axion-induced fields are suppressed or not,
we try to study the axion-photon interactions from a quantum field point of view. Note that
similar calculations were done by Hill in Refs. [224, 225] for calculating an induced oscillating
dipole moment by axion interactions. All details of our study can be found in Ref. [67]. At this
point, we outline the applied method and discuss the main result.

For understanding the effective field an electron sees that travels through an axion as well as
photon background field, we look at the Feynman diagram shown in Fig. B.1. It turns out that
by using standard quantum field techniques, we can write the transition amplitude A for the
proccess e→ e′ shown in Fig. B.1 as

A = −i
∫

d4xJµ(x)Aind
µ (x) , (B.6)

where jµ = eψ̄γµψ is the usual electromagnetic current and

Aind
µ (x) = igaγγ

∫
d4yDµν(x− y)∂ρa(y)F̃ ρν(y) . (B.7)

is the effective vector potential induced by the interaction of the external axion and the photon
field. The photon propagator in the Feynman gauge is given by

Dµν(x− y) =
∫ d4q

(2π)4
−igµν
q2 + iεe

−iq(x−y) . (B.8)
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In case of our simple ansatz for the DM axion field in Eq. (B.4) and an external static magnetic
field, we find that this vector potential leads to induced electric and magnetic fields of the form:

~Eind(x) = −∂
~A ind

∂t
= −gaγγa0m

2
a e−imat

∫ d3q

(2π)3
ei~q·~x

m2
a − ~q 2 + iε

~Bext(~q ) , (B.9)

~Bind(x) = ~∇× ~A ind = −gaγγa0ma e
−imat

∫ d3q

(2π)3
ei~q·~x

m2
a − ~q 2 + iε~q ×

~Bext(~q ) . (B.10)

We see that Eind and Bind depend on the geometry of the external magnetic field which is
encoded in its Fourier transform Bext(q).

We can now look the at two extreme cases R � λ and R � λ. In the first case, B(~q) will
be dominated by the low q modes and we have m2

a � q2 in the denominator of the integral.
Thus, we recover for Eind the form already given in Eq. (B.3). However, for R� λ, we have to
properly evaluate the integral, also taking care of the poles. We find that

~Eind(x) ' −gaγγa0 ~B0e−imat(Rma)2 . (B.11)

I.e. the induced field is indeed suppressed if the size of the magnetic field is smaller than the
Compton wavelength of the axion. Hence, we agree rather with the findings in Refs. [220, 221]
than the ones in Ref. [222]. Our ansatz allows for a neat interpretation of this suppression effect
in terms of the momentum the external magnetic field can provide depending on its geometry.
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Appendix C.

Rewriting the Axion Evolution
Equation in Terms of Temperature

In the following, we give some details on deriving Eq. (IV.23), i.e. on rewriting the evolution
equation of fk,

f̈k + 3H(T )ḟ + k2

R2 fk +m2
a(T )fk = 0 , (C.1)

in terms of temperature being the independent variable instead of time. First we note that

dfk
dt = dfk

dT
dT
dt (C.2)

and

d2fk
dt2 = d

dt

(dfk
dT

dT
dt

)
(C.3)

=dfk
dT

d2T

dt2 + dT
dt

d
dt

dfk
dT . (C.4)

With

d
dt

dfk
dT = d

dT
dfk
dt = d

dT

(dfk
dT

dT
dt

)
= d2fk

dT 2
dT
dt (C.5)

it follows that

d2fk
dt2 = dfk

dT
d2T

dt2 +
(dT

dt

)2 d2fk
dT 2 . (C.6)

Plugging this into the evolution equation, leads to

d2fk
dT 2 +

(
3H(T ) dt

dT + d2T

dt2 /
dT
dt

)
dfk
dT +

(
k2

a2 +m2
a(T )

)( dt
dT

)2
fk = 0 . (C.7)

Eventually we note that

d2T

dt2 /
dT
dt =d2T

dt2
dt
dT (C.8)

= d
dt

[dT
dt

dt
dT

]
︸ ︷︷ ︸

=0

−dT
dt

d
dt

( dt
dT

)
(C.9)

=− dT
dt

d2t

dT 2 = − d2t

dT 2 /
dt
dT . (C.10)
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With that we arrive at the result given in Eq. (IV.24). Note that a similar relation is used in
Ref. [96].

