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1 Introduction

Form factors are indispensable vertex functions which enter a number of quantities in preci-

sion physics. Most prominent examples are the virtual corrections to the Drell-Yan process

or inclusive Higgs boson production. Form factors are furthermore the simplest Green’s

function with a non-trivial infrared structure. In fact, from the pole parts of the form

factors it is possible to extract universal quantities, like the cusp or collinear anomalous di-

mension. They enter general formulae which predict the infrared pole structure of massless

on-shell multi-loop multi-leg QCD amplitudes [1, 2].

In this paper we consider the quark-anti-quark-photon form factor with massless quarks

which is obtained from the corresponding vertex function Γµ
q via

Fq(q
2) = −

1

4(1− ǫ)q2
Tr

(

q2/ Γµ
q q1/ γµ

)

, (1.1)

where we work in d = 4−2ǫ space-time dimensions, q = q1+q2, and q1 (q2) is the incoming

quark (anti-quark) momentum.

Two-loop corrections to Fq have been computed for the first time more than twenty

years ago [3–6] and the three-loop terms are available since about ten years [7–11] (for

the computation of master integrals see also ref. [12]). Only two years ago first four-loop

result for Fq became available: in a first step the large-Nc limit has been considered, where

only planar Feynman diagrams contribute, and the fermionic and non-fermionic corrections

have been computed in refs. [13] and [14], respectively. Fermionic corrections with three

closed quark loops have been computed in ref. [15]; the complete terms proportional to n2
f

are available from [16].

Important information about QCD amplitudes is already obtained from the pole part

of the form factor. Of particular interest in this respect is the cusp anomalous dimension,

γcusp [17], which can be extracted from the 1/ǫ2 pole of Fq. At three-loop order first results

for γcusp have been computed from the asymptotic behaviour of splitting functions [18]
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where the fractional hadron momentum tends to 1. The results have been confirmed

afterwards by a dedicated calculation of the pole parts of the form factor [19]. Also at

four-loop order there are two approaches to obtain γcusp: the n3
f terms of γcusp has been

obtained in refs. [15, 20, 21] and analytic results in the large-Nc limit and for the (complete)

n2
f contributions have been obtained in refs. [13, 14, 16] and [22] from the explicit calculation

of the form factor and the splitting functions in the threshold limit, respectively. The

approach used in [22] could be extended to all colour structures; numerical results are

presented in refs. [23, 24]. Recently the abelian four-loop contribution of the linear nf

term to γcusp has been computed analytically in ref. [25]. The main focus of [25] is the

cusp anomalous dimension for massive fermions in QED. The abelian nf term for massless

quarks is obtained as a by-product.

We define the expansion of Fq in terms of the bare strong coupling constant as

Fq = 1 +
∑

n≥1

(

α0
s

4π

)n(
µ2

−q2 − i0

)nǫ

F (n)
q , (1.2)

The universal quantities γcusp and γq are conveniently extracted from the pole part of

log(Fq) after renormalization of αs (see, e.g., refs. [2, 8, 17]). We define the corresponding

loop expansions as follows

γx =
∑

n≥0

(

αs(µ
2)

4π

)n+1

γnx , (1.3)

with x = cusp or x = q. In order to fix the normalization we provide the one-loop results

which read γ0cusp = 4 and γ0q = −3CF (with CF = (N2
c − 1)/(2Nc)).

In this work, we provide analytic four-loop results for γcusp, γq and Fq for the colour

structure (dabcdF )2 which for a SU(Nc) group is given by

(dabcdF )2

NA
=

N4
c − 6N2

c + 18

96N2
c

, (1.4)

with NA = N2
c − 1. This colour structure appears for the first time at four-loop order

and thus behaves in many respects as a leading order contribution. For example, there

is no contribution from ultraviolet renormalization to this colour factor. It is furthermore

responsible for the breaking of the naive Casimir scaling (i.e. the replacement of CF by

CA) used to relate the cusp anomalous dimensions of the fermion and gluon form factors

(see, e.g., ref. [24] for more details).

The colour factor of eq. (1.4) arises from diagrams where four gluons connect the two

external fermion lines, see figure 1(a). Note that there are also singlet diagrams with colour

factor proportional to (dabcdF )2, see figure 1(b). In this work we only consider non-singlet

contributions.

