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Abstract

This dissertation deals with the question of how fine dust can
be measured using low-cost sensors and with high resoluti-
on, both spatially and temporally. For this purpose, a novel
sensor system based on inexpensive off-the-shelf sensors and
smartphones is presented, along with corresponding robust al-
gorithms for signal processing, a privacy-preserving calibration
scheme and research on the interaction design for participatory
measurements contributed by non-expert users.

Atmospheric aerosol particles pose a serious health hazard
on a global scale, which manifests itself in respiratory and car-
diovascular disease and causes shortened life expectancy. In the
past, air quality has been assessed on the basis of data from
relatively few fixed measurement stations and been brought to
a high spatial resolution using transport models, the representa-
tiveness of which for the nationwide exposure of the population
remains unclear. Since it is impossible to achieve such spati-
al information with current static measurement networks, the
trend is toward distributed measurements with large spatial
resolution.

A promising approach to achieve a high spatial and temporal
coverage is participatory sensing, i.e. the distributed measure-
ment by end users with the help of their personal end devices.
There are a number of challenges, in particular for air quality
measurements, ranging from new sensors that are cheap and
portable, over robust signal analysis and calibration algorithms,
to applications that help non-experts to correctly perform mea-
surements and contribute them while protecting their privacy.

This work focuses on the application scenario of participatory
environmental sensing, in which smartphone-based sensors
are used to measure the environment and usually non-experts
perform the measurements in a relatively uncontrolled manner.
The main contributions to this are:

1. Systems for detecting fine dust with smartphones (low-cost sen-
sors and novel hardware): Based on early research on fine
dust measurements with inexpensive off-the-shelf sensor
technology, a novel sensor concept has been developed
in which the fine dust measurement is carried out with
the aid of a passive clip-on attachment for a smartphone
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camera. Evaluations of the sensor performance were par-
tially carried out against laboratory measurements with
artificially generated dust and partially in real-world field
evaluations in which sensors were co-located with official
state-operated measurement stations.

2. Algorithms for signal processing and evaluation: Combinati-
ons of known OpenCV image processing methods (back-
ground subtraction, contour detection, etc.) were used for
image analysis in the novel sensor designs. The resulting
algorithm, in contrast to the evaluation of light-scattering
sum signals, allows direct counting of particles based on
individual traces of light. A second novel algorithm takes
advantage of the fact that Poisson data is afflicted with
signal-dependent noise, the ratio of which to the mean
value of the signal is known. This makes it possible to
analyze signals that are affected by systematic unknown
errors based on their noise and to reconstruct the “true”
signal from it.

3. Distributed privacy-preserving calibration algorithms: One chal-
lenge of participatory environmental measurements is the
recurring need for sensor calibration. This is, on the one
hand, due to the instability of (in particular) low-cost air
quality sensors and, on the other, due to the problem that
end users usually lack the means to perform a calibra-
tion. Existing approaches to so-called device-by-device-
calibration of sensors have been applied to data from low-
cost particulate matter sensors and extended by mecha-
nisms that allow sensors to be calibrated without giving
away private information (identity, location).

4. Human-Computer-Interaction design for Participatory Sensing:
On the basis of several small exploratory studies, a ta-
xonomy of the errors made by non-expert users when
measuring environmental phenomena with smartphones
was created empirically. From this, possible countermea-
sures were collected and classified. In a large summative
study with many participants, the effect of several of these
measures was evaluated by comparing four different vari-
ants of an app for participatory measurement of ambient
noise. The findings form the basis for guidelines for desi-
gning efficient user interfaces for participatory sensing on
handheld mobile devices.
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5. Design Patterns for Participatory Sensing Games on Mobile
Devices (Gamification): Finally, gamification of the measu-
rement process was explored to minimize user errors by
using appropriate game mechanisms. In contrast to exis-
ting work, the focus was on embedding sensing tasks
in smartphone games (e.g. so-called minigames), which
perform the measurement in the background once in a sui-
table context. For the development of this concept dubbed
“Sensified Gaming”, core tasks in participatory sensing
have been identified and juxtaposed with Game Design
Patterns that were collected from the literature.





Zusammenfassung

Diese Dissertation behandelt die Frage, wie mit kostengüns-
tiger Sensorik Feinstäube in hoher zeitlicher und räumlicher
Auflösung gemessen werden können. Dazu wird ein neues
Sensorsystem auf Basis kostengünstiger off-the-shelf-Sensoren
und Smartphones vorgestellt, entsprechende robuste Algorith-
men zur Signalverarbeitung entwickelt und Erkenntnisse zur
Interaktions-Gestaltung für die Messung durch Laien präsen-
tiert.

Atmosphärische Aerosolpartikel stellen im globalen Maßstab
ein gravierendes Problem für die menschliche Gesundheit dar,
welches sich in Atemwegs- und Herz-Kreislauf-Erkrankungen
äußert und eine Verkürzung der Lebenserwartung verursacht.
Bisher wird Luftqualität ausschließlich anhand von Daten rela-
tiv weniger fester Messstellen beurteilt und mittels Modellen
auf eine hohe räumliche Auflösung gebracht, so dass deren
Repräsentativität für die flächendeckende Exposition der Be-
völkerung ungeklärt bleibt. Es ist unmöglich, derartige räum-
liche Abbildungen mit den derzeitigen statischen Messnetzen
zu bestimmen. Bei der gesundheitsbezogenen Bewertung von
Schadstoffen geht der Trend daher stark zu räumlich differen-
zierenden Messungen.

Ein vielversprechender Ansatz um eine hohe räumliche und
zeitliche Abdeckung zu erreichen ist dabei Participatory Sensing,
also die verteilte Messung durch Endanwender unter Zuhilfe-
nahme ihrer persönlichen Endgeräte. Insbesondere für Luftqua-
litätsmessungen ergeben sich dabei eine Reihe von Herausfor-
derungen — von neuer Sensorik, die kostengünstig und tragbar
ist, über robuste Algorithmen zur Signalauswertung und Kali-
brierung bis hin zu Anwendungen, die Laien bei der korrekten
Ausführung von Messungen unterstützen und ihre Privatsphäre
schützen.

Diese Arbeit konzentriert sich auf das Anwendungsszenario
Partizipatorischer Umweltmessungen, bei denen Smartphone-
basierte Sensorik zum Messen der Umwelt eingesetzt wird und
üblicherweise Laien die Messungen in relativ unkontrollierter
Art und Weise ausführen. Die Hauptbeiträge hierzu sind:

1. Systeme zum Erfassen von Feinstaub mit Smartphones (Low-
cost Sensorik und neue Hardware): Ausgehend von früher For-
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schung zur Feinstaubmessung mit kostengünstiger off-the-
shelf-Sensorik wurde ein Sensorkonzept entwickelt, bei
dem die Feinstaub-Messung mit Hilfe eines passiven Auf-
satzes auf einer Smartphone-Kamera durchgeführt wird.
Zur Beurteilung der Sensorperformance wurden teilwei-
se Labor-Messungen mit künstlich erzeugtem Staub und
teilweise Feldevaluationen in Ko-Lokation mit offiziellen
Messstationen des Landes durchgeführt.

2. Algorithmen zur Signalverarbeitung und Auswertung: Im Zu-
ge neuer Sensordesigns werden Kombinationen bekann-
ter OpenCV-Bildverarbeitungsalgorithmen (Background-
Subtraction, Contour Detection etc.) zur Bildanalyse einge-
setzt. Der resultierende Algorithmus erlaubt im Gegensatz
zur Auswertung von Lichtstreuungs-Summensignalen die
direkte Zählung von Partikeln anhand individueller Licht-
spuren. Ein zweiter neuartiger Algorithmus nutzt aus,
dass es bei solchen Prozessen ein signalabhängiges Rau-
schen gibt, dessen Verhältnis zum Mittelwert des Signals
bekannt ist. Dadurch wird es möglich, Signale die von sys-
tematischen unbekannten Fehlern betroffen sind auf Basis
ihres Rauschens zu analysieren und das „echte“ Signal zu
rekonstruieren.

3. Algorithmen zur verteilten Kalibrierung bei gleichzeitigem Schutz
der Privatsphäre: Eine Herausforderung partizipatorischer
Umweltmessungen ist die wiederkehrende Notwendig-
keit der Sensorkalibrierung. Dies beruht zum einen auf
der Instabilität insbesondere kostengünstiger Luftquali-
tätssensorik und zum anderen auf der Problematik, dass
Endbenutzern die Mittel für eine Kalibrierung üblicher-
weise fehlen. Bestehende Ansätze zur sogenannten Cross-
Kalibrierung von Sensoren, die sich in Ko-Lokation mit
einer Referenzstation oder anderen Sensoren befinden,
wurden auf Daten günstiger Feinstaubsensorik angewen-
det sowie um Mechanismen erweitert, die eine Kalibrie-
rung von Sensoren untereinander ohne Preisgabe privater
Informationen (Identität, Ort) ermöglicht.

4. Mensch-Maschine-Interaktions-Gestaltungsrichtlinien für Par-
ticipatory Sensing: Auf Basis mehrerer kleiner explorati-
ver Nutzerstudien wurde empirisch eine Taxonomie der
Fehler erstellt, die Laien beim Messen von Umweltinfor-
mationen mit Smartphones machen. Davon ausgehend
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wurden mögliche Gegenmaßnahmen gesammelt und klas-
sifiziert. In einer großen summativen Studie mit einer ho-
hen Teilnehmerzahl wurde der Effekt verschiedener dieser
Maßnahmen durch den Vergleich vier unterschiedlicher
Varianten einer App zur partizipatorischen Messung von
Umgebungslautstärke evaluiert. Die dabei gefundenen Er-
kenntnisse bilden die Basis für Richtlinien zur Gestaltung
effizienter Nutzerschnittstellen für Participatory Sensing
auf Mobilgeräten.

5. Design Patterns für Participatory Sensing Games auf Mobil-
geräten (Gamification): Ein weiterer erforschter Ansatz be-
schäftigt sich mit der Gamifizierung des Messprozesses
um Nutzerfehler durch den Einsatz geeigneter Spielme-
chanismen zu minimieren. Dabei wird der Messprozess
z. B. in ein Smartphone-Spiel (sog. Minigame) eingebettet,
das im Hintergrund bei geeignetem Kontext die Messung
durchführt. Zur Entwicklung dieses „Sensified Gaming“
getauften Konzepts wurden Kernaufgaben im Participa-
tory Sensing identifiziert und mit aus der Literatur zu
sammelnden Spielmechanismen (Game Design Patterns)
gegenübergestellt.
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“The ultimate test of a moral society is the kind
of world that it leaves to its children.”

— Dietrich Bonhoeffer





1 Introduction

Ubiquitous computing has become reality: the proliferation
of smartphones and the emergence of the Internet of Things
(IoT) have enabled pervasive technology that reveals previously
unseen patterns of life. This also has lowered the bar for par-
ticipation, enabling everyday users to carry, maintain, operate
and even build computing equipment that senses and controls
the world around them. One of the great topics of our time that
is strongly affected by this development is the measurement of
ambient air quality.

Figure 1.: Emerging air quality sensing paradigms promise un-
precedented spatial and temporal resolution.
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Atmospheric aerosol particles pose a serious health hazard
on a global scale [139], which manifests itself in respiratory and
cardiovascular disease and causes shortened life expectancy. As
a result, societies around the globe have developed an increasing
awareness and people have started to gain an interest in the
levels of air pollution that they are exposed to. In the past, air
quality has been assessed on the basis of data from relatively few
fixed measurement stations and been brought to a high spatial
resolution using transport models, the representativeness of
which for the nationwide exposure of the population remains
unclear [83].

The goal of this dissertation is to enable distributed mobile
low-cost Particulate Matter (PM) measurements by non-expert
end users. For this purpose, a novel sensor system based on
inexpensive off-the-shelf sensors and smartphones is presented,
along with corresponding robust algorithms for signal process-
ing and findings on the interaction design for participatory
measurements contributed by non-expert users.

1.1 challenges

Distributed ambient fine dust monitoring has the potential to
deliver readings with a high temporal and spatial resolution
and low latency. However, it also entails a number of challenges
that need to be addressed and that cannot be viewed decoupled
from one another or the specific application scenario [47]. The
ones that relate to the data collection respectively to the quality
of the collected data are:

• Coverage: In order to achieve fine-grained spatial and
temporal resolution, a sufficient Coverage of the measure-
ment area in space and time is required. Different sensing
paradigms and collection schemes for distributed mea-
surements have been conceived [135], ranging from Wire-
less Sensor Networks (WSNs) over vehicular networks
to personal monitoring and Participatory Sensing (PS)
[48]. These each have different constraints, advantages
and drawbacks, as discussed deeper in chapter 2.

• Instrumentation: Closely linked to the achievement of ap-
propriate coverage is the choice of Instrumentation. This of
course again depends on the employed collection scheme,
i.e. how and where sensors are deployed and who the
sensing agents are. The larger the scale of a contemplated
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CalibrationUser Error

Instrumentation Coverage

Incentivization Privacy

Figure 2.: Challenges for distributed low-Cost environmental
sensing relating to the data collection, respectively the
quality of the collected data.

measurement system, the more important becomes instru-
mentation that is small, low-cost and portable, yet yields
data of adequate quality. Different device classes for a
variety of sensing approaches to measure fine dust have
been devised. They are presented in chapter 2, along
with a discussion of their respective suitability for mobile
distributed sensing.

• Calibration: Depending on both the employed instrumen-
tation and the collection scheme, the need for suitable
means of Calibration arises. As this may include the re-
quirement to more or less frequently re-calibrate and main-
tain the devices, suitable approaches ideally can be car-
ried out in-situ and with as little user involvement as
possible. Promising approaches that have been demon-
strated in other domains include self-calibration and cross-
calibration between devices or against reference stations
[104]. The latter may have implications for the coverage
of the area, as well as for privacy, in case the collection
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scheme involves humans carrying and/or operating the
sensors.

• Privacy: If humans are involved in distributed sensing,
they may need to share personal data, affecting their Pri-
vacy. If users for instance, regularly contribute sensor
data while going about their daily business, location traces
or even profiles of their habits may be inadvertently re-
vealed. Suitable mechanisms that protect sensitive data are
needed, particularly in the context of rendezvous-based
device-to-device calibration.

• User Error: Another important aspect when — especially
untrained — users are involved, is that of User Error and
the resulting implications for data quality. The more intri-
cate the measurement procedure, the more likely it is that
non-expert users may need aid in performing it. User error
can either be addressed through robust sensing and/or
data analysis techniques or through the appropriate design
of user interfaces.

• Incentivization: In order for larger scale systems to be
sustainable, it may be necessary to implement Incentiviza-
tion mechanisms to incite and maintain user participation.
Generally, urban sensing of air quality attracts environmen-
tally conscious people by itself. Gamification is a possible
approach to complement these intrinsically motivated par-
ticipants with ones that are driven by external incentives.
However, possible effects on data quality must be kept in
mind when designing such measures.

Other challenges are suitable processing mechanisms for data
fusion and analytics, as well as visualization — especially for
appropriately displaying data with varying uncertainty, etc.
While these are important aspects for real-world information
systems, they do not directly relate to the quality of the data
collection and are therefore not in the scope of this thesis.

1.2 contributions

In this dissertation, each of the presented challenges is ad-
dressed. While we focus on the scenario of affordable partici-
patory fine dust sensing, all contributions except the developed
instrumentation are applicable beyond, e.g. to sensing other
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phenomena or generally recording data with smartphones. The
main contributions of this dissertation are:

1. Systems for detecting fine dust with smartphones (low-cost sen-
sors and novel hardware): Early research including — to the
best of our knowledge — one of the first papers compar-
ing the data of low-cost Commercial-of-the-shelf (COTS)
light-scattering wit a gauged professional reference, the
first handheld platform featuring such sensors for mobile,
personal PM sensing and the first evaluation involving an
official state-operated reference station is presented. Based
on this early work, a novel sensor concept has been devel-
oped in which the fine dust measurement is carried out
with the aid of a passive clip-on attachment for a smart-
phone camera. Subsequent to a proof-of-concept version
that demonstrates that adapting the light scattering prin-
ciple to mobile phones works in this way, further design
iterations of the novel sensor concept are shown, with the
aim of achieving the required stability and sensitivity for
measurements in a real environment. Evaluations of the
sensor performance were partially carried out against lab-
oratory measurements with artificially generated dust and
partially in real-world field evaluations in which sensors
were co-located with official state-operated measurement
stations.

2. Algorithms for signal processing and evaluation: Based on
naïve analyses (simple evaluation of overall image bright-
ness), combinations of known OpenCV image processing
methods (background subtraction, contour detection, etc.)
were used for image analysis in the novel sensor designs.
The resulting algorithm, in contrast to the evaluation of
light scatter sum signals, allows direct counting of parti-
cles based on individual traces of light. As further part of
the development of the novel sensor component, a second
approach to sensor data evaluation was developed and
successfully tested. In the method, the measurement of
particulate matter is modeled as a Poisson process. The
technique takes advantage of the fact that Poisson data is
afflicted with signal-dependent noise, the ratio of which
to the mean value of the signal is known. This makes it
possible to analyze signals that are affected by systematic
unknown errors based on their noise and to reconstruct
the “true” signal from it.
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3. Distributed privacy-preserving calibration algorithms: One
challenge of participatory environmental measurements is
the recurring need for sensor calibration. This is, on the
one hand, due to the instability of (in particular) low-cost
air quality sensors and, on the other, due to the problem
that end users usually lack the means to perform a calibra-
tion. Existing approaches to so-called cross-calibration of
sensors when co-located with a reference station or other
sensors have been applied to data from low-cost partic-
ulate matter sensors and extended by mechanisms that
allow sensors to be calibrated without giving away private
information (identity, location). The evaluation was per-
formed simulatively on a mobility dataset with taxi cab
traces.

4. Human Computer Interaction (HCI) design for Participatory
Sensing: On the basis of several small exploratory studies,
a taxonomy of the errors made by non-expert users when
measuring environmental phenomena with smartphones
was created empirically. From this, possible countermea-
sures were collected and classified. In a large summative
study with many participants, the effect of several of these
measures was evaluated by comparing four different vari-
ants of an app for participatory measurement of ambient
noise. The findings form the basis for guidelines for de-
signing efficient user interfaces for participatory sensing
on handheld mobile devices.

5. Design Patterns for Participatory Sensing Games on Mobile
Devices (Gamification): Finally, gamification of the measure-
ment process was explored to minimize user errors by
using appropriate game mechanisms. In contrast to ex-
isting work, the focus was on embedding sensing tasks
in smartphone games (e.g. so-called minigames), which
perform the measurement in the background once in a
suitable context. An extension of this approach is to in-
tegrate not only the measurement process but also other
aspects of the participatory sensing system (such as en-
suring high coverage, rendezvous between participants
for cross-device calibration, etc.) in location-based games.
For the development of this concept dubbed “Sensified
Gaming”, core tasks in participatory sensing have been
identified and juxtaposed with Game Design Patterns that
were collected from the literature. A collection of the found
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design patterns was compiled and presented together with
the concept and a discussion of the implications for the
design.

1.3 structure of this dissertation

The remainder of this dissertation is structured as follows. In
chapter 2, background information on Particulate Matter (PM)
and distributed sensing scenarios is provided, including an
overview of existing PM measurement approaches and a discus-
sion of their suitability for mobile and distributed fine dust sens-
ing. Chapter 3 presents early research on the feasibility of using
COTS light scattering sensors for meaningful PM measurements.
In chapter 4, the adoption of that same measurement principle
in form of a passive clip-on sensor for camera-smartphones is
shown. Design iterations of the sensors are presented along
with suitable algorithms for on-device image processing.

The remaining three chapters focus on the user-related as-
pects of the underlying sensing scenario: Chapter 5 discusses
the application of existing node-to-node calibration algorithms
to PM measurements and presents the design of extensions for
these distributed calibration schemes that can protect the loca-
tion privacy of the user. In chapter 6, the landscape of human
error in participatory environmental sensing is explored em-
pirically, along with a survey on measures how to avoid them
and studies concerning their effects, both on error frequency as
well as on user experience (UX). The concepts in chapter 7 take
this approach further by embedding the sensing procedure into
game environments in order to reduce user error.

Chapter 8 summarizes the findings of this dissertation and
provides an outlook into possible future work. Appendix A
provides a full list of peer-reviewed scientific papers published
in the course of the author’s PhD studies, as well as a short
curriculum vitae.

publications

Parts of this thesis have previously been published in scientific
journals and conferences: [29]–[31], [33]–[35], [37], [39], [40],
[42], [43], [45]–[47], [153], [154]. A full list of the peer-reviewed
publications that were published in the course of the author’s
PhD studies is provided in Appendix A.
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Several bachelor theses, master theses and diploma theses
have been co-supervised by the author and served as basis for
many results described in this thesis, most notably: [12], [66],
[84], [152], [163], [175], [196].
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2 Background and

Related Work

This chapter first provides background information on atmo-
spheric particles and their measurement, followed by an intro-
duction to distributed environmental sensing scenarios and an
overview of related work.

Parts of this chapter have previously been published. Gov-
ernment regulations on Particulate Matter (PM) have been sum-
marized before [35] and a paper discussing distributed sensing
scenarios was previously presented on the International Con-
ference on Atmospheric Dust (DUST) [47]. Also, parts of the
introduction and related work may have appeared in different
previous publications [35], [37], [43].