For deriving dt/dT in Eq. (IV.25) we first recall that the Friedman equations in a radiation
dominated universe can be written as:(

Ṙ

R

)2

= 8π
3

ρ

M2
Pl
, (C.11)

ρ̇ = −3H(ρ+ p) = −3HsT . (C.12)

Note that the equation in the second line, namely using s = (ρ + p)/T , only holds if all rela-
tivistic particle species are in equilibrium, i.e. only for temperatures T & 1 MeV before e+ − e−
annihiliation. But since we are focussing on temperatures T > 100 MeV, this does not affect
our studies for the QCD axion. However, this can become important when considering the cos-
mological evolution of the ALP field, see also Ref. [137].

The expressions for the energy density of radiation reads

ρ = π2

30g∗T
4 (C.13)

and for the entropy density

s = 2π2

45 gs∗T
3 (C.14)

which can be found for example in classical textbooks like Ref. [79]. Using Eq. (C.13), (C.14),
and (C.11) in the second Friedmann equation (C.12), one can show that the time as function of
temperature is determined via

dt
dT = −MPl

√
45

64π3
1

T 3gs∗
√
g∗

(
4g∗ + dg∗

dT T
)
. (C.15)

Using this result together with Eq. (C.13) in the first Friedmann equation Eq. (C.11) gives

dR
dT = −1

4
1

gs∗T

(
4g∗ + dg∗

dT T
)
R . (C.16)
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Appendix D.

Non-relativistic Approximation of
the Axion Field

Starting from the general action

S =
∫

d4x
√
−g

[
−1

2gµν∂
µa∂νa− V (a) + R

16πGN

]
(D.1)

of a localized scalar cloud, we want to derive the Gross-Pitaevskii-Poisson system in Eq. (V.11)
and (V.12) using the weak gravity limit ΦN � 1 and the non-relativistic limit for the field a.

In the weak gravitiy limit, we can write the metric gµν as [141]:

g00 = − (1 + 2ΦN ) and gij = (1− 2ΦN ) δij . (D.2)

Therefore, the determinant of the metric becomes
√
−g =

√
(1 + 2ΦN ) (1− 2ΦN )3 ' 1− 2ΦN . (D.3)

The Ricci scalar in the weak gravity limit reads [141]

R ' 2 (∇ΦN )2 . (D.4)

Using this in Eq. (D.1) we find:

S =
∫

d4x

[
(∇ΦN )2

8πGN
+ 1− 4ΦN

2 ȧ2 − (∇a)2

2 − (1− 2ΦN )V (a)
]
. (D.5)

In the non-relativistic limit, we express the axion field as

a = 1√
2m

(
φeimt + φ∗e−imt

)
. (D.6)

with φ̇� m, φ̈� m2.

Using this ansatz we note that

ȧ2 ' mφφ∗ + i
(
φφ̇∗ − φ̇φ∗

)
, (D.7)

(∇a)2 ' (∇φ) (∇φ∗)
m

, (D.8)

a2 ' 1
m
φφ∗ , (D.9)

a4 ' 3φ2φ∗2

2m2 . (D.10)

103



Appendix D. Non-relativistic Approximation of the Axion Field

Plugging this back into Eq. (D.5) we end with S given in Eq. (V.10). Varying the action S with
respect to ΦN gives the Poisson equation and varying S with respect to φ∗ the Gross-Pitaevskii
equation.

