Trends in Computational

Social Choice

14

Cite as: Bernhard Beckert, Thorsten Bormer, Rajeev Goré,
Michael Kirsten, and Carsten Schiirmann. An Introduction to
Voting Rule Verification. In Ulle Endriss (editor), Trends in Com-
putational Social Choice, chapter 14, pages 269-287. Al Access,

2017.

http://www.illc.uva.nl/COST-IC1205/Book/

http://www.illc.uva.nl/COST-IC1205/Book/

CHAPTER 14

An Introduction to Voting Rule
Verification

Bernhard Beckert, Thorsten Bormer, Rajeev Goré,
Michael Kirsten, and Carsten Schirmann

14.1 Introduction

Social choice functions (or more specifically voting rules) form the backbone of
modern democracies. They are often expressed as algorithms palatable for ma-
chine implementation and execution, and simultaneously they control the trans-
fer of power from the people to a government. Social choice functions vary in
complexity and exhibit different behaviors and properties. For scientists, they
are perfect objects of study, in particular, to predict the way they behave, to un-
derstand corner cases, or to check that they comply with the law. Conversely,
for agents (or voters) the functions’ behavior and which properties they satisfy or
violate is often hard to discern and difficult to understand.

Program verification technology, which is based on formal logic and deduction,
provides a powerful toolset for the analysis of algorithms and their properties.
The reach and power of software verification methods and tools has increased
tremendously over the last decade. Following their earlier successes, for exam-
ple for hardware design, formal verification methods today are routinely applied
to catch design errors at early stages of software and protocol development pro-
cesses. There has been considerable progress in the verification of real-world
software written in languages such as C and Java, as the core technologies of
deductive program analysis have matured (Ahrendt et al., 2014; Clarke et al.,
2004; Falke et al., 2013).

But as of yet, to our knowledge, little work has been done to combine for-
mal program verification with social choice theory, even though the two go well
together: Voting rules are mathematical constructs and formal program verifica-
tion techniques are optimised to analyse those. Thus, these techniques can help
to uncover the hidden secrets of voting rules. For example, they allow us to check
whether a voting rule matches its specification, and help determine how many
votes must be changed to cause a change in the outcome of an election.

In this chapter, we give an overview about the role that formal program ver-
ification can play in social choice research. In particular, we focus on one such
technique, namely software bounded model checking (SBMC), which statically

270 B. Beckert et al.

analyses the implementation of a voting rule by exhaustively looking for coun-
terexamples in a finitely bounded search space. In order to use a software
bounded model checker, the voting rule implementation together with the prop-
erty to be shown are translated into a formula in propositional or first-order logic
before processing. The checker then tries to construct either a proof or a coun-
terexample, which can then be used to understand why the voting rule violates

the property.

SBMC techniques can be applied to prove that an implementation of a voting
rule satisfies a property for all inputs of bounded size (e.g., up to a certain limit on
the number of voters and alternatives) by exhaustively checking the space of all
possible inputs. SBMC tools are fully automatic, fast, and easy to use, but their
drawback is that they will not be able to identify counterexamples that lie outside
these bounds. There are other more complete approaches to program verification
that ensure that a property holds for all inputs, but these techniques require
significantly more effort and are not covered in this chapter (see Section 14.5 for
references to related work).

The role of program verification in social choice research is based on the power
of the axiomatic approach, which in modern social science was largely initiated by
Arrow’s impossibility theorem (Arrow, 1963). His findings imply that the perfect
voting rule does not exist. Therefore, developing a voting rule that satisfies a
given set of axiomatic properties is cumbersome as the trade-off between any
such properties is inherently difficult and error-prone.

The experiences presented in this chapter document that errors in voting rules
are easy to make and formal program verification methods greatly enhance the
chances of finding such errors. Furthermore, we document that there are formal
program verification techniques that provide proof that a voting rule—and its al-
gorithmic implementation—meets a given property. Moreover, we show that these
techniques can also produce quantitative statements such as, e.g., changing how
many votes can change the election result.

Concretely, we conduct three case studies, namely, (1) checking the properties
of the voting rule known as single transferable vote (STV), designed in particular
for the election of members of the board of the Conference on Automated De-
duction (CADE), (2) using the power of SBMC techniques for verifying properties
of voting rules (demonstrated on simple examples), and (3) computing election
margins for the purpose of auditing election results.

The rest of this chapter is structured as follows: We start by giving insights
into the logical models and formalisations used and also present formalisation
techniques specially tailored to axiomatic properties of voting rules (Section 14.2).
Then, we describe and compare tools and techniques used for performing formal
program verification of voting rules (Section 14.3). In the main part of this chap-
ter, we present experiences and case studies showing the reach and power of
formal program verification (Section 14.4). We conclude with a summary of this
chapter and a brief overview of related work (Section 14.5).

Voting Rule Verification 271

14.2 Logic-based Formalisation of Properties

In this section, after giving some basic definitions, we classify different types
of properties for voting rules. These concepts provide the basis for logic-based
formalisations.

14.2.1 Basic Definitions: Ballots, Profiles, Voting Rules

We consider voting rules where the individual preferences of voters are aggregated
to produce an election result. Throughout this chapter, to simplify the presenta-
tion, we only consider scenarios where each voter casts exactly one ballot and the
ballots are (partial) linear orders over the alternatives (or candidates), i.e., linear
orders over subsets of the set of alternatives.

Definition 14.1. Let N= {1,...,n} be a finite set of voters, let A be a finite set of
m alternatives, and let W be a set of possible election results.

Then, a ballot is a (partial) linear order »; on A; and a profile (>1,...,>;) (with
i < n) is a sequence containing one ballot for each voter. The set of all possible
ballots is denoted with B, and the set of all possible profiles is denoted with B*.

A voting rule is a total function f: B* — W, assigning an election result to each
profile. An individual pair (p,w) € (B* x W) consisting of a profile and an election
result is called an evaluation. The set of all evaluations is € = B* x W.