2.1 particulate matter

PM, also referred to as Suspended Particulate Matter (SPM), is
the sum of liquid and solid particles suspended in the air. Their
origin can be both natural (e.g. dust transportation from deserts,
ejection from the sea, volcanic activity, forest fires, pollen, etc.)
or artificial (e.g. combustion, building, mining, road dust resus-
pension, tire and brake wear, etc.). Depending on the source, the
chemical composition and size of the particles may vary greatly.
Most PM particles are formed in the atmosphere as a result of
chemical reactions between pollutants [236], as well as through
coagulation, nucleation, and accumulation.

The effects of Particulate Matter on human health have been
extensively studied in the past decades [59], [79], [187], [197],
[202], [252]. PM particles are as small as body cells and largely
invisible to the naked eye1. Due to that, they can travel beyond

1 Though particles can either be indirectly seen through reduced visibility
(e.g. smog) or be locally visible due to high concentrations and/or strong
absorption (e.g. tobacco smoke or diesel soot).
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the larynx and deep into the lungs where they can damage
cells or deliver toxins into the body. The results are that fine
dust can be a serious health hazard, causing both acute and
chronic effects, as well as damage to the environment [251]. PM
presents a serious problem for human health on a global scale
[139], which manifests itself in respiratory and cardiovascular
disease and causes shortened life expectancy.

2.1.1 Size Classes

The International Organization for Standardization (ISO) has
defined several size fractions to use when sampling in order to
collect airborne particles [114]. The sum of all atmospheric parti-
cles is called Total Suspended Particles (TSP) or Total Suspended
Particulate Matter (TSPM). The so-called inhalable fraction con-
sists of all particles that are breathed in, i.e. that enter the mouth
and/or nose when breathing. The part of these that travel past
the larynx is the so-called thoracic fraction and the subset of the
thoracic particles that is small enough to be transported deeply
into the lungs is called the respirable fraction. Generally, the
smaller the particles are, the deeper are they transported into
the body and the larger are their effects on human health.

For the monitoring of air pollution, different classes of Partic-
ulate Matter have successively been defined, originally by the
U.S. Environmental Protection Agency (EPA) as part of a National
Ambient Air Quality Standard (NAAQS) [237] and subsequently
adopted in directives of the European Commission (EC) [87]
and in ISO standardization [115]. These are PM10, PM2.5, and
PM1. PM10 corresponds to the thoracic convention and PM2.5
corresponds to the high-risk respirable convention, as defined in
the ISO 7708:1995 standard [114]. PMx is often colloquially
defined to denote the total mass of particles with a diameter
of less than or equal to x µm. The general dimensions of the
currently most relevant classes PM10 and PM2.5 are depicted in
Figure 3 [236].

However, the above definition is simplified and not 100 %
correct. The actual definition is more complex: PM10 (respec-
tively PM2.5) is actually defined as “particulate matter which passes
through a size-selective inlet with a 50 % efficiency cut-off at 10 µm
aerodynamic diameter” (respectively 2.5 µm) [87], [115]. So firstly,
the definition entails the Aerodynamic Diameter (AD), rather
than the physical one and secondly, there are actually particles
of AD ≥ x in PMx, albeit a relatively small portion. The exact
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Figure 3.: Comparison of the dimensions of particles in the size
classes PM10 and PM2.5 (image by the EPA [236]).

measurement of Particulate Matter according to this definition
is not trivial. Butterfield et al. discuss some issues regarding
the precision [50].

Other size classes directly related to the ones mentioned above
are the so-called (inhalable) coarse particles, which are the ones
between 10 µm and 2.5 µm and can therefore also be written
as PM(10−2.5). Particles much smaller than PM1 are called Ul-
trafine Particles (UFPs). Their diameter is on the nanoscopic
scale, usually below 0.1 µm. Therefore, they are sometimes also
denoted as PM0.1.

In meteorology, particles are also often classified according
to their optical properties. Dark particles that heavily absorb
light are called Black Carbon (BC), lighter particles that reflect
or scatter light rather than absorb it are called Organic Carbon
(OC).

2.1.2 Regulations

Due to the adverse health effects of PM pollution, more and
more regulations regarding the reduction of man-made partic-
ulate matter have been set by governments around the world.
Such standards usually define limits for particle matter concen-
trations which may not be exceeded. Today, there are usually
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Class Maximum permitted Tolerated exceedances

10
µg
m3 (annual mean) –PM2.5

25
µg
m3 (24-hour mean) –WHO

20
µg
m3 (annual mean) –PM10

50
µg
m3 (24-hour mean) –

PM2.5 25
µg
m3 (annual mean) –

EU 40
µg
m3 (annual mean) –PM10

50
µg
m3 (24-hour mean) max. 35 days per year

15
µg
m3 (annual mean) –

USA
PM2.5

35
µg
m3 (24-hour mean) –

PM10 150
µg
m3 (24-hour mean) max. 1 day in 3 years

35
µg
m3 (annual mean) –PM2.5

75
µg
m3 (24-hour mean) –China

70
µg
m3 (annual mean) –PM10

150
µg
m3 (24-hour mean) –

Table 1.: Maximum permissible values for particulate matter as
suggested by the WHO [227], respectively set by the
EU [88], the U.S. EPA [238] and the Chinese Ministry
of Environmental Protection [60].

several of such maximum permissible values for different parti-
cle size classes and observation periods.

Table 1 shows different limits for the two most commonly
regulated classes (PM10 and PM2.5), as defined by the World
Health Organization (WHO) [227], the European Commission
(EC)/European Union (EU) [88], the U.S. Environmental Protec-
tion Agency (EPA) [238], and the Chinese Ministry of Environ-
mental Protection [60].

While the values provided by the World Health Organization
(WHO) are mere recommendations, the limits of the EU, the
EPA and China are compulsory. However, violations of these
limits are tolerated to a certain extent as part of some of the
standards (see Table 1).

The density of monitoring networks is rather sparse: Some-
times, only a single measurement station is used to determine
the particulate matter load for a large urban area. However, both
the individual exposure to potentially hazardous conditions as
well as the susceptibility to negative health effects vary from
person to person [227].
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Min. TimeMethod/Class Type Reading
Resolution

Latency

Gravimetric direct mass hours days to
weeks

β-Attenuation direct mass minutes minutes
TEOM direct mass seconds real-time
FBAR direct mass minutes real-time
Nephelometry direct aggregated

(particle
count,
size)

seconds real-time

OPC/Spectrometry direct particle
count, size

seconds real-time

Direct Imaging direct particle
count, size

minutes real-time

Deposition Imaging direct particle
count, size

minutes minutes

Aethalometry direct mass (BC) minutes real-time
Capacitive direct particle

count, size
seconds real-time

PAS direct absorption seconds real-time
GAM indirect aggregated

exposure
(BC)

n/a n/a

SP2 direct mass (BC) seconds real-time
LIDAR/Ceilometer indirect AOT minutes real-time
Sun Photometer indirect AOT minutes real-time
Radiometer indirect AOT minutes real-time
Spectropolarimetry indirect DoLP

(AOT)
minutes real-time

Table 2.: Comparison of PM measurement approaches2.

2.1.3 Measurement

In order to monitor the compliance with the presented standards
a variety of measurement methods have been proposed (see
Table 2). Systems and techniques can be distinguished according
to different characteristics. Measurement can be either direct,
i.e. observation of effects that stem from the direct interaction
with particles (such as absorption or scattering) or indirect, i.e.
observing effects that allow for conclusions about the aerosol
concentration rather than direct quantification. Sensing can
either be carried out in-situ or remote. Collecting methods require

2 Abbreviations are defined in the running text and in the glossary.
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particles to be deposited, e.g. on a filter, for a longer amount
of time in order to measure them, while online or (near) real-
time systems are able to determine the aerosol concentration
continuously and with little or no delay.

As outcome of the measurement, instruments may deliver
data on the mass concentration, the particle density, sizes or compo-
sition or other properties of the observed particles, as for instance
their radiation absorption capacity. The former ones are more rel-
evant for health effects and regulatory monitoring (see below)
while the absorption is most interesting for climate research,
as it is the decisive factor for global warming. Particle size
can either be directly inferred from the signal or determined
through additional techniques such as multiple instruments
with different size selective inlets or other technology for size
segregation, such as ionizing particles and then separating them
using strong electric fields. An important factor that can in-
terfere with particle sizing is humidity. Particles function as
condensation nuclei, leading to significantly increased size read-
ings upwards of ca. 70 % Relative Humidity (RH) [62], e.g. in
optical particle measurements. Similarly, in filter-based collect-
ing methods, humidity can accumulate in the filter material,
affecting the measured mass.

Gravimetric

Filter-based gravimetric measurements are the gold standard in
PM measurements, as they actually are the basis for the PM
class definitions above. Gravimetric sampling is a collecting
method, i.e. particles are deposited on a sampling filter for a
certain sampling window and later weighed and possibly further
analyzed. Because in order to collect enough mass, gravimetric
samplers generally need to sample over longer time intervals
and thus deliver average values and cannot show short-term
temporal patterns.

Many official measurement stations in current air quality
monitoring networks collect fine dust using a so-called High
Volume Sampler (HVS) or Low Volume Sampler (LVS). If both
PM10 and one PM2.5 are being monitored, multiple samplers
need to be employed for the measurement, one for each class
with an appropriate size selective inlet3. Figure 4 shows the
Leckel SEQ47/50 HVS [220]. These devices feature automated

3 There are gravimetric devices capable of measuring multiple size classes
using multiple impactors: The Wide Range Aerosol Classifier (WRAC) (some-
times also called super high volume sampler) measures a wider size range and
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filter changers which collect particles for periods of 24 h on the
surface of a filter element and then exchange it for a fresh one.
Therefore, it can take between one and three weeks before the
data from the gravimetric measurements is available, since the
filters are usually collected periodically and weighed in the lab.
In addition to this latency, these certified high-precision devices
are large, stationary and expensive and therefore usually very
sparsely deployed, typically only few stations covering large
urban areas.

Figure 4.: Leckel SEQ47/50
High Volume
Sampler (HVS)
with automated
filter changer.

The gravimetric measurement
approach has also been used in
wearable monitoring equipment.
The tiny Personal Environmental
Monitor (PEM) [216] is designed
for personal exposure tracking
and reportedly offers good re-
sults, but has the same draw-
backs as other gravimetric equip-
ment: the readout is delayed and
an average over longer intervals.
Also, analysis is difficult for non-
expert users.

β-Attenuation

The Beta Attenuation Monitoring
(BAM) method uses the absorp-
tion of beta radiation by solids
to measure PM. It exploits the
fact that “the radiation absorbed is
proportional only to the mass of fil-
tered matter and is independent of its
density, chemical composition and
physical or optical properties” [142].
BAM typically uses a differential
measurement approach in which a filter band collects particles
from an air flow and the readings of two Geiger counter de-
tectors are compared, one placed before and one after the flow
of sampled air. Advantages of BAMs include high instrument
precision and shorter averaging intervals and latency compared
to gravimetric measurements [96].

can characterize different size fractions. However, it is not suitable for
deployment in the general ambient environment [3].
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(Micro-)Mechanical

Mechanical systems that can be used to determine PM con-
centrations are microbalances. In a so-called Tapered Element
Ocillating Micro-Balance (TEOM), particles are deposited small
conical glass tube. The frequency of the natural oscillation of the
tube is changed through the additional mass of the deposited
particles and since mass and frequency correlate, the particle
mass can be calculated. TEOM monitors are sensitive to mechan-
ical noise and large temperature fluctuations. In a recent report,
the U.S. Environmental Protection Agency (EPA) concludes that,
“while under the correct conditions this method is reliable, it sensi-
tivity presents complications in urban environments, where PM10
concentrations are of the most concern.” [96]

In recent years, Micro Electrical Mechanical Systems (MEMS)
resonators have also been proposed for PM detection. Examples
are the Film Bulk Acoustic Resonator (FBAR) [80], [176] or the
Surface Acoustic Waves (SAW) resonator [101], both of which
use thermophoresis to force particles to deposit on the sensor
element and then measure the variation in resonance frequency
in real-time.

Optical

Optical particle measurement systems are based on some form
of interaction between the particles and light. Depending on that
interaction, optical measurement can be further distinguished
into systems that measure scattered light, or measure the damp-
ening of light, or analyze direct images. Without additional
measures, optical measurements are limited to detect particles
with a minimum size of ~ 100 nm.

In light-scattering, also known as Nephelometry, visible or In-
frared (IR) light from a Light-Emitting Diode (LED) or a laser is
emitted into a measurement chamber through which an aerosol
flows. The light is scattered on the surface of the particles
and then captured by a photoreceptor which is mounted at a
fixed angle (typically between 90° to 120°). Simple so-called
photometers that work according to this principle detect a sum
signal that aggregates the light scattered by multiple particles
in the measurement volume. From this signal, usually a mass
concentration is derived as output, assuming a certain material
composition in the sampled aerosol. This makes photometers
error-prone when sampling aerosols that do not follow the
underlying assumptions. Also, without additional technical
measures, size discrimination of the particles is not possible.
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There are very cheap commercial sensors that work according
to this principle, as discussed in-depth in chapter 3.

In contrast, in Laser Aerosol Spectrometry, single particles pass
through a laser beam or curtain, making it possible to obtain
particle counts. By analyzing the shape of the signal pulses,
these counts can additionally be assigned to different size bins.
Therefore, devices using this technology can simultaneously
measure multiple size fractions, e.g. PM10 and PM2.5. They
tend to be accurate and easy to use, which is why the EPA has
approved one laser aerosol spectrometer for the measurement of
PM2.5 [96]. To minimize coincidence problems, i.e. that multiple
particles are measured simultaneously, different approaches
exist, such as accelerating the air stream to pull the particles
apart.

Different technological measures exist that address the lim-
itations of optical measurements. An often applied approach
with photometers is to use impactors that limit the inlet stream
to particles below a certain aerodynamic diameter. A Dynamic
Mobility Analyzer (DMA) is a device that charges particles in
order to separate them by size through their different mobil-
ity in an electric field, yielding a fine-grained size segregation.
Condensation Particle Counters (CPCs) increase the size of par-
ticles by leading them through a saturator where they act as
nucleation centers for droplets, thus enlarging them. So called
Scanning Mobility Particle Sizers (SMPSs) combine several of
these techniques to deliver accurate size discrimination over a
wide range.

In Aethalometry, the sampled air is sucked through a filter
on which the particles are collected. With increasing time, this
creates a patch of increasing density, i.e. darkness on the filter
material. Continuous or periodic measurements of the transmis-
sion of a laser beam through the collected deposited particles
are performed until an upper limit for the density is reached.
Then, the filter material is moved and a new collection patch is
started. The increase in attenuation of the laser beam over time
is proportional to the concentration of BC on the filter and thus
in the ambient air. A system to measure BC with cellphones
that is based on this principle was presented by Ramanathan

et al. [191].
In direct imaging, an aerosol flows in between a light source

and a camera. Passing particles occlude the light, making it
possible to detect them through image analysis. The CAMSIZER
2X is a product that enables measurement as well as size and
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shape segregation of particles between 0.8 µm and 8 mm. A
drawback of the system is that it takes very high concentrations
for reliable measurements [194].

Another camera-based approach is dust deposition imaging
[188]. The detection simply is periodically taking an image from
a high-resolution Complementary Metal–Oxide–Semiconductor
(CMOS) or Charge-Coupled Device (CCD) image sensor, which
is installed at a 45° tilt. Through illumination with a uniform
light source, deposited particles occlude individual pixels that
can in turn be counted by differentially comparing images over
time. Since it relies on gravitational sedimentation, this tech-
nique is aimed at indoor measurement as it can only measure
particles in turbulence-free environments. Because of relatively
low deposition rates of small particles, sampling intervals need
to be long compared to other methods and only the coarse
fraction can be detected. The operation principle has been suc-
cessfully evaluated in the Vatican museums in Rome [189].

Acoustic

In Photoacoustic Spectrometry (PAS) [184], particles travel through
the beam of a modulated laser, i.e. a laser with varying intensity
over time, sometimes stronger, sometimes weaker. Illuminated
particles absorb the energy and heat up, subsequently releasing
the thermal energy into the ambient air. As the air heats up, it
expands and creates a sound wave, the frequency of which is
exactly the modulation frequency of the laser which was used
to excite the particle. The sound wave is then detected with a
very sensitive microphone and its amplitude is proportional to
the absorption capacity of the particle.

Noise has also been employed for indirect estimation of par-
ticle exposure. Generalized Additive Models (GAM) built on
the spectral evaluation of traffic noise have been shown to give
good predictions of BC concentrations, even in different cities
and cultural contexts [70].

Capacitive

An emerging paradigm for the measurement of particulate mat-
ter is capacitive detection. Carminati el al. have recently
proposed this approach that makes it possible to detect the tiny
changes in capacitance (in the zF range) that occur when a single
microparticle enters the electric field between two electrodes.
From the amplitude of the capacitance increase the particle di-
ameter can also be estimated [55]. While still being developed
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further, the approach is in principle suitable for in-flow mea-
surement of particles and has recently been reported to be able
to detect particles down to 1 µm [54].

Thermal

The Single Particle Soot Photometer (SP2) [133] is an instrument
designed specifically for the measurement of Black Carbon (BC).
It measures the mass of the particles. To do this, the particles
are illuminated by an extremely powerful laser (4 MW). They
absorb the energy from the laser beam which heats them up so
that they burn up. As they burn up, their mass is converted
into thermal electromagnetic radiation. This so-called Black Body
Radiation can be measured and is proportional to the mass of
the particle.

Remote Sensing

The term Remote Sensing covers all methods that do not measure
particles in-situ/on-site. Most of these techniques indirectly
gather information on the Aerosol Optical Thickness (AOT), which
in turn can be used to make conclusions about the particle
number. The gathered information often is of a qualitative
nature.

So-called Ceilometers are LIDAR instruments that vertically
emit short pulses of invisible laser light upwards into the sky.
A receiver located next to the laser catches the backscatter from
the aerosols in the atmosphere and the signal propagation delay
of a series of pulses can be used to determine a vertical profile
of the aerosol concentration. The main purpose of ceilometers
is cloud base determination, i.e. specifying the height of clouds.
However, the data on vertical visibility can also be analyzed
to gain insights into the possible presence of particles in the
air. Due to the relevance of cloud height for air traffic, there
are large global deployments of ceilometers, i.a. installations at
almost every airport.

Sun Photometers also are ground-based instruments, but con-
trary to ceilometers, they are pointed at the sun, measuring its
radiance. They are also passive instruments, i.e. they need solar
radiation to measure. Automatic versions track and follow the
sun’s path. The received solar radiance is affected by the earth’s
atmosphere and through multiple readings using appropriate
spectral channels, the Aerosol Optical Thickness (AOT) can be
determined and deductions about the aerosol concentrations
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can be made. Similar to ceilometers, there are large planet-
wide deployments of sun photometers, complementing satellite
instrumentation, e.g. the network AERONET [108].

Satellite-based radiometers can also be used to quantify the
AOT. They are passive instruments that need downward atmo-
spheric radiation to measure, i.e. they only work in the daytime.
The principle is again similar: Radiometric alterations due to
the optical atmospheric effects of aerosols are detected by in-
struments from multiple satellites comprising planetary remote
sensing aerosol monitoring networks [108]. Among these ap-
proaches, Spectropolarimetry not only tries to gather information
on the spatial distribution of atmospheric particles, but also
on their microphysical properties. By observing the Degree of
Linear Polarization (DoLP) under different angles and different
wavelengths, information on the refractive indices of particles
can be obtained for specific locations, which in turn can be used
to gain information on their shape and size [132]. The Spectropo-
larimeter for Planetary Exploration (SPEX) system was actually
initially developed to study the Martian atmosphere, but can
also well be employed to study that of Earth.

The same approach has been applied to realize ground-based
handheld remote sensing: The iSPEX system is an ultra-low-cost,
mass-producible hardware add-on for the iPhone that enables
crowd-sourced spectropolarimetric measurements, which aggre-
gate multiple readings for quantitative remote aerosol sensing
[217]. In this thesis, the iSPEX system was also used in one of
the exploratory studies to gain insights into the sensing behavior
of non-expert users (see chapter 6).

2.2 sensing scenarios

Particulate Matter (PM) sensing can be applied for a wide range
of scenarios and applications.