Introducing the canonical momenta πφ = ∂L/∂φ̇ = iφ∗/2 and πφ∗ = ∂L/∂φ̇∗ = −iφ/2
for the fields φ and φ∗, we can perofrm a Legendre transformation of the Lagrangian L =
L(φ, φ̇, φ∗, φ̇∗,ΦN ) density and simply read off the Hamiltonian from Eq. (V.10). Recall that it
has the three contributions:

Hkin = 1
2m

∫
d3r (∇φ) · (∇φ∗) , (D.11)

Hgrav = −1
2

∫
d3r mΦNφφ

∗ , (D.12)

Hself = −
∫

d3r
1

16f2
a

(φφ∗)2 . (D.13)

Next, we want to show how we find the estimate for H = Hkin + Hgrav + Hself in Eq. (V.20).
For a localized scalar cloud, a reasonable ansatz for the wave function φ is of a Gaussian form

φi(r) = φ0√
4πσ3/2 e−r2/2σ2

, (D.14)

where the normalization φ0 as well as the width σ should be determined via the mass M0 and
size R0 of the cloud. The mass is given by

M0 = 4πm
∫ ∞

0
dr r2|φi|2 . (D.15)

and therefore

φ0 = 2M1/2

π1/4m1/2 . (D.16)

By choosing the Gaussian profile we can only include all the mass M0 when we extend the
integration to infinity. However, we can choose σ such that most of the mass is included in a
region of size R0. This we can accomplish in the following way. It is

M(R0) =4πm
∫ R0

0
dr r2|φ|2 (D.17)

=
z=r/σ

4π M0
π3/2

∫ R0/σ

0
dz z2e−z2

. (D.18)

Now choosing R0/σ = 3 we find

M(R0)
M0

= 0.99956 , (D.19)

i.e. 99.9% of the mass is included in the spherical region with size R0 which is sufficient for our
needs. Hence, as the profile for a spherical symmetric scalar cloud we chose

φi(r) = 33/2

π3/4
M

1/2
0

m1/2R
3/2
0

exp
[
−9

2
r2

R2
0

]
. (D.20)

The potential ΦN,i of this configuration can be derived by solving the Poisson equation:

∆ΦN,i = 4πGmφiφ∗i . (D.21)
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With our ansatz from Eq. (D.20) this can be done analytically. We find that

ΦN,i(z) = −(GM0/R0)Erf[3z] +A

z
+B , (D.22)

with z = r/R0. The constants A and B should be fixed by the boundary conditions. An obvious
one is that the potential shpould vanish at infinity, i.e. B = 0. The constant A we can fix by
demanding that at r = R0, i.e. z = 1, the potential should read

ΦN,i(r = R0) = −GM0
R0

. (D.23)

With Erf[3] ' 1 we set A = 0 as well. Thus, we end up with

ΦN,i(r) = −GM0
R0

(
r

R0

)−1
Erf

[
3 r

R0

]
. (D.24)

With the form for the wave function and the Newtonian potential at hand, the intregrals in
Hkin, Hgrav, and Hself can be performed analytically. We find:

Hkin = 0.7 M0
m2R2

0
, (D.25)

Hgrav = 0.1 M2
0

MPlR0
, (D.26)

Hself = M2
0

f2
PQm

2R3
0
. (D.27)
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Appendix E.

Numerical Approach for Solving the
Schrödinger-Poisson System

In the following, we discuss our scheme for numerically solving the Schrödinger-Poisson (SP)
system discussed in Sec. V. We use a similar procedure as described in Refs. [118] and [164].

Time-dependent Schrödinger Equation
We start by considering the time-dependent Schrödinger equation.

i∂tψ = Hψ . (E.1)

For simplicity, let us stick to one spatial dimension for the moment. Here, it is

H = 1
2m∂2

x + V (x) . (E.2)

Recall that the time evolution of a wave function ψ following from Eq. (E.1) can be expressed
via the time-evolution operator U(t, t0) as

ψ(x, t) = U(t, t0)ψ(x, t0) (E.3)

For a time-independent Hamiltonian H, it is

U(t, t0) = exp[−iH(t− t0)] . (E.4)

For a numerical treatment of Eq. (E.1) we have to discretize space and time, i.e. t→ tn = n∆t
and x→ xj = x0 + j∆x. It is ∆t and ∆x the spacing of our grid in time and space, respectively,
and in one spatial dimension x0 correpsonds to the left boundary whereas for some j = N , xN
correpsonds the right boundary. Also the wave function in the discretized spacetime is only
defined at specific gridpoints (tn, xj), therefore