The concrete structure of possible election results in W depends on the voting
rule that is being investigated. In the following, we assume that election results
(a1,...,as) € W are sequences of alternatives, denoting that alternatives a4, ..., as
have been elected (the order of the elected alternatives may or may not be signifi-
cant). The empty sequence () can be used to denote that there is no “valid” result
(e.g., in case of a tie). In case the result is a singleton, we write « instead of (a).

14.2.2 Functional and Relational Properties

We distinguish between functional and relational properties. Functional proper-
ties, such as the majority criterion, refer to single election results while relational
properties, such as anonymity, compare two (or more) results. In the literature,
functional and relational properties are also called intra- and inter-profile proper-
ties, as defined by Fishburn (1973).

Definition 14.2 (Functional property). Given a set B of possible ballots and a
set W of possible results, a functional property F' for voting rules is a set of evalu-
ations, i.e., F C £ = (B* x W) is a relation between profiles and results.

A voting rule f : B* — W satisfies a functional property F iff f C F, ie., all
evaluations of f are elements of F. Intuitively, a _functional property F' is the set of
those evaluations that a voting rule may contain if it is to have that property.

Example 14.1 (Majority criterion, majority winner). Given a profile p € B*, a
majority winner forp = (>1,...,>n) is an alternative a € A that is preferred over all
other alternatives in more than half of the ballots:

{~i€pla=id foralla' € A,a' #a}| > § .

272 B. Beckert et al.

A voting rule satisfies the majority criterion iff, for all profiles p, either the ma-
Jority winner for p is elected or there is no magjority winner for p. This criterion is
Jormalised by the functional property

Maj = {(p,a)|ifd is a majority winner for p thena =a} .

Definition 14.3 (Relational property). Given a set B of possible ballots and a
set W of of possible results, a relational property R _for voting rules is a set of pairs
of evaluations, i.e.,

RCEXE=(B"xW)x (B*xW) .

A voting rule f: B* — W satisfies a relational property R iff, for all evaluations
e € fand €' € f, the pair (e,€e’) is in R.

Intuitively, a relational property R consists of those pairs of evaluations that—
by definition of that property—are allowed to “coexist” in a voting rule.

Example 14.2 (Monotonicity criterion). For the monotonicity criterion, we need

to compare profiles that are identical up to one ballot. By b'® C B we denote the set

of all ballots that are identical to b except that now c € A is given a higher rank.
The relational property of monotonicity is

Mono = (ExE&)\ {((p,w),(p',w")) | there is an alternative with a € w, a ¢ w', and
p’ results from p by replacing
a single ballot b € p by a ballot b/ € b™}

That is, Mono contains all pairs of evaluations except those where a winning alter-
native is given higher preference in one of the ballots (denoted by V') which results
in the alternative a no longer being elected.

A functional property consists of single evaluations, namely those evaluations
that are considered “good” by the property. A voting rule is judged against the
functional property for every evaluation separately. In contrast, a relational prop-
erty is a relation between two evaluations of the voting rule. Satisfaction is hence
judged by considering each of its evaluations in the context of the other evalua-
tions. Thus, the concept of relational properties is stronger and more expressive.
In fact, every functional property can also be represented as a relational property.

The classes of functional and relational properties do not cover all interesting
properties of voting rules, but only those that can be checked by looking at one
(functional) or two (relational) evaluations at a time. However, there are properties
that require a comparison of three or more evaluations.

Example 14.3 (Consistency criterion). A voting rule satisfies the consistency
criterion if, for any three profiles p,p;,p2 such that p is the concatenation of p;

and py: if flp1) = flp2) then fip) = fip1) = fipz).

Properties such as consistency!, which can (only) be defined by comparing
three evaluations are called 3-properties. This concept can be extended to gener-
alised k-properties for k € N, which does—however—still not cover all properties.

1Sometimes also referred to as reinforcement or convexity.

Voting Rule Verification 273

For example, the surjectivity? property, which requires that for each possible
election result there is a profile leading to that result, is a rather simple property
that is not a k-property for any k. Surjectivity is an existential property, requiring
the existence of (combinations of) certain evaluations, while k-properties are uni-
versal in nature, requiring all k-tuples of evaluations are “good” in some sense.

14.2.3 Formalisation in First-order Logic with Theories

To formalise properties of voting rules, we use first-order logic over the theories
of natural numbers and arrays. Using these theories, on the one hand, allows to
easily represent profiles and election results and, on the other hand, is supported
by most SMT solvers and program verification tools (Section 14.3.1).

Arrays and numbers allow to encode profiles and election results as follows:

e Aprofile p = (>1,...,>n) is represented as a two-dimensional array P, where
Pli,jl € {1,...,m} is the alternative that is ranked by ballot >; in the jth
place, i.e., P[i,1] =; P[i,2] >=; -+ >=; P[i,m].

¢ An election result w = (a1, ...,am) is represented as a one-dimensional ar-
ray W, where W{i] = a,. If less than s alternatives are elected, then W[i] =0
for the empty places.

A functional property (Definition 14.2), which is a set of evaluations (p, w), can
be characterised by a formula ¢(P, W) that has exactly two free variables P, W
of type array. The property Fj,, characterised by ¢(P,W) consists of all (p,w)
such that Fy evaluates to true when assigning the values p to P and w to W
and interpreting the formula in the canonical model where the functions and
predicates related to theories have their canonical meaning (‘+’ is interpreted as
addition on natural numbers, ‘<’ is the less-than relation etc.).

Example 14.4. The majority criterion (Example 14.1) can be characterised using
the following formula:

S(P,W) = Va(Fi(VEVE' (1< kA <K AK <|2]+1) >
(i[k] # i[k'] A Pli[k]] = a))
) = a=WI1)

This formula expresses that, for all alternatives a, if there is an array i of size
| 5] + 1 (which is the required majority) such that (1) the elements of i are pairwise
distinct indices i[k] and, for all these indices, (2) P[i[k],1] = al, i.e., alternative a is
the most preferred alternative in the i[k]th ballot in the profile, then a = W[1], i.e.,
a is elected.

