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DimensionsI
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Abstract

We provide a shrinkage type methodology which allows for simultaneous model selection
and estimation of vector error correction models (VECM) when the dimension is large
and can increase with sample size. Model determination is treated as a joint selection
problem of cointegrating rank and autoregressive lags under respective practically valid
sparsity assumptions. We show consistency of the selection mechanism by the resulting
Lasso-VECM estimator under very general assumptions on dimension, rank and error
terms. Moreover, with computational complexity of a linear programming problem only,
the procedure remains computationally tractable in high dimensions. We demonstrate the
effectiveness of the proposed approach by a simulation study and an empirical application
to recent CDS data after the financial crisis.

Keywords: High-dimensional time series, VECM, Cointegration rank and lag selection,
Lasso, Credit Default Swap
JEL: C32, C52

1. Introduction

Complex financial systems are dynamic, high-dimensional and often contain a large
number of non-stationary potentially cointegrated components. Examples include the de-
gree of interdependence of corporate debt among different banks and its interplay with
sovereign debt, both measured as a large system of credit default spreads (CDS), but
also risk analysis for large-dimensional portfolios containing many different nonstation-
ary elements such as exchange or interest rates in the presence of a limited number of
applicable observations during crisis times. Generally, the standard tool to handle mul-
tivariate nonstationary time-series has been the vector error correction model (VECM)
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as introduced by Engle and Granger (1987). But even for settings with a fixed number
of dimensions mildly exceeding two, existing econometric techniques for VECM often fail
to provide accurate, testable and computationally tractable estimates, e.g. sequential Jo-
hansen tests (Johansen, 1988, 1991) and refinements thereof such as e.g. Xiao and Phillips
(1999), Hubrich, Lütkepohl and Saikkonen (2001), Boswijk, Jansson and Nielsen (2012),
Cavaliere et al. (2012). In the high-dimensional case of the examples before, however, also
information criteria based techniques such as Chao and Phillips (1999) are no longer appli-
cable and novel types of methods are required which need a completely different statistical
analysis. Such techniques are important for understanding the explicit interplay of differ-
ent market components in order to judge their systemic importance and market relevance.

In this paper, we provide a Lasso-type technique for consistent and numerically ef-
ficient model selection when the dimension is allowed to increase with the number of
observations at some polynomial rate. Model determination is treated as a joint selection
problem of cointegrating rank and VAR lags. In this case, we exploit a sparse model struc-
ture in the sense that from a large number of potential cointegration relations, in practice,
only a small portion of them are actually prevalent for the system. In the same way, a
small and fixed number of VAR lags is considered sufficient for a parsimonious model
specification. Within this maximum lag range, however, our model selection technique is
independent from the lag ordering detecting non-consecutive lags. We show consistency
of model selection by the proposed adaptive group Lasso-VECM estimator requiring only
weak moment conditions on the innovations allowing for a wide range of applications.
Moreover, we also cover the case of weak dependence in the error term and obtain rank
selection consistency despite the fact that least squares pre-estimates of the cointegra-
tion matrix are inconsistent in this case. As a by-product, we also derive the statistical
properties of the obtained Lasso-estimates for the loadings. A simulation study shows the
effectiveness of the proposed techniques in finite samples treating cases of dimension up
to 50 with realistic empirical sample sizes. In the empirical example, the new techniques
allow us to study a joint system of 15 credit default swaps (CDS) log prices of European
sovereign countries and banks - for which there has been no theoretically valid and feasible
model determination technique in the literature so far.

Our work builds on the excessive literature of VECM as summarized e.g. in Lütkepohl
(2007) as well as on results for Lasso-type techniques from the standard i.i.d. setting
originating from Tibshirani (1996) and Knight and Fu (2000). In particular, we employ
ideas from adaptive Lasso by Zou (2006) for improved selection consistency properties
by weighted penalties and use the group structure as in Yuan and Lin (2006) for group-
Lasso which allows for simultaneous exclusion and inclusion of certain variables. For the
high-dimensional case, consistency results for Lasso have been developed by Bickel, Ritov
and Tsybakov (2009) , Zhao and Yu (2006) and in a group-Lasso case in Wei and Huang
(2010).

Our proposed technique is particularly related to a recent literature which uses Lasso
in a high-dimensional time series context. Kock and Callot (2015) and Basu and Michai-
lidis (2015) provide model determination techniques in a stationary high-dimensional VAR
context. There has also been a recent empirical literature which employs Lasso-type pe-
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nalizing algorithms for VECM without mathematical proofs, see Signoretto and Suykens
(2012), Wilms and Croux (2016). To the best of our knowledge, comparable settings of
determining cointegrated time series have only been investigated in three recent theoret-
ical papers by Liao and Phillips (2015) in fixed dimensions and Zhang, Robinson and
Yao (2018) and Onatski and Wang (2018) in high dimensions. In particular for fixed di-
mensions, Liao and Phillips (2015) are the first to propose a Lasso-procedure for VECM
with theoretical proofs. Their procedure, however, penalizes the eigenvalues of a generally
asymmetric matrix which limits the applicability of the technique to specific fixed dimen-
sional settings. Zhang, Robinson and Yao (2018) provide statistical results for a factor
model dealing with high-dimensional non-stationary time series with a focus on forecast-
ing without employing a VECM structure. The focus of Onatski and Wang (2018) is not
on model selection consistency but on asymptotic distributions of the eigenvalues.

The rest of the paper is organized as follows. In Section 2 and Section 3, we derive the
Lasso objective function in a VECM specification in order to determine the cointegration
rank and the VAR lags. The consistency results will be derived. Section 4 extends the
previous econometric analysis to a more general setting with non i.i.d. innovations. In
Section 5 we study the finite-sample performance of the method in several simulation ex-
periments. We also provide an empirical application to CDS data for European countries
and banks in Section 6. Section 7 concludes. Proofs for Sections 2 and 3 are contained in
the Appendix. Proofs for Section 4 and technical Lemma are in the online supplementary.

Throughout the paper, we use the following notation. For a vector x P Rm, the l2

norm is defined as ||x||2 “
b

řm
j“1 x

2
j and ||x||8 “ sup1ďjďm |xj| is the l8 norm. For a

matrix A “ ppAijqq of dimension m ˆ l, ||A||F “
b

řm
i“1

řl
j“1A

2
ij denotes the Frobenius

norm and ||A||2 “ supt||Ax||2 : x P Rl with ||x||2 “ 1u the l2 norm. Besides, we denote by
λjpCq the j-th largest eigenvalue of a square matrix C in absolute value, where as σjpAq
is the j-largest singular value of A, i.e. σ2

j pAq “ λjpA
1Aq. Without loss of generality,

we assume the sigualr values to be non-negative for notational convenience. We use
vecpAq “ rA1¨1, A

1
¨2, . . . , A

1
¨ns
1 for vectorizing a matrix A by stacking all columns where A¨j

is the jth column in matrix A. For rankpAq “ l ă m, the orthogonal complement to a
matrix A is defined as AK “ tU P Rmˆpm´lq|U 1A “ 0u. For an orthonormal AK of A it
holds that AK P AK and in addition that A1KAK “ Im´l.

2. Cointegration rank selection

2.1. Set-up and fundamental results

We consider a general VECM set-up with unknown rank and general lag order which
both enter the model selection problem. Thus complete model specification amounts to
both rank and lag order determination.

In particular, we consider an m-dimensional Ip1q time series Yt, i.e. Yt is nonstation-
ary and ∆Yt “ Yt ´ Yt´1 is stationary for t “ 1, . . . , T in the following general VECM
specification:

∆Yt “ ΠYt´1 `B1∆Yt´1 ` ¨ ¨ ¨ `BP∆Yt´P ` wt (1)
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for t “ 1, . . . , T , where Bk are mˆm stationary lag coefficient matrices for k “ 1, . . . , P
and Π is the mˆm cointegration matrix of rank r with 0 ď r ă m marking the number
of cointegration relations in the system. In case of r “ m, all the components in Yt
are stationary, which is not relevant to our non-stationary time series setting. Π can
be decomposed as Π “ αβ1, where β P Rmˆr constitutes the r long-run cointegrating
relations and α P Rmˆr is a loading matrix of rank r. This decomposition is unique up to
a nonsingular matrix H, so only the space of cointegration relations is identified but not
β. Without loss of generality, we set β as orthogonal, i.e. β1β “ Ir.

Our setup is high-dimensional, thus both, dimension m and cointegration rank r, can
grow with sample size T . This treats the practically most important case, as e.g. for
large dimensional portfolios with nonstationary components like credit default swaps or
exchange rates the number of relevant cointegration relations might increase with sam-
ple size. Also from the technical side, this is the interesting innovative case, treating
high-dimensionality in the nonstationary parts. For the stationary transient components,
however, we set the maximum possible lag length P as sufficiently large but fixed inde-
pendent of T , such that it is an upper bound for the true lag length p, i.e. p ă P . In this
case, Bp`1, . . . , BP are all zero matrices. A fixed P or p is chosen for convenience to keep
proofs to a minimum with no apparent restriction for practical problems. An extension
to P or p increasing with T would be technically straightforward and covered by standard
arguments for stationary components (see e.g. Basu and Michailidis (2015)).

In the following, we work with the matrix version of (1)

∆Y “ ΠY´1 `B∆X `W (2)

where ∆Y “ r∆Y1, . . . ,∆YT s, Y´1 “ rY0, . . . , YT´1s, B “ rB1, . . . , BP s, W “ rw1, . . . , wT s,

and ∆X “ r∆X0, . . . ,∆XT´1s with ∆Xt´1 “
“

∆Y 1t´1, . . . ,∆Y
1
t´P

‰1
.

For model selection, we disentangle the joint lag-rank selection problem by employing
a Frisch-Waugh-idea in the VECM model (2). With this, we obtain two independent
criteria for lag and rank choice which can be computed separately. For rank selection,
the partial least squares pre-estimate rΠ can be obtained from the corresponding partial
model when removing the effect of ∆X in ∆Y and Y´1 by regressing ∆YM∆x on Y´1M∆x

with M∆x “M “ IT ´∆X 1p∆X∆X 1q´1∆X. Therefore, (2) is equivalent to

∆rYt “ αβ1rYt´1 ` rwt (3)

with components ∆rY “ ∆YM, rY´1 “ Y´1M and ĂW “ WM . Thus model selection is
reduced to rank selection only in (3).

Given the high-dimensional set-up, we allow for very general error terms wt not im-
posing any specific distributional assumption but just requiring moment assumptions to
be satisfied which is key for the practical applicability of the procedure.

Assumption 2.1. For the error component wt in (1) exists a representation wt “ Σ
1{2
w et

where the elements satisfy the following conditions

1. et is a sequence of independent copies of e with Epeq “ 0 and Epee1q “ Im and
independence also holds for all elements in et, i.e. for k ‰ l and k, l “ 1, 2, ...m
Epekt |e

l
tq “ 0 where ekt denotes the k-th element in et.
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2. Each element in e fulfills Ep|ek|4`δq ă 8 for some δ ą 0 and all k ď m.

3. For Σw “ pΣw,jkq
m
j,k“1 there exist τw ą 0 and 0 ă Kw ă 8 such that maxjďm

řm
k“1 |Σw,jk| ď

Kw and λmpΣwq ě τw.

The requirement of i.i.d. components in the error term representation allows focusing
on the key aspects of our Lasso selection procedure in the high dimensional set-up while
keeping technical results to a minimum. In Section 4, we show how this Assumption
can be generalized admitting linear forms of weak dependence. Such a general setting,
however, requires a proof for a general strong invariance principle which is key for our
consistency results but not available under weak dependence for high dimensions in the
literature so far.

From the first two points in Assumption 2.1, Σw denotes the covariance matrix of
wt. The third point imposes a sparse structure and ensures positive definiteness of Σw

through bounding the smallest eigenvalue of Σw away from zero. This sparsity condition
is satisfied if Σw is a banded diagonal matrix with off-diagonal entries far away from the
diagonal decaying to zero fast enough (see e.g. Bickel and Levina (2008)). In practice,
this seems plausible e.g. in the case of sovereign CDS as treated in the empirical example
that geographical distance between countries implies such a cross-section decay structure
in the innovations naturally.