ψ(x, t)→ ψ(xj , tn) ≡ ψnj . (E.5)

With Eq. (E.4) the time evolution from (tn, xj) to (tn+1, j) is given by

ψn+1
j = U(∆t)ψnj = exp[−iH∆t]ψnj . (E.6)

If we chose ∆t small enough, we can try to Taylor expand the time evolution operator. But
we have to be careful when doing so, since we have to preserve its unitarity. The naive ansatz
U(∆t) ' 1− iH∆t does not. A second order in space and time accurate and unitary conserving
approximation of U(∆t) is [226,227]

U(∆t) '
1− i∆t2 H
1 + i∆t2 H

. (E.7)
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Plugging this back into Eq. (E.6), we end up with(
1 + i∆t2 H

)
ψn+1
j =

(
1− i∆t2 H

)
ψnj . (E.8)

The spatial derivative in the kintetic term of the Hamiltonian becomes in discretized space

∂2

∂x2ψ(x)→ ψj+1 − 2ψj + ψj−1
(∆x)2 (E.9)

using the centered time difference method. Thus, Eq. (E.8) now reads

ψn+1
j + i∆t2

(
−
ψn+1
j+1 − 2ψn+1

j + ψn+1
j−1

2(∆x)2 + Vjψ
n+1
j

)
= ψnj − i∆t2

(
−
ψnj+1 − 2ψnj + ψnj−1

2(∆x)2 + Vjψ
n
j

)
(E.10)

with the potential V (x)→ V (xj) ≡ Vj .

Defining the N−dimensional vectors

~ψn+1,n = (ψn+1,n
0 , ψn+1,n

1 , . . . , ψn+1,n
j , . . . ψn+1,n

N−1 , ψn+1,n
N ) , (E.11)

Eq. (E.10) can be written as a matrix equation

U1 ~ψ
n+1 = U2 ~ψ

n . (E.12)

The N ×N matrices U1,2 read

U1 =



1 + β0 −α 0 . . .

−α 1 + β1 −α 0 . . .

0 −α 1 + β2 −α 0 . . .
. . . . . . . . .
. . . −α 1 + βN−1 −α
. . . 0 −α 1 + βN


, (E.13)

U2 =



1− β0 α 0 . . .

α 1− β1 α 0 . . .

0 α 1− β2 α 0 . . .
. . . . . . . . .
. . . α 1− βN−1 α

. . . 0 α 1− βN


, (E.14)

with

α =i ∆t
4(∆x)2 , βj = i ∆t

2(∆x)2 + i∆t2 Vj . (E.15)

We note that the matricesU1,2 are of a tridiagonal form. Naively we would exepct that Eq. (E.12)
can be solved by inverting U1 to find an implicit equation for ~ψn+1. In principle this is possible,
but inverting a matrix is numerically as well as analytically very time consuming. Especially,
when N becomes large. So it is much more reasonable to solve the linear system of equations in
Eq. (E.12) for every time step n+ 1 and evolve the system forward in time starting with some
initial ~ψ0.

108



Appendix E. Numerical Approach for Solving the Schrödinger-Poisson System

A simple Example and How to deal with the
Boundaries
Let us apply our method for solving the Schrödinger equation numerically to the simple example
of a moving Gaussian wave packet. It should have the initial wave function

ψ(x, t = 0) = 1√
2πσ2

exp
[
ikx(x− x0)− (x− x0)2

2σ2

]
. (E.16)

and evolve with the free Hamiltonian. Its width is defined via σ, its initial position by x0, and
kx is its momentum.

The algorithm to find the evolution of ψ can be summarized as following:

1. The initial wave function ψ(x, t = 0) for a given σ, x0, and kx is discretized on lattice
points x0, . . . , xN with parameters x0, xN and N . The lattice spacing is calculated from
∆x = |xN − x0|/N .