A major aspect of distributed networks are the implemented
deployment, collection and processing schemes, all of which af-
fect the coverage. There are several possibilities for this, many of
them established in Wireless Sensor Networks (WSNs). In WSNs
however, there are often dedicated data sink nodes and direct
(possibly multi-hop) communication between nodes, leading to
different challenges, such as contact detection and mobility con-
trol [76]. In our approach to distributed PM sensing, we focus
on direct data dissemination (e.g. via WiFi or mobile broadband)
and centralized processing, as this facilitates low latency process-
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Collection
Scheme

Advantages Constraints and Draw-
backs

Static Infrastruc-
ture

no or weak power con-
straints; no privacy issues

low, fixed coverage; cali-
bration intricate

Vehicular (non-
personal, sched-
uled)

periodic calibration possi-
ble; no privacy issues

GPS needed; limited, fixed
coverage; possible mobil-
ity issues

Vehicular (non-
personal, unpre-
dictable)

potentially large coverage;
no privacy issues

GPS needed; possible
mobility issues; possible
power constraints

Vehicular
(personal,
unpredictable)

potentially large coverage GPS needed; possible
mobility issues; possible
privacy issues; possible
power constraints

Participatory
Sensing

potentially large coverage;
socialization of costs and
benefits; supervised mea-
surements

battery operated, hand-
held equipment needed;
GPS needed; possible mo-
bility issues; possible pri-
vacy issues

Table 3.: Constraints, benefits and drawbacks of different collec-
tions schemes.

ing and hybrid approaches with heterogeneous devices as well
as fusion with other data sources, e.g. meteorological data or
traffic density [257], as well as calibration [104]. On the top level,
collection can be differentiated into static and mobile schemes.
Using statically deployed sensor nodes has the benefits that the
measurement environment is well-known and there is often the
possibility to power the sensor devices directly. However, to
cover a large area, many nodes need to be deployed and, more
importantly, maintained. This means that either (potentially
more expensive) sensors with strong calibration stability need
to be employed, or frequent re-calibration with high personnel
cost — or again mobile agents — is necessary. The alternative to
fixed deployment is the attachment of sensor devices to mobile
entities. In contrast to some WSNs, in the outlined scenarios
there is usually no coverage control, i.e. no control over the
movement of these entities.

However, knowledge concerning their mobility patterns may
exist. Mobility can be either unpredictable, i.e. the mobility prop-
erties (speed, direction and future positions) of the sensing
agents are unknown and possibly highly dynamic. This is
the case in Participatory Sensing scenarios involving end-users
and/or unscheduled vehicular platforms, such as taxi cabs [260],
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logistics fleets or bicycles, such as the Aeroflex [85]. These scenar-
ios potentially offer great coverage, but re-calibration is difficult,
as co-location of sensors cannot be predicted well, if at all. How-
ever, in the case of city bikes or taxis, periodic re-calibration may
be implemented at taxi stands or — if present — bicycle drop-off
stations, that already have an uplink anyway (see Figure 5).

Figure 5.: Public rental bicycles in Beijing, P.R. China. City bikes
with docking stands could provide a natural point
for calibration, as they are typically already equipped
with power and network access.

Calibration is much easier in scenarios using scheduled enti-
ties that travel along fixed paths, e.g. by deployment on public
transportation infrastructure such as trains, trams or buses,
which have regular and reliable routes. Example projects that
employed such platforms are OpenSense [1] or PMetro [56], where
PM measurement equipment was installed on the roof of trams.
However, in such deployments, possible effects due to the mo-
bility may occur. As sampling heads are usually not designed
for air intake while moving, this may affect data quality. This
is why, in the Aerotram [100] a dynamic sampling inlet was
employed, which automatically adjusts the air intake according
to the speed of the train.

An important challenge that arises in some collection schemes
is privacy, as sensor data is only useful with accurate location
data, which may in turn reveal sensitive information about in-
dividuals (personal vs. non-personal collection). Interestingly,
some of the presented schemes feature a sort of “intrinsic pri-
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vacy”: Taxi drivers do not reveal personal information and
public city bikes are not used by the same person for an ex-
tended period of time (and are tracked anyway, so no additional
information is collected).

Following this general distinction, we present an overview of
different use cases.

2.2.1 Regulatory Compliance Monitoring

The classic use case is regulatory compliance monitoring, but the
accuracy and stability requirements are very high and thus
unlikely to be satisfied by low cost instrumentation. In fact,
there are very few instruments that are certified for regulatory
compliance monitoring today. Nonetheless, complementing clas-
sical measurement grids with fine-grained low-cost dust sensing
approaches has the potential to provide municipalities with
important information, e.g. as means for finding and selecting
areas in which measurements with more accurate equipment
seem prudent.

2.2.2 Personal Information

Since the effects of both long-term and short-term exposure may
vary greatly between individuals, any standard or guideline
cannot completely protect each individual [227]. As a result, the
need for fine-grained mobile measurements in order to monitor
people at risk arises.

Personal measurement can be done based on different motiva-
tion: In Occupational Exposure Monitoring it is often compulsory.
Similar to the kind of devices which people carry in nuclear
facilities in order to measure and record their occupational expo-
sure to radioactivity, personal particle samplers can be applied
in potentially hazardous environments such as factories, chem-
ical plants, coal mines or woodworking shops. Also, people
who know of their higher-than-usual susceptibility to certain
environmental conditions could use such devices as a personal
warning system or exposure log. However, since such scenarios
are highly health relevant, a sufficient accuracy needs to be
reached.

People may also want to be sure on an informal level that
they are not overexposed to high concentrations of particulate
matter. Such Personal/Life Log or Quatified Self (QS) scenarios are
in principle similar to the one described before. However, the
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focus lies more on coarse information rather than precise mea-
surements here, much as it is the case with cheap commodity
UV-meters or thermometers anyone can buy for a few dollars.
Therefore, precision requirements are much lower.

2.2.3 Urban/Participatory Sensing

With sufficient density and appropriate networking, such indi-
vidual sensing can be extended to realize Participatory Sensing
(PS) by communities and the construction of pollution maps for
entire urban areas. Urban City Sensing approaches have been
proposed in the past, e.g. to create noise pollution maps of urban
areas [199],[147]. Low-cost mobile PM sensors enable such ap-
proaches for fine dust sensing as well. While it is expected that
the accuracy using simple devices is lower than that which can
be achieved using expensive stationary equipment, mobile mea-
surements would allow for a much higher spatial and temporal
resolution. This in turn might be exploited through clever algo-
rithms that fuse distributed multi-modal data of lower accuracy
to a big picture Also, if the measurement equipment is cheap
enough, such devices could e.g. allow developing countries to
erect inexpensive air quality measurement grids. An important
factor in so-called Participatory Sensing (PS) systems is the user,
as PS intrinsically involves empowering citizens [49].

2.2.4 Indoor Air Quality Monitoring

In industry, interest is also growing regarding low-cost mobile
PM sensing, especially when looking at the Asian market, where
urban air quality is generally more problematic. An upcoming
use case is the introduction of cheap PM sensing capabilities into
air purifiers, smart items or cars to monitor the interior air quality
or demonstrate the effectiveness of employed filtering measures.
Another aspect is the monitoring of industrial equipment that is
exposed to outdoor air, as part of machine health monitoring,
e.g. cellphone towers.

2.2.5 Context-aware Systems

Another novel use case would be enabling Context-sensitive Sys-
tems or Reactive Systems, such as e.g. dynamic pollution-based
traffic control or other approaches to not only monitor, but
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also effectively combat PM pollution. Such systems can also
be conceived on a local scale, e.g. in Smart Environments that
automatically open and close windows according to pollution
levels, etc. In these systems accuracy demands vary greatly,
depending on the application.

In Activity/Situation Recognition, actual meaningful readings
may not even be required at all. Weekly et al. for instance
presented a system that detected the indoor occupancy using a
low-cost dust sensor [243].

2.3 introductory related work

This section only briefly covers introductory related work. Spe-
cific related work pertaining to the contributions of this disser-
tation is located and discussed in the respective chapters.

A recent book deals with various aspects of Participatory
Sensing (PS) systems, among them a full chapter by Theunis et

al. on Sensing the Environment [229]. In the last years several
surveys in the area of next-generation air quality monitoring
with different foci have been presented. Snyder et al. presented
research on environmental sensing and the paradigm shift that
air quality measurement is undergoing in particular [218]. The
EPA draft of the Roadmap for Next Generation Air Monitoring [81]
also recognizes a growing support for passive monitoring using
handheld and/or wearable sensors.

In terms of technology and systems, Gozzi et al. presented
a survey on the mobile monitoring of particulate matter [97].
Work on WSNs for air pollution monitoring, including a review
of gas sensors, was presented by Yi et al. [256]. Carminati

et al previously reviewed some of the technologies presented
above for low-cost compact dust monitoring [55]. Their work
includes a nice overview of emerging miniaturized (respectively
miniaturizable) technologies for the pervasive monitoring of
airborne particulate matter. Devices were also the focus in a
review by Jovašević-Stojanović et al. [118],

An extensive report of the British Air Quality Expert Group
(AQEG) on air quality in the United Kingdom (UK) [4] fea-
tures a chapter in which different measurement approaches are
discussed and compared. The U.S. Environmental Protection
Agency (EPA) also discusses several measurement techniques
(respectively devices) along with their principle of operation,
advantages and limitations [96]. A rich source on a wide variety
of information concerning handheld air quality measurements

25



background and related work

is the EPA Air Sensor Handbook [250]. It includes discussion on
measurement use cases and according accuracy requirements.

2.4 conclusion

We have presented an overview of possible approaches for the
measurement of Particulate Matter (PM), along with a series of
possible scenarios. On the question of how to measure fine dust
using low-cost sensors with high spatio-temporal resolution,
we identified the optical light-scattering approach as most suit-
able, as it is a mature technology for which cheap off-the-shelf
sensors are already available. This makes it currently without
alternative.

Concerning a collection scheme, we believe that hybrid ap-
proaches with many low-cost sensors and some professional
reference equipment for re-calibration seem to be most promis-
ing for truly large-scale scenarios. As part of this, Participatory
Sensing (PS) has the potential to reveal unprecedented informa-
tion on the urban dynamics of fine dust.

In order to reach this, we argue that the presented challenges
cannot be addressed separately and a combination of smart ap-
proaches on different levels has the potential to realize systems
with an overall performance beyond that of the mere employed
instrumentation. We expect that addressing the presented chal-
lenges in a combined, holistic approach could be most suitable
for low-cost, distributed PM sensing: Motivated citizens, travers-
ing the city they live in, operate intelligible, affordable, mobile
instrumentation, the data of which is centrally combined to
ensure stable re-calibration as well as high data quality and
coverage.
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In the previous chapter, we identified light-scattering as the
most suitable technology for portable, low-cost Particulate Mat-
ter (PM) sensing, and a Participatory Sensing (PS) approach as
well-suited collection scheme to achieve high spatio-temporal
resolution measurements with low latency. This chapter presents
a mobile, low-cost particulate matter sensing approach for the
use in PS scenarios. It shows that meaningful readings can be
achieved with handheld personal measurement devices that
carry cheap commercial off-the-shelf (COTS) dust sensors. Parts
of this chapter have previously been published. While since
then more work on low-cost dust sensors and their performance
for PM measurement has appeared, the research presented here
was — to the best of our knowledge — one of the first published
papers comparing the data of low-cost PM sensing with com-
modity sensors against professional equipment [35], the first
handheld monitor featuring Commercial-of-the-shelf (COTS)
dust sensors for PM measurement [33], [34], as well as the first
real-world comparison measurements between such sensors and
an official government operated measurement station [37].

The development of the TECO Envboard was joint work with
Matthias Berning, Mathias Busse and Takashi Miyaki, who
performed the electrical engineering design and were signifi-
cantly involved in the firmware implementation. Parts of the sen-
sor characterization and evaluation were carried out by Rayan

Merched El Masri for his master’s thesis [84].

3.1 introduction

As motivated in chapter 2, a Participatory Sensing approach
seems especially well-suited to realize distributed PM measure-
ments with high spatial and temporal resolution. By providing
engaged individuals with low-cost sensing devices, they can
potentially quantify their individual exposure and at the same
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time contribute to accurate city wide estimations. However,
suitable tools to track PM levels need to be identified or even
developed. Such tools need to be:

• compact: Sensors should be small, ideally embeddable into
existing ubiquitous technology like mobile phones.

• inexpensive: Mobile measurement solutions need to be
affordable for Participatory Sensing scenarios to scale.

• usable: Usability is key for acceptance. Systems should ide-
ally require as little maintenance as possible, e.g. changing
filters, frequent charging, expert calibration etc.

• accurate: If readings are afflicted with high noise or un-
certainty, the value of the data decreases. Of course, ac-
curacy demands depend on the concrete application case
at hand and trade-offs between price and data quality are
inevitable. At the very least, readings need to add value
to whichever overall system they are used in.

• responsive: Finally, in order to identify sources and to
enable reactive systems, timeliness (i.e. low latency) of
data is desirable.

As argued in the previous chapter, we have identified light-
scattering as the currently most suitable technology for perva-
sive fine dust sensing, as small, portable, low-cost commodity
sensors exist and are readily available.

3.2 related work

Low-cost light-scattering dust sensors have been increasingly
applied to the problem of PM measurement in the last years.
Before that, e.g. the early Personal Environmental Impact Report
(PEIR) project [145] at UCLA used an indirect mobile phone
based approach to urban sensing: With the goal of sharing
“how you impact the environment and how the environment impacts
you”, logged data included the PM2.5 exposure and sensitive
site impact (PM2.5 particulate impact on sensitive sites such as
schools and hospitals). The exposure was not directly measured,
but instead calculated based on a variety of parameters such as
the proximity to known hazardous conditions or sites, as for
example freeways. While this can help people to assess their
exposure, it is actually dependent on better base data.

28



3.2 related work

Figure 6.: Range of measurement technology [47].

The inAir project [123] presented a phone-based tool to mea-
sure, visualize and share local indoor air quality through a
specifically developed device in conjunction with a Dylos parti-
cle counter, which is stationary and has no wireless data trans-
mission capabilities. In the Common Sense project [82], a similar
approach was developed, featuring a custom handheld air qual-
ity monitor, but with a focus on outdoor participatory urban
sensing. However, this device did not yet include a PM sensor.

Both the OpenSense project [2] and da_sense project make use
of public transportation vehicles to measure air quality beyond
a few fixed measurement stations. While da_sense proposes the
integration from different sources (such as infrastructure sen-
sors, environmental WSNs or smartphones) so far no PM data is
integrated. OpenSense on the other hand integrates the DISCmini
from Matter Aerosol into the mobile measurement setup which
gives a fine grained resolution for the covered tracks. Still,
the DISCmini is an expensive commercial hand-held particle
monitor, far too expensive for larger scale participatory sensing
scenarios. Other cheap devices, such as the Personal Environ-
mental Monitor (PEM) [216] or the UCB particle monitor [63] are
in principle suited for personal sensing, but have drawbacks
of their own: The PEM’s gravimetric measurement reportedly
offers good results, but readout is delayed and difficult for non-
expert users. The UCB monitor is only intended for use in indoor
environments. Several studies use semi-professional equipment
to monitor PM10 levels [182], which is unsuitable for large scale
Urban Sensing scenarios because of its cost.

Today, an increasing number of companies offer small, gen-
erally embeddable particulate matter sensors that could fit in
a hand-held measuring device. Several of these sensors were
compared in [35], the results indicating that only few of them
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actually seem to be suitable for the use in mobile PM mea-
surement scenarios. The next section discusses this class of
sensors in more detail. The Sharp GP2Y1010 has been used in
several dust sensing projects [71], [92], [121], [165], [177], [190],
[201]. However, many of the papers focus on node design or
networking aspects and none of them supply information on
how they enabled accurate readings from the simple sensor —
or whether they did at all. The Shinyei PPD42NS sensor has also
been studied quite intensively in the last years, both under lab
conditions [10], [150], as well as in the field [93], [110]. Choi et

al. very early on presented a Wireless Sensor Network (WSN)
sensor node equipped, among others, with this sensor. How-
ever, their preliminary evaluation with tobacco smoke showed
no remarkable detection by the sensor [61]. Holstius et al.
[111] presented the first field evaluation of the Shinyei PPD42NS,
which is similar to the work presented in this chapter. The
sensor — respectively one of its many clones — has also been
used in indoor applications such as the PiMi airbox [141], [261]
for indoor air quality monitoring or as a sensor to detect indoor
occupancy [243].

The next section presents a deeper discussion of these low-
cost sensors. Related work on emerging approaches of sensing
PM directly with cellphones [30], [186], [191], [217] is presented
in the next chapter.

3.3 instrumentation

For our experiments, we took a series of measurements with
cheap commodity dust sensors in order to investigate their
general suitability for the measurement of Particulate Matter
(PM). Our goal was to observe and quantify the margin of error
between our cheap sensors and a calibrated reference device
and to assess for which kind of application cheap COTS dust
sensors can be used, if any.

3.3.1 Sensors Selection

While there is a variety of stationary and handheld dust moni-
tors commercially available, there are not many small sensors
to choose from (see Table 4). All listed sensors employ the
light-scattering operation principle.

The Japanese company Shinyei [214] carries several relatively
sophisticated particle sensing modules in the upper price range
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and one low-cost sensor. Their availability is good and its design
has been copied many times: Two Korean sensors – the SYhitech
DSN501 and the NIDS PS02C-PWM – are both virtually identical
to the design of the Shinyei PPD42.

Air Size Retail
Sensor

Intake (mm3)
Output Range Power

Price

Sharp
GP2Y1010/
GP2Y1012/
GP2Y1023

[208] diffusion 46×30×18 analog (TSP) 0 – 0.5 mg
m3 0.1 W ~ 10 $

Sharp
DN7C3CA006

[209] fan 54×54×42 PM2.5 0.9 W ~ 30 $

SYhitech
DSN501

[8] heater 59×45×20 0 – 1.4 mg
m3 0.45 W ~ 10 $

Shinyei
PPD42NS

[213] heater 59×45×22 0 – 800,000
pcs
f t3 0.45 W ~ 10 $

Shinyei
PPD60PV

[214] heater 88×60×22 digital (), analog
(TSP)

0 – 2,000,000
pcs
f t3 0.7 W ~ 420 $

Shinyei
AES-1

[212] heater 90×90×23 single particles 300 – 300,000
pcs
f t3 3.6 W ~ 1,100 $

NIDS
PSX-
01E

[168] heater 59×45×20 0 – 2.0 mg
m3 0.15 W n/a

NIDS
PS02C-
PWM

[167] heater 59×45×20 0 – 2.0 mg
m3 n/a n/a

Nova
Fitness
SDS011

[171] fan 71×70×23 PM10, PM2.5 > 1 W ~ 35 $

Nova
Fitness
SDS018

[172] fan 59×45×20 PM10, PM2.5 > 1 W ~ 40 $

Alphasense
OPC-N2

[7] fan 75×64×60 PM10, PM2.5, PM1 < 5 W ~ 500 $

Table 4.: Specs of candidate dust sensors according to the data
sheets.

However, while information on the NIDS sensors is available
online [167], [168], our attempts to receive a quote for them
remained unanswered. The SYhitech is also available under
as Apollo DSM501. Other clones of the sensor design can be
found under different names, e.g. the STBM 271 DUST SENSOR
MODULE.

The second sensor with very good availability is the Sharp
GP2Y1010 optical dust sensor. It is mostly used in air quality
equipment, such as air purifiers, and can easily be obtained in
large quantities from various distributors around the world. A
variant of this sensor is the Sharp DN7C3CA006, which is the
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Figure 7.: Many of the sensors use a heating resistor to create an
updraft. This limits the possible operation conditions,
as the sensor needs to be installed having a fixed
orientation (image taken from [214]).

GP2Y1012on the inside, but with an added fan and impactor
casing.

All of the COTS dust sensors we found are principally small
enough to be incorporated into a handheld device, though the
larger ones could make such a device cumbersome. The sensors
are also all based on the same operation principle: A light beam
is emitted into a measurement chamber. When dust is present,
the light is refracted by particles and the amount of scattered
light is detected. All sensors except the Sharp GP2Y1010 (and
possibly the NIDS PSX-01E) additionally use a heating resistor
to create an updraft (see Figure 7).

For the applications outlined above, the use of such a heating
element has several drawbacks: First, since a current is needed
to heat the resistor, the power consumption is generally higher.
Second, the response time is higher, since it takes some time
– usually around 30 seconds – until the resistor is heated up.
Third and most important, the heating imposes strict orientation
restrictions during operation. This practically prevents the use
for any applications in which the device’s orientation cannot be
controlled. Finally, heated sensors can not be directly ventilated,
because this would influence the heating. This may restrict the
use in multi-sensor devices together with other environmental
sensors that need an airflow.

Two sensors that were not yet available at the time this re-
search was conducted are the Nova Fitness SDS011 [171] and the
Alphasense OPC-N2. We used the Nova Fitness SDS011 in our
calibration experiments in section 5.2. The Alphasense OPC-N2
is a laser scattering sensor which reportedly performs very well,
but also was de-scoped because of its significantly higher price.
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We opted for the Sharp GP2Y1010 optical dust sensor, since
it best fits our scenarios’ general requirements: cheap, small,
low-power, and easily available for our tests.

3.3.2 The TECO Envboard

While our initial experiments were carried out with the Sharp
GP2Y1010 dust sensors connected to an Arduino Mega single-
board microcontroller, for subsequent experiments and our field
evaluation we designed and used the TECO Envboard [34], a
custom AVR-based platform for Environmental Sensing. It

Figure 8.: The TECO Envboard [34] is a handheld multi-sensor
platform for research and development.
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Sensor Phenomenon No.

temperatureSHT-21

relative humidity
1

digital MPL115A atmospheric pressure 2

iAQ-Engine VOC (indirect: CO2) 3

ADXL345 3D acceleration 4

GP2Y1010 particulate matter 5

AlGaN-TO18 UV light 6

TEPT5700b ambient light 7analog
WM-61A noise level (dBA) 8

MICS 2614 O3 9

MICS 4514 CO, NOx 10

TGS4161 CO2 11

ITG-3200 3D magnetometer 12

HMC5883 3D gyroscope 13optional
MVS0608.02 motion/microvibration 14

NTC thermistor temperature (for compensation) 15

GPS module global postion 16

Table 5.: Sensors available on the TECO Envboard.

carries a variety of COTS sensors, ranging from weather sensors
like temperature and humidity over gas sensors to the GP2Y1010
for PM sensing.

