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“We wish to pursue the truth no matter where it leads. But to find the truth,

we need imagination and skepticism both. We will not be afraid to

speculate. But we will be careful to distinguish speculation from fact."

Carl Sagan





Kurzfassung

Um die Nachhaltigkeit der heutigen Energiesysteme zu steigern, muss die
Installation von erneuerbaren Energiesystemen verstärkt werden. Leider
sind viele dieser Systeme wetterabhängig, was das Bilanzieren von En-
ergieerzeugung und Last erschwert. Prognosemodelle sind deshalb für die
Regelung und Einsatzplanung von Energiesystemen notwendig. Derzeit
beschreiben nur wenige Prognosemodelle die Prognoseunsicherheit, die für
eine optimale Entscheidungsfindung eine wichtige Rolle spielt.

Probabilistische Prognosen bieten die Möglichkeit, eine solche Prognose-
unsicherheit zu beschreiben. Ein gängiger Ansatz zur Beschreibung der
Prognoseunsicherheit sind Quantil-Regressionen, die keine Annahmen des
Verteilungstyps benötigen. Allerdings muss für diese Art von Regressio-
nen eine spezielle nicht differenzierbare Kostenfunktion minimiert werden,
was die Berechnung von Quantil-Regressionen mit komplexeren Ansätzen,
wie beispielsweise künstlichen neuronalen Netzen, erschwert. Zusätzlich
erfordern einige Optimierungs- und Einsatzplanungsalgorithmen andere
Arten von Unsicherheitsbeschreibungen (z.B. eine parametrische Verteilung
oder Szenarien).

Die vorliegende Arbeit versucht die obengenannten Probleme durch die
Entwicklung neuer datengetriebener probabilistischer Prognosemethoden
zu lösen. Eine der in dieser Arbeit vorgestellten Methoden ermöglicht
die Berechnung von Quantil-Regressionen, ohne die nicht differenzier-
bare Kostenfunktion explizit zu minimieren. Diese Methode vereinfacht
somit die Berechnung von Quantil-Regressionen unter Nutzung von kom-
plexen datengetriebenen Verfahren. Außerdem stellt diese Dissertation ver-
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Kurzfassung

schiedene Ansätze zur Umwandlung der Quantil-Regressionen in andere
Arten von Unsicherheitsbeschreibungen vor. Diese Beschreibungen sind
zum Beispiel Intervallprognosen, nichtparametrische und/oder parametrische
Verteilungsprognosen und Szenario-Prognosen. Weiterhin beschreibt die
vorliegende Dissertation neue Konzepte zur Schätzung der Gesamtverteilung
von zwei zukünftigen Zeitreihenwerten und zur Ermittlung von hierarchis-
chen Prognosen.

Alle genannten Methoden wurden in einer Open-Source-Toolbox imple-
mentiert und unter Verwendung von simulierten und realen Energiedaten va-
lidiert. Die Validierungsergebnisse zeigen, dass die entwickelten Methoden
die Unsicherheit zukünftiger Energiewerte mit hoher Genauigkeit schätzen
und somit für die Regelung und Einsatzplanung eines Energiesystems einge-
setzt werden können.
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Abstract

The desire of making the existing energy systems more sustainable, calls
for an increase installation of renewable power systems. Nevertheless, the
fact that some renewable power systems are completely weather-dependent
complicates the necessary balancing between energy demand and supply.
For such reason, forecasting models able to provide accurate information
about the future generation and load have become quite useful for the control
and scheduling of energy systems. However, most types of models do not
quantify in any way the forecast uncertainty; information that is necessary
for an optimal decision-making.

Probabilistic forecasts offer the possibility of describing such forecast un-
certainty. A commonly used approach for describing the uncertainty of fu-
ture energy time series values are quantile regressions. Their popularity
stems from the fact that they do not require a distribution type assumption.
Nevertheless, they are trained using a non-differentiable cost function that
may complicate their training with more complex approaches, for instance,
artificial neural networks. In addition, some optimization and scheduling
algorithms necessitate other types of uncertainty descriptions (e.g., a para-
metric distribution or scenarios), yet there is a lack, to the best of the author’s
knowledge, of straightforward methods that transform the commonly used
quantile regressions into those other types.

To tackle the above mentioned problems, the current thesis describes a
series of new data-driven probabilistic forecasting methods. For instance,
a method that allows the training of quantile regressions without the need
of minimizing the original non-differentiable cost function. This opens the
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door to the effortless obtainment of quantile regressions using more complex
approaches. Likewise, the current thesis also presents different straightfor-
ward approaches for transforming quantile regressions into other types of
uncertainty descriptions, i.e. interval forecasts, non-parametric and/or para-
metric distribution forecasts, and scenario forecasts. Moreover, two new
concepts are also presented: one for describing the correlation of future
time series values and another for obtaining coherent hierarchical forecasts
with such description.

To conclude, the methods presented in the current thesis have been im-
plemented as part of an open-source toolbox and have also been validated
within an energy-related context using both simulated and real-world data.
The validation results demonstrate that the developed approaches are able to
accurately estimate the uncertainty of future energy time series values and
hence can be used for the control and scheduling of energy systems.
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ˆ̃yS,ij jth element of a possible time series scenario forming a scenario

forecast; with j = 1 . . . , NS

y[·] Observation of a time series {y[k]; k = 1, . . . ,K}
ya[·] Observation of a time series {ya[k]; k = 1, . . . ,K}
yb[·] Observation of a time series {yb[k]; k = 1, . . . ,K}
yT[·] Trend-cycle component of a time series observation y[·]
yS[·] Seasonal component of a time series observation y[·]
yR[·] Remainder of a time series observation y[·]
ŷ[·] Forecast value of a time series {y[k]; k = 1, . . . ,K}
Z Random variable
Zm Random variable with m = 1, . . . ,M ;M ≥ 2 dependent on

other M − 1 random variables
z Realization of a random variable Z
zm Realization of a random variable Zm

z(q) q-quantile of a random variable Z
z(ql) Quantile defining the lower bound of an interval with a probability

(qu − ql) of containing the random variable
z(qu) Quantile defining the upper bound of an interval with a probability

(qu − ql) of containing the random variable
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1 Introduction

1.1 Motivation

The increasing concern of damaging the planet through the continuous re-
lease of greenhouse gases into the atmosphere [1] calls for a thorough trans-
formation of the current energy grids. This transformation is exemplified
by the German “Energiewende” and its two main goals [2]: (i) increasing
the share of renewables in the overall power consumption and (ii) reducing
Germany’s primary energy demand. For instance, the share of renewables
in the gross national electricity consumption (which was 31.7% in 2016) is
planned to be increased to 80% by the year 2050 [3]. Nonetheless, increas-
ing the overall share of renewables requires the additional consideration of
both the heating and transportation sectors. For the sake of illustration, Fig-
ure 1.1 depicts historical and future percentage values of the final energy
consumption of the heating and transport sectors, as well as the gross elec-
tricity consumption.

Some of the solutions to achieve the goals of the “Energiewende” include,
but are not limited to the expansion of energy storage capacities, the market
and system integration of renewables, the increase in energy efficiency of
private households, and the use of alternative fuels (e.g., hydrogen) [2, 5].
Furthermore, the coupling of sectors (as e.g., the electrical, heating, and
transportation sectors) also plays an important role in achieving the desired
goals [6, 7]. The transformation of the energy grids, however, comes hand
in hand with an increase in their complexity [8]. This complexity has moti-
vated an increase in the integration of information and communication tech-
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Figure 1.1: Historical (black bars) and future (gray bars) planned percentage of renewables
in the German: a) gross electricity consumption; b) heating sector; c) transport
sector. The figure is based on [3, 4].

nologies (ICTs), i.e. the development of the Smart Grid [9, 10], and a great
number of energy research projects like: the Energy Lab 2.01 [10, 11], the
Helmholtz Association Energy System 20502 and Storage and Cross-Linked
Infrastructures projects3, and the Kopernikus projects4.

1 elab2.kit.edu/english/index.php
2 helmholtz.de/en/research/energy/energy_system_2050
3 helmholtz.de/en/research/energy/storage_and_cross_linked_infrastructures
4 kopernikus-projekte.de/en/home

2

https://www.elab2.kit.edu/english/index.php
https://www.helmholtz.de/en/research/energy/energy_system_2050/
https://www.helmholtz.de/en/research/energy/storage_and_cross_linked_infrastructures/
https://www.kopernikus-projekte.de/en/home


1.1 Motivation

A problem that arises when integrating volatile renewable power systems
(e.g., wind and photovoltaic (PV) power plants) into the electrical grid is
that they complicate the necessary balancing of electricity demand and sup-
ply, due to their intermittency [12, 13]. Thereupon, both demand and sup-
ply forecast have become necessary in enabling the correct planning and
scheduling of the electrical grid [14] – for instance, via demand side man-
agement (DSM) [15, 16]. Furthermore, natural gas and district heating grids
also benefit from load forecasts, as they allow the operators to ensure the
grids’ stability and good performance [17, 18]. Moreover, conversion tech-
nologies like “Power to Gas" [19] and “Power to Heat" [20, 21] can be used
to fed heating and gas grids with excess renewable energy. Such coupling in-
creases the need for accurate volatile renewable power forecasts. Addition-
ally, accurate load forecasts also assist energy utility companies (especially
in competitive energy markets [22]) in decisions, like electricity generation
and purchasing, as well as infrastructure planning [23, 24].

Time series forecasting models are a tool used for predicting the future
of values whose change over time is of interest, for instance, sales, stock
prices, and – most importantly in the present thesis context – renewable
power generation and load [25, 26]. The majority of forecasting models de-
liver a time series value that according to their criteria is to be expected at a
future moment in time [27], i.e. a point forecast, yet are unable to quantify
the forecast uncertainty. As all forecasts are in some degree uncertain, the
description of their uncertainty is necessary if the robustness of optimization
and decision-making procedures is to be assured and increased [28]. Prob-
abilistic forecasts offer a possibility of quantifying the uncertainty [28], for
example, by offering a description of the future value’s cumulative distri-
bution function or by providing intervals with a certain probability of the
future value being within. Moreover, there is a current interest towards the
development of energy-related probabilistic forecasting techniques [29], fu-
eled by the increasing installation of volatile renewable power generation
systems. For such reason, the present thesis presents a number of new data-
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1 Introduction

driven probabilistic forecasting approaches that can be utilized in an energy-
related context, yet have at the same time a generalization capacity (i.e. they
can be used to forecast other types of values).

The next sections in this chapter present theoretical background informa-
tion as well as a description of the state-of-the-art in energy-related fore-
casting. Additionally, some open questions that the present contribution
tries to address, as well as various objectives of the present thesis are also
mentioned. Please notice that parts of the current chapter are an extended
version of [30].

1.2 Theoretical Background

The present section briefly outlines the basic concepts that are necessary
for a thorough understanding of this thesis. First, concepts of probability
theory, as well as regression and quantile regression theory are introduced.
Thereafter, information concerning time series forecasting is also presented.

1.2.1 Random Variables

A random variable, Z, is a function that maps the outcome of a chance
experiment to a real number [31, 32, 33]. Random variables are mostly
categorized as discrete or continuous depending on the values they are able
to take. While the set of values that discrete random variables can take is
finite or can be listed as an infinite sequence, the set of continuous random
variables is an entire interval of numbers in a defined domain [31, 32, 33];
continuous random variables are the ones relevant in the present thesis.

A property of continuous random variables is the fact that the probability
of them being equal to a single one of all their possible realizations, z, is
always equal to zero, i.e. Pr(Z = z) = 0 [31, 32]. In addition to moments
like the expected value, E(Z), or the variance, Var(Z), other tools used for
the description of continuous random variables are cumulative distribution
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1.2 Theoretical Background

functions (CDFs) and their derivatives – assuming they exist –, probability
density functions (PDFs). A CDF5, F (z), is a monotonic non-decreasing
function that maps a specific realization, z, to the probability of a random
variable Z being lower or equal to z [34], i.e.

F (z) =

∫ z

−∞
f(z∗)dz∗ = Pr(Z ≤ z) , (1.1)

with f(·) as the random variable’s PDF. Furthermore, values z(q) for which
the following inequalities

Pr(Z ≤ z(q)) ≤ q and Pr(Z ≥ z(q)) ≥ 1− q ; q ∈ (0, 1) (1.2)

hold are defined as the q-quantiles of the random variable Z. Additionally,
a quantile z(q) can also be defined as the value that solves the following
optimization problem [35]:

z(q) = argmin
z

E

((q − 1) · (Z − z) , if Z < z

q · (Z − z) , else

)
. (1.3)

If Z has a continuous and strictly increasing CDF, Equation (1.2) reduces
itself to

Pr(Z ≤ z(q)) = q ; q ∈ (0, 1) . (1.4)

In such cases an interval with a given probability of Z laying within can
be defined using an upper and a lower quantile, i.e. z(ql) and z(qu). Such
property can be attributed to the fact that the following equation holds:

Pr(z(ql) ≤ Z ≤ z(qu)) = qu − ql ; z(ql) < z(qu) . (1.5)

5 CDF functions are normally written with their random variable as index, e.g., FZ(z).
Nonetheless, for the sake simplicity, the use of the random variable as index is avoided in
the present thesis.
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1 Introduction

Moreover, if the CDF of a continuous random variable Z is again con-
tinuous and strictly increasing, it can be used to transform a sample of an
uniformly distributed random variable, U ∼ U(0, 1), into a sample of Z
or vice versa [31]. Such transformation is called the probability integral
transform (PIT) and it can be written as:

z = F−1(u) . (1.6)

This transformation is mostly used for simulating samples of a given CDF.
CDFs can also be used to describe more than a single random variable [31,

32]. For example, the joint probability distribution of variables Z1 and Z2

can be written as

F (z1, z2) =

∫ z1

−∞

∫ z2

−∞
f(z∗1 , z

∗
2)dz∗1dz

∗
2 = Pr(Z1 ≤ z1, Z2 ≤ z2) , (1.7)

with F (z1) = F (z1,∞) and F (z2) = F (∞, z2) being referred to as the
corresponding marginal CDFs. In addition, the variables Z1 and Z2 are said
to be dependent, for example, if Z2 – by taking a specific value – influences
the possible outcomes ofZ1. This dependence is captured by the conditional
distribution function [32]:

F (z1|z2) = Pr(Z1 ≤ z1|Z2 = z2) . (1.8)

Furthermore, a common problem when looking at several dependent ran-
dom variables is the estimation of their joint CDF. A possibility of solving
this problem is the use of copulas. A Copula is a mathematical tool able
to capture the dependence structure of random variables based only on their
marginal CDFs [36, 37, 38]. The use of copulas is based on Sklar’s theorem
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1.2 Theoretical Background

that is defined for the case of M ∈ N>0 dependent random variables, Zm
(with m = 1, . . . ,M and M ≥ 2), as

F (z1, · · · , zM ) = C(u1, · · · ,uM ) = C(F (z1), · · · , F (zM )) , (1.9)

with C being the utilized copula. Equation (1.9) shows, that (i) the esti-
mation of the dependence structure of random variables is based on Equa-
tion (1.6) and that (ii) a copula is a joint distribution function with uniform
marginal CDFs. Moreover, Sklar’s theorem can be extended to allow the
determination of conditional joint CDFs [39] as shown for example, in the
following equation

F (z1, · · · , zM−1|zM ) = C(F (z1|zM ), · · · , F (zM−1|zM )|zM ) . (1.10)

Note:
In the remainder of the present thesis both random variables (e.g., Z) and

their realizations (e.g., z) are going to be denoted using only lower case let-
ters, thus they are not going to be differentiated. This notation is consistent
with the one used in [35].

1.2.2 Quantile Regressions

Regression is a supervised learning approach [40] that is defined as the pro-
cess of training – via a data mining technique – a data-driven model to es-
timate an output value y given an input vector x = [x1, · · · , xs, · · · , xS ]T

(with s = 1, . . . , S and S ∈ N>0 being the number of used features) [41].
Regression models are divided into parametric and non-parametric, with the
former being the ones relevant in the present thesis. Parametric regression
models can be described using the equation,

y = f(x;θ) + ε , (1.11)
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in which f(·;θ) represents the model, ε the error, and θ the model param-
eters. Furthermore, both y and x can also be described as random vari-
ables [42].

The obtainment of a regression model, just as every supervised learning
approach, requires a training set consisting of N ∈ N>0 different observa-
tions [42]. These observations are comprised of N desired output values,
yn, and their corresponding input vectors xn = [xn1, · · · , xns, · · · , xnS ]T

(with n = 1, . . . , N ), which are in turn contained inside of a desired output
vector y and an input matrix X, i.e:

y = [y1, · · · , yn, · · · , yN ]T

X = [x1, · · · ,xn, · · · ,xN ]T
. (1.12)

The goal of a parametric regression is to determine an optimal set of pa-
rameters, θ̂, by minimizing the value of a cost function on the given training
set [43]. Afterwards, the optimal parameters can be used to obtain an esti-
mate of the desired output, i.e. ŷ:

ŷ = f(x; θ̂) . (1.13)

A normally used cost function (e.g., in case of a linear regression) is the
sum of squared errors; its minimization results in ŷ being an estimate of the
conditional expected value of y given the input x, i.e. ŷ = Ê(y|x) [35].

The type of regressions that are relevant in the present thesis are quantile
regressions. A quantile regression estimates, instead of the conditional ex-
pected value, the conditional q-quantile of the desired output y, i.e. a value
y(q) for which the following equation holds:

Pr(y ≤ y(q)|x) = q . (1.14)
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1.2 Theoretical Background

Quantile regressions are defined in the present thesis as:

ŷ(q) = f(x; θ̂(q)) , (1.15)

with ŷ(q) being the q-quantile’s estimate and θ̂(q) being the quantile regres-
sion estimated parameters. Furthermore, the parameters of a classical quan-
tile regression are obtained by minimizing the sum of pinball-losses [44],
i.e.:

θ̂(q) = argmin
θ(q)

N∑
n=1

(q − 1) · (yn − f(xn;θ(q))) , if yn < f(q)(xn;θ(q))

q · (yn − f(xn;θ(q))) , else
,

(1.16)
in which a pinball-loss is described by the function depicted in Figure 1.2.
The fact that a quantile regression can be trained by minimizing the sum of
pinball-losses is derived from Equation (1.3) [35].

Pinball-loss

Figure 1.2: Pinball-loss function

In addition, pairs of quantile regressions can also be used to estimate in-
tervals with a given conditional probability of containing y. For instance,
quantile regressions that will form the interval’s upper and lower bound,
i.e. y(qu) and y(ql) respectively, can be used to estimate an interval with a
probability (qu− ql) of containing the future value (analogously as in Equa-
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tion (1.5)). Likewise, the combination of several quantile regressions can
also be used as an estimate of the conditional probability distribution of y,
i.e. F (y|x) [45]. It needs to be mentioned, however, that since quantile
regressions are created independently of one another the problem of quan-
tile crossing may exist [35]. Quantile crossing refers to the problem of a
quantile regression estimating a lower quantile (e.g., 0.1) being greater than
one estimating a greater one (e.g., 0.15), or vice versa. Since the quality
of regression models is highly dependent on their training data, the use of
methods as the ones described in [46] is recommended in cases in which the
training data exhibits low quality.

1.2.3 Time Series Forecasting

A finite time series {y[k]; k = 1, . . . ,K} can be described as a set of
K ∈ N>0 observations measured at equidistant points in time [47]. These
observations form an orderly sequence in which the position of each obser-
vation is based on its corresponding timestep value k. A time series forecast-
ing model uses some available information to estimate the unknown future
of a desired time series at a forecast horizon H ∈ N>0. For example, a
forecasting model able to estimate a future time series value using current
and past values of the time series in question and from several exogenous
time series can be given as:

ŷ[k +H] = f(y[k], · · · , y[k −H1],uT [k], · · · ,uT [k −H1];θf); k > H1 .
(1.17)

In the previous equation the vector θf describes the forecasting model pa-
rameters, the vector u[k] contains the observations of various exogenous
time series at timestep k, and the value H1 ∈ N0 represents the number of
used time lags.

Two of the most common time series forecasting techniques are exponen-
tial smoothing and the auto-regressive integrated moving average (ARIMA)
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models [25]. A simple exponential smoothing model is given as a weighted
average of past observations of the desired time series6, i.e.:

ŷ[k +H] =


y[1] , if k = 1

k−2∑
i=0

α(1− α)iy[k − i] + (1− α)k−1y[1] , else
,

(1.18)
with α ∈ [0, 1] being the smoothing parameter. As Equation (1.18) shows,
the weights decay exponentially as the observations get older, therefore giv-
ing more recent observations a greater influence [14, 25]. Additionally,
since the simple exponential smoothing in Equation (1.18) uses only past ob-
servations to conduct its forecast, it can also be defined as an auto-regressive
time series model. More complex and non-linear exponential smoothing
variants can be found in [48].

An autoregressive (AR) integrated (I) moving average (MA) model, i.e.
ARIMA, is a generalization for non-stationary time series of the autoregres-
sive moving average (ARMA) [47] model, which can be further divided
into its auto-regressive (AR) and moving average part (MA). These models
are based on the idea that time series are realizations of a stochastic pro-
cess [49]. Moreover, the ARIMA model and all of its simplifications allow
the use of exogenous time series as input; this inclusion is denoted by the

6 Equation (1.18) delivers accurate forecasts for H > 1 only if the forecast time series has no
trend or seasonal component.
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letter X at the end of their names, e.g., ARIMAX [50]. For example, an
ARIMAX model of first order difference can be given as:

ŷ[k +H] =ŷ[k +H − 1] +

H1∑
i=0

ai∆y[k − i] +

H1∑
j=0

bTj u[k − j]

+

H1∑
l=0

clε[k − l]; k > H1 + 1 , with

ε[k] =ŷ[k]− y[k] ; ∆y[k] = y[k]− y[k − 1] ,

(1.19)

with ai, bj and cl representing the model parameters. It needs to be
mentioned, that while Equation (1.19) defines the ARIMA(X) model for
a generic forecast horizon H , it is traditionally used for H = 1 (i.e.
ŷ[k + H − 1] = y[k]). In such case, forecasts for greater forecast hori-
zons are obtained using the ARIMA(X) model iteratively and setting all
unknown residuals (i.e. ε[k + 1], ε[k + 2], etc.) equal to zero, as exempli-
fied in [25]. Interested readers are referred to [47] and [51] for additional
information regarding ARIMA(X).

According to [25] time series can be decomposed into three distinct com-
ponents: a trend-cycle component, a seasonal component, and a remainder.
The way in which the various components form the original time series de-
pends on the used assumption. For instance if an additive decomposition is
assumed, an observation of a given time series can be described as:

y[k] = yT[k] + yS[k] + yR[k]; (1.20)

with yT[k] representing the trend-cycle component, yS[k] the seasonal com-
ponent, and yR[k] the remainder. These components can be used to obtain
models, like the Holt-Winters model [48] (i.e. an expansion of the tradi-
tional exponential smoothing technique that estimates a trend and a season-
ality) or the seasonal ARIMA(X) model (SARIMA(X)).
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Since linear models can be inadequate for some real-world applications [49],
non-linear techniques, as e.g., artificial neural networks (ANN) [14] and
support vector regressions (SVR) [52], have also been found useful in fore-
casting [53, 54]. Notice that models obtained by non-linear techniques can
also be classified as NARIMA(X) models (with the letter N denoting their
non-linearity), depending on their utilized input values [55].

Time series forecasting models can be in general separated into white-box,
data-driven (i.e. black-box), and gray-box models [30]. The first use known
relations, expert knowledge, etc. to determine the relation between the used
inputs and the future of the time series of interest, the second try to estimate
such relation by applying data mining techniques (e.g., linear regressions,
ANNs), and the third are a combination of the previous two.

In the present thesis, forecasting models are going to be generalized as
regressions, since they map – just as a regression – a given input to an es-
timate of a desired output. For example, to estimate Equation (1.17) using
regression data mining techniques, both the input and desired output have to
be defined as:

y :=y[k +H]

x :=[y[k], · · · , y[k −H1],

uT [k], · · · ,uT [k −H1]]T ; k ∈ [H1 + 1,K −H] .

(1.21)

Likewise, the forecasting model parameters (cf. Equation (1.17)) become
then estimated regression parameters, i.e. θf := θ̂.

Readers interested in other forecasting approaches, as e.g., state space
models, autoregressive conditional heteroscedasticity (ARCH) models, gen-
eralized ARCH (GARCH) models, deep learning, Gaussian process regres-
sion, techniques using compressed sensing, etc., are referred to [49], [56],
[57], [58], and [59].

In addition, forecasts describing the future of various time series and their
aggregation at different aggregation levels, i.e. hierarchical forecasts, are
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also relevant in the present thesis. Their importance is attributed to the fact
that the aggregation of single time series (as e.g., load time series of individ-
ual households) results in values whose forecast is in some cases of interest
(e.g., a substation’s load time series). Hierarchical forecasts are mostly di-
vided into bottom-up and top-down [60]. The former start by obtaining
forecasts at the lowest aggregation level and then aggregating them accord-
ingly, while the latter begin with a forecast for the highest aggregation level
that is later distributed to the lower levels. Of course, there is also the pos-
sibility of independently forecasting each time series at every aggregation
level. Nonetheless, such approach does not assure the obtainment of co-
herent hierarchical forecasts, i.e. that the forecast of time series at higher
aggregation levels actually represent the sum of the ones at the lower levels.

1.2.4 Probabilistic Forecasting

The difficulty to perfectly predict the future makes every forecast inherently
uncertain [61, 62]. Most time series forecasting models deliver for a given
forecast horizon a single expected value (i.e. a point-forecast [63, 64]), but
are unable to quantify their own forecast uncertainty. The quantification of
this uncertainty is nonetheless of relevance in optimal decision-making [28]
and in stochastic optimization [62].

Probabilistic forecasts offer a possibility of describing this uncertainty, for
instance, by estimating the variance, the PDF, the CDF, or some quantiles
of a future time series value [62]. Such methods are divided into parametric
and non-parametric approaches; the former assume that the uncertainty fol-
lows a known distribution function – from which its defining parameters are
to be determined –, while the latter do not. For the sake of illustration, Fig-
ure 1.3 depicts visual examples of various probabilistic forecasting methods
described next, using the definitions given in Equation (1.21).

A Gaussian process [34, 43, 66, 67, 68, 69] is a clear example of a para-
metric probabilistic forecasting approach, since it assumes the forecast un-
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1.2 Theoretical Background

Figure 1.3: Examples of probabilistic forecasting methods (adapted from some figures
in [65])

certainty to be normally distributed and hence estimates for each of its point
forecasts (i.e. expected value) the corresponding variance. Using the Gaus-
sian distribution assumption, the expected value, and the variance, a Gaus-
sian process is able to fully describe the distribution of the forecast uncer-
tainty. Examples of Gaussian processes used for time series forecasting can
be found in [70] and [71].

Intervals created using pairs of either parametric or non-parametric quan-
tile regressions are clear examples of non-parametric probabilistic fore-
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casts [44, 72, 73, 74, 75, 76, 77]. These intervals are characterized by
having a given probability of containing the future time series values. Ad-
ditionally as previously stated, several quantile regressions can also be used
to estimate the whole CDF of a future time series value conditioned on the
models’ input [45].

Kernel density estimators (KDE) offer another possibility of describing
the forecast uncertainty by providing a smooth non-parametric estimation
of the PDF of a future time series value, as e.g., in [78], [79], and [80].

Scenarios forecasts formed by combining several possible time series sce-
narios [81] are another approach for describing the forecast uncertainty.
Scenario forecasts are traditionally used in weather forecasting, in which
they are referred to as ensemble forecasts and are obtained using numerical
weather models with varying initial conditions [82, 83]. It is important to
mention that even though scenarios forecasts are commonly not considered
probabilistic forecasts (as in [62]), the present thesis still classifies them as
such. This classification is based on the following two reasons. First, the
uncertainty of the forecast at a forecast horizon H can be represented – in a
non-parametric fashion – by the spread of values that the different scenarios
take. Second, the values of the different scenarios can be used to estimate
probability values like, the mean, the variance, and some quantiles, which
in turn can be used to further describe the uncertainty or to estimate a PDF
or a CDF [84].