2. The matrices U1,2 are calculated with the above formulas, using the explicit tridiagonal
form.

3. The system of linear equations given in Eq. (E.12) is then subsequently be solved forward
in time, starting with t0 to some tNt . The spacing in the time domain is calculated via
∆t = |tNt − t|/Nt.

The result of the procedure is shown in Fig E.1 for some initial Gaussian. A movie of the sim-
ulation can be found here [228]. Unfortunately, we observe a rather unintended result. Namely,
the boundaries act as perfect mirrors, reflecting the wave package back and forth. This is a
result of the Schrödinger equation conserving the normalization of the wave function in the
volume we gave it. But this is not what we intend to see. In fact, the wave package should just
leave the volume without any reflections. This we have to implement by hand via manipulating
the boundaries.1

One way to do this is to apply so-called sponges at the boundaries. This means adding
some imaginary potential close the boundaries of our spatial domain. See also Refs. [164, 166].
The idea is that the Schrödinger equation in fact only conserves probabitlity respectively the
normalization of the wave function if the Hamiltonian is Hermitian. But if the potential is
complex, then the continuity equation in fact reads

∂t|ψ|2 −∇ψ = 2ImV |ψ|2 . (E.17)

This effect is also known as dissipation which is exactely what we want to have at our bound-
aries. If, for example, we consider the moving wave packet from before and we want it to leave
our domain, i.e. the probability that it is inside the domain should vanish, we can artifically in-
clude an appropriate imaginary potential close to the boundaries. This is called then the sponge.

The question now is of course, what is an appropriate imaginary potential or sponge. A good
guess, as always, is some kind exponential potential which vanishes when moving away from the
boundaries. We found that such a potential can be effectively described via three parameters:

1Here [229] also a simulation of a non-moving Gaussian wave package can be found. We observe the expected
dispersion of the package, but again the unphysical reflections at the boundaries.
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Figure E.1.: A moving Gaussian Wave Packet in a Box. Since the Schrödinger equation con-
serves the norm of the wave function, the bounadries of the box act as perfect
mirrors.

110



Appendix E. Numerical Approach for Solving the Schrödinger-Poisson System

Re ψ

Im ψ

|ψ|

-15 -10 -5 0 5 10 15

-0.4

-0.2

0.0

0.2

0.4

x

t=0.

Re ψ

Im ψ

|ψ|

-15 -10 -5 0 5 10 15

-0.4

-0.2

0.0

0.2

0.4

x

t=1.92

Re ψ

Im ψ

|ψ|

-15 -10 -5 0 5 10 15

-0.4

-0.2

0.0

0.2

0.4

x

t=3.87

Re ψ

Im ψ

|ψ|

-15 -10 -5 0 5 10 15

-0.4

-0.2

0.0

0.2

0.4

x

t=5.82

Re ψ

Im ψ

|ψ|

-15 -10 -5 0 5 10 15

-0.4

-0.2

0.0

0.2

0.4

x

t=7.77

Figure E.2.: A moving Gaussian Wave Packet in a Box with absorbing Boundaries. Adding
an imaginary potential, a so-called sponge, close to the boundaries allows for
dispersion in the Schrödinger equation. Therefore, the wave packet can leave the
box. For better illustration, the sponge is chosen such that some parts are still
reflected.
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a the amplitude, b the “steepness” of the exponential, and L the “thickness” of the sponge. A
discretized version of the imaginary potential on the left boundary looks like this

Vi,L =
{
ia exp [−bi] for 1 < i < L

0 else
(E.18)

and on the right boundary it has the form

Vi,R = −
{
ia exp [−b(1 + i)] for 0 < i < L− 1
0 else

. (E.19)

The sign of the potential must be different for left respectively right boundaries, see e.g.
Refs. [226, 227] for an explanation even though a different kind of absorbing boundary con-
dition is derived therein.

In Fig. E.2 we show the same moving wave package as before. But now we apply sponges
at the boundaries. We observe how it nicely leaves the domain, cf. [230] for a movie of the
simulation. For better illustration, we have chosen the sponges such that small parts of the
wave are still reflected.