The Envboard is powered by an integrated Lithium Ion Poly-
mer (LiPo) battery or a standard Micro-USB connector supplying
5 V, which is also used for recharging. It can be used in a stand-
alone fashion as well as in conjunction with a host device — e.g.
an Android phone or a laptop computer — to which it connects
via Bluetooth (BT). Sampling of the built-in sensors can either
be triggered via the command API (polling), or the Envboard
can be configured to sample periodically and send the values
via BT and/or store them on the integrated microSD card for
later readout.

At the heart of the Envboard is an ATmega 2561 Microcon-
troller Unit (MCU), which was mainly chosen for two reasons:
First, it offers a sufficient number of input pins for the variety of
sensors the Envboard carries. Second, the Envboard is intended
as a research and development tool that should allow for easy
modification. Thus, a MCU that can be programmed using
the Arduino language and IDE seemed to be a sensible choice.
On the communication side, the Envboard is outfitted with a
Bluegiga WT12 Bluetooth transceiver for wireless transmission.
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Alternatively, the device can be configured to communicate in
the same fashion through its serial USB interface.

The protocol that is used to interface with the Envboard is
based on the Firmata protocol1. It can be used to request the
Envboard’s status and adjust its parameter settings. This can
be anything from configuring the desired mode of operation
(stand-alone-measurement, periodical dissemination, polling
or mixed), over setting parameters such as the system time
or individual sampling intervals to (de-)activating individual
sensors or adjusting calibration data.

Table 5 shows the different sensors that are incorporated
into the TECO Envboard. These are all Commercial-of-the-shelf
(COTS) components. Since we did not need them, some of
the sensors (mainly the inertial sensors) were not populated
in the device revision we used for our experiments. Still, the
corresponding footprints and/or connectors are in place and
allow quickly adding them.

The Envboard’s housing protects the PCB from environmental
influences. Particularly, it shields the optical dust sensor from
possible outside sources of error, such as fluctuating ambient
light conditions [234] or bedewing [207]. A pair of micro-fans
ensures a constant air flow through the device and the dust
sensor, which enables continuous measurements while reducing
the risk of residual dust staying trapped in the sensor and
compromising the readings.

3.3.3 GP2Y1010 Dust Sensor

As described above, the Sharp GP2Y1010 employs light-scattering
as its operation principle: An Infrared (IR) light beam is emitted
into a measurement chamber. When dust is present, the light
is refracted by particles and the amount of scattered light is
detected. The measurement chamber is designed to be a light
trap, so that only the refracted light falls onto the receptor (see
Figure 9). While the sensor had been used in previous work
and seemed promising, it was clearly not designed to provide
accurate absolute readings. The GP2Y1010 is intended for the
use in air conditioners and air purifiers, its default detection
granularity is limited to the coarse distinction between house
dust, cigarette smoke, and no dust [207]. Although its data sheet
shows an exemplary relationship between the dust density and

1 https://github.com/firmata/protocol
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(a) (b)

Figure 9.: The Sharp GP2Y1010 dust sensor (a), and the structure
of its light trap on the inside and visualization of its
operation principle (b).

the sensor’s output voltage, it states that the graphs are “just for
reference and are not for guarantee” [208].

In order to test its performance, we conducted a series of
parallel measurements with the GP2Y1010 and a high-accuracy
laser photometer as a reference device, the TSI DustTrak DRX
8533 Aerosol Monitor (DRX 8533) [232]. After applying an ap-
proximation of the curve from the data sheet to the readings
of the sensor and comparing it to the measurements of the
DRX8533 reference device, we can see that the sensor output is
very noisy and the curves do not match (see Figure 10). This,
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Figure 10.: Raw readings of the GP2Y1010, computed according
to the exemplary reference curve in the datasheet
[208], vs. those of the DRX8533.

along with the fact that different specimen of the sensor dis-
played strongly varying output levels, lead to experiments with
signal processing and calibration.
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3.3.4 Accuracy Improvements

We started developing our refinements by investigating the
performance of the Sharp GP2Y1010 and its ability to measure
the particulate matter concentration in the air using the setup
described in [35]. All sensors were used as they were delivered,
using their unmodified factory sensitivity settings. We sampled
the sensors at the maximum possible frequency according to
the LED pulse width and waiting times documented in the data
sheet [208], which resulted in a sampling rate of ∼100 Hz. The
DRX 8533 reference monitor sampled at its maximum rate of
1 Hz, calibrating it according to the manual [232] prior to each
measurement run. We neither used impactors nor filters to keep
our samples clean from coarse dust.

Noise Reduction

The first step towards de-noising the sensor output was elim-
inating the outliers and thereby smoothing the output. Since
our reference device was sampled at 1 Hz, we also sliced the
GP2Y1010 readings into windows of 1 s length and calculated
the median over the 100 samples. The results are shown in Fig-
ure 11. A correlation between the Sharp GP2Y1010 output (upper
curve) and the DRX8533 measurements (lower curve) becomes
more clearly visible. As the particulate matter concentration de-
creases from about 100 µg

m3 to 50 µg
m3 within the first four minutes,

the GP2Y1010 output shows a similar tendency and decreases
as well, albeit only slightly. The increase in dust concentration
between the fourth and the sixth minute is also reflected in the
sensor’s readings. As a second process step to further reduce
the noise, we applied a moving average filter with a window
size of 60 s (i.e 60 data points) on the data. We separated the
noise reduction into two steps, because the first one can be easily
carried out in the sensing device before logging or transmitting
the data. By this, we can achieve data reduction without losing
significant information. The second step for further smoothing
can either be carried out on the device or on a back-end system.
By adjusting the window size, a trade-off between accuracy and
timeliness can be made.

Calibration

Using these improvements, we attempted to calibrate the Sharp
GP2Y1010 by mapping its output to the corresponding partic-
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Figure 11.: De-noised sensor output by averaging (median) over
1 s-windows.

ulate matter concentration, in order to later allow the direct
calculation of the dust concentration in the air. The sensor does
not feature different channels or any other means to distinguish
between particles of different sizes. Instead, we derived differ-
ent calibration coefficients for PM10 and PM2.5 respectively. To
have a broad spectrum of dust concentrations for calibration,
we built a self-made dust dispenser (see Figure 12). It basically
consists of a box and fan that is connected to a small bale of
steel wool (a). When the fan is turned on, the steel abrades chalk
inside of the box and blows it into the outer containment (b). A
filter sheet is used to prevent too much dust being dispensed
at once. In the full calibration setup, the air flows through
the dispenser, then into the box containing the Envboards and
finally through the DRX8533 (c). This dispenser makes it pos-
sible to quickly generate high dust concentrations which will
decay slowly after turning off the dispenser. By alternating
dispensing and ventilation phases, we enabled readings over
the full spectrum of the sensor. For the actual calibration of
the sensors we performed measurements over 18 hours, again
sampling the GP2Y1010 at 100 Hz and the DRX8533 at 1 Hz.
The dust dispenser was set to be turned on for 15 minutes once
an hour. This lead to a repeated sequence of rising and falling
dust concentrations, allowing the sensors to repeatedly measure
different concentrations levels.

We first applied the two de-noising steps that were described
in the previous section. The second step was also applied to
the readings of the DRX8533. Based on this data, we calculated
a linear scale factor a and offset b between the two curves as
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coefficients for the raw readings x to calculate the concentration
ρ(x):

ρ(x) = a · x + b

The results of these steps are depicted in Figure 13, once after the
first de-noising step (a) and once after the subsequent smoothing
of both curves (b). The graph’s ordinate represents the time (in
min) and plotted on the y-axis are the readings of the GP2Y1010
(10-bit ADC-values, black curve), respectively the PM10 values
measured by the reference device (in µg

m3 , red curve). These
figures clearly show that it is possible to align the readings of
both devices by linear calibration coefficients.

However, when applying the calibration data on consecu-
tive measurements, we encountered new problems: We discov-
ered that the offset of the sensor seemed to “‘jump around”
between different measurement runs, i.e. the sensor baseline

(a) (b)

(c)

Figure 12.: Calibration setup: dust dispenser box with chalk
reservoir and steel wool (a), outer containment (b),
and complete setup with Envboards (c).
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Figure 13.: Processing by de-noising and linear calibration: (a)
slicing into 1 s windows, (b) smoothening through
moving average filter with 60 s window.

de-calibrated. Also, the sensors displayed a significant drift over
time. Both effects can be observed in Figure 14. The graph
shows an 18-hour sampling session with the dust dispensing
pattern described above. We applied the coefficients derived
from a previous calibration run. In order to quantify the drift,
we examined several sensors over multiple measurement runs.
We found that the drifting behavior exhibited was nearly linear
with time and very similar for multiple passes. Thus, we were
able to reduce the drift by simple relative baseline manipula-
tion. We introduced a separate calibration step for each sensor
to determine its time-dependent drift factor k. Using this, we
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Figure 14.: (a) Drift when applying the calibration on a second
18 h-measurement and (b) compensation through
simple relative baseline manipulation.

adjusted our calculation of a and b. This lead to the following
new formula for calculating the concentration ρ:

x̂(t) = x− k · t
ρ(x, t) = a · x̂(t) + b

= a · (x− k · t) + b

Figure 14 (b) shows the result. Still, we saw further room for
improvement. In order to tackle this, we examined the effects of
other parameters on the GP2Y1010 output.
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Device/Sensor Detection
Method

Rate Range Price

Envboard [34]
Sharp GP2Y1010 [208] light (IR) scat-

tering
1 Hz† ∼0 – 500

µg
m3 $ ∼10

‡

DustTrak DRX 5833 [232] light (laser)
scattering

1 Hz 1 – 150,000
µg
m3 $ ∼9,000

State-operated Measurement Station
Grimm EDM 180 [98] light (laser)

scattering
∼ 10 min 0.1 – 6,000

µg
m3 $ ∼35,000

Leckel SEQ47/50 [220] gravimetric 24 h-mean n/a? $ ∼20,000

Leckel SEQ47/50 gravimetric 24 h-mean n/a? $ ∼20,000

† Using the de-noising steps presented in this work. The maximum raw sampling rate is
∼100 Hz.

‡ Cost of the analogue sensor. Additional costs for the data logger platform.
? Gravimetric measurements do not have an upper bound except their total filter capacity.

Table 6.: Comparison of measurement equipment in the differ-
ent evaluation settings.

Sensor Fusion

At this point, we switched to using the TECO Envboard sensor
platform [33], since there is a documented temperature depen-
dency of the GP2Y1010 [207]. We analyzed the readings of
the Envboard’s internal Sensirion SHT21 digital temperature and
humidity sensor. There is a very strong relationship between
the readings of the two sensors. To correct for this, we again
devised a linear compensation2 as a function of the temperature
T according to measurements taken at a reference temperature
T0 of 20

◦C. We introduced another calibration step after the
drift compensation and before calculating the scale factor and
offset, again leading to a revised formula for calculating a and
b, respectively ρ:

ˆ̂x(T) = x̂(t) + αT · ∆
ρ(x, t, T) = a · ˆ̂x(T) + b

= a · (x− k · t + αT · ∆T) + b

Overall, the combination of these steps greatly improved accu-
racy of the readings. However, the already observed effect of
the offset de-calibration could not completely be eliminated by
this. While the scale factor a could be accurately derived from
the calibration process, several independent influences lead to

2 We expect this formula to perform less well in extreme temperatures and
aim at replacing the linear correction in the future.
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a shift in the offset b. The base line of the sensor output shifts
not only with varying temperature, but also depending on other
factors, such as changes in the measurement frequency (even
though within specification). As a result, we neither sampled
the sensor irregularly nor changed the fixed sampling frequency
between measurement passes. We also observed shifting base
levels depending on the subset of sensors that we sampled.
While this may be due to device peculiarities, we decided to
use a fixed set of sensors for all our consecutive measurements.
Even so, we kept encountering changes in the offset between
measurement runs. The offsets seemed to change randomly
every time the sensors are turned off and on, even after trying to
remove any residual charge. Therefore, we decided to make use
of additional information we may have in Participatory Sensing
scenarios to combat this problem.

On-the-fly Calibration Correction

While all previous improvement steps took place on the device
level, Participatory Sensing scenarios have the potential to fur-
ther improve measurement accuracy by sharing information
across devices. This can be as simple as averaging readings
from co-located devices to reduce measurement errors. More
sophisticated approaches may take the shape of the actual data,
dispersion models, calibration age, device type, etc. into account
when correcting values as well. An example for the applica-
tion of instant calibration of low-cost gas sensors, either in each
other’s vicinity or even multi-hop, was presented in [104]. We
propose to use the data from co-located sensors to eliminate the
problem of offset de-calibration that the GP2Y1010 described
above. In order to do this, we used measurements from a co-
located reference point to correct the calibration of the hand-held
devices. A reference point can either be a high-precision pro-
fessional measurement station or another device which has a
high confidence that it is correctly calibrated. The device that
carries the GP2Y1010 sensor then uses the reference values to
correct its bias. As we only intend to correct changing offsets,
only very few measurements have to be transmitted from the
reference device to achieve notable improvement. We show the
potential improvement by simulation in the next section of this
paper. More sophisticated device-by-device calibration tech-
niques, including privacy-protecting measures, are presented
and discussed in chapter 5.
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3.4 evaluation

Aside from the hours of measurements we made throughout
the process of improving the sensors’ accuracy, we conducted
two longer measurement sessions in order to evaluate the per-
formance of our system under operating conditions: Firstly, we
did a controlled indoor evaluation of the calibration. Secondly,
we co-located the sensor platforms with official state-owned
measurement stations. Thirdly, we simulated on-the-fly calibra-
tion correction for all evaluation runs and discuss the possible
improvements. In addition to our sensor boards and the refer-
ence device, we obtained the data from the officially approved
measurement equipment that is used in the state’s monitor-
ing stations. Table 6 shows an overview of the measurement
equipment that was used in the test. It is noteworthy that the
GP2Y1010 dust sensor costs only a fraction of the reference

Figure 15.: Setup of the indoor lab evaluation: Six Envboards and
the DRX8533 as reference.
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devices. This section shows how well our improved readings
compare to the accuracy of the professional equipment.

3.4.1 Lab Evaluation (Indoor)

The first session was an indoor evaluation of our processing
steps. In contrast to the prior calibration, our sensor platforms
were only co-located with the reference meter, but not sampling
the exact same air flow (see Figure 15). We measured the indoor
particulate matter concentrations using six TECO Envboards and
the DRX8533, which was only sampled every fourth second,
since the maximum sampling frequency is limited by the inter-
nal logging space (18 h at 1 Hz) and we intended to validate our
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Figure 16.: Indoor PM2.5 evaluation: (a) calibrated GP2Y1010
sensors against the DRX8533 reference, (b) values
after on-the-fly correction.
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refinements over a longer period of time (three days). The mea-
surements of the PM2.5-concentration are shown in Figure 16

(a).
As expected, it is clearly visible that the readings from the

calibrated hand-held devices show a strong correlation to those
of the reference device, the scale factor calibration was successful.
However, it can also be observed that the problem of offset de-
calibration persisted. The DRX8533 measured an average of

(a) (b)

(c)

Figure 17.: Field evaluation: state-operated measurement station
(a), equipment in weather protection box (b), and
installment on rooftop (c).
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46.8 µg
m3 over the 60 hours, the Envboards measured averages

between 18.5 µg
m3 and 68.5 µg

m3 . This can be already considered
to be very accurate in light of the intended use of the Sharp
GP2Y1010. Further calculations lead to even better results: By
simply taking the mean of the five devices, we arrive at a very
close match to the values measured by the DRX8533. However,
this is not generalizable and only limited trust can be put into
the values of a single device.

This is why we continued to simulate the on-the-fly calibra-
tion correction we presented earlier. Figure 16 (b) shows the
dust concentrations measured by the hand-held devices after
applying the on-the-fly calibration step. We randomly selected
three consecutive data points from the reference device and
“transmitted” them to the mobile devices, which in turn “cal-
culated” the difference between the locally measured values
and the reference value in order adjust their offset accordingly.
This notably improved the accuracy of the devices. Similar to
PM2.5, the PM10 curves of the hand-held devices show the same
general behavior. Without on-the-fly calibration, the offsets were
a little larger, and the simple mean did not fit as well. After
simulating on-the-fly calibration, the gain was comparable to
the PM2.5-case.

3.4.2 Field Evaluation (Outdoor)

For our field evaluation, we co-located several Envboards with
an official state-owned station that measures different types of
background pollution. Our measurements took place in the late
Winter 2012/13. We used the same, unaltered devices as in the
lab evaluation, the only difference being that we placed them
inside a small, well ventilated box in order to shield them from
rain and snow (see Figure 17). We added the DRX8533 as well.
This setup was then placed on the rooftop of the measurement
station, next to the air inlets of the other samplers, and logged
for seven days continuously. After retrieving our setup, we
compared the data of the official measurements to our own.

The state uses three measurement devices at the station, one
optical and two gravimetric (for details, see Table 6). The Grimm
Technologies Model EDM 180 PM Monitor is a laser scattering
aerosol meter that has “the European Equivalence Approval for
PM10 and PM2.5 as well as the US-EPA Approval for PM2.5” [98].
It measures the PM10, PM2.5 and PM1 levels at a maximum
frequency of ten samples per minute. Usually, the state is not
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interested in such a high temporal resolution, so that only 15 or
30 minute averages are recorded. Their main aim is to be able to
release timely readings of the 24 h-means before the gravimetric
measurements are analyzed in the lab. The gravimetric readings
in the station are gathered by a pair of Leckel SEQ47/50 High
Volume Sampler (HVS) [220], one for PM10 and one for PM2.5
measurements. It takes between one and three weeks before the
data from the gravimetric measurements is available, since the
filters are periodically collected and weighed in the lab. The re-
sulting data is then also used to perform a backwards correction
of the time series data from the EDM180, since experience has
shown that even the certified optical measurements show a de-
viation of within ±10% accuracy. However, since we expressed
our interest in data with a higher temporal resolution, the state
supplied us with 1 min-averages of the sampled values.

The PM2.5-concentration over the seven days is shown in
Figure 18, PM10 in Figure 19. The devices show the same phe-
nomenon as in the indoor experiment. The GP2Y1010 is able to
detect the changes of the dust concentrations but the values have
a constant offset to reference values. Additionally, some inaccu-
racies regarding the scale factor are also visible. The transfer of
the indoor calibration coefficients to the outdoor scenario did
not work as smoothly as we had hoped. One explanation for the
observed deviation could be that the temperature outside was
as low as −5

◦C, much lower than we went when characterizing
our sensors’ temperature dependency. We assume that the sim-
ple linear correction we used is inadequate at “more extreme”
temperatures.

Aside from the continuous measurements, we also looked at
24 h-means of each device, as this is the quantity that is currently
relevant for regulatory purposes. The results are shown in
Figure 20 and Figure 21 respectively. We can see that on-the-
fly-calibration achieves improvement in the outdoor scenario
as well. This is especially true for the 24 h-means which can be
brought down to a very small error, both individually or when
averaging over multiple devices.
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Figure 18.: Outdoor PM2.5 evaluation: (a) calibrated GP2Y1010
sensors against the DRX8533 reference, (b) values
after on-the-fly correction.
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Figure 19.: Outdoor PM10 evaluation: (a) calibrated GP2Y1010
sensors against the DRX8533 reference, (b) values
after on-the-fly correction.
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Figure 20.: Comparison of 24 h-means for PM2.5 before (a) and
after (b) applying the on-the-fly calibration.
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Figure 21.: Comparison of 24 h-means for PM10 before (a) and
after (b) applying the on-the-fly calibration.
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3.5 conclusion

In this chapter, we have presented past research on the use of
low-cost PM sensing technology in Participatory Sensing scenar-
ios. We investigated a cheap commercial off-the-shelf (COTS)
dust sensor, the Sharp GP2Y1010 in terms of its accuracy and pre-
sented several calibration, processing and sensor-fusion steps,
that lead to meaningful readings from the sensor. We showed,
that in a Participatory Sensing scenario, devices equipped with
the sensor can use information from co-located devices in order
to stabilize and improve their readings. We conducted a series
of experiments to juxtapose the performance of a gauged high-
accuracy measurement device and the GP2Y1010, that show
good performance in lab situations and practically relevant re-
sults in a realistic setting.
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4 Novel Sensing

In this chapter, this work discusses ways of measuring Particu-
late Matter (PM) directly with mobile phones. So, in contrast to
the approach described in chapter 3, no additional standalone
sensor or dedicated device that needs to be paired to the phone
should be involved. To this end, a method of retrofitting a sensor
to a camera phone without the need for electrical modifications
is presented, in which the flash and camera of the phone are
used as light source and receptor of an optical dust sensor re-
spectively. Several design iterations are presented along with
two different algorithmic approaches to process the recorded
camera images.