Our shrinkage selection procedure for the cointegration rank is based on a least squares
pre-estimate of Π from the M∆x-transformed VECM equation (3)

rΠ “
´

∆YMY 1´1

¯´

Y´1MY 1´1

¯´1

(4)

of the cointegration matrix Π whose statistical properties rely on the decomposition of the
transformed rYt into a stationary and a non-stationary component. Such a representation
generally exists under the following assumptions (see Engle and Granger (1987)):

Assumption 2.2. 1. The roots for |p1´ zqIm ´ Πz ´
řp
j“1Bjp1´ zqz

j| “ 0 is either
|z| “ 1 or |z| ą 1.

2. The number of roots lying on the unit circle is m´ r.

3. The matrix α1KpIm´
řp
i“1BiqβK is nonsingular with ||pα1KpIm´

řp
i“1BiqβKq

´1||2 ă 8.

The last point of Assumption 2.2 is a stronger version than in fixed dimensional case
which requires that the smallest singular value of α1KβK to be significantly different from
zero, which is equivalent to that the basis generating β can not be close to any of the
basis of αK.

It is well known that for the standard low-dimensional setup with fixed m in (1)
and Assumptions 2.1 and 2.2, the standard least squares estimator in (4) is consistent
(see e.g. Lütkepohl, 2007). In our high-dimensional case, however, we need to explicitly
derive its statistical properties. These are key for the construction and validity of a Lasso
cointegration rank selection procedure in this paper.

Thus we require the following assumptions reflecting the high-dimensional setting. In
the subcase of fixed dimension m, these conditions are trivially fulfilled.
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Assumption 2.3. 1. All singular values σjpαq of α fulfill 0 ă σrpαq ď ¨ ¨ ¨ ď σ1pαq ă
8 and there exist τ1 ą 0 and K1 ą 0 such that

rτ1σrpαq ě K1 .

2. For Bp “ pBppi, jqq
m
i,j“1 it holds that max1ďi,jďm |Bppi, jq| ě εB ą 0 with εB ą 0 and

for B defined in (2) there exists a positive KB ă 8 such that ||B||2 ă KB.

With both dimension m and cointegration rank r increasing with sample size, α1α
converges by construction to a compact operator of which the spectrum is well-known
to have zero as an accumulation point (cp. Zhao and Yu (2006)). Since therefore the
smallest singular value of α in (3) has a converging subsequence to zero, Assumption 2.3
connects the admissible rate of divergence of the rank r with the rate of decay in singular
values of α (cp. the high-dimensional factor model literature, e.g. Li, Li and Shi (2017)).
Thus for deriving statistical properties of corresponding estimates in this set-up this rate
that σrpαq decays to zero restricts the rate at which r can increase with T . We generally
denote elements as relevant if they are non-zero in finite samples but with potentially zero
limits or accumulation points asymptotically.

The assumption ||B||2 ă 8 is important in a high dimensional setting for avoiding
that relevant non-zero elements concentrate on one row or one column only such that a
necessary moment bound on ∆Yt can no longer be inferred from the assumptions above.

The statistical properties of rΠ rely on aQ-transformation of the definingM∆x-transformed
VECM equation (3) which allows to disentangle stationary and nonstationary compo-

nents. We set Q “

„

β1

α1K



and Q´1 “
“

αpβ1αq´1 βKpα
1
KβKq

´1
‰

, where αK and βK are

orthogonal complements of α and β respectively, as defined in Assumption 2.2. After
Q-transformation of (3) we get

∆ rZ1,t “ β1α rZ1,t´1 ` rv1,t

∆ rZ2,t “ rv2,t (5)

where rZt “ QrYt “ rpβ
1
rYtq

1, pα1K
rYtq

1s1 “

”

rZ 11,t
rZ 12,t

ı1

and rvt “ Q rwt “ rrv
1
1t rv

1
2ts
1. Note that

by definition, the first component rZ1,t of dimension r is stationary and the pm ´ rq-

dimensional remainder rZ2,t is a unit root process. We also denote Zt “ QYt “
“

Z 11,t Z
1
2,t

‰1
,

and vt “ Qwt “ rv11t v
1
2ts
1. From (5) the corresponding estimate of the cointegration

matrix is obtained as

QrΠQ´1
“

´

řT
t“1 ∆ rZt´1

rZ 11,t´1

řT
t“1 ∆ rZt´1

rZ 12,t´1

¯

˜

řT
t“1

rZ1,t´1
rZ 11,t´1

řT
t“1

rZ1,t´1
rZ 12,t´1

řT
t“1

rZ2,t´1
rZ 11,t´1

řT
t“1

rZ2,t´1
rZ 12,t´1

¸´1

(6)

with rΠ from (4). For this, the statistical properties can be derived in a block-wise way.
The result is stated in the following theorem.

Denote by M “ rM1
1,M

1
2s
1 an m-dimensional martingale process with covariance

QΣwQ
1 with Σw from Assumption 2.1 where each component Mk constitutes a Brow-

nian motion starting at zero and M1 marks the first subvector of dimension r and M2
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for the vector of the last m´ r elements. In the following, given the rank r ă m, for any
matrix A P Rmˆm, denote the top-left rˆ r block of A by A11, the bottom-left pm´ rqˆ r
block by A12, the top-right rˆpm´rq block by A21, and the bottom right pm´rqˆpm´rq
block by A22 respectively.

Theorem 2.1. Let Assumptions 2.1, 2.2, and 2.3 hold. With DT “ diagpIr, T Im´rq
define

rΨ “ QrΠQ´1DT and Ψ “

„

β1α V12

0 V22



.

with Vi2 “ p
ş1

0
dMipsqM

1
2psqqp

ş1

0
M2psqM

1
2psqdsq

´1 for i “ 1, 2 with M1 P Rr and M2 P

Rm´r as defined right above.

Then for r “ O
´

m
1

2τ1`1

¯

we get blockwise

||rΨ11 ´ pβ
1αq||F “ Op

ˆ

r
?
T

˙

||rΨ12 ´V12||F “ Op

˜

m

c

plog T qplog log T q1{2

T 1{2

¸

||rΨ21||F “ Op

ˆ
c

mr

T

˙

||rΨ22 ´V22||F “ Op

˜

m

c

plog T qplog log T q1{2

T 1{2

¸

.

Under suitable restrictions on the expansion rates of m and r consistency of all compo-
nents in rΨ can be reached. For the stationary components the standard fixed-dimensional
T´1{2 rate is slowed down by the expansion rates of r and mr. For the nonstationary
components, however, the convergence rate depends on the moment conditions of the
innovations. In particular, the limit results for the nonstationary blocks in Theorem 2.1
yield stochastic elements of Ψ with a general martingale structure of only elementwise
Brownian motions instead of a standard multivariate Brownian motion. This is because
generally in the high dimensional set-up, a vector composed of elementwise Brownian
motion processes does not necessarily follow a multivariate Brownian motion in contrast
to standard multivariate fixed dimensional case, see Kosorok and Ma (2007). With higher
moment assumptions on the innovation than Assumption 2.1, however, a Brownian mo-
tion type limit and faster rates of convergences could be achieved. Though for general
applicability of our subsequent methodology to financial market data, the stated rates are
sufficient and we therefore refrain from imposing moments beyond 4` δ.

Note that the technical condition m
1

2τ1`1 imposes an upper bound for the expansion
rate of the rank r depending on the rate of decay of the smallest singular value σrpαq
in T . Combined with Assumption 2.3, it implies that for fast decreasing subsequences
of σrpαq, the polynomial exponent τ1 must also be large, imposing a binding restriction
on the rate of r. Whereas in the case with any subsequence of σrpαq approaching zero
not too rapidly, identification of relevant elements is easier and thus r can increase faster.
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When the dimension m is fixed, all the singular values of α are significantly different from
zero, which is equivalent to assume τ1 “ 0 and thus there is no restriction on r.

We can combine the blockwise results of Theorem 2.1 to obtain the following corollary.

Corollary 2.1. Let Assumptions 2.1, 2.2, and 2.3 hold. Moreover, we require m “

OpT 1{4´εq with ε P p0, 1
4
s and r “ O

´

m
1

2τ1`1

¯

. Then:

||rΨ´Ψ0||F “ oP p1q

with rΨ as in Theorem 2.1 and Ψ0 “ QΠQ´1 “

ˆ

β1α 0
0 0

˙

“ EpΨq.

Thus the Q-transformed rΠ consistently estimates the population counterpart under
the stated conditions on m and r. The admissible expansion rate m “ OpT 1{4´εq mainly
results from the mild p4 ` δq moment condition on the innovations in Assumption 2.1
and the strong invariance principle. Fixed dimensions are included as a special case for
ε “ 1

4
. Hence, the relevant r-dimensional stationary part can be consistently identified as

all other components of Ψ have expectation 0.

2.2. Adaptive Group LASSO for rank selection: Idea, procedure and statistical results

The basic principle of standard Lasso-type methods is to determine the number of
covariates in a linear model according to a penalized loss-function criterion. Likewise,
the determination of the cointegration rank in (1) amounts to distinguishing the vectors
spanning the r-dimensional cointegration space from the pm ´ rq basis of its orthogonal
complement. This is also equivalent to separating the r relevant singular values of Π in (3)
from the non-relevant ones, where the number of relevant singular values corresponds to
the rank. Thus, the corresponding loading matrix for the stationary part rZ1,t “ β1rYt´1 in

(5) is α while the remainder β1K
rYt´1 should get loading zero in the Q-transformed defining

VECM equation (3). We use the QR decomposition with column-pivoting1 to detect the
rank of Π “ αβ1 “ SR as the rank of R, where S is orthonormal, i.e. S 1S “ I, and
R is an upper triangular matrix 2. Column-pivoting orders columns in R according to
size putting zero rows at the end.3 Thus the rank r of Π corresponds to the number of
relevant columns in R.

The challenge is, to show that such disentangling of the stationary part rZ1 from
the non-stationary rZ2 also works empirically when starting from estimated objects in-
stead of true unobserved population counterparts. Thus calculating the rank from a
QR-decomposition with column pivoting of the consistent pre-estimate rΠ does indeed

1We denote the orthogonal matrix in the QR-decomposition by S in order to avoid labeling confusion
with the Q-transformation used in equation (5)

2Such a decomposition exists for any real squared matrix. It is unique for the invertible rΠ if all
diagonal entries of R are fixed to be positive. There are several numerical algorithms like Gram-Schmidt
or the Householder reflection which yield the numerical decomposition.

3Generally, column pivoting uses a permutation on R such that its final elements Rpi, jq fulfill:

|Rp1, 1q| ě |Rp2, 2q| ě . . . ě |Rpm,mq| and Rpk, kq2 ě
řj

i“k`1Rpi, jq
2. Further properties of this

decomposition can be found e.g. in Stewart (1984).
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yield a consistent estimate of the true rank r. In particular, this requires ensuring that
true non-relevant singular values, loadings or entries can be distinguished from elements
which just appear as non-relevant due to estimation but which in fact truly are relevant
which would delude the rank choice. In the following, we show that different speeds of
convergence in the stationary and nonstationary parts, however, help to disentangle the
two components and can be cleverly exploited in constructing weights for a consistent
adaptive group Lasso procedure.

For the Lasso-type objective function, we obtain a pre-estimate for the space of β and
βK respectively from the QR decomposition with column-pivoting of rΠ1 as

rΠ “ rR1 rS 1 “
´

rR11
rR12

¯

˜

rS 11
rS 12

¸

“

˜

rR111 0
rR112

rR122

¸˜

rS 11
rS 12

¸

(7)

where rS is m ˆ m orthonormal, i.e. rS 1 rS “ I, with components rS 11 P Rrˆm and rS 12 P

Rpm´rqˆm. rR is an upper triangular matrix with blocks rR1 “ p rR11
rR12q P Rrˆm and

rR2 “ p0 rR22q P Rpm´rqˆm and components with the same notation as for Theorem 2.1

where rR11 P Rrˆr, rR12 P Rrˆpm´rq, and rR22 P Rpm´rqˆpm´rq of rR in (7). According to

Corollary 2.1, for m “ OpT 1{4´εq with ε P p0, 1
4
s , the estimate rΠ is a matrix of full-rank

and also a consistent estimate of Π. Therefore the lower diagonal elements of rR122 are
expected to be small. In particular, they converge to zero asymptotically at unit root
speed 1{T as is shown in the following Theorem.