For the purpose of simulating the gravitational collapse, the sponges are important when some
parts of the initial configuration are ejected. If they can escape the gravitational potential they
should leave to infinity. Therefore, in the simulation we have to make sure that there are no
unphysical reflections at the boundaries.

Schrödinger Equation for Spherical
Symmetric Wave Functions
So far, we considered only one spatial dimension. When studying the minicluster collapse we will
consider the spherical symmetric case in three plus one dimensions. This can basically maped
onto the one-dimensional problem, when using an ansatz for the wave function of the form

ψ(r) = u(r)
r

. (E.20)

Then the spherically symmetric Schrödinger equation for u is simply

i∂tu = − 1
2m∂2

ru+ V u . (E.21)

The only important thing is to define sufficient boundary conditions for u to have a physically
well behaved wave function ψ. This means for or large r, u should vanish. Thus, we set u→ 0
for r →∞. For r = 0, u must also vanish to have a finite ψ. Thus, u must be set to zero at the
first spatial grid point.

Poisson Equation
The Poisson equation

∆ΦN = 4πGNmψψ∗ (E.22)
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Figure E.3.: Gravitational Potential of a Gaussian Wave Packet. With the finite difference
method described in the text we solve the Poisson equation for the Newtonian
potential (red). The source is the Gaussian wave packet, displayed in orange.
Both have arbitrary units.

might written as

∂2
rU = rψ̃ψ̃∗ (E.23)

when introducing the rescaled wave function ψ̃ ≡ ψ/
√

4πGNm and making the ansatz

ΦN = U

r
(E.24)

for the potential. Equation (E.23) is in fact a boundary value problem (BVP) with

U = 0 for r = 0 , (E.25)
U = −M for r →∞ . (E.26)

In the second line we used that far away from the source, the Newtonian potential should take
the form ΦN = −GNM/R and should be finite at r = 0.

These kind of BVPs can be solved either by shooting methods or a finite difference scheme.
Since we used the latter also for solving the Schrödinger equation, we apply it to the Poisson
equation too.

Using the Numerov method to put (E.23) on a grid, we find

Uj−1 − 2Uj + Uj+1 = (∆r)2

12
(
rj+1ψj+1ψ

∗
j+1 + 10rjψjψ∗j + rj−1ψj−1ψ

∗
j−1

)
, (E.27)

with the boundary values

U0 = 0 and UN = −M . (E.28)

We can rewrite this as a system of linear equations a la

M~U =~s , (E.29)
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~U = (U0, U1, . . . , UN−1, UN )T , (E.30)
~s = (0, s1, . . . , sj , . . . , sN−1,−M)T , (E.31)

sj =(∆r)2

12
(
rj+1ψj+1ψ

∗
j+1 + 10rjψjψ∗j + rj−1ψj−1ψ

∗
j−1

)
(E.32)

M =



1 0 0 . . .

1 −2 1 0 . . .

0 1 −2 1 0 . . .
. . . . . . . . .
. . . 1 −2 1
. . . 0 0 1


. (E.33)

In Fig. E.3 we show the result ΦN when we apply our method to a wave function ψ is of Gaussian
shape.

Solving the Schrödinger-Poisson System
The SP system can be written in the dimensionless form

i∂tψ = −∆
2 ψ + Φψ + V ψ (E.34)

∆Φ = ψψ∗ . (E.35)

In case of spherical symmetry, we can express ψ and ΦN via the functions u and U as discussed
above. They are determined via the coupled system:

i∂tu = −1
2
d2

dr2u+ U

r
u+ V u (E.36)

d2

dr2U = 1
r
|u|2 . (E.37)

In discretization scheme as the one described before it becomes

un+1
j +i∆t2

(
−
un+1
j+1 − 2un+1

n − un+1
j−1

2(∆r)2 + 1
rj
Un+1
j un+1

j + Vju
n+1
j

)

= unj − i∆t2

(
−
unj+1 − 2unn − unj−1

2(∆r)2 + 1
rj
Unj u

n
j + Vju

n
j

)
(E.38)