Note, that P,WW are the only free variables but there can be any number of
additional quantified variables in ¢. Moreover, the number n of voters is not a
variable, but either a concrete number or an uninterpreted constant.

Correspondingly, a relational property (Definition 14.3), which is a set of pairs
of evaluations, can be characterised by a formula ¢(P;, Wy, P,, W5) that has four
free variables.

2Sometimes also referred to as (strict) non-imposition property.

274 B. Beckert et al.

14.3 Program Verification Methods

In the following, we apply the insights for classifying and formalising axiomatic
properties from Section 14.2 in the field of computer-aided automated verification
of voting rules, where these rules are validated against functional and relational
properties. We argue that this is an important step towards a process for the
design and development of verified tailor-made voting rules with clear and trust-
worthy axiomatic characterisations.

14.3.1 SMT Solvers and Software Bounded Model Checking

SAT solvers are programs that decide the satisfiability of a given set of formulas in
propositional logic. SMT solvers go beyond SAT in that they can handle formulas
in first-order logic with quantifiers and theories. They provide domain-specific
and highly optimised solvers for arithmetics, arrays, uninterpreted functions,
and so on. SMT solvers have evolved into powerful reasoning tools that are suc-
cessfully used in model checking and software verification. As will be reported
during the course of this chapter, SMT solvers can be used to check a voting
rule with respect to a formalised property for particular input/output pairs, i.e.,
for testing the rule, without the need to implement a checker for the particular
property.

SMT solvers also form the basis of modern software bounded model check-
ing (SBMC), which goes beyond mere testing and allows to verify voting rules
for all inputs of a particular size. SBMC statically analyses programs up to a
predefined number of loop iterations and recursions. Programs are symbolically
executed and checked for errors up to the given bound. Beyond the bound, no
formal correctness guarantee can be obtained. Nevertheless, the restriction to
a finite scope is justified because (1) it allows for fully automated proof search,
and (2) typical faults manifest themselves already in small instances (small-scope
hypothesis (Jackson, 2006)).

14.3.2 Relational Verification

Relational properties (Definition 14.3) relate the behaviour of a voting rule for two
independent inputs (profiles). For verification, two runs of the same program «,
implementing the voting rule, need to be analysed and their results compared.
A common technique, called self-composition (Darvas et al., 2005; Barthe et al.,
2011), for proving a relational property for a program « is to show a functional
property for the concatenation “«; ; y”, combining the behaviour of two vari-
ants «; and as of « that are identical up to variable names, hence operating on
disjoint variable sets, and storing the outputs in disjoint variable sets as well.
Based on Hoare logic (Hoare, 1969), we then verify a relational property R by
running “aq ; ay” with (symbolic) inputs p;, p2 with the results w,, w2, and proving
((p1,w1), (p2,w2)) € R.

Formal verification of relational properties using self-composition is challeng-
ing in general since it requires static analysis of two independent program runs;
the exploration space that needs to be analysed is potentially exponentially larger

Voting Rule Verification 275

than the exploration space for analysing a single program run. Moreover, for
this type of relational verification, sufficiently strong program specifications (in
particular, loop invariants and postconditions) are required to prove non-trivial
properties.

Another way to handle relational verification, which improves on self-compo-
sition, is to weave the two variants into a single combined program. Since a;
and as have disjoint variable sets, reordering statements cannot have an effect
on the result as long as the execution order of statements is preserved. Details
about the possibilities of flexibly weaving programs can be found in the work
by Felsing et al. (2014) and Barthe et al. (2011). Consider for instance the pro-
gram “while(cond) { body }” consisting of a single while-loop. It is easy to see
that, instead of concatenating two variants of this code (one with cond; /body; and
one with condy/bodys), one can use the single-loop program

while(cond; || condy) { if(condy){body,} if (conds){body>} }

This weaved program does not require separate loop invariants for the loops in
oy and as but only a single so-called coupling invariant for the weaved loop that
sets variables z; and Z, into relation. In many cases, the coupling invariant is
significantly simpler than the (functional) loop invariants. As long as the two loop
executions behave similarly, it is easier to express how the two states are related
after each step than to specify what it is that the loops actually compute.

14.3.3 Symmetry Breaking

An important kind of relational properties are those expressing that, if two pro-
files are symmetric (or in some way similar) to each other, then they lead to
symmetric (similar) election results. Many fairness criteria are of this type.

In practice, the number of possible ballots is very large and the number of
possible profiles even larger. Correspondingly, there is a huge number of possible
execution paths through implementations of voting rules. Exploiting symmetries
is an important technique to make testing or formal verification more feasible.

The idea is to only prove that a voting rule f satisfies a functional property F'
for a small subset X C B* of the possible profiles, i.e., (z,f(z)) € F' for all z € X,
and to then make use of the symmetry property to conclude that the same holds
for all profiles p € B*, i.e., f has property F' in general. This, of course, is only
useful if the subset X is much smaller than B* and if it is easy to prove that f is
symmetric with respect to a given symmetry relation S—or if we can assume an
existing proof because the symmetry is an interesting property in its own right
(anonymity, neutrality, monotonicity etc.).

In the specification used for verification, the restriction to the set X is achieved
by a first-order logic predicate v, called a symmetry-breaking predicate (SBP), a
term originating from the field of constraint satisfaction (Crawford et al., 1996).
The formula ¢(P) has a free variable P, and X, C B is the set of profiles that
satisfy ¢ (P).