Currently there is an interest in describing the joint uncertainty of future
values of two or more time series or of several future values of a single time
series using information of their joint probability distribution. This may
be relevant for instance, in the creation of scenario or coherent hierarchical
probabilistic forecasts [85]. Unfortunately, the obtainment of the joint dis-
tributions is not a trivial task, as the various future values are not necessarily
statistically independent.
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1.3 State-of-the-Art in Energy-Related
Forecasting

The present section describes the state-of-the-art in energy-related forecast-
ing, for both load and volatile renewable power (i.e. wind and photovoltaic
power). For the sake of illustration, Figure 1.4 depicts the state of maturity
of various point and probabilistic energy forecasting research fields.

Mature

Mature

Immature

Immature
Point Forecast

Probabilistic
Forecast

STL

WLTL

PV

Figure 1.4: Maturity of point and probabilistic energy forecasting research fields; STL: short-
term (two weeks ahead or shorter) load forecasting; LTL: long-term (a few months
to a few decades ahead) load forecasting; PV: photovoltaic power forecasting; W:
wind power forecasting (based on [29] and adapted from [30])

Energy time series are highly influenced by properties that differentiate
them from many other time series; properties that have to be taken into ac-
count if accurate forecasts are to be obtained. A clear example thereof is the
weather dependency of volatile renewable power, e.g., PV power depends
mostly on solar irradiation [86], while wind power on wind speed [87].
The relation between weather and volatile renewable power is shown for
instance, in the Osterwald equation [88, 89] (commonly utilized to estimate
a PV cell’s maximal possible power) and in the fundamental wind power
equation [90]. Likewise, weather dependencies can also be observed in load
time series, especially in heat load time series [91]. These can be attributed
to human behavior that not only influences load depending on the weather,
but also depending on the time of day and the day of the week. The effect
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that human behavior has on load is visualized in Figure 1.5; it shows heat
maps depicting normalized averages of households’ daily electrical loads
separated into months and weekdays.

a) b)

Figure 1.5: Heat maps depicting normalized average daily household electrical loads across a)
several months and b) different weekdays. The data comes from the FIXED price
group households in the Olympic Peninsula Project [92] (adapted from [30])

Figure 1.5 shows that electrical load time series possess seasonal compo-
nents, similarly to PV power time series. Whereas the daily seasonality of
PV power is governed by the Earth’s day and night cycle, the seasons (i.e.
the daily, weekly, and yearly seasons) of load are instead strongly depen-
dent on people’s behavior. Such seasonal components can be utilized, for
instance, to obtain forecasts by using or averaging past observations [93, 94]
or to obtain time series that, when used as further input values, may increase
the models’ accuracy [95]. Moreover, exogenous time series may help in es-
timating behaviors that repeat after non-fixed periods of time. For instance,
averaging the power or load of previous days whose conditions are similar
according to some exogenous time series values (e.g., weather, day of the
week) may result in an acceptable forecast, just as in [80]. Apart from the
previously described properties, the quality of the used time series (regard-
ing missing values, outliers, etc.) needs also to be taken into account when
creating forecasting models. For this reason, preprocessing methods able to
test and improve the quality of the used time series are of major importance.

18



1.3 State-of-the-Art in Energy-Related Forecasting

Since a thorough description of this type of approaches surpasses the scope
of the present thesis, interested readers are referred to [3, 96, 97] for further
information thereof.

In the literature, several categorizations of energy forecasting approaches
exist. The most common one uses the forecast horizon to categorize fore-
casting approaches as short-, medium-, or long-term. Table 1.1 offers exam-
ples present in the literature of this common categorization7. As the exam-
ples show, the categorization based on forecast horizons is not consistent.
Thereupon, the concepts of short-, medium-, and long-term are not utilized
further, instead the forecast horizons are mentioned explicitly. Furthermore,
Figure 1.6 shows examples of possible applications that forecasts can have
based on their forecast horizons.

The selection of the approach and data utilized when conducting load fore-
casts is highly influenced by the desired forecast horizon. For instance,
ANNs, SVMs, and time series models (e.g., ARIMA, regression models)
are – according to [23] – normally used for forecast horizons of up to a
day. In comparison, end-use models [113], econometric models [114], and
their combination are commonly used for greater horizons. End-use mod-
els use extensive information about the users and their equipment to esti-
mate the future load, while econometric models relate energy demand to
macro-economic variables. As previously mentioned, human routine exerts
a great influence on energy consumption, thereupon variables representing
such behavior, as e.g., calendar functions [115], are frequently employed
as input for the models. Likewise, the use of variables representing socio-
economic growth should be considered when obtaining monthly and yearly
load forecasts for regions whose socio-economic conditions could rapidly
change [101]. Weather data, such as temperature, have also been found
useful when obtaining load forecasts. Forecast weather data can be easily
obtained from weather services for forecast horizons of up to a week. How-

7 Various works classify forecasting approaches also as very short-term. Nevertheless in the
present thesis, such a categorization is considered part of the short-term category.
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Forecast Horizon

Author H ≤ 1d 1d < H ≤ 1w 1w < H ≤ 1M 1M < H ≤ 1Y 1Y < H

L
oa

d

Ahmad [98] Short Medium Long

Feinberg [23] Short Medium Long

Hahn [99] Short Medium Long

MCSharry [100] Short Medium Medium & Long Long

Raza [54] Short - Medium Long

Ghiassi [101] Short - Medium

Alfares [102] Short Medium Long

Takiyar [24] Short Medium Long

Almeshaiei [103] Short Short & Medium Medium Long

Metaxiotis [104] Short Medium Medium & Long Long

Vo
la

til
e

R
en

ew
ab

le
Po

w
er

Foley [105] Short Short & Medium -

Monteiro [106] Short Short & Medium -

Wan [107] Short & Medium Long

Soman [108] Short & Medium Long

Wang [109] Short Long -

Huang [110] Short Long -

Ogliari [111] Short Medium Long

Kostylev [112] OD Medium Long

Table 1.1: Categorization of energy-related forecasting approaches based on their forecast
horizon H (adapted from [30])
Forecast Horizon: hour (h), day (d), week (w), month (M), year (Y)

ever, if greater forecast horizons are required, other methods of obtaining
future weather data are necessary [116]. The fact that weather forecasts for
great forecast horizons may be extremely uncertain is an important aspect
to consider prior to their use. Furthermore, information about e.g., planned
urban changes and expansions, dismantling, or maintenance of large indus-
trial complexes can be helpful at increasing the accuracy of a given load
forecasting model.

In contrast to load forecasting, volatile renewable power forecasting ap-
proaches can be divided into physical approaches, statistical (in the present
thesis referred to as data-driven) approaches, and their combination [106,
117, 118, 119]. The models of the first approach correspond to white-box
models, of the second to data-driven models, and of the last one to gray-box
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Load Forecast Applications

PV Power Forecast Applications

Wind Power Forecast Applications

Unit commitment
Power system 
operation and 
maintenance

Power system
planning

Real-time power
dispatch

Unit commitment,
economic 
dispatch

Maintenance
scheduling

PV plant 
planning

From 1h to 1W From 1M to 1Y From 1Y to 10Y

From a few 
seconds to minutes

Up to 48 to 72h Up to 1W From months to 
years

Real-time grid 
operations

Economic load 
dispatch 
planning

Maintenance 
planning

Up to 8h Up to 1d Multiple days Forecast 
horizon

Forecast 
horizon

Forecast 
horizon

Figure 1.6: Examples of energy time series forecast applications based on their forecast hori-
zon [54, 107, 109] (adapted from [30])

models. According to [120], pure data-driven forecasting approaches are
considered to be more effective for short horizons, while approaches using
more physical information are better in case of longer horizons. Neverthe-
less, a clear definition of short and long horizons is missing in [120].

Physical approaches start with some available forecast weather data, as
e.g., numerical weather predictions (NWP) of solar irradiation in case of
PV power [86] or of wind speed in case of wind power [87]. The fore-
cast weather data is then transformed into values that directly influence the
volatile renewable power generation (e.g., solar irradiation on the PV mod-
ules or wind speed at the wind turbines). These values are then converted
into power forecast with the help of models based on physical relations, e.g.,
the fundamental wind power equation. An example of a physical approach
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can be found in [121]. Since physical models do not require historical power
generation data to work, they can be used to obtain volatile renewable power
forecasts prior to the construction of a renewable energy system [117]. Nev-
ertheless, it can be argued that physical models are not true forecasting tech-
niques, as they only transform forecast weather data into other values.

In comparison, data-driven approaches (e.g., ANNs) train models able to
directly obtain power forecasts from past generated power data and/or other
possible inputs like historical NWP data [106, 109, 119]. Furthermore,
data-driven models do not need to explicitly model specific properties of
the renewable energy systems, since such specific properties are implicitly
contained in the used data. Some examples of these properties are: local
shadowing caused by neighboring buildings and/or vegetation in the case
of PV power and the influence of the geographical location on wind power
production.

The fact that the volatile renewable power and certain weather parameters
are highly correlated have made weather data – specifically forecast weather
data – a common used input. Nonetheless, it has been shown that accurate
PV power forecasts can be obtained through pure autoregressive models,
when considering short horizons [119]. Evidence thereof is shown for hori-
zons of one and two hours in [94] and for horizons of 24 hours in [93]
and [122]. Additionally, pure autoregressive models can also be used to
forecast wind power generation [123], nonetheless it is recommended that
NWP data is used as input for horizons greater than three to six hours [106].
Please note that autoregressive approaches for forecast horizons larger than
a couple of hours come with quality restrictions, some of which are thor-
oughly outlined in [93].

Tables 1.2 and 1.3 contain examples of both point and probabilistic fore-
casting approaches found in the literature. The tables contain: the author
of the respective article, the utilized technique, the forecast value (electrical
load (E), heat load (H), gas load (G), photovoltaic power (PV), and wind
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,ŵ

s

G
ai

lla
rd

[7
3]

Q
ua

nt
ile

R
eg

re
ss

io
n

w
ith

E
1M

1h
Ti

m
e

of
ye

ar
,d

ay
-t

yp
e,
T
a

G
en

er
al

iz
ed

A
dd

iti
ve

M
od

el
s

H
ab

en
[1

40
]

K
D

E
an

d
Q

ua
nt

ile
R

eg
re

ss
io

n
E

1M
1h

A
ut

or
eg

re
ss

iv
e,

ho
ur

of
th

e
w

ee
k,

da
y

of
th

e
ye

ar
,T

a

H
on

g
[1

41
]

M
ul

tip
le

L
in

ea
rR

eg
re

ss
io

n
E

1Y
1M

T
a

,m
on

th
ly

pe
ak
T
a

,g
ro

ss
st

at
e

pr
od

uc
t,

m
on

th
of

th
e

ye
ar

,w
ee

kd
ay

,

w
ith

W
ea

th
er

E
ns

em
bl

e
ho

ur
of

th
e

da
y,

da
y

of
th

e
ye

ar

H
ua

ng
[1

42
]

G
ra

di
en

tB
oo

st
in

g
an

d
PV

24
h

1h
A

ut
or

eg
re

ss
iv

e,
Ĝ
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1.4 Open Questions

power (W)), the forecast horizon, the temporal resolution in which the fore-
casts are given, and the used input data.

Further information regarding the state-of-the-art for both point and prob-
abilistic forecasting can be found in the reviews given in [54], [102], [114],
[149] regarding load (specifically electrical load forecasting), in [62], [87],
[105], [106], [108], [109], [150] regarding wind power, and in [107], [112],
[117], [119], [151] regarding PV power.

Since the forecast of renewable power generation and load is not the only
one relevant in an energy-related context (e.g., forecast of energy prices
is relevant for energy trading decisions [152]), interested readers are re-
ferred to [153] and [154] for information regarding energy price forecasting,
to [155], [156], and [157] for an example on the influence that prices have
on load time series forecasts, and to [158] for an approach that forecasts
time series formed as a combination of both renewable power and load (for
instance, a time series measured at a low voltage substation).

1.4 Open Questions

Regardless of the extensive amount of probabilistic forecasting related arti-
cles found in the literature, there are still a number of open questions that
need to be addressed. For example:

• Quantile regressions are useful at obtaining non-parametric proba-
bilistic forecasts. Nonetheless, the obtainment of classical paramet-
ric quantile regressions with more complex data mining techniques
(e.g., ANN and SVR) is hindered by the required minimization of the
non-differentiable sum of pinball-losses; the lack of differentiability
may lead to problems when using gradient based optimization [159]
and to a higher computational effort. Moreover, the effort of obtain-
ing classical quantile regressions is further increased by the fact that
the training algorithms of the used data mining techniques have to be
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1 Introduction

altered in order for them to minimize the sum of pinball-losses (cf.
Equation (1.16)); as shown in [159, 160, 161].

• Non-parametric probabilistic forecasts have the advantage of avoid-
ing assumptions regarding the distribution of the forecast uncertainty.
However, there are still optimization algorithms that require a para-
metric description of the uncertainty (e.g., [162]). Therefore, meth-
ods able to transform non-parametric probabilistic forecasts (and their
lack of assumptions) into parametric probabilistic forecasts are of in-
terest.

• Scenario forecasts are required by some optimization algorithms (e.g.,
[163]). However, their creation commonly requires an explicit de-
scription of the correlation structure between neighboring time series
values, which complicates their obtainment. Thereupon, the devel-
opment of a method able to create scenario forecasts without the de-
scription of the correlation of neighboring values is of interest.

• Forecasts of joint distributions are necessary in the creation of coher-
ent hierarchical probabilistic forecasts and in the description of the
dependence of forecast neighboring time series values. Yet a non-
parametric standard approach for their creation has not been estab-
lished.

• Probabilistic forecasts are inherently more complex than point fore-
casts, for this reason the former are not as commonly used in an en-
ergy forecasting context. Therefore, there appears to be a lack of
experience for deploying probabilistic forecasts in real-world appli-
cations.
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1.5 Objectives

1.5 Objectives

Based on the open questions outlined in the previous section, the main ob-
jectives of the present thesis are:

1. The development of a method able to efficiently create parametric
quantile regressions without minimizing the sum of pinball-losses.

2. To derivation of an approach that based on a number of quantile re-
gression is able to find the best corresponding parametric probabilistic
forecast, thus avoiding the need of making a distribution assumption
beforehand.

3. The creation of a heuristic that generates scenario forecasts without
an explicit description of the correlation between neighboring time
series values.

4. To development of a simple technique for the creation of non-parametric
joint distribution forecasts for two correlated future values.

5. The derivation of a method for the obtainment of coherent hierarchical
probabilistic forecasts for any number of aggregated time series by
sequentially using joint distribution forecasts of only two values at a
time.

6. The presentation of real-world use-cases for the current thesis proba-
bilistic forecasting approaches.

Chapter 2 tackles the first three objectives by first, presenting an approach
that based on a new nearest neighbors quantile filter is able to obtain quan-
tile regressions. Chapter 2 then describes various methods that based on
the acquired quantile regressions are able to obtain a series of probabilistic
forecasts: interval forecasts, non-parametric distribution forecast, paramet-
ric distribution forecasts, and scenario forecasts. Analogously, Chapter 3
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1 Introduction

offers solutions for the fourth and fifth objective by presenting a concept for
obtaining joint distribution forecasts of two correlated time series and a sim-
ple algorithm that uses those joint distributions to create coherent hierarchi-
cal forecasts. Additionally, Chapter 4 details the software implementation
of all new developed methods and Chapter 5 shows the results obtained by
applying the new developed methods on various real datasets, thus tackling
the last objective. Lastly, Chapter 6 offers the conclusion and outlook of the
present thesis.
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2 Probabilistic Forecasting

2.1 Overview

The current chapter is divided in four main sections: the first thoroughly de-
scribes the probabilistic forecasting methods developed as part of the present
thesis (Section 2.2), the second outlines the evaluation values used to assess
the quality of forecasts given by the new methods (Section 2.3), the third
presents a series of experiments that offer insight into certain properties of
the described approaches (Section 2.4), and the fourth discusses the novelty
of the presented approaches as well as some questions to be answered in
future related works (Section 2.5).

Note that all examples and results presented in the current chapter are ob-
tained using the open-source MATLAB toolbox SciXMiner [164] and vari-
ous simulated load time series created using the same benchmark generator
as in [3, 156]. More information regarding the implementation of the meth-
ods in SciXMiner and the benchmark generator can be found in Chapter 4
and Appendix A.1, respectively. Furthermore, it is assumed that the sim-
ulated time series do not present anomalies (i.e. missing values, outliers,
etc.), hence no preprocessing methods are applied to them. This assumption
is supported by the fact that the benchmark generator’s options for adding
anomalies to the time series are not used. Finally, please note that parts
of the current chapter are extensions of the work presented in [65], [95],
and [165].
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2 Probabilistic Forecasting

2.2 Methods

The present section begins by describing a new method able to obtain quan-
tile regressions without minimizing the sum of pinball-losses (cf. Equa-
tion (1.16)), i.e. the nearest neighbors quantile filter (NNQF). Thereafter,
a description of four separate probabilistic forecasting approaches is given.
These approaches create – based on quantile regressions and the NNQF –
interval forecasts, non-parametric distribution forecasts, parametric distri-
bution forecasts, or scenario forecasts. For the sake of clarity, Figure 2.1
depicts each of the described techniques and their dependence to one an-
other.

Probabilistic Forecasts

Quantile Regressions 
based on the Nearest 

Neighbors Quantile Filter

Section 2.2.1

Interval 
Forecast

Non-Parametric 
Distribution 
Forecast

Parametric 
Distribution 
Forecast

Scenario 
Forecast

Section 2.2.2 Section 2.2.3

Section 2.2.4 Section 2.2.5

Figure 2.1: Techniques described in the present section and their rela-
tion to one another

Additionally, to allow a better understanding of the presented approaches,
a series of examples are given across the whole section using a simulated
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2.2 Methods

load time series, referred to as {PL[k]; k = 1, . . . ,K}. For more informa-
tion about the obtainment of the simulated load time series please refer to
Appendix A.1. Figure 2.2 depicts the simulated time series; as it can be
seen, it represents one year of hourly load measurements (i.e. K = 8760).

1000 2000 3000 4000 5000 6000 7000 8000
0

0.2

0.4

0.6

0.8

P

Figure 2.2: Simulated load time series used as an example in Sec-
tion 2.2

2.2.1 Quantile Regressions based on the Nearest
Neighbors Quantile Filter

The presented method begins with a training set composed of an input ma-
trix X and its corresponding desired output vector y (cf. Equation (1.12)),
for which the following assumptions are made:

• The training set is large enough to accurately represent the uncer-

tainty of y given x.

• The conditional distribution of y given a specific xn is accurately

represented by the output values of the nearest neighbors of xn.

Under these assumptions, the new nearest neighbors quantile filter (NNQF)
is able to modify the training set in such a way that a quantile regression
model can be trained without Equation (1.16).
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2 Probabilistic Forecasting

The NNQF starts by finding the nearest neighbors of xn. Such procedure
consists in determining the nearest neighbors’ index set Jpref

n ⊂ {1, . . . , N}
by solving the following optimization problem:

popt =argmax
p

card{Jnp}

s.t. Jnp : max
j∈Jnp

{d(xn,xj)} ≤ min{min
i/∈Jnp

{d(xn,xi)}, εth}

card{Jnp} ≤ NNN

Jpref
n =Jnpopt

.

(2.1)

In the previous equations d(·, ·) represents a distance function (defined by a
respective distance measure1 as, e.g., the Euclidean distance), NNN ∈ N>0

is the number of searched nearest neighbors, and εth is a threshold defining
the maximal distance that a nearest neighbor xj can have to xn. The process
of finding Jpref

n outlined in Equation (2.1) can easily be described in three
main steps:

1. Find index sets Jnp for which the following constraints hold: the num-
ber of elements in Jnp has to be lower than or equal to NNN and the
greatest distance of xj ; j ∈ Jnp to xn cannot surpass the lowest dis-
tance of xi; i /∈ Jnp to xn nor εth.

2. Determine the index popt, i.e. the index p of the Jnp set with the
greatest number of elements2.

3. Define the index set Jnpopt
as the index set of the nearest neighbors

Jpref
n .

1 The present thesis uses the same distance measure as in [95], i.e. a weighted Euclidean
distance with the inverse of the features variance as weights

2 Finding more than one popt is avoided by implementing the NNQF to only find index sets
Jnp with indexes sorted by nearest neighbors’ distance in an ascending order. Additionally,
the implementation needs to consider only index sets Jnp in which the indexes of nearest
neighbors with the same distance are sorted in an ascending order.
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2.2 Methods

Using Jpref
n the NNQF defines then a vector containing the nearest neigh-

bors output values, i.e. yNN,n = {yn;n ∈ Jpref
n }, from which the empir-

ical q-quantile ỹ(q),n is calculated using a procedure given in Definition 5
of [166] and Method 10 of [167] (cf. Appendix A.2). Lastly, by repeating
the procedure for all n = 1, . . . , N the NNQF is able to define a vector

ỹ(q) = [ỹ(q),1, · · · , ỹ(q),N ]T (2.2)

that together with the original input matrix X forms the modified training
set.

The modified training set (i.e. X and ỹ(q)) can be used afterwards to train
a regression model with a given data mining technique and its unmodified
training algorithm (e.g., a linear regression trained with the least squares
method). The obtained model is then capable of estimating the conditional
empirical q-quantile defined by the used nearest neighbors and is described
in the present thesis as

ˆ̃y(q) = f(x;
ˆ̃
θ(q)) . (2.3)

In the previous equation, the tilde-superscript denotes that the regression
is trained using ỹ(q). For the sake of illustration, Figure 2.3 depicts the
previous described approach.

Train 

Regression
NNQF

Training 

Set Apply 

Regression

Figure 2.3: Estimation of a future value’s quantile using a quantile re-
gression based on the NNQF; 1. The training set is modified
using the NNQF; 2. A regression model is trained using the
modified training set; 3. The trained regression can be ap-
plied to estimate a quantile of a future value given an input
vector x
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2 Probabilistic Forecasting

The use of the NNQF in the creation of quantile regressions possesses the
following advantages: first, the creation of quantile regressions for every
q ∈ (0, 1) is possible, since q is defined as a free parameter of the NNQF.
Secondly, the fact that the NNQF is decoupled from the actual training pro-
cess allows quantile regressions to be obtained with any regression data
mining technique (e.g., linear regression, ANN, SVR). Lastly, the necessity
of saving the original training set and of conducting the nearest neighbors
calculation during the application of the quantile regressions is eliminated,
since the nearest neighbors are only used by the NNQF prior to the models’
training.

For the sake of illustration, Example 1 uses the simulated load time series
(cf. Figure 2.2) to depict the creation of quantile regressions based on the
NNQF.

Example 1: Quantile Regressions based on the NNQF

The present example uses a simulated load time series (cf. Figure 2.2) to show

the creation of quantile regressions that estimate the quantiles of a value 24

timesteps into the future based only on the current time series value. In other

words, the desired output and the input of the created quantile regressions (cf.

Equation (1.21)) are defined as:

y := PL[k +H];H = 24

x := PL[k] ;
(2.4)

notice that the input is in the present case one-dimensional and thus is not

written in bold. The use of only the current time series value as input is to

allow the upcoming depiction of the input and output values.

The training set obtained using the definitions given in Equation (2.4) is de-

picted in Figure 2.4:
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2.2 Methods

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

Figure 2.4: Example training set coming from the time series shown in Figure 2.2

Thereafter, the NNQF can be used to define a new training set (cf. Equa-

tion (2.2)) with which a quantile regression will be trained. For instance, Fig-

ure 2.5 depicts two training sets obtained by filtering the previously shown

training data – with NNN = 50 and εth set to infinity – for q = 0.1 and

q = 0.9, respectively.

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

Figure 2.5: Example training set after its filtering with the NNQF

Finally, the filtered data can be used to obtain quantile regressions using

a specific data mining technique. The data shown in Figure 2.5 appears to

suggest that a non-linear regression model would be better at describing the

relationship between input values and desired quantiles. Therefore, an ANN

(traditional multi-layer perceptron) with six hidden neurons is selected as the

data mining technique to be used. Figure 2.6 shows the two quantile regres-

sions obtained.
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0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

Figure 2.6: Quantile regressions based on the NNQF trained on the example

Furthermore, Figure 2.7 depicts forecasts given by the trained quantile re-

gressions.

6080 6090 6100 6110 6120
0

0.1

0.2

0.3

0.4

0.5

Figure 2.7: Time series obtained with the quantile regressions shown in Figure 2.6

Note that the implementation of the NNQF can be divided in two main
procedures: the computationally expensive calculation of the nearest neigh-
bors, including the determination of the vectors yNN,n and the more com-
putationally cheap calculation of the elements of ỹ(q). Therefore, an opti-
mized implementation of the NNQF is recommended when creating several
quantile regressions. This optimized version conducts the first procedure
only once and uses the determined yNN,n vectors to calculate the ỹ(q) vec-
tors that are needed. The optimized implementation is the one used in the
present thesis.
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2.2 Methods

Finally, the presented approach raises the following questions:

• How accurate are quantile regressions based on the NNQF?

• What influence does the number of nearest neighbors have on the ob-
tained quantile regressions?

• How do quantile regressions based on the NNQF fare in comparison
to quantile regressions obtained by minimizing the sum of pinball-
losses (cf. Equation (1.16))?

• What is the impact that the amount of training data has on the obtained
quantile regressions?

To answer the previous questions, a series of experiments are conducted in
Section 2.4.2.

2.2.2 Interval Forecast

Interval forecasts with a desired probability (qu − ql) of containing a fu-
ture time series value can be obtained using quantile regressions based on
the NNQF (cf. Section 2.2.1). The creation of an interval forecast begins
with the obtainment of two quantile regressions that will form the upper and
lower interval bounds, i.e. ˆ̃y(qu) and ˆ̃y(ql), respectively. Figure 2.8 depicts
the estimation of ˆ̃y(qu) and ˆ̃y(ql). As it can be seen, the process consists
in applying the procedure depicted in Figure 2.3 twice in order to train the
quantile regressions defining the upper and lower bounds separately. Af-
terwards, using a given input vector x, the regressions can be applied to
estimate ˆ̃y(qu) and ˆ̃y(ql). Finally, the combination of both values results in
the desired interval forecast that is described in the present thesis as:

ˆ̃y(qu,ql) = [ˆ̃y(qu),
ˆ̃y(ql)]

T ; qu > ql . (2.5)

As it is shown in Equation (2.3), interval forecasts are just the concatenation
of quantile regressions; this means that their obtainment requires almost
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Train 

RegressionNNQF
Apply 

Regression

Training 

Set

Train 

RegressionNNQF
Apply 

Regression

Figure 2.8: Obtainment of an interval forecast using quantile regres-
sions based on the NNQF

no additional calculations if the quantile regressions have been previously
computed.

Using the simulated load time series (cf. Figure 2.2), Example 2 shows
the principles behind the obtainment of interval forecasts.

Example 2: Interval Forecast

The goal of the present example is to create interval forecasts that describe

the uncertainty of a value 24 hours into the future of the simulated load time

series (cf. Figure 2.2) using quantile regressions obtained with the NNQF (cf.

Equation (2.1) withNNN = 50 and εth set to infinity) and the following desired

output, input vector, and probabilities:

y := PL[k +H];H = 24

x := [PL[k], · · · ,PL[k −H1]]
T ; k ∈ [H1 + 1,K −H], H1 = 168

q ∈ {0.10, 0.20, 0.30, 0.40, 0.60, 0.70, 0.80, 0.90} .

(2.6)

The previous equation shows that the quantile regressions estimate quantiles

of a value 24 hours into the future using all load values of the previous week.

The use of a different input vector as in Example 1 has two reasons: first, the
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2.2 Methods

visualization of the quantile regressions in feature space is not required and

second, the consideration of the weekly seasonality of the load time series is

desired. Prior to the quantile regressions’ training, a forward feature selection

that chooses four relevant features with which all quantile regressions are to

be trained is applied. In other words, all quantile regressions have the same

features but vary in their fitted parameters (cf. Section 2.4). Additionally, the

data mining technique used for training is a polynomial model with a maximal

degree of two.

