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Abstract.—Next generation sequencing (NGS) technologies have led to a ubiquity of molecular sequence data. This data
avalanche is particularly challenging in metagenetics, which focuses on taxonomic identification of sequences obtained from
diverse microbial environments. Phylogenetic placement methods determine how these sequences fit into an evolutionary
context. Previous implementations of phylogenetic placement algorithms, such as the evolutionary placement algorithm
(EPA) included in RAxML, or PPLACER, are being increasingly used for this purpose. However, due to the steady progress
in NGS technologies, the current implementations face substantial scalability limitations. Herein, we present EPA-NG,
a complete reimplementation of the EPA that is substantially faster, offers a distributed memory parallelization, and
integrates concepts from both, RAxML-EPA and PPLACER. EPA-NG can be executed on standard shared memory, as well
as on distributed memory systems (e.g., computing clusters). To demonstrate the scalability of EPA-NG, we placed 1
billion metagenetic reads from the Tara Oceans Project onto a reference tree with 3748 taxa in just under 7 h, using
2048 cores. Our performance assessment shows that EPA-NG outperforms RAxML-EPA and PPLACER by up to a factor of
30 in sequential execution mode, while attaining comparable parallel efficiency on shared memory systems. We further
show that the distributed memory parallelization of EPA-NG scales well up to 2048 cores. EPA-NG is available under the
AGPLv3 license: https://github.com/Pbdas/epa-ng.[Metabarcoding; metagenomics; microbiome; phylogenetics;
phylogenetic placement.]

In the last decade, advances in genetic sequencing
technologies have drastically reduced the price for
decoding DNA and dramatically increased the amount
of available DNA data. The Tara Oceans Project
(Sunagawa et al. 2015), for example, has generated
hundreds of billions of environmental sequences.
Moreover, sequencing costs are decreasing at a
significantly higher rate than computers are becoming
faster according to Moore’s law. Therefore, state-of-the
art bioinformatics software is facing a grand scalability
challenge.

A common metagenetic data analysis step is to infer
the microbiological composition of a given sample.
This can be done, for instance, by determining the
best hit for each query sequence (QS) in a database
of reference sequences (RSs), using sequence similarity
measures, and by subsequently assigning the taxonomic
label of the chosen RS to the QS. However, approaches
based on sequence similarity do not use or provide
phylogenetic information about the QS. This can
decrease identification accuracy (Koski and Golding
2001), especially when the QSs are only distantly related
to the RSs, for example, when more closely related QS
are simply not available.

Phylogenetic placement algorithms alleviate this
problem by placing a QS onto a reference tree
(RT) inferred on a given set of RSs. This allows for
identifying QSs by taking the evolutionary history of
the sequences into account. Maximum likelihood-based
phylogenetic placement algorithms have previously
been implemented by Matsen et al. (2010) (PPLACER)

and Berger et al. (2011) (RAxML-EPA). These tools have
been successfully employed in a number of studies, for
instance, to correlate bacterial composition with disease
status (Srinivasan et al. 2012) as well as in diversity
studies (Findley et al. 2013; Sunagawa et al. 2013). More
recently, we used phylogenetic placements to study
protist diversity in rainforest soils (Mahé et al. 2017). In
this study, we experienced significant throughput and
scalability limitations with PPLACER and RAxML-EPA.
To address them, we re-implemented and parallelized
RAxML-EPA from scratch using libpll-2 (Flouri et al. 2017),
a state-of-the-art library for phylogenetic likelihood
computations.

MATERIALS AND METHODS

The general algorithm for phylogenetic placement as
implemented in EPA-NG, which we call the placement
procedure, is described in the original article by Berger
et al. (2011). Our Supplementary Text available on Dryad
at https://doi.org/10.5061/dryad.kb505nc
also contains a description of the general algorithm.