Parts of this chapter have been previously published. The
proof-of-concept version of the camera phone-based dust sens-
ing approach has been implemented by Pierre Barbera for
his bachelor’s thesis [12] and the concept has been published
in the proceedings of the International Symposium on Wearable
Computers (ISWC) [30]. Some of the preliminary considerations
for the custom 3D printed sensor design were presented on the
International Conference on Atmospheric Dust (DUST) [40]. The
Poisson Particle Detection (PPD) algorithm was developed in
cooperation with Marcel Köpke and presented on the ISWC as
well [39].

4.1 related work

As related work on handheld fine dust monitoring has already
been covered in section 3.2, this section only discusses work
related to internal smartphone sensors or clip-on approaches
that enable direct measurement with phones. Related work on
the algorithmic approaches is presented below in section 4.5.1.

A system to measure Black Carbon (BC) with cellphones was
presented by Ramanathan et al. [191]. The Aethalometry-based
approach involves BC aerosol collection on a quartz filter, the
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coloration of which is than captured by the phone’s camera and
transmitted to an analytics component for real-time evaluation.

Another interesting approach to measuring atmospheric dust
in Participatory Sensing scenarios has been presented by the Air
Visibility Monitoring [186] respectively the iSPEX [217] projects.
In the former, people use their camera phones to take pictures of
the sky and upload them to a central database. There, from the
image luminance, the location and phone sensor data (e.g. ori-
entation), the particle pollution is estimated. Cloudy skies and
indoor environments present clear limitations to this approach.
The iSPEX system makes use of a passive spectropolarimetric
clip-on module for the iPhone. It has been successfully used in
single-day measurement campaigns on a Participatory Sensing
scale.

Other efforts to enable particulate matter sensing with smart-
phones have been made in the past, among them approaches that
aim at developing small sensors that can actually be integrated
into the casing of a smartphone: Carminati et al. presented the
design of a capacitive particle sensor that has the potential to be
micro-fabricated and embedded into phones [53]. In a different
approach, Doering et al. enabled direct measurement of the
mass concentration of particles with an air-microfluidic Micro
Electrical Mechanical Systems (MEMS) design [80]. These devel-
opments both show interesting approaches as well as promising
performance. However, there may be one issue with the general
approach of miniaturizing sensors that far. This is not a question
of detection principle rather than purely one of statistics: The
smaller the detector volume, i.e. the amount of air that can be
sampled at a time, the more consecutive measurements need
to be taken in order to make a statistically reliable statement
concerning the mean concentration. This has implications for
air flow and measurement frequency requirements. We discuss
this a bit deeper in section 4.3.1

Our own idea of enabling direct smartphone-based PM mea-
surement is to use the flash and camera of a smartphone as
active components of a clip-on light-scattering fine dust sensor
(see Figure 22). Other work has shown that a phone’s cam-
era and flash can be leveraged beyond taking photos, e.g. to
measure physiological parameters [205], such as the heart rate
[179] or Arterial Blood Oxygenation (SpO2%) levels [134], or
for fluorescence-based measurements with disposable optical
sensor chips [174].
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4.2 proof of concept

As described in the previous chapter, experiments with the
Sharp GP2Y1010 dust sensor had shown that meaningful PM
measurements can be made with cheap Commercial-of-the-shelf
(COTS) dust sensors. In order to remove the need for external
platforms that communicate their measurements to a host, e.g.
via Universal Serial Bus (USB) or Bluetooth (BT) and thereby
reduce the added cost arising for an MCU platform as well as
the additional maintenance effort being imposed on the user by
needing to carry, charge and operate a second device. Our alter-
native is to retrofit camera smartphones with an exchangeable
dust sensor, e.g. attached to or embedded into the back cover
(see Figure 22).

This way, the sensor is very easy to install and can e.g. be
exchanged again for a regular back shell when it is not needed.

LED receptor

dust
particles

(a)

flash camera

dust
particles

optical
fiber

smartphone

(b)

Figure 22.: (a) Sharp GP2Y1010 dust sensor and operation princi-
ple, and (b) prototypical implementation with modi-
fied emitter-receptor configuration embedded in the
back cover of an otherwise unaltered phone.
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For our modifications, we used an unaltered HTC Desire smart-
phone running Android 2.3.3. We removed the photodiode and
LED from a Sharp GP2Y1010 dust sensor and attached the disas-
sembled sensor’s light trap and lenses to the back cover of the
smartphone. This was done so that the phone’s camera replaced
the original photodiode. A short piece of optical fiber was then
used to convey the light from the phone’s LED flash to the
correct position of the light trap, replacing the sensor’s original
LED (Figure 22 b). Both components were optically isolated
from each other. A simple application was used to record a
series of still images or video frames for the duration of the
measurement. We compared our prototype against a gauged
reference device, a TSI DustTrak DRX 8533 Aerosol Monitor (DRX
8533) aerosol monitor. The captured images were analyzed and
as transfer function, the overall light intensity was summed up
as a measure for the concentration level (see Figure 23). Another
way to look at it is, that first, a grayscale histogram of the image
is built and then the amount of pixels ni for each of the 256

intensity levels i is counted. The output is the weighted sum
Σ255

i=0 = i · ni, thus giving each pixel a weight according to its
intensity.

input : an RGB bitmap img of size w× h
output : a single brightness value corresponding to the dust

concentration

1 brightness← 0;
2 for i← 0 to h− 1 do
3 for j← 0 to w− 1 do
4 pixel ← (img[i, j][0] + img[i, j][1] + img[i, j][2])/3; // RGB to

gray

5

6 brightness← brightness + pixel; // sum up

7 end
8 brightness← brightness/(w× h); // normalize to [0,255]

9 end
10 return brightness;

Figure 23.: Naïve Brightness Algorithm

Figure 24 and Figure 25 show the results of our initial tests.
The readings of our retrofit PM sensor corresponded very well
to those of our reference device, albeit in this first prototype
only down to concentration levels of ~10 mg m−3. While this
was enough to detect smoke or large concentrations of coarser
dust, it was not yet sufficient for the detection of typical fine
dust concentrations.

58



4.2 proof of concept

0 500 1000 1500 2000 2500

10
6.3

10
6.4

10
6.5

10
6.6

M
ea

su
re

d 
V

al
ue

 (
A

rb
.)

, L
og

 s
ca

le

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

80

90

100

Time (s)

R
ef

er
en

ce
 m

as
s 

co
nc

en
tr

at
io

n 
(m

g 
/ m

3 )

Figure 24.: Example particulate matter concentration measured
with the proof-of-concept prototype, producing ac-
curate readings down to ~10 mg m−3.
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Figure 25.: Output values of our prototypical smartphone
dosimeter vs. those of the reference device TSI Dust-
Trak DRX 8533.

Still, these preliminary experiments have demonstrated the
feasibility of the approach of retrofitting camera phones with
dust sensing capabilities. The presented design was tested and
shows good initial qualitative performance. However, the evalu-
ation also showed that the sensitivity of the sensor needed to
be improved to detect much lower concentrations. Experiments
with active version, in which the optical fiber was replaced by
an LED for testing purposes, revealed that the passive sensor de-
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sign of the proof-of-concept prototype suffered from insufficient
light intensity levels in the measurement chamber, probably due
to the simple coupling between flash and optical fiber. Other
aspects that needed improvement were reducing the sensor’s
form factor to make it less bulky.

In order to address these issues, the next section discusses
design constraints, limitations and the benefits and drawbacks
of different design variants.

4.3 design considerations

This section first presents some theoretical considerations re-
garding the field of tension between different design parameters
of the sensor. This includes lower bounds concerning sensible
choices for the dimensions of the hardware add-on as well as a
discussion of active vs. passive versions of the sensor.

4.3.1 Estimations and theoretical limitations

For the following considerations, we assume that the detector is
operated in an environment with a constant particle concentra-
tion during the measurement time frame T. Of course, one can
imagine fast intense events perturbing the particle concentration.
However, in the majority of scenarios, mean concentrations of
fine dust can be assumed to be constant over intervals in the
range of minutes. For near-real-time particulate matter sensing
this would be an acceptable temporal resolution. We argue
that the few cases in which these measurement constraints are
not met are more or less negligible since our design aims at
distributed sensing scenarios with many dense and possibly
redundant individual measurements.

As particles move through space due to diffusion and natural
convection, they also travel through the detector.1 Equivalently
to the environment moving through the detector we can imagine
the detector moving through the environment, with each picture
taken by the camera representing a different section of the
environment.

Particulate matter is a discrete measurement variable, mean-
ing that dust is composed of discrete particles, entering the
measuring chamber at discrete points in time. The pure act
of counting these signals within a given volume is a stochastic

1 The particle exchange in the detector can be actively performed using a fan
attached to the detector, as also discussed in the next section.
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process. In a given picture i, the number of particles counted
in that picture is defined as ni. The mean counting rate n(ti) at
the time ti when the i-th picture frame is shot, is defined as the
mean of ni over the A last frames shot:

n(ti) =
1
A

i

∑
j=i−(A−1)

nj (1)

Such processes obey a Poisson probability distribution if the
expected mean counting rate n(ti) is constant over time.2

For such Poisson processes the mean number n of measured
particles in A last taken picture frames is correlated to the
standard deviation σn of the measured signal:

σn =
√

n (2)

This gives constructive limitations to the measurement device
if a certain amount of statistical error is not to be exceeded.
An indicator for the theoretically achievable precision and re-
peatability is given by the Relative Standard Deviation (RSD) or
Coefficient of Variation (CV), denoted cv:

cv =
σn

n
=

1
n

(3)

With a bigger n the coefficient of variation improves. So in
general, one wants to capture and detect as many particles as
possible within a single measurement.

For a certain mean concentration ρi, a detector volume V, a
mean particle diameter D, and a mean particle density ρ, the
theoretical coefficient of variation (respectively the amount of
error) for a single measurement is:

cv =
1√
n
=

√√√√ρ · 4
3 · π ·

(
D
2

)3

ρi ·V
(4)

As an example, for a mean concentration of ρi = 10.0 µg m−3

(typical background concentration in industrialized countries),
a measurement volume of V = 1000 mm3 (10 mm edge length),
a mean particle diameter of D = 10 µm and a particle density
of ρ = 2.5 g cm−3 (which is in the range of common particulate
matter solids), the relative statistical error would be E ≈ 1140 %.

2 The counting rate can be assumed to be constant, as we are in an environment
of constant particle concentration.
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Thus a single detector of such characteristic length scale cannot
measure such concentrations reliably. However, by performing
several independent measurements within the time interval T,
in which the counting rate n is assumed to be constant, we can
treat the individual readings as a single big measurement and
reach a higher effective counting rate ne = f · T · n with f being
the measurement rate and T being the sampling duration. The
CV rating improves significantly:

cv,e =
1√

f · T · n
=

1√
f · T

· cv (5)

If we consider the calculation for the example above again, a
number of k ≈ f · T = 52349 independent measurements which
e.g. correspond to a time period of T ≈ 8.72 min and a measure-
ment rate of f = 100 Hz have to be performed to lower the cv

Coefficient of Vari-
ation (cv,e)

Sampling fre-
quency ( f )

Sampling dura-
tion (T)

5 % 30 Hz ~29.0 min
5 % 60 Hz ~14.5 min

10 % 30 Hz ~ 7.3 min
10 % 60 Hz ~ 3.6 min
20 % 30 Hz ~ 1.8 min
20 % 60 Hz ~50.0 s

Table 7.: Theoretical estimations for different sampling times
and frequencies for the measurement of particles of
10 µm diameter in a 1000 mm3 detector volume. cv,e de-
notes the relative statistical error that can be achieved.

rating to 5 %. Table 7 and Figure 26 show different combinations
of these parameters for various sampling frequencies (current
smartphone cameras easily reach 30 Hz to 60 Hz, some models
120 Hz and more) and measurement duration.

This shows that theoretically meaningful readings with a
small sensor of 1 cm edge length can be carried out, given suffi-
ciently high sampling frequencies and measurement intervals.

4.3.2 Active vs. Passive Design

As discussed above, two versions of the sensor add-on were
prototyped: A passive version that uses only the internal cam-
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Figure 26.: The relative statistical error cv,e over time for different
sampling frequencies.

era and LED flash and an active one with an external LED.
The passive version in principle has the benefit that it can be
realized at extremely low cost. The active version on the other
hand could possibly be realized in a way that it fits to different
phones without modification, as it does not need to be adapted
to the geometry of camera and flash of a particular phone model.
From a design perspective, the active version is more challeng-
ing, as the need to power external electronics arises. Another
component that may require some sort of energy source is a
micro fan.

In order to supply the LED used in our prototype, 20 mA@3.2 V
are required in rated operation, which corresponds to a power
of P = U · I = 64 mW. Adding a micro fan for ventilation
would additionally require upwards of 35 mA@2 V = 70 mW. If
we were to use standard (non-rechargeable) batteries, options
are either tubular batteries or some sort of coin cell(s). With a
standard CR2032 coin cell (230 mA h@3 V), we could operate our
setup for ~1.7 h, two would bring up to a maximum of ~3.5 h.
AAA batteries, which would notably increase the size of the
setup, come at up to 1100 mA h@1.2 V, which would mean two
batteries would be needed to power the setup for up to ~8.5 h.

Standard Lithium Ion Polymer (LiPo) rechargeable batteries
with a higher energy density and suitable dimensions (e.g. from
Adafruit3, 34× 62× 5 mm) can provide up to 1200 mA h@3.7 V,
providing energy for up to ~9 h of operation. Among energy

3 https://www.adafruit.com/product/258
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harvesting approaches (e.g. converting solar, thermal, kinetic
energy, etc.), solar panels are currently the only option that can
potentially deliver the amount of energy needed for operation of
our setup (or, in combination with batteries, to recharge them)
while also fitting our size constraints. Small cells4 (35× 22 mm)
with an efficiency of 22 % can deliver up to ~100 mW at max-
imum power point. Integrating two or three onto the surface
of the sensor could be a realistic option that could potentially
remove the requirement to charge the sensor (at the cost of
additional parts and engineering complexity).

A different approach would be to power the external com-
ponents through the phone. One option to do this is pulling
power from the mobile phone’s audio interface (i.e. microphone
jack), as proposed by Kuo et al. [131]. Relevant to the question
whether this is feasible or not is primarily the power that can
be drawn. In their work, they describe that under optimum
laboratory conditions (a perfectly adapted load), they were able
to reach a current of 66 mA@250 mV, i.e. 15.8 mW. Even with-
out the loss that converting this voltage to suitable levels, the
approach of powering the LED directly through the headphone
jack, let alone an additional fan, is not feasible.

Another option to draw power from the smartphone would be
USB On-the-go (OTG). This has the benefit of being in principle
able to supply sufficient power, theoretically up to 500 mA@5 V.
However, according to the USB 2.0 OTG specification [240], de-
vices acting as OTG power source must only provide a minimum
current of 8 mA@4.4 V to 5.25 V, anything beyond is allowed
based on negotiation, but not guaranteed. Realistically, this
means that for handheld portable devices 100 mA @ 5 V are a
commonly accepted maximum for external loads [225]. A draw-
back is that this approach could possibly require introducing
additional electronics on the sensor side in order to authenti-
cate to the phone and negotiate the power supply. However, as
added bonus, this would also allow communication over the
same connection, which would eliminate the need for the user
to actively switch on the sensor module. The communication
could also be realized in a different manner, e.g. by controlling
the sensor via Bluetooth. Again, this would mean additional
overhead, such as adding a suitable communication module and
by that further increasing the complexity of the module.

In summary, the active design of the sensor is more flexible,
but also much more intricate than the passive one. Of the

4 http://www.digikey.com/short/39vczc
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options for powering an external sensor module, the microphone
jack approach can be discarded as infeasible and using non-
rechargeable batteries could lead to an acceptance problem
(producing too much waste). The other approaches have their
pros and cons, ranging from simple solutions requiring more
user interaction and maintenance (rechargeable batteries) to
more sophisticated solutions that involve external electronics,
making them more expensive in terms of design and unit costs.
We argue that the passive solution, provided it can properly be
ventilated, is the most elegant one. When designing the active
sensor, the approaches using USB OTG or rechargeable LiPo
batteries (possibly recharged via small solar panels) are options
we intend to explore further.

4.4 hardware design

This section presents the design iterations of the clip-on light-
scattering sensor. Two different approaches are presented, based
on different optical designs.

4.4.1 Optical Design

In order to count particles using a smartphone camera, we used
two different optical design approaches:

Brightness-based approach

This simple approach is basically the direct transfer of the light-
scattering (Nephelometry) approach to a smartphone, as described
above in section 4.2. The only difference is that instead of a
photodiode, the smartphone camera is the light detector. As the
camera is located at the focal point of the lens (k ≈ f ), all rays
are collimated on the camera chip. So the camera image is not a
visual representation of the inside of the detector volume. In-
stead, the overall brightness of the camera image is proportional
to the scattered light. As with other photometers, the brightness
represents a sum signal (count, size) from multiple particles in
the measurement volume.

Magnifier-based approach

In order to make use of the information that is potentially avail-
able due to the fact that the detector features a 2-dimensional
(2D) matrix sensor (camera) instead of a single pixel (photodi-
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Figure 27.: Sketch of the brightness-based sensor principle: The
optical system is a direct translation of the light-
scattering principle, the only difference being that
instead of a single photodiode, the receptor is the
surface of the smartphone’s camera.

ode), we adjusted the optical system to actually see5 how the
particles move. For that, a large magnification is needed. We
propose a magnifier approach, which creates a virtual image of
the dust particles and only requires the use of a single lens.

If the distance g between the lens and the detector volume
is sufficiently small compared to the lenses focal length f , the
magnifying lens creates a virtual image of the particles: The
camera sees the particles on the virtual image plane. These are
magnified by the factor

V =
b
g

. (6)

Also, the virtual image is always in focus. As long as the distance
k between the camera and the magnifying lens is sufficiently
smaller than f , k is irrelevant to the image focus. But k does
have an impact on the ratio of the image that the camera sees
through the lens: If the lens is close to the camera, it fills the
whole camera image. When k increases, the lens only takes up
a part of the image and the environment of the lens is visible
at the edges. When the total width of the image is B, we call
the diameter of the image through the lens B′ =: p · B. If p is
to small, the entire detector volume is not visible anymore. We

5 Actually, we just see the scatter traces of the particles, the particles themselves
can not be seen with the employed magnification. But since this distinction
is not relevant as (for now) our goal is counting them, we will continue to
speak of particles.
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Figure 28.: Sketch of the magnifier-based sensor principle: This
detector design allows virtual images of the scatter
traces that are created by individual particles travel-
ing through the measurement volume.

want p to be very close to 1, so we choose k as small as possible.

k + b ≈ b and k + g ≈ g (7)

From Figure 28, we get:

G
g
=

B
b

(8)

And, using Equation 7:

tan

(
α′

2

)
=

B′

2b
=

B
2pb

=
(8)

G
2pg

(9)

m

g =
G

2p · tan( α′
2 )

(10)

The lens formula for virtual images is:

1
f
=

1
g
− 1

b
(11)
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If we combine Equation 10 and Equation 11, we get:

f =
G · b

2 · p · b · tan( α′
2 )− G

(12)

Now, b can be determined:

b =
G · f

2 · p · f · tan( α′
2 )− G

(13)

Summing up, there are three free parameters: The distance
between the camera and the magnifying lens k should be chosen
as small as possible. In order get an optimal magnification (see
Equation 6), the distance g between the magnifying lens and
the detector should be as small as possible. On the other hand,
construction limitations apply: g must be big enough so that the
lens can actually be inserted into the measurement chamber and
the lens does not intrude into the actual detector volume. The
focal length f of the magnifying lens has a very small impact
on the magnification V. However, it must be bigger than k and
g, as this was our fundamental assumption.

4.4.2 Design Iterations

With the above considerations, we continued the iterative hard-
ware design. This section shows three sensor generations.

1st generation sensor

The original proof-of-concept version of the clip-on light-scatter-
ing sensor [30] as already presented above in section 4.2 is
shown in Figure 29. That version basically consisted of an
original Sharp GP2Y1010 dust sensor that was attached to the
back of a smartphone so that the phone’s camera replaced the
original photodiode receptor. The light of the phone’s LED flash
was rerouted to the position of the LED in the original sensor
using an optical fiber devkit. This prototype demonstrated the
general feasibility of the clip-on light-scattering approach, but
did not yet achieve a sensitivity suitable for realistic applications
(see section 4.2 above). Active versions using external LEDs
were tested for comparison in both of the early generations.
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Figure 29.: HTC Desire phone with 1
st generation (proof-of-

concept) prototype built from a Sharp GP2Y1010 dust
sensor and an optical fiber devkit.

2nd generation sensor

Subsequent versions, starting with the second sensor generation
(a.k.a. MobileDust), were 3D printed for rapid evaluation and
featured lenses and mirrors as additional optical elements. We
printed the sensors from black polylactide (PLA) or Acrylonitrile
Butadiene Styrene (ABS).

The second generation sensor was built on top of a Nexus 4
camera smartphone. Its light trap basically was a scaled-down
version of the one in the GP2Y1010. In order to increase the
amount of light that is emitted into the measurement chamber,
we added a collimator lens to improve the optical coupling
of the LED flash’s light into the optical fiber (see Figure 30).
We used a semi-spherical lens for this, as camera phones’ LED
flashes are designed to emit diffuse light. Without a collating
lens this made the coupling to the optical fiber very ineffective.

