KIT | KIT-Bibliothek | Impressum | Datenschutz

Detecting structural differences in tail dependence of financial time series

Bormann, Carsten; Schienle, Melanie ORCID iD icon

Abstract:

An accurate assessment of tail inequalities and tail asymmetries of financial returns is key for risk management and portfolio allocation. We propose a new test procedure for detecting the full extent of such structural differences in the dependence of bivariate extreme returns. We decompose the testing problem into piecewise multiple comparisons of Cramér-von Mises distances of tail copulas. In this way, tail regions that cause differences in extreme dependence can be located and consequently be targeted by financial strategies. We derive the asymptotic properties of the test and provide a bootstrap approximation for finite samples. Moreover, we account for the multiplicity of the piecewise tail copula comparisons by adjusting individual p-values according to multiple testing techniques. Monte Carlo simulations demonstrate the test’s superior finite-sample properties for common financial tail risk models, both in the i.i.d. and the sequentially dependent case. During the last 90 years in US stock markets, our test detects up to 20% more tail asymmetries than competing tests. This can be attributed to the presence of non-standard tail dependence structures. ... mehr


Volltext §
DOI: 10.5445/IR/1000092468
Veröffentlicht am 21.03.2019
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Volkswirtschaftslehre (ECON)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2019
Sprache Englisch
Identifikator ISSN: 2190-9806
urn:nbn:de:swb:90-924680
KITopen-ID: 1000092468
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 44 S.
Serie Working paper series in economics ; 122
Schlagwörter Tail dependence, tail copulas, tail asymmetry, tail inequality, extreme values, multiple testing
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page