In addition to establishing (z, fla)) € F for all z € X, we also have to establish
(1) that fhas symmetry property S, i.e., it produces symmetric outputs for sym-
metric inputs, (2) all elements in 5* are represented by (i.e., are symmetric to) at

276 B. Beckert et al.

least one element in B* which satisfies ¢, and (3) for any evaluation (p, w) satis-
fying property F, all evaluations (p’, w’) symmetric to (p,w) also satisfy F. Note,
that only (1) needs to be proven for the specific voting rule f, while (2) and (3) only
depend on F, S, and X. Propositions (2) and (3) can hence be verified either via
a manual proof, or using an automated theorem prover that can deal with first-
order logic and set theory (including transitive closure). The proof for (z, f(z)) € F
can be done using program verification techniques, using) as an assumption in
the proof. More details on this technique may be found in Beckert et al. (2016a).

14.4 Experiences

In this section, we report on experiences applying program verification to analyse
voting rules w.r.t. axiomatic properties. We also present an application for aiding
in auditing processes by automatically computing election margins.

14.4.1 Checking Properties of Single Transferable Vote

Seemingly innocuous revisions to a voting rule can have serious implications
on its properties. In this case study, we show that undesired implications can
be uncovered using an SMT solver to check the rule’s properties (Beckert et al.,
2013, 2014b). The application target is a particularly interesting variant of the
single transferable vote (STV) algorithm (CADE-STV) used to elect the board of
trustees of the International Conference on Automated Deduction (CADE).

The property to be checked is a tailor-made criterion that is intended to
capture the essence of proportional representation, stating that “there must be
enough votes for each elected alternative”. This criterion only considers the num-
ber of votes for an alternative and ignores the order of preferences within ballots.
More specifically, this property requires that the input profile can be partitioned
into (disjoint®) groups of ballots such that each elected alternative is supported
by one voter group of sufficient size:

Definition 14.4 (Criterion: Enough votes for each elected alternative). Let
q be the quota and s the number of alternatives to be elected (e.g., the num-
ber of seats in a parliament). The property Enoughy s consists of all evaluations
(p, (a1, ...,as)) for which there are multisets my, ..., my,Mpst (' < s) that form a
partition of the ballots in the profile p, i.e.,

{blbisaballotinp} =m; U...Umg U Myest
such that, for 0 < i < §' (i.e., not taking myes; into account), the following holds:

1. |m;| = q (there are exactly q voters in each class that support an elected
alternative),

2. for all b € m,;, there is a preference position j such that b; = a,; (each vote
b in the class m; supports alternative a;, i.e., the alternative occurs at some
position j among the preferences in b).

3Hence, we will use the operator U for disjoint unions.

Voting Rule Verification 277

Example 14.5. Assume there are four alternatives A, B, C, D for two vacant seats,
the profile p consists of five ballots [A, B, D], [A, B, D], [A, B, D], [D,C] and [C, D],
and the quota is q = 2. The evaluation (p, (A, D)) satisfies property Enough, , using
the partition consisting of {[A, B, D], [A, B, D]}, {|C, D], [D, C]} and {[A, B, D]}, where
the first group supports alternative A and the second one supports alternative D.

Formalisation. We formalise property Enough,, by a formula ¢(P, W), which
uses an existentially quantified variable part of type array that represents the
partition and the assignment of classes in the partition to elected alternatives as
follows:

artli] — k if the ith vote supports the kth elected alternative W (k|
PAT =10 if the ith vote does not support any elected alternative

Then, the formula ¢(P, W) = Im(¢1 A ... A ¢4) is the existentially quantified con-
junction:

Vi(0 < i< n—0< partfi] < s) (#1)
Vi(0 < i < n— (partfi] # 0 — Wpart[i]] # 0)) (¢2)
Vi((0 < i < nApartfi] #0) — 35(0 < j < mA P[i, j] = Wipart[i]])) (¢3)
VE((0 <k < sAWIK] #0) — (¢4)

3 count (count[0] = 0 A
Vi(0 < i < n— (partfi] = k — count[i] = count[i — 1] + 1) A
(part|i] # k — count|i]| = count|i — 1])) A
count|n] = q))

Formulas ¢; and ¢, express well-formedness of the partition. Formula ¢;
expresses that for every vote supporting an alternative, that alternative must be
ranked somewhere in that vote. Formula ¢, expresses that each class supporting
a particular elected alternative has exactly q elements. To formalise this, we use
an array count such that countfi] is the number of supporters among votes 1, ...,
that support the kth elected alternative.

Checking the Property Using an SMT Solver. To check the property, we gener-
ated input profiles (a) randomly and (b) exhaustively starting from small profiles.
The corresponding election results were computed using an implementation of
CADE-STV in Python. The formula ¢(P, W) was then evaluated for pairs of pro-
files and results using the SMT solver Z3 (De Moura and Bjgrner, 2008). Note,
that the evaluation is not trivial because of the existential quantifier in ¢. Using
an SMT solver in this way amounts to testing.

CADE-STV differs from standard STV in that, after an alternative is elected,
all ballots are still in play. In standard STV, however, ballots that have been used
to elect an alternative are not available for the next round. Moreover, CADE-
STV uses a quota different from standard STV, namely the absolute majority
of votes. Because of its non-standard behaviour, CADE-STV does not satisfy
property Enough from Definition 14.4.

278 B. Beckert et al.

Example 14.6. Let us run CADE-STV on Example 14.5. First, we compute the
majority quota q = 3. In the first iteration, alternative A has three first preferences,
so that A is the majority winner and is seated. Since CADE-STV uses restart?,
A’s votes are not deleted but are redistributed at the end of the first iteration. Now
the ballot box contains [B, D], [B, D], B, D], |D,C],|C,D]. Following the algorithm,
we observe that now alternative B has the majority with 3 first preference votes and
is seated. The election is over, and the election result is [A, B] (which is different
from the possible results [A, D] or [A,C] of standard STV). Obviously, there is no
partition of the votes to support both alternatives A and B with 3 ballots each, i.e.,
property Enough does not hold.