Theorem 2.2. Let Assumptions 2.1, 2.2, and 2.3 hold and rR11 denote the first r and

by rR12 the last m ´ r columns of rR1 in the QR-decomposition (7) of rΠ1. Besides, define

µ̃k “
b

řm
j“k

rRpk, jq2. Then for m “ OpT 1{4´εq and r “ Opm
1

2τ1`1 q with ε P p0, 1
4
s

1. ||β1K
rS1||F “ Opp

mr2τ1
T
q.

2. µ̃k satisfy

µ̃k P rσrpαq ´Opp

c

mr

T
q, σ1pαq `Opp

c

mr

T
qs k “ 1, 2, . . . , r

µ̃k “ Opp
1

T
q k “ r ` 1, . . . ,m

3. max1ďjďr |σjp rR1q ´ σjpαq| “ Opp
a

mr
T
q

The first part of Theorem 2.2 provides identification of the cointegration space spanned
by β. In the respective rate, however, unit root speed is generally slowed down by m and
rτ1 which is larger the faster σrpαq approaches zero in Assumption 2.3. But the subspace

distance between rS1 and β converges at a faster rate than the distance between rR1 and α1.
This is the key point in order to disentangle stationary and nonstationary components.
Moreover, from point 2 of Theorem 2.2, the l2-type weight µ̃k achieves exact unit root
speed for the irrelevant parts without affecting identification of the loadings α in speed of
convergence. Therefore, µ̃k yields a clearer separation of relevant and irrelevant columns
and is the preferred weight for an adaptive Lasso procedure. Note that Theorem 2.2
contains the fixed dimensional case as a special case, where identification of the space of
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β from rS1 is at unit root speed and the standard stationary speed 1{
?
T is obtained for

the loasdings.
The statistical properties of the QR-components of rΠ derived in Theorem 2.2 inspire

the construction of the following adaptive group Lasso objective function (8) with group-
wise weights for the determination of the cointegration rank (see Wei and Huang (2010) for
group Lasso in the standard univariate iid case). Hence columns R̂1p. , jq of the adaptive
group-Lasso estimator R̂1 minimize the following column-wise criterion over all R1p. , jq
for j “ 1, . . . ,m

T
ÿ

t“1

‖ ∆rYt ´R
1
rS 1rYt´1 ‖2

2 `

m
ÿ

j“1

λrankT

µ̃γj
||R1p. , jq||2 (8)

where the penalization parameter λrankT and the weight γ for adaptiveness in (8) are fixed
and in practice pre-determined in a data-driven way. See the simulation and application
in Sections 5 and 6 for details. We then obtain an estimate of the true cointegration rank
r̂ from (8) as r̂ “ rankpR̂q, where rankpR̂q equals the number of non-zero columns in R̂1.

This adaptive group Lasso procedure (8) exploits that according to Theorem 2.2 the

last m ´ r columns of rR1 converge to zero at a rate faster than the rate of the first r
stationary columns for the stated conditions on m and r. With this, we can construct
adaptive weights for a model selection consistent group Lasso procedure, which put a
faster diverging penalty on any element in the space orthogonal to β and less on those
stationary components in the cointegration space.

Remark 2.1. According to Theorem 2.2, the subspace distance between rS1 and β con-
verges at a faster rate than the subspace distance of rR1 and α under the given conditions
on m and r. Therefore the first step estimation error from using rS in (8) instead of the
infeasible true S1 is negligible for estimating R from the Lasso criterion.

Moreover, even when m and r are both fixed, our approach features several advan-
tages compared with existing literature: Firstly, the employed QR-decomposition is al-
ways real-valued without further constraints on the matrix rΠ. Thus the Lasso criterion
(8) only contains real-valued elements and can be minimized with standard optimization
techniques. In comparison, a corresponding eigenvalue decomposition of an asymmetric
matrix as e.g. in Liao and Phillips (2015) would in general contain complex values leading
to a non-standard harmonic function optimization problem in a respective Lasso objective
function. Secondly, after the QR-transformation based on the consistent pre-estimator,
the objective function (8) has the same penalized representation as standard Lasso prob-
lem and is therefore straightforward to implement with any available numerically efficient
algorithm. So our method is direct and ready to use.

The following theorem provides the statistical properties of adaptive group Lasso es-
timate from (8).

Theorem 2.3. Under Assumptions 2.1, 2.2, and 2.3 and if λrankT satisfies
λrankT?

T
rτ1γ`1{2 Ñ

0 and
λrankT T γ´1

m3{2 Ñ 8, m “ OpT 1{4´εq with ε P p0, 1{4s, and r “ Opm
1

2τ1`1 q. Then the

solution R̂ of the adaptive group Lasso criterion (8) satisfies

10



1. P
´

řm
j“1 IR̂1p.,jq‰0 “ r

¯

ě 1´ C1

´

m3{2

λrankT T γ´1

¯2

for some C1 ă 8.

2. ||R̂11 ´ αH||F “ Opp
a

mr
T
q for some orthonormal matrix H.

Theorem 2.3 shows in part 1 rank selection consistency of the adaptive group Lasso
technique for all admissible penalties λrankT satisfying λrankT “ op

?
T

rτ1γ`1{2 q and m3{2

T γ´1 “

opλrankT q. Under our assumption on the explosion rate of m and r, setting e.g. γ as 2
allows for a large set of possible λrankT choices even if the exact rate of r in unknown.
Generally, the best finite sample performance is achieved if γ is not too large as also
standard in the literature on stationary adaptive Lasso. Please see also our finite sample
results in Section 5.

The lower bound on λrankT ensures that with probability approaching 1 the irrelevant
groups are excluded by the adaptive group Lasso procedure. Though if λrankT increases
too rapidly also the non-zero columns of R̂1 will be shrunk to zero. Limiting this bias
induces the upper bound on λrankT . In total, a larger dimension m decreases the lower
bound for the probablity that the right model is selected. While a large rank r and small
σrpαq restrict the possible set of λrankT , thus impacting the Lasso technique in an indirect
way.

In part two of the Theorem, we get as a by-product to consistent cointegration rank
selection also consistent estimates for α from the adaptive group Lasso criterion (8). Note
that the obtained rate of convergence coincides with the infeasible oracle rate in the high-
dimensional case when the true cointegration rate was known. In the case of fixed r and
m we recover the standard stationary T 1{2-rate of convergence.

3. Lag selection

As for the rank choice, the standard VECM equation (2) is transformed in a Frisch-
Waugh pre-step in order to focus on the lag selection. In particular, the effect of the
nonstationary term Y´1 is discarded by employing C “ IT ´ Y

1
´1pY´1Y

1
´1q

´1Y´1 in (2)

∆qYt “ B∆ qXt´1 ` qwt (9)

where we write qY “ ∆Y C and qX “ ∆XC with B “ pB1, . . . , BP q P RmˆmP . In contrast
to the rank transformation M , the lag transformation C contains nonstationary objects.
Thus, the statistical properties of the transformed objects qYt and ∆ qXt´1 must be explicitly
derived. For the technical results we refer to Lemma 3 in the online supplementary. For
the true lag length p ă P , we denote by IB the set of indices with non-zero lag coefficient
matrices Bj for 1 ď j ď p and set B0 P Rmˆlm with l ď p as B0 “ pBjqjPIB the stacked
matrix of non-zero lag coefficient matrices in B.

For lag selection, we obtain the least squares estimator qB and the Ridge estimator rB
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of the transient lag components B from equation (9) as

qB “

˜

1

T

T
ÿ

t“1

∆qYt∆ qX 1
t´1

¸˜

1

T

T
ÿ

t“1

∆ qXt´1∆ qX 1
t´1

¸´1

(10)

rB “

˜

1

T

T
ÿ

t“1

∆qYt∆ qX 1
t´1

¸˜

1

T

T
ÿ

t“1

∆ qXt´1∆ qX 1
t´1 `

λridgeT

T
ImP

¸´1

. (11)

While we will show that both estimators are consistent, the least squares estimate qB,
however, suffers from substantial multicollinearity effects. Therefore it is more favorable
in practice to work with the Ridge estimator rB. In fact, for the construction of the
adaptive Lasso procedure below it is crucial to base the weights on the Ridge pre-estimate
rB for valid finite sample selection results on IB and p.

The statistical properties of qB and rB are provided in the following Theorem.

Theorem 3.1. Let Assumptions 2.1, 2.2, and 2.3 hold and qB and rB are as defined in (10)

and (11). Assume m “ OpT
1
4
´εq with ε P p0, 1{4s. Then

||vecp qB ´Bq||8 “ Op

˜

c

logm

T

¸

||vecp rB ´Bq||8 “ Op

˜

c

logm

T

¸

if λridgeT “ op
?
T q for rB in (11).

Note that all components in both estimators depend on the initial transformation C.
Therefore for the consistency rates in Threorem 3.1 explicit rates of all blocks in (10) and
(11) are crucial and therefore derived in the technical Lemma 3 in the online supplemen-
tary.

From Theorem 3.1 we obtain consistency results in the l8 norm for the vectorized
coefficient matrices Bj with j “ 1, . . . , P of the stationary transient components in (13).
In contrast to the rank selection case, for the stationary lag coefficient pre-estimates there
is no difference in speed between true zero coefficient matrices and non-zero ones only
estimated as zero as in standard stationary adaptive Lasso selection problems. Thus
we adopt the l8 norm in order to carefully ensure that if there exists at least one non-
zero element in a coefficient matrix, the corresponding lagged term is relevant to the
model. Compared to l2 or Frobenius norm, l8 increases with the dimension m only at the
logarithmic rate and is independent of the sparsity structure. It is therefore preferred as
weight for the adaptive step.

Thus the adaptive Lasso estimate B̂ “ pB̂1, . . . , B̂P q of the lag coefficient matrices in
(9) minimizes the following objective function in lag coefficient matrices Bj P Rmˆm of
B “ pB1, . . . , BP q P RmˆmP

T
ÿ

t“1

||∆qYt ´
P
ÿ

j“1

Bj∆qYt´j||
2
2 ` λ

lag
T

P
ÿ

j“1

||vecp rBjq||
´γ
8 ||Bj||F (12)
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As in the case of rank selection, a lag k should be included into the model, whenever
B̂k from the Lasso selection (12) is different from zero. Thus, in contrast to other model
selection criteria, a Lasso-type procedure allows for the inclusion of non-consecutive lags,
which we consider an additional advantage of the procedure.

We obtain an estimate p̂ of the true lag length from (12) as p̂ “ max1ďkďP tk|B̂k ‰ 0u.
We also define the estimated active set IB̂ of (12) as the set of indices with non-zero B̂j

for 1 ď j ď p, i.e., IB̂ “ tj|B̂j ‰ 0u and B̂0 “ pB̂jqjPIB P Rmˆlm with l ď p consists of
estimated coefficient matrices of the true active set IB.

In the objective function (12), we penalize each coefficient matrix jointly by group
Lasso rather than penalizing each element in the matrix separately. Such elementwise
Lasso would be less robust in finite sample performance and potentially lead to problems
in economic interpretation.

Remark 3.1. In the adaptive weight, theoretically also the use of the least-squares esti-
mate qB is justified yielding the same consistency result as below for the Ridge estimate
rB. For a numerically stable adaptive Lasso procedure in finite samples, however, the use
of the Ridge weight is essential in order to mitigate the large impact of multicollinearity
effects. Also pre-estimates from an elastic net type procedure (see Zou and Hastie (2005))
or sure independence screening (see Fan and Lv (2008)) could be employed for a numeri-
cally stable weight in (12). Their detailed treatment, however, is beyond the scope of this
paper.

The following theorem derives the statistical properties of the adaptive-group Lasso
estimates B̂ of the lag coefficient matrices.

Theorem 3.2. Let Assumptions 2.1, 2.2, and 2.3 hold. Moreover,
λlagT?
T
Ñ 0 and

λlagT T
1
2 pγ´1q

m2plogmqγ{2
Ñ

8, m “ OpT 1{4´εq, then for the solution B̂ of (12) with IB, IB̂ and B0, B̂0 as defined be-
low (9) it holds that

1. P
´

IB̂ “ IB

¯

ě 1´
´

m2plogmqγ{2C1

λlagT T 1{2pγ´1q

¯2

with C1 ă 8.