2 Calculation

There are 18 Feynman diagrams with a closed fermion loop which is connected to the

external fermion line via four gluons. A representative diagram is shown in figure 1(a); all

– 2 –



J
H
E
P
0
2
(
2
0
1
9
)
1
7
2

(a) (b)

Figure 1. Non-singlet (a) and singlet (b) sample diagrams contributing to the colour structure

(dabcdF )2 of the photon-quark form factor. The gray blob indicates the external vector current.
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Figure 2. Planar (top row) and non-planar (bottom row) integral families. The numbers n next

to the lines correspond to the indices of the propagators, i.e. to the nth integer argument of the

functions representing the integrals. In addition to the 12 propagators we have for each family six

linear independent numerator factors. However, the corresponding indices are always zero for our

master integrals.

other diagrams are obtained by the various possibilities to connect the four gluons to the

external fermion lines.

We can map the 18 (six planar and twelve non-planar) diagrams to six integral families,

two planar and four non-planar ones. They are illustrated in figure 2 where thin solid lines

represent massless propagators.1 The thick external line carries the virtuality q2. The

planar families have been studied in refs. [13, 14] where in particular all master integrals

have been computed. Analytic results for the non-planar families in figure 2 are not yet

available in the literature. In the following we concentrate our discussion on them.

With the help of a suitably chosen projector to obtain Fq (introduced in eq. (1.1)) we

can express the amplitude as a linear combination of scalar functions, which correspond

to the family definitions of figure 2. All of them have 18 indices each, twelve for the

1For convenience we use the internal numeration of the families also in the paper.
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non-planar # 1-scale # 2-scale number of size of tables

family MIs MIs integrals (MB) (1-scale)

df2-2 71 337 14156 98

df2-3 45 244 15278 50

df2-5 41 92 11620 23

df2-6 35 78 11531 18

Table 1. Information about the non-planar families.

propagators and six for irreducible numerators. We use FIRE [26–28] in combination with

LiteRed [29, 30] for the reduction to master integrals. In table 1 we present some infor-

mation about the individual (non-planar) families. Altogether we have to compute about

50 000 integrals which can be reduced to almost 200 master integrals. We refrain from

minimizing the master integrals among the various families since our approach (see below)

is applied to a whole family and provides simultaneous results for all master integrals. We

nevertheless establish relations between master integrals of different families and use them

as cross checks for our results. For example, 36 of the 41 master integrals from df2-5 can

be mapped to master integrals of df2-2. Note that we have performed the calculation in

Feynman gauge.

For the computation of the master integrals we use the idea suggested in [31] and used

in our previous works for the planar [13, 14] and n2
f calculation [16]: we introduce a second

mass scale q22 = xq2 as the virtuality of one of the external quarks. This increases, of course,

the complexity of the problem. We encounter a more difficult reduction problem and there

are significant more master integrals present in the individual families (compare “# 1-scale

MIs” and “# 2-scale MIs” in table 1). However, the introduction of the second mass scale

has the advantage that we can use the powerful method of differential equations. In fact, the

basic idea is to choose x = 1 in order to fix the boundary conditions, since in this limit one

has to compute massless two-point functions which are well studied in the literature [32, 33].

The differential equations are then used to transport the information to the point x = 0.

The method has been described in some details in ref. [16] where for the first time

non-planar four-loop families have been considered. For the integral families considered in

this paper the method had to be further refined. Note that in ref. [16] no non-planar master

integrals had to be computed in the top sector where the indices of all twelve propagators

are positive.

For each family we can introduce a system of differential equations of the form2

∂xj(x) = m(x)j(x) , (2.1)

where j(x) is a vector of (two-scale) master integrals in the primary basis chosen by FIRE

andm(x) is a square matrix. We use the idea suggested in refs. [34, 35] to turn to a so-called

ǫ or canonical basis where the right-hand side of the differential equations is proportional to