After training them, the quantile regressions are defined as either an upper

or a lower bound. This distinction results in two sets of corresponding qu and

ql values, i.e.:
qu ∈ {0.6, 0.7, 0.8, 0.9}

ql ∈ {0.4, 0.3, 0.2, 0.1} .
(2.7)

Using the defined upper and lower bounds, four interval forecasts – centered

on the median – with 20%, 40%, 60%, and 80% probability of the future value

laying within can be created (cf. Equation (2.5)). For the sake of illustration,

Figure 2.9 shows examples of the obtained interval forecasts.
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Figure 2.9: Example of interval forecasts

The obtainment of interval forecasts using quantile regressions based on
the NNQF raises a series of questions that are examined with more detail in
Section 2.4.3. These questions are:

41



2 Probabilistic Forecasting

• How accurate are interval forecasts formed by quantile regressions
based on the NNQF?

• What influence does the number of nearest neighbors has on the ob-
tained interval forecasts?

• What is the impact that the amount of training data has on the obtained
interval forecasts?

• How do different forecast horizons influence interval forecasts?

2.2.3 Non-Parametric Distribution Forecast

Apart from interval forecasts, another type of probabilistic forecasts that can
be derived from quantile regressions are non-parametric distribution fore-
casts, i.e. a non-parametric estimate of the conditional CDF of y given x.
These forecasts are obtained using quantile regressions based on the NNQF
and the following assumptions:

• The conditional CDF is strictly monotonic increasing.

• The conditional CDF equals zero for y values equal to or lower than

a lower threshold y.

• The conditional CDF equals one for y values equal to or greater than

an upper threshold y.

Note that the definition of both thresholds may vary depending on the case.
For instance, they can be set to be dependent of x or to be always the same
value. Furthermore, y and y can also be defined as minus and plus infinity.
The specifics of how the thresholds are defined in the present thesis can be
found in Appendix A.3.

Under these assumptions, the method begins with the obtainment of L ∈
N>0 separate quantile regressions {ˆ̃y(ql); l = 1, . . . , L and q1 < · · · < qL}.
Please notice that to fulfill the assumption regarding the CDF’s monotony,
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quantile crossing between the quantile regressions needs to be avoided, i.e.
ˆ̃y(q1) < · · · < ˆ̃y(qL). In the present thesis several measures to avoid quan-
tile crossing are used. In the case of training multiple linear regressions
(e.g., polynomial models), the risk of quantile crossing is reduced by train-
ing them via the following constrained least squares method, starting with
the lowest quantile:

argmin
θ̃(ql)

N∑
n=1

(ỹ(ql),n − f(xn; θ̃(ql)))
2

s. t.

f(x; θ̃(ql)) ≥ ymin if ql = q1

f(x; θ̃(ql)) ≥ f(x; θ̃(ql−1)) else ;

(2.8)

with ymin representing a global minimum that should not be surpassed. Ad-
ditionally, to further reduce the risk of quantile crossing, all quantile regres-
sions, including the ones trained with non-linear regression techniques (e.g.,
ANNs), are subjected to the next constraint during their application:

ˆ̃y(ql) =

max(ˆ̃y(ql), ymin) if ql = q1

max(ˆ̃y(ql),
ˆ̃y(ql−1)) + I(ˆ̃y(ql) ≤ ˆ̃y(ql−1)) · εr else .

(2.9)

In the previous equation, εr is a regularization value that avoids neighboring
quantiles to be equal and thus creates a set of quantiles that fulfill the desired
monotony condition. Note that ymin and εr are free parameters that can be
defined differently depending on the application cases.
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After obtaining the various quantile regressions, a first estimate of the
CDF can be made by interpolating between the estimated quantiles. In the
present thesis a linear interpolation is used, i.e.3:

ˆ̃Fm(y|x) =

L∑
l=2

(
ql − ql−1

ˆ̃y(ql) − ˆ̃y(ql−1)

(y − ˆ̃y(ql−1)) + ql−1

)
· I(ˆ̃y(ql−1) < y ≤ ˆ̃y(ql);

(2.10)

with ˆ̃Fm(y|x) representing the estimate of the conditional CDF for y ∈
(ˆ̃y(q1),

ˆ̃y(qL)] and I(·) being an indicator function that is equal to one if its
condition is fulfilled and equal to zero otherwise. Figure 2.10a shows the
idea behind the previously described step.

Figure 2.10: Principles behind the non-parametric distribution forecast
(adapted from [65])

As shown by Figure 2.10a, Equation (2.10) cannot describe the behav-
ior of the conditional CDF for y values lower than ˆ̃y(q1) and greater than
ˆ̃y(qL). However, the assumptions made allow for the definition of functions
ˆ̃Fs(y|x) and ˆ̃Fe(y|x) that combined with ˆ̃Fm(y|x) are able to estimate the

3 In other cases more complex interpolation approaches can be applied.
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whole CDF. This combination is made possible by making sure that the
functions fulfill the conditions shown in the next equation:

ˆ̃Fs(y|x) =0 , ˆ̃Fs(ˆ̃y(q1)|x) = q1 ,
d ˆ̃Fs(y|x)

dy
> 0 for y ∈ (y, ˆ̃y(q1))

ˆ̃Fe(y|x) =1 , ˆ̃Fe(ˆ̃y(qL)|x) = qL ,
d ˆ̃Fe(y|x)

dy
> 0 for y ∈ (ˆ̃y(qL), y)

(2.11)

Table 2.1 contains possible ˆ̃Fs(y|x) and ˆ̃Fe(y|x) functions. Please note, that
the exponential functions in Table 2.1 are the ones selected to be used in the
present thesis.

Linear Exponential

ˆ̃Fs(y|x)
q1

ˆ̃y(q1) − y
(y − y)

q1

exp(ˆ̃y(q1))− exp(y)
· (exp(y)− exp(y))

ˆ̃Fe(y|x)
1− qL
y − ˆ̃y(qL)

(y − ˆ̃y(qL)) + qL 1− 1− qL
exp(−ˆ̃y(qL))− exp(−y)

· (exp(−y)− exp(−y))

Table 2.1: Examples of starting and ending parts of the non-parametric CDF estimate; note
that the linear functions only fulfill the conditions in cases in which the threshold
values are finite

Finally, using Equation (2.10) and functions fulfilling the conditions out-
lined in Equation (2.11), the final estimate of the conditional CDF can be
given as:

ˆ̃F (y|x) = ˆ̃Fs(y|x) · I(y ≤ y ≤ ˆ̃y(q1)) + ˆ̃Fm(y|x)

+ ˆ̃Fe(y|x) · I(ˆ̃y(qL) < y ≤ y) + I(y > y) .
(2.12)

Figure 2.10b depicts the principle of the previous equation. Additionally,
Example 3 shows the obtainment of non-parametric distribution forecasts
based on Equation (2.12).
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Example 3: Non-Parametric Distribution Forecast

The present example shows the creation of non-parametric distribution fore-

casts for values 24 hours in the future of the simulated times series (cf. Fig-

ure 2.2). In order to do so, quantile regressions based on the NNQF for the

following desired output, input vector, and probabilities are created:

y := PL[k +H];H = 24

x := [PL[k], · · · ,PL[k −H1]]
T ; k ∈ [H1 + 1,K −H], H1 = 168

q ∈ {0.01, 0.02, . . . , 0.99} .

(2.13)

As in Example 2, the quantile regressions estimate the values of the future

load using the values of the previous week. Moreover, the same data mining

technique as in Example 2 is also used.

Using the obtained quantile regressions as well as Equation (2.12), esti-

mates of non-parametric CDFs of a future value can be made. For instance,

Figure 2.11 depicts examples of non-parametric CDFs estimates obtained for

three separate future time series values of the simulated load time series (k =

6086, 6098, 6116).
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Figure 2.11: Examples of non-parametric distribution forecasts; the different colors of
the vertical lines (a) and the CDFs (b) are used to make clear which CDF
corresponds to which future value (adapted from [65])

The estimation of the whole conditional CDF allows for a better under-
standing of the forecast uncertainty. Likewise and most importantly in the
present thesis, is the starting point in the estimation of the probabilistic fore-
casts outlined in Sections 2.2.4 and 2.2.5, as well as in Chapter 3.
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A question regarding the presented method still remains, i.e.:

How well are the non-parametric distribution forecasts able to de-
scribe the future values’ uncertainty?

Thereupon, experiments to answer the previous question are presented in
Section 2.4.2 .

2.2.4 Parametric Distribution Forecast

As presented in Section 2.2.3, quantile regressions can be used to estimate
a non-parametric conditional CDF of y given an input x. While the non-
parametric estimate may be advantageous in some cases, there are still opti-
mization algorithms that require a parametric description of the forecast un-
certainty (e.g., [162]). Therefore, the present section presents an approach
able to find a parametric distribution that best fits Equation (2.12)’s non-
parametric estimate. This method is based on the next assumption:

The available non-parametric estimate is the one that best approxi-

mates the true conditional CDF.

The goal of the present method – under the given assumption – is to find
a parametric distribution that best resembles the given non-parametric esti-
mate. In order to do so, the present approach compares Npd ∈ N>0 para-
metric distributions {Fζi(y|x); i = 1, . . . , Npd} to the non-parametric es-
timate. Note that in the present thesis, the type of parametric distributions
used (e.g., Normal, Beta, Gamma) is given by its Np ∈ N>0 defining pa-
rameters ζi = [ζi1, · · · , ζiNp

]T .

47



2 Probabilistic Forecasting

The method begins by estimating various central and/or non-central mo-
ments of the non-parametric conditional CDF (cf. Equation (2.12)), for in-
stance the expected value and variance:

ˆ̃E(y|x) =

∫ ˆ̃y(q1)

y

d ˆ̃Fs(y|x)

dy
· y dy +

∫ ˆ̃y(qL)

ˆ̃y(q1)

d ˆ̃Fm(y|x)

dy
· y dy

+

∫ y

ˆ̃y(qL)

d ˆ̃Fe(y|x)

dy
· y dy

(2.14)

ˆ̃Var(y|x) =

∫ ˆ̃y(q1)

y

d ˆ̃Fs(y|x)

dy
· y2 dy +

∫ ˆ̃y(qL)

ˆ̃y(q1)

d ˆ̃Fm(y|x)

dy
· y2 dy

+

∫ y

ˆ̃y(qL)

d ˆ̃Fe(y|x)

dy
· y2 dy − ˆ̃E(y|x)2

(2.15)

Thereafter, the estimated moments, as well as the lower and upper threshold
values – y and y – are used to calculate the parameters of the conditional
parametric CDFs tested. These parameters are given as:

ˆ̃
ζij =gij(

ˆ̃E(y|x), ˆ̃Var(y|x), · · · , y, y) . (2.16)

In the previous equation, gij(·) describes a function that calculates ζij using
various moments, as well as y and y. Table 2.2 presents examples of func-
tions gij(·) for four separate conditional parametric CDFs. Furthermore, the
hat and tilde above ζij in Equation (2.16) represent the fact that it is obtained
using estimates based on the NNQF. Note that the present approach differ-
entiates itself from the well-known method of moments [168] by estimating
the moments not from a number of independent and identically distributed
(i.i.d.) samples, but rather from the non-parametric CDF estimate. Likewise,
the availability of a non-parametric CDF instead of several i.i.d. samples is
the reason why the parameters are not estimated using the traditional maxi-
mum likelihood method [31]. Furthermore, the fact that the parameters are
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not fitted, for example via a non-linear least squares approach, but instead
are determined through straightforward calculations (cf. Equation (2.16))
stems mainly from the desire of keeping to a minimum the computational
effort required.

Normal Uniform

Name gij(·) Name gij(·)

ζi1 Mean E(y|x) a E(y|x)−
√

3 ·Var(y|x)

ζi2 Variance Var(y|x) b E(y|x) +
√

3 ·Var(y|x)

Beta Gamma

Name gij(·) Name gij(·)

ζi1 Shape 1
ζ2i3 · (1− ζi3)

ζi4
− ζi3 Shape

ζ2i3
Var(y|x)

ζi2 Shape 2
ζi3 · (1− ζi3)2

ζi4
− (1− ζi3) Scale

Var(y|x)

ζi3

ζi3 - E(y|x) · I(y ≥ 0 ∧ y ≤ 1) +
E(y|x)− y
y − y

· I(y < 0 ∨ y > 1) - E(y|x)− y · I(y < 0)

ζi4 - Var(y|x) · I(y ≥ 0 ∧ y ≤ 1) +
Var(y|x)

(y − y)2
· I(y < 0 ∨ y > 1) - -

Table 2.2: Examples of how the parameters of four different parametric distributions are
obtained.

Afterwards, each parametric CDF is compared to the non-parametric esti-
mate using the mean squared error (MSE), defined as:

QMSE,i =
1

L

L∑
l=1

( ˆ̃F (ˆ̃y(ql)|x)− Fˆ̃
ζi

(ˆ̃y(ql)|x))2; i = 1, . . . , Npd, (2.17)

where QMSE,i represent the MSE of the ith parametric CDF tested. Fi-
nally, the parametric CDF with the lowest MSE is selected as the best fit,
F pref
ˆ̃
ζ

(y|x) (with ˆ̃
ζ = [

ˆ̃
ζ1, . . . ,

ˆ̃
ζNp ]T ). For the sake of illustration, Exam-

ple 4 shows the obtainment of parametric distribution forecasts using the
described approach.
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Example 4: Parametric Distribution Forecast

The present example is based on the same non-parametric distribution forecasts

presented in Example 3. Using the available non-parametric estimates and the

method outlined in Equation (2.17), a parametric description of the uncertainty

can be obtained. Furthermore, four different parametric CDFs are used for

comparison, i.e. Beta, Gamma, Normal, and Uniform.

The three parametric CDFs that best fit the CDFs shown in Figure 2.11 (i.e.

the ones for k = 6086, 6098, 6116) are depicted in Figure 2.12. Additionally,

the type of the selected parametric CDFs, their corresponding parameters, and

the squared root of their obtained MSE (i.e. RMSE) are contained in Table 2.3.
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Figure 2.12: Examples of parametric distribution forecasts; the different colors of the
vertical lines and the CDFs (a) are used to make clear which CDF (b)
corresponds to which future value; the dotted red curves represent the
non-parametric estimates being fitted (adapted from [65])

F
pref
ˆ̃
ζ

(y|x)

CDF Color Type ˆ̃
ζ1

ˆ̃
ζ2 RMSE [%]

Black Normal 0.3013 0.0327 1.38

Blue Normal 0.1217 0.0239 1.61

Green Normal 0.3929 0.0349 0.60

Table 2.3: Type and parameters of the parametric CDFs shown in Figure 2.12

As the low RMSE values and Figure 2.12 show, the present approach is able

to find parametric CDFs that accurately fit the given non-parametric estimates.

There are two main reasons for which Equation (2.17) is based on the
mean sum of squared errors and not on empirical distribution function statis-
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tics (edf-statistic), like the Kolmogorov-Smirnov test [169, 170, 171]. First,
edf-statistics assume that the non-parametric CDF is an empirical distribu-
tion function created from a number of i.i.d. samples, which is not the case,
since the non-parametric CDF is based on Equation (2.12). Second, edf-
statistics test – with a given significance level – if samples forming an em-
pirical distribution function stem from a single given reference distribution.
Therefore, they are considered inadequate for comparing the non-parametric
CDF to several parametric candidates from which a best fitting one is to be
chosen.

Lastly, finding the best fitting parametric CDF using the present approach,
raises the following questions:

• Is the sum of squared errors of the parametric CDFs considered to be
the best fit close to the optimal result (i.e. one obtained for instance,
by CDFs with parameters using a non-linear least squares approach)?

• Do the parametric distribution forecasts describe the future values’
uncertainty accurately compared to the non-parametric estimates with
which they are obtained?

These questions are explored further in Section 2.4.4.

2.2.5 Scenario Forecast

As mentioned in Section 1.2.4, a scenario forecast is formed by a collection
of time series scenarios; which are formed in turn by possible values that
y[k + 1], . . . , y[k +H] may take. Important to consider when creating real-
istic time series scenarios is the temporal correlation between neighboring
time series values; as for example, the estimate of y[k+1] conditions the pos-
sible values that y[k+2] may take. Since the temporal correlation is in most
cases unknown, a joint distribution function needs to be estimated, which
is not trivial. Therefore, the present section offers an alternative based on a

51



2 Probabilistic Forecasting

heuristic that uses quantile regressions and the probability integral transform
(PIT, cf. Equation (1.6)).

The presented approach begins by training L ∈ N>0 separate quantile
regressions {ˆ̃y(ql); l = 1, . . . , L and q1 < · · · < qL} with an input vector
and a desired output (cf. Equation (1.21)) defined as:

y :=y[k + 1]

x :=[y[k], · · · , y[k −H1],

uT [k], · · · ,uT [k −H1]]T ; k ∈ [H1 + 1,K − 1] .

(2.18)

These definitions allow the quantile regression to implicitly consider the
temporal correlation between neighboring values, since they estimate the
quantiles of y[k + 1] conditioned on an input vector that includes y[k]. It
is important to mention that the following steps are conducted under the
following assumption:

If exogenous time series are used as input, their values for the next

H timesteps for which the scenarios are to be created are always

available4.

Afterwards, the quantile regressions, as well as Equation (2.12) can be
used to estimate the inverse of the conditional CDF, i.e. ˆ̃F−1(u|x):

ˆ̃F−1(u|x) = ˆ̃F−1s (u|x) · I(0 ≤ u ≤ q1) + ˆ̃F−1m (u|x)

+ ˆ̃F−1e (u|x) · I(qL < u ≤ 1)
(2.19)

with u ∼ U(0, 1) representing a random variable that is uniformly dis-
tributed between zero and one. Note that inputting a realization of u into
ˆ̃F−1(u|x) results in the obtainment of a possible realization of y condi-
tioned on x (cf. Equation (1.6)) [39]. This property is used to create the
scenario forecast, as it is shown in the following paragraph.
4 The exogenous times series used may contain corresponding forecast values, as e.g., forecast

ambient temperature and forecast solar irradiation.
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After obtaining ˆ̃F−1(u|x), a set ofNs ∈ N>0 vectors {ˆ̃yS,i; i = 1, . . . , Ns}
is defined as the scenario forecast, with each vector ˆ̃yS,i = [ˆ̃yS,i1, · · · , ˆ̃yS,iH ]T

representing a possible time series scenario for the nextH timesteps. Hence,
the entries ˆ̃yS,ij correspond to possible realizations of y[k+ j] and are given
using the equation:

ˆ̃yS,ij =


ySmax , if ˆ̃F−1(uij |x) > ySmax

ySmin , if ˆ̃F−1(uij |x) < ySmin

ˆ̃F−1(uij |x) , else

; j = 1, . . . ,H

s.t. y[k − p] := ˆ̃yS,i(j−p−1); j > 1, p = 0, . . . , (j − 2) .

(2.20)

In the previous equation, ySmax and ySmin are upper and lower thresholds
that should not be surpassed, while the values uij represent possible real-
izations of u, sampled independently of one another. In other words, the
process of creating a single scenario consists in estimating the inverse CDF
of a value a single timestep into the future. Then by inputting a realiza-
tion u in the inverse CDF, a possible realization of the future value can be
obtained. Thereafter, the estimated value is delayed and used as input to es-
timate the inverse CDF of another future value one timestep into the future.
This process is repeated for the length of the desired scenario. Finally, a
scenario forecast is obtained by repeating the procedure for creating a sin-
gle scenario Ns times. For the sake of illustration, Figure 2.13 depicts the
previously described process in four main steps, which are:

1. The creation of a non-parametric distribution forecast for a value one
timestep into the future using an input vector containing the most re-
cent observation and the application of the PIT to obtain a possible
future value realization

2. The repetition of the first step defining the previously estimated future
value as the latest available observation of the time series
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3. The creation of a single scenario by repeating the second step until H
values are estimated

4. The obtainment of a scenario forecast by repeating the three previ-
ous steps until the number of desired scenarios, i.e. NS, have been
calculated

Step 1: Step 2:

Step 3: Step 4:

Figure 2.13: Steps for creating a scenario forecast (adapted from [65])

Finally, Example 5 presents the creation of a scenario forecast for the
simulated load time series shown in Figure 2.2.

Example 5: Scenario Forecast

The goal of the present example is to estimate a scenario forecast with H =

24. In order to do so, several quantile regressions are created using the same
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data mining technique as in Example 2 and the following desired output, input

vector, and probabilities:

y := PL[k +H];H = 1

x := [PL[k], · · · ,PL[k −H1]]
T ; k ∈ [H1 + 1,K −H], H1 = 168

q ∈ {0.01, 0.02, . . . , 0.99} .

(2.21)

Thereafter, the inverse of the non-parametric CDF function can be obtained

using Equation (2.19). Using the process outlined in Equation (2.20) scenario

forecasts can be obtained. For instance, Figure 2.14 depicts a scenario forecast

with Ns = 100, H = 24, ySmax = 1, and ySmin = 0.
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Figure 2.14: Scenario forecast example; the black vertical line represents the timestep
in which the scenario forecasts is conducted, i.e. k = 6099 (adapted
from [65])

The present method raises the next question:

Are the obtained scenario forecasts able to accurately describe the
future values’ uncertainty?

To offer answers to this question, Section 2.4.5 presents some experimental
results.

55



2 Probabilistic Forecasting

2.3 Evaluation Values

The present thesis uses for most of the developed methods the same eval-
uation values, interval forecasts being the one exception. These values de-
termine how well the methods estimate quantiles of the values being fore-
cast, which reflects on the accuracy of their forecast uncertainty descrip-
tion. The quantile estimates used are for instance, the values of the quantile
regressions based on the NNQF (cf. Section 2.2.1), the quantiles of the
non-parametric distribution forecast (cf. Section 2.2.3), the quantiles of the
parametric distribution forecasts (cf. Section 2.2.4), or the empirical quan-
tiles of the values forming a scenario forecast at a specific point in time
(cf. Section 2.2.5). These quantile estimates are then evaluated on a test
set comprised of NT ∈ N>0 input vectors and their corresponding desired
outputs, i.e. xn and yn with n = 1, . . . , NT. Just as in Equation (1.21), yn
represents the time series values to be forecast.

As already mentioned, quantile estimates of the desired outputs, i.e.
ˆ̃y(q),n, can be obtained with the methods developed as part of the present
thesis5. Afterwards, the accuracy of these quantile estimates can be mea-
sured using several values. For instance, the average pinball-loss QPL,(q)

is one of the values used in the present thesis. It is an error measure that
describes how large is the deviation of the estimates from the true quantiles
and is given as:

QPL,(q) =
1

NT

NT∑
n=1

{
(q − 1) · (yn − ˆ̃y(q),n) , if yn ≤ ˆ̃y(q),n

q · (yn − ˆ̃y(q),n) , else .
(2.22)

Another value that is used in the present work is the reliability deviation
QRD,(q), which is based on the following: if an estimate of a quantile with
a probability q of being greater or equal to a desired output is given, then

5 Please note that the tilde superscript is again used to denote the fact that all developed methods
are based on quantile regressions obtained via the NNQF.
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the difference between the percentage of desired outputs that are actually
lower or equal to that estimate and q should be close to zero. The reliability
deviation is defined as:

QRD,(q) =
1

NT

NT∑
n=1

I(yn ≤ ˆ̃y(q),n)− q . (2.23)

A great disadvantage of the reliability deviation is that it may consider a triv-
ial quantile regression (i.e. a model that estimates the same value regardless
of the input vector used) to be perfect, even though that may not be neces-
sarily the case; this effect is later shown in Section 2.4.2 and Figure 2.17.
Therefore, a modified version of the reliability deviation, QMRD,(q), is also
used in the present thesis. The value QMRD,(q) is an average of the absolute
values of reliability deviations calculated separately on ST ∈ N>0 segments
of the used test set, i.e.:

QMRD,(q) =
1

ST

ST∑
i=1

|QRD,(q)i| , with

QRD,(q)i =

∑max{i·nT,NT·I(i=ST)}
n=1+(i−1)·nT

I(yn ≤ ˆ̃y(q),n)

max{i · nT, NT · I(i = ST)} − (i− 1) · nT
− q , and

nT = floor(NT · S−1T ) ;
(2.24)

In the previous equation, QRD,(q)i represents the reliability deviation of the
ith segment, nT is the minimal number of values in a given segment, floor(·)
is a function that rounds its input to its lowest closer integer, I(·) is an
indicator function, and ST is a free parameter representing the number of
segments to be tested. In Section 2.4, ST = 10 is used.

Evaluating a single quantile estimate is not enough to assess the possi-
bility of obtaining quantile regressions with a given data mining technique
nor to determine the quality of the forecast uncertainty described as a non-
parametric CDF, a parametric CDF, or a scenario forecast. Therefore, the

57



2 Probabilistic Forecasting

averages of the values of QPL,(q), the absolute values of QRD,(q), and the
values of QMRD,(q) obtained across L ∈ N>0 different quantile estimates
are also calculated; in other words:

QPL =
1

L

L∑
l=1

QPL,(ql) , (2.25)

QRD =
1

L

L∑
l=1

|QRD,(ql)| . (2.26)

QMRD =
1

L

L∑
l=1

QMRD,(ql) . (2.27)

In the previous equations, ql represents the probability corresponding to the
lth quantile estimate, while QPL, QRD, and QMRD are the average pinball-
loss6, average reliability deviation, and average modified reliability devia-
tion, respectively. Since all average values obtained represent a mean de-
viation from an optimum, the closer they are to zero the better the quantile
regressions and the forecasts are.

In the case of evaluating interval forecasts other values have to be used;
values that evaluate the intervals formed by pairs of quantile estimates (cf.
Equation (2.5)) and not only the quantile estimates themselves. Therefore,
the present thesis uses the following values to assess the quality of an in-
terval forecast. The first value is the interval width QIW, which is given as
follows:

QIW,(qu,ql) =
1

NT

NT∑
n=1

(ˆ̃y(qu),n − ˆ̃y(ql),n) ; (2.28)

6 The non-parametric and parametric distribution forecasts are evaluated with Equation (2.25)
and not with the more traditional continuous ranked probability score (CRPS) [28], since the
former is related to the latter [29] and even approximates it if the results of several quantiles
are used (as shown in Appendix A.4).
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with ˆ̃y(qu),n and ˆ̃y(ql),n representing the quantile estimates forming the upper
and lower interval bounds (cf. Equation (2.5)) of the given interval forecast
for the nth desired output. Since broad intervals are undesired, the lower
QIW,(qu,ql) is, the better the interval is considered. Using Equation (2.28) a
value taken from a definition in [28] and referred to in the present work as
the interval score QIS,(qu,ql) can then be calculated. This value is given by
the next equation:

QIS,(qu,ql) =
2

NT · (1− (qu − ql))

NT∑
n=1


(yn − ˆ̃y(qu),n) , if yn > ˆ̃y(qu),n

(ˆ̃y(ql),n − yn) , if yn < ˆ̃y(ql),n

0 , else

+QIW,(qu,ql) .
(2.29)

As it is shown in Equation (2.29), QIS,(qu,ql) considers not only the devia-
tions outside the given interval, but also its width. Finally, the last value used
is referred to as the modified interval reliability deviation QMIRD,(qu,ql) and
it is utilized to determine if an interval forecast with a desired probability
(qu − ql) of containing the future time series values actually fulfills that
goal. Similarly as in Equation (2.24), the modified interval reliability de-
viation is given as the average of the absolute values of interval reliability
deviations QIRD,(qu,ql)i ; i ∈ [1, ST] obtained on ST segments of the used
test set, i.e.:

QMIRD,(qu,ql) =
1

ST

ST∑
i=1

|QIRD,(qu,ql)i| , with

QIRD,(qu,ql)i =

∑max{i·nT,NT·I(i=ST)}
n=1+(i−1)·nT

I(ˆ̃y(ql),n < yn ≤ ˆ̃y(qu),n)

max{i · nT, NT · I(i = ST)} − (i− 1) · nT
− (qu − ql) ;

(2.30)

with nT defined as in Equation (2.24).
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2 Probabilistic Forecasting

The capability of a data mining technique for creating accurate interval
forecasts cannot be determined by looking at a single interval. Therefore,
the evaluation of a data mining technique should consists in averaging the
QIW,(qu,ql), QIS,(qu,ql), and QMIRD,(qu,ql) values for L ∈ N>0 different
interval forecast, i.e.:

QIW =
1

L

L∑
j=1

QIW,(qu,j ,ql,j) , (2.31)

QIS =
1

L

L∑
j=1

QIS,(qu,j ,ql,j) , (2.32)

QMIRD =
1

L

L∑
j=1

QMIRD,(qu,j ,ql,j) ; (2.33)

with qu,j and ql,j representing the probabilities of the upper and lower
bounds of the jth interval tested. Furthermore, QIW is the average interval
width, QIS is the average interval score, and QMIRD is the average modified
interval reliability deviation. Just as before, the closer these average values
are to zero, the better the interval forecasts are considered.