Unj−1 − 2Unj + Unj+1 = (∆r)2

12

[
1

rj+1

(
|u|2j+1

)n
+ 10 1

rj

(
|u|2j

)n
+ 1
rj−1

(
|u|2j−1

)n]
. (E.39)

Both equations are coupled in the sense that Eq. (E.38) depends on Un+1 which in turn depends
on un+1. So the question is, how can we find un+1, if Un+1 is unknown? The answer is solving
Eq. (E.38) and Eq. (E.39) alternatively to go from one time step n to n + 1. The algorithm is
the following [118,164]:

1. Start with setting Un+1 = Un in the LHS of (E.38). Solve the linear system of equations
to find un+1,0.

2. Feed un+1,0 in (E.39) to find an updated potental Un+1,update. Note that also the boundary
conditions have to be updated, according to the mass inside the physical volume.

3. Put Un+1,update in the LHS of (E.38) to find un+1,update.
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4. Compare un+1,0 and un+1,update. If max |un+1,update − un+1,0| < c, with c ∈ R being the
desired precission, terminate since we found the proper un+1.We can go on with step 1
to find un+2. If the desired precission is not reached, instead go to step 2 set un+1,0 →
un+1,update and start all over again, till the precission is reached.

Proof of Working
As a test setup to check if the numerics for solving the SP system are working, we chose a wave
function a Gaussian of the form discussed in Sec. V.2, i.e.

φ̃ = M̃
1/2
0

π3/4X
exp

[
− x2

2X2

]
(E.40)

with the initial properties

M̃0 = 30 and X = 3 . (E.41)

Note that for m = 10−6 eV, this translates to

M0 = M̃0
mGN

' 10−5M� and R0 = 9X
m
' 10−2 km . (E.42)

Hence, this initial configuration is far from where our minicluster distribution sit and in fact
should be unstable in that sense that kinetic energy dominates over gravitational energy. Thus,
we can expect a sudden explosion already at our beginning of our simulations.

As a brief side remark, we want to point out that if the particle mass would be m = 10−22 eV
then the chosen values correspond to

M0 ' 1016M� and R0 ' 1014 km ∼ 4 pc . (E.43)

This also nicely underlines why the case of ultralight axions is cosmologically much more rele-
vant than that of “heavy” axions. Since we notet that the chosen paramters could, for example,
easily correspond to the evolution of a galactic halo.

For our spacetime grid we set the outermost points to RN = 70 and T = 85.2 For both,
space and time domain, we take Nr = Nt = 650 gridpoints. This results in a gridspacing
∆r = 0.12 and ∆t = 0.13. The spatial domain should be chosen as large as possible compared
to the initial size avoid too much influence of the boundaries and the applied sponge. For the
sponge we took an exponential potential of the form

Vsponge(r) = −ia exp [b(r −RN )] , (E.44)

where a tunes the height and b the steepness.

Further, we can define the physical volume, as the volume where it holds that

Vsponge(r < Rphys) < 1/e . (E.45)

This translates to

Rphys = bRN − log a− 1
b

resp Nphys = bRN − log a− 1
b∆r . (E.46)
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Figure E.4.: Evolution of Gaussian Wave Packet under the Schrödinger-Poisson System. We
use the methods described in the text to determine the evolution of the Gaussian
intial wave function. The last panel shows a projection of the absolute value of
the wave function on the time-radius plane.
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For our test run we set a = 10 and b = 0.5. It gives Rphys = 66.

In Fig. E.4 we show different snapshots for the evolution of u = rψ. The dotted line marks
Rphys. In the lowest panel we show a projection of the evolution of u on the time-radius plane.
A movie file can be found here [231]. We observe that at the first moments of the simulation
the peak seems to disperse away and parts are ejected towards infinity, as already anticipated.
The initial coherence is quickly broken up. Real and imaginary part start to oscillate on some
characteristic scale. The simulation time is too short as to see if the ejected parts are effectively
soaked up by the sponge. However, runs where we simulate longer show that the sponge is quite
effective. Further, it would be interesting to study if the oscillating peak close to r = 0 at some
point completely vanishes. Also for that a longer running time would be needed. Note that our
simulations show similar features as the results found by Seidel and Suen in Ref. [163].