2In the following we do not explicitly show the ǫ dependence of the functions in the arguments.
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ǫ and singularities with respect to the variables of the differential equations are Fuchsian,

i.e., of the form 1/(x− a). To arrive at a canonical basis, we use the algorithm of ref. [36]3

and its private implementation. We apply this procedure to each family separately and

arrive at an ǫ form given by

∂xJ(x) = ǫM(x)J(x) , (2.2)

where J are the master integrals in the canonical basis, which are connected to the ones in

the primary basis via j(x) = T (x)J(x). The matrix M(x) only has a simple dependence

on x

M(x) =
∑

a

Ma

x− a
, (2.3)

with constant matrices Ma. In our case the sum only includes two terms, a = 0 and a = 1,

which correspond to the physical point and the point where we want to fix the boundary

conditions, respectively. Next, we introduce, as in [16], the path-ordered exponent

U(x, x0) = P exp



ǫ

x
∫

x0

dξM(ξ)



 , (2.4)

and define the quantities (with a slight abuse of notation)4

U(x, 0) = lim
x0→0

U(x, x0)x
ǫA0

0 ,

U(x, 1) = lim
x0→1

U(x, x0)(1− x0)
ǫA1 , (2.5)

which have the properties

U(x, 0)
x→0
−→ xǫA0 ,

U(x, 1)
x→1
−→ (1− x)ǫA1 . (2.6)

Note that U(x, 0) and U(x, 1) can be obtained in a straightforward way as an expansion

in ǫ in terms of Harmonic polylogarithms (HPLs) [42] with arguments (1 − x) and x,

respectively. Furthermore, both U(x, 0) and U(x, 1) solve the system (2.2) and are thus

related by a matrix U01 which only depends on ǫ but not on x:

U(x, 1) = U(x, 0)U01 . (2.7)

We will call the matrix U01 ≡ U01(ǫ) the associator. It can be constructed by multiplying

eq. (2.7) by x−ǫA0 from the left and taking the limit x → 0 which leads to

U01 = lim
x→0

x−ǫA0U(x, 1) . (2.8)

In practice, the right-hand side of eq. (2.8) is evaluated by extracting all log(x) terms

contained in U(x, 1) with the help of shuffle relations to eliminate the leading letter “1”

3Meanwhile there are two public computer implementations of this algorithm, see refs. [37–40]. A

somewhat different approach to the same problem can be found in ref. [41].
4Note that U(x, 0) and U(x, 1) as defined in eq. (2.4) are divergent and thus confusion with eq. (2.5) is

excluded.
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from the HPLs.5 They have to cancel against the log(x) terms from x−ǫA0 such that the

limit x → 0 can be taken.

Let us in a next step discuss the boundary conditions which we compute for x = 1.

Note that in this limit our integrals are analytical and thus we do not have contributions

of the form (1− x)−kǫ with k 6= 0. In the canonical basis we can thus write

J(x) = U(x, 1)C1 , (2.9)

where C1 is a vector with ǫ-dependent components. Similarly we have

J(x) = U(x, 0)C0 . (2.10)

Note that in this limit the integrals in J have a logarithmic dependence on x. We are only

interested in the so-called hard part which means that from the various contributions of

the form x−kǫ we only take those with k = 0.

Next we want to relate the constants C0 and C1 to coefficients of integrals from the

primary basis evaluated near x = 0 and x = 1, respectively. These relations have the form

C0 = L0c0 ,

C1 = L1c1 , (2.11)

where L0,1 are matrices depending on ǫ, and c0,1 are the column vectors of the specific

coefficients in the asymptotics x → 0 and x → 1, respectively. Note that the vector c1 is

obtained from the boundary conditions, and the aim of our calculation is the hard part of

c0. In the following we present details about how we determine which set of coefficients c0
suffices and calculate the matrix L0. L1 and c1 are calculated in analogy.

We start with the generalized series expansion of T (x, ǫ)U (x, 0) which can be cast in

the form

T (x, ǫ)U (x, 0) =
∑

α,k

u (α, k)xα logk x , (2.12)

where α = n1 + ǫn2 with integer n1 and n2, and u (α, k) are matrices which depend on ǫ.

The key point is that, using the approach of ref. [44], we can calculate plenty of terms in the

above expression, keeping the exact ǫ dependence. After applying eq. (2.12) to C0 we have

j(x) =
∑

α,k

c (α, k)xα logk x , (2.13)

where

c (α, k) = u (α, k)C0 . (2.14)

Each c (α, k) is a column vector of the form (c1 (α, k) , . . . , cN (α, k))⊺, where N is the

number of two-scale master integrals of the considered family.