When comparing the passive version to an active one that
– instead of the optical fiber – featured an externally powered
white LED, we observed that the principle was sound, but the
passive version still failed to produce a sufficient light intensity
within the measurement chamber. As a result, also in this
generation the active version clearly outperformed the passive
one. Therefore, we switched to a mirror-based layout in the
third generation.
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Figure 30.: Nexus 4 phone with 2
nd generation sensor prototype

(a.k.a. MobileDust). The GP2Y1010’s light trap was
scaled down and a collimator lens was added to
improve the optical coupling between the LED flash
and the optical fiber. An active version with an
externally powered LED was evaluated in parallel
(bottom right).

3rd generation sensor

In the third prototype generation (a.k.a. FeinPhone), the optical
fiber approach was discontinued. Instead, a mirror was used
to illuminate the measurement chamber with the LED flash
and a custom sensor casing was prototyped in 3D-printing. At
the same time, the employed lenses were changed to use the
magnifying optical approach as described above. A prototype
was designed for a Galaxy S6 smartphone (see Figure 31).

Throughout all sensor generations, we kept true to the strategy
of designing an active and a passive version in parallel, as there
are certain advantages and drawbacks to both designs: The
active versions need some sort of power supply for the LED and
possibly involve additional interaction (turn on / off) by the
user. This could also cause secondary effects, such as possible
limitations of the runtime, or negative effects (especially for
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particles
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Figure 31.: Galaxy S6 phone with 3
rd generation sensor proto-

type (a.k.a. FeinPhone). Instead of an optical fiber, a
custom light trap design with a mirror to relay the
light from the LED flash was used.

environmentally conscious users) if consumables, e.g. external
batteries, are frequently required. On the other hand, the active
version can potentially be attached to a wider range of phones
without individualized design.

The biggest advantage of the passive version is simply that: it
is passive. This makes it ultra-low-cost and the control of the
whole measurement can be implemented in software on any
phone. A drawback is that the layout of the camera and the flash
is model dependent, so the physical sensor design has to be
adopted for different phone types according to their geometry.
Proper ventilation of the measurement chamber to ensure that
individual measurements are actually independent may also be
an issue. An approach to make a fan-less measurement system
could be to vent the detector volume by moving the phone and
use the phone’s inertial sensors to estimate the flow rate through
the measurement chamber.
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4.5 algorithm design

In this section, two different algorithms for the evaluation of the
images that are recorded with the presented hardware designs
are introduced.

As air quality sensing is undergoing a paradigm shift towards
the inclusion of low-cost pollution sensors [218], increasingly
being set up, operated and maintained by novice end users,
a wide range of issues appear. When compared to standard-
ized procedures, e.g. as described in DIN1319, most handling
requirements to ensure results of high validity are typically not
fulfilled:

• Correct and fixed placement of sensors — in mobile and
wearable scenarios, sensors are often placed opportunisti-
cally,

• Periodic or constant expert calibration of sensor — not
feasible in a wearable or mobile device

• Standardized measurement process — difficult to reach
due to inexperienced users

• Controlled environment conditions — very difficult due
to mobility of the user or movement of worn sensor

Thus, the significance of such measurements is seemingly low
and errors restrict the credibility and therewith the use of the
gathered information. There are two types of errors in measure-
ment readings: statistical error and systematic error. Statistical
error refers to a deviation between multiple measurements of
the same phenomenon, e.g. due to sensor noise and/or the
statistical nature of the sensing process. This error is often dis-
tributed Gaussian between the individual readings and can thus
be averaged out.

In contrast, systematic error means that any measurement dif-
fers from the actual value in the same way, or in other words:
The measurement system is de-calibrated. Systematic errors can
stem from a number of sources:

• Low-cost sensors may be susceptible to systematic cross-
sensitivity, e.g. caused by temperature dependencies of
electro-chemical sensors, cameras or photodiodes [37]

• Sensor aging effects, especially in low-cost environmental
sensors, can introduce both drifts over time as well as
sudden offsets. Causes for sensor drift may be e.g. dirt de-
position within the sensor, while abrupt changes might be
caused by degradation, e.g. pixel defects in image sensors.
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• Limited parameter control may be an issue if an existing
system’s sensors are re-purposed as environmental sensors.
Such systems may not allow deep hardware control, e.g.
mobile or wearable sound recording or camera devices
such as smartphones and smart watches may not allow full
control of the recording parameters. As a result, automatic
gain or sensitivity adjustments may occur unsolicited or
even unnoticed, potentially causing de-calibration.

• Novice/untrained users: In Participatory Sensing, anyone
can participate. Especially when measurement requires
proper device handling and/or involves an assembly pro-
cedure, the changing integrity of the sensing system is
another source for errors. For example in a camera-based
sensing task, a user could inadvertently put a smudge on
the camera lens, which then creates an offset in subsequent
readings.

In principle, all of these systematic errors can be quantified
and removed from the data. However, it is often not feasible to
do this in-situ without recalibration and/or a reference device.
The last of the four presented sources of errors is of particular
interest, as technology continues to improve and may eventually
mitigate some of the other problems. The users’ capabilities
however do not change fundamentally. While certain amount of
training/proper instructions/suitable interfaces will always be
required, novice non-expert users – being only human – will also
always make mistakes in handling the equipment. Approaches
to deal with this on the Human Computer Interaction (HCI)
level are discussed in-depth in chapter 6.

In this section, we present a simple signal reconstruction
scheme for the monitoring of certain environmental phenomena
that is robust against the presented errors by reconstructing the
true signal solely from the Poisson noise of the erroneous signal.
While the signal itself may be skewed or distorted, its noise is
a relative property, rather than an absolute one. The unique
aspect about this approach is, that intensive characterization of
systematic errors in order to remove them from the signal are
not necessary: Our approach is robust against both static and
dynamic baseline shifts (offset and drift), as well to a certain
extent against cross-sensitivity.

We demonstrate the feasibility of our approach for different
phenomena: Aside from the use case of fine dust sensing with
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camera smartphones, we selected a dataset from low-cost gas
sensing6.

4.5.1 Related Work

There is a number of different purposes for which noise is ana-
lyzed: One is fingerprinting sensors to uniquely identify them,
which has been demonstrated for cameras [58] and accelerom-
eters [75]. In image processing, Poisson noise is usually seen
as something undesirable that should be to be removed from
an image [22]. However, the noise in question is the pixel noise
(also called shot noise) of a camera sensor element. In contrast to
the sensor noise which these approaches deal with, we analyze
sensor data noise, i.e. the Poisson noise of the signal variation.
This is an approach that is also used in Statistical Physics for
applications such as analyzing properties of solid state bodies.

Kalman filters can be used for state estimation of noisy signals,
e.g. for sensor drift correction. Yet, they typically require a priori
knowledge about the noise characteristics, i.e. the models used
in the filter need to match the physical situation. While Adap-
tive Kalman Filters can to a certain extent learn these models,
they still require readings from other sensors and/or periodic
access to ground truth to somehow rate the quality of the cur-
rent estimation. An approach to reconstruct signals from noisy
data or incomplete information is Compressed Sensing. Haupt

et al. [106] showed that signal information can be obtained
from several random Fourier projections. Furthermore, Model

et al. [159] demonstrated the use of multi-sensor arrays to re-
duce data noise of spatially separated signal sources. A more
general approach addresses data that is corrupted by some sort
of Poisson noise, in particular image noise [137]. However, all
these attempts have the assumption in common, that the noisy
data does actually represent the signal and is not altered by
some sort of systematic error or drift over time. As motivated
above, systematic error can also often be attributed to improper
handling by untrained users. Interestingly, while research on
mobile, low-cost and participatory sensing recognizes the need
to ensure credible readings from cheap sensors [135], the fo-
cus is seldomly placed on the effects that are caused by novice
users. An intuitive approach is to either train participants or try
and determine their skill level or reputation beforehand [230]

6 Dataset from the OpenSense project [104], [140] (http://www.opensense.
ethz.ch/) courtesy of David Hasenfratz.
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and/or select them accordingly [193]. However, this again re-
quires some kind of ground truth determined by expert users or
a series of campaigns, making it an intricate option. We discuss
approaches to instruct or guide the user towards correctly per-
forming environmental measurements in chapter 6. To the best
of our knowledge, using signal processing to mitigate certain
problems that are likely to occur through improper handling of
measurement equipment is a novel approach.

So, while some of the related work can help to deal with
certain types of errors, none of the approaches are able to com-
pensate for all of the presented sources of systematic errors
without additional knowledge or sensor data. Our approach
uses only raw data and is applicable for environmental sensing
of any phenomena that can be modeled as Poisson processes.

Aside from the already mentioned cases of measuring par-
ticulate matter or gas concentrations, a more exotic example is
RadioActivity, a measurement app that turns a mobile phone
into a Geiger counter [128].

4.5.2 Poisson Particle Detection (PPD)

The basic idea of our approach is very simple: Whichever en-
vironmental phenomenon we wish to measure — as long as it
can be modeled as particles — a way to look at the underlying
scenario is as follows: We wish to observe a changing concentra-
tion of an environmental parameter in a certain measurement
volume. Because we are only observing a small measurement
chamber we have a certain chance that e.g. a particle is present
during our measurement or that it is not. But, as we are con-
ducting multiple measurements which reflect different sectors
of the environment (see section 4.3.1), we are basically looking
at a series of counting experiments that are conducted in par-
allel.7 This is — generally speaking — the process of counting
uniformly distributed events in a spacial volume. This is by
definition a Spatial Poisson Process (SPP) or Poisson Point Pro-
cess (PPP). A vivid example for a Poisson process is observing
raindrops on the tiles of a rooftop [117].

We want to reconstruct the original signal (e.g. the number
of particles in the environment) from the signal we measure.
But we can not deduce the original signal directly from our

7 For this, we assume that our measurement rate f is much higher than
the change rate of the environmental phenomenon. We show that this
assumption holds in our validation.
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measurement, because we face two systematic measurement
errors:

• A Multiplicative Error, which is caused by the mere fact that
not every particle in the detector will be seen (detected) by
the system. We will eliminate this error by the calibration
of the sensor.

• An Additive Error. In the case of considering the image
brightness as a measurement for the number of particles
in the detector, this can be caused by de-calibration, the
camera’s automatic brightness adjustment or dirt deposi-
tion inside the detector over time. To eliminate this error,
we will conduct a noise analysis as described below.

The number of observed occurrences in a Poisson process
fluctuates with a standard deviation of σn =

√
n around its

mean n, or in other words, there is signal dependent noise. From
this noise, we can directly calculate the mean concentration of
the signal. This of course only works reasonably well if the
signal fluctuations σn are greater than the sensor background
noise, since the magnitude of the signal is always higher than
that of the noise. If the sensor background noise is as high as the
signal noise, the sensor is simply bad and signal reconstruction
is impossible.

As noise is a relative property, the inferred concentration is

input : raw environmental time series X = {Xt : t ∈ T},
window size wt f

output : reconstructed signal Y = {Yt : t ∈ T}
1 XS ← avg(X); // moving average with Gaussian window

2 s(t)← spline(XS); // spline interpolation

3 N ← {Nt : Nt = Xt − s(t)}; // isolate noise

4 forall It = [t− wt f
2 , t +

wt f
2 ] ⊂ T do

5 Yt ← stdev((N|It); // std. dev. of N on interval It

6 end
7 return Y;

Figure 32.: Poisson Particle Detection (PPD): Signal reconstruc-
tion from Poisson Noise. The input is a time series
of brightness values. To process the data of the 2

nd

generation sensor (MobileDust), the Naïve Bright-
ness algorithm (see Figure 23) must be applied
to the time series of images in order to get the
brightness time series.
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unaffected by the additive error. This allows to derive the actual
signal values if the noise-to-signal-dependency is known. This
statement is generally true, even for non-Poisson processes. In
case of a Poisson process however, the dependency is known:
The noise will behave like the square-root of the signal. Since
we focus on environmental sensing and our data is Poisson
distributed, we focus on the special case for brevity.

The algorithm to reconstruct the signal has four steps, as
shown in Figure 32. We first apply a simple moving average
to the noisy data to reduce it to its mean values. Then, a
spline interpolation is constructed on the smoothed data in
order to determine the mean value on any point within the
measurement series. After that, the actual noise can be extracted
by subtracting the mean from the raw data. Finally, to obtain
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Figure 33.: Brightness signal vs. particle concentration (all nor-
malized) for measurements from the MobileDust data-
set affected with dynamic baseline shifts.
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Figure 34.: Brightness signal vs. particle concentration (all nor-
malized) for measurements from the MobileDust data-
set affected with a sudden jump in offset.

a measure of fluctuation, we calculate the standard deviation
of that noise on several time intervals Ti, which is then linearly
correlated to the square-root of the signal mean values corrected
for drifts. Whenever a summation is done on parts of the data
(e.g. averaging) we weigh this sum with a Gaussian window to
minimize boundary effects of convolution.

Evaluation

We show the validity of our approach on two separate real-world
datasets: To demonstrate the feasibility for different phenomena,
we selected data from PM sensing with removable dust sensors
on camera-phones [30] as well as low-cost Ozone (O3) sensing.
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The gas dataset was recorded in the OpenSense project [104],
[140].
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Figure 35.: Brightness signal vs. particle concentration (all nor-
malized) for measurements from the MobileDust data-
set affected with systematic cross-sensitivity, in this
example a strong temperature dependency.

The PM data set was recorded in a lab setting with the sec-
ond generation (MobileDust) prototype (see section 4.4.2 above)
attached to a Google Nexus 4 smartphone. Image resolution
was 3264× 2448 and sampling frequencies ranged from 0.5 Hz
to 1.5 Hz, depending on the settings for the individual mea-
surement run. The phone was placed in a container so that
the reference device was exposed to the same air flow as the
smartphone. From the images, we calculated the accumulated
brightness per picture as feature (as described in the Naïve
Brightness Algorithm in Figure 23 at the beginning of this chap-
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Figure 36.: Raw data and derived signal from the OpenSense
dataset, showing the successful signal reconstruction
from the noise.

ter). The brightness correlates with the amount of particles
inside the detector volume. As window size for the algorithm,
we empirically selected 130 to 150 samples. Three illustrative
examples from the data set are shown in Figure 33, Figure 34

and Figure 35. The plots show that even though the original
brightness signal is affected by a dynamic baseline shift, sudden
offsets or systematic cross-sensitivity (in this example a strong
temperature dependency), the true signal can be reconstructed
without additional information.

The OpenSense dataset contains one full year of O3 measure-
ments, recorded with the low-cost MiCS-OZ-47 sensor (one
reading every 60 seconds) as well as by a fixed station from the
national air pollution monitoring network (NABEL) in Zürich
[140] (10-minute mean values). Figure 36 shows an envelope
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of the original reference signal as signal reconstruction for this
dataset.

Windowing

In order to achieve good results as shown before, it is important
to choose an appropriate window size w. If w is chosen too small,
the values Yt will still be subject to the random distribution of
data values around its mean. If w is chosen too large, the
reconstructed signal will be flattened due to this big averaging
window. This effect is illustrated in Figure 37.
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Figure 37.: The window size w needs to be chosen appropri-
ately. For the MobileDust dataset, we empirically
determined a window size of 130− 150 samples to
be optimal.

Calibration Stability

In order to evaluate the calibration stability, i.e. whether it is
possible to determine a fixed set of parameters to calibrate the
noise to map to absolute concentration values, we analyzed a
series of twelve different measurements from the MobileDust
data set.

All data was recorded using the same smartphone (and there-
fore the same camera), but in independent sensing runs over
the course of one year with long pauses between them. Thus,
data was subject to possible systematic errors due to varying
temperature, slightly different experimental setup and even
changed methods of data collection: The first few data sets were
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Figure 38.: Calibration stability of the MobileDust dataset: Raw
data from the twelve measurements was completely
different and looks uncorrelated. Still, the Poisson
algorithm recognized the concentration changes.

recorded with an older version of the sensing app, which heav-
ily used automatic white balance and exposure compensation.
Between sessions, the experimental setup was disassembled
and the clip-on sensor fully detached from the phone. There
were no restrictions regarding the placement of the dust sensing
smartphone inside the measurement chamber. Measurements
were taken at diverse daytimes and seasons, with possible influ-
ence of ambient light and temperature on the mean brightness
of the pictures. The batteries that powered the light source of
the dust sensor were not changed or checked throughout the
measurement series, therefore resulting in a possible systematic
brightness drift. Additionally, it is possible that dirt or imperfect
assembly may have had influences on the recorded images.

Figure 38 shows a thumbnail overview of the twelve measure-
ments, each showing a comparison of measured reference and
sensor values. There is no obvious correlation visible. Further-
more it seems that the qualitative characteristics differ between
some measurement series. Nevertheless, our analysis yielded
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data01 data02 data03 data04 data05 data06

A 19214.2 16515.3 19424.1 16026.0 15847.0 18162.2
∆A 115.7 57.4 62.5 49.4 48.2 84.5

data07 data08 data09 data10 data11 data12

A 13451.2 12934.0 15961.0 16424.4 15958.4 17059.5
∆A 71.3 67.4 40.6 37.9 55.5 57.9

Table 8.: Calibration Parameters derived by LMS fit for the in-
dividual measurements. The relative error between
parameters is only 11.4%.

that the correlation behaves like the square-root of reference, as
expected for a Poisson process. The exact model we used is

y = A ·
√

x + B (14)

with B = 800 due to background noise of the sensor. A Least
Mean Squares (LMS) fit of this model yields the parameters as
shown in Table 8, ∆A being the statistical error of the fit.

The mean relative statistical error is only ∆̄A = 0.38%. This
is a measure of correctness of the model. Therefore the claim
of Poisson distributed data values holds with high probability.
Furthermore the standard deviation of the fit parameter A from
its mean Ā = 16414.8 is σA = 1874.4. So we have relative error
of about 11.4% in adjusting the fit parameters between different
measurement series, which is a measure for stability of the
calibration approach.

Discussion

While the proposed method is clearly able to compensate for
systematic errors, there are some constrains regarding its ap-
plication. If the data set has already been smoothed, e.g. due
to some commercial and/or inaccessible sensor setup, the time
resolution will decrease. This is because our approach is based
on signal noise, and a smoothing process removes that noise.
As common in signal analysis, bigger processing intervals will
eventually compensate for "bad data" but this will always go at
the expense of time resolution and in-time accessibility.

Also, there is a restriction to drift compensation. If systematic
errors change the signal too rapidly, that is with high frequency,
they cannot be distinguished from signal noise. In a sense, it
is then possible to regard the systematic error approximately
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as pure statistical fluctuations. If these fluctuations overcome
the signal noise by means of magnitude, it is difficult to apply
the noise extraction, since the noise-to-signal-dependency will
be blurred. This is not a practical limitation though, as poor
data with huge background noise will always be problematic,
no matter which method of analysis is used. Applicability
regarding drift from cross-sensitivity may be limited in case
that both measured phenomena are Poisson distributed. If a
gas sensor is e.g. sensitive to two different gases, our approach
may not be able to reconstruct the signal, depending on the
individual magnitudes.

As already stated before, there is one intrinsic disadvantage
to our approach: By measuring the signal noise, we deliberately
sacrifice part of the Signal-to-Noise Ratio (SNR), because signal
noise is by magnitude always smaller than the signal itself.
Our method thus is a trade-off between SNR and stability. On
the one hand, it will never yield as good results as proper
characterization and subsequent removal of the systematic error,
but on the other hand, no additional information is needed in
order to account for de-calibration and drift of (almost) any
kind.

4.5.3 Contour Detection Particle Counting (CDPC)

Starting with the FeinPhone sensor (third generation prototype,
see section 4.4.2 above), the optical layout was changed so that
the recorded images no longer display one large blob, but in-
stead capture individual scatter traces from particles, as shown
in Figure 39. The rationale behind this approach is the follow-
ing: Firstly, it is a more direct way of assessing the particle
count, compared to deriving it from the signal of a single sensor.
Secondly, it concentrates the scattered light from individual par-
ticles to a smaller area, so that the sensitivity of the sensor may
be improved. And lastly, it has the potential to reveal further
information, for instance on the size spectrum of the detected
particles.

In order to detect individual particles from the FeinPhone
sensor data, the Open Source Computer Vision (OpenCV) library
[26] was used. Since the images from our custom FeinPhone
sensors all were affected by background illumination due to
imperfect light trap design and the manual assembly of the
sensors, we combined several standard OpenCV algorithms to
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(a) (b)

Figure 39.: Changed signal between 2
nd and 3

rd sensor genera-
tion: scatter blob (a) vs. scatter traces (b), for illustra-
tive purposes both at high particle concentrations.

isolate the particle traces. The complete Contour Detection
Particle Counting (CDPC) algorithm is shown in Figure 40.

As preprocessing step, the first five seconds of the video were
cut off, since the first frames in the beginning may be affected
with noise due to automatic camera adjustments, such as setting
the configured focus length, etc. Subsequently, we converted the
RGB video to grayscale. The first major step is processing the
video with a background subtraction algorithm. We used one
of the standard background/foreground segmentation methods
available in OpenCV: The MOG2 subtractor is based on Gaussian
Mixture Models (GMM) [262], [263] in order to determine the
static background pixels. It features shadow detection, which
was disabled since we did not need it.