2Note that expressing T in terms of m = 10−6 eV, we find T ∼ 10−7 sec but for m = 1022 eV it corresponds to
T ∼ 108 sec ∼ 3 years.
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Madelung Transformation

The interpretation of the Schrödinger equation in terms of hydrodynamic quantities goes back
to the work of Madelung in 1927 [168]. Here, we want to repeat the most important steps of the
calculation and apply it to the case of the Schrödinger-Poisson (SP) system. The SP system is
given by

i∂tφ = − 1
2m∆φ+mΦNφ (F.1)

∆ΦN = 4πGm|φ|2 , (F.2)

where ΦN is the gravitational potential.

We start with the ansatz for the wave function as in Ref. [168]

φ = αeiβ , (F.3)

α, β being real functions. First, we note that

∆φ = ∆αeiβ + 2i∇α∇βeiβ + iα∆βeiβ − α (∇β)2 eiβ (F.4)

and

∂tφ = α̇eiβ + iαβ̇eiβ . (F.5)

Thus, the real part of Eq. (F.1) with an ansatz of the form like in Eq. (F.3) gives

− 1
2m

[
∆α− α (∇β)2

]
+mΦNα = −αβ̇ (F.6)

and the imaginary part yields

− 1
2m [2∇α∇β + α∆β] = α̇ . (F.7)

Defining ϕ = β/m, Eq. (F.7) can be rewritten as

∇
(
α2∇ϕ

)
+ ∂tα

2 = 0 . (F.8)

Now we can identify ∇ϕ = u as the flow velocity of a fluid with density α2 = ρ and Eq. (F.8)
turns into the continuity equation

∇ (ρu) + ∂tρ = 0 . (F.9)

Identifiying ∇ (β/m) = u as flow velocity becomes clear when we look at the current j which is
defined as

j = 1
2mi (φ∗∇φ− φ∇φ∗) . (F.10)
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With the ansatz φ = α exp [iβ], we find

j = α2∇β
m

. (F.11)

In quantum mechanics the current j can be interpreted as the flow of the propability density ρ
with a certain velocity u.

Using the definition of the velocity potential ϕ also in (F.6) we find

− ∆α
2m2α

+ 1
2 (∇ϕ)2 + ΦN + ∂tϕ = 0 . (F.12)

Taking the gradient of this equation, eventually leads to1

∂tu + u · (∇u)︸ ︷︷ ︸
=(u·∇)u

= −∇
(

ΦN −
∆√ρ

2m2√ρ

)
(F.13)

which is nothing but the Euler equation of a perfect fluid. Besides the Newtonian poten-
tial ΦN driving the gravitational collaps of the fluid, we can identfy the quantum potential
VQ = ∆√ρ/(2m2√ρ) which is basically a consquence of the uncertainty principle. It acts as an
outward pressure which avoids a collaps of the fluid to a singularity.

Thus, we found that when describing the wave function φ by its density ρ and bulk velocity u,
it behaves like a fluid which dynamics are governed by the Euler-Poisson equations

∇ (ρu) + ∂tρ = 0 , (F.14)

∂tu + (u · ∇) u = −∇
(

ΦN −
∆√ρ

2m2√ρ

)
, (F.15)

∆ΦN = 4πGρ . (F.16)

As a short side remark: Note that this is a system of nonlinear differential equations. Recall
that we started with the linear Schrödinger equation plus the Poisson equation wich is nonlinear
in φ. So on first sight it looks like we made the system more complictated. On the other hand, it
shows that a system of nonlinear differential equations can be rewritten in terms of a linear ones
by applying an inverese Madelung transformation. This is sometimes used to bypass N-body
simulation of the Euler-Poisson system and rather use a description via wave function in the
Schrödinger-Poisson picture [170,171].

1When taking the gradient one needs a known formula to compute ∇ (u · u).
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