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1 Introduction

Form factors are indispensable vertex functions which enter a number of quantities in preci-
sion physics. Most prominent examples are the virtual corrections to the Drell-Yan process
or inclusive Higgs boson production. Form factors are furthermore the simplest Green’s
function with a non-trivial infrared structure. In fact, from the pole parts of the form
factors it is possible to extract universal quantities, like the cusp or collinear anomalous di-
mension. They enter general formulae which predict the infrared pole structure of massless
on-shell multi-loop multi-leg QCD amplitudes [1, 2].

In this paper we consider the quark-anti-quark-photon form factor with massless quarks
which is obtained from the corresponding vertex function I'j via

FAe) = gy T (T ) (11)

€)q
where we work in d = 4 — 2¢e space-time dimensions, ¢ = ¢1 +¢2, and ¢ (g2) is the incoming
quark (anti-quark) momentum.

Two-loop corrections to F, have been computed for the first time more than twenty
years ago [3-6] and the three-loop terms are available since about ten years [7-11] (for
the computation of master integrals see also ref. [12]). Only two years ago first four-loop
result for Fj, became available: in a first step the large-N, limit has been considered, where
only planar Feynman diagrams contribute, and the fermionic and non-fermionic corrections
have been computed in refs. [13] and [14], respectively. Fermionic corrections with three
closed quark loops have been computed in ref. [15]; the complete terms proportional to nfc
are available from [16].

Important information about QCD amplitudes is already obtained from the pole part
of the form factor. Of particular interest in this respect is the cusp anomalous dimension,
Yeusp [17], which can be extracted from the 1/€2 pole of F,,. At three-loop order first results
for yeusp have been computed from the asymptotic behaviour of splitting functions [18]



where the fractional hadron momentum tends to 1. The results have been confirmed
afterwards by a dedicated calculation of the pole parts of the form factor [19]. Also at
four-loop order there are two approaches to obtain 7cusp: the n? terms of Yeusp has been
obtained in refs. [15, 20, 21] and analytic results in the large- N, limit and for the (complete)
nfc contributions have been obtained in refs. [13, 14, 16] and [22] from the explicit calculation
of the form factor and the splitting functions in the threshold limit, respectively. The
approach used in [22] could be extended to all colour structures; numerical results are
presented in refs. [23, 24]. Recently the abelian four-loop contribution of the linear ny
term to Yeusp has been computed analytically in ref. [25]. The main focus of [25] is the
cusp anomalous dimension for massive fermions in QED. The abelian n; term for massless
quarks is obtained as a by-product.
We define the expansion of Fj in terms of the bare strong coupling constant as

ao n MQ ne
Fy=1 =) () E™ 1.2
=2 (5) (Sw) A t
n>1
The universal quantities veusp and 7, are conveniently extracted from the pole part of
log(Fy) after renormalization of ay (see, e.g., refs. [2, 8, 17]). We define the corresponding
loop expansions as follows
— i n
n>0
with & = cusp or x = ¢. In order to fix the normalization we provide the one-loop results
which read 'ygusp =4 and 78 = —3CF (with Cp = (N2 —1)/(2N,)).
In this work, we provide analytic four-loop results for veusp, 74 and Fj, for the colour
structure (d%°?)2 which for a SU(N,.) group is given by

(dged)2 N2 —6N2 + 18
Na 96 N2 ’

(1.4)

with N4y = N2 — 1. This colour structure appears for the first time at four-loop order
and thus behaves in many respects as a leading order contribution. For example, there
is no contribution from ultraviolet renormalization to this colour factor. It is furthermore
responsible for the breaking of the naive Casimir scaling (i.e. the replacement of Cp by
C4) used to relate the cusp anomalous dimensions of the fermion and gluon form factors
(see, e.g., ref. [24] for more details).

The colour factor of eq. (1.4) arises from diagrams where four gluons connect the two
external fermion lines, see figure 1(a). Note that there are also singlet diagrams with colour
factor proportional to (d%°?)?, see figure 1(b). In this work we only consider non-singlet
contributions.