Indeed, our checker based on Z3 easily finds smaller counterexamples than
the one shown in Example 14.6, but these are not as illustrative. Run-times of Z3
for checking the property for a single evaluation (i.e., performing a single test)
are in the range of a few seconds for profile sizes of up to about 30 ballots and
30 alternatives. Thus, random testing for small ballot boxes is easily possible.
Exhaustive testing quickly becomes infeasible because of the exponential number
of possible profiles. In Beckert et al. (2013), we report on more details using an
SMT solver for checking this and other properties of STV, as well as possible
solutions to the undesired effects in CADE-STV.

14.4.2 Property Verification for Voting Rules

Below, we report on experiences with relational verification and symmetry break-
ing techniques (see Section 14.3). For our case study, we used the automated
software model checker CBMC (Clarke et al., 2004), which takes C/C++ pro-
grams as input that are annotated with specifications in the form of assertions
and assumptions.

For our experiments, we use CBMC 5.3 with the built-in solver based on
MiniSat 2.2.0 (Eén and Sérensson, 2003), combined with an efficient bit-vector
refinement procedure (Bryant et al., 2007), performing computations on an In-
tel(R) Core(TM) i5-3360M CPU at 2.80 GHz with 4 cores and 16 GB of RAM.

Relational Verification Using CBMC. As explained in Section 14.3.2, relational
verification with weaved programs and coupling invariants is more efficient than
just composing two variants of the program. We evaluate the impact of coupling
invariants on performance and feasibility using as an example the verification of
simple first-past-the-post plurality voting with respect to the anonymity property.
For plurality voting, anonymity can be written as follows:

Vbl,bg((VZ(0<Z§H—> (O<P1[Z] <m/\O<P2[i] ém))/\
0<by <by<nA
Pi[b] = Pafbo] A Palby] = Pi[ba] A
VZ((O <i<nAi#b /\Z?ébg) —>P1[’L] :PQ[Z])
)—) Wy, = WQ)

4A deviation from textbook STV, where whenever a seat gets assigned by electing a candidate in the
counting procedure, the next seat is to be assigned based on the original ballot profile (only having
the already elected candidates removed), i.e., resurrecting already eliminated weak candidates.

Voting Rule Verification 279

1 void anonymity(int p1[N], int p2[N]) {

2 for (int i = 1; i <= N; i++) {

3 assume (0 < p1[il < M A 0 <p2[i] < M)

4 int bl, int b2; assume (0 < b1 < N A 0 < b2 < N A bl < b2);
5 assume (pl[bl] == p2[b2] A p2[bl] == p1[b2]);

« for (dnt i = 1; i <= N; i++) {

7 if (1 !'= bl && i !'= b2) assume (pi[i] == p2[il); }

8 int wl = plurality(pl);
)

int w2 = plurality(p2);
10 assert (wl == w2);
1}

Listing 1: Anonymity property as a C program

Anonymity is a relational property (see Section 14.2.3). It is formalised as a
first-order logic formula ¢ anen(Pr, W1, P2, W), using four free variables denoting
two profiles and two election results, respectively. Since plurality voting is a
single-choice voting rule (it is not preferential), we assume the profiles to be one-
dimensional arrays, i.e., the ith ballot p[i] of profile p equals the ith voter’s single
choice and is not itself an array. Moreover, we assume that, in case of a tie, no
alternative is elected and that this is indicated by the election result of w = 0.

Listing 1 shows the corresponding CBMC specification, expressing that the
voting rule implemented in the C function plurality satisfies the anonymity prop-
erty. Lines 2 and 3 express the assumption that the profiles are well-formed. The
universal quantification of variable i is expressed using a for-loop. The variables
b1, bs introduced by the assumption in Line 4 are implicitly universally quantified
as CBMC carries out the proof for all values satisfying the assumptions. The pro-
files p1, po are assumed to only differ in ballots of voters by, b, in that the ballots of
these two voters are exchanged. This is expressed in Lines 5 to 7. The function
plurality is invoked in Lines 8 and 9 to compute the election result for the two
profiles pi,p2. Finally, Line 10 makes the assertion that the two election results
are identical. CBMC will prove that this assertion holds for all inputs (a) whose
size is within a given bound and that (b) satisfy the assumptions from Lines 2
to 7.

We used CBMC to verify the anonymity property for plurality voting using
(a) simple composition of two variants without coupling invariants and (b) weaved
programs with coupling invariants for the loops (the implementation of plurality
voting has two loops, one counting the ballots for each alternative and one for
finding the alternative with the maximum number of votes).

Figure 14.1 shows the run-times (in seconds) for between 1 and 12 alterna-
tives and 1 to 15 ballots. For the missing data points, the run-times exceed our
predefined time-out of 30 minutes. The results show that the verification without
weaving and coupling invariants becomes infeasible for rather small bounds. Ver-
ification with coupling invariants fares considerably better; the time-out, here, is
finally reached for about 10 alternatives and 25 ballots (in contrast to only 10 al-
ternatives and 7 ballots without coupling invariants).

280 B. Beckert et al.

Run-times for 3, 6, 9 and 12 alternatives in seconds Run-times for 3, 6, 9 and 12 alternatives in seconds
1,500 - 1,500 -

1,000 -

loF

1,000 |
v
/

Run-time [s]
Run-time [s]

U‘
=]
S
T
o
=]
S
T
e

/
~
o—o— L

I R S B — —— T |
023456789101112131415 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ballots Ballots

(a) Without coupling invariants (b) Weaved program with coupling invariants

Figure 14.1: Verification of the anonymity property for plurality voting

Symmetry Breaking. We continue the case study, now with the goal to verify
the majority criterion (Example 14.1) for plurality voting.

Using CBMC in a straightforward manner, verification is possible for small
bounds on the numbers of voters and alternatives, but becomes infeasible for
higher numbers. For example, a time-out of 30 minutes is reached with 5 alter-
natives and 45 voters resp. with 10 alternatives and 20 ballots. Considering the
small-scope hypothesis and the simple structure of plurality voting, these bounds
are high enough. The run-times (in seconds) for 10 alternatives are shown in the
second column of Table 14.1 (‘t/o’ indicates time-out). The full data can be seen
in Beckert et al. (2016a).