2.4 Experiments

The current section presents a series of experimental results that outline
the properties and capabilities of the probabilistic forecasting methods de-
scribed in Section 2.2. The present section begins with a description of
necessary preliminary information, e.g., the data used and the data mining
techniques utilized. Interesting results for each of the previously described
approaches are presented thereafter.
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2.4.1 Preliminary Information

Data

Using the load benchmark generator [3, 172] described in Appendix A.1,
five simulated load time series, {PL[k]; k = 1, . . . ,K} with three years of
hourly simulated values (K = 26280) are created. The difference between
these time series is their noise percentage rprc, i.e. 75, 60, 45, 30, or 15%.
The time series are assumed to represent the load of a number of households
with varying degrees of unpredictable effects. More information regarding
the simulated time series, specifically the parameters used for their creation
can be found in Appendix A.1. After their creation, the values of the simu-
lated time series are normalized to values between zero and one and divided
in half. The first half is used as a training set and the second is used as a
test set. Furthermore, all time series used lack outliers and missing values
and thus do not require further preprocessing. For the sake of illustration,
Figure 2.15 depicts simulated time series with 75%, 45%, and 15% noise.

Data Mining

To obtain the presented results, five different data mining techniques are
used. The first three are polynomial models (i.e. multiple linear regres-
sions) with maximal allowed degrees of one, two, or three and thus are re-
ferred to as Poly1-3. Additionally, two non-linear regression techniques are
also used. These are two artificial neural networks (traditional multi-layer
perceptrons); one with a low amount of hidden neurons, i.e. four, and one
with a larger amount, i.e. ten. Thereupon, the first is referred to as ANN4,
while the second as ANN10. It is considered that using ANN4 and ANN10
is enough to observe the effects of having a neural network with a lower and
a greater number of free parameters7.

7 Note that a prestudy was conducted; in it six and twenty hidden neurons were also tested.
These numbers are not used further, as their results obtained in the prestudy did not vary
greatly from those obtained when using four and ten hidden neurons.
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Figure 2.15: Simulated load time series with; a) 75% noise; b) 45%
noise; c) 15% noise

Furthermore, the desired output and input vector, used to train quantile
regressions based on the NNQF for the time series described above, are
defined as:

y := PL[k +H];H ∈ {1, 24, 48}

x := [PL[k], . . . ,PL[k −H1]]T ; k ∈ [H1 + 1,K −H], H1 = 168.
(2.34)
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In other words, the regressions are trained to estimate quantiles for values
1, 24, or 48 hours into the future using the past autoregressive values of
the last seven days, i.e. the most recent information available 8. Different
forecast horizons are used, since it is desired to determine their influence on
the properties of the various probabilistic forecasts to be created. Moreover,
the quantile regressions trained with each technique correspond to the prob-
abilities q ∈ {0.01, 0.02, . . . , 0.99}. Likewise, the threshold value εth used
in Equation (2.1) is set to infinity for all created quantile regressions. In
addition, a feature selection based on a Wrapper method9 is applied, result-
ing in the selection of the four most relevant features [173]. In the present
thesis the feature selection is conducted prior to the NNQF and the quantile
regressions’ training. Therefore, the regressions estimating different quan-
tiles trained on a given training set using a given data mining technique and
forecast horizon vary only in their estimated parameters (as in Example 2).
The reason thereof is to assure that the quantiles being estimated stem from
the same conditional distribution. An independent feature selection for re-
gressions estimating different quantiles is possible, but is not studied further
in the present work. This decision is based on a preliminary experiment
that showed that an independent feature selection results in several issues,
e.g., problems when training polynomials using a constrained least squares
method (cf. Equation (2.8)), having the NNQF search for nearest neighbors
in an extremely high dimensional feature space, etc. Still, future related
works should try to solve the various issues, as an independent feature se-
lection may help in improving the quantile regressions.

8 The reason behind the use of pure autoregressive models is that the time series are created
without an exogenous component; meaning that they are not influenced by any external fac-
tors.

9 The selection starts with the training of regressions that only take one of the features as input.
Thereafter the models are evaluated via the coefficient of determination [55], then the feature
whose model performs best is selected as the first relevant feature. Afterwards, models using
pairs formed by the first selected feature and all other ones as input are trained and evaluated.
The feature forming the pair with the best result is then selected as the second relevant feature.
Finally, the process is continued until the desired number of features has been chosen.
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2 Probabilistic Forecasting

Furthermore, Equations (2.8) and (2.9) are used to assure the strictly in-
creasing monotony of the non-parametric distribution forecasts (cf. Sec-
tion 2.2.3). In the present section, the necessary global minimum is defined
as ymin = 0 (only positive power values are to be forecast) and the used
regularization value is set to εr = 10−5.

Amount of Training Data and Number of Nearest Neighbors

Apart from the amount of noise in the time series, the data mining technique,
and the forecast horizon, there are two other parameters that may have a
major influence in the outcome of the forecasts; these are the number of
nearest neighbors and the amount of training data. The former is relevant,
since it defines the modified training set with which a quantile regression is
trained, while the latter is important as the NNQF assumes a dense training
set. The influence that these values have on the results is tested by using
different amounts of nearest neighbors on different percentages, Nprc, of
training data (note that the amount of training dataN varies with the forecast
horizon). Table 2.4 contains the number of nearest neighbors used in the
different amounts of training data tested.

Using the previously described data mining techniques, simulated time
series, amounts of training data, and number of nearest neighbors, a great
number of quantile regressions based on the NNQF are obtained, with which
a series of experiments are conducted. The results of these experiments are
presented in the next sections. Notice that the training sets forNprc < 100%

contain the latest Nprc observations of the original training set.

2.4.2 Quantile Regressions based on the NNQF and
Non-Parametric Distribution Forecast

The present section offers insight into certain properties of both quantile re-
gressions based on the NNQF and the non-parametric distribution forecast
created with them. Please note, that the reason for discussing the quantile re-
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Nprc[%] H N NNN

100

1 12970 {5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000, 7500, 10000, 12970}
24 12947 {5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000, 7500, 10000, 12947}
48 12923 {5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000, 7500, 10000, 12923}

75

1 9685 {5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000, 7500, 9685}
24 9662 {5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000, 7500, 9662}
48 9638 {5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000, 7500, 9638}

50

1 6401 {5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000, 6401}
24 6378 {5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000, 6378}
48 6354 {5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000, 6354}

25

1 3116 {5, 10, 25, 50, 100, 250, 500, 1000, 2500, 3116}
24 3093 {5, 10, 25, 50, 100, 250, 500, 1000, 2500, 3093}
48 3069 {5, 10, 25, 50, 100, 250, 500, 1000, 2500, 3069}

Table 2.4: Number of nearest neighbors used depending on the available training data; Nprc:
percentage of training data; H: forecast horizon; N : amount of training data;
NNN: number of nearest neighbors

gressions together with the non-parametric distribution forecasts is that their
evaluation results are identical to one another, since their quantile estimates
used in Equations (2.22) to (2.27) are the same.

This section begins by studying the influence that the number of nearest
neighbors have on the forecast quality. To do so, the quantile regressions
trained using the time series with 45% noise and 100% of the training data
are first evaluated. The results obtained on the corresponding test set are
displayed in Figure 2.1610. Note that the results obtained for the time series
with 75, 60, 30, and 15% of noise are found in Appendix A.5.

The results in Figure 2.16 show that trivial forecasts, i.e. the ones obtained
using the maximal possible number of nearest neighbors, obtain better relia-
bility deviation values than some non-trivial forecasts, regardless of forecast
horizon and data mining technique used. This effect can be easily explained
by the fact that the training set is extremely representative of the used test

10 The reason behind Poly1-3 delivering the same results, is that their selected features are the
same.
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Figure 2.17: Example of non-trivial (NNN = 100) and trivial forecasts
(NNN = 12947)

set. In other words, using the maximal number of possible nearest neigh-
bors results in quantile regressions that estimate the unconditional quantile
of all time series values in the training set. Therefore, in cases in which the
time series values in the training set and the test set are similarly distributed,
trivial forecasts are able to obtain low reliability deviations. Since it is unde-
sired for an evaluation value to consider trivial results as accurate, it is con-
cluded that the reliability deviation is not adequate to evaluate the obtained
forecasts. For such reason, only the pinball-loss and the modified reliability
deviation are used further. For the sake of illustration, Figure 2.17 shows ex-
amples of quantile regressions based on the NNQF trained for NNN = 100

(i.e. non-trivial forecasts) and NNN = 12947 (i.e. trivial forecasts).
In addition to the previous results, Figure 2.16 also shows that the num-

ber of nearest neighbors considered in the present thesis as optimal, i.e. the
one for which the best combination of pinball-loss and modified reliabil-
ity deviation values are obtained, is probably between the smallest and the
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largest possible number. To find the optimal number of nearest neighbors,
the obtained average pinball-loss and modified reliability deviation values
are first normalized to values between zero and one and then added together.
Thereafter, the number of nearest neighbors delivering the lowest sum for
a specific technique and forecast horizon is considered the optimal number.
Table 2.5 contains for all time series, data mining techniques, and horizons
the optimal number of nearest neighbors and test set evaluation values of the
quantile regressions trained using 100% of the training data.

Table 2.5 shows that for H = 24 and H = 48 the number of optimal
nearest neighbors is always between 25 and 500, regardless of noise amount
and data mining technique used. In the case of H = 1 the optimal num-
ber is always chosen to be 5 or 10. Therefore, it can be suggested that
while quantile regressions with short forecast horizons seem to benefit from
using a low number or nearest neighbors, quantile regressions with larger
forecast horizons may find – as previously assumed – an optimal number
between the lowest and largest possibilities. Although it can be argued that
this result is dependent on the used training data, it is still an interesting
outcome that may offer a first clue when searching for the optimal number
of nearest neighbors in other use cases. It can also be observed that the op-
timal numbers of nearest neighbors deliver models with pinball-loss values
that improve with a reduction of the time series’ noise. Nonetheless, there
appears to be no clear relationship between the amount of noise and the
modified reliability deviation. Furthermore, it also seems that increasing the
forecast horizons from H = 1 to H = 24 or H = 48 generally worsens the
pinball-loss and the modified reliability deviation values obtained.

The influence that modifying the amount of training data may have on the
forecasts’ accuracy can now be tested using the number of nearest neighbors
considered to be optimal (cf. Table 2.5). Figure 2.18 shows the test sets’
pinball-loss and modified reliability deviation values of models trained with
various amounts of training data of the time series with 45% of noise.
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Figure 2.18: Test sets’ average pinball-loss and modified reliability
deviation values obtained for different amount of training
data; rprc: noise percentage; Nprc: percentage of training
data; H: forecast horizon; QPL: average pinball-loss;
QMRD: average modified reliability deviation
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As expected, Figure 2.18 shows that in most depicted cases the least
amount of training data delivers the worst evaluation results (with Poly1-
3 for H = 1 being the only exception). Furthermore when looking at the
results, it is clear that increasing the amount of training data generally im-
proves the accuracy of the models. Surprisingly, some modified reliability
deviation values (e.g., those obtained by Poly1-3 for H = 24 and H = 48

and ANN10 for H = 1) appear to have a global minimum when using only
50% of the training data. This may be caused (i) by some random effects
and/or (ii) by the selection of features that perform better on the test set than
those selected when using all training data.

Another property that has to be investigated further, is the scalability of
the NNQF-based regressions in the presence of an increasing amount of
training data and how it compares to that of a more traditional k-nearest
neighbors quantile regression (kNNQR). Figure 2.19 plots the computation
time t for training and applying the 99 quantile regressions considered in the
present section (i.e. those with probabilities q ∈ {0.01, . . . , 0.99}) against
the percentage of training data used to train them (i.e. Nprc). It is important
to mention, that the figure compares the results of kNNQRs based on [74]
to those obtained by Poly1 and ANN10 (i.e. the most simple and the most
complex technique used). Moreover, the number of nearest neighbors and
forecast horizon chosen is 100 and 24 hours, respectively. In addition, the
computer that is utilized has an Intel Core i7-4790 processor with 3.6 [GHz]

and 16 [GB] of RAM.
At a first glance, Figure 2.19 depicts completely opposite behaviors for

training and applying the regressions. During training, the kNNQR has a
much better scalability than the NNQF-based regressions, as its training
consists only on saving all available training data. In contrast, training a
regression based on the NNQF requires first, finding the nearest neighbors
and then computing the regression parameters. Hence, the more complex
the data mining technique and the larger the amount of training data avail-
able are, the longer the training of a NNQF-based regression is going to
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Figure 2.19: Scalability comparison for training and applying quantile
regressions based on the NNQF and k-nearest neighbors
quantile regressions (kNNQRs); note NNN = 100 and
H = 24 are used for the comparison; t: computation time;
Nprc: percentage of training data (adapted from [165])

take. Nevertheless, the opposite can be said when looking at the application
process. While the computation time for applying NNQF-based regressions
remains more or less constant, the time for applying the kNNQR appears to
be proportional to the amount of training data. This stems from the fact that
the NNQF-based regressions are precomputed functions that only need to be
evaluated. Conversely, the application of a kNNQR requires a computation
of the nearest neighbors every time a forecast is needed; meaning that the
larger the training set to search for the nearest neighbors is, the longer it is
going to take. Even though the previous statement is also true for the NNQF
(as shown in by the training times in Figure 2.19), the fact that the nearest
neighbors have to be searched only once prior to the regressions training
instead of every time a forecast is required, speaks in favor of using the
NNQF over the kNNQR if scalability is of importance. Notice that the kN-
NQR is not tested further in the present thesis, since the possibility of using
the developed methods in an online forecasting service in which the amount
of training data will constantly increase (e.g., the Energy Lab 2.0 [10]) is
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desired. Lastly it needs to be mentioned, that the kNNQR obtains similar
evaluation values11 as the techniques used for comparison (cf. Figure 2.16).

Finally, the present section offers a comparison between quantile regres-
sions based on the NNQF and “true” quantile regressions trained by min-
imizing the sum of pinball-losses (cf. Equation (1.16)) [35]. The “true”
quantile regression are three polynomial models with maximal allowed de-
grees of 1 to 3, which are further referred to as “True" Poly1-3. The train-
ing algorithm of these regressions is based on a MATLAB implementation
found online12, which has been modified to avoid quantile crossing. Fig-
ure 2.20 depicts the results obtained from the test set of the time series with
45% of noise. Please note, that the quantile regressions based on the NNQF
use the optimal number of nearest neighbors contained in Table 2.5.

The comparison shows that the obtained pinball-loss values between both
types of quantile regressions appear to be almost indistinguishable, however
some differences start to appear when looking at the modified reliability
deviations. For H = 1 is clear that the regressions based on the NNQF
perform generally worse. Nonetheless, the polynomial models show similar
modified reliability deviation values for the larger forecast horizons. Fur-
thermore, the quantile regressions based on ANN4 show also similar results
than the “true” quantile regressions forH = 48 and slightly better results for
H = 24. The latter may be explained by the fact that the ANN4 models are
able to describe possible non-linear effects that the polynomials cannot. On
the contrary, quantile regressions based on ANN10 obtain the worse modi-
fied reliability deviation values. Please note, that the lack of “true” quantile
regressions based on more complex data mining techniques stems from the
fact, that a MATLAB implementation similar to the one of the polynomi-
als has not been found at the moment of writing the present thesis. This

11 kNNQR with NNN = 100: QPL = 1.85% and QMRD = 3.51%; Poly1 with NNN =
100: QPL = 1.96% and QMRD = 2.96%; ANN10 with NNN = 100: QPL = 1.95%
and QMRD = 3.59%

12 de.mathworks.com/matlabcentral/fileexchange/32115-quantreg-x-y-tau-order-nboot-
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may be attributed to the fact that training “true” quantile regressions with
more complex techniques is – as previously mentioned – not a trivial task.
Therefore, being able to easily train quantile regressions with complex data
mining techniques (as e.g., ANN4) advocates in favor of using the NNQF,
instead of directly minimizing the sum of pinball-losses. Additionally, us-
ing a given data mining technique to train quantile regressions based on the
NNQF appears to generally take less time than directly minimizing the sum
of pinball-losses. For instance, training the “true" polynomial quantile re-
gressions takes approximately 64 seconds while training their polynomial
NNQF-based counterparts takes only 37 seconds; this means that directly
minimizing the sum of pinball-losses increases the computation time by ap-
proximately 79%.

2.4.3 Interval Forecast

Using the created quantile regressions based on the NNQF (cf. Section 2.4.1),
49 pairs centered on the regressions describing the median can be formed.
These pairs represent interval forecasts with probabilities of containing the
future time series values equal to (qu − ql) ∈ {0.02, 0.04, . . . , 0.98}.

Just as in the previous section, the forecasts obtained for the time series
with 45% of noise using 100% of the training data are first evaluated. Fig-
ure 2.21 depicts the results obtained on the corresponding test set. Please
refer to Appendix A.5 for the results obtained on the time series with 75, 60,
30, and 15% of noise.

Figure 2.21 shows that for all techniques the average interval width and
average interval score values are almost identical, which is a similar out-
come as the one observed from the single quantile regressions (cf. Fig-
ure 2.16). Moreover, it can be observed that the intervals’ average width
increases with the number of nearest neighbors used. This constant increase
for NNN > 2500, which influences in part the increase in interval score,
can be explained as an overestimation of the uncertainty caused by the large
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numbers of nearest neighbors used. Furthermore, for H = 24 and H = 48

the intervals trained with NNN = 5 not only obtain a slightly higher aver-
age interval score than those trained using 5 < NNN < 2500, but also the
worse results in terms of modified interval reliability deviation. This can be
explained by the fact that using NNN = 5 results in narrow intervals that
may underestimate the uncertainty and thus increase the number of devia-
tions. Looking at the results for H = 1, it can also be seen that the Poly1-3
models deliver better results than the ANNs, which may be explained by the
fact that in such case the relation between x and y could be nearly linear.
Surprisingly, the modified interval reliability deviation values obtained by
the trivial forecasts for H = 1 (i.e. the ones obtained with the maximal
number of possible nearest neighbors) are lower than for other non-trivial
cases. Nonetheless, the trivial forecasts present as expected the worst inter-
val width and interval score values.

Similarly as in Section 2.4.2, the number of nearest neighbors considered
optimal in the present thesis is the one that delivers the best combination of
interval score and modified interval reliability deviation values. Hence, the
optimal number is determined by normalizing the interval score and modi-
fied interval reliability deviation, adding them together, and finding theNNN

value with the lowest sum. Table 2.6 contains the results obtained with the
optimal number of nearest neighbors for the different noise percentages13.

Just as with the quantile regressions, the results in Table 2.6 may serve as
a hint of what number of nearest neighbors to use, when creating interval
forecast for other application cases. Moreover, when comparing the pre-
vious results to those of the quantile regressions (cf. Table 2.5), it can be
observed (i) that for the shortest forecast horizon (i.e. H = 1) the lowest
amounts of nearest neighbors (i.e. 5 and 10) are again the ones considered
optimal and (ii) that in most cases the optimal number of nearest neighbors
increased. Interestingly, there appears to be no clear relationship between

13 Note that the interval’s width is not considered to determine the optimal number, as it is
implicitly considered by the interval score.
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the amount of noise and the optimal number of nearest neighbors. Finally, it
can also be noticed that the interval width and interval score values seem to
be inversely proportional to the amount of noise. In other words, the lower
the inherent uncertainty of the time series being forecast, the narrower the
obtained intervals are.

Using the number of nearest neighbors considered to be optimal (cf. Ta-
ble 2.6), the influence that the amount of training data has on the inter-
val forecasts’ quality can be determined. Figure 2.22 depicts the results
obtained using the various techniques and their optimal number of nearest
neighbors for the time series with 45% of noise.

Figure 2.22 shows, as expected, that decreasing the amount of training
data increases the intervals’ width, which in turn increases the correspond-
ing interval score. Similarly, the modified interval reliability deviation also
seem to constantly increase with the decreasing amount of training data,
with Poly2-3 for H = 1 and ANN4 for H = 48 being the only exceptions;
these may be explained by the fact that the width of the created intervals
may not necessarily affect the percentage of values laying within them. Re-
gardless, it is clear that for most cases the quality of the interval forecasts
decreases with the amount of available training data.

Finally, a comparison between interval forecasts created using quantile re-
gressions based on the NNQF (using their optimal number of nearest neigh-
bors) and those obtained with the same “true" quantile regressions used in
Section 2.4.2 is presented. Figure 2.23 shows the results of this comparison.

The results depicted in Figure 2.23 show that the interval width and in-
terval score values of interval forecasts with quantile regressions based on
the NNQF and those created with the “true" quantile regressions are almost
identical. In terms of modified interval reliability deviation, the “true" quan-
tile regressions’ intervals are for H = 1 always better. Nonetheless, for the
larger forecast horizons (i.e H = 24 and H = 48) all quantile regressions
based on the NNQF are able to deliver interval forecasts with a slightly bet-
ter modified interval reliability deviations values than those of their “true"
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2 Probabilistic Forecasting

counterparts. Moreover as mentioned in Section 2.4.2, using quantile re-
gressions based on the NNQF allows the obtainment of interval forecasts
using more complex data mining techniques. Likewise, the NNQF also re-
duces the computation time needed to train the interval forecasting models,
as it avoids the minimization of the sum of pinball-losses.

2.4.4 Parametric Distribution Forecast

The present section answers the questions raised in Section 2.4.4 by using
the quantile regressions based on the NNQF trained on 100% of the training
data from the simulated time series with 45% of noise and the optimal num-
ber of nearest neighbors shown in Table 2.5. The use of the other time series
is considered unnecessary, as the goal of the present section is just to com-
pare the parametric distribution forecasts to the quantile regressions they
are based on. Additionally, the quantile estimates used for evaluating the
parametric distribution forecasts are those with corresponding probabilities
q ∈ {0.01, . . . , 0.99}.

Since the method described in the present thesis tries to find a parametric
CDF that best fits a non-parametric estimate, it is important to determine
how much does the forecast accuracy change when compared to the non-
parametric CDF (cf. Section 2.4.2). Therefore, Figures 2.24 to 2.26 plot the
pinball-loss and modified reliability deviation – for every forecast horizon
and data mining technique tested – of the parametric and non-parametric
CDFs’ quantile estimates against their corresponding probability q14. Note
that the parametric CDFs used are Beta, Gamma, Normal, and Uniform and
that their necessary parameters are defined as shown in Table 2.2.

Figures 2.24 to 2.26 show that the pinball-losses given by the paramet-
ric distributions and their non-parametric counterparts are almost identical,
regardless of forecast horizon and data mining technique used. Similarly
the modified reliability deviation values are almost indistinguishable for

14 Poly1-3 are plotted together, since the feature selection process made them identical.

82



2.4 Experiments

0.1 0.3 0.5 0.7 0.9
0

2

4
Poly1-3
Parametric

0.1 0.3 0.5 0.7 0.9
0

5

10
Poly1-3
Parametric

0.1 0.3 0.5 0.7 0.9
0

2

4
ANN4
Parametric

0.1 0.3 0.5 0.7 0.9
0

5

10
ANN4
Parametric

0.1 0.3 0.5 0.7 0.9
0

2

4
ANN10
Parametric

0.1 0.3 0.5 0.7 0.9
0

5

10
ANN10
Parametric

Figure 2.24: Pinball-loss and modified reliability deviation values ob-
tained from the quantile estimates given by quantile re-
gressions and their corresponding parametric distribution
forecasts for H = 1; rprc: noise percentage; Nprc:
percentage of training data; H: forecast horizon; QPL:
average pinball-loss; QMRD: average modified reliability
deviation; q: probability value
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Figure 2.25: Pinball-loss and modified reliability deviation values ob-
tained from the quantile estimates given by quantile re-
gressions and their corresponding parametric distribution
forecasts for H = 24; rprc: noise percentage; Nprc:
percentage of training data; H: forecast horizon; QPL:
average pinball-loss; QMRD: average modified reliability
deviation; q: probability value
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Figure 2.26: Pinball-loss and modified reliability deviation values ob-
tained from the quantile estimates given by quantile re-
gressions and their corresponding parametric distribution
forecasts for H = 48; rprc: noise percentage; Nprc:
percentage of training data; H: forecast horizon; QPL:
average pinball-loss; QMRD: average modified reliability
deviation; q: probability value
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H = 24 and H = 48, however for H = 1 major differences appear. For
instance, the parametric CDFs based on Poly1-3 and ANN4 appear to ob-
tain better modified reliability deviation values than the non-parametric es-
timates they are based on. A similar outcome is presented in Table 2.7 that
contains the average pinball-loss and modified reliability deviation values
for the non-parametric CDFs given by the various data mining techniques
and those obtained by their corresponding parametric fits. Just as before,
the pinball-loss values of the parametric and non-parametric CDFs are al-
most identical. Furthermore, the parametric fits on the estimates given by
all regression models have worse modified reliability deviation values than
their non-parametric counterparts for H = 24 and H = 48. In contrast
for H = 1, the parametric CDFs obtain better average modified reliability
deviation values when fitting the estimates given by Poly1-3 and ANN4. It
can be then concluded, that the method described in Section 2.2.4 is able to
find parametric CDFs that fit some given non-parametric CDFs (based on
a number of quantile regressions) without decreasing and sometimes even
improving the forecast accuracy.

Non-Parametric Parametric

Technique H QPL[%] QMRD[%] QPL[%] QMRD[%]

Poly1-3

1 0.76 2.27 0.76 1.44

24 1.96 2.96 1.96 2.98

48 2.01 3.13 2.01 3.16

ANN4

1 0.74 2.54 0.74 1.73

24 1.94 2.59 1.94 2.70

48 1.98 3.02 1.98 3.07

ANN10

1 0.71 2.68 0.71 2.80

24 1.95 3.09 1.95 3.13

48 1.97 3.80 1.97 3.83

Table 2.7: Average pinball-loss and modified reliability deviation values of non-parametric
(i.e. quantile regressions) and parametric distribution forecasts; H: forecast hori-
zon; QPL: average pinball-loss; QMRD: average modified reliability deviation
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Furthermore, Table 2.8 contains the percentage of times that a parametric
CDF tested is selected as a best fit.

% of best fitting distributions chosen

Technique H Beta Gamma Normal Uniform

Poly1-3

1 56.75 29.61 11.59 2.05

24 42.58 26.06 31.36 0

48 39.09 21.22 39.69 0

ANN4

1 29.35 40.49 10.64 19.53

24 37.02 20.91 41.94 0.14

48 30.01 19.31 50.34 0.34

ANN10

1 0.44 0.54 0.19 98.83

24 30.92 28.52 40.34 0.22

48 31.17 18.07 50.28 0.49

Table 2.8: Percentage of the chosen parametric distribution that best fits the non-parametric
estimates; H: forecast horizon

Table 2.8 shows that for H = 24 and H = 48 the Uniform distribution is
either not chosen or chosen less than 1% as the best fit, in contrast all other
distributions are more or less evenly selected as the best fit, with the Gamma
distribution being the one less chosen. For H = 1 the Uniform distribution
stops being disregarded and is surprisingly chosen for ANN10 almost 100%

of the time as the best fit.
In addition to the previous results, it is also necessary to take a look at

the mean squared errors (MSEs) obtained by the selected parametric CDFs,
since a parametric CDF is considered to best fit the non-parametric estimate
when its MSE value is the lowest compared to the other parametric CDFs
used (cf. Equation (2.17)). For the sake of interpretability, the results pre-
sented in the current section are the average of the square root of the MSE
values obtained over the whole test set, i.e. the average root mean squared
errors (RMSEs). Table 2.9 contains RMSEs obtained for every forecast
horizon and data mining technique used.
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RMSE [%]

H Poly1-3 ANN4 ANN10

1 2.0 2.7 2.7

24 0.5 1.4 1.1

48 0.5 1.3 1.8

Table 2.9: Average root mean square error obtained by the parametric distributions considered
the best fit for each data mining technique used; H: forecast horizon

The low RMSE values (all below 3%) contained in Table 2.9 demonstrate
that the present thesis method is able to find parametric CDFs that accu-
rately fit the non-parametric CDFs given by the used quantile regressions.
It can also be seen that for the used data, the present contribution method
results in parametric CDFs that are able to fit non-parametric CDFs based
on polynomial models better than those based on artificial neural networks
and that are also better at fitting forecasts for forecast horizons H = 24 and
H = 48 than for H = 1. It is important to mention, that since the present
thesis method does not restrict the use of other parametric distributions, the
fit to the non-parametric CDFs can always be improved regardless of the
time series being forecast.