2 Calculation

There are 18 Feynman diagrams with a closed fermion loop which is connected to the
external fermion line via four gluons. A representative diagram is shown in figure 1(a); all



(a) (b)

Figure 1. Non-singlet (a) and singlet (b) sample diagrams contributing to the colour structure
(d3P¢4)? of the photon-quark form factor. The gray blob indicates the external vector current.
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df2-5 df2-6

Figure 2. Planar (top row) and non-planar (bottom row) integral families. The numbers n next
to the lines correspond to the indices of the propagators, i.e. to the n'! integer argument of the
functions representing the integrals. In addition to the 12 propagators we have for each family six
linear independent numerator factors. However, the corresponding indices are always zero for our
master integrals.

other diagrams are obtained by the various possibilities to connect the four gluons to the
external fermion lines.

We can map the 18 (six planar and twelve non-planar) diagrams to six integral families,
two planar and four non-planar ones. They are illustrated in figure 2 where thin solid lines

I The thick external line carries the virtuality ¢?. The

represent massless propagators.
planar families have been studied in refs. [13, 14] where in particular all master integrals
have been computed. Analytic results for the non-planar families in figure 2 are not yet
available in the literature. In the following we concentrate our discussion on them.

With the help of a suitably chosen projector to obtain F, (introduced in eq. (1.1)) we
can express the amplitude as a linear combination of scalar functions, which correspond

to the family definitions of figure 2. All of them have 18 indices each, twelve for the

'For convenience we use the internal numeration of the families also in the paper.



non-planar | # 1-scale | # 2-scale | number of | size of tables
family MIs MIs integrals | (MB) (1-scale)
df2-2 71 337 14156 98
df2-3 45 244 15278 50
df2-5 41 92 11620 23
df2-6 35 78 11531 18

Table 1. Information about the non-planar families.

propagators and six for irreducible numerators. We use FIRE [26-28| in combination with
LiteRed [29, 30| for the reduction to master integrals. In table 1 we present some infor-
mation about the individual (non-planar) families. Altogether we have to compute about
50000 integrals which can be reduced to almost 200 master integrals. We refrain from
minimizing the master integrals among the various families since our approach (see below)
is applied to a whole family and provides simultaneous results for all master integrals. We
nevertheless establish relations between master integrals of different families and use them
as cross checks for our results. For example, 36 of the 41 master integrals from df2-5 can
be mapped to master integrals of df2-2. Note that we have performed the calculation in
Feynman gauge.

For the computation of the master integrals we use the idea suggested in [31] and used
in our previous works for the planar [13, 14] and n? calculation [16]: we introduce a second
mass scale g5 = xq¢? as the virtuality of one of the external quarks. This increases, of course,
the complexity of the problem. We encounter a more difficult reduction problem and there
are significant more master integrals present in the individual families (compare “# 1-scale
MIs” and “# 2-scale MIs” in table 1). However, the introduction of the second mass scale
has the advantage that we can use the powerful method of differential equations. In fact, the
basic idea is to choose = 1 in order to fix the boundary conditions, since in this limit one
has to compute massless two-point functions which are well studied in the literature [32, 33].
The differential equations are then used to transport the information to the point x = 0.

The method has been described in some details in ref. [16] where for the first time
non-planar four-loop families have been considered. For the integral families considered in
this paper the method had to be further refined. Note that in ref. [16] no non-planar master
integrals had to be computed in the top sector where the indices of all twelve propagators
are positive.

For each family we can introduce a system of differential equations of the form?

Ozj(x) = m(x)j(x), (2.1)

where j(x) is a vector of (two-scale) master integrals in the primary basis chosen by FIRE
and m(z) is a square matrix. We use the idea suggested in refs. [34, 35] to turn to a so-called
€ or canonical basis where the right-hand side of the differential equations is proportional to

2In the following we do not explicitly show the e dependence of the functions in the arguments.



e and singularities with respect to the variables of the differential equations are Fuchsian,
i.e., of the form 1/(z —a). To arrive at a canonical basis, we use the algorithm of ref. [36]3
and its private implementation. We apply this procedure to each family separately and

arrive at an e form given by

OpJ(z) = eM(z)J(x), (2.2)
where J are the master integrals in the canonical basis, which are connected to the ones in
the primary basis via j(z) = T(x)J(z). The matrix M (z) only has a simple dependence

on xr

r—a

M) =) Mo , (2.3)

with constant matrices M,. In our case the sum only includes two terms, a =0 and a = 1,
which correspond to the physical point and the point where we want to fix the boundary
conditions, respectively. Next, we introduce, as in [16], the path-ordered exponent

xT

U(z,z9) = Pexp e/dfM(ﬁ) , (2.4)

o

and define the quantities (with a slight abuse of notation)*

U(z,0) = lim U(az,xo)$8‘40,

x0~>0
Ulz,1) = lim U(x,z0)(1 — z0), (2.5)
xo—1
which have the properties
U(z,0) 220 pedo
Uz, 1) =23 (1 - )eAl . (2.6)