Using symmetry breaking, however, the efficiency of verification can be consid-
erably increased—and, thus also, the reachable bounds. Assuming anonymity,
which is a symmetry property, by applying the symmetry breaking predicate

Vi(0 <i < n) — Pli— 1] < PJi,

the situation improves dramatically. This predicate requires the ballots to be
sorted according to which alternatives they prefer. Intuitively, this is a valid
assumption as anonymity allows to re-order the ballots.

The much lower run-times are shown in the right column of Table 14.1. Ex-
periments show that handling more than 100 ballots for 10 alternatives becomes
feasible, when adding predicates for further symmetry properties.

14.4.3 Margin Computation

A method to create confidence in the outcome of an election is to audit the elec-
tion result against the physical evidence, i.e., the ballots. Some auditing methods
require the computation of a margin (Stark and Teague, 2014). Below, we present

Voting Rule Verification 281

Ballots Without Symm. Red. With Symm. Red.

5 1.2 0.2
10 41.7 0.9
15 84.3 3.8
20 t/o 6.9
50 t/o 194.2
80 t/o 747.9
85 t/o 855.4
90 t/o 1,369.6
95 t/o t/o

Table 14.1: Verification of the majority property for plurality voting for 10 alter-
natives (run-times in seconds)

a technique based on software bounded model checking for computing the mar-
gin of an election (consult the work in Beckert et al. (2016b) for more details).
This application is different from verification as it provides information about
particular elections instead of the voting rule in general.

The margin is the minimal number of votes that would need to be misfiled in
order to change the election outcome. The margin is identical to the number of
votes that would have had to be miscounted or tampered with during tabulation.
If the election margin is large, only a small sample needs to be drawn and audited.
The smaller the margin, the larger the sample. In the worst case, the audit
will trigger a full manual recount. We assume that a voting rule is given (as
an implementation in C) as well as a concrete input, which consists of a table
aggregating the initial profile by the alternatives running for election. This table
is the result of vote counting and tabulation. We model it as an integer array of
size m, which is effectively the number of different stacks into which identical
votes are accumulated during counting.

The idea of our approach is to use an SBMC tool to check an assertion claim-
ing that, when the ballots are changed by putting at most a certain number z
of votes on other stacks than they were on, the outcome of the election is not
changed. If that assertion is provable, we know that the actual election margin is
greater than z. If the assertion is not provable, we know that the actual election
margin is less than or equal to z. In the latter case, the SBMC tool generates a
counterexample to the assertion demonstrating that the election outcome can be
changed by changing x votes. Having this proof obligation as a basis, we can use
binary search to find a value for x such that the assertion holds for = — 1, but fails
for z, i.e., x is exactly the election margin. The main advantage of this method is
that it can be uniformly and automatically applied to arbitrary rules without any
adaptation.

In contrast to our work, there has been a lot of research on how to com-
pute margins for specific voting rules, for which that problem is particularly
hard (Bartholdi and Orlin, 1991; Cary, 2011; Sarwate et al., 2013; Magrino et al.,
2011; Blom et al., 2016).

282 B. Beckert et al.

. Margin Verification
3.5 ||« Counterexample Generation

3

2.5

Run-time [s]
A L]
L]

Run-time [s]

: T e Y Y Y Y SO S| N S I N I T N I SO N N
5 10 15 20 25 30 35 40 45 50 55 60 65 5 10 15 20 25 30 35 40 45 50 55 60 65
Seats Seats

(a) Time for last step in computation. (b) Accumulated time for whole computation.

Figure 14.2: Run-times of automatic margin computation for the Jefferson
method with various values for the total number of seats to be allocated.

If the implementation of a voting rule is based on choosing or searching for
some parameter, then margin computation can be made much more efficient
by replacing the search for the parameter by a non-deterministic choice to be
resolved by the SBMC tool. An example is the Jefferson’s method, similar to
largest-remainder methods such as the Hare-Niemeyer method. Here, a quota is
chosen, i.e., a number of votes needed to “buy” one seat, such that the resulting
seats per alternative, when rounded down to the next natural number, sum up
to the required total number of seats.

We demonstrate our approach on the 2005 Schleswig-Holstein state elections
with various values for s, the total amount of seats to be allocated. The results
are shown in Fig. 14.2a and Fig. 14.2b. The run-times for all computations stay
well below 30 seconds. The election margin for the original number of seats (69)
is 634 ballots. The computed margins range from only 42 (for s = 62) to 177, 863 (for
s = 2). Performing our method for various values of s scales well on the Jefferson
method, as we got rid of the loop depending on the value of s. However, further
experiments also indicated a non-exponential dependency on the value for m.
For example, an allocation of 69 seats to 10 alternatives takes about 55 seconds,
whereas for 20 alternatives, the analysis takes about 300 seconds.

We also demonstrated the applicability of our approach to a further, more com-
plex real-world election: the Danish parliamentary elections in 2015. The Danish
elections use a two-tier system, allocating 135 seats using the D’Hondt/Jefferson
method for each of the lower-tier electoral districts (Elklit et al., 2011 (accessed
August 23, 2016), and allocating the remaining 40 seats using the Saint-Lagué
method. We performed our analysis on the first tier for the first 135 seats.

Using the Jefferson version of D’Hondt, we compute a margin of 10 votes within
7,815 seconds, i.e., around 2 hours and 10 minutes. The final verification (proving
that a change in 9 votes cannot change the election outcome) takes 53 seconds
and a counterexample for 10 votes (i.e., an example preference profile that does
change the election outcome) can be found within 27 seconds.