2. ||B̂0 ´B0||F “ Opp
m?
T
q.

Theorem 3.2 shows lag selection consistency together with consistency of the obtained
adaptive Lasso estimates B̂0 for m diverging not too fast. This implies also consistency
of the estimated lag length p̂ from (12). Note that also nonconsecutive lags are identified.

Note that for model selection consistency in the lag there is no impact of the fact that
the true rank r is unknown. Technically this is because after C transformation, the effect
of the stationary component Z1,t´1 is filtered out and the non-stationary Z2,t´1 decays
to zero. Therefore, the rank just appears in the second order effect, see Lemma 3 in the
online supplementary for details.

For consistent lag selection, the tuning parameter must satisfy λlagT “ op
?
T q and

m2plogmqγ{2

T
1
2 pγ´1q

“ opλlagT q with m “ OpT 1{4´εq. These two conditions correspond to the results

from Zou (2006) in the fixed dimensional case. The restrictions on λrankT are significantly
different from rank selection part for two reasons. First, the denominator of the condition
m2plogmqγ{2

T
1
2 pγ´1q

“ opλlagT q is smaller than the corresponding part in the rank selection. This is
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because the irrelevant basis there converges to zero at the rate of T while in the stationary
case, both relevant and irrelevant components converge at the rate of

?
T . This narrows

down the possible set of λlagT compared to λrankT . Second, the largest element in each
coefficient matrix must be strictly bounded away from zero so that λlagT “ op

?
T q is

required. Setting γ as 2 or 3, yields good finite sample performance for appropriate
choices of λlagT . Please see Section 5 for details.

4. Rank selection for weakly dependent error terms

In this section, we extend the cointegration rank consistency result to the case of
weakly dependent error terms. For our high-dimensional set-up, this requires the deriva-
tion of a general functional convergence result under weak dependence which has not
been available in the literature so far and is of interest on its own. Moreover, weak de-
pendence also causes pre-estimates for the adaptive Lasso procedure to be biased which
is a challenge in the construction of an appropriate rank selection criterion.

To derive and illustrate the main points, we focus in this section on the simple VECM
case only with no lags (See also e.g. Phillips (2014) in the fixed dimensional case). Thus
we work with

∆Yt “ ΠYt´1 ` ut (13)

for t “ 1, . . . , T where the dimension m of Yt and rank r of Π “ αβ1 are diverging with
T as in (1). But now, we allow for a general weakly dependent form of the error term ut
in (13).

Assumption 4.1. The error term has the representation ut “
ř8

j“0Ajwt´j with A0 “ Im
where for the components it holds that

1. wt satisfies Assumption 2.1.

2. the coefficient matrices satisfy
ř8

j“1 j||Aj||F ă 8.

In Assumption 4.1, the coefficient matrices of this infinite moving average process ut
must decay to zero fast enough so that ut is a weakly dependent multiple time series
and thus the partial sums can still be approximated by a Wiener process element-wise.
In high dimensional case ||Aj||F converges to zero at some rate actually imposes some
sparse structure on the coefficient matrices. In particular, we get the following functional
convergence result.

Theorem 4.1. Let Assumption 4.1 hold. Then each element in ut has bounded p4 ` δq-
th moment as the original innovation et. Besides, the partial sum of each ukt can be
approximated by Brownian motion, i.e.,

max
sďT

|

s
ÿ

t“1

ukt ´Mk
psq| “ Oa.s.pT

1{4
plog T q3{4plog log T q1{2q, k “ 1, 2, . . . ,m

where each component Mpsqk in Mpsq follows a Brownian motion starting at zero and
the covariance matrix of Mp1q is Σu “ pIm `

ř8

j“1AjqΣwpIm `
ř8

j“1Ajq
1.
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This theorem is the crucial element for deriving the statistical properties of the adap-
tive Lasso pre-estimates and consistency of the cointegration rank selection procedure.

We can directly obtain the least-squares estimator rΠ of Π for the simple VECM (13)
as

rΠ “ p
T
ÿ

t“1

∆YtY
1
´1qp

T
ÿ

t“1

Yt´1Y
1
t´1q

´1 (14)

which coincides with the estimate from equation (4) for the no lag case p “ 0. We
derive its statistical properties by using the Q-transformation from (5) to distinguish the
r stationary Z1 from the m ´ r nonstationary components Z2 in Z “ QY “ pZ 11, Z

1
2q
1.

Note that the Q-transformed problem (13) simplifies in the rank only case to

∆Z1,t “ β1αZ1,t´1 ` v1,t

∆Z2,t “ v2,t (15)

with vt “ Qut “ pv
1
1,t, v

1
2,tq

1 where v1 P Rr and v2 P Rm´r. Note that here EpvtZ
1
1,t´1q is

non-zero, due to the possible dependence in ut and thus in vt according to Assumption 4.1.
This causes an endogenity bias such that left subspace generated by rΠ in (14) does no
longer approximate α but α‹ defined as

α1‹ “ α1 ` Σ´1
z1 Γ11

v1z1pα
1βq´1α1 ` Σ´1

z1 Γ11
v2z1pβ

1
KαKq

´1β1K
“ α1 ` Σ´1

z1 Γ11
uz1 (16)

with Γ1
uz1 “ EputZ

1
1,t´1q and Σz1 “ EpZ1,t´1Z

1
1,t´1q. We also set Γ1

viz1 “ EpvitZ
1
1,t´1q with

i P t1, 2u. Though, for α‹ defined in (16) Assumption 2.3 is not sufficient to ensure non-
singularity of α1‹α‹. Singularity, however, would affect rank selection consistency of the
Lasso procedure since the estimation error for the relevant r basis would be inflated by
an exactly zero smallest singular value of α‹. We therefore require the condition in part 1
of Assumption 2.3 not only for α but also for the biased object α‹. This is needed even in
fixed dimensional case where an α‹ without full row-rank would increase the estimation
error for rS1 in the QR-decompsiton (7) from unit root speed 1

T
in Theorem 2.2 to only

1?
T

which makes it indistinguishable from the stationary parts. Therefore we require the
following assumption

Assumption 4.2. Let part 1 of Assumption 2.3 hold. Moreover, the singular values of
α‹ satisfy 0 ă σrpα‹q ď ¨ ¨ ¨ ď σ1pα‹q ă 8. And there exist K2 ą 0 and τ2 ą 0 such that
rτ2σrpα‹q ě K2.

The size of τ2 and τ1 restricts the admissible expansion rates in r and m as shown in
the Theorems below. For the rest of the subsection, we assume wlog that τ2 ě τ1. The
other cases would be easier to be identified.

Let Mpsq denote the m-dimensional martingale process defined in Theorem 4.1, where
M1psq marks the first r elements and M2psq the last m´ r components.

Theorem 4.2. Let Assumptions 2.2, 4.1 and 4.2 hold. With DT “ diag pIr, T Im´rq and

15



rΠ from (14) define
rΨ “ QrΠQ´1DT .

Moreover, denote

Ψ‹ “

«

β1α ` Γ1
v1z1Σ´1

z1 Γ1
v1z1Σ´1

z1 Ξp
ş1

0
M2psqM

1
2psqdsq

´1 `V12

Γ1
v2z1Σ´1

z1 Γ1
v2z1Σ´1

z1 Ξp
ş1

0
M2psqM

1
2psqdsq

´1 `V22

ff

where Ξ “ pβ1αq´1
´

pβ1α`IrqΓ
1,1
v2z1`Σv1v2`Γ0

12`
ş1

0
dM1psqM

1
2psq

¯

and Vij “ p
ş1

0
dMipsqM

1
jpsq`

Γ0
ijqp

ş1

0
MjpsqM

1
jpsqdsq

´1 for i, j “ 1, 2 with Γ0 “
ř8

k“1 Epvtv
1
t´kq and all other elements

as defined below (16).

Then for r “ Opm
1

2τ1`1 q it holds that

||rΨ11 ´Ψ‹,11||F “ Opp
r
?
T
q

||rΨ12 ´Ψ‹,12||F “ Oppm

c

plog T q3{2plog log T q

T 1{2
q

||rΨ21 ´Ψ‹,21||F “ Opp

c

mr

T
q

||rΨ22 ´Ψ‹,22||F “ Oppm

c

plog T q3{2plog log T q

T 1{2
q .

There are two main differences between this result and the independent case in The-
orem 2.1. First, there is a bias term Γ1

vz1 ‰ 0 due to the correlation between ut and
Zt´1. Second, the rate of convergence for the unit root part is slightly smaller due to
the larger exponent in the log T -term. Though, the driving denominator is still T 1{4 as
before. Moreover, the rate restriction on r coincides with the iid case since the inverse of
β1α in Ξ causes the l2-norm of Ξ and thus of Ψ‹,12,Ψ‹,22 to increase at rate of rτ1 .

For the parts in the QR-representation of rΠ we find the following key separation into
stationary and nonstationary components

Theorem 4.3. Let Assumptions 2.2, 4.1 and 4.2 hold and rR11 denote the first r and

by rR12 the last m ´ r columns of rR1 in the QR-decomposition (7) of rΠ1 in (14). With

µ̃k “
b

řm
j“k

rRpk, jq2 for m “ OpT 1{4´εq and r “ Opm
1

2τ2`1 q where ε P p0, 1
4
s it holds that

1. ||β1K
rS1||F “ Opp

mrτ1`2τ2

T
q.

2. µ̃k satisfy

µ̃k P rσrpα‹q ´Opp

c

mr

T
q, σ1pα‹q `Opp

c

mr

T
qs k “ 1, 2, . . . , r

µ̃k “ Opp
rτ1

T
q k “ r ` 1, . . . ,m

3. max1ďjďr |σjp rR1q ´ σjpα‹q| “ Opp
a

mr
T
q .
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Theorem 4.3 shows that identification of the cointegration space occurs at a slightly
slower speed of convergence as in the iid-case of Theorem 2.2. Weak dependence in the
innovation also slows down the convergence of the Lasso adaptive weights in the true zero
parts from unit root speed to rτ1

T
. Both points make it harder for adaptive Lasso (8) to

disentangle true stationary and nonstationary components. Technically, the difference in
convergence rates of Theorem 4.3 and Theorem 2.2 results from the fact that for Ψ‹ with
the additional bias Γ1

viz1 the l2 bounds for blocks in Ψ cannot be attained. Convergence
in the third part can only be attained for α‹ instead of α but the rate is unaffected.

Therefore, the same logic for the design of group Lasso weights from the iid case can
still be employed. Thus, we can still use the adaptive group Lasso objective function (8)

for rank selection with a pre-estimate rS from a QR-decomposition of rΠ in (14). As before,
it yields a columnwise estimate of R̂1 from which we can determine the cointegration rank.
The statistical properties of this procedure are provided in the following theorem.

Theorem 4.4. Under Assumptions 2.2, 4.1 and 4.2, if λrankT satisfies
λrankT?

T
rτ2γ`1{2 Ñ 0

and
λrankT T γ´1

m3{2rτ1pγ`1q Ñ 8, m “ OpT 1{4´εq with ε P p0, 1{4s, and r “ Opm
1

2τ2`1 q, then the

solution R̂ of the adaptive group Lasso criterion (8) with pre-estimate rS from a QR-

decomposition of rΠ in (14) satisfies

1. P
´

řm
j“1 IR̂1p,jq‰0 “ r

¯

ě 1´ C̄0p
m3{2rτ1pγ`1q

λrankT T γ´1 q
2 for some C̄0 ă 8

2. ||R̂11 ´ α‹H||F “ Opp
a

mr
T
q

for some orthonormal matrix H.

Theorem 4.4 shows that given our assumptions, even if the innovations are weakly
dependent, rank selection is still consistent. The estimate of the loading matrix, however,
only consistently identifies α‹ as defined in (16) which generally differs from α.