5Note that the program package HPL [43] has a build-in command which can be used for this step.
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In a next step we select from the coefficients ci (α, k) (for various i, α, and k) the

minimal set, which is sufficient to determine all constants in C0 = (C01, . . . C0N )⊺. Let this

set be

ci1 (α1, k1) =
N
∑

j=1

ui1j (α1, k1)C0j ,

...

ciM (αM , kM ) =

N
∑

j=1

uiM j (αM , kM )C0j . (2.15)

Here sufficient refers to the rank of the matrix

R =









ui11 (α1, k1) . . . ui1N (α1, k1)
...

. . .
...

uiM1 (αM , kM ) . . . uiMN (αM , kM )









(2.16)

which has to be greater or equal to the number of master integrals N , and minimal means

that M = N . In other words, R is a square matrix, which is invertible and we have

c0 = (ci1 (α1, k1) , . . . , ciN (αN , kN ))⊺ ,

L0 = R−1. (2.17)

Of course, this procedure does not lead to unique quantities c0 and L0, which, however, is

not a problem since the arbitrariness cancels after performing the matching to the one-scale

master integrals. As a rule of thumb we first try to pick coefficients only among the leading

coefficients of the asymptotic expansion of the integrals j(x) and then extend the search

to subleading terms in x, if necessary.

Using eqs. (2.7), (2.9), (2.10) and, (2.11) we finally arrive at

c0 = L−1
0 U01L1c1 , (2.18)

which is used to obtain the coefficients at x = 0 from the ones at x = 1. Note that L0 and

L1 are exact in ǫ but U01 is usually known as an expansion for ǫ → 0.

The number of components of c0 is the number of the two-scale master integrals. For

example, for df2-2, it is 337. Our goal is the determination of the coefficients in the naive

part of the expansion, i.e. the part of the expansion with non-negative integer powers of

x. For df2-2, c0 contains 116 coefficients corresponding to the naive limit. One can expect

that this number is equal to the number of one-scale master integrals, which is, however,

not the case. The reason is the additional symmetry of the one-scale integrals, related

to the permutation of two massless legs. This symmetry reduces the number of one-scale

master integrals to 71. Therefore, there are 116−71 = 45 redundant relations which we use

as a check once we have satisfied 71 relations using explicit results for the one-scale master

integrals. In practice, most of the one-scale master integrals have the same indices as

– 7 –
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the corresponding two-scale master integrals so that the results for these one-scale master

integrals are obtained directly from the naive part of the two-scale master integrals. For

the remaining one-scale master integrals (where an index equal to two is chosen in another

place), results are obtained after solving simple linear systems of equations.

Let us stress that the basic ideas of the described procedure have already been discussed

in ref. [16], However, the approach presented here is more algorithmic and has now reached

a state where it can be applied to highly non-trivial non-planar integral families, as it is

demonstrated in this paper.

Note that in our case, we had to expand U01 up to ǫ9 (weight 9) for df2-2 and df2-3

since the property of uniform transcendentality is destroyed when mapping the two-scale

master integrals to one-scale master integrals in the limit x → 0. In the final result for the

form factor all weight-nine constants drop out. This happens separately for each family.

In principle it is possible to adapt the basis of the one-scale master integrals such that only

an expansion of U01 up to ǫ8 is necessary. However, our approach is powerful enough such

that an expansion up to ǫ9 did not pose any serious technical problems. For df2-5 and

df2-6 an expansion up to weight eight is sufficient.

The reduction of one-scale as well as of two-scale integrals, needed for the derivation

of differential equations for the (two-scale) master integrals, took several months for each

of the four non-planar families. Using the standard version of FIRE we have failed to

reduce the two-scale integrals of family df2-2 in the top sector. However, following the

ideas of ref. [15], based on modular arithmetics, we managed to improve the performance

of FIRE [45]. The new version can be used in a massive parallel mode on supercomputers

which allows us to obtain the missing reductions.

In ref. [46] many (planar and non-planar) four-loop vertex integrals have been com-

puted numerically. Among them are uniformly transcendental integrals in the top sectors

of df2-2 and df2-3. Reducing these integrals to our primary bases and using our analytic

results we can confirm the results (A.4)–(A.7) of ref. [46].