Note that U(x,0) and U(x,1) can be obtained in a straightforward way as an expansion
in € in terms of Harmonic polylogarithms (HPLs) [42] with arguments (1 — z) and =,
respectively. Furthermore, both U(x,0) and U(z,1) solve the system (2.2) and are thus
related by a matrix Up; which only depends on e but not on x:

U(l‘,l) = U(CL‘,O)U()l. (27)

We will call the matrix Uy; = Up1(€) the associator. It can be constructed by multiplying
eq. (2.7) by 740 from the left and taking the limit 2 — 0 which leads to

1 —€eAp
Uo1 = il_r%x U(z,1). (2.8)

In practice, the right-hand side of eq. (2.8) is evaluated by extracting all log(z) terms
contained in U(x,1) with the help of shuffle relations to eliminate the leading letter “1”

3Meanwhile there are two public computer implementations of this algorithm, see refs. [37—40]. A
somewhat different approach to the same problem can be found in ref. [41].

*Note that U(x,0) and U(z,1) as defined in eq. (2.4) are divergent and thus confusion with eq. (2.5) is
excluded.



from the HPLs. They have to cancel against the log(z) terms from 2~40 such that the
limit x — 0 can be taken.

Let us in a next step discuss the boundary conditions which we compute for x = 1.
Note that in this limit our integrals are analytical and thus we do not have contributions
of the form (1 — z)~*¢ with k # 0. In the canonical basis we can thus write

J(x)=U(z,1)C, (2.9)
where (] is a vector with e-dependent components. Similarly we have
J(x) =U(z,0)Cy. (2.10)

Note that in this limit the integrals in J have a logarithmic dependence on . We are only
interested in the so-called hard part which means that from the various contributions of

the form z %

¢ we only take those with k£ = 0.
Next we want to relate the constants Cy and C7 to coefficients of integrals from the

primary basis evaluated near x = 0 and « = 1, respectively. These relations have the form

Co = Loco,
Cy = Licr, (2.11)

where Lo are matrices depending on €, and cp; are the column vectors of the specific
coefficients in the asymptotics © — 0 and x — 1, respectively. Note that the vector c¢; is
obtained from the boundary conditions, and the aim of our calculation is the hard part of
co- In the following we present details about how we determine which set of coefficients cg
suffices and calculate the matrix Ly. L1 and ¢; are calculated in analogy.
We start with the generalized series expansion of T' (x,€) U (z,0) which can be cast in
the form
T (xz,e)U (2,0) = Z w (o, k) 2% logh z (2.12)
a,k

where oo = ny + eng with integer ny and ng, and u (o, k) are matrices which depend on e.
The key point is that, using the approach of ref. [44], we can calculate plenty of terms in the
above expression, keeping the exact € dependence. After applying eq. (2.12) to Cy we have

jlx) = Zc(a,k:) % logk x| (2.13)
a,k
where
clak) =u(a,k)Cp. (2.14)
Each ¢(a, k) is a column vector of the form (¢q (a,k),...,en (a,k))T, where N is the

number of two-scale master integrals of the considered family.

®Note that the program package HPL [43] has a build-in command which can be used for this step.



In a next step we select from the coefficients ¢; («, k) (for various i, «, and k) the
minimal set, which is sufficient to determine all constants in Cy = (Cpy,...Con)". Let this
set be

N
iy (a1, k) = Zuilj (0, k1) Coy,
j=1

N

Cing (0ar, ear) =D iy (aiar, kar) Coj - (2.15)
=1

Here sufficient refers to the rank of the matrix

uill (041, kl) . uilN (041, kl)
R= (2.16)

ui]ul (aMa kM) e ui]uN (aMa kM)

which has to be greater or equal to the number of master integrals IV, and minimal means
that M = N. In other words, R is a square matrix, which is invertible and we have

Cy = (CZ'1 (Oél,kl) g '?CiN (aN,kN))T s
Lo=R1 (2.17)

Of course, this procedure does not lead to unique quantities cg and Lg, which, however, is
not a problem since the arbitrariness cancels after performing the matching to the one-scale
master integrals. As a rule of thumb we first try to pick coefficients only among the leading
coefficients of the asymptotic expansion of the integrals j(x) and then extend the search
to subleading terms in x, if necessary.