5. Simulations

In this section, we illustrate the finite sample performance of our adaptive Lasso
methodology. We consider three different high-dimensional scenarios

1. dimension m “ 20, rank r “ 5 and lag p “ 1

2. dimension m “ 20, rank r “ 5 and lag p “ 0

3. dimension m “ 50, rank r “ 10 and lag p “ 0

Exact model specifications of Π in (1) are constructed randomly by first generating two
orthonormal matrices U, V P Rmˆr. Such orthonormal matrices can be obtained from QR-
decomposition or singular value decomposition of a matrix with each element drawn from
a standard normal distribution. Then we randomly draw elements for an r ˆ r diagonal
matrix Λ from univariate standard normal until Π “ UΛV 1 first satisfies Assumption
2.2. As the main focus of this paper is rank selection in a cointegrated model, in all set-
ups coefficient matrices Bj are set as diagonal with elements also drawn from a univariate
standard normal. In this section, we set P “ 3 to reduce computational time. Innovations
wt in (1) are drawn from the standard Normal or t-distribution with degrees of freedom
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T “ 400 T “ 800 T “ 1200 T “ 1600
Np0, Imq 84/98 100/100 100/100 100/100
df “ 200 81/96 100/100 100/100 100/100
df “ 20 76/98 100/100 100/100 100/100
df “ 8 82/99 100/100 100/100 100/100

Table 1: Model selection results for model 1 with m “ 20, rank r “ 5, lag p “ 1, ρ “ 0 and γ “ 3.

df P t8, 20, 200u fulfilling the moment condition of Assumption 2.1. We study different
degrees of cross-sectional dependence, with banded covariance matrices of the innovations
of the form Σw “ pρ

|i´j|qij for ρ “ 0.0, 0.2, 0.4, 0.6. We consider different combinations of
these parameters for sample sizes T “ 400, 800, 1200, 1600.

The exact specification of the considered setting and the estimating procedure can be
replicated from the R-code available at https://github.com/liang-econ/High_Dimensional_
Cointegration by setting the same seed. Throughout this section, the tuning parameter
λrankT pλlagT q is selected by BIC as follows

min
λ

log |Σ̂wpλq| `
log T

T
||vecpApλqq||0 (17)

where A “ R̂pλq in rank selection and A “ B̂pλq in lag selection, and Σ̂wpλq denotes the
sample covariance matrix of the residuals for λ from (3) or (9).

In the following tables, each cell contains the percentages XX{Y Y of correct model
selections by solving (8) and (12) for b “ 100 repetitions of the respective model, where
XX denotes the number of correct rank selections while Y Y is the number of correct
lag length identifications. When the model has no transient terms, there exists only one
number XX representing rank selection results.

Table 1 studies the performance of the adaptive group Lasso procedure for m “ 20
dimensions with true rank r “ 5 and lag p “ 1 with ρ “ 0 in the cross-correlation of the
innovations. From top to bottom the difficulty of the selection problem increases with less
existing moments in the innovation terms. This is also reflected in the reported results
with excellent overall performance except in extreme cases where T 1{4 is smaller than 5,
but the treated dimension is m “ 20. Here, the conditions for Lasso selection consistency
with m “ opT 1{4q are hard to justify. Though performance of the Lasso procedure is still
quite good but affected by heavier tails in the innovations in particular in the lag selection
case. For the same setup of Π and B as in Table 1, we report model selection results for
an almost normal type of innovation with df “ 200 and substantial tail thickness df “ 20
across different levels of strength in the cross-sectional correlation Σw in Table 2. The
results show that even for substantial correlation with ρ “ 0.6, performance is reliable
for T ě 800 even in the case of for df “ 20 innovations with excess-kurtosis of 0.375.
Generally, a larger degree of freedom leads to better rank selection results given the same
T and ρ. Besides, simulations show that the size of ρ has a significant effect on model
selection, which highlights the importance of Assumption 2.1 on the structure of Σw, i.e,
the column-wise sums of absolute values must converge fast enough.

Note that Tables 1 and 2 are obtained for γ “ 3. Table 3 shows the effect of γ on
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T “ 400 T “ 800 T “ 1200 T “ 1600
df “ 200, ρ “ 0.0 81/96 100/100 100/100 100/100
df “ 200, ρ “ 0.2 78/98 100/100 100/100 100/100
df “ 200, ρ “ 0.4 80/97 100/100 100/100 100/100
df “ 200, ρ “ 0.6 71/88 97/100 100/100 100/100
df “ 20, ρ “ 0.0 76/98 100/100 100/100 100/100
df “ 20, ρ “ 0.2 91/97 100/100 100/100 100/100
df “ 20, ρ “ 0.4 85/96 100/100 100/100 100/100
df “ 20, ρ “ 0.6 59/80 96/100 100/100 100/100

Table 2: Model selection results for model 1 with m “ 20, rank r “ 5, lag p “ 1 and γ “ 3

df “ 20 df “ 200
T “ 400 T “ 800 T “ 400 T “ 800

γ “ 2
ρ “ 0.0 89{91 98{100 89{92 99{100
ρ “ 0.4 78{82 97{100 75{88 94{100

γ “ 3
ρ “ 0.0 76{98 100{100 81{96 100{100
ρ “ 0.4 85{96 100{100 80{97 100{100

γ “ 4
ρ “ 0.0 46{99 100{100 48{97 100{100
ρ “ 0.4 50{99 100{100 48{97 100{100

Table 3: Model selection results for model 1 with m “ 20, rank r “ 5 and lag p “ 1 for different ρ
cross-section dependence with different γ-choices.

model selection in finite sample in the same setting of model 1. In small samples, γ “ 3 is
generally the best choice for consistent rank and lag selection. But with γ “ 2 only slighly
weaker results are obtained, while larger choices increase the weight in the penalty too
much and yield substantially less appealing results across all considered tail specifications,
cross-correlations and samples sizes. Generally, in the case of model 1 with 20 dimensions
and r “ 5, p “ 1, the results demonstrate that with a sample size of T “ 800 we get 100%
perfect rank selection across all cross-correlation and tail scenarios given non-Gaussian
innovations. Compare this to usual simulation evidence in high-dimensional set-ups as
e.g in Zhang, Robinson and Yao (2018) which exclusively use Gaussian innovations and
require sample sizes of T “ 2000 for comparable performance.

Besides, we present the estimation error of the loading matrix R̂1 and the cointegrating
space S̃1 in Figure 1 for df “ 20 and in Figure 2 for df “ 200 in the case ρ “ 0.0. Because
α and β are only unique up to rotation, the estimation error here is measured by using
orthogonal projection matrices to uniquely identify subspace distances. In particular,
we employ the R package LDRTools based on average orthogonal projection matrices
proposed by Liski et al. (2016). The left bar in each plot corresponds to T “ 800 and the
right one to T “ 1200. The estimation error for the cointegrating space is significantly
smaller than that for the loading matrix due to the faster rate of convergence. Moving
from sample size 800 to 1200 significantly improves results in both cases.

Model 2 uses the same Π as model 1 but considers only rank selection in VECM without
transient dynamics, i.e. setting B “ 0. Thus the problem is simpler and technically, the
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Figure 1: Estimation Error of model 1 (m “ 20, r “ 5, p “ 1) with t-distributed innovations and df “ 20
for ρ “ 0 setting γ “ 3. Results are shown for T “ 800 marked as case 1 on the x-axis and for case 2 of
T “ 1200
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Figure 2: Estimation Error of model 1 (m “ 20, r “ 5, p “ 1) with t-distributed innovations and df “ 200
for ρ “ 0 setting γ “ 3. Results are shown for T “ 800 marked as case 1 on the x-axis and for case 2 of
T “ 1200

step of the Frisch-Waugh transformation by M in (3) can be omitted. The results can

20



T “ 400 T “ 800 T “ 1200 T “ 1600
df “ 200, ρ “ 0.0 100 100 100 100
df “ 200, ρ “ 0.2 98 100 100 100
df “ 200, ρ “ 0.4 96 100 100 100
df “ 200, ρ “ 0.6 75 100 100 100
df “ 20, ρ “ 0.0 98 100 100 100
df “ 20, ρ “ 0.2 97 100 100 100
df “ 20, ρ “ 0.4 94 100 100 100
df “ 20, ρ “ 0.6 74 100 100 100

Table 4: Model selection result for model 2 with m “ 20, rank r “ 5, lag p “ 0 and γ “ 3

T “ 400 T “ 800 T “ 1200 T “ 1600
df “ 200, ρ “ 0.0 100 100 100 100
df “ 200, ρ “ 0.4 86 99 100 100
df “ 20, ρ “ 0.0 99 100 100 100
df “ 20, ρ “ 0.4 94 100 100 100

Table 5: Rank selection result for model 2 with m “ 20, rank r “ 5, lag p “ 0 and γ “ 3 and weakly
dependent innovations.

be found in Table 4. In small samples with T “ 400 and for large ρ, this provides
improvements in comparison to 2. Thus without lags, we get satisfactory performance
even in these challenging cases of strong cross-sectional dependence.

To test the performance of our method in case of weakly dependent innovations, we
generate the weakly dependent innovations according to a MA(2) process. The innova-
tions in the underlying MA process are i.i.d. generated from t-distribution with degree of
freedom 20 and 200 respectively. The weakly dependent innovations are generated by

ut “ wt ` A1wt´1 ` A2wt´2

where wt follows t-distribution with covariance Σw “ pρ
|i´j|qij as defined before. Besides,

A1 “ pa1,ijq “ p0.8
iIi“jq and A2 “ pa2,ijq “ pp´0.4qiIi“jq satisfy Assumption 4.1. As in

Table 1, we set γ “ 3 and choose λ by BIC. See Table 5 for results. When T ě 800, the
rank selection results are satisfactory, which is consistent with the theoretical results.

In Table 6, we present the rank selection results for the 50-dimensional case of model
3. Compare this to the usual simulation scenarios the high-dimensional non-stationary
time series literature which usually do not go beyond dimension 20 (see e.g. Zhang,
Robinson and Yao (2018)). We focus on results for innovations following a t-distribution
with df “ 20 and df “ 200 respectively, with ρ “ 0.0, i.e. Σw “ Im only. For both cases,
when T ě 2000, the true rank can be estimated almost 100% correct. The increased
sample size reflects the difficulty of the problem in dimensionality.

For the high-dimensional set-ups treated before, there exists no other valid feasible
method for model determination against which we could evaluate our technique. There-
fore, although our techniques are tailored to the high-dimensional case, we briefly il-
lustrate that they can also be employed in standard low dimensions where benchmarks
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T “ 800 T “ 1200 T “ 1600 T “ 2000 T “ 2400
m “ 50, df “ 20 51 64 89 93 99
m “ 50, df “ 200 55 78 95 97 100

Table 6: Rank selection result for m “ 50 with t-distributed innovations. ρ “ 0 and γ “ 3.

exist. In particular, we compare our methods with the Lasso-type techniques in Liao and
Phillips (2015) using the “hardest” of their 2-dimensional models treated with r “ 1 and

p “ 3. In particular, we set Π “

ˆ

´1 ´0.5
1 0.5

˙

and B1 “ B3 “ diagp0.4 0.4q, B2 “ 0 and

Σw “ diagp1.25 0.75q. With 5000 simulation replications we get the following model selec-
tion results: for T “ 100 we get 100%/86.14% while for T “ 400 we obtain 100%/99.96%
which compare to 99.54%/99.80% and 100%/99.98% by Table 2 in Liao and Phillips
(2015). In their other settings, we also found similar comparable performance of the two
techniques. Results are omitted here for the sake of brevity but are available on request.

6. Empirical Example4

In this section, we employ our method to study the interconnectedness of the Euro-
pean sovereign and key players of the banking system during and after the financial crisis.
We use CDS log prices of ten European countries and five selected financial institutions
provided by Bloomberg terminal: Germany, France, Belgium, Austria, Denmark, Ire-
land, Italy, Netherland, Spain, Portugal, BNP Paribas, SocGen Bank, LCL Bank, Danske
Bank, Santander Bank 5. The sovereign countries we choose have different debt levels.
The considered time span is from Jan.1, 2013 to Dec.31, 2016 with 1041 observations.
BNP Paribas, SocGen Banks are chosen because they rank among the top three Europe
based investment banks in Euro-Zone revenues. The other three banks are selected across
EU countries covering the whole span from north to south and representing the variety
of different financial market and general economic conditions. Initial Augumented Dicky
Fuller tests show that the 15 variables are non-stationary but the first-order differences
are stationary.

Figure 1 suggests that there exits a strong co-movement among these components.
Using our Lasso procedure, we find that there exist two cointegration relations. Figure 2
gives an impression on the stable time evolution of these cointegrated series. Moreover,
the time when the cointegrated series exhibit extreme values coincides with some impor-
tant economic events. For example, in the middle of the year 2013, European countries
were bargaining over the solution for the sovereign debt crisis while at the beginning of
2016 there occurred an economic slowdown in the key global economies.