The final experiment conducted is based on the following idea. If the
parameters of a parametric CDF are fitted to the non-parametric estimate
(using for instance a non-linear least squares approach), the result will have
(i) a different expected value and variance than the non-parametric CDF and
(ii) a RMSE value lower than or equal to that of the parametric CDF con-
sidered the best fit via the present thesis method. Therefore, the goal of this
final experiment is to determine how well does the CDF, considered the best
fit according to the present thesis method, fares in comparison to one who
may be the optimal fit (e.g., one whose parameters have been fitted to mini-
mize its RMSE). To achieve this goal, expected values and variances around
the ones determined in Equations (2.14) and (2.15) are calculated. There-
after, the best fitting parametric CDF from the four ones tested is determined
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using the present thesis methodology for all combinations of the modified
expected values and variances. Afterwards, the lowest obtained RMSE is
determined and the procedure is repeated across the whole test set. Finally,
the average of all the minimal RMSE values is calculated and compared to
the values contained in Table 2.9. For the sake of illustration, Figure 2.27
shows how the RMSE values of a single forecast change when varying the
expected value and the variance separately. Additionally, Table 2.10 con-
tains the test set’s average difference of the lowest obtained RMSE values
and the ones contained in Table 2.9.
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Figure 2.27: Root mean square error plotted against different expected
values and variances

RMSE Difference [%]

H Poly1-3 ANN4 ANN10

1 0.930 0.600 0.022

24 0.062 0.069 0.060

48 0.093 0.074 0.094

Table 2.10: Difference between the average root mean square error obtained with the present
thesis method and the possible average root mean square error obtained by a
parametric distribution considered an optimal fit; H: forecast horizon
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As it can be seen the difference in RMSE values is always lower than
1%, hence supporting the fact that the presented method is truly able to find
parametric CDFs that fit in an acceptable manner a given non-parametric
estimate without requiring a computationally intensive fitting of parameters.

2.4.5 Scenario Forecast

The present section offers an experiment to answer the question raised in
Section 2.4.5. This experiment consists in the calculation and evaluation of
scenario forecasts using quantile regressions based on the NNQF trained on
100% of the training data coming from the time series with 45% of noise15.
The scenario forecasts, which are created, are set to obtain forecasts in a
rolling 24 hour period. Furthermore, the number of scenarios used in the
creation of the different scenario forecasts are Ns = {10, 50, 100}. More-
over, the threshold values in Equation (2.20) are chosen as ySmin = 0 and
ySmax = 1 and the quantile estimates calculated from the obtained scenar-
ios are those with probabilities q ∈ {0.01, . . . , 0.99}. Note that the scenario
forecasts presented are obtained only with the Poly1-3 techniques16. Sce-
nario forecasts based on the ANN models are not created, because the cur-
rent implementation of the present thesis method and the length of the test
set used makes their obtainment extremely slow. For instance, the creation
of the desired scenario forecasts using only 10 scenarios for the whole test
set takes approximately 54 hours, which in turn will result in the calculation
of scenario forecasts based on 100 scenarios taking approximately 22 days.

The pinball-loss and modified reliability deviation values obtained by each
quantile estimate of the scenario forecasts are plotted in Figure 2.28 against
their corresponding probability value q. For the sake of comparison, the
results obtained by the quantile regressions based on the NNQF for H =

15 The use of the time series with 45% of noise is considered to be enough to fulfill the present
section’s goal, i.e. to compare the scenario forecasts to quantile regressions whose forecasting
goal is the same.

16 Note that all polynomial models are the same, since they are trained using the same selected
features. Therefore, they are referred in the present section together as Poly1-3.
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24 and their optimal number of nearest neighbors (cf. Table 2.5) are also
depicted.
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Figure 2.28: Comparison between the pinball-loss and modified relia-
bility deviation values of the scenario forecast and NNQF-
based quantile regressions; QPL: average pinball-loss;
QMRD: average modified reliability deviation

As it can be seen in Figure 2.28, the scenario forecast are worse at de-
scribing the uncertainty of the next 24 hours than the normal quantile regres-
sions. Nonetheless, the magnitude in the difference regarding the pinball-
loss is quite different as that of the modified reliability deviation. First, it
can clearly be seen, that the scenario forecasts obtain in general a higher
pinball-loss value than the quantile regression used for comparison. How-
ever, the difference in pinball-loss never surpasses 1%. It is also clearly
seen that the worse pinball-loss values are obtained by the scenario fore-
casts formed by only 10 scenarios. In contrast, the difference in pinball-loss
between the other scenario forecasts is almost indistinguishable. The sce-
nario forecasts also perform worse than the quantile regressions in terms of
the modified reliability deviation. Just as before, the worst results are ob-
tained by the scenario forecast formed by the lowest number of scenarios,
with values sometimes surpassing 10%. All other scenario forecasts obtain
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similar modified reliability deviations that never surpass 10%, but that are
always higher than those obtained by the quantile regressions. Interestingly,
the largest deviations are mostly found on the extremes of the distributions.
This could be caused by the fact that scenario forecasts may underestimate
the uncertainty. The reason thereof is that the quantile regressions used for
the scenario forecasts are trained using measured values as input (cf. Equa-
tion (2.18)), hence they may be unable to correctly propagate the uncertainty
when calculating the scenarios, i.e. when using forecast values as input (cf.
Equation (2.20)). Evidence of this can be obtained by taking a look at the
average interval width QIW (cf. Equation (2.31)) of intervals formed by
the scenario forecasts and the quantile regressions compared to them17. The
intervals of the best scenario forecast obtain a QIW that is 20%, 16%, and
22% smaller than that of the interval forecast trained using Poly1-3, ANN4,
and ANN10, respectively. Therefore, it can be concluded that the scenario
forecasts clearly underestimate the spread of the future values uncertainty.

As a final result, Table 2.11 contains the average values of the pinball-
losses and modified reliability deviations shown in Figure 2.28.

Technique Number of Scenarios

Poly1-3 ANN4 ANN10 10 50 100

QPL[%] 1.96 1.94 1.95 2.32 2.19 2.19

QMRD[%] 2.96 2.59 3.09 7.41 6.18 6.00

Table 2.11: Comparison of average pinball-loss and modified reliability deviation values of
scenario forecast and NNQF-based quantile regressions; QPL: average pinball-
loss; QMRD: average modified reliability deviation

Just as in Figure 2.28, Table 2.11 shows that the average pinball-loss of
the scenario forecast is quite similar to that of the quantile regressions. In
contrast, the modified reliability deviation values of the scenario forecasts
are much higher, but are still not above 10%. In general it can be concluded,

17 The intervals are formed by pairs of quantile estimates centered on the estimated median and
have probabilities (qu − ql) ∈ {0.02, 0.04, . . . , 0.98} of containing the future values.
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that the present thesis method is able to obtain – at least for the simulated
time series used – more or less acceptable scenario forecasts. Regardless,
the method still needs to be improved to reduce the underestimation of the
forecast uncertainty. In the meantime, the other presented method should
be preferred in cases in which an accurate description of the uncertainty is
needed, but scenario forecasts are not strictly required.

Notice as a final remark, that the evaluation of the scenario forecasts using
the pointwise evaluation metrics (i.e. the average pinball-loss and modified
reliability deviation) is considered adequate for the experiment presented
in the current section. Nonetheless, evaluation values for multivariate dis-
tributions (as e.g., the energy score [174]) are considered to be better at
evaluating scenario forecasts, especially when comparing different scenario
forecasting techniques. This is to be taken into consideration in future re-
lated works.

2.5 Novelty and Remaining Questions

The current chapter describes several methods whose novelty can be sum-
marized as follows:

1. The possibility of training quantile regressions without the need of us-
ing Equation (1.16), thus opening the possibility of training quantile
regressions with complex data mining techniques (i.e. ANN) with-
out much effort, since their training algorithms remain unchanged (cf.
Section 2.2.1)

2. The obtainment of interval forecasts based on the new type of quantile
regressions (cf. Section 2.2.2)

3. The straightforward obtainment of non-parametric distribution fore-
casts (cf. Section 2.2.3)
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4. The feasibility of obtaining parametric distribution forecasts (i.e.
parametric probabilistic forecasts) without requiring a distribution
assumption (cf. Section 2.2.4)

5. The creation of scenario forecasts without the need of explicitly de-
scribing the correlation structure between neighboring time series val-
ues (cf. Section 2.2.5)

Additionally, the acceptable results obtained in the experiments demon-
strate that the developed methods offer possible solutions to the first three
open questions in Section 1.4 and thus fulfill the first three objectives of the
current thesis (cf. Section 1.5). Nonetheless, a series of new question can
also be raised, for instance:

• How do different values of the parameter εth and different distance
measures (cf. Equation (2.1)) influence the quality of the NNQF-
based quantile regressions?

• How do quantile regressions based on the NNQF fare in comparison
to “true" quantile regressions trained with more complex data mining
techniques, as e.g., ANNs?

• Can the results of quantile regressions with different probabilities
(trained with the same data mining technique) be improved by letting
them choose their features independently of one another?

• Does the use of a non-linear interpolation (cf. Equation (2.10)) in-
fluences the quality of the non-parametric CDF forecasts and of all
forecasts based on them?

• Does the selection of different ˆ̃Fs(y|x) and ˆ̃Fe(y|x) (cf. Equation (2.11))
functions influence the quality of the non-parametric CDF forecasts
and of all forecasts based on them?
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• What improvements can be done to the scenario forecast method to
avoid underestimating the forecast uncertainty?

• How can the implementation of the scenario forecast approach be op-
timized, for it to allow the creation of scenario forecasts based on
more complex data mining techniques (e.g., ANNs) in an acceptable
amount of time?

Questions as the ones previously described are to be tackled in future re-
lated works.
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3 Hierarchical Probabilistic
Forecasting

3.1 Overview

The current chapter presents a concept for estimating the joint distribution
of two correlated future time series values, as well as for obtaining coherent
hierarchical probabilistic forecasts based only on several joint distribution
forecasts. A coherent hierarchical forecast is a collection of forecasts for all
time series in a hierarchy in which the forecasts of each time series actually
represent the sum of those forming it. Since time series are normally fore-
cast independently of one another, the coherency of the hierarchical fore-
casts is not assured. Furthermore, additional problems arise when trying to
estimate coherent hierarchical probabilistic forecasts; since estimating the
CDF of the sum of several correlated values requires the estimation of a mul-
tivariate CDF, which is not trivial to compute. Therefore, the current chapter
offers an alternative based on the sequential estimation of joint distribution
functions. An example of a time series hierarchy is given in Figure 3.1. The
time series in the third level in Figure 3.1 represent, for example, loads of
various households; with those in the second level representing loads at the
substation level, and the time series at the top being the aggregation of all
substations.

The present chapter is divided in three main sections. The first presents
a straightforward method for obtaining joint distribution forecasts, the sec-
ond describes an approach for obtaining coherent probabilistic hierarchi-
cal forecasts, and the last describes the approaches’ novelty and some re-
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Level 3

Level 1 Time Series 1 (L1TS1)

L2TS1 L2TS2 L2TS3

L3TS1 L3TS2 L3TS3 L3TS4 L3TS5

Figure 3.1: Example of a time series hierarchy

maining open questions. Furthermore, a series of examples are also pre-
sented. The data used for these examples stems from three correlated sim-
ulated load time series, {PLi[k]; k = 1, . . . ,K; i = 1, 2, 3}, and their sum
{PLS[k]; k = 1, . . . ,K}. These time series represent three years of hourly
measurements, i.e. K = 26280 and are obtained using the same benchmark
generator as in [3, 156], as well as some additional modifications; more in-
formation thereof can be found in Appendix B.1. The used time series are
assumed to represent the load of three really similar households, as well as
the load measured at a substation they are all connected to. For the sake of
illustration, Figure 3.2 shows a segment of the used time series.
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Figure 3.2: Simulated load time series used in the examples of the
present chapter. Please refer to Appendix B.1 for more
information about their obtainment.
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3.2 Joint Distribution Forecast

The presented method begins with two correlated time series further referred
to as {ya[k]; k ∈ [1,K]} and {yb[k]; k ∈ [1,K]}. The goal is to estimate the
joint distribution of the correlated future values ya[k + H] and yb[k + H],
conditioned on some available information. For instance, to be consistent
with Chapter 2 the desired outputs and the used input vector can be defined
as follows:

ya :=ya[k +H]

yb :=yb[k +H]

x :=[ya[k], · · · , ya[k −H1], yb[k], · · · , yb[k −H1],

uT [k], · · · ,uT [k −H1]]T ; k ∈ [H1 + 1,K −H] .

(3.1)

Using the definitions given in Equation (3.1), L ∈ N>0 separate quantile
regressions based on the NNQF are trained for each of the correlated val-
ues (cf. Section 2.2.3), i.e. {ˆ̃ya,(ql); l = 1, . . . , L and q1 < · · · < qL} and
{ˆ̃yb,(ql); l = 1, . . . , L and q1 < · · · < qL}. Afterwards, non-parametric es-

timates of the conditional CDFs of ya and yb, i.e. ˆ̃F (ya|x) and ˆ̃F (yb|x), are
obtained (cf. Equation (2.12)). The estimated CDFs represent the marginal
distributions of the joint CDF that is to be estimated. Note that the later
used conditional Sklar theorem (cf. Equation (1.10)) requires the marginal
distributions to be conditioned on the same value as the joint distribution,
hence all regressions are trained with the same input vector.

After estimating the marginal distributions, L additional quantile regres-
sions are trained, these regressions estimate quantiles of ya conditioned on
yb and vice versa and are given further as:

ˆ̃ya|b,(ql) = f(yb,
ˆ̃
θ(ql))

ˆ̃yb|a,(ql) = f(ya,
ˆ̃
θ(ql)) ;

(3.2)
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where ˆ̃ya|b,(ql) is an estimated quantile of ya conditioned on yb and ˆ̃yb|a,(ql)

represent an estimated quantile of yb conditioned on ya.
By using all ˆ̃ya,(ql) and ˆ̃yb,(ql) as input in the regressions outlined in Equa-

tion (3.2), 2L2 estimates1 of the quantiles of ya and yb conditioned on one
another – and indirectly on x – can be obtained, i.e.:

ˆ̃ya|b,(ql)j = f(ˆ̃yb,(qj),
ˆ̃
θ(ql)); l = 1, . . . , L, j = 1, . . . , L

ˆ̃yb|a,(ql)j = f(ˆ̃ya,(qj),
ˆ̃
θ(ql)); l = 1, . . . , L, j = 1, . . . , L .

(3.3)

Afterwards, all realizations are converted into realizations of uniformly
distributed random variables via the probability integral transform (i.e. us-
ing ˆ̃F (ya|x) and ˆ̃F (yb|x)); since the joint distribution is later estimated
using a copula (cf. Equation (1.10)). In addition, since bivariate samples are
required for calculating the joint distribution of the future time series values,
each transformed realization of ya conditioned on yb has to be paired with
the q value of the quantile of yb used for its obtainment. The same has to be
done for each transformed realization of yb conditioned on ya. This results
in a pair of vectors containing 2L2 values that are defined as:

ˆ̃ua|b = [ˆ̃ua|b,1, · · · , ˆ̃ua|b,2L2 ]T

= [F (ˆ̃ya|b,(q1)1|x), · · · , F (ˆ̃ya|b,(qL)L|x), q1 · 11×L, · · · , qL · 11×L]T

ˆ̃ub|a = [ˆ̃ub|a,1, · · · , ˆ̃ub|a,2L2 ]T

= [q1 · 11×L, · · · , qL · 11×L, F (ˆ̃yb|a,(q1)1|x), · · · , F (ˆ̃yb|a,(qL)L|x)]T ;
(3.4)

Finally, the transformed samples can be used to estimate a copula that in
turn will provide an estimate of the joint CDF using the conditional Sklar

1 The number 2L2 stems from the fact that Equation (3.3) estimates L quantiles for each of the
L quantile regressions of the 2 correlated time series.
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theorem (Equation (1.10)). For instance the empirical copula [36]2 can be
used:

ˆ̃F (ya, yb|x) = C( ˆ̃F (ya|x), ˆ̃F (yb|x)|x)

=
1

2L2
card

i=1,...,2L2
{ˆ̃ua|b,i ≤ ˆ̃F (ya|x) ∧ ˆ̃ub|a,i ≤ ˆ̃F (yb|x)} ;

(3.5)
where card{·} is the cardinality operator.

For the sake of illustration, Example 6 shows the obtainment of a joint
distribution forecast based on the present approach.

Example 6: Joint Distribution Forecast

The current example shows the obtainment of bivariate forecasts using the

previously described method. The experiment begins by reformulating Equa-

tion (3.1) as follows:

ya :=PL1[k +H];H = 24

yb :=PL2[k +H];H = 24

x :=[PL1[k], · · · ,PL1[k −H1],PL2[k], · · · ,PL2[k −H1],

PL3[k], · · · ,PL3[k −H1]]
T ; k ∈ [H1 + 1,K −H], H1 = 168 .

(3.6)

Thereafter, several quantile regressions based on the NNQF with probabili-

ties q = {0.01, 0.02, . . . , 0.99} are trained using a polynomial with a maximal

degree of 2. Similarly as in the examples of Chapter 2, the quantile regressions

are trained to estimate quantiles of values 24 hours in advance using the previ-

ous week values of the three correlated time series. The reason for using the

three time series as input, when only two are to be forecast, is the fact that

the joint distribution forecast created is later used in the hierarchical forecast

example in which the input vector has to be the same; as it is necessary for

the conditional Sklar theorem. Figure 3.3 shows the non-parametric marginal

2 Since the marginal distributions are estimated and thus assumed to be known, the
empirical copula in Equation (3.5) is equal to the empirical probability measure; cf.
http://www.columbia.edu/ rf2283/Conference/3Inference%20(2)%20Seagers.pdf.
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3 Hierarchical Probabilistic Forecasting

distributions obtained with the method described in Section 2.2.3.

0.12 0.14 0.16 0.18
0

0.5

1

0.12 0.14 0.16 0.18
0

0.5

1

Figure 3.3: Example of the forecast marginal distributions

Afterwards, additional quantile regressions (cf. Equation (3.2)) with proba-

bilities q = {0.01, 0.02, . . . , 0.99} are trained. These are simple linear quan-

tile regressions. Finally, using Equations (3.3) and (3.4), as well as the em-

pirical copula shown in Equation (3.5), the desired joint distribution can be

determined. This is depicted in Figure 3.4.

0
0.12

0.5

0.180.14 0.16

1

0.16 0.140.18 0.12

Figure 3.4: Example of the joint distribution forecast

3.3 Hierarchical Probabilistic Forecast

The presented approach is based on the possibility of estimating the CDF of
the sum of two correlated values using their joint distribution function and
on the following assumptions:

• The values for which the joint distributions are obtained are all con-

strained by an upper and a lower threshold, i.e. ya ∈ [y
a
, ya] and

yb ∈ [y
b
, yb]
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3.3 Hierarchical Probabilistic Forecast

• The estimated CDF of the sum is strictly monotonic increasing.

Under the previous assumptions the conditional CDF of ya+b, i.e. the sum
of ya and yb, can be estimated as follows:

ˆ̃F (ya+b|x) =

∫ ya+b−y
a

y
b

∫ ya+b−yb

y
a

∂ ˆ̃F (ya, yb|x)

∂ya∂yb
dyadyb . (3.7)

Using the methods described in Section 3.2 and Equation (3.7) a hierar-
chical forecast for hierarchies formed by two or more time series can be
obtained. To do so, a given hierarchy has to be modified. For example, Fig-
ure 3.5 depicts the modification of the hierarchy shown in Figure 3.1. Once
the hierarchy has been modified an iterative procedure can be used to calcu-
late the CDF of the sum of each new pair, which results in the obtainment
of coherent hierarchical probabilistic forecasts for each time series of the
original hierarchy.

Level 1

Level 2

Level 3

Level 1 Time Series 1 (L1TS1)

L2TS1 L2TS2

L2TS3

L3TS1 L3TS2

L3TS3 L3TS4 L3TS5L3TS1 + L3TS2

L2TS1 + L2TS2

: Time series of the original hierarchy

Figure 3.5: Example of a modified time series hierarchy
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3 Hierarchical Probabilistic Forecasting

The main advantage of the present method over simply obtaining prob-
abilistic forecasts for each time series independently is the fact that each
probabilistic forecast obtained is coherent; if their joint distribution esti-
mates are correct. This means that each probabilistic forecast in a specific
level of the hierarchy actually represents the sum of the probabilistic fore-
casts at its lower levels. Note that the present method can be classified as
a bottom up hierarchical forecasting method, since it bases the forecasts of
the time series at higher levels completely on those at the lower levels3.

Example 7 shows results obtained by the present thesis’ hierarchical fore-
casts.

Example 7: Hierarchical Forecast

The goal of the current experiment is to use the previously described method

to create hierarchical forecasts for the sum of the three correlated time series

shown in Figure 3.2, i.e. PLS, and to compare the hierarchical forecast results

to those of direct forecasts, i.e. quantile regressions that directly estimate the

uncertainty of the aggregated time series future values. Note that the input

vector x and quantile regressions used for obtaining the necessary joint distri-

bution forecasts are the same as in Example 6. Furthermore, the input vector

and desired output for the direct forecasts are chosen as follows:

y := PLS[k +H];H = 24

x := [PLS[k], · · · ,PLS[k −H1]]
T ; k ∈ [H1 + 1,K −H], H1 = 168 .

(3.8)

The direct forecasts are quantile regressions based on the NNQF with corre-

sponding probabilities q = {0.01, 0.02, . . . , 0.99} that are trained as polyno-

mials with a maximal degree of two. As Equation (3.8) shows, the regressions

are trained to estimate the quantiles of a value 24 hours in the future using

only the previous week values of the aggregated time series as input. In ad-

dition, hierarchical forecasts obtained under the assumption of the time series

3 A more thorough description of the difference between bottom up and top down hierarchical
forecasts can be found in [25].
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3.3 Hierarchical Probabilistic Forecast

future values being independent of one another are also obtained (i.e. the dis-

tribution of their future values’ sum is obtained via convolution operations)

and compared. Figure 3.6 plots the results obtained in terms of pinball-loss

and modified reliability deviation against the probability of the quantiles being

estimated. Note that the pinball-losses presented are obtained by dividing the

obtained errors with the difference between the maximal and minimal value of

the sum time series.

0.1 0.3 0.5 0.7 0.9
0

1

2

3

4
Direct Forecast
Assuming Independence
Hierarchical Forecast

0.1 0.3 0.5 0.7 0.9
0

5

10

Figure 3.6: Results from the direct forecasts, the forecasts obtained assuming indepen-
dence, and the forecasts created via the present thesis method; referred to in
the figure as hierarchical forecast.

Figure 3.6 shows that the three types of forecast perform extremely similar

in terms of pinball-loss. However, differences appear when looking at their

modified reliability deviations. For instance, it is clear that the direct forecast

delivers the best results in most cases. This is an expected outcome, as the

direct forecast do not estimate the quantiles by aggregating some lower level

forecasts (a calculation that may add additional forecasting errors), but rather

estimate the values directly. Interestingly for q values close to 0.5, the forecast

obtained under the assumption of independence performs better than the direct

forecast, while those created with present thesis method obtain a similar result.

Moreover, the advantage of using the present thesis method, instead of ignor-

ing the dependence of the future time series values, is shown on the results

obtained for the lower and higher quantiles. For instance, the present thesis

method obtains much better estimates for q < 0.4 than the forecasts created

assuming the independence of the future values. Likewise, a slight advantage

of the present thesis approach can also be seen for 0.6 < q < 0.9. Thereupon,
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3 Hierarchical Probabilistic Forecasting

it can be argued that ignoring the – positive – correlation of the future values

may result in an underestimation of their sum’s uncertainty. Figure 3.7 de-

picts a possible occurrence of this effect, as it shows that the intervals obtained

with the forecasts that assume independence are generally smaller than those

created via the present thesis’ method; thus pointing at the former possibly

underestimating the sum’s variance.
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Figure 3.7: Interval forecasts obtained with the forecasts that assume independence
of the summed values and those obtained by the present thesis approach,
referred in the figure as hierarchical forecast.

An argument that can be made after looking at the results (especially those

in Figure 3.6), is that direct forecasts should be preferred. However, this may

only apply in cases in which information about the relationship of time series

forming a hierarchy is irrelevant. The moment in which information of how

the time series on different hierarchy levels influence each other becomes im-

portant, coherent hierarchical forecast should be used – as direct forecast do

not provide that information in any way. Finally it needs to be mentioned, that

future related works should try to improve the concept presented herein, for

instance, using reconciliation approaches as the one shown in [85].

3.4 Novelty and Remaining Questions

The current chapter tries to answer the fourth open question in Section 1.4
by providing the concept of two methods that:
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3.4 Novelty and Remaining Questions

1. Obtain a non-parametric estimate of the joint probability distribution
of two correlated future time series values based only on quantile re-
gressions

2. Create a coherent hierarchical probabilistic forecast using only joint
distributions and an iterative process

Even though the described approaches fulfill the thesis objective of offer-
ing straightforward methods for creating joint distribution and hierarchical
coherent probabilistic forecasts, there are still issues that can be raised; for
instance:

• Do the quality of the joint distribution forecasts is affected if a lower
number of bivariate samples (cf. Equation (3.4)) are used?

• Do the data mining techniques used for the quantile regressions in
Equation (3.2) and those used for the quantile regressions forming the
marginal distributions have to be the same?

• Are the obtained hierarchical forecasts truly coherent?

• Can the accuracy of the coherent probabilistic forecasts be improved
via reconciliation approaches, as e.g., in [85]?

• How does the accuracy of the obtained hierarchical probabilistic fore-
casts changes at different levels of the hierarchy?

• Are there easier and more comprehensive approaches that may result
in similar forecasts?

Future related works should tackle some of the questions listed above.
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4 Software Implementation

4.1 Overview

The current chapter discusses the Forecasting Extension of the open-source
MATLAB toolbox SciXMiner [164], i.e. the implementation of the meth-
ods described in Chapter 2 and the concepts presented in Chapter 3. Cur-
rently, the SciXMiner toolbox already allows for the creation of time series
point forecasting models. The new extension not only streamlines the pre-
vious functionality, but also widens it to allow the creation of probabilistic
forecasts. Table 4.1 outlines the sections describing the theory and imple-
mentation of the various methods presented. The following sections offer a
general description of the implementation of each method.

Section

Method Theory Implementation

Quantile Regressions based on the NNQF 2.2.1 4.2.1

Interval Forecast 2.2.2 4.2.2

Parametric Distribution Forecast 2.2.4 4.2.3

Scenario Forecast 2.2.5 4.2.4

Hierarchical Probabilistic Forecast 3.3 4.2.5

Table 4.1: Sections describing the theory and implementation of the present thesis methods

Additionally, the present chapter describes a procedure (cf. Section 4.3) to
decouple the forecasting approaches from SciXMiner. This simplifies, for
instance, their later implementation in the forecasting services being devel-
oped for the Energy Lab 2.0 [10].
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4 Software Implementation

4.2 SciXMiner Forecasting Extension

The extension implemented in SciXMiner allows the selection of various
types of forecast. Figure 4.1 depicts the graphic user interface (GUI) of the
programmed Forecasting Extension and shows the different types of fore-
casts that can be obtained. Note that the methods enumerated in the image
are the ones more thoroughly described in the next sections. In addition,
the extension also contains GUIs for creating and applying point forecast-
ing models and polynomial based “true" quantile regressions1, i.e. obtained
by minimizing the sum of pinball-losses. These are not discussed further in
the present work.