The so-called learning rate rlearn ∈ [0, 1] is a parameter of the
MOG2 algorithm that specifies how fast the background model
is learned, respectively updated. A value for of 0 means that
the background model is not updated at all, assigning a rate
of rlearn = 1 means that every frame, the background model is
completely reinitialized from the previous frame. Since we have
an almost static background, we only varied the learning rates
close to 0. The results are discussed in the next section.

Subsequent to the background subtraction, another second
was cut from the beginning of the video, as the first few frames
may still display some artifacts until the background model is
learned. The next step of the algorithm applies a Gaussian blur
filter. This is a common step in image processing before contour
or edge detection, as it reduces the noise in the image, thus
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input : time series of RBG bitmap images (video)
vid = {imgt : t ∈ T}, of size w× h and framerate r f ps,
MOG2 learning rate rlearn,
number of standard deviations for Gaussian blur 〈σblur〉,
threshold for binarization θb/w,
threshold for contour detection θcontour

output : time series of extracted counts corresponding to the dust
concentration Y = {Yt : t ∈ T}

1 vid← {imgt ∈ vid|t > 5 · r f ps}; // cut off 5 sec

2 forall imgt ∈ vid do
3 imgt ← cv.cvtColor(imgt, COLOR_BGR2GRAY); // RGB to gray

4 cv.BackgroundSubtractorMOG2.apply(imgt, rlearn); // bg

5 end
6 vid← {imgt ∈ vid|t > r f ps}; // cut off 1 sec

7 forall imgt ∈ vid do
8 cv.GaussianBlur(imgt, 〈σblur〉); // blur

9 cv.Threshold(imgt, θb/w, 255, THRESH_BINARY); // binarize

10 contourst ← cv.findContours(imgt); // contour detection

11 forall ci ∈ contourst do
12 if size(ci) > θcontour; // threshold and count

13 then Yt ← Yt + 1;
14 end
15 end
16 return Y;

Figure 40.: Contour Detection Particle Counting (CDPC) algo-
rithm based on OpenCV.
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(a)

(b)

Figure 41.: Contour Detection Particle Counting: The original
recordings (a) undergo background subtraction, blur
and binarization before a contour detection algo-
rithm isolates continuous patches, of which all with
an area exceeding a preset threshold are counted (b).

preventing the contour detection from falsely identifying noise
as edges.

The next image processing step is to detect contours in the
blurred images. For this, the findContours() function of
OpenCV was used. It was configured to use RETR_EXTERNAL
as contour retrieval mode, meaning that it did not return hierar-
chical contours, i.e. contours within other contours.

Finally all contours are counted in each frame if their area
exceeds a certain threshold. This parameter can be used to tweak
the algorithm in order to differentiate between actual particles
and possible miscounting due to remaining noise. Figure 41

shows two examples of the original images from our evaluation
(a) and the respective images after application of the CDPC
algorithm (b).

Evaluation

In order to evaluate the smartphone-based PM sensing approach,
we compared several FeinPhone prototypes with reference mea-
surements in a lab setting at the World Calibration Center for
Aerosol Physics (WCCAP or GAW-WCCAP). The WCCAP is a
facility at the Leibniz Institute for Tropospheric Research e.V.
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(TROPOS) that is operated in cooperation with the Umwelt-
bundesamt (Federal Environmental Agency of Germany) (UBA)
and the World Meteorological Organization (WMO). It is base-

Figure 42.: Evaluation Setup: 5 FeinPhone prototypes were
placed inside an aluminum measurement chamber
(left), into which a varying concentration of polydis-
perse particles was injected. An SMPS and a APS
3321 (right) were used for reference measurements.

funded by the UBA and conducts calibrations of physical aerosol
measurement instruments as well as environmental and work
place measurements of aerosols.

The experiment setup is depicted in Figure 42. Through
the air inlet of an otherwise airtight aluminum chamber, into
which 5 FeinPhone prototypes were placed, Ammonium sulfate
((NH4)2SO4) was injected in order to create a rising concentra-
tion of polydisperse particles inside the chamber. The air outlet
was connected to two reference devices: A TSI Aerodynamic
Particle Sizer (APS) Spectrometer Model 3321 (APS 3321) [231] and
an Scanning Mobility Particle Sizer (SMPS) that was custom
made at the WCCAP [246]. The combination of these two de-
vices enabled the measurement of 92 aerodynamic size channels
between 10 nm and 20 µm. Time resolution was one reading
every 4.5 minutes. The SMPS samples the different channels in
a time multiplex fashion, i.e. the channels are sampled one after
another over the course of 4.5 minutes. Therefore, that is also
the time by which individual readings may be off or in which
dynamics can not be captured correctly.

From these channels, we calculated the three size classes
PM10, PM2.5 and PM1 in the following way: We assumed the
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Sensor Fan ISO Shutter time Framerate Fokus Resolution

B001 yes 400 33.33 ms 30 10 (inf) 1920×1080

B002 yes 200 33.33 ms 30 10 (inf) 1920×1080

B003 no 400 33.33 ms 30 10 (inf) 1920×1080

B004 no 200 33.33 ms 30 10 (inf) 1920×1080

B005 yes 400 33.33 ms 30 10 (inf) 1920×1080

Table 9.: Device configuration in CDPC evaluation.

ammonium sulfate particles to be spherical and homogeneous
with a density ρ of 1.7 g m−3. With this, the size spectrum can be
converted to a geometric diameter dgeometric = daerodynamic/

√
ρ.

This can be used to calculate a volume-size-spectrum. Converted
back to aerodynamic diameter, the respective size channels are
summed up and multiplied with the density ρ to get a mass
concentration for the three PMx size classes.

The five sensors (dubbed B001 to B005) were 3D printed and
manually assembled, all of them identically constructed as de-
scribed in section 4.4.2. Each of them was attached to a Samsung
Galaxy S6 smartphone with at least 32 GB internal storage capac-
ity running Android version 7.0. In terms of video recording
options, they were configured differently to test different sensi-
tivity (ISO) settings. Also, three of the sensors were each vented
using a SUNON UF383-100 microfan running at a voltage of
1.8 V and two were not vented in order to compare the detec-
tion performance. The settings for the five sensors are listed in
Table 9.

The recorded videos were processed with the Contour De-
tection Particle Counting (CDPC) algorithm described in sec-
tion 4.5.3. An algorithm parameter sweep was performed in
which the following parameters were varied:

• MOG2 learning rates rlearn of 0.1, 0.01, and 0.001

• number of standard deviations for Gaussian blur 〈σblur〉 of
5 and 9

• threshold for binarization θb/w of 10, 50 and 100

• threshold for contour detection θcontour of 10, 50, 100, and
500

Initially, the results seemed disappointing. Sensors B002 and
B004 did not yield useful scatter traces, probably due to the
lower ISO sensitivity. While for each of the other three sensors
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Figure 43.: Particle counts obtained from the CDPC algorithm
vs. reference signal (PM10 size fraction) for sensors
B005 (top) and B001 (bottom). CDPC parameters:
rlearn: 0.1, 〈σblur〉: 9, θb/w: 50.0, θcontour: 100.0.

the videos showed clear scatter traces that were visible to the
naked eye, initially we could not find a clear correlation with
either of the three size classes PM10, PM2.5 or PM1. Instead, we
observed a phase of high particle counts at the beginning of each
of our measurement runs, that then faded in spite of the fact
that the concentration levels continued to rise (see Figure 43).

Looking for patterns of explanation for these observations, we
theorized that with our imperfectly constructed measurement
chambers, we may only be able to see the scatter traces from
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Figure 44.: Particle counts obtained from the CDPC algorithm vs.
reference signal (PM(10−2.5) size fraction) for sensors
B005 (top) and B001 (bottom). CDPC parameters:
rlearn: 0.1, 〈σblur〉: 9, θb/w: 50.0, θcontour: 100.0.

the fraction of the larger particles of the size spectrum. This
assumption was supported by the fact that the scatter traces were
most dense during ca. 15 minutes after injecting the ammonium
sulfate into the chamber. The larger particles settle faster than
the smaller ones and therefore could not be detected anymore
afterwards.

In order to test this hypothesis, we calculated the fraction of
Inhalable Coarse Particles as PM(10−2.5) = PM10 − PM2.5. This
revealed an excellent qualitative correlation for the three sensors
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Figure 45.: Combined approach: The results from the parti-
cle counting (CDPC) algorithm are subsequently
piped through the Poisson Particle Detection. The
graphs show very good qualitative agreement with
the PM(10−2.5) size fraction of the reference for sen-
sors B005 (top) and B001 (bottom).

with high ISO settings (B001, B003 and B005). Figure 44 shows
the reference for PM(10−2.5) and the particle counts obtained
from analyzing the recorded videos using the Contour Detection
Particle Counting (CDPC) algorithm. Figure 45 shows the same,
but after additionally feeding the output of the CDPC algortihm
into the Poisson Particle Detection (PPD).
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4.5.4 Discussion

This section discusses some of the limitations and possible future
improvements of the prototype sensor.

Ventilated vs. Unventilated

Another aspect of our evaluation concerns the sampling of the
air, i.e. whether the measurement chamber was actively vented
by a fan or whether we relied on diffusion to transport particles
into the sensor. Both the ventilated (Figure 45 below) and
the unventialated version (Figure 46) of our sensor performed
similarly.

However, whether this result can be transferred to real-life
measurements remains unclear and needs to properly evaluated.
In the lab environment, the aluminum measurement box itself
was ventilated, possibly facilitating quicker air exchange also in
the passive sensors.

Detection Size Limit

In our evaluation, the Contour Detection Particle Counting
(CDPC) algorithm was only successful in detecting coarser parti-
cles. After these had settled, no individual counts were detected
anymore. Outdoors this maybe different. As naturally occur-
ring turbulence keeps the coarser size fraction suspended for a
longer period of time (or resorbs particles), this limitation may
be less relevant.

On the other hand, the detection size limit may be a hardware
issue. Due to the imperfect measurement chambers that were a
result of rapid prototyping the sensor, we may have lost infor-
mation. All of our sensors exhibited different backgrounds due
to 3D printing and manufacturing of the sensor modules (see
Figure 47).

The background subtraction step of the CDPC algorithm
turned out to remove some faint particle traces that could be
identified by humans in the original recordings are subtracted
along with the background image. A possibility would be to
fine-tune the algorithm to each individual sensor case. However,
since the background images vary, this would require a cali-
bration step for each sensor. A much more sensible approach
would therefore be to first perfect the light trap design, so that
no background image is visible in the absence of particles. This
can be achieved with a thorough optical design, which was
not in the focus in this thesis. The construction material of
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Figure 46.: Results from the unventilated sensor (B003). In out
lab experiments, it did not make a big difference,
whether the sensor was ventilated or not (cmp. Fig-
ure 45).

the chamber and its surface can also be improved from the 3D
printed versions. Additionally, the inside of the light trap could
be coated with absorbing paint.
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(a)

(b)

Figure 47.: Due to rapid prototyping with a 3D printer (a) and
the manual assembly of the sensor hardware, the
measurement chambers were not 100 % identical, re-
sulting in different background illumination (b).
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4.6 conclusion

In this chapter, we presented a novel means of measuring par-
ticulate matter with smartphones. In an iterative design process,
we adapted the principle of low-cost light-scattering fine dust
measurements into a passive clip-on sensor for the use with the
camera and flash of a smartphone. This includes two algorithms
for signal processing, one of which exploits the characteristics
of Poisson processes to reconstruct the “true” signal from data
afflicted with unknown systematic noise, accounting for the
natural instability of mobile and wearable measurement setups
for end-user environmental sensing. We have confirmed the
principle of operation in a series of studies and reached excellent
qualitative agreement with a professional reference device when
measuring coarse inhalable particles at realistic concentrations.
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5 Networked Sensing

Both chapter 3 and chapter 4 focused on enabling low-cost Par-
ticulate Matter (PM) measurements. While we demonstrated
that remarkable results can in principle be achieved with cheap
technology, we also saw that this often entails efforts to calibrate
the sensors in some respect. This chapter deals with device-by-
device calibration of mobile air quality sensors. The focus is
placed on field calibrations that are either performed against
reference stations or among two mobile nodes when they are co-
located, i.e. having a so-called rendezvous. Existing calibration
techniques are applied to data from low-cost laser-scattering PM
sensors and the performance is discussed along with possible
practical limitations. Subsequently, a novel privacy-preserving
calibration scheme is presented and evaluated based on sim-
ulated ozone measurements and real-world taxicab mobility
traces.

Parts of this chapter have previously been published. The
privacy preserving Peer-to-Peer (P2P) calibration has originally
been published in the proceedings of the 2nd EAI International
Conference on IoT in Urban Space (Urb-IoT 2016) [153]. An ex-
tended version is scheduled to be appear in the EAI Transactions
on the Internet of Things [154]. The private calibration scheme
was developed jointly with Jan-Frederic Markert, Gregor

Schindler and Markus Klug.

5.1 related work

While research on sensor calibration often addresses the same
issues, different terminology is used, some of it interchangeable,
some entailing different meanings.

Generally, there are two different ways of calibrating a device:

• against another device in close proximity, typically one
with a higher reliability
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• by exposing the device to a defined, often artificially cre-
ated condition for calibration, usually in a lab environment

As we are concerned with distributed sensing systems, we
focus on device-by-device calibration, sometimes also known as
comparison calibration [143] or cross-calibration. Also, device-
by-device calibration can either be carried out under factory
or laboratory conditions or in the field. Other terms can be
found for the distinction between calibration that is carried out
by sensors autonomously (auto calibration [233]) in contrast to
calibration that requires manual interaction (manual calibration
[52]).

Regarding calibration with or without the existence of reli-
able, ground truth measurements, many terms can be found in
the literature. So-called blind methods achieve calibration gain
without ground truth reference data [11]. In line with this, Tan

et. al use the term semi-blind when referring to calibration with
partial ground truth data and non-blind for calibration with full
ground truth data [224]. In addition to this, the terminology
off-line respectively on-line [90] can also be found when referring
to calibration with or without ground truth data, the latter is
sometimes also called in-place calibration [51]. The terminology
multi-hop respectively single-hop [104] does not make a distinc-
tion regarding the availability of ground truth, but rather the
quality of the reference. Single-hop calibration means calibrat-
ing directly against reliable reference sensors, while multi-hop
calibration makes use of sensors whose calibration was prop-
agated through several nodes. Another term is virtual in-situ
calibration[258]. Throughout this work we use the terminol-
ogy of blind calibration and add the qualifier multi-hop where
applicable.

Regarding the level on which the calibration is carried out,
i.e. whether on the sensing devices themselves or on a central
instance that collects all data, also different terms are used.
Some authors refer to device-level respectively system-level [223]
calibration, while the terms micro respectively macro calibration
are also found [244]. Calibration schemes without a central
instance that use only P2P communication are referred to as
distributed calibration [158]. In addition, local calibration is
also used in some works for calibration on the sensing devices
themselves [223]. Throughout this work we use the terminology
of device respectively system-level calibration as they are self-
explanatory.
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A lot of research has been done related either to mobile partic-
ipatory sensing and its privacy implications, or to the calibration
of dynamic sensor systems. However, there is only very limited
work combining the two. To the best of our knowledge, PPCS
[248] is the only privacy-preserving calibration mechanism pre-
sented so far. PPCS is a MIX-network-based pseudonymization
scheme for mobile sensor systems with server-client architec-
ture. It uses so-called non-blind calibration, i.e., relies on high
quality ground truth reference data. Therefore, PPCS can not
easily be applied to multi-hop settings with rendezvous-based
calibrations. It thus is not so well-suited for end-user participa-
tory sensing. The same applies to a slightly different version
of PPCS, which was published under the name PRICAPS [247].
Another system, TAPAS [120], presents approaches to privately
select participants for collection tasks – a technique that is not
applicable to calibration.

In privacy preservation, Proximity Testing can be used to pri-
vately and “continuously report all events of mobile users being
within the distance of each other” [215]. This can be used for
the task of finding sensors that have measured the same phe-
nomenon at approximately the same time and location. While
private one-to-one matchings can reliably be done with pairwise
exchanged keys, one-to-many matchings with proximity tests
against an unknown number of strange users fail due to the
bad scalability, especially regarding key exchange and pairwise
distance calculation. Instead, spatial generalization as proposed
in [241] can be applied. A MIX network [57] is a way to en-
sure that the network traffic and the corresponding devices are
unlinkable.

Our privacy-preserving approach combines blind multi-hop
calibration with Private Proximity Testing and a MIX network to
build a privacy preserving rendezvous-based calibration scheme
for participatory sensing scenarios. It is presented in detail in
section 5.3.

5.2 multi-hop calibration

As we have seen in our experiments with low-cost dust sensors
described in chapter 3, Commercial-of-the-shelf (COTS) dust
sensors may require calibration, as they may display inconsis-
tencies amongst each other from the manufacturing procedure
or may deviate over time. Therefore, such sensors do not only
need to be calibrated before deployment, but may also need to
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be re-calibrated in certain intervals. For many of the scenarios
outlined in section 2.2, this step needs to be performed in-situ,
as collection and re-deployment is not a feasible option, espe-
cially when devices are operated by citizens rather than trained
technical staff.

In order to deal with calibration issues in volatile low-cost
sensing scenarios, multi-hop device-by-device calibration algo-
rithms, in which sensors calibrate each other, have been pro-
posed. In this section, we apply this approach to the calibration
of low-cost PM sensors.

5.2.1 Data

Different calibration schemes were tested on real data from a se-
ries of Nova Fitness SDS011 laser scattering sensors. As with the
evaluation of our clip-on sensor for smartphones before, we con-
ducted our comparison measurements at the World Calibration
Center for Aerosol Physics (WCCAP). The setup in which this
data was recorded is exactly the same as depicted in Figure 42

in section 4.5.3.

Figure 48.: Nova Fitness SDS011 laser-scattering sensor used in
our experiments (image by Ubahnverleih

1).

We placed 17 Nova Fitness SDS011 sensors (see Figure 48) —
14 of which delivered data — in an airtight aluminum chamber
and subsequently let them sample ambient air (from outside)

1 https://commons.wikimedia.org/wiki/File:Feinstaubsensor_
SDS011.jpg, made available under the Creative Commons CC0 1.0 Universal
Public Domain Dedication.
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Figure 49.: Raw SDS011 sensor data vs. PM2.5 reference data.

for ≈4 days. From two reference devices connected to the air
outlet of the chamber, we calculated the three size classes PM10,
PM2.5 and PM1 (see section 4.5.3 for details).

The readings of the Nova Fitness SDS011 all were similar and
already initially showed generally good agreement with the
reference, as depicted in Figure 49. This data set was then used
to evaluate different calibration strategies in a simulated manner:
Although in reality stationary, we simulated mobility by defining
intervals in which sensors were assumed to rendezvous. The
same approach has been applied by Hasenfratz et al. [104],
on which our work is built.

5.2.2 Calibration

In this section, the results from simulating different calibrations
are presented, based on the real sensor data as described above.
We employed the calibration methods from Hasenfratz et

al., who proposed a multi-hop calibration scheme for mobile
sensors, in which the sensors utilize each others measurements
from rendezvous in order to improve the calibration on-the-fly
[104]. We investigated the calibration between sensors and a
reference station as well as blind multi-hop calibration, in which
sensors can calibrate each other without having access to ground
truth.

In forward calibration, the calibration parameters are calculated
based on the measurements from a certain time slot (Ttup). The
calibration parameters are then used for future measurements
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Figure 50.: The sensor is calibrated once. For the calibration
all data is used. The parameters are calculated to
a = 1.324 and b = 1.281. The RMSE decreases from
RMSEdata = 2.318 to RMSEdatacal = 0.568.

until the next calibration takes place. If these new parameters
are also used to re-evaluate the previous forward calibration, the
scheme is called backward calibration, which is used to “improve
the measurements accuracy if the sensor characteristics significantly
differ during time period” [104].

In the case of the Nova Fitness SDS011 data, the sensors did
not exhibit significant drift during the 4 days of measurement,
but noticeable offsets among each other and relative to the
reference (see Figure 49). To calibrate the sensors, generally a
linear function with f (x) = a · x + b is used. The parameter a is
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Figure 51.: The sensor is once calibrated right at the beginning
with forward and backward calibration. The pa-
rameter a,b is calculated with the least-squares (LS)
method to a = 1 and b = 2.1355.

the slope to widen or compress the distance between minimums
and maximums and b is an offset. In a real case scenario a
calibration is possible if a sensor passes a reference station
or another sensor. Then, some amount of measurements are
recorded in the same spatial and temporal window. This tuple
of data is used for the calibration.

In cases where all data were to cluster around one value, a
slope of ≈ 0 would be calculated and the data would only be
shifted. As this leads to bad calibration, we used a threshold
for the slope in order to avoid this. For slopes smaller than
the threshold (0.7), the slope is set to 1 and only an offset
( f (x) = x + b) is used for the calibration.
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Figure 52.: Sensor 1 is calibrated with the reference at the begin-
ning. After half of the time the second sensor (sensor
0) is calibrated with sensor 1 as reference. The slopes
in both cases are a = 1 and the offset parameters are
b1 = 2.861 and b0 = 1.953 with a Ttup = 10 min.