Let us finally mention that we have performed numerical cross checks of all master

integrals of families df2-2, df2-3, df2-5 and df2-6 with up to ten positive indices expanded

up to order ǫ0 using FIESTA [47].

Analytic results for all master integrals can be downloaded in electronic form from [48].

For illustration we show for families df2-2 and df2-3 the master integrals with twelve lines

in the appendix. Families df2-5 and df2-6 have no twelve-line master integrals.

3 Results

After inserting the analytic results for the master integrals into the amplitude for the

form factor we observe that all poles higher than 1/ǫ2 cancel. This is expected since the

coefficients of the 1/ǫ8, . . . , 1/ǫ3 poles are determined by lower-loop contributions. Since

the colour structure (dabcdF )2 appears for the first time at four-loop order it can at most

have 1/ǫ2 poles. For the same reason there are no renormalization contributions to the

(dabcdF )2 contribution.
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Our result for F
(4)
q (see eq. (1.2)) reads

F (4)
q

∣

∣

∣

(dabcd
F

)2
= nf

(dabcdF )2

NF

{

1

ǫ2

[

40ζ5
3

+
8ζ3
3

−
4π2

3

]

+
1

ǫ

[

−
148π6

8505
−

152ζ23
3

−
8π2ζ3
3

+
2720ζ5

9
+

10π4

27
+

664ζ3
9

−
284π2

9
+ 48

]

− 1240ζ7 −
988π4ζ3
135

+
496π2ζ5

9
+

10405π6

10206
+

680ζ23
9

+
95098ζ5

27
+

46π2ζ3
9

+
1888π4

405

−
13414ζ3

27
−

10783π2

27
+

3190

3

}

, (3.1)

where NF = Nc = 3 and ζn is Riemann’s zeta function evaluated at n. Note that the

coefficient of the 1/ǫ2 pole contains constants of at most weight 5 although in principle also

weight 6 terms could appear. A similar weight-drop is also observed for the 1/ǫ term and

the constant contribution.

The cusp and collinear anomalous dimension can be extracted from the 1/ǫ2 and 1/ǫ

poles, respectively. For convenience of the reader we present the corresponding results

separately. They are given by

CFγ
3
cusp

∣

∣

∣

(dabcd
F

)2
= nf

(dabcdF )2

NF

(

−
1280

3
ζ5 −

256

3
ζ3 +

128

3
π2

)

≈ nf

(dabcdF )2

NF
(−123.894910 . . .) , (3.2)

γ3q

∣

∣

∣

(dabcd
F

)2
= nf

(dabcdF )2

NF

(

−
592π6

8505
−

608ζ23
3

+
10880ζ5

9
−

32π2ζ3
3

+
40π4

27
+

2656ζ3
9

−
1136π2

9
+ 192

)

. (3.3)

In refs. [23, 24] the quark and gluon splitting functions at four-loop order have been

considered. As a by-product numerical results for cusp anomalous dimensions have been

obtained, in particular for CFγ
3
cusp|(dabcd

F
)2 as given in eq. (3.2). The numerical result from

table 2 of [23] reads −123.90 ± 0.2 and agrees well with the numerical evaluation of our

analytic expression. The results for γ3q and the finite part of the form factor in eqs. (3.3)

and (3.1) are new.

For the case of a massive form factor, the corresponding cusp anomalous dimension

Γcusp is a function of the scalar product of the velocities of the two heavy quarks, vµ1 and

vµ2 . Usually one introduces the variable φ = iϕ via coshϕ = v1 · v2. It is interesting to

note that eq. (3.2) corresponds to Γcusp in the limit ϕ → ∞. Note that the limit ϕ → 0

has been considered in ref. [49].

4 Conclusions

We perform the next step towards the computation of massless four-loop form factors and

compute the contribution of the quartic colour structure (dabcdF )2 to the photon-quark form
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factor. We have to consider two planar and four non-planar integral families which are

shown in figure 2. We want to stress that this is the first time that master integrals with

twelve propagators corresponding to non-planar graphs have to be considered. Our main

results are shown in eqs. (3.1), (3.2) and (3.3). Furthermore, we provide analytic results

for all master integrals in a supplementary file to this paper.