Voting Rule Verification 283

14.5 Summary and Related Work

Summary. We have seen that SMT solvers and software bounded model check-
ing can be effectively used for the verification of voting rules w.r.t. functional and
relational properties as well as for finding violations of such properties. In partic-
ular, we have shown that the formalisation of semantic criteria in first-order logic
over the theories of integers and arrays is a good choice regarding formal analy-
sis. Moreover, verification techniques can be important parts in a process for the
design and development of verified tailor-made voting rules with clear and trust-
worthy axiomatic characterisations, eventually leading to reliable electoral laws.
For this purpose, semantic criteria need to be explicitly stated instead of a mere
discussion of voting rules using anecdotal descriptions of individual scenarios.

Our experiences with bounded model checking demonstrated that bounded
verification up to bounds of about 20-30 ballots is possible in practice, which can
be increased to about 100 ballots using symmetry reduction techniques. Taking
the small-scope hypothesis into account, these bounds are sufficiently high, even
if the structure of profiles and election results and the operations that make
up the voting rule implementation are more complex than in the simple case
of plurality voting. In addition, modularisation and decomposition techniques
can be used to handle even more complex rules by verifying their components
individually (e.g., phases or rounds in the counting process).

Beyond a formal analysis of voting rules with respect to semantic criteria,
we presented a further application of bounded model checking in the domain of
social choice research: computing election margins fully automatically. It can
be applied to arbitrary implementations of voting rules without understanding
or even knowing how the election result is computed. Our approach scales for
implementations of real-world voting rules in real elections if the number of loop
iterations in the voting rule does not go beyond a few hundred.

Related Work. In this chapter, we have discussed the use of program verifi-
cation technology based on first-order logic for the verification of voting rules.
There are also other approaches using tactical theorem provers and higher-order
logic. Dawson et al. (2015) specify a complex voting rule according to legal text
in higher-order logic and verifies its SML implementation against this specifica-
tion. Moreover, Pattinson and Schiirmann (2015) encode voting rules into ax-
ioms for a tactical theorem prover, which is then used to produce certificates
for election results by their implementions. Examples which verify voting rules
against axiomatic properties are proofs carried out by Goré and Meumann (2014)
and Beckert et al. (2014a). Verification using tactical theorem provers may lead
to even higher confidence levels, but the task is inherently difficult and time-
consuming, resulting in huge and laborious interactive proofs. In Beckert et al.
(2016a), we have also used the semi-interactive deductive theorem-prover KeY
(Ahrendt et al., 2014) for a case study proving axiomatic properties regardless
of the input size using the technique of relational verification as covered in Sec-
tion 14.3.2. Conducting proofs in KeY is less automatic than SBMC and requires
additional specifications like loop invariants and further user interaction, but it
enables full proofs for all inputs without any bounds.

284 B. Beckert et al.

Furthermore, there is research on the verification of concrete voting systems,
i.e., considering concrete voting rules and software (Dennis et al., 2008; McGaley
and Gibson, 2005; Kiniry et al., 2007; Cochran, 2012; Goré and Meumann, 2014;
Dawson et al., 2015). With a focus on security, we have conducted an extensive
case study on an electronic voting system by using a combination of different
program verification techniques (Kusters et al., 2015). Finally, a multitude of
theoretical work on proving and finding new incompatibilities of voting rule prop-
erties has been done using SAT solvers (Tang and Lin, 2009; Geist and Endriss,
2011; Brandt et al., 2016; Chatterjee and Sen, 2014; Brandt and Geist, 2016).
They analyse only properties while encoding or generating abstract voting rules
meeting some given assumptions, i.e., an encoding of a mapping from profiles to
sets of alternatives is further constrained to form a manageable subset in order
to mitigate state-space explosion. More on this topic can be found in Chapter 13
of this book.

Acknowledgments

This research has been funded in part by the DemTech research grant CCR-
0325808 awarded by the Danish Council for Strategic Research, programme
commission Strategic Growth Technologies. This publication was made possi-
ble by NPRP grant NPRP 7-988-1-178 from the Qatar National Research Fund
(2 member of Qatar Foundation). The statements made herein are solely the
responsibility of the authors.

Bibliography

W. Ahrendt, B. Beckert, D. Bruns, R. Bubel, C. Gladisch, S. Grebing, R. Hdhnle,
M. Hentschel, M. Herda, V. Klebanov, W. Mostowski, C. Scheben, P. H. Schmitt,
and M. Ulbrich. The KeY platform for verification and analysis of Java pro-
grams. In Proceedings of the 6th International Conference on Verified Software:
Theories, Tools and Experiments (VSTTE), 2014.

K. J. Arrow. Social Choice and Individual Values. Yale University Press, 1963.

G. Barthe, J. M. Crespo, and C. Kunz. Relational verification using product pro-
grams. In Proceedings of the 17th International Symposium on Formal Methods
(FM), 2011.

J. Bartholdi and J. Orlin. Single transferable vote resists strategic voting. Social
Choice and Welfare, 8:341-354, 1991.

B. Beckert, R. Goré, and C. Schiirmann. Analysing vote counting algorithms via
logic - and its application to the CADE election scheme. In Proceedings of the
24th International Conference on Automated Deduction (CADE), 2013.

B. Beckert, T. Bormer, R. Goré, M. Kirsten, and T. Meumann. Reasoning about
vote counting schemes using light-weight and heavy-weight methods. In Pro-
ceedings of the 8th International Verification Workshop (VERIFY) in connection

Voting Rule Verification 285

with the 7th International Joint Conference on Automated Reasoning (IJCAR),
2014a.

B. Beckert, R. Goré, C. Schiirmann, T. Bormer, and J. Wang. Verifying voting
schemes. Journal of Information Security and Applications (JISA), 19(2):115-
129, 2014b.

B. Beckert, T. Bormer, M. Kirsten, T. Neuber, and M. Ulbrich. Automated veri-
fication for functional and relational properties of voting rules. In Proceedings
of the 6th International Workshop on Computational Social Choice (COMSOC),
2016a.