In the following, different calibration scenarios are are shown.
In the first case (see Figure 50) the data is calibrated once and all
data is used for the calibration. Therefore, this can be considered
a baseline. A linear calibration ( f (x) = a · x + b) is used. The
parameters are calculated to a = 1.324 and b = 1.281. The Root
Mean Squared Error (RMSE) decreases from RMSEdata = 2.318
to RMSEdatacal = 0.568. For the original data and the calibrated
the correlation coefficient to the reference is r = 0.8917 and the
R2-score is R2 = 0.795.

In Figure 51 only one sensor is calibrated once, right in the
beginning. The data used for the calibration is taken from
a 10-minute-window (Ttup = 10 min). With an measurement
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5.2 multi-hop calibration

Sensor RMSEdata RMSEcal R2
data R2

cal

Sensor 0 2.318 0.719 0.795 0.690

Sensor 1 2.907 0.716 0.748 0.718

Sensor 2 3.263 0.902 0.684 0.528

Table 10.: RMSE before and after the calibration and R2 after the
calibration values of the Multi-hop Calibration

frequency of one reading every 2 minutes this results in ≈5 data
points. The calibration is calculated through the least-squares
(LS) method. The parameters a and b are calculated to a = 1
and b = 2.135. As parameter a is exactly 1, it can be assumed
that only an offset calibration was used. The RMSE decreases
from RMSEdata = 2.318 to RMSEdatacal = 0.638.

In the next scenario (see Figure 52), there is one sensor (sensor
1) calibrated with the reference at the beginning. After half of
the time the second sensor (sensor 0) “enters” the system and
is also calibrated but with the first sensor as reference (2-hop
calibration). The slopes in both cases are a = 1 and the offset
parameters are b1 = 2.861 and b0 = 1.953 with a Ttup = 10 min.
The RMSE for sensor 0 decreases from RMSEdata = 2.318 to
RMSEdatacal = 0.689. This example shows that even another
sensor can be used to calibrate an uncalibrated sensor

The fourth method is again the multi-hop calibration as pro-
posed by Hasenfratz et al. [104] (this time with more than 2

hops). It is used if two sensors that are already calibrated are
at the same time at the same location. Then the sensor with the
older calibration time is calibrated with an assumed “true value”
(yassumption). This value is calculated through:

yassumption =
tc1 · p2 + tc2 · p1

tc1 + tc2
(15)

with pi the calibrated measurement of the sensor i and tci the
time since the last calibration of the sensor. Therefore in this
scenario (see Figure 53), there are three sensors which calibrate
either with the reference or with an other sensor. Every 180 min-
utes one sensor calibration takes place. The Ttup is 10 minutes.

The results of the multi-hop calibration are shown in Table 10.
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Figure 53.: For three sensors the multi-hop calibration is used.
The sensors calibrate either with the reference or
with another sensor every 180 minutes. The tuple
time is 10 minutes, this leads to an offset calibration
in the most cases.

5.2.3 Discussion

To compare the above presented calibration methods, the results
are listed in Table 11. The data displayed for each calibration
method was obtained using only one sensor (sensor 0).
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Calibration RMSEdata RMSEcal R2
data R2

cal rdata rcal

over all
data

2.318 0.568 0.795 0.795 0.8917 0.8917

with refer-
ence

2.318 0.638 0.795 0.795 0.8917 0.8917

2-hop 2.318 0.689 0.795 0.795 0.8917 0.8917

multi-hop 2.318 0.719 0.795 0.690 0.8917 0.8309

Table 11.: RMSE, R2 and the correlation coefficient r to the refer-
ence before and after the calibration and R2 after the
calibration values of the Multi-hop Calibration

107



networked sensing

Because the sensors are very stable, it is enough to calibrate
the sensor once (considering the overall measurement time of
only four days). A linear calibration with all data leads — as
expected — to the best result. Calibrating with another sensor
leads to a small loss in accuracy. In the case of stable sensors,
the multi-hop calibration is not as good as expected, because
the sensors calibrate each other many times. This leads to a loss
in accuracy compared to the once calibrated sensor. In all these
scenarios, except the calibration over all data, in most cases an
offset calibration is used because the tuple times are quite small
and the introduced slope threshold of 0.7 is not reached.

To show the result without the threshold for the slope, the
multi-hop calibration for the three sensors is shown in Figure 54.
The calibration also takes place every 180 minutes but with a
tuple time of 120 minutes.
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Figure 54.: The sensors are multi-hop, linearly calibrated with
the reference every 180 minutes and with and tuple
time of 120 minutes.

As can clearly be seen, often the slope is ≈ 0 and thus the
measurement results in a fixed value. Depending on the variety
of the measured variable, very long tuple times can be needed.
In this data even a tuple time of two hours is not as good as
basis for a simple offset shift. This is displayed in Figure 55:
Because the tuple time is 360 minutes the calibrations only done
every 720 minutes. Moreover only one sensor is used to calibrate
with the reference. Still, we can see that before day one, there is
very little dynamics and therefore not all calibration parameters
are chosen very well. If sensors were to calibrate each other
with such data as basis, this would lead to huge errors.
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Figure 55.: The sensor is linearly calibrated f (x) = a · x + b with
a reference every 720 minutes with an tuple time of
360 minutes.

The sensors used for this experiment are very stable. One
single offset calibration in four days was even enough to achieve
a good result. Thus the multi-hop calibration was not required
in this time period. Considering other cheap sensors, this could
be more important. A multi-hop calibration would bring more
accuracy if the sensors drift is higher. In this case the results
are better the more sensors are used. If the sensors exchange
their data, it is important that the privacy of all participants is
respected. The privacy aspect of such sensors is regarded in the
next section.

5.3 privacy-preserving calibration

In the previous section we have seen that rendezvous-based
blind calibration is a possible strategy to compensate for system-
atic error and to prevent quality loss in Participatory Sensing
(PS) scenarios with low-cost sensors. However, the proximity-
based data exchange approach generally entails privacy issues:
Partial traces might be identified based on location information,
such as frequently visited places or velocity, network character-
istics (e.g. latency), or others.

This section presents a privacy-protecting calibration scheme
for participatory environmental sensing. Collaborative blind
macro-calibration is combined with several privacy preserving
measures, such as private proximity testing [215], personalized
exclusion zones, spatial generalization [241], pseudonymization
and MIX networks [57].
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5.3.1 Preliminary Assumptions

The definition of privacy in this work is to “guarantee that
participants maintain control over the release of their sensitive
information” [64].

attacker model Attackers can be administrators, partici-
pants as well as external entities. The attackers’ role is either
passive or active: passive attackers may eavesdrop on commu-
nication, while active attackers might also compromise servers
and communication. Their motivation is assumed to be either
malicious or honest-but-curious. Attackers’ objectives can be
rather general, e.g. desiring the traces themselves, or more spe-
cific, e.g. being interested in the location of a certain person at
a specific time. Furthermore, the attackers can enhance their
capabilities by utilizing additional information, e.g. publicly
available address information from yellow pages or frequently
visited places found on social media.

trust model The participants trust the devices’ soft- and
hardware to correctly implement the scheme. Moreover, they
trust the system administrator for choosing reasonable privacy-
affecting parameters. The network provider is also trusted, as it
already knows the nodes’ approximate location.

Further, the server is not taken as honest or benevolent. Po-
sitioning services such as the Global Positioning System (GPS)
are assumed to utilize passive client applications and thus need
not to be trusted.

5.3.2 Approach

Our privacy-protecting collaborative blind macro-calibration
method can be decomposed into the following separate parts:

1. Sensing
2. Proximity Testing
3. Calibration
4. Upload

step 1 : sensing The first step naturally is the process of the
sensors taking measurements. Each reading consists of essen-
tially three data entries: location, time and the measurement
itself.
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Figure 56.: Calibration pipeline: Rendezvous are identified by
the server (1) and the sensor nodes’ respective mea-
surements and validities are exchanged (2). The node
with the lower validity merges these into calibration
tuples, estimates the calibration parameters by linear
regression and recalibrates its measurement parame-
ters accordingly (3). Finally, the measurements are
uploaded to the server (4).
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Measurements with low-cost sensors typically deviate to a
certain degree from the ground truth. This measurement error
is composed of two parts: (1) The statistical error, caused by
random hardware noise or inaccuracies in the measurement
apparatus, as well as the statistical nature of the measurement
process; (2) the systematic error, depending on multiple factors
such as the sensed phenomena and the environment. With
low-cost sensors, the systematic error may increase with time,
e.g. due to sensor aging or other causes [39]. Some sensors, e.g.
electro-chemical gas sensors, are more susceptible to this kind
of sensor drift than others.

In order to represent the reliability of a sensor’s measurement,
we introduce the validity (v) as a meta attribute. The validity
ranges between 1 and 0, with an initial value of 1 represent-
ing a status of perfect calibration. As the sensors’ systematic
error increases continuously due to sensor aging, the validity de-
creases monotonically. The daily decrease depends on a global
parameter dailyValidityLoss and is calculated as follows:

v(t + 1) = v(t) ∗ (1− dailyValidityLoss) (16)

Accordingly, the half-life (hl) of the validity can be calculated as

hl(dailyValidityLoss) = ln(2)/dailyValidityLoss (17)

For an exemplary half-life of five days, a daily validity loss of
0.138 would be suitable.

While the statistical error is random, calibration is required
to estimate the systematic measurement error and subsequently
minimize the measurements’ deviation from the actual values.
The systematic error approximation is based on rendezvous and
uses the fact that two spatially and temporally close sensors
should measure the same value for a phenomenon. Depending
on the homogeneity of the phenomenon different values for the
temporal and spatial closeness are required. These so called
rendezvous are determined through Private Proximity Testing
via a server.

step 2 : proximity testing While pairwise distance com-
parison against a proximity threshold suffices for proximity
testing [166], a private implementation requires the exchange
of private keys between each pair of nodes and pairwise opera-
tions hamper scalability. This complexity is not manageable in
a large-scale network of mutually strange nodes. Instead, we
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utilize a reduction of proximity testing to equality testing via
spatial generalization similar to [241]. The positions are mapped
to cells via a globally deterministic function and the resulting
cells are compared for equality. Additionally, from the privacy
perspective, this coarsens the location and reduces the detail of
the released personal information.

The grid characteristics have an impact on the quality of
the proximity detection. The basic grid form is a composition
of distinct rectangular cells. In order to better approximate
a circular neighborhood, multiple mutually offset hexagonal
grids can be utilized [166]. Furthermore, the size of the grid
cells impact the neighborhood relation: the larger the cells, the
greater the rendezvous neighborhood, and the less detailed the
released personal information.

The temporal and geographic sampling position is first dis-
cretized to the corresponding cell in the grid. As the discretiza-
tion also involves the temporal dimension, the same geographic
position will be in a different cell regularly, preventing frequency
analysis attacks to infer population density of certain locations.
The distinct cell identifier is then mapped with a cryptographic
hash function, making it impossible to recognize the original
cell. Depending on the grid, an appropriate hash length needs
to be chosen in order to prevent conflicting hashes. Finally, the
hash value is uploaded to the server along with a pseudonym
in order to query for rendezvous.

The rendezvous detection is done centrally on the server. For
every newly uploaded query, the server checks for matches in
the set of already uploaded queries. If a match is found, a
data exchange between the co-located nodes represented by the
pseudonyms is established.

The exchanged data includes the measurements and the re-
spective validity. As the validity is sensor- and thus person-
specific, this can have privacy implications. The probability
of validities to be relatively distinct is rising with the decrease
of the measurement density in the corresponding cells. As a
countermeasure, the validity is discretized according to a global
discretization step before exchange. In order to protect the
participants privacy during the exchange, a secure communi-
cation channel is established via asymmetric encryption. The
discretized validity and the calibrated measurement are then
sent to the respective rendezvous partner.

The presence of ground truth sensors (i.e. reference stations)
in the system is not required, but can improve the calibration
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performance. Reference stations act as regular nodes, except that
they do not move and exhibit no measurement error (constant
validity of 1). Their measurements along with the respective cell
hashes are also accessed by the server. In case of rendezvous,
the server performs the data exchange on behalf of the stations.

In order to be able to protect the participants’ privacy also
in low density areas, we added tailored sensing in the form of
personalized exclusion zones to our scheme. The participants
can set up so called sensitive locations, for instance their home
or workplace. Subsequently, entries that are located within a
given radius of such a sensitive location are discarded. In such
areas, subsequent measurements might otherwise be linkable to
a trace utilizing prior knowledge on mobility patterns, such as
speed and frequent whereabouts.

step 3: calibration The computation of the calibration
parameters and the calibration application is done locally on
the nodes to reduce possible privacy implications as the server
could link successive characteristic parameters to re-identify
participants.

To perform a calibration, two prerequisites have to be met: (1)
At least one of the participating sensors possesses a sufficient
validity (rendezvousValidityThreshold). This ensures that a cali-
bration actually results in an accuracy improvement. (2) There
was no recalibration based on a rendezvous that happened later.
As a result of network latencies, the server e.g. might recognize
a rendezvous before the data on a different rendezvous that
actually happened before that one is processed. If a preced-
ing rendezvous is recognized later, it is therefore discarded as
outdated.

The two calibrated measurements retrieved from the ren-
dezvous are merged in order to estimate the unknown ground
truth. The validities representing the measurement’s reliability
are utilized as weights. Thus, the estimation is calculated as
a validity-weighted arithmetic mean of the two measurements.
The estimation and the rendezvous time constitute the so-called
calibration tuple: {estimate, time}.

After that, the most recent calibration tuples are merged with
the sensor’s respective uncalibrated measurements {r}. The
number of chosen calibration tuples depends on a global param-
eter (calibrationWindowSize), and its choice has great impact on
the calibration performance: while a higher value yields a more
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solid calculation basis for regression, the chance of considering
already outdated measurements increases.

For the calibration parameters’ calculation, different regres-
sion methods can be applied depending on the characteristics
of the systematic error. For a systematic error best described
as polynomial of first order depending on ground truth, linear
regression with the method of least squares is utilized for er-
ror approximation. However, when the data range is below a
threshold (minimumDataRange), linear regression can lead to
poor results. In this case, we model the systematic error as
constant and disregard the present dependency on the ground
truth. In both cases, the calibration parameters are updated
after error approximation and the following measurements are
calibrated accordingly.

In order to account for the calibration gain, the validity is
updated after the calibration. While the sensor with the higher
validity keeps his validity, the other rendezvous partner adopts
the higher value.

Additionally, a so called validity boost is applied, slightly
increasing the validity for both. The boost accounts for the
calibration gain that not results from calibrating with more valid
sensors, but from the fact that rendezvous among uncalibrated
nodes still yield positive effects when accumulated for many
sensors with different errors. The validity boost, parameterized
by a global parameter validityBoost, is applied by the following
function:

v′ =
v + validityBoost
1 + validityBoost

(18)

This function ensures that the validity never exceeds 1.

step 4: upload We implemented different measures to en-
sure privacy in the data upload step: The participants’ privacy
with respect to network communication is protected through
the use of a MIX network and dynamic pseudonyms. There are
different types of MIX networks, that exhibit e.g. different la-
tency characteristics. We assume that a suitable implementation
as in [78] is realized.

Pseudonyms are freshly chosen for every communication, in
order to prevent any linking. The pseudonym length and the
decentral generation mechanism are chosen in a way to prevent
pseudonym collusion, which depends on the size of the area
to be monitored, the number of nodes and the communication
frequency.
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Figure 57.: For the evaluation we used taxicab location traces
from the epfl/mobility data set at CRAWDAD (image
courtesy of Stamen Design)2.

Additionally, to prevent attacks based on the upload time,
uploads are globally limited to certain points in time defined
by a periodic interval. Finally, the uploaded data consists of the
calibrated measurement and the respective time and location.
There is no need for an identifier, as the calibration is finished
with the upload.

5.3.3 Evaluation

We evaluated our scheme by combining simulated ozone mea-
surements with real-world taxicab mobility traces: For the loca-
tion traces of the simulated mobile nodes we use data from the
epfl/mobility data set at CRAWDAD [185]. The data set contains
real-world GPS traces of 537 taxicabs tracked while serving in
San Francisco, USA (see Figure 57). As the data set is limited to
22 days, so is our simulation time. The measurement frequency
results from the respective GPS logging frequency and amounts
to once per minute on average.

For the simulation of the ground truth ozone distribution, we
use data from a noise generator based on a free implementation
of the OpenSimplex noise generation algorithm [219]. The three-
dimensional noise has a continuous gradient in all dimensions
and nearly no artifacts. We assume ozone to be homogeneous
in the order of 30 minutes in time respectively 100 meters in
space, in line with [103]. Its amplitude ranges between 0 and

2 https://stamen.com
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Number of mobile nodes 50

Number of reference stations 0

Spatial grid form basic (quadratic)
Spatial cell length 100 m
Temporal cell length 30 min
Calibration window size 10

Minimum data range 35

Daily validity loss 0.13

Validity boost 0.00003

Validity discretization step 0.0003

Table 12.: Scheme parameters of simulation setup.

140 ppb (parts per billion) as common ozone concentrations
range between 0 ppb and 70 ppb [104] and EU regulations state
90 ppb as information threshold and 120 ppb as alert threshold
[226].

In line with e.g. [52], we model the measurement error as
the sum of two separate components: The statistical error is
modeled with a Gaussian distribution: n ∼ N(0, σ2) ppb. Its
variance is chosen at the beginning of each day individually for
each sensor: σ ∼ N(1, 3) ppb.

The systematic error b is modeled as a function of the mea-
sured value as well as the sensor age. Based on the literature
[104], [254] the systematic error linearly depends on the ground
truth and increases with time:

b(gt, t) = b0(t) + b1 ∗ gt (19)

where the coefficients are determined by uniform distributions:

b0 ∼ U(−9− d
5

, 9 +
d
5
) ppb (20)

b1 ∼ U(−0.2, 0.2) ppb (21)

By introducing a temporal dependency for b1, sensor aging is
incorporated. The coefficients are updated on the beginning of
each day, thus t denotes the past full days since deployment. For
the systematic error model to be more realistic, the parameters
are interpolated between two subsequent days in order to obtain
a continuous function of time.

The simulation setup regarding the scheme parameters is
shown in Table 12.
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Figure 58.: NMSE with and without calibration and validity
(note numerical shift). Gray bars in the background
represent number of calibrations per hour. (a) Exem-
plary course of a single node for 10 days. (b) Course
averaged over all 50 nodes for 22 days.
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calibration gain The calibration gain, a measure for the
effectiveness of a calibration, is computed as the ratio between
the difference of the Normalized Mean Squared Error (NMSE)
between uncalibrated and calibrated measurements, normalized
by the uncalibrated NMSE:

calibrationGain =
NMSEuncalib − NMSEcalib

NMSEuncalib
(22)

The mean squared error is a standard metric to quantify
measurement errors [200]. The NMSE, the mean squared error
normalized by the ground truth, is calculated as follows:

NMSE =
1
n

n

∑
i

(mi − gti)
2

gt2
i

(23)

summing over all nodes at all time steps.
For the sake of representation NMSE and validity over time

in Figure 58 were created by temporally binning the data with
150 bins, hence the angular course.

In Figure 58 (top) we see a calibration course of a single
exemplary node. The NMSE of calibrated measurements (solid
line) in comparison to uncalibrated measurements (dotted line)
is improved at nearly every point in time.

Figure 58 (bottom) shows the calibration course averaged over
all nodes of the same simulation. The NMSE of calibrated mea-
surements increases much slower and remains nearly constant
despite sensor aging. Generally, the quality of the calibrated
measurements is significantly better than the uncalibrated mea-
surement. While the calibrated NMSE ranges around 0.8, the
uncalibrated NMSE fluctuates around 1.4, yielding a calibration
gain of 65%.

The periodicity of the uncalibrated error can be explained by
the systematic error model, which interpolates between daily
chosen parameters. Remarkably, this periodicity vanishes in the
calibrated error course, indicating that the remaining error is for
the most part of statistical origin.

system life time In Figure 58 (top) the exponential valid-
ity loss is best recognizable at times where no calibrations are
present, especially at day 4. This loss is slowed when calibration
processes are happening. At areas of high calibration density, de-
picted by the gray shaded bars, the validity stabilizes, increases
or even jumps due to the implemented validity boosts.
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The global validity in Figure 58 (bottom) drops with advanc-
ing time, as the validity boosts are not able to handle the global
loss. Still, in times with a high number of calibrations, the va-
lidity rises again as the boosts dominate. The graph shows the
trend that the validity ranges between 0.65 and 0.75 from day
five on, with highs and lows. If the global validity drops under
a specific threshold, it is assumed that the system is not able to
recover itself and it stops yielding reasonable data. This marks
the end of the system’s life.

The expectable system life time without calibration is deter-
mined by the validity threshold and half-life. If a critical node

Figure 59.: Competitiveness of pure rendezvous-based calibra-
tion is shown by impact of reference stations.

density and subsequently a sufficient number of calibrations is
reached, the life time is significantly prolonged. With a sufficient
amount of reference stations, this could enable a hypothetically
infinite system life time. The requirements for such a state are