Using egs. (2.7), (2.9), (2.10) and, (2.11) we finally arrive at

co = Ly'UpLict, (2.18)

which is used to obtain the coefficients at z = 0 from the ones at x = 1. Note that Ly and
L1 are exact in € but Up; is usually known as an expansion for ¢ — 0.

The number of components of ¢y is the number of the two-scale master integrals. For
example, for df2-2, it is 337. Our goal is the determination of the coefficients in the naive
part of the expansion, i.e. the part of the expansion with non-negative integer powers of
x. For df2-2, ¢y contains 116 coefficients corresponding to the naive limit. One can expect
that this number is equal to the number of one-scale master integrals, which is, however,
not the case. The reason is the additional symmetry of the one-scale integrals, related
to the permutation of two massless legs. This symmetry reduces the number of one-scale
master integrals to 71. Therefore, there are 116 — 71 = 45 redundant relations which we use
as a check once we have satisfied 71 relations using explicit results for the one-scale master
integrals. In practice, most of the one-scale master integrals have the same indices as



the corresponding two-scale master integrals so that the results for these one-scale master
integrals are obtained directly from the naive part of the two-scale master integrals. For
the remaining one-scale master integrals (where an index equal to two is chosen in another
place), results are obtained after solving simple linear systems of equations.

Let us stress that the basic ideas of the described procedure have already been discussed
in ref. [16], However, the approach presented here is more algorithmic and has now reached
a state where it can be applied to highly non-trivial non-planar integral families, as it is
demonstrated in this paper.

Note that in our case, we had to expand Up; up to €’ (weight 9) for df2-2 and df2-3
since the property of uniform transcendentality is destroyed when mapping the two-scale
master integrals to one-scale master integrals in the limit  — 0. In the final result for the
form factor all weight-nine constants drop out. This happens separately for each family.
In principle it is possible to adapt the basis of the one-scale master integrals such that only
an expansion of Uy, up to €8 is necessary. However, our approach is powerful enough such
that an expansion up to €’ did not pose any serious technical problems. For df2-5 and
df2-6 an expansion up to weight eight is sufficient.

The reduction of one-scale as well as of two-scale integrals, needed for the derivation
of differential equations for the (two-scale) master integrals, took several months for each
of the four non-planar families. Using the standard version of FIRE we have failed to
reduce the two-scale integrals of family df2-2 in the top sector. However, following the
ideas of ref. [15], based on modular arithmetics, we managed to improve the performance
of FIRE [45]. The new version can be used in a massive parallel mode on supercomputers
which allows us to obtain the missing reductions.

In ref. [46] many (planar and non-planar) four-loop vertex integrals have been com-
puted numerically. Among them are uniformly transcendental integrals in the top sectors
of df2-2 and df2-3. Reducing these integrals to our primary bases and using our analytic
results we can confirm the results (A.4)—(A.7) of ref. [46].

Let us finally mention that we have performed numerical cross checks of all master
integrals of families df2-2, df2-3, df2-5 and df2-6 with up to ten positive indices expanded
up to order ¢’ using FIESTA [47].

Analytic results for all master integrals can be downloaded in electronic form from [48].
For illustration we show for families df2-2 and df2-3 the master integrals with twelve lines
in the appendix. Families df2-5 and df2-6 have no twelve-line master integrals.

3 Results

After inserting the analytic results for the master integrals into the amplitude for the
form factor we observe that all poles higher than 1/e? cancel. This is expected since the
coefficients of the 1/¢%,...,1/¢® poles are determined by lower-loop contributions. Since
the colour structure (d%de)2 appears for the first time at four-loop order it can at most
have 1/€? poles. For the same reason there are no renormalization contributions to the
(d2be?)2 contribution.



Our result for Fq(4) (see eq. (1.2)) reads

P _ o (dgd)? {1 [404‘5 L8 47r2] 1 [_ 14876 152¢7  8x%(y
€

¢ fqareay ~ TN 12| 3 3 3 8505 3 3
2720¢s 107t 664(3  284n? 988743
— 48| — 1240¢7 —
Ty Tt g T <~ 135
N 49672¢; 1040575 680¢3 N 95098(5 . 4672(3 N 188874
9 10206 9 27 9 405
13414¢3 1078372 3190
- - 3.1
27 7 T3 (0 (3.1)

where Np = N, = 3 and (, is Riemann’s zeta function evaluated at n. Note that the
coefficient of the 1/€2 pole contains constants of at most weight 5 although in principle also
weight 6 terms could appear. A similar weight-drop is also observed for the 1/e term and
the constant contribution.