1
2
3
4
5

Figure 4.1: Different types of forecasts available in SciXMiner; 1:
Quantile regression based on the NNQF; 2: Interval fore-
casts; 3: Parametric distribution forecasts; 4: Scenario fore-
casts; 5: Hierarchical probabilistic forecasts

1 The implementation of the “true" quantile regressions is based
on de.mathworks.com/matlabcentral/fileexchange/32115-quantreg-x-y-tau-order-nboot-
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4.2 SciXMiner Forecasting Extension

4.2.1 Quantile Regressions based on the NNQF

Figure 4.2 shows the GUI developed for creating quantile regressions based
on the NNQF. As it can be seen, the GUI is divided in four fields which are
described below2.

1

2

3

4

Figure 4.2: User interface for quantile regressions based in the NNQF;
1: General options; 2: Data mining technique parameters; 3:
NNQF parameters; 4: Energy forecasting specific options

1. General options: This field contains options which are not specific to
quantile regressions based on the NNQF, as e.g., the time series to be fore-
cast and the time series used as input. Table 4.2 contains information about
each general option available.

2 Options for normalizing the input matrix can be used when creating the quantile regressions,
but cannot be defined directly in the Forecasting Extension.
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GUI Symbol Equation Additional Description

Regression technique – – Data mining technique to be used (i.e. Polynomial,
ANN or SVR)

Desired output time
series

– – Time series to be forecast

Forecast horizon H (1.21) Timesteps representing the forecast horizon

Input time series – – Indexes of the time series whose values are used as
input

Lags H1 (1.21) Value representing the number of lags given as {0 :
1 : H1}

Feature selection – – Select to apply a feature selection

Quantile features – – Select to apply an individual feature selection for
each quantile regression

Table 4.2: General options of the quantile regressions based on the NNQF GUI

2. Regression technique parameters: The second field varies depending
on the regression technique being used. For instance, in the case of polyno-
mial regressions the maximal allowed degree and the option of setting the
constant value to zero are shown, while in the case of ANNs (i.e. MLPs)
the number of hidden layers and hidden neurons in each hidden layer are
displayed. Furthermore, the number of features being selected – if a feature
selection is to be applied – is also found in the present GUI field.
3. NNQF parameters: The third field contains all options necessary for the
NNQF. Table 4.3 contains information about each available option.

GUI Symbol Equation Additional Description

k NNN (2.1) Number of nearest neighbors

Distance d(·, ·) (2.1) Distance measure used for the NNQF

Weights – – Weights applied to the features when calculating dis-
tances

Quantiles q (2.1) Probabilities of the quantiles to be estimated by the
regressions

Quantile constraint – (2.8),
(2.9)

Apply the current thesis approaches to avoid quantile
crossing

Reg εr (2.9) Regularization value; if left empty εr = 10−5 is
used

Table 4.3: NNQF options of the quantile regressions based on the NNQF GUI
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4.2 SciXMiner Forecasting Extension

4. Energy forecasting options: Last, the final field offers options available
when forecasting energy time series. The field appears only if the energy
forecasting checkbox in the GUI is selected. The field allows the specifi-
cation of three different energy forecasting option fields for either PV, load,
or wind power forecasting; these fields are selected via the energy forecast-
ing dropdown menu. All three option fields contain a checkbox to assure
that all forecasts are greater than zero, for instance by setting ymin = 0

in Equations (2.8) and (2.9). When forecasting PV power, various options
for removing night values from the training set and setting nightlike values
during the models’ application automatically to zero. If these options are
used, an additional time series is created during the application procedure.
The observations of the additional time series equal one if a value at a given
timestep is considered a night value and zero otherwise.

Finally, once all desired options have been selected the quantile regres-
sions can be created by going into the Forecasting menu element, then go-
ing to the Forecasting Model (Regression) field, and finally clicking on Cre-

ate. All trained quantile regressions are saved in a MATLAB variable called
regr_single. In addition, going again into the Forecasting menu element and
into the Forecasting Model (Regression) field, but instead clicking on Ap-

ply, Save, or Load results in the following: (i) Apply adds to the SciXMiner
project time series that contain the quantile regressions’ outputs; (ii) Save

saves the regr_single variable as a file with an .fmodel extension; (iii) Load

enables the user to load regressions saved with an .fmodel extension back
into SciXMiner. Notice that the previous approach is the only way for load-
ing .fmodel files, since the regressions saved on those files may require func-
tionalities that are exclusive of the SciXMiner Forecasting Extension.

4.2.2 Interval Forecast

As interval forecast are just concatenations of quantile regressions (cf.
Equation (2.5)), the current interval forecast GUI is implemented to simply
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plot interval forecasts formed by previously applied quantile regressions.
The GUI used to create the plots is shown in Figure 4.3, while the descrip-
tion of each available option is contained in Table 4.4.

Figure 4.3: User interface for interval forecasts

GUI Symbol Equation Additional Description

Desired output time
series

– – Time series to be forecast

Lower bound time se-
ries

– – Index of the time series representing the lower inter-
val bounds

Upper bound time se-
ries

– – Index of the time series representing the upper inter-
val bounds

Corresponding inter-
val probabilities

qu−ql (2.5) Probabilities of the intervals being created

Starting timestep – – Timestep defining the start of the generated plot

Ending timestep – – Timestep defining the end of the generated plot

Table 4.4: Options of the interval forecasts GUI
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4.2 SciXMiner Forecasting Extension

Once the options are selected, the desired plot is generated by first going
into the Forecasting menu element, then going to the Interval Forecast field,
and last, clicking on Plot Interval Forecast.

4.2.3 Parametric Distribution Forecast

The parametric distribution forecast GUI is implemented to obtain paramet-
ric distribution forecasts for each timestep of the time series being forecast
using time series containing the quantile regressions’ results. Figure 4.4
depicts the programmed GUI, which is divided in two main options fields
further discussed in the current section.

1

2

Figure 4.4: User interface for parametric forecasts; 1: Options for creat-
ing parametric distribution forecasts; 2: Options for apply-
ing the parametric distribution forecasts
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1. Options for creating parametric distribution forecasts: Table 4.5 con-
tains a brief description of the options that are necessary for creating para-
metric distribution forecasts.

GUI Symbol Equation Additional Description

TSs containing the
quantile estimates

ˆ̃yql (2.10) Indexes of the time series to be used for the non-
parametric CDF

Max CDF argument y (2.11) The given value is used for all non-parametric CDFs
estimated; if the field is left empty the value is de-
fined as in Appendix A.3

Min CDF argument y (2.11) The given value is used for all non-parametric CDFs
estimated; if the field is left empty the value is de-
fined as in Appendix A.3

Corresponding CDF
values

ql (2.10) Probabilities that correspond to each quantile esti-
mate (i.e. time series) being used

Parametric CDF to be
fitted

Fˆ̃
ζi

(y|x) (2.17) Dropdown menu for selecting the parametric CDF to
be fitted (i.e. Beta, Gamma, Normal, and Uniform);
if Find Best Fit is selected the process for finding the
best fit, described in Section 2.2.4, is used

Technique to find best
fit

– – Dropdown menu for selecting the approach/metric to
determine the best fit; in the present work (cf. Equa-
tion (2.17)) the Least Squares option is used

TS representing an in-
dicator function

– – Index of a time series in SciXMiner that contains
only values between 0 and 1 and can be used to de-
fine the timesteps where a parametric CDF is to be
estimated (i.e. where the selected time series equals
0)

Table 4.5: Options for creating parametric distribution forecasts of the parametric distribution
forecast GUI

2. Options for applying parametric distribution forecasts: The options
used when applying the parametric distribution forecasts are contained in
Table 4.6. The application consists in creating additional time series con-
taining quantiles of the parametric CDFs estimated at each timestep.

After defining all necessary options, parametric distribution forecasts can
be obtained by first going into the Forecasting menu element and then click-
ing on Parametric Probabilistic Forecasts. Afterwards, SciXMiner saves
inside a variable called cdf_bestfit the parametric distribution estimated for
each timestep of the forecast time series. Furthermore, the additional option
Compare to optimal fit (cf. Figure 4.4) compares the best fit chosen via the
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GUI Symbol Equation Additional Description

Apply quantiles of
parametric CDF fitted

– – Select if time series containing the quantile estimates
are to be created and saved

All quantiles <= – – Maximal value for a quantile estimate; if surpassed
the estimate is replaced by this threshold; if the field
is left empty no constraint is applied

All quantiles >= – – Minimal value for a quantile estimate; if surpassed
the estimate is replaced by this threshold; if the field
is left empty no constraint is applied

Table 4.6: Options for applying parametric distribution forecasts of the parametric distribution
forecast GUI

present thesis method to one which may be considered the optimal fit, as in
Section 2.4.4.

4.2.4 Scenario Forecast

The scenario forecast GUI allows the obtainment of scenario forecasts using
previously obtained quantile regressions (cf. Section 2.2.5). Therefore prior
to creating the scenarios, the variable containing the quantile regressions,
i.e. regr_single, has to be loaded into MATLAB. Figure 4.5 depicts the
implemented GUI and how it can be divided in two main option fields.
1. Options for creating scenario forecasts: Table 4.7 contains the options
for creating scenario forecast based on the present thesis method.
2. Options for creating and applying scenario forecasts: Options that
can be used for creating and applying the scenario forecasts are contained
in Table 4.8.

Once all options have been set, scenario forecasts can be created by first
going into the Forecasting menu element, then going to the Scenario Fore-

cast field, and finally clicking on Create Scenario Forecasts with QR. There-
after, the scenario forecasts created are saved in a variable called scenario-

Forecast. Furthermore, the scenario forecasts can be viewed by going into
the Forecasting menu element, then to the Scenario Forecast field, and fi-
nally clicking on View Scenario Forecasts.
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2

1

Figure 4.5: User interface for scenario forecasts; 1: Options for creating
scenario forecasts; 2: Options for creating and applying
scenario forecasts
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GUI Symbol Equation Additional Description

Begin scenario fore-
cast at k =

– – Timestep to begin the first scenario forecast

Number of scenarios
per scenario forecast

NS – Number of scenarios per scenario forecasts (A sce-
nario is a possible realization of a time series’ future;
A scenario forecast is formed by several possible sce-
narios)

Scenario length H (2.20) Forecast horizon of the scenario forecasts to be cre-
ated

Number of scenario
forecasts

– – Number defining how many scenario forecasts are to
be created

Timesteps for new
scenario forecast

– – Timestep interval between each calculated scenario
forecast

TS representing indi-
cator function

– – Index of a time series in SciXMiner that contains only
values between 0 and 1 and can be used to define the
timesteps where a scenario forecast is set to zero (i.e.
where the selected time series equals 1)

Max CDF argument y (2.11) The given value is used for all non-parametric CDFs
estimated; if the field is left empty the value is defined
as in Appendix A.3

Min CDF argument y (2.11) The given value is used for all non-parametric CDFs
estimated; if the field is left empty the value is defined
as in Appendix A.3

Table 4.7: Options for creating scenario forecasts of the scenario forecast GUI

GUI Field Symbol Equation Additional Description

Apply quantiles of the
scenario forecasts

– – Select if time series containing the quantile estimates
of the scenario forecasts are to be created and saved
(the quantiles are calculated on a timestep basis using
Definition 5 of [166] and Method 10 in [167])

All quantiles <= ySmax (2.20) Maximal allowed value for a scenario; if the field is
left empty no constraint is applied

All quantiles >= ySmin (2.20) Minimal allowed value for a scenario; if the field is
left empty no constraint is applied

Table 4.8: Options for creating and applying scenario forecasts of the scenario forecast GUI
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4.2.5 Hierarchical Probabilistic Forecast

Figure 4.6 depicts the GUI implemented for creating hierarchical probabilis-
tic forecasts based on the present thesis’ concept. Additionally, Table 4.9
contains the available options as well as a brief description about them.

Figure 4.6: User interface for hierarchical forecasts

After the options have been defined, the hierarchical forecasts can be
created by going to the Forecasting menu element, then going to the Hier-

archical Probabilistic Forecasts field, afterwards going to the Create field,
and lastly clicking on Create QR Hierarchical Probabilistic Forecasts. It is
important to mention, that the quantile regressions (except for the ones in
Equation (3.2)) are trained with the options defined in the quantile regres-
sions’ GUI (cf. Section 4.2.1). All quantile regressions are saved as files
with an .fmodel extension in a folder called models_hierarchicalForecast
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GUI Field Symbol Equation Additional Description

Time series to be fore-
cast

– – Index of time series for which the hierarchical fore-
cast is to be created

Correlation threshold – – Threshold defining if the correlation between two
time series is enough to consider them correlated; if
the threshold is not surpassed the joint distribution is
obtained via a convolution operation

Correlation models re-
gression technique

– – Dropdown menu defining the data mining technique
used to create the quantile regressions in Equa-
tion (3.2)

Correlation model pa-
rameters

– – Parameters necessary for the data mining technique
chosen previously; for instance, in the case of poly-
nomials the first number is the maximal allowed de-
gree and the second is the number of features to be
selected

Table 4.9: Options of the hierarchical probabilistic forecasts GUI

(which in turn is saved in the folder defined in the GUI). If the mod-

els_hierarchicalForecast folder exists in the current MATLAB path, the
hierarchical probabilistic forecasts can be created by going to the Forecast-

ing menu element, then going to the Hierarchical Probabilistic Forecasts

field, then to the Apply field, and finally clicking on Apply QR Hierarchical

Probabilistic Forecasts. After the application, quantiles of the hierarchical
probabilistic forecasts are added as time series.

4.3 Deployment without SciXMiner

The current section discusses the possibility of using the developed meth-
ods without the SciXMiner graphic user interface (GUI). The process for
decoupling the implemented forecasting approaches from SciXMiner can
be summarized in the following steps:

1. Use SciXMiner to train the models needed for creating the forecasts.

2. Develop a new “main” MATLAB script including the processes needed
to obtain the desired forecasts: loading the necessary input data, pa-
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rameters, and forecasting models, calling all necessary SciXMiner
callbacks, etc.

3. Copy all SciXMiner scripts and functions required (i.e. all dependen-
cies) to the folder where the “main” MATLAB script is saved.

4. Run the “main” MATLAB script (with SciXMiner closed) using an
example input and compare the results to the corresponding example
output.

5. If errors exist, check if they are caused by functions trying to update
the SciXMiner GUI; these have to be commented out for the “main”
MATLAB script to work without the SciXMiner GUI.

6. Once the “main” MATLAB script works error-free, the implemented
forecasting approach can be deployed without SciXMiner

After following all previous steps, the MATLAB compiler can be used to
compile the “main” MATLAB script and all its dependencies. This ad-
ditional step allows for the application of the forecasting approach with-
out the need of using MATLAB. Furthermore, an example (i.e. exam-

ple_script_2Compile.m) and a template (i.e. template_script_2Compile.m)
of the “main” MATLAB script can be found in the application_specials

folder of the SciXMiner toolbox.
For the sake of illustration, Figure 4.7 depicts a pipeline implemented in

the framework described in [175]; a framework that is planned to be used
within the Energy Lab 2.0 [176]. The pipeline shown in Figure 4.7 starts
by extracting data from a database, then conducting a forecast using the ex-
tracted data and previously trained models, and finally saving the results.
Notice that the forecasting component (i.e. the block named FMForecast-
FunctionDocker) of the presented example was deployed using the proce-
dure described in the present section.
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4 Software Implementation

It is important to mention, that other approaches for integrating forecast-
ing methods on the Energy Lab 2.0 have also been investigated during the
completion of the present thesis; e.g., using Apache Spark [177].

4.4 Novelty and Remaining Questions

The main contributions of the current chapter can be summarized as follows:

1. The development of the SciXMiner Forecasting Extension that not
only streamlines the current forecasting functionality, but also in-
cludes all the methods described in Chapter 2 and the concepts pre-
sented in Chapter 3

2. The inclusion of some options specifically developed to forecast en-
ergy time series (cf. Section 4.2.1)

3. The description of a procedure that allows the decoupling of the fore-
casting approaches from SciXMiner

Furthermore, there is still some work to be done before the Forecasting
Extension can be released together with a future version of SciXMiner, for
instance:

• A more thorough documentation needs to be written

• The graphic user interfaces (GUIs) of the Forecasting Extension have
to be made more user friendly.
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5 Application

5.1 Overview

The current chapter presents the application of the methods described in
Chapter 2 on real data – i.e. time series of real power measurements – and
on control and scheduling tasks. The former is described in Section 5.2 and
the latter in Section 5.3. Additional information about some of the described
applications can be found in [165], [178], and [179].

5.2 Application on Real Data

The present section is divided in four parts. In Section 5.2.1 the datasets
being used are described. Afterwards, in Section 5.2.2 the experiments con-
ducted are shown and in Section 5.2.3 the data mining techniques utilized
to create the forecasts are presented. Finally, the results, their analysis, and
their discussion are reported through Sections 5.2.4, 5.2.5, and 5.2.6.

5.2.1 Data

In the present section two datasets are used: first, the dataset of the so-
lar track of the Global Energy Forecasting Competition of 2014 (GEF-
Com14) [29] and second, a dataset stemming from the North Campus of
the Karlsruhe Institute of Technology (KIT) [180]. To be more specific, the
GEFCom14 dataset contains PV power time series1 of three PV systems

1 The PV power time series contained in the GEFCom14 dataset are not preprocessed further.
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located in Australia, while the KIT dataset describes the energy consump-
tion of a large research campus2 [10]. Please notice that all the time series
contained in both datasets have an hourly resolution and that both the PV
power and load have been normalized to values between zero and one. In
addition, both forecast time series (i.e. PV power and load) are referred
to in the present section as {P[k]; k = 1, . . . ,K}. Table 5.1 offers more
information about the used datasets.

Available Exogenous Time Series

Dataset Forecast
Time Series

Measurement
Period

K Used as Input Not Used as Input

GEFCom14 PV Power 01.04.12 -
01.07.14

19704 Forecast surface solar radiation,
forecast surface thermal radiation,
and forecast top net solar radiation

Forecast total column liquid and
ice water, forecast surface pres-
sure, forecast relative humidity
at 1000 [mbar], forecast total
cloud cover, forecast wind veloc-
ity (U and V components), fore-
cast 2 [m] temperature, and fore-
cast total precipitation

KIT Load 26.01.16 -
07.04.18

19248 Time series indicating if a day is a
workday and time series indicating
if a day is a weekend or a holiday

–

Table 5.1: Information of the real data used in the current thesis

In addition to the PV power time series, the GEFCom14 dataset contains
corresponding forecast weather data from which only the time series de-
scribing the forecast surface solar radiation {Ĝs[k]; k = 1, . . . ,K}, sur-
face thermal radiation {Ĝth[k]; k = 1, . . . ,K}, and top net solar radiation
{Ĝt[k]; k = 1, . . . ,K} are used3. The KIT dataset also contains two addi-
tional time series; one defining if a day is a workday {Dw[k]; k = 1, . . . ,K}
and another determining if the day is a weekend or a holiday {Df [k]; k =

1, . . . ,K}.
Lastly, since it is assumed that knowledge of the seasonality of the forecast

time series (i.e. the daily seasonality of PV and the weekly seasonality of
load)4 may benefit the forecasting models, three additional time series are

2 The preprocessing applied to the KIT load time series is briefly outlined in Appendix C.1.
3 All radiation values used are first order differences of the ones contained in the dataset, as

they are originally provided as accumulated values.
4 Notice that while the time series used may have other seasons only the ones previously men-

tioned are considered in the current chapter.
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calculated and used later on. These time series contain the mean, maximal,
and minimal values of several seasons of the time series of interest and are
obtained as follows:

Pmean[k] = mean{P[k],P[k −Hs], · · · ,P[k − nsHs]}

Pmax[k] = max{P[k],P[k −Hs], · · · ,P[k − nsHs]}

Pmin[k] = min{P[k],P[k −Hs], · · · ,P[k − nsHs]}; k ∈ [nsHs + 1,K] ,
(5.1)

where Hs represents the number of time steps forming a time series’ season
and ns is the number of seasons considered. Since all time series have an
hourly resolution, the values are set to: Hs = 24 and ns = 7 for PV power
and Hs = 168 and ns = 3 for load. To be more specific, in the case of PV
power the new time series represent mean, maximal, and minimal values of
the power measured at the same hour for the past week. In the case of load,
in contrast, the new time series contain mean, maximal, and minimal values
of the load measured on the same weekday at the same hour for the past
month.

5.2.2 Experiments

Two specific experiments are conducted in the next section; both deal with
the creation of forecast for a forecast horizon equal to 24 hours, i.e. H = 24

(since all time series used have an hourly resolution). Notice that some parts
of the present section are more thoroughly described in [165]. Additionally
as some computation times are later used for comparison, it is important to
mention that all calculations are conducted on a computer with an Intel Core
i7-4790 processor with 3.6 [GHz] and 16 [GB] of RAM.
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Experiment 1

The first experiment consists in solving the tasks of GEFCom14 using the
quantile regressions based on the nearest neighbors quantile filter (NNQF)5

(cf. Section 2.2.1) and comparing the results to those of various benchmarks,
including the competition’s winner. GEFCom14 was divided in 15 tasks
with a training and a test period. During the competition, only Task 4 to 15
were relevant for the final result. The goal during the training periods was to
obtain models able to provide probabilistic forecasts during the test periods
in a 24 hours basis.

In the present thesis, the data stemming from the training periods is used
to train NNQF-based quantile regressions for q = 0.01, 0.02, . . . , 0.99 that
are later evaluated on the test period’s data using the average pinball-loss
(cf. Equation (2.25)). Specifics about the data used on the training and test
period of each relevant task are available in Appendix C.2. In addition, the
comparison also takes into consideration the computation time needed for
training and applying/testing the probabilistic forecasts in Task6 15. How-
ever, since the competition’s winner used a much more powerful computer
than the one used for the current thesis, a direct comparison of the compu-
tation times would not be appropriate. Thereupon, a value referred to as the
computational effort is used. This value takes into consideration the compu-
tation time, the number of processing cores, and the clock rate. It is defined
as:

C = t ·Ncores · fclock; (5.2)

where C is the computational effort, t represents the computation time,
Ncores is the number of processing cores, and fclock is the clock rate of the
processor. In other words, the computational effort is a dimensionless value
that, under the assumption of a processor being used at their maximum po-

5 Notice that the threshold value εth used in the NNQF (cf. Equation (2.1)) is set to infinity.
6 Only Task 15 is considered, as this is the only one for which the competition’s winner reports

its computation times.
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tential 7, represents the amount of clock cycles needed to train and/or apply
the forecasting models. Furthermore, the values of the computer used in the
current thesis are Ncores = 8 and fclock = 3.6 [GHz], while the values re-
ported by the competition’s winner are t = 662 [s] for training, t = 96 [s] for
testing, Ncores = 256, and fclock = 2.6 [GHz] [142]. Note that information
about other benchmarks used is available in the next section.

Experiment 2

The goal of the second experiment is to obtain and compare (for both the
GEFCom14 and the KIT datasets) the results of all techniques described in
Chapter 2. To be more specific, the results shown later stem from quantile
regressions based on the NNQF8 (cf. Section 2.2.1), interval forecasts (cf.
Section 2.2.2), parametric probabilistic forecasts (cf. Section 2.2.4), and
scenario forecasts (cf. Section 2.2.5). In the current experiment, 70% of
the time series is used for training the models and the remaining 30% is
used for testing them. Furthermore, to obtain more representative results,
the test set is divided in ten segments in which all models are evaluated. The
obtained results can then be used to form box plots that better represent the
capabilities of each model9. Lastly, note that only one of the PV power time
series available on the GEFCom14 dataset is used in the current experiment.

5.2.3 Data Mining Techniques

Experiment 1

For the first experiment, six different data mining techniques are used. The
first four are polynomial models with a maximal allowed degree of one to
four (i.e. Poly1-4). The last two techniques are ANNs (i.e. MLPs) with
7 Notice that the computational effort does not consider parallelization effects
8 In the current experiment, the NNQF’s threshold value εth (cf. Equation (2.1)) is set to

infinity.
9 Evaluating the models on ten different segments of the test set eliminates the risk of consider-

ing a trivial forecast to be perfect. Therefore the value ST used in Equations (2.24) and (2.30)
is set equal to one in the present experiment.
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the first having six hidden neurons (i.e. ANN6) and the second ten (i.e.
ANN10). In addition, the number of nearest neighbors used for training the
quantile regressions based on the NNQF are NNN = 50, 100, 150, 200 and
the desired output and input vector are defined as:

y := P[k +H];H = 24

x := [u[k], · · · ,u[k −H1]]T ; k ∈ [H1 + 1,K −H];H1 = 24

u[k] := [Ĝs[k +H], Ĝth[k +H], Ĝt[k +H]]T .

(5.3)

The reason for only using exogenous values as input is that PV power mea-
surements were not available during the test periods of the competition.
Also, the power values with a corresponding Ĝs[k+H] lower than or equal
to 100000 [Jh−1m−2] are assumed to be night values; meaning that they
are removed from the training set and automatically set to zero during the
models’ application. More information about this procedure can be found
in Appendix C.3. Additionally, all models are trained using four features
(normalized to values between zero and one) that are selected with the same
procedure used in Section 2.4. For the sake of illustration, Appendix C.4
shows examples of some features selected on Task 15 of the competition.

It must be stated, that the trained regressions are not only compared to the
results of the competition’s winner, but also to those obtained by polyno-
mial models with maximal allowed degrees of one to four that are trained
by minimizing the sum of pinball-losses (cf. Equation (1.16)), i.e. “True”
Poly1-4.

Experiment 2

As stated previously, the goal of the current experiment is to obtain fore-
casts using the present thesis techniques. To achieve this goal, quantile re-
gressions must be obtained, as they are required by all of the present the-
sis’ methods. For such reason, quantile regressions based on the nearest
neighbors quantile filter (NNQF) are trained using the same data mining
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techniques as in Section 2.4. These techniques are polynomial models with
maximal allowed degrees of one, two, and three (Poly1-3) and ANNs with
four (ANN4) and ten (ANN10) hidden neurons. Moreover, the desired out-
put and the input vector used are defined as:

y :=P[k +H];H = 24

x :=[P[k], · · · ,P[k −H1],Pmean[k], · · · ,Pmean[k −H1],

Pmax[k], · · · ,Pmax[k −H1],Pmin[k], · · · ,Pmin[k −H1],

u[k], · · · ,u[k −H1]]T ; k ∈ [H1 + 1,K −H].

(5.4)

Please notice that depending on the dataset used the vector u[k] and the
number of lags H1 in Equation (5.4) are defined differently. Table 5.2 con-
tains the values used for both the GEFCom14 and the KIT datasets.

Dataset H1 u[k] :=

GEFCom14 24 [Ĝs[k +H], Ĝth[k +H], Ĝt[k +H]]T

KIT 168 [Dw[k +H],Df [k +H]]T

Table 5.2: Number of lags and exogenous inputs used for each dataset

The difference in H1 comes from the difference in seasonality between
PV and load time series considered in the present thesis; i.e. daily for PV
and weekly for load. In other words, the values of H1 are simply defined
as the number of hours representing the time series considered season. Fur-
thermore, all necessary quantile regressions are trained using the NNQF
with 100 nearest neighbors (cf. Section 2.2.1) and four features that are
normalized to values between zero and one and selected with the forward
feature selection used in Section 2.4. Readers interested in the features that
are selected for each technique are referred to Appendix C.5.

In the case of GEFCom14, two types of quantile regressions are trained.
The first one uses the exogenous input defined in Table 5.2, while the sec-
ond one does not. The goal is to gain insight on the influence that forecast
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weather data usage may have on the PV power probabilistic forecasts. Addi-
tionally, all future PV power values with corresponding P[k] and P[k−H1]

values lower than or equal to 0.05 are considered night values. In other
words, they are removed from the training set and set to zero during the
models’ application. Readers are referred to Appendix C.3 for more infor-
mation on the previously described approach.

Finally it needs to be mentioned, that in the current experiment “true"
quantile regressions are used as benchmark. To be more specific, these
regressions are polynomials with a maximum degree of three (i.e. “true"
Poly3) that are trained by minimizing the sum of pinball-losses (Equa-
tion (1.16)).

5.2.4 Results Experiment 1

Table 5.3 contains the average pinball-loss – averaged across all relevant
tasks – of all tested approaches.