B. Beckert, M. Kirsten, V. Klebanov, and C. Schiirmann. Automatic margin com-
putation for risk-limiting audits. In Proceedings of the 1st International Joint
Conference on Electronic Voting — formerly known as EVOTE and VotelD (E-
Vote-ID), 2016b.

M. L. Blom, V. Teague, P. J. Stuckey, and R. Tidhar. Efficient computation of
exact IRV margins. In Proceedings of the 22nd European Conference on Artifi-
cial Intelligence (ECAI), Including Prestigious Applications of Artificial Intelligence
(PAIS), 2016.

F. Brandt and C. Geist. Finding strategyproof social choice functions via SAT
solving. Journal of Artificial Intelligence Research (JAIR), 55:565-602, 2016.

F. Brandt, C. Geist, and D. Peters. Optimal bounds for the no-show paradox via
SAT solving. In Proceedings of the 15th International Conference on Autonomous
Agents & Multiagent Systems (AAMAS), 2016.

R. E. Bryant, D. Kroening, J. Ouaknine, S. A. Seshia, O. Strichman, and B. A.
Brady. Deciding bit-vector arithmetic with abstraction. In Proceedings of the
13th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), 2007.

D. Cary. Estimating the margin of victory for instant-runoff voting. In Proceed-
ings of the Electronic Voting Technology Workshop / Workshop on Trustworthy
Elections (EVT/WOTE), 2011.

S. Chatterjee and A. Sen. Automated reasoning in social choice theory: Some
remarks. Mathematics in Computer Science, 8(1):5-10, 2014.

E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs. In
Proceedings of the 10th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 2004.

D. Cochran. Formal Specification and Analysis of Danish and Irish Ballot Counting
Algorithms. PhD thesis, IT University of Copenhagen, Copenhagen, Denmark,
2012.

J. M. Crawford, M. L. Ginsberg, E. M. Luks, and A. Roy. Symmetry-breaking
predicates for search problems. In Proceedings of the 5th International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR), 1996.

286 B. Beckert et al.

A. Darvas, R. Hahnle, and D. Sands. A theorem proving approach to analysis of
secure information flow. In Proceedings of the 2nd International Conference on
Security in Pervasive Computing (SPC). Springer, 2005.

J. E. Dawson, R. Goré, and T. Meumann. Machine-checked reasoning about
complex voting schemes using higher-order logic. In Proceedings of the 5th
International Conference on E-Voting and Identity (Vote-ID), 2015.

L. De Moura and N. Bjgrner. Z3: An efficient SMT solver. In Proceedings of the
14th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), 2008.

G. Dennis, K. Yessenov, and D. Jackson. Bounded verification of voting soft-
ware. In Proceedings of the 2nd International Conference on Verified Software:
Theories, Tools, Experiments (VSTTE), 2008.

N. Eén and N. Sérensson. An extensible SAT-solver. In Proceedings of the 6th In-
ternational Conference on Theory and Applications of Satisfiability Testing (SAT),
2003.

J. Elklit, A. B. Pade, and N. Nyholm Miller. The parliamentary elec-
toral system in Denmark, 2011 (accessed August 23, 2016). URL
http://www.ft.dk/Dokumenter/Publikationer/Engelsk/The_Parliamentary_
Electorial_System_Denmark.aspx.

S. Falke, F. Merz, and C. Sinz. The bounded model checker LLBMC. In Pro-
ceedings of the 28th IEEE /ACM International Conference on Automated Software
Engineering (ASE). IEEE Computer Society, 2013.

D. Felsing, S. Grebing, V. Klebanov, P. Rimmer, and M. Ulbrich. Automating
regression verification. In Proceedings of the 29th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), 2014.

P. C. Fishburn. The Theory of Social Choice. Princeton University Press, 1973.

C. Geist and U. Endriss. Automated search for impossibility theorems in social
choice theory: Ranking sets of objects. Journal of Artificial Intelligence Research
(JAIR), 40:143-174, 2011.

R. Goré and T. Meumann. Proving the monotonicity criterion for a plurality vote-
counting program as a step towards verified vote-counting. In Proceedings of
the 6th International Conference on Electronic Voting: Verifying the Vote (EVOTE),
2014.

C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576-580, 1969.

D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,
2006.

Voting Rule Verification 287

J. R. Kiniry, D. Cochran, and P. E. Tierney. Verification-centric realization of
electronic vote counting. In Proceedings of the USENIX/ACCURATE Electronic
Voting Technology Workshop (EVT), 2007.

R. Kusters, T. Truderung, B. Beckert, D. Bruns, M. Kirsten, and M. Mohr. A
hybrid approach for proving noninterference of Java programs. In Proceedings
of the 28th IEEE Computer Security Foundations Symposium (CSF), 2015.

T. R. Magrino, R. L. Rivest, E. Shen, and D. Wagner. Computing the margin of
victory in IRV elections. In Proceedings of the Electronic Voting Technology Worlk-
shop / Workshop on Trustworthy Elections (EVT/WOTE). USENIX Association,
2011.

M. A. McGaley and J. P. Gibson. Electronic voting: An analysis of the safety
critical issues. In Proceedings of the National Symposium of The Irish Research
Council for Science, Engineering and Technology, 2005.

D. Pattinson and C. Schirmann. Vote counting as mathematical proof. In Pro-
ceedings of the 28th Australasian Joint Conference on Advances in Artificial In-
telligence (Al), 2015.

A. Sarwate, S. Checkoway, and H. Shacham. Risk-limiting audits and the margin
of victory in nonplurality elections. Statistics, Politics, and Policy, 4(1):29-64,
2013.

P. B. Stark and V. Teague. Verifiable European elections: Risk-limiting audits for
D’Hondt and its relatives. USENIX Journal of Election Technology and Systems
WJETS), 1(3):18-39, 2014.

P. Tang and F. Lin. Computer-aided proofs of Arrow’s and other impossibility
theorems. Artificial Intelligence, 173(11):1041-1053, 2009.