To present the inter-connections among these 15-dimensional VECM components, we
calculate the forecast error variance decomposition (FEVD henceafter) due to the coin-

4All the figures for this section can be found in online supplementary
5UK is excluded due to Brexit
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tegrated part, i.e., the forecast error variance decomposition6 derived from (3). From
Table 7 reporting the FEVC results for a 5-and 10-step forecast horizon, we can conclude
that leading economies in European Union, such as Germany, are neither risk-exporter
nor risk-importer in the whole system.) Italy is the largest risk-exporter among the
considered sovereign countries and Spain ranks second. Moreover, Italy and Spain have
significant mutual influence on each other. The banks have stronger interconnectedness
among themselves than with the sovereign countries. Moreover, Figure 3 shows the con-
tribution of Italy to the FEVD of other variables in the full horizon from step 0 to 30,
which is consistent with the results in Table 7.

7. Conclusion

This paper discusses how to determine high dimensional VECM under quite general
assumptions. It proposes a general groupwise adaptive Lasso procedure which is easily
implementable and thus ready to use for practitioners. We show that it works under
quite general assumptions such as mild moment conditions on the innovations while rank
and dimension can increase with sample size T . In particular, consistency results in rank
and lag selection are obtained for dimension m satisfying m “ OpT 1{4´εq for some small
and positive ε. Besides, we also derive the statistical properties of the estimator in case
of weakly dependent innovations. According to our best knowledge, this paper is the
first to provide a theoretically justified solution to model determination of VECM in a
high-dimensional set-up. Questions like efficient estimation of the cointegrating space
and faster diverging rates in the dimension require different approaches and thorough
investigation. They are therefore left for future research.
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DE FR BE AT DK IE IT NL ES PT BNP SOCGEN LCL DAN SANTAN
DE 5 96.03 2.27 0.02 0.28 0.20 0.01 0.21 0.07 0.62 0.02 0.03 0.14 0.05 0.02 0.04
FR 5 0.84 95.83 0.16 1.25 0.01 0.08 0.26 0.07 0.45 0.10 0.20 0.30 0.09 0.12 0.24
BE 5 0.00 0.26 97.95 0.08 0.09 0.54 0.02 0.55 0.01 0.08 0.08 0.24 0.05 0.06 0.00
AT 5 0.34 1.77 0.07 95.34 0.31 0.45 0.02 0.66 0.68 0.08 0.13 0.00 0.02 0.02 0.13
DK 5 0.17 0.01 0.11 0.37 97.79 0.05 0.00 1.12 0.02 0.04 0.16 0.05 0.03 0.01 0.07
IE 5 0.04 0.04 0.29 0.23 0.02 98.07 0.66 0.35 0.03 0.09 0.03 0.01 0.08 0.05 0.01
IT 5 0.06 0.29 0.00 0.00 0.00 0.60 82.39 0.00 13.22 0.40 0.26 1.10 0.41 0.10 1.15

NL 5 0.09 0.16 0.45 0.51 0.77 0.64 0.01 96.74 0.01 0.01 0.01 0.00 0.01 0.24 0.36
ES 5 0.44 0.72 0.05 0.12 0.03 0.32 14.83 0.00 82.17 1.01 0.04 0.04 0.02 0.02 0.21
PT 5 0.01 0.00 0.16 0.02 0.05 0.74 1.53 0.03 1.28 94.58 0.06 0.10 0.08 0.31 1.06

BNP 5 0.03 0.02 0.07 0.00 0.03 0.13 0.02 0.00 0.02 0.00 87.81 6.59 3.62 0.10 1.54
SOCGEN 5 0.07 0.07 0.02 0.02 0.02 0.06 0.28 0.01 0.01 0.08 6.19 87.63 4.22 0.15 1.19

LCL 5 0.01 0.05 0.05 0.10 0.00 0.35 0.49 0.01 0.40 0.01 10.93 13.18 70.87 0.23 3.33
DAN 5 0.01 0.05 0.04 0.00 0.00 0.06 0.17 0.10 0.00 0.09 0.04 0.10 0.15 99.05 0.14

SANTAN 5 0.00 0.17 0.00 0.02 0.02 0.01 0.68 0.20 0.15 0.25 3.36 2.60 1.90 0.28 90.35
Sum 5 2.09 5.87 1.48 3.01 1.54 4.03 19.18 3.16 16.91 2.26 21.52 24.45 10.73 1.69 9.47

DE 10 96.00 2.28 0.02 0.28 0.20 0.01 0.22 0.07 0.63 0.03 0.03 0.14 0.04 0.02 0.04
FR 10 0.80 95.92 0.15 1.25 0.01 0.07 0.24 0.07 0.40 0.11 0.20 0.31 0.09 0.12 0.25
BE 10 0.00 0.26 97.96 0.08 0.09 0.54 0.02 0.55 0.01 0.07 0.08 0.24 0.05 0.06 0.00
AT 10 0.35 1.78 0.06 95.27 0.31 0.44 0.02 0.66 0.71 0.09 0.14 0.00 0.02 0.02 0.14
DK 10 0.17 0.01 0.11 0.37 97.79 0.05 0.00 1.12 0.02 0.04 0.16 0.04 0.03 0.01 0.07
IE 10 0.04 0.04 0.29 0.23 0.02 98.15 0.62 0.35 0.02 0.07 0.03 0.00 0.09 0.05 0.01
IT 10 0.06 0.30 0.00 0.00 0.00 0.58 82.18 0.00 13.32 0.40 0.28 1.15 0.44 0.10 1.19

NL 10 0.10 0.16 0.45 0.51 0.77 0.65 0.01 96.72 0.00 0.00 0.01 0.00 0.00 0.24 0.36
ES 10 0.46 0.73 0.06 0.11 0.03 0.33 14.97 0.00 81.93 1.07 0.03 0.04 0.01 0.02 0.20
PT 10 0.01 0.00 0.16 0.02 0.05 0.74 1.54 0.03 1.29 94.57 0.06 0.10 0.07 0.31 1.06

BNP 10 0.03 0.02 0.08 0.00 0.03 0.13 0.02 0.00 0.02 0.00 88.27 6.39 3.44 0.10 1.47
SOCGEN 10 0.07 0.07 0.01 0.02 0.02 0.07 0.28 0.01 0.01 0.08 6.07 87.93 4.07 0.15 1.16

LCL 10 0.01 0.05 0.05 0.11 0.00 0.38 0.53 0.01 0.43 0.00 11.44 13.80 69.44 0.23 3.52
DAN 10 0.01 0.05 0.04 0.00 0.00 0.07 0.18 0.10 0.00 0.09 0.03 0.09 0.13 99.09 0.13

SANTAN 10 0.00 0.17 0.00 0.02 0.02 0.01 0.66 0.20 0.14 0.25 3.33 2.57 1.87 0.28 90.48
Sum 10 2.10 5.92 1.49 3.01 1.55 4.08 19.29 3.16 17.01 2.30 21.87 24.87 10.37 1.70 9.57

Table 7: Each cell implies the contribution of variable denoted by its column name to the forecast error
variance of the variable denoted by its row name. The number in row names is the horizon of the FEVD.
The row denoted by Sum calculates the sum of each column except the element on the diagonal, which
is the total contribution to all the other variables.

Appendix A. Proofs

Proof of Theorem 2.1

Proof. For the claims of the theorem, it is sufficient to show that
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where Σz1.∆x “ Σz1 ´ Σz1∆xΣ
´1
∆xΣ∆xz1 and Σv1v2 “ β1ΣwαK.

We show (A.2) and (A.1) by studying blockwise elements of 1
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?
mr{

?
T q. Hence we get

||
1

T

T
ÿ

t“0

∆ rZ1,t
rZ 12,t´1 ` Σv1v2||F “ Opp

?
mr
?
T
q (A.6)

4. mixed stationary/nonstationary b21 “
1
T

∆Z2MZ 11 ,´1
With (A.5) it holds that || 1

T

řT
t“1 ∆ rZ2,t

rZ 11,t´1||F “ ||
1
T

řT
t“1 v2,t

rZ 11,t´1||F ` Opp
?
mr
?
T
q which
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leads to

||
1

T

T
ÿ

t“1

∆ rZ2,t
rZ 11,t´1||F “ Opp

?
mr
?
T
q (A.7)

due to the independence condition in Assumption 2.1 and Lemma 2.

5. purely nonstationary block b22 “
1
T

∆Z2MZ 12 ,´1
From (A.5) we have

1

T

T
ÿ

t“1

rZ2,t´1∆ rZ2,t “
1

T

T
ÿ

t“1

rZ2,t´1v
1
2t (A.8)

“
1

T

T
ÿ

t“1

Z2,t´1v
1
2t ´ p

1

T

T
ÿ

t“1

v2,t∆X
1
t´1qp

1

T

T
ÿ

t“1

∆Xt´1∆X 1
t´1q

´1 1

T

T
ÿ

t“1

´

p

t´1
ÿ

s“0

∆Xsqv
1
2t

¯

In this proof we focus on the term 1
T

řT
t“1 Z2,t´1v

1
2t because the second term contains

1
T

řT
t“1 v2,t∆X

1
t´1 whose l2 norm decaying to zero at the rate of

?
T , as proved in Lemma

2. The term 1
T

řT
t“1

´

p
řt´1
s“0 ∆Xsqv

1
2t

¯

has similar performance as the first term on RHS

of (A.8) whose property relies on the results in Theorem 4.1. Therefore, the LHS of (A.8)
is dominated by the first term on the RHS.

For each i, j “ 1 . . . ,m´ r in the leading term on the right of (A.8),

1

T

T
ÿ

t“1

Zi
2,t´1v

j
2,t ´

ż 1

0

M2,ipsqdM2,jpsq

“

T
ÿ

t“1

´ 1
?
T
Zi

2,t´1p
1
?
T
vj2,t ´

ż t
T

t´1
T

dM2,jpsqq `

ż t
T

t´1
T

r
1
?
T
Zi

2,t´1 ´M2,ipsqsdM2,jpsq
¯

“d

T
ÿ

t“1

´ 1
?
T
Zi

2,t´1p
1
?
T
vj2,t ´M2,jp

1

T
qq `

ż t
T

t´1
T

r
1
?
T
Zi

2,t´1 ´M2,ipsqsdM2,jpsq
¯

(A.9)

To bound the first term on the RHS of (A.9), we apply integration by parts. Define
hjt “

1?
T
vj2,t ´M2,jp

1
T
q and Hj

t “
řt
s“1 h

j
t , then

T
ÿ

t“1

1
?
T
Zi

2,t´1h
j
t “

T
ÿ

t“1

´ 1
?
T
Zi

2,t´1p
1
?
T
vj2,t ´M2,jp

1

T
qq

“
1
?
T
Zi

2,T´1H
j
T ´

1
?
T

T´1
ÿ

t“1

vi2,tH
j
t

By strong invariance principle (see Theorem 12.7 of DasGupta (2008)), suptďT |H
j
t | “

Oa.s.p
plog T q1{2plog log T q1{4

T 1{4 q, which provides an upper bound for variance of the middle term.
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Therefore, we can conclude that

|

T
ÿ

t“1

1
?
T
Zi

2,t´1h
j
t | “ Oa.s.p

plog T q1{2plog log T q1{4

T 1{4
q

To bound the second term on the RHS of (A.9), we derive the upper bound for the
integrand as

sup
tďT, t´1

T
ďs t

T

|
1
?
T
Zi

2,t´1 ´M2,ipsq|

ď sup
tďT

|
1
?
T
Zi

2,t´1 ´M2,ip
t´ 1

T
q| ` sup

t´1
T
ďsď t

T

|M2,ipsq ´M2,ip
t´ 1

T
q|

“ Oa.s.p
plog T q1{2plog log T q1{4

T 1{4
`

c

log T

T
q (A.10)

where the first term on the RHS of (A.10) comes from strong invariance principle and
second term from Levy modulus of continuity. Therefore by Ito isometry,

E
´

T
ÿ

t“1

ż t
T

t´1
T

r
1
?
T
Zi

2,t´1 ´M2,ipsqsdM2,jpsq
¯2

“

T
ÿ

t“1

E
´

ż t
T

t´1
T

r
1
?
T
Zi

2,t´1 ´M2,ipsqsdM2,jpsq
¯2

“

T
ÿ

t“1

Cj

ż t
T

t´1
T

Er
1
?
T
Zi

2,t´1 ´M2,ipsqs
2ds “ O

´

plog T q1{2plog log T q1{4

T 1{4

¯2

Ñ 0

where Cj is a constant depending on the V arpM2,jp1qq.
Therefore, according to Proposition 1.26 on Page 131 of Revuz and Yor (1991), we

have

T
ÿ

t“1

ż t
T

t´1
T

r
1
?
T
Zi

2,t´1 ´M2,ipsqsdM2,jpsq “ Oa.s.p
plog T q1{2plog log T q1{4

T 1{4
q

All the convergence result are almost sure convergence, so the convergence result holds
for each i, j uniformly (Lemma 9 of Zhang, Robinson and Yao (2018)), i.e.,

sup
i,j“1,2,...,m´r

|
1

T

T
ÿ

t“1

rZi
2,t´1v

j
2,t ´

ż 1

0

M2,ipsqdM2,jpsq| “ Oa.s.p
plog T q1{2plog log T q1{4

T 1{4
q

because the union of countable non-convergence sets with measure zero is still a zero-
measure set. Therefore,

||
1

T

T
ÿ

t“1

v2,t
rZ 12,t´1 ´

ż 1

0

dM2psqM2psq
1
||F “ Opp

mplog T q1{2plog log T q1{4

T 1{4
q (A.11)
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Thus from equations (A.4)-(A.11) for the blocks b11, b12, b21, b22 we get the first part
(A.1) of the initial claim.