We have used this calculation to further refine our method, which is used to obtain

analytic results for the master integrals. The new element is the construction of the so-

called associator which directly relates the coefficients in the boundary condition to the

coefficients of the integrals in the physical limit. We are confident that the remaining

contributions can be computed along the same lines. However, one has to keep in mind

that much more families have to be considered and that the reductions to master integrals

(both with one and two mass scales) require a significant amount of CPU time.
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Note added. After our manuscript has appeared on the arXiv, the work [52] has been

submitted to the arXiv. In this paper the 1/ǫ2 pole of the form factor has been computed

and agreement with our result has been found.

A Explicit results for twelve-line non-planar master integrals

In this appendix we present explicit results for the most complicated master integrals of the

families df2-2 and df2-3 with twelve lines. We provide the ǫ expansion up to the constant

term. Our results read

G
(df2-2)
111111111111 =

+
1

ǫ8

[

1

144

]

+
1

ǫ7

[

73

576

]

+
1

ǫ6

[

331

1152
−

7π2

216

]

+
1

ǫ5

[

−
311ζ3
216

−
245π2

576
−

1765

1152

]

+
1

ǫ4

[

−
1103ζ3
54

−
37π4

1440
−

917π2

1728
+

2297

576

]

+
1

ǫ3

[

4021π2ζ3
648

−
42053ζ3
1728

−
22667ζ5
360

−
31327π4

51840
+

2615π2

864
−

59

36

]

+
1

ǫ2

[

10784ζ23
81

+
13595π2ζ3

216
+

293837ζ3
1728

−
268139ζ5

360

−
4901π6

38880
−

40973π4

103680
−

347π2

96
−

21161

288

]

+
1

ǫ

[

1960259ζ23
1296

+
1037π4ζ3

160
+

117521π2ζ3
1296

−
490831ζ3

864
+

508661π2ζ5
2160

−
2028557ζ5

2880
−

10749139ζ7
4032

−
3561371π6

2177280
+

110171π4

34560
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−
20797π2

432
+

222407

288

]

−
4937s8a

6
−

582209π2ζ23
1944

+
8605981ζ23

5184
+

2064401ζ5ζ3
270

+
3543269π4ζ3

77760
−

876841π2ζ3
1296

+
325039ζ3

216
+

87229π2ζ5
48

+
2528065ζ5

576
−

8894555ζ7
504

−
17509π8

1088640
+

579329π6

2177280
−

547763π4

51840
+

126427π2

216
−

1754951

288
+O(ǫ) , (A.1)

G
(df2-2)
111111111112 =

+
1

ǫ8

[

−
1

72

]

+
1

ǫ7

[

−
83

288

]

+
1

ǫ6

[

9163

5184
+

7π2

108

]

+
1

ǫ5

[

203ζ3
108

+
857π2

864
+

408031

15552

]

+
1

ǫ4

[

7109ζ3
216

+
59π4

720
−

49285π2

7776
−

101431

1728

]

+
1

ǫ3

[

1703π2ζ3
324

−
3601769ζ3

7776
−

8113ζ5
180

+
15673π4

6480
−

66752π2

729
−

36323851

139968

]

+
1

ǫ2

[

29089ζ23
162

+
9137π2ζ3

81
−

119403089ζ3
23328

−
28579ζ5
120

−
18167π6

68040
−

1566377π4

155520
−

1085407π2

11664
+

13540370

6561

]

+
1

ǫ

[

2292335ζ23
648

−
50413π4ζ3

2160
+

2537869π2ζ3
1458

+
32307611ζ3

7776
+

388549π2ζ5
1080

−
155919821ζ5

12960

−
2985239ζ7

2016
−

69407π6

38880
−

466151π4

2880
+

192951265π2

209952
−

1928298269

209952

]

−
150569s8a

15
−

801973

972
π2ζ23 +

1602372409ζ23
23328

−
751148ζ5ζ3

135
−

2514809π4ζ3
9720

+
412729031π2ζ3

34992
+

6680310761ζ3
209952

+
7821953π2ζ5

1080
−

3525176537ζ5
38880

−
101624527ζ7

2016

+
62792629π8

27216000
−

14403373π6

979776
+

7488623π4

87480
−

2098797893π2

629856
+

33048481297

944784
+O(ǫ) , (A.2)