The results contained in Table 5.3 show, at a first glance, that none of
the NNQF-based regressions obtained an average pinball-loss higher than
2%. Additionally, the results show that while the polynomial NNQF-based
regressions have their best performance when using the largest amount of
nearest neighbors (i.e. 200), the ANNs perform best when using the lowest
amount (i.e. 50). Also, the differences between the pinball-loss values of
quantile regressions based on the NNQF and that of the competition’s win-
ner never surpass 1%; instead it ranges between 0.73% (Poly2, NNN = 50)
and 0.30% (ANN10, NNN = 50). Furthermore, Table 5.3 demonstrate that
the “true" polynomial quantile regressions have lower QPL values than the
polynomial NNQF-based regressions. This is an expected result, as the for-
mer are trained to actually minimize the sum of pinball-losses. In any case,
the ANNs obtain better results than every polynomial model used, thus sup-
porting the fact that the NNQF allows the training of quantile regressions
with more complex techniques without the need of modifying their original
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NNN 50 100 150 200

QPL [%]

with NNQF

Poly1 1.93 1.92 1.90 1.90

Poly2 1.94 1.93 1.93 1.92

Poly3 1.92 1.92 1.91 1.91

Poly4 1.94 1.93 1.93 1.92

ANN6 1.55 1.57 1.58 1.61

ANN10 1.51 1.56 1.57 1.59

Benchmarks

“True” Poly1 1.81

“True” Poly2 1.76

“True” Poly3 1.76

“True” Poly4 1.76

GEFCom14 Winner 1.21

Table 5.3: GEFCom14 average pinball-loss; the techniques with only one result do not use
nearest neighbors; NNN: number of nearest neighbors; QPL: average pinball-loss
(adapted from [165])

cost function nor their training algorithm. Regardless, the results also re-
vealed that the NNQF-based quantile regressions are unable to obtain better
results than those of the winner, which in part may be attributed to the fact
that rather simple data mining techniques are being used. Still, the advan-
tage of using the NNQF can be shown by considering the computational
effort. For the sake of illustration, Figure 5.1 plots the computational effort
C needed for (a) training and (b) applying the quantile regressions in Task
15 against the pinball-loss obtained on that task. Note that the number of
nearest neighbors used by the NNQF-based regressions depicted is the one
with which they obtained their best result in Table 5.3. Readers interested
in the computation times in seconds are referred to Appendix C.4 for more
information.
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Figure 5.1: Pinball-loss and computational effort for either training or
applying the quantile regressions; Red: with NNQF; Black:
Benchmarks; QPL: average pinball-loss; C: computational
effort (adapted from [165])

Figure 5.1 demonstrates that even though the differences in accuracy be-
tween the quantile regressions based on the NNQF and those of the compe-
tition’s winner are minimal, the differences in computational effort are not.
For example, the approach used by the competition’s winner requires ap-
proximately 30 times more computational effort than ANN10 in both train-
ing and application.

Looking at Figure 5.1a, it can be observed that the “true" quantile regres-
sions have lower pinball-loss values than the NNQF-based polynomials, but
require a higher effort for their training. This is explained by the fact that
minimizing the “true" quantile regressions’ sum of pinball-losses is more
difficult than minimizing the sum of squared errors used by the NNQF-
based polynomials. Therefore, using the NNQF can be viewed as a trade-off
between training speed and accuracy in terms of pinball-loss. At the same
time, the figure also shows that the NNQF allows the training of ANN quan-
tile regressions without significantly increasing the necessary computational
effort.
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In turn, Figure 5.1b demonstrates that the computational effort for apply-
ing the “true" and the NNQF-based quantile regressions is much lower than
that of GEFCom14 winner’s method. This outcome can be traced back to
the fact that the former are pretrained functions that just need to be eval-
uated, while the latter is a type of nearest neighbors regression that cal-
culates the nearest neighbors every time a new forecast is conducted. As
shown in Section 2.4.2 Figure 2.19, calculating the nearest neighbors every
time a forecast is required not only increases the application C value, but
also makes the computational effort during application proportional to the
amount of training data; an undesired property in cases in which the amount
of training data constantly increases, e.g., in an online forecasting service.
In contrast, by calculating the nearest neighbors only once prior to the mod-
els training, the NNQF-based regressions retain low application C values
and avoid the scalability issue mentioned previously.

5.2.5 Results Experiment 2 (GEFCom14)

Figure 5.2 depicts box plots of the average pinball-loss (QPL, cf. Equa-
tion (2.25)) and modified reliability deviation (QMRD, cf. Equation (2.27))
values of the NNQF-based quantile regressions and “true" Poly3 bench-
marks. Notice that the use of weather forecasts as input is characterized
by the ARX acronym, while the AR acronym is used to reflect the lack of
weather information as input. It must be mentioned, that the QMRD is cal-
culated using day values, as the trivial night values skew the results. To be
more specific, the QMRD values are obtained on a subset defined by the true
values or the median estimates being greater than 0.05 (as in [165]).

Figure 5.2 shows that the median QPL of both ARX and AR models is
lower than 2% and that the use of forecast weather data improves the overall
performance in terms of QPL. Furthermore, while the QPL values of all AR
models (including the benchmark’s) are similar, the values obtained using
weather forecast do vary. For instance, the “true" Poly3 ARX regressions
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Figure 5.2: Results obtained by quantile regressions on the GEFCom14
dataset; ARX: Models using forecast weather data as input;
AR: pure autoregressive models; QPL: average pinball-
loss; QMRD: average modified reliability deviation

perform slightly better than their NNQF counterparts, however their train-
ing procedure is much slower. To be more specific, the NNQF-based ARX
Poly3 quantile regressions are trained in approximately 37 [s], while the
training of their “true" variant takes around 112 [s], i.e. an increase in com-
putation time of around 203%. This indicates again the trade-off between
pinball-loss accuracy and computation time, which is more thoroughly dis-
cussed in Section 5.2.4. Nevertheless, the trade-off does not seem to apply
in the present example to the ARX ANNs, since even though they are slower
to train (between 246 and 272 [s]) and more complex than the ARX “true"
Poly3 benchmark, they do not perform drastically better in terms of QPL.

Surprisingly, the presence of forecast weather seems to have a negative
effect on the average modified reliability deviation, as the values obtained
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by the AR models are better than those of the ARX regressions. Likewise,
Figure 5.2 shows that while the ARX benchmark performs much better than
the ARX NNQF-based regressions in terms ofQMRD, it still obtains a larger
median QMRD than its AR variant. Henceforth it can be argued that, the
used weather forecasts improve the pinball-loss by reducing the distance be-
tween the quantile regressions and the true values, yet generate at the same
time small deviations that greatly affect the regressions’ reliability (espe-
cially that of the NNQF-based regressions). A possible explanation may
be (i) that the weather forecast used over-/underestimates their true value
and/or (ii) that the quantile regressions are unable to properly propagate the
weather forecast “uncertainty". To investigate this effect further, Figure 5.3
shows the mean of the QMRD values obtained by the ANN10 NNQF-based
quantile regressions when manually adding a bias between minus one and
one to them.

-1 -0.5 0 0.5 1
0

10

20

30

40

50

ARX
AR

Figure 5.3: Reliability deviation obtained by adding a bias to the quan-
tile regressions; ARX: Models using forecast weather data
as input; AR: pure autoregressive models; QMRD: average
modified reliability deviation

As Figure 5.3 demonstrates, the AR ANN10 regressions have their op-
timal value when the added bias equals zero, in contrast the ARX variant
has its optimal result for a bias equal to −0.03. This suggests that the used
forecast weather data add in average a small bias that greatly affects the
QMRD results, as such value only cares for the percentage of values under

137



5 Application

the quantile regressions and not for the magnitude of the deviations. There-
fore, future related works should investigate some approaches to mitigate
this modified reliability deviation increase (e.g., ways of propagating the
forecast weather uncertainty through the models).

The results of the intervals formed by the trained quantile regressions (cf.
Section 2.2.2) are shown in Figure 5.4. The evaluation values depicted are
the average interval width (QIW, cf. Equation (2.31)), the average interval
score (QIS, cf. Equation (2.32)), and the average modified interval reliability
deviation (QMIRD, cf. Equation (2.33)). Just as in Section 2.4.3, these
intervals have probabilities ranging from 0.02 to 0.98 and are formed by 48
pairs of quantile regressions that are centered on the median estimate.

As expected, Figure 5.4 shows that the interval forecasts that use informa-
tion about the future weather are not only narrower, but also perform overall
better than the pure autoregressive intervals in terms of their interval score.
Moreover, the QIW values of the ARX NNQF-based regressions show a
smaller variance than those of the “true" Poly3 benchmark. Additionally, all
pure autoregressive quantile regressions (including the benchmark) formed
intervals with similar interval score values. In contrast, the ARX bench-
mark shows better median QIS values than the NNQF-based polynomials,
but similar median QIS than the ARX ANN10 intervals.

Figure 5.4 shows also, that the use of weather forecasts increases the mod-
els’ median QMIRD values, with ANN4 being the only exception. In the
case of the ARX models, the benchmark seems to perform generally bet-
ter than the intervals formed by NNQF-based polynomial regressions, but
worse than the intervals created with the ANNs. In turn when looking at the
AR results, the NNQF-based Poly1, Poly3, ANN4, and ANN10 regressions
are the ones that seem to perform better than the benchmark.

For the next evaluation, parametric distribution (CDF) forecasts are cre-
ated using the method described in Section 2.2.4 and the non-parametric
distribution forecasts formed by the trained NNQF-based quantile regres-
sions (cf. Section 2.2.3). The results obtained are all depicted in Figure 5.5.
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Figure 5.4: Results obtained by interval forecasts on the GEFCom14
dataset. The intervals are formed using the trained quantile
regressions and Equation (2.5); ARX: Models using fore-
cast weather data as input; AR: pure autoregressive models;
QIW: average interval width; QIS: average interval score;
QMIRD: average modified interval reliability deviation

As it can be seen in Figure 5.5, the parametric CDF forecasts obtained
similar average pinball-loss values than the non-parametric forecasts they
are based on. Additionally, even though the parametric CDF forecasts based
on the ARX models seem to have better modified reliability deviation val-
ues than the non-parametric distribution forecasts, they still perform worse
than the ones not using weather information. In general, the box plots of
the parametric and non-parametric CDF forecasts lay really close to one an-
other. Therefore, the results demonstrate that the present thesis method is
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able to obtain parametric probabilistic forecasts with a similar accuracy to
that of the non-parametric variant they are based on.
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Figure 5.5: Results obtained by parametric and non-parametric distri-
bution forecasts on the GEFCom14 dataset. The forecasts
are obtained with the trained quantile regressions and with
the methods described in Sections 2.2.3 and 2.2.4; Black:
Non-parametric; Red: Parametric; ARX: Models using fore-
cast weather data as input; AR: pure autoregressive models;
QPL: average pinball-loss; QMRD: average modified relia-
bility deviation

As a last point, scenario forecasts that estimate the uncertainty of the fu-
ture values on a rolling 24 hour period are created using the method de-
scribed in Section 2.2.510. Figure 5.6 shows a comparison between the ob-
tained results and those of the previously described NNQF-based quantile

10 The scenario forecasts consists of 50 scenarios that are based on Poly3 NNQF-based quan-
tile regressions that use the input vectors defined in Section 5.2.3 and a forecast horizon of
H = 1. Furthermore, ySmax and ySmin (cf. Equation (2.20)) are defined as one and zero
respectively.
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regressions (i.e. the non-parametric probabilistic forecasts), which also fore-
cast 24 hours in advance.
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Figure 5.6: Results obtained by (Poly3) scenario forecasts and quantile
regressions used for comparison on the GEFCom14 dataset.
The scenario forecasts are obtained using Poly3 quantile
regressions and the method described in Section 2.2.5;
ARX: Models using forecast weather data as input; AR:
pure autoregressive models; QPL: average pinball-loss;
QMRD: average modified reliability deviation

Figure 5.6 shows that just as in Chapter 2, the scenario forecasts deliver
overall worse results than the quantile regressions used to solve the same
task. In terms of QPL, the median values obtained by the scenario forecasts
are around the 3% mark, while the median QMRD values are all higher than
15%. Interestingly, using the forecast weather as input seems to reduce the
variance of the the scenario forecasts’ QMRD values (an opposite effect to
the one observed on the NNQF-based regressions). Still the median QMRD

value obtained by the AR scenario forecasts is lower than that of its ARX
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counterpart. As already mentioned in Chapter 2, future related works should
study methods for improving the quality of the scenario forecasts, as well as
for reducing the computation time needed to create them. The main reason
for the latter is that applying the ARX scenario forecast on the whole test set
takes approximately 2.6 [h], while the application of the quantile regressions
takes less than a minute.

Readers interested in the numeric values of the presented results and some
additional information are referred to Appendix C.5.1. Furthermore, Ap-
pendix C.5.1 also contains each technique’s selected features; showing that
values of the additional time series created in Equation (5.1) are actually
used by the regressions (especially those describing maximal values).

5.2.6 Results Experiment 2 (KIT)

Considering the KIT dataset, Figure 5.7 depicts the box plots of the pinball-
loss (QPL, cf. Equation (2.25)) and average modified reliability deviation
(QMRD, cf. Equation (2.27)) values obtained by both the NNQF-based
quantile regressions and the “true" Poly3 benchmark.
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Figure 5.7: Results obtained by quantile regressions on the KIT dataset;
QPL: average pinball-loss; QMRD: average modified
reliability deviation

The results in Figure 5.7 show that all data mining techniques are able
to obtain QPL values with a low amount of variance and with median val-
ues that never surpass 2%. Likewise, it can be observed that the ANNs
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deliver slightly better results than the polynomials. Moreover, the median
QPL of the used benchmark is slightly better than that of the NNQF based
polynomials; an expected result considering that the “true" Poly3 models
are actually trained to minimize the sum of pinball-losses. Still it must be
considered, that training all “true" Poly3 regressions takes around 107 [s],
while their NNQF counterparts are trained in only 50 [s]. In other words,
training the former takes approximately 114% more time. This offers more
evidence to the trade-off between computation time and pinball-loss accu-
racy described in Section 5.2.4. Furthermore, the ANNs obtain in general
the best QPL values, thus supporting the fact that the NNQF allows quantile
regressions to be trained with more complex techniques using their tradi-
tional cost functions and training algorithms. In terms of QMRD, the vari-
ance of all results appears to be much larger than that of the corresponding
pinball-losses, with that of the NNQF-based polynomials being the largest.
Moreover, both the ANN10 and the “true" Poly3 benchmark obtain similar
QMRD box plots.

After training the quantile regressions, 49 intervals can be obtained (cf.
Section 2.2.2); these are all centered on the regression describing the me-
dian and have probabilities ranging from 0.02 to 0.98. Figure 5.8 depicts
box plots of the intervals’ average interval width (QIW, cf. Equation (2.31)),
average interval score (QIS, cf. Equation (2.32)), and average modified in-
terval reliability deviation (QMIRD, cf. Equation (2.33)).

As the results show, all intervals created with quantile regressions based
on the NNQF have a similar average width and are narrower than those of
the benchmark. Moreover, the benchmark appears to perform better in terms
of QIS and QMIRD than the NNQF-based polynomials; especially consid-
ering the fact that the variance of the NNQF-based polynomials’ QMIRD

values seems to be relatively large. Nevertheless, the best results in terms
of QIS and QMIRD are generally obtained by the intervals stemming from
the ANN quantile regressions. This supports once again, the possibility of
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Figure 5.8: Results obtained by interval forecasts on the KIT dataset.
The intervals are formed using the trained quantile regres-
sions and Equation (2.5); QIW: average interval width;
QIS: average interval score; QMIRD: average modified
interval reliability deviation

training accurate probabilistic forecasts using the combination of a complex
data mining technique and the NNQF.

Now, using the method described in Section 2.2.4 and the trained NNQF-
based quantile regressions, parametric distribution (CDF) forecasts can be
calculated. Figure 5.9 depicts the results obtained by the parametric CDF
forecasts and their non-parametric counterparts.
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Figure 5.9: Results obtained by parametric and non-parametric dis-
tribution forecasts on the KIT dataset. The forecasts are
obtained with the trained quantile regressions and with the
methods described in Sections 2.2.3 and 2.2.4; Black: Non-
parametric; Red: Parametric; QPL: average pinball-loss;
QMRD: average modified reliability deviation
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As Figure 5.9 shows, both types of forecasts obtained almost indistin-
guishable QPL and QMRD values. Therefore, the results support that the
present thesis approach is able to obtain parametric distribution forecasts
that retain the accuracy of the non-parametric forecasts they are based on.

Finally, Figure 5.10 depicts the results of scenario forecasts11 created with
the present thesis method (cf. Section 2.2.5), as well as those stemming from
the NNQF-based quantile regressions (i.e. the non-parametric probabilistic
forecasts) presented previously. Just as in Chapter 2, the scenario forecasts
are set to estimate everyday the next 24 hours.
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Figure 5.10: Results obtained by (Poly3) scenario forecasts and quan-
tile regressions used for comparison on the KIT dataset.
The scenario forecasts are obtained using Poly3 quantile
regressions and the method described in Section 2.2.5;
QPL: average pinball-loss; QMRD: average modified
reliability deviation

As expected, the scenario forecasts deliver the worse results. For instance,
their resulting QPL values surpass the 2% mark and have a greater vari-
ance than those of the NNQF-based quantile regressions, while their QMRD

values show not only a great amount of variance, but also a median value
greater than 15%. For the previous reasons, methods for improving the qual-
ity of the scenario forecasts should be investigated in future related works.

11 Notice that the scenario forecasts are formed by 50 scenarios based on Poly3 NNQF-based
quantile regression created with the input vector described in Section 5.2.3 and a forecast
horizon of H = 1. Additionally, the values ySmax and ySmin (cf. Equation (2.20)) are set
equal to one and zero, respectively.

145



5 Application

Moreover, ways of speeding up the creation of the scenario forecasts have
also to be researched further. This is of relevance considering that obtaining
the scenario forecast for the present experiment takes around 4.8 [h], while
simply applying the regressions takes less than a minute.

Please note, that interested readers are referred to Appendix C.5.2 for
more information about the results presented in the current section. Ad-
ditionally, the features selected as most relevant for each technique are also
shown in Appendix C.5.2. The selected features show that the time series
containing maximal values in Equation (5.1) is the additional time series
that is preferred by all techniques.

5.3 Application in Control and Scheduling

The current section describes an example on how the present thesis’ prob-
abilistic forecasts can be used in control and scheduling tasks. Notice that
a more thorough description of the application case presented can be found
in [178] and [179].

To begin with the description, the concept of a dispatchable feeder (DF)
has to be introduced; this is a grid connected cluster of controllable and
uncontrollable distributed energy resources and loads that is operated in a
way in which the power exchange with the grid is regulated in accordance to
a pre-computed dispatch schedule (DiS) [181]. In the current example, a DF
formed by an uncontrollable load, an uncontrollable renewable generator,
and a controllable energy storage system (ESS) is used. For the sake of
illustration, Figure 5.11 depicts the system in question; as the figure shows
the load and the renewable generated power (considered a negative load) are
aggregated into the so-called inflexible active power.

The application case considered is the participation of the DF in the day-
ahead market, which is summarized in the following steps: first, the dis-
patchable feeder communicates everyday (at midday) the day ahead dis-
patch schedule (DiS) of its aggregated active power (i.e. the aggregation
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Figure 5.11: Dispatchable Feeder (adapted from [178])

of the ESS power and the inflexible active power), then during operation
the ESS is used to assure that the previously communicated DiS is actu-
ally tracked. While the second step uses only point power forecast, the first
step requires a description of the forecast uncertainty. Even though scenario
forecasts are the ones most commonly used in this context, probabilistic
forecasts of the inflexible active power and energy are the ones found most
useful in the present application case. Additionally, using probabilistic fore-
casts allows for the calculation of a DiS that can be tracked in operation with
at least a given probability; this probability is referred to as the security level
of the computed DiS in [178] and in the remainder of the current section.

Unfortunately, obtaining the necessary energy probabilistic forecasts is
not a simple task. As the power values are correlated over time, the en-
ergy forecasts cannot be calculated via the convolution of their correspond-
ing power probabilistic forecasts; instead the joint distribution (CDF) of the
correlated values has to be used. In the present example however, proba-
bilistic energy forecasts for the next 48 hours are needed, meaning that a 48
dimensional CDF would be required for their straightforward calculation.
Therefore to avoid estimating the CDF, an alternative has been developed.
This is divided in the following steps:
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1. Train quantile regressions based on the NNQF (cf. Section 2.2.1) for
both renewable power and load separately. These can then be used to
estimate probabilistic power forecasts for the next 48 hours of both
uncontrollable values.

2. Integrate some of the estimated quantiles (e.g., the median, the 0.9
quantile, and/or the 0.1 quantile) over periods of 48 hours.

3. Train quantile regressions to forecast the energy uncertainty with the
previously integrated values as input.

4. Obtain (assuming the independence of both uncontrollable values) the
probabilistic forecasts for the next 48 hours of the inflexible active
power and energy with a timestep-wise convolution operation.

As an example, Figure 5.12 depicts power and energy probabilistic fore-
casts obtained with the previously described procedure. These forecasts are
used in [178] and are created using data provided by the Australian electric-
ity distribution company Ausgrid [182]12.
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Figure 5.12: Probabilistic forecasts for the inflexible active power and
energy (adapted from [178])

The advantage of calculating a DiS based on probabilistic forecasts is
clearly shown in [178] and [179]. The study considers a cost policy in which

12 www.ausgrid.com.au/
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the cost of imbalances (i.e. the cost for deviating from the DiS during op-
eration) is twice the cost for the DiS. Table 5.4 contains the costs (i.e. the
average cost obtained over several days) in e for computing and tracking a
DiS based on probabilistic forecast (i.e. probabilistic forecast scheduling,
PFS), point forecasts (i.e. deterministic forecast scheduling, DFS), or sce-
nario forecasts (i.e. scenario forecast scheduling, SFS). While the use of
point forecast is to show the influence that disregarding the uncertainty has
on the results, the use of scenario forecasts is to offer a comparison with an
approach commonly used in similar scheduling and control schemes.

Lastly, notice that the PFS results are divided in two groups, since some
are obtained by the scheme used in [178] and some by its improvement
described in [179].

DFS SFS PFS [178] PFS [179]

Security Level [%] NA NA 18 24 30 36 42 48 42 48 54 60 66 72

Cost DiS [e] 4.86 5.40 5.78 5.93 6.08 6.23 6.40 6.73 5.48 5.87 6.29 6.68 6.84 6.96

Cost Imbalances [e] 4.06 3.41 3.06 2.90 2.78 2.66 2.57 2.49 3.07 2.51 2.19 2.02 1.98 1.90

Total Cost [e] 8.92 8.81 8.84 8.83 8.87 8.90 8.97 9.22 8.55 8.38 8.48 8.70 8.83 8.86

Table 5.4: Costs for using direct forecast scheduling (DFS), probabilistic forecast scheduling
(PFS), or scenario forecast scheduling (SFS) in the simulation described in [178]
and [179]; DiS: dispatch schedule

As Table 5.4 shows, the DFS is able to estimate the cheapest DiS by ig-
noring the forecast uncertainty. At the same time this also results in the DFS
having the highest cost of imbalances. In comparison, the description of the
uncertainty allows the PFS to obtain a DiS with fewer imbalances during
operation – independently of the security level used. It can also be observed
that increasing the security level increases the corresponding DiS cost, but
decreases the cost of imbalances. This behavior results in a security level
of 48% being the one for which the PFS used in [179] obtains the lowest
total cost13. In other words, the use of probabilistic forecasts allows the de-

13 The results also show, that the PFS used in [179] obtains lower costs of imbalances at higher
security levels than that of [178]. This is an expected outcome as the former is an improve-
ment of the latter.

149



5 Application

termination of a schedule that limits the number of imbalances, as well as
the total costs. In addition, the PFS (with a security level of 48%) performs
better than the commonly used SFS. This is due to the cost of imbalances of
the PFS being considerably lower. Interested readers are referred to [178]
and [179] for more in detail information about the presented results and for
an example in which a different cost policy is used.

As a final remark, note that probabilistic forecasts based on the methods
described in the present thesis have also been used in a work studying the
dispatchability of a population of electric vehicles [183].

5.4 Novelty and Remaining Questions

The novelty of the current chapter can be summarized in the following
points:

1. The application of the methods described in Chapter 2 on real energy
data, i.e. load and PV power time series

2. The comparison between NNQF-based regressions and the method
used by the winner of the Global Energy Forecasting Competition of
2014

3. The presentation of how the present thesis’ probabilistic forecasts
have been used as part of a real-world energy control and schedul-
ing task

By providing results of the application of the herein developed probabilis-
tic forecasts on both real-world data and real-world control and scheduling
applications, the current chapter offers a possible solution to the fifth and
final open question in Section 1.4 and thus fulfills the final objective of the
current thesis (cf. Section 1.5). Nevertheless, there are still remaining ques-
tions, for example:
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• Can the modified reliability deviation of the ARX models in Sec-
tion 5.2.5 be improved by propagating through them the uncertainty
of the used weather forecasts?

• What is the best approach for using probabilistic values (e.g., proba-
bilistic weather forecasts) as input?

• Can the results presented in the current chapter be improved by using
other values as input (e.g., forecast temperature in the case of the KIT
load)?

• Can the overall results of the scenario forecasts be improved?

• Are there better methods for creating the energy probabilistic fore-
casts used in Section 5.3?

Future related works should try to find answers to the previously described
questions.
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The increasing installation of volatile renewable power systems has made
the balancing of energy demand and supply more difficult. Forecasting mod-
els help in reducing this difficulty by providing some information about the
future. Nevertheless, most forecasting models do not quantify in any way
the forecast uncertainty, which may be required for making the control and
scheduling of an energy system more robust. Probabilistic forecasts offer a
solution, since they are able to describe the uncertainty in various ways: for
instance, as intervals with a certain probability of containing a future value
or a future value’s probability distribution function. Unfortunately, the cre-
ation of probabilistic forecasts is not trivial and poses its own additional
challenges (cf. Section 1.4). Therefore, the present thesis tackles some
of those challenges by developing new data-driven probabilistic forecasting
methods within an energy-related context.

To begin, Chapter 2 describes several methods able to obtain differ-
ent types of probabilistic forecasts all based on quantile regressions that
have been trained using a newly developed nearest neighbors quantile filter
(NNQF). The first two methods use the NNQF-based quantile regressions
to obtain either interval or non-parametric distribution forecasts. The latter
can be used thereafter, in two other new methods: one to obtain parametric
distribution forecasts and another to create scenario forecasts. Afterwards,
Chapter 3 presents a concept for obtaining joint distribution forecasts of two
correlated values, as well as coherent hierarchical probabilistic forecasts.
Then, Chapter 4 presents first, the MATLAB/SciXMiner implementation of
the methods described previously and second, a procedure that allows the
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use of the implemented methods outside of SciXMiner. Finally, Chapter 5
shows the application of the developed forecasting approaches on real-world
data and on a real-world control and scheduling task.