6. mixed stationary/nonstationary block χ12 “
1
T

Z1 ,´1MZ 12 ,´1
From equation (5) we get with negligible R7 that

1

T

T
ÿ

t“1

∆ rZ1,t
rZ 12,t´1 “

1

T

T
ÿ

t“1

pβ1αq rZ1,t´1
rZ 12,t´1 `

1

T

T
ÿ

t“1

v1,t
rZ 12,t´1 `R7

Rearranging yields

1

T

T
ÿ

t“1

rZ1,t´1
rZ 12,t´1 “ pβ

1αq´1
p

1

T

T
ÿ

t“1

∆ rZ1,t
rZ 12,t´1 ´

1

T

T
ÿ

t“1

v1,t
rZ 12,t´1q ` R̄7.

As the first term on the right has been treated in block 3 above we can use (A.6). For the
second term, the standard Brownian motion limit result applies. Moreover, we use that
by Assumption 2.3 we have ||pβ1αq´1||2 “ Oprτ1q. Hence in total, we find

||
1

T

T
ÿ

t“1

rZ1,t´1
rZ 12,t´1 ` pβ

1αq´1
pΣv1v2 `

ż 1

0

dM1M
1
2q||F

“ O
´

rτ1

d

mr

T
`
mrplog T qplog log T q1{2

?
T

¯

(A.12)

7. mixed stationary/nonstationary block χ21 “
1
T

`

1
T

Z2 ,´1MZ 11 ,´1
˘

From χ12 in block 6, we know that each element in 1
T

řT
t“1

rZ1,t´1
rZ 12,t´1 can at least be

bounded to be Oppr
τ1q. This bound is sufficient as for (A.2) the pre-multiplication with

D´1
T requires only to study χ21 which divides once more by T . Therefore we get similar

to (A.12)

||
1

T 2

T
ÿ

t“1

rZ2,t´1Z
1
1,t´1||F “ Opp

?
mrrτ1

T
q (A.13)

8. purely non-stationary block χ22 “
1
T

`

1
T

Z2 ,´1MZ 12 ,´1
˘

Similar to b22 from block 5 we replace rZ2,t´1 with Z2,t´1 but with an additional T in
the denominator from the pre-multiplication of D´1

T in (A.2). Thus we get for each
i, j “ 1, . . . ,m´ r

1

T 2

T
ÿ

t“1

Zi
2,t´1Z

j
2,t´1 ´

ż 1

0

M2,ipsqM2,jpsqds (A.14)

“

T
ÿ

t“1

ż t
T

t´1
T

1
?
T
Zi

2,t´1

´ 1
?
T
Zj

2,t´1 ´M2,jpsq
¯

ds`
T
ÿ

t“1

ż t
T

t´1
T

´ 1
?
T
Zi

2,t´1 ´M2,ipsq
¯

M2,jpsqds
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By the same argument as in block 5, we get

sup
i,j“1,2,...,m´r

|
1

T 2

T
ÿ

t“1

Zi
2,t´1Z

j
2,t´1 ´

ż 1

0

M2,ipsqM2,jpsqds| “ Oa.s.p
plog T q1{2plog log T q1{4

T 1{4
q

and therefore

||
1

T 2

T
ÿ

t“1

rZ2,t´1
rZ 12,t´1 ´

ż 1

0

M2psqM2psqds||F “ Opp
mplog T q1{2plog log T q1{4

T 1{4
q

Combining the blockwise results (A.3),(A.12)–(A.14) for χ11, χ12, χ21, χ22 we get the
second part of the initial claim (A.2).

For the final result in ψ, define ξ “ χ´1 “

´

DT
1
T

řT
t“1

rZt´1
rZ 1t´1

¯´1

. Then we get the

corresponding blocks of ξ by blockwise inverting as:

ξ11 “ pχ11 ´ χ12χ22χ21q
´1

ξ12 “ ´ξ11χ12χ
´1
22

ξ21 “ ´ξ22χ21χ
´1
11

ξ22 “ pχ22 ´ χ21χ11χ12q
´1

Note that any term containing χ21 is of smaller order than the others as ||χ21||F “

Opp
?
mrrτ1

T
q due to (A.13). Therefore we find with (A.3),(A.12)-(??) and Lemma 1 that

||ξ11 ´ Σ´1
z1.∆x||F “ Opp

r
?
T
q

||ξ12 ´ Σ´1
z1.∆xpβ

1αq´1
`

Σv1v2p

ż 1

0

M2psqM
1
2psqdsq

´1
`V12q||F “ Oppr

τ1

d

mr

T
`
mrplog T qplog log T q1{2

?
T

q

||ξ21||F “ Opp

?
mrrτ1

T
q

||ξ22 ´ p

ż 1

0

M2psqM
1
2psqdsq

´1
||F “ Oppm

plog T q1{2plog log T q1{4

T 1{4
q (A.15)

Thus we get for rΨ “ p 1
T

řT
t“1 ∆ rZt rZ

1
t´1qξ from (A.1) and (A.15) together with Lemma 1

31



and the assumption r “ Opm
1

2τ1`1 q that

||rΨ11 ´ pβ
1αq||F “ Opp

r
?
T
q

||rΨ12 ´V12||F “ Oppm

d

plog T qplog log T q1{2
?
T

q

||rΨ21||F “ Opp

c

mr

T
q

||rΨ22 ´V22||F “ Oppm

d

plog T qplog log T q1{2
?
T

q

Proof of Corollary 2.1

Proof. The proof follows directly from Theorem 2.1 with Ψ0 “ EpΨq and the weak law
of large numbers.

Proof of Theorem 2.2

Proof. Let us first derive two general assertions by which we show that the specific claims
of the theorem are implied. Define

β0 “

„

β1

β1K



We pre-multiply rΠ1 by matrix β0. Thus we get with rΨ “ QrΠQ´1DT as in Theorem 2.1

β0
rΠ1 “

˜

β1rΠ1

β1K
rΠ1

¸

“

ˆ

Ir
1
T
β1αK

0 1
T
β1KαK

˙

´

Q´1
rΨ
¯1

(A.16)

“

ˆ

Ir
1
T
β1αK

0 1
T
β1KαK

˙

´

αpβ1αq´1
rΨ11 ` βKpα

1
KβKq

´1
rΨ21 αpβ1αq´1

rΨ12 ` βKpα
1
KβKq

´1
rΨ22

¯1

For the left block of
´

Q´1
rΨ
¯1

we use that by Theorem 2.1, ||rΨ21||F “ OP

´

a

mr{T
¯

and

that ||rΨ11 ´ pβ
1αq||F “ OP

`

rT´1{2
˘

. Therefore we get from this part for the first block
on the left hand side of (A.16) that

||β1rΠ1 ´ α1||F “ Op

ˆ

r
?
T
`

c

mr

T

˙

“ OP

ˆ
c

mr

T

˙

(A.17)

For the second block on the left hand side of (A.16), note that rΨ12, rΨ22 have their l2
norms diverging at the rate of

?
m due to the stochastic integral part by random matrix
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theory (see Vershynin (2012)). Therefore we get

||β1K
rΠ1||2 “ Opp

?
m

T
q . (A.18)

We now use (A.17) and (A.18) in order to prove the stated claims of the theorem in
reverse order and start with part 2. Due to the unitary invariance property of singular
values, we have

σjpβ0
rΠ1q “ σjpSrΠ

1
q “ σjp rRq (A.19)

for all j “ 1, . . .m. With equation (A.17), this implies in particular that

|σjp rRq ´ σjpαq| “ Opp

c

mr

T
q for j “ 1, . . . , r (A.20)

due to matrix perturbation theory (Mirsky version, Theorem 4.11 of Stewart and Sun
(1990)).

The column-pivoting step in the QR decomposition makes the rR11 a well-conditioned
matrix, thus the largest r singular values in rR are in rR1 which contains the first r-rows.
Besides, the strict upper-triangular structure of rR excludes linear dependence between
any two rows in rR1. Therefore, we can conclude that

σrp rRq ď

g

f

f

e

m
ÿ

j“k

rRpk, jq2 ď σ1p rRq for k “ 1, . . . , r (A.21)

The matrix perturbation theory result (A.20) provides further bounds for l2 norm of each

row in rR1, i.e.,

σrp rRq ě σrpαq ´Opp

c

mr

T
q

σ1p rRq ď σ1pαq `Opp

c

mr

T
q

In the same way we obtain from (A.19) together with (A.18), that

|σjp rRq| “ Opp1{T q (A.22)

for j “ r ` 1, . . . ,m. With the upper triangular structure column pivoting in rR, this

implies
b

řm
j“k

rRpk, jq2 “ Opp1{T q for k “ r ` 1, . . . ,m Thus we have shown claim 2 of

the theorem.
Moreover, (A.22) implies that || rR22||F “ Opp

?
m
T
q . We can generate a square matrix

rR0
1 by adding m´ r rows of zeros to rR1. Then σjp rR

0
1q “ σjp rR1q for j ď r and σjp rR

0
1q “ 0

if j ą r. Therefore, by the fact that || rR ´ rR0
1||F “ ||

rR22||F , we can conclude that
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|σjp rRq ´ σjp rR1q| “ Opp

?
m

T
q, j “ 1, .., r

and thus

|σjp rR1q ´ σjpαq| “ Opp

c

mr

T
q for j “ 1, . . . , r (A.23)

Thus we have shown claim 3 of the theorem.
In order to show part 1 of the theorem, we re-write β0

rΠ1 with the QR-decomposition
components of rΠ as follows

˜

β1rΠ1

β1K
rΠ1

¸

“

˜

β1 rS1
rR11 β1 rS1

rR12 ` β
1
rS2
rR22

β1K
rS1
rR11 β1K

rS1
rR12 ` β

1
K
rS2
rR22

¸

. (A.24)

By equating (A.16) and (A.24) we get

´

β1K
rS1
rR11 β1K

rS1
rR12 ` β

1
K
rS2
rR22

¯

“
1

T
pβ1KαKq

´

αpβ1αq´1
rΨ12 ` βKpα

1
KβKq

´1
rΨ22

¯1

which is equivalent to

β1K
rS1 “ ´

”

0 β1K
rS2
rR22

ı

rR11p
rR1

rR11q
´1

`
1

T
pβ1KαKq

´

αpβ1αq´1
rΨ12 ` βKpα

1
KβKq

´1
rΨ22

¯1
rR11p

rR1
rR11q

´1 (A.25)

Note that for the first term on the right hand side of (A.25) we get due to (A.18) that

||β1K
rS2
rR22||2 “ OP p1{T q. Therefore, the upper-bound in l2 norm for β1K

rS1 is driven by

the rate of p rR1
rR11q

´1{T . From (A.23) we have that the singular values of rR1 can be
approximated by those of α. Therefore using Assumption 2.3 we conclude in total that
||β1K

rS1||F “ Opp
mr2τ1
T
q.