The cusp and collinear anomalous dimension can be extracted from the 1/€% and 1/e
poles, respectively. For convenience of the reader we present the corresponding results
separately. They are given by

abed\2
3 _(dge)*( 1280 256 128 ,
Cnycusp (d%bcd)Q = ny NF ( 3 C5 3 CS + 3 s
dabcd 2
o ) (—123.894910...) , (3.2)
3‘ . (dpedy? [ 59275 608¢3 N 10880¢s  327°G3
] gaveay: — "N 8505 3 9 3

(3.3)

407*  2656(3 11367
— 192 ] .
2 T g

In refs. [23, 24] the quark and gluon splitting functions at four-loop order have been
considered. As a by-product numerical results for cusp anomalous dimensions have been
obtained, in particular for C F’Y?usp‘(d%bcd)z as given in eq. (3.2). The numerical result from
table 2 of [23] reads —123.90 & 0.2 and agrees well with the numerical evaluation of our
analytic expression. The results for 73 and the finite part of the form factor in egs. (3.3)
and (3.1) are new.

For the case of a massive form factor, the corresponding cusp anomalous dimension
Leusp 18 a function of the scalar product of the velocities of the two heavy quarks, v}’ and
vh. Usually one introduces the variable ¢ = ip via cosh¢ = vy - va. It is interesting to
note that eq. (3.2) corresponds to I'cysp in the limit ¢ — oo. Note that the limit ¢ — 0
has been considered in ref. [49].

4 Conclusions

We perform the next step towards the computation of massless four-loop form factors and
compute the contribution of the quartic colour structure (danCd)2 to the photon-quark form



factor. We have to consider two planar and four non-planar integral families which are
shown in figure 2. We want to stress that this is the first time that master integrals with
twelve propagators corresponding to non-planar graphs have to be considered. Our main
results are shown in egs. (3.1), (3.2) and (3.3). Furthermore, we provide analytic results
for all master integrals in a supplementary file to this paper.

We have used this calculation to further refine our method, which is used to obtain
analytic results for the master integrals. The new element is the construction of the so-
called associator which directly relates the coefficients in the boundary condition to the
coefficients of the integrals in the physical limit. We are confident that the remaining
contributions can be computed along the same lines. However, one has to keep in mind
that much more families have to be considered and that the reductions to master integrals

(both with one and two mass scales) require a significant amount of CPU time.
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A Explicit results for twelve-line non-planar master integrals

In this appendix we present explicit results for the most complicated master integrals of the
families df2-2 and df2-3 with twelve lines. We provide the ¢ expansion up to the constant
term. Our results read
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et 144 192 2592 31104 €3 432 " P 2592

N 16277¢;  73759x% | 529437 3191177| 1|  248513¢F  521007°¢
120 51840 3888 23328 432 81

1838789(;3 N 103027¢; 75178 827517 B 1034026372 N 7939145
3888 48 3240 38880 93312 139968

N 1 !_ 3037421¢2 N 6537"¢s  270283517°¢;  328391611¢3  377517°¢s
€

216 60 7776 46656 72

53255227Cs N 2796859¢7 165011376 B 1079974 N 4271839372 N 1755738287
4320 1344 145152 1215 139968 1679616

327874441¢2  5465129(¢5¢3  325122574(3

L [3927Tss0 | 378593,
x2c2 _ _ _

20 162 3 3888 360 15552

| 12100030, | 5200830280¢;  10735721m%C; | 33557879Gs 130210457
5832 279936 2160 6480 672
6437008378 7061528375  8342815497* 110105903372 72028514245

54432000 1088640 5598720 1679616 10077696

+ O(e) . (A.4)

The subscripts denote the exponents of the propagators, where the order is defined in
figure 2. The six indices for the numerators are not shown; they are zero. Furthermore,
we have

584 = (8 + (5,3 ~ 1.0417850291827918834 . (A.5)

Cma,...,m,, are multiple zeta values given by

oo i1—1 ig—1—1 Sgn m]
Gy = D D > H o (A.6)
i1=110=1 =1 j7=1

Note that all constants of weight 8 cancel in the combination of the master integrals which
leads to the (d%°?)? part of the photon quark form factor, see eq. (3.1).
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