G
(df2-3)
111111111111 =

+
1

ǫ8

[

1

144

]

+
1

ǫ7

[

5

48

]

+
1

ǫ6

[

125

576
−

5π2

108

]

+
1

ǫ5

[

−
401ζ3
216

−
175π2

288
−

235

288

]

+
1

ǫ4

[

−
1567ζ3
72

+
19π4

576
−

853π2

1728
+

143

64

]

+
1

ǫ3

[

13151π2ζ3
1296

−
13711ζ3
864

−
16277ζ5
360

+
5489π4

17280
+

5905π2

1728
−

289

32

]

+
1

ǫ2

[

248513ζ23
1296

+
40319π2ζ3

432
+

46481ζ3
432

−
3751ζ5
12

+
751π6

9720
−

15833π4

103680
−

21929π2

1728
+

58997

1152

]

+
1

ǫ

[

388001ζ23
216

−
653π4ζ3
180

+
731π2ζ3
2592

−
111755ζ3

288
+

37751π2ζ5
216

+
26203ζ5
288

−
2796859ζ7

4032
+

6767π6

5376
−

138163π4

103680
+

181931π2

3456
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−
230063

768

]

−
39277s8a

60
−

378593

486
π2ζ23 −

246895ζ23
2592

+
5465129ζ5ζ3

1080
−

110419π4ζ3
25920

−
390271π2ζ3

1296
+

29821ζ3
18

+
193657π2ζ5

144
+

12305ζ5
18

−
7097513ζ7

1344
+

64370083π8

163296000

+
2545177π6

4354560
+

586303π4

103680
−

1737749π2

6912
+

7659073

4608
+O(ǫ) , (A.3)

G
(df2-3)
111111111112 =

+
1

ǫ8

[

−
1

48

]

+
1

ǫ7

[

−
5

8

]

+
1

ǫ6

[

5π2

36
−

9101

1728

]

+
1

ǫ5

[

401ζ3
72

+
104π2

27
−

2683

648

]

+
1

ǫ4

[

21469ζ3
144

−
19π4

192
+

64867π2

2592
+

1890005

31104

]

+
1

ǫ3

[

−
13151

432
π2ζ3 +

2688043ζ3
2592

+
16277ζ5
120

−
73759π4

51840
+

52943π2

3888
−

3191177

23328

]

+
1

ǫ2

[

−
248513ζ23

432
−

52100π2ζ3
81

+
1838789ζ3

3888
+

103027ζ5
48

−
751π6

3240
+

82751π4

38880
−

10340263π2

93312
+

7939145

139968

]

+
1

ǫ

[

−
3037421ζ23

216
+

653π4ζ3
60

−
27028351π2ζ3

7776
−

328391611ζ3
46656

−
37751π2ζ5

72

+
53255227ζ5

4320
+

2796859ζ7
1344

−
1650113π6

145152
−

10799π4

1215
+

42718393π2

139968
+

1755738287

1679616

]

+

[

39277s8a
20

+
378593

162
π2ζ23 −

327874441ζ23
3888

−
5465129ζ5ζ3

360
−

3251225π4ζ3
15552

−
12190039π2ζ3

5832
+

5299330289ζ3
279936

−
19735721π2ζ5

2160
+

33557879ζ5
6480

+
13021045ζ7

672

−
64370083π8

54432000
−

70615283π6

1088640
−

834281549π4

5598720
−

1101059033π2

1679616
−

72028514245

10077696

]

+O(ǫ) . (A.4)

The subscripts denote the exponents of the propagators, where the order is defined in

figure 2. The six indices for the numerators are not shown; they are zero. Furthermore,

we have

s8a = ζ8 + ζ5,3 ≈ 1.0417850291827918834 . (A.5)

ζm1,...,mk
are multiple zeta values given by

ζm1,...,mk
=

∞
∑

i1=1

i1−1
∑

i2=1

· · ·

ik−1−1
∑

ik=1

k
∏

j=1

sgn(mj)
ij

i
|mj |
j

. (A.6)

Note that all constants of weight 8 cancel in the combination of the master integrals which

leads to the (dabcdF )2 part of the photon quark form factor, see eq. (3.1).
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