To be more specific, the major contributions of the current thesis can be
summarized as follows:

1. The development of the new nearest neighbors quantile filter (NNQF)
that allows quantile regressions to be trained using the traditional cost
function of the data mining technique used (e.g., the sum of squared
errors), instead of the non-differentiable sum of pinball losses. Us-
ing the NNQF not only avoids the problems that may arise from the
non-differentiability of the sum of pinball-losses (e.g., higher com-
putation times for training and problems when using gradient based
training algorithms), but also allows for the use of training algorithms
that have already been programmed and can be found in traditional
machine learning and statistical libraries (cf. Section 2.2.1)

2. The obtainment of interval forecasts based on the new type of quantile
regressions (cf. Section 2.2.2)

3. A new method for creating non-parametric distribution forecasts based
only on previously computed quantile regressions and some known
general properties of a cumulative distribution function (cf. Sec-
tion 2.2.3)

4. A novel approach for obtaining parametric distribution forecasts (i.e.
parametric probabilistic forecasts) without requiring a distribution as-
sumption, but based only on corresponding non-parametric distribu-
tion forecasts (cf. Section 2.2.4)

5. A new heuristic for creating scenario forecasts that does not require an
explicit description of the correlation structure between neighboring
time series values (cf. Section 2.2.5)
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6. A thorough study of all the methods presented in Chapter 2 using
various simulated load time series (cf. Section 2.4)

7. A new concept for estimating a non-parametric joint probability dis-
tribution of two correlated future time series values using only quan-
tile regressions (cf. Section 3.2)

8. A concept for obtaining coherent hierarchical probabilistic forecast
based on an iterative method that only uses bivariate joint distribution
forecasts (cf. Section 3.3)

9. The development of the new SciXMiner Forecasting Extension that
not only streamlines the previous forecasting capabilities, but also
adds to the toolbox all the methods described in Chapter 2, as well
as the concepts presented in Chapter 3 (cf. Section 4.2)

10. The possibility of decoupling the implemented forecasting approaches
from SciXMiner (cf. Section 4.3)

11. The study of the methods described in Chapter 2 using real-world
data stemming from the solar track of the Global Energy Forecast-
ing Competition of 2014 and from power consumption measurements
of the North Campus of the Karlsruhe Institute of Technology (Sec-
tions 5.2.4, 5.2.5, and 5.2.6)

12. The successful application of probabilistic forecasts created with the
present thesis methods on a real-world energy control and scheduling
task (cf. Section 5.3)

Though the objectives of the present thesis have been fulfilled, there are
still several open questions to be addressed in future related works; some
of which have been listed in Sections 2.5, 3.4, 4.4, and 5.4. Still, there are
several aspects that the author considers to be of major importance and thus
are discussed further in the present section.
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As the complexity of the energy system continues to grow, the interest to-
wards methods able to describe the correlation between several future time
series values may also increase. Therefore, future related works should try
to expand, improve, and test the concepts, described in Chapter 3, for both
the estimation of joint probability distributions and coherent hierarchical
forecasts. A first step to be taken, could be the implementation of reconcili-
ation approaches that may help in improving the accuracy of the hierarchical
forecasts. Additionally, a comparison between the concepts presented and
the alternative used in Section 5.3 – which avoids the estimation of the joint
distribution – should also be studied further.

Likewise, future research should experiment more with the developed
probabilistic forecasting approaches in real-world settings. A possibility
thereof is to utilize the Energy Lab 2.0 of the Karlsruhe Institute of Tech-
nology, as it will not only provide the necessary real-world data, but will also
allow the coupling of the present thesis approaches with other researchers’
control and scheduling algorithms. This coupling could be done, for in-
stance, using the framework described in Section 4.3. Furthermore, in cases
in which forecast weather data is used as input, methods for propagating
their uncertainty through the forecasting models have to be developed and
tested. Such approaches could help in mitigating some negative effects that
using uncertain forecast weather data may cause (cf. Section 5.2.5).

Finally, as deep learning approaches have started to gain the interest of
the forecasting community, future related works should study probabilis-
tic forecasts based on them. To be more specific, a comparative study of
the methods developed herein and probabilistic forecasts coming from deep
neural networks is to be done. This study should not only concentrate on
the overall forecasting accuracy, but also in finding out the tipping point in
which a complex deep neural network should be preferred over more simple
approaches. To find this out, aspects like forecast accuracy, computation
time, model complexity, amount of available data, complexity of the fore-
casting task, etc. should be taken into consideration.
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A.1 Load Time Series Benchmark Generator

The time series obtained via the benchmark generator are formed by five
distinct components. For instance, a value of a simulated load time series
{PL[k]; k = 1, . . . ,K} can be written as:

PL[k] =α1 · PL,T[k] + α2 · PL,P[k] + α3 · PL,Pa[k]

+ α4 · PL,S[k] + α5 · PL,X[k]

s.t.
5∑
i=1

αi = 1, αi ∈ [0, 1]∀i ;

(A.1)

with PL,T[k] representing a trend component, PL,P[k] a periodic compo-
nent, PL,Pa[k] a pattern component, PL,S[k] a stochastic component, and
PL,X[k] an exogenous component. The factors αi define the influence of
each component on the resulting time series and hence are the parameters to
be defined by the user. Notice that in the present thesis, the periodic compo-
nent represents a daily, weekly, and yearly seasonality, the pattern compo-
nent is a household standard pattern defined by EWE “Netz GmbH"1, and
the exogenous component represents the influence that temperature has on
load. In addition to the previous factors, the user of the benchmark gener-

1 ewe-netz.de/strom/1988.php
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ator can also define the length of the simulated time series K and the total
energy content EL, which is defined as:

EL =

K∑
k=1

PL[k] . (A.2)

For the sake of illustration, Figures A.1 to A.6 depict a simulated load time
series and each of its components for α1 = 0.05, α2 = 0.05, α3 = 0.65,
α4 = 0.20, and α5 = 0.05.
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Figure A.1: Simulated time series
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Figure A.2: Simulated time series trend component

Please refer to [3] for further information regarding other user defined
parameters, as well as more in detail information about the load benchmark
generator.
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Figure A.3: Simulated time series periodic component
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Figure A.4: Simulated time series pattern component
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Figure A.5: Simulated time series stochastic component

With the described load benchmark generator several simulated load time
series used on Chapter 2 are created as follows. The parameters used to
obtain load time series in Section 2.2 are contained in Table A.1.

Similarly, the parameters used to create the time series with varying
amounts of noise in Section 2.4 are contained in Table A.2
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Figure A.6: Simulated time series exogenous component

K EL α1 α2 α3 α4 α5

26280 3 0.05 0.05 0.70 0.20 0.00

Table A.1: Load benchmark generator parameters for the time series used in Section 2.2

rprc[%] K EL α1 α2 α3 α4 α5

75 26280 3 0.00 0.10 0.15 0.75 0.00

60 26280 3 0.00 0.10 0.30 0.60 0.00

45 26280 3 0.00 0.10 0.45 0.45 0.00

30 26280 3 0.00 0.10 0.60 0.30 0.00

15 26280 3 0.00 0.10 0.75 0.15 0.00

Table A.2: Load benchmark generator parameters for the time series used in Section 2.4

A.2 Calculation of an Empirical Quantile

The value of ỹ(q),n – i.e. the empirical quantile of the values inside of yNN,n

– is determined using Definition 5 of [166] and Method 10 in [167]. In the
case of finding NNN nearest neighbors, the calculation starts by defining the
values

yNN,n = [yNN,n1, · · · , yNN,ni, · · · , yNN,nNNN ]T , (A.3)

as quantiles with probabilities

[qNN,n1, · · · , qNN,nNNN ]T =

[
0.5

NNN
,

1.5

NNN
, · · · , NNN − 0.5

NNN

]T
. (A.4)
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A.3 Calculation of the Maximal and Minimal Non-Parametric Distribution Values

Thereafter, ỹ(q),n can be obtained using a linear interpolation, i.e.:

ỹ(q),n =

NNN∑
i=2

([
yNN,ni − yNN,n(i−1)

qNN,ni − qNN,n(i−1)
(q − qNN,n(i−1)) + yNN,n(i−1)

]

· I(qNN,n(i−1) ≤ q < qNN,ni)

)
+ yNN,n1 · I(q < qNN,n1)

+ yNN,nNNN
· I(qNN,nNNN

≤ q) .
(A.5)

In the previous equation, I(·) is an indicator function that equals one if its
condition is fulfilled and zero if it is not.

A.3 Calculation of the Maximal and Minimal
Non-Parametric Distribution Values

In the present thesis, the maximal and minimal values of the non-parametric
distribution values (cf. Section 2.2.3) are determined as follows:

y = ˆ̃yq1 −
ˆ̃yqL − ˆ̃yq1
qL − q1

· q1 and (A.6)

y = ˆ̃yqL +
ˆ̃yqL − ˆ̃yq1
qL − q1

· (1− qL) . (A.7)

Please note, the developed method allows for other definitions of y and y,
depending on the corresponding application.
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A.4 Approximation of the Continuous Ranked
Probability Score

The continuous ranked probability score (CRPS) is a value typically used
for evaluating the performance of a distribution forecast. The CRPS on a
single realization yn (i.e. QC,n) can be defined as2:

QC,n = 2

∫ 1

0

(u− 1) · (yn − ˆ̃F−1(u|xn)) , if yn ≤ ˆ̃F−1(u|xn)

u · (yn − ˆ̃F−1(u|xn)) , else
du;

(A.8)
with ˆ̃F−1(u|x) representing the inverse of an estimated CDF. Averaging the
values obtained with Equation (A.8) on all realizations of the test set, results
in a value QC. Even though the CRPS is commonly utilized, it is not used
in the present thesis, as it is already related to the easier to compute average
pinball-loss QPL (cf. Equation (2.25)). An additional reason for using QPL

instead of QC is that the former can approximate the latter if QPL is calcu-
lated using several quantile estimates. For instance in the present thesis, an
estimated CDF is evaluated by calculating and averaging the pinball-loss of
L = 99 quantiles {ˆ̃y(ql); l = 1, . . . , L and q1 < · · · < qL} with probabili-
ties q1 = 0.01 to qL = 0.99. Using these quantile estimates, Equation (A.8)
can be approximated as:

QC,n ≈
L∑
l=1

2

L

{
(ql − 1) (yn − ˆ̃y(ql),n) , if yn ≤ ˆ̃y(ql),n

ql (yn − ˆ̃y(ql),n) , else
(A.9)

Equation (A.9) shows that in the present thesis QC can be approximated
by QPL, since averaging the approximation of QC,n over the whole test set
results in QC ≈ 2 · QPL. Thus, it is considered that in the present thesis
the average pinball-loss is enough to evaluate the performance of both the
parametric and non-parametric distribution forecasts.

2 cf. robjhyndman.com/files/1-ForecastEvaluation.pdf
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Figure A.7: Results of quantile regressions based on the NNQF for the
time series with 75% of noise
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Figure A.8: Results of quantile regressions based on the NNQF for the
time series with 60% of noise
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Figure A.9: Results of quantile regressions based on the NNQF for the
time series with 30% of noise
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Figure A.10: Results of quantile regressions based on the NNQF for the
time series with 15% of noise
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B Hierarchical Probabilistic
Forecasting

B.1 Load Time Series Benchmark Generator

The load benchmark generator parameters used to obtain the time series for
the examples in Chapter 3 are contained in Table B.1.

rprc[%] K EL α1 α2 α3 α4 α5

PL1[k] 26280 4 0.00 0.10 0.45 0.45 0.00

PL2[k] 26280 3 0.00 0.10 0.45 0.45 0.00

PL3[k] 26280 2 0.00 0.10 0.45 0.45 0.00

Table B.1: Load benchmark generator parameters for the time series used in Chapter 3

After the time series have been created, the second and third simulated
load time series are modified as follows:

P∗L2[k] = PL2[k] + (PL1[k])2; k = 1, . . . ,K, (B.1)

P∗L3[k] = PL3[k] + (P∗L2[k])2; k = 1, . . . ,K; (B.2)

with P∗L2[k] and P∗L3[k] representing observations of the modified time se-
ries. The reason behind this modifications is to assure that the time series are
dependent of one another and that their dependency is more complex than a
simple linear relationship. For the sake of simplicity, the observations com-
ing from the modified time series are referred in Chapter 3 as PL2[k] and
PL3[k].
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C Application

C.1 KIT Dataset Preprocessing

The KIT dataset has been preprocessed as follows:

1. The power time series is differentiated once.

2. All power values for which their difference surpasses a threshold are
set to zero.

3. All power values lower than a given threshold are set as not a number
(i.e. NaNs).

4. The NaN values are replaced by interpolating between them.

5. A Hampel filter is applied to remove the remaining outliers.

6. The time series is normalized to values between zero and one.

Please note that the lack of details regarding the parameters used, stems
from the desire of keeping the information of the KIT’s power consumption
as confidential as possible.
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C.2 GEFCom14 Training and Test Data

Information regarding the amount data used on each of GEFCom14’s rele-
vant tasks is given in Table C.1.

Training Test

Task K # Days Dates K # Days Dates

4 10944 456 01.04.12 - 30.06.13 744 31 01.07.13 - 31.07.13

5 11688 487 01.04.12 - 31.07.13 744 31 01.08.13 - 31.08.13

6 12432 518 01.04.12 - 31.08.13 720 30 01.09.13 - 30.09.13

7 13152 548 01.04.12 - 30.09.13 744 31 01.10.13 - 31.10.13

8 13896 579 01.04.12 - 31.10.13 720 30 01.11.13 - 30.11.13

9 14616 609 01.04.12 - 30.11.13 744 31 01.12.13 - 31.12.13

10 15360 640 01.04.12 - 31.12.13 744 31 01.01.14 - 31.01.14

11 16104 671 01.04.12 - 31.01.14 672 28 01.02.14 - 28.02.14

12 16776 699 01.04.12 - 28.02.14 744 31 01.03.14 - 31.03.14

13 17520 730 01.04.12 - 31.03.14 720 30 01.04.14 - 30.04.14

14 18240 760 01.04.12 - 30.04.14 744 31 01.05.14 - 31.05.14

15 18984 791 01.04.12 - 31.05.14 720 30 01.06.14 - 30.06.14

Table C.1: Training and test data of the relevant tasks of GEFCom14 (adapted from [165])

C.3 Methods for Identifying Night Values

When forecasting PV power time series it is important to consider that ap-
proximately half of the values are equal to zero, since they are measured at
night. In the current thesis night values are removed from the training set
prior to the models training and set automatically to zero during the models
application. This is done by defining different criteria to decide if a future
value is to be consider a night value or not. It is important to mention that
the criteria use only information stemming from input data used and that it
is the same for both training and application of a model. Since the input of
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C.3 Methods for Identifying Night Values

the PV power forecasting models trained for the first and second experiment
in Section 5 vary, their night value identification criteria are also different.

Experiment 1

In the first experiment, the models receive only exogenous values as input,
from which the forecast surface solar radiation {Ĝs[k]; k = 1, . . . ,K} is the
one selected to define if a value is a day or a night value. To be more specific,
if an input vector x (cf. Equation (5.3)) inside the training set has a Ĝs[k +

H] value lower than or equal to 100000 [Jh−1m−2], then it is removed
form the training set together with its corresponding desired output. During
application, the same condition is used to define which values are set to
zero; this is defined for a given quantile regression trained with the nearest
neighbors quantile filter (NNQF) as follows:

ˆ̃yq =

0 , if Ĝs[k +H] ≤ 100000 [Jh−1m−2]

f(x,
ˆ̃
θq) , else

. (C.1)

Experiment 2

In the second experiment, autoregressive values are also used as input,
thus the method for identifying and removing night values is different. In
this case, if an input vector x (cf. Equation (5.4)) contains values of P[k]

and P[k − H1];H1 = 24 lower than or equal to 0.05, it is removed from
the training set together with its corresponding desired output. Similarly,
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when applying an NNQF-based regression, this condition is defined with
the following equation:

ˆ̃yq =

0 , if (P[k] ∧ P[k −H1]) ≤ 0.05

f(x,
ˆ̃
θq) , else

. (C.2)

Note that the previously described method is used under the considera-
tion that the PV power time series has an hourly resolution and a 24 hours
seasonality.

C.4 Results Experiment 1

Table C.2 contains examples of features selected for the data mining tech-
niques used to solve GEFCom14’s Task 15.

Selected Features

Technique 1 2 3 4

NNQF

Poly1 Ĝs[k + 24] Ĝt[k + 18] Ĝt[k + 6] Ĝt[k + 20]

Poly2 Ĝs[k + 24] (Ĝt[k + 21])2 Ĝt[k + 5] (Ĝt[k + 24])2

Poly3 Ĝs[k + 24] (Ĝt[k + 21])3 Ĝt[k + 5] (Ĝt[k + 24])2

Poly4 Ĝs[k + 24] (Ĝt[k + 21])4 Ĝt[k + 6] (Ĝt[k + 24])2

ANN6 Ĝs[k + 24] Ĝt[k + 22] Ĝt[k + 24] Ĝt[k + 20]

ANN10 Ĝs[k + 24] Ĝt[k + 22] Ĝth[k + 20] Ĝt[k + 2]

Benchmarks

“True" Poly1 Ĝs[k + 24] Ĝt[k + 18] Ĝt[k + 6] Ĝt[k + 20]

“True" Poly2 Ĝs[k + 24] (Ĝt[k + 21])2 Ĝt[k + 5] (Ĝt[k + 24])2

“True" Poly3 Ĝs[k + 24] (Ĝt[k + 21])3 Ĝt[k + 5] (Ĝt[k + 24])2

“True" Poly4 Ĝs[k + 24] (Ĝt[k + 21])4 Ĝt[k + 6] (Ĝt[k + 24])2

Table C.2: Examples of selected features used by different techniques for solving Task 15 of
GEFCom14
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C.5 Results Experiment 2

The computation times for training and applying the quantile regressions
used for Task15 (cf. Section 5.2.4) are contained in Table C.3. Notice that
the computer used has an Intel Core i7-4790 processor with 3.6 [GHz] and
16 [GB] of RAM.

NNN 50 100 150 200 50 100 150 200

t [s] (Training) t [s] (Application)

with NNQF

Poly1 121 124 126 129 62 63 63 63

Poly2 124 128 131 133 63 63 63 63

Poly3 124 126 130 132 63 63 63 63

Poly4 125 129 132 135 63 62 63 63

ANN6 445 449 461 453 66 65 65 65

ANN10 505 505 511 518 65 66 69 65

Benchmarks

Poly1 TQR 229 62

Poly2 TQR 272 62

Poly3 TQR 235 62

Poly4 TQR 234 62

Table C.3: Time for training and applying the quantile regressions used in Task 15 of GEF-
Com14 (adapted from [165])

C.5 Results Experiment 2

C.5.1 Results Experiment 2 (GEFCom14)

The current section provides the results used for the box plots in Sec-
tion 5.2.5, as well as some additional information.

To begin with, the features selected by the data mining techniques used
via the forward feature selection are given in Table C.4. Afterwards, the
evaluation values obtained by the different quantile regressions are shown
in Table C.5. In turn, Table C.6 contains the results of the different interval
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forecasts created. Furthermore, the results obtained by parametric distribu-
tions forecasts are contained in Table C.7. Additionally, Table C.8 contains
the percentage of times that each of the parametric distributions tested (i.e.
Beta, Gamma, Normal, and Uniform) is considered the best fit. Lastly, Ta-
ble C.9 shows the evaluation values coming from the scenario forecasts.

Selected Features

Technique 1 2 3 4

ARX

Poly1 Ĝs[k + 24] Pmax[k] Ĝt[k + 24] Ĝth[k + 22]

Poly2 Ĝs[k + 24] Pmax[k] Ĝt[k + 24] (Ĝs[k + 24])2

Poly3 Ĝs[k + 24] Pmax[k] Ĝt[k + 24] (Ĝs[k + 24])2

ANN4 Ĝs[k + 24] Pmax[k] Ĝt[k + 24] Pmax[k − 21]

ANN10 Ĝs[k + 24] Pmax[k − 24] Ĝt[k + 24] Pmax[k − 20]

“True" Poly3 Ĝs[k + 24] Pmax[k] Ĝt[k + 24] (Ĝs[k + 24])2

AR

Poly1 Pmax[k] P[k] P[k − 2] P[k − 22]

Poly2 Pmax[k] P[k] (Pmax[k − 1])2 P[k − 19]

Poly3 Pmax[k] P[k] (Pmax[k − 1])3 (P[k − 22])3

ANN4 Pmax[k] P[k] P[k − 3] Pmin[k]

ANN10 Pmax[k] P[k − 1] P[k] Pmean[k − 3]

“True" Poly3 Pmax[k] P[k] (Pmax[k − 1])3 (P[k − 22])3

Table C.4: Selected features used by the different data mining techniques on the GEFCom14
dataset
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C.5 Results Experiment 2
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C Application

% of best fitting distributions chosen

Technique Beta Gamma Normal Uniform

ARX

Poly1 44.02 13.68 42.30 0.00

Poly2 43.84 7.95 48.21 0.00

Poly3 43.78 6.05 50.17 0.00

ANN4 45.90 5.44 43.65 5.00

ANN10 47.54 6.07 39.51 6.89

AR

Poly1 41.59 0.36 32.22 25.84

Poly2 42.68 1.57 29.07 26.67

Poly3 42.48 2.11 27.91 27.50

ANN4 43.59 3.71 27.18 25.52

ANN10 44.57 4.40 26.19 24.84

Table C.8: Percentage of times a tested distribution is chosen on the GEFCom14 dataset

Test Set Segment

1 2 3 4 5 6 7 8 9 10

ARX QPL [%]

Scenarios (Poly3) 2.73 2.74 2.46 2.27 2.32 2.38 2.36 2.34 2.64 3.00

QMRD [%]

Scenarios (Poly3) 14.11 16.89 15.01 18.62 21.73 19.96 25.15 21.37 26.86 31.61

AR QPL [%]

Scenarios (Poly3) 3.64 3.45 3.33 2.96 3.00 3.16 3.32 2.81 2.87 3.22

QMRD [%]

Scenarios (Poly3) 10.89 10.08 9.81 8.26 13.19 18.91 26.42 22.59 29.57 33.76

Table C.9: Results obtained by scenario forecasts on the GEFCom14 dataset; ARX: Mod-
els using forecast weather data as input; AR: pure autoregressive models; QPL:
average pinball-loss; QMRD: average modified reliability deviation
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C.5 Results Experiment 2

C.5.2 Results Experiment 2 (KIT)

The present section presents the results that are depicted in the figures shown
in Section 5.2.6.

First, Table C.10 shows the features that were selected by the forward
feature selection and that are used by the different data mining technique.
Table C.11 contains the results obtained by the different quantile regres-
sions. In addition, Table C.12 shows the results of the interval forecasts
used. Moreover, the results of the parametric distribution forecasts are con-
tained in Table C.13. Table C.14 contains the percentage of times one of the
tested distributions (i.e. Beta, Gamma, Normal, and Uniform) is chosen on
the test set. To conclude, Table C.15 shows the evaluation values stemming
from the scenario forecasts.

Selected Features

Technique 1 2 3 4

Poly1 Pmax[k − 144] P[k] Pmax[k − 168] Df [k − 2]

Poly2 Pmax[k − 144] P[k] Pmax[k − 168] Df [k − 2]

Poly3 Pmax[k − 144] P[k] Pmax[k − 168] Df [k − 2]

ANN4 Pmax[k − 144] P[k] Dw[k − 2] Dw[k − 35]

ANN10 Pmax[k − 144] P[k] Df [k] Pmax[k − 168]

“True" Poly3 Pmax[k − 144] P[k] Pmax[k − 168] Df [k − 2]

Table C.10: Selected features used by the different data mining techniques on the KIT dataset
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C Application

Test Set Segment

1 2 3 4 5 6 7 8 9 10

QPL [%]

Poly1 2.01 2.24 1.66 2.16 1.76 1.97 1.77 1.91 1.81 2.24

Poly2 2.01 2.24 1.66 2.16 1.76 1.97 1.77 1.91 1.81 2.24

Poly3 2.01 2.24 1.66 2.16 1.76 1.97 1.77 1.91 1.81 2.24

ANN4 1.92 1.78 1.46 1.82 1.64 1.54 1.51 1.89 1.94 2.09

ANN10 1.94 1.67 1.43 1.78 1.51 1.28 1.56 1.83 1.72 1.86

“True" Poly3 2.09 2.15 1.71 2.06 1.64 1.86 1.73 1.76 1.75 2.13

QMRD [%]

Poly1 4.28 7.42 2.13 11.84 15.76 14.09 12.48 23.07 4.39 11.38

Poly2 4.28 7.42 2.13 11.84 15.76 14.09 12.48 23.07 4.39 11.38

Poly3 4.28 7.42 2.13 11.84 15.76 14.09 12.48 23.07 4.39 11.38

ANN4 5.46 6.72 3.35 5.90 11.00 12.48 10.49 20.17 2.22 16.43

ANN10 4.23 7.77 3.09 7.78 11.93 8.46 11.39 21.35 3.97 11.23

“True" Poly3 3.46 5.55 3.32 9.25 11.94 11.41 9.46 18.30 3.31 10.89

Table C.11: Results obtained by quantile regressions on the KIT dataset; QPL: average
pinball-loss; QMRD: average modified reliability deviation
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C.5 Results Experiment 2

Test Set Segment

1 2 3 4 5 6 7 8 9 10

QIW [%]

Poly1 9.61 9.56 9.69 9.45 10.78 9.19 10.17 10.71 11.32 9.87

Poly2 9.61 9.56 9.69 9.45 10.78 9.19 10.17 10.71 11.32 9.87

Poly3 9.61 9.56 9.69 9.45 10.78 9.19 10.17 10.71 11.32 9.87

ANN4 9.73 9.74 9.83 10.02 10.81 9.05 10.30 10.87 11.82 10.60

ANN10 9.57 9.80 9.55 9.84 10.79 9.21 10.03 10.76 11.73 10.46

“True" Poly3 10.75 11.12 10.93 10.59 12.51 11.97 11.32 12.29 13.36 12.25

QIS [%]

Poly1 19.33 22.09 16.44 21.24 17.59 21.26 17.30 18.32 17.99 22.11

Poly2 19.33 22.09 16.44 21.24 17.59 21.26 17.30 18.32 17.99 22.11

Poly3 19.33 22.09 16.44 21.24 17.59 21.26 17.30 18.32 17.99 22.11

ANN4 18.31 17.47 14.24 17.68 16.30 14.84 15.35 18.27 18.80 19.78

ANN10 18.63 16.47 14.18 17.36 15.33 12.78 15.51 17.85 17.07 17.85

“True" Poly3 20.30 20.63 17.24 19.54 17.24 18.26 17.34 17.73 18.31 20.55

QMIRD [%]

Poly1 5.96 11.24 0.90 9.72 1.70 5.99 1.91 6.52 1.29 7.29

Poly2 5.96 11.24 0.90 9.72 1.70 5.99 1.91 6.52 1.29 7.29

Poly3 5.96 11.24 0.90 9.72 1.70 5.99 1.91 6.52 1.29 7.29

ANN4 5.04 2.06 4.15 1.60 3.91 4.03 4.45 4.12 2.39 6.06

ANN10 6.14 2.36 5.67 1.49 5.74 8.53 2.80 2.38 3.79 2.63

“True" Poly3 5.57 5.67 4.09 7.09 8.55 5.79 2.46 3.64 6.37 2.70

Table C.12: Results obtained by interval forecasts on the KIT dataset; QIW: average interval
width; QIS: average interval score; QMIRD: average modified interval reliability
deviation
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C Application

Test Set Segment

1 2 3 4 5 6 7 8 9 10

QPL [%]

Poly1 2.00 2.23 1.68 2.17 1.80 1.97 1.79 1.96 1.85 2.22

Poly2 2.00 2.23 1.68 2.17 1.80 1.97 1.79 1.96 1.85 2.22

Poly3 2.00 2.23 1.68 2.17 1.80 1.97 1.79 1.96 1.85 2.22

ANN4 1.88 1.80 1.47 1.85 1.67 1.53 1.55 1.94 1.97 2.06

ANN10 1.92 1.68 1.45 1.81 1.56 1.27 1.59 1.89 1.76 1.85

QMRD [%]

Poly1 3.52 6.62 2.50 11.89 16.06 13.51 12.72 22.82 4.68 10.87

Poly2 3.52 6.62 2.50 11.89 16.06 13.51 12.72 22.82 4.68 10.87

Poly3 3.52 6.62 2.50 11.89 16.06 13.51 12.72 22.82 4.68 10.87

ANN4 4.40 6.70 3.53 6.49 12.09 11.92 11.35 20.52 3.17 15.06

ANN10 3.03 7.48 4.34 7.82 12.99 8.15 11.71 21.64 5.00 10.23

Table C.13: Results obtained by parametric distribution forecasts on the KIT dataset; QPL:
average pinball-loss; QMRD: average modified reliability deviation

% of best fitting distributions chosen

Technique Beta Gamma Normal Uniform

Poly1 18.25 31.63 50.12 0.00

Poly2 18.25 31.63 50.12 0.00

Poly3 18.25 31.63 50.12 0.00

ANN6 21.58 27.06 50.87 0.49

ANN10 22.31 26.40 50.43 0.86

Table C.14: Percentage of times a tested distribution is chosen on the KIT dataset

Test Set Segment

1 2 3 4 5 6 7 8 9 10

QPL [%]

Scenarios (Poly3) 2.22 2.44 2.65 3.40 2.41 3.35 3.38 2.42 2.87 3.76

QMRD [%]

Scenarios (Poly3) 5.19 8.24 10.43 17.30 27.64 17.03 11.43 25.33 25.14 29.87

Table C.15: Results obtained by scenario forecasts on the KIT dataset; QPL: average pinball-
loss; QMRD: average modified reliability deviation
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