Proof of Theorem 2.3

Proof. The main idea of the proof is to show that the group-wise KKT condition holds
with high probability. The assumptions on λrankT ensure that the penalty on the stationary
cointegrated part decays to zero while that on the unit root part diverges fulfilling the
irrepresentible condition proposed in Zhao and Yu (2006).

Denote by rS 1rYt´1 “

„

Z̆1,t´1

Z̆2,t´1



where Z̆1,t´1 is the projection of Yt´1 onto the sub-

space generated by rS1. According to Theorem 2.2, the subspace distance between rS1 and
β converges at a faster rate (||β1K

rS1||F “ Opp
mr2τ1
T
q) than the subspace distance of rR1 and
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α (
a

mr
T

) under the given conditions on m and r. Therefore the first step estimation

error from using rS in (8) instead of the infeasible true S1 is negligible and wlog. we use
rZ1,t´1 instead of Z̆1,t´1 and rZ2,t´1 instead of Z̆2,t´1 (both are unit root process) for the

rest of this proof for ease of notation. The replace of β by rS1 is a common approach in
cointegration literature, e.g. Ahn and Reinsel (1990) and Lütkepohl (2007) ( Remark 3

on Page 293 ). Because rS1 is a consistent estimator for the subspace generated by β, all
the estimators for Z2,t´1 are dominated by the unit root process only.

Since α and β are only identified up to rotation, we write wlog ᾱ “ αH with H as
defined for rS1. Note that ᾱ and α describe the same space. Define ᾱ0 “ rᾱ, 0mˆm´rs,
δR “ R̂1 ´ ᾱ0 and δR1 for the first r columns in δR. Then we have

T
ÿ

t“1

‖ ∆rYt ´ p rZ
1
t´1 b ImqvecpR̂

1
q ‖2

`

m
ÿ

j“1

λrankT

µ̃γj
||R̂1p, jq||2

“

T
ÿ

t“1

‖ rwt ´ p rZ
1
t´1 b ImqvecpδRq ‖2

`

m
ÿ

j“1

λrankT

µ̃γj
||ᾱ0p, jq ` δRp, jq||2

“

T
ÿ

t“1

rw1t rwt ´ 2w1tp rZ
1
t´1 b ImqvecpδRq ` vecpδRq

1
p rZt´1

rZ 1t´1 b ImqvecpδRq

`

m
ÿ

j“1

λrankT

µ̃γj
||ᾱ0p, jq ` δRp, jq||2

Therefore, the minimization of (8) in R̂ is equivalent to minimizing

T
ÿ

t“1

´2w1tp
rZ 1t´1bImqvecpδRq̀ vecpδRq

1p rZt´1
rZ 1t´1bImqvecpδRq̀

m
ÿ

j“1

λrankT

µ̃γj
||ᾱ0p, jq`δRp, jq||2(A.26)

in δR. With D1T “ diagt
?
TIr, T Im´ru the term inside the first sum can be written as

´2w1tp rZ
1
t´1D

´1
1T b ImqvecpδRD1T q` vecpδRD1T q

1pD´1
1T

rZt´1
rZ 1t´1D

´1
1T b ImqvecpδRD1T q. Thus

the Karush-Kuhn-Tucker (KKT) condition for group-wise variable selection from (A.26)
is

´
1
?
T

T
ÿ

t“1

wt rZ
1
1,t´1 `

?
TδR1

1

T

T
ÿ

t“1

rZ1,t´1
rZ 11,t´1 “ ´r

λ̄1,T

2
?
T

ᾱp, 1q

||ᾱp, 1q||2
, . . . ,

λ̄r,T

2
?
T

ᾱp, rq

||ᾱp, rq||2
s(A.27)

||

´

T
ÿ

t“1

´2
1

T
wt rZ

1
2,t´1 ` 2

?
TδR1

1

T 3{2
rZ1,t´1

rZ 12,t´1

¯

j
||2 ă

λ̄r`j,T
T

(A.28)

where λ̄j,T “
λrankT

µ̃γj
and the subscript j denotes the jth column. The expression follows

since the derivative of the first term in (A.26) w.r.t. vecpδRD1T q is
řT
t“1´2pD´1

1T
rZt´1 b

Imqwt`2pD´1
1T

rZt´1
rZ 1t´1D

´1
1TbImqvecpδRD1T q=

řT
t“1´2wt rZ

1
t´1D

´1
1T`2δRD1TD

´1
1T

rZt´1
rZ 1t´1D

´1
1T .
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Define Vα “ r
ᾱp,1q

||ᾱp,1q||2µ̃
γ
1
, . . . , ᾱp,rq

||ᾱp,rq||2µ̃
γ
r
s and

Sz1z1 “
1

T

T
ÿ

t“1

rZ1,t´1
rZ 11,t´1 Swz1 “

1
?
T

T
ÿ

t“1

wt rZ
1
1,t´1

Sz1z2 “
1

T 3{2

T
ÿ

t“1

rZ1,t´1
rZ 12,t´1 Swz2 “

1

T

T
ÿ

t“1

wt rZ
1
2,t´1

From the proof of Theorem 2.1, we can use that Sz1z2 “ χ12{
?
T in block 6. Thus we can

conclude from (A.12) that ||Sz1z2||2 “ Opp
rτ1?
T
q. Moreover, (A.3) and Lemma 2 imply that

Sz1z1 and Swz1 have bounded l2 norm. Therefore we can re-write the first KKT-conditions
(A.27) for the stationary part as

?
TδR1 “ ´

λrankT

2
?
T
VαS

´1
z1z1 ` Swz1S

´1
z1z1 (A.29)

which implies that

||
?
TδR1||2 “ Opp

λrankT?
T
rτ1γ`

1
2 ` 1q “ oP p1q (A.30)

The convergence in (A.30) follows from the condition on the tuning parameter
λrankT?

T
rτ1γ`

1
2 Ñ

0 in the theorem. It thus yields that each element in δR1 converges to zero at the rate of?
T . Hence, the first r columns of the solution R̂1 in (8) are

?
T -consistent for ᾱ.

Moreover, for the second part (A.28) of the KKT conditions, we plug in (A.29). Hence
for the exclusion of the non-stationary components from (8), it is sufficient if

||pSwz1S
´1
z1z1Sz1z2 ´ Swz2qk||2 ă

λrankT

2T
µ̃´γr`k ´

λrankT

2
?
T
||pVαS

´1
z1z1Sz1z2qk||2 (A.31)

for k “ 1, 2, . . . ,m ´ r. It remains to show that (A.31) is bounded in probability which
implies selection consistency holds with probability one.

λrankT?
T
||pVαS

´1
z1z1Sz1z2qk||2 ď

λrankT?
T
||VαS

´1
z1z1Sz1z2||F

ď
λrankT?
T
||Vα||F ||S

´1
z1z1||2||Sz1z2||2

“ Opp
λrankT?
T
rτ1γ`1{2 r

τ1

?
T
q

Thus the RHS of (A.31) is dominated by the first term. The LHS of (A.31) is dominated
by Swz2 since ||Swz1S

´1
z1z1Sz1z2||2 “ OP pr

τ1{
?
T q due to (A.3), (A.12), (A.6) and Lemma 2.

Moreover, for Swz2 we use that Z̄2,t “
řt
s“1 α

1
Kws as in (A.5) to get for all i “
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1, 2, . . . ,m and j “ 1, 2, . . . ,m´ r

Ep
1

T

T
ÿ

t“1

wit
rZj

2,t´1q
2
“

1

T 2
Ep

T
ÿ

t“1

pwitq
2
pZ̄j

2,t´1q
2
q `

1

T 2
Ep

T
ÿ

s‰t

wisZ̄
j
2,s´1w

i
tZ̄

j
2,t´1q ` opp1q

“
1

T 2

T
ÿ

t“1

Eppwitq
2
qEppZ̄j

2,t´1q
2
q ` opp1q “ Opp

1

T 2

T
ÿ

t“1

tq “ OP p1q(A.32)

the residual denoted as opp1q is due to the difference between rZt and Z̄t.
Then we find that with Ni “ pSwz2qji for any j , we have that

!

řm
k“1Nk ď c

)

Ě
Ş

k

!

Nk ď
c
m

)

implies
!

řm
k“1Nk ą c

)

Ď
Ť

k

!

Nk ą
c
m

)

. Thus we can

conclude that

Pp

d

m
ÿ

i“1

N2
i ą

λrankT

2T
µ̃´γr`kq ď Pp

m
ÿ

i“1

N2
i ą

ˆ

λrankT

2T
µ̃´γr`k

˙2

q

ď

m
ÿ

i“1

Pp|Ni| ą
λrankT

2T
?
m
µ̃´γr`kq

ď mC2
0p
λrankT T γ´1

?
m

q
´2
ď p

mC0

λrankT T γ´1
q
2

for some 0 ă C0 ă 8 where we use Chebyshev’s inequality and (A.32) together with

rµr`k “ OP p1{T q from Theorem 2.2 in the last line. Thus with m3{2

λrankT T γ´1 Ñ 0 we simulta-

neously exclude the last m´ r columns with probability tending to 1.

Proof of Theorem 3.1

Proof. For the least squares estimate qB, we consider

?
T p qB ´Bq “ p

1
?
T

T
ÿ

t“1

qwt∆ qX 1
t´1qp

1

T

T
ÿ

t“1

∆ qXt´1∆ qX 1
t´1q

´1 .

Hence we can write the first component with Sz,´1 from (3) explicitly as

1
?
T

T
ÿ

t“1

qwt∆ qX 1
t´1

“
1
?
T

T
ÿ

t“1

wt∆X
1
t´1 ´ r

1
?
T

T
ÿ

t“1

wtZ
1
1,t´1,

1

T

T
ÿ

t“1

wtZ
1
2,t´1sS

z,´1

„

1
T

řT
t“1 Z1,t´1∆X 1

t´1
1

T 3{2

řT
t“1 Z2,t´1∆X 1

t´1



.

Thus Lemma 3 implies that

||
1
?
T

T
ÿ

t“1

qwt∆ qX 1
t´1 ´

1
?
T

T
ÿ

t“1

wtp∆X
1
t´1 ´ Z

1
1,t´1Σ´1

z1 Σz1∆xq||F “ Opp
m
?
T
q

37



and therefore by Lemma 3 and Lemma 1 for p 1
T

řT
t“1 ∆ qXt´1∆ qX 1

t´1q
´1 it holds that

||
?
T p qB ´Bq ´

1
?
T

T
ÿ

t“1

wtp∆X
1
t´1 ´ Z

1
1,t´1Σ´1

z1 Σz1∆xqΣ
´1
∆x.z1||F “ Opp

m
?
T
q

With ∆ 9Xt´1 “ Σ´1
∆x.z1p∆Xt´1 ´ Σ∆xz1Σ´1

z1 Z1,t´1q, we can thus conclude that

||vecp qB ´Bq´vecp
1

T

T
ÿ

t“1

wt∆ 9X 1
t´1q||8 ď ||p

qB ´Bq´
1

T

T
ÿ

t“1

wt∆ 9X 1
t´1||F “ Opp

m

T 3{2
q .(A.33)

With triangle inequality and the maximal inequality in Chernozhukov, Chetverikov and
Kato (2013), which implies for vecpwt∆ 9X 1

t´1q

||
1

T

T
ÿ

t“1

vecpwt∆ 9X 1
t´1q||8 “ Opp

c

logm

T
q , (A.34)

this implies the first claim of the theorem. As rB satisfies

?
T p rB ´Bq “ ´

λridgeT?
T
Bp

1

T

T
ÿ

t“1

∆ qXt´1∆ qX 1
t´1 `

λridgeT

T
ImP q

´1

`p
1
?
T

T
ÿ

t“1

wt∆ qX 1
t´1qp

1

T

T
ÿ

t“1

∆ qXt´1∆ qX 1
t´1 `

λridgeT

T
ImP q

´1 ,

for
λridgeT?

T
Ñ 0, the asymptotics of rB and qB coincide.

Proof of Theorem 3.2

Because the proof for lag selection consistency is similar to rank selection, we leave it
in the online supplementary.
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