Like other phylogenetic placement software, EPA-
NG operates in two phases: it first quickly determines
a set of promising candidate branches for each
QS (preplacement), and subsequently evaluates the
maximum placement likelihood of the QS into this
set of candidate branches more thoroughly via
numerical optimization routines (thorough placement).
The user can choose to treat every branch of the
tree as a candidate branch, however, this induces a
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significantly higher computational cost. Consequently,
by default, EPA-NG dynamically selects a small subset
of the available branches via preplacement. Using
preplacement heuristics typically reduces the number
of thoroughly evaluated branches from thousands
(depending on the RT size) to often less than ten
(depending on the query and reference data).

EPA-NG also offers a second heuristic called masking
that is similar to the premasking feature in PPLACER. It
effectively strips the input multiple sequence alignments
(MSAs) of all sites that are unlikely to contribute
substantially to the placement likelihood score. Such
sites consist entirely of gaps either in the reference or
in the query alignment. Additionally, for each individual
QS, only the core part of the alignment is used to compute
the likelihood of a placement. The core of an aligned
QS is the sequence with all leading, and trailing gaps
discarded. Note that PPLACER also discards all gap sites
within an individual sequence, including gaps in the
core. We opted not to implement this, as our experiments
showed that computing these per-site likelihoods, rather
than omitting the computations, was more efficient in
our implementation.

Parallelization
EPA-NG offers two levels of parallelism: MPI to split

the overall work between the available compute nodes,
and OpenMP to parallelize computations within the
compute nodes. Such hybrid parallelization approaches
typically reduce MPI related overheads and yield
improved data locality (Rabenseifner et al. 2009).

In hybrid mode, EPA-NG splits the input QS into parts
of equal size, such that each MPI-Rank has an equal
number of QS to place on the tree. No synchronization
is required to achieve this, as each rank computes which
part of the data it should process from its rank number
and the overall input size. An illustration of this scheme
can be found in the Supplementary Text available on
Dryad.

For within-node parallelization, we use OpenMP.
Here, each thread works on a subset of QS and branches.

EVALUATION

We used three empirical data sets to evaluate and
verify EPA-NG, the neotrop data set (Mahé et al. 2017),
the bv data set (Srinivasan et al. 2012), and the tara
data set (Sunagawa et al. 2015). We compared EPA-
NG against PPLACER and RAxML-EPA under different
settings: with/without masking (not implemented in
RAxML-EPA), with/without preplacement. Details on
the command line parameters for these distinct settings,
as well as full descriptions of the data sets, are provided
in the Supplementary Text available on Dryad. In the
Supplementary Text available on Dryad, we compare
the single-node parallel performance parallel efficiency
(PE) of the tested programs and also provide a sequential
runtime comparison.

Verification
In Berger et al. (2011) and Matsen et al. (2010),

the authors verify the placement accuracy of their

algorithms via simulation studies and leave-one-out
tests on empirical data. As there already exist two highly
similar and well-tested evolutionary placement tools,
we compare the results of EPA-NG to the RAxML-EPA
and PPLACER results via the phylogenetic Kantorovich–
Rubinstein (PKR) metric (Evans and Matsen 2012) to
verify that our implementation works correctly.

The PKR is analogous to the earth-movers distance for
calculating the distance between two distributions. The
earth-movers distance is the minimum amount of work
required to transform one distribution into the other,
that is, mass transported times the distance over which
it needs to be carried.

The result of a QS placement is a set of placement
branches on the RT, each with an associated likelihood
weight ratio (LWR) (Berger et al. 2011). In the PKR
method, these LWRs are interpreted as a distribution
over the RT. The PKR distance is then simply the
minimum amount of work required to transform one
placement distribution into the other by moving the LWR
mass along the branches of the RT.

We computed the pairwise median PKR-distance
between the three programs PPLACER, RAxML-EPA, and
EPA-NG, for three distinct data sets in two different
modes. Both, the bv and tara data sets were used as
described in the Supplementary Text available on Dryad,
with 15,060 and 10,000 QS, respectively. For the neotrop
data set, we sub-sampled 10,000 QS to roughly match
the other two data set sizes. Sub-sampling allowed us to
directly compare the runtimes of the different modes, as
the non-heuristic settings can increase the runtime by up
to three orders of magnitude.

Two different modes were tested: the thorough setting
with all heuristics disabled and the preplacement setting
with heuristics enabled, but premasking disabled for
better comparability with RAxML-EPA which does not
implement premasking.

The results are shown in Table 1. They include a
measure denoted by � that summarizes the PKR-values
for a given data set and mode. � is the ratio by which
the distance between RAxML-EPA and PPLACER is greater
than the average distance between EPA-NG to either of
them. In other words, � quantifies the proximity of
our results to those of RAxML-EPA and PPLACER. We
observe an average �-value of 1.7 for the preplacement
mode, and of 1.77 for the thorough mode. This means,
that under comparable settings, EPA-NG produces results
that are on average 70–77% closer to RAxML-EPA and
PPLACER, than RAxML-EPA and PPLACER are to each other.
Overall, the absolute PKR values are very small. Thus,
we are confident that our implementation is correct
and yields qualitatively and quantitatively highly similar
results to existing placement tools.

Sequential Performance
We assessed the speed of EPA-NG, RAxML-EPA, and

PPLACER, under a combination of settings including
or excluding preplacement and premasking heuristics.
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TABLE 1. Median PKR-distances between placement implementations.

Mode Data EPA-ng to RAxML EPA-ng to pplacer RAxML to pplacer �

preplacement neotrop 0.162 0.045 0.115 1.11
bv 0.009 < 0.001 0.010 2.11

tara 0.064 0.013 0.072 1.87
thorough neotrop 0.113 0.024 0.108 1.57

bv 0.010 0.002 0.011 1.83
tara 0.060 0.013 0.070 1.92

The ratio by which the distance between the two older implementations RAxML-EPA and PPLACER is greater than the average distance between
either of them to EPA-NG is denoted by �.

When placing 50,000 sequences from the neotrop data
set, we observe a≈30-fold performance improvement for
EPA-NG over PPLACER when both heuristics are enabled.
This corresponds to an absolute sequential runtime of
207s for EPA-NG compared with 5775s for PPLACER. Note
that aligning the queries to the reference MSA for this
data set required ≈30,000s using PaPaRa (Berger and
Stamatakis 2011) in sequential mode. This shows that QS
alignment currently constitutes the major performance
bottleneck in placement analyses. More details are
available in the Supplementary Text available on Dryad.

Parallel Performance
We tested the scalability of EPA-NG under three

configurations. First, with preplacement and masking
heuristics disabled (thorough test). Secondly, with
only the preplacement heuristic enabled. Lastly, we
tested masking in conjunction with preplacement. This
corresponds to the default settings (default test).

As runs under these configurations exhibit large
absolute runtime differences, we used three distinct
input sizes (number of QS) for each of them. The smallest
input size for each configuration was selected, such that
a respective sequential run terminates within 24 h. We
chose subsequent sizes to be 10 and 100 times, larger,
representing medium and large input sizes for each
configuration. All scalability tests were based on a set of
one million (1M) aligned QSs from the neotrop data set.
To obtain the desired input sizes, we either sub-sampled
(10k, 100k) or replicated (10M, 100M, 1B) the original set
of 1M sequences. We assess parallel performance via the
parallel efficiency measure. We compute the efficiency
E(N) as

E(N)= S(N)
N

,with S(N)= T1
TN

(1)

where N is the number of cores used, S is the parallel
speedup, TN is the execution time of the program using
N cores, and T1 is the fastest sequential execution time.

As the parallel speedup and the PE are calculated
based on the fastest sequential execution time, we
performed a separate run using the sequential version
of EPA-NG (see Section Sequential Performance). For each
configuration, we performed a sequential run for the
small input volume. As the larger input volumes could
not be analyzed sequentially within reasonable times, we

multiplied the sequential runtime by 10 and 100, for the
medium and large input sizes, respectively.

The results are displayed in Figure 1. We observe that
the thorough test preserves the single-node efficiency
(16 cores, ≈80% PE) consistently for all core counts
and input data sizes. The preplace test behaves similarly,
but PE tends to decrease with increasing core count.
This is because the response times are becoming so
short, that overheads (e.g., MPI initialization and some
pre-computations) start dominating the overall runtime
according to Amdahl’s law. This is most pronounced for
the 1M QS / 512 cores data point, where PE noticeably
declines. The response time in this case was only 83 s,
compared with 30,542 s of the corresponding sequential
run.

These effects become even more prominent in the
default run, which shows a PE of ≈60% on 2048 cores.
This is primarily due to the increased processing speed
when using masking that accelerates preplacement by
an additional factor of ≈7. As a consequence, operations
such as I/O, MPI startup costs, or data pre-processing
functions have a more pronounced impact on PE.

REAL-WORLD SHOWCASE

We performed two tests to showcase the improved
throughput of EPA-NG and to demonstrate how this
enables larger analyses in less time.

Placing One Billion Metagenomic Tara Ocean Sequences
We performed phylogenetic placement of one billion

metagenomic fragments (pre-filtered to the 16S rDNA
region) against a 3748 taxa RT. Using 2048 cores (128
compute nodes), we were able to complete this analysis
in under 7 h.

Extrapolating Total Reduction in Analysis Time of the
Neotropical Soils Study

We used a representative sample of the neotrop data
from Mahé et al. (2017) to obtain runtimes for both, EPA-
NG and RAxML-EPA, using the same settings as in the
original study. With this runtime data, we extrapolated
the total placement time of the study for both programs.
We find that EPA-NG would have required less than half
the overall CPU time (RAxML-EPA: 2173 core days, EPA-
NG: 864 core days) under the same heuristic settings (no
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FIGURE 1. Weak scaling parallel efficiency plot of EPA-NG on a medium-sized cluster. Input files with sizes ranging from ten thousand
(10K) to one billion (1B) query sequences. Three different configurations are shown: thorough, meaning no preplacement of masking
heuristic was employed, preplace where only the preplacement heuristic was used, and default where both masking and preplacement were
employed.

heuristics). Further, using EPA-NG’s novel heuristics, the
placement could have been completed in ≈14 core hours
(roughly a 3700-fold runtime reduction).

Our distributed parallelization also improves
usability. That is, the user does not have to manually
split up the query data (i.e., split the data into smaller
chunks which can complete within say 24 h on a single
node) for circumventing common cluster wall time
limitations.

CONCLUSIONS AND FUTURE WORK

In this work, we presented EPA-NG, a highly
scalable tool for phylogenetic placement. We showed
that it is up to 30 times faster than PPLACER and
RAxML-EPA when executed sequentially, while yielding
qualitatively highly similar results. Moreover, EPA-
NG is the first phylogenetic placement implementation
that can parallelize over multiple compute nodes of a
cluster, enabling analysis of extremely large data sets,

while achieving high PE and short response times. Our
showcase test was executed on 2048 cores, and placed
1 billion metagenomic query sequences (QSs) from the
Tara Oceans project, on a RT with 3748 taxa, requiring a
total runtime of under 7 h.

We plan to more tightly integrate EPA-NG with
upstream and downstream analysis tools, such as
programs for aligning the QS against a reference MSA
(Berger and Stamatakis 2011), respective placement
post-analysis tools (Matsen et al. 2010; Czech and
Stamatakis 2017), and methods using the EPA such as
SATIVA (Kozlov et al. 2016). In addition, we plan to
explore novel approaches for handling increasingly large
RTs, such as, for instance, trees comprising all known
bacteria.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.kb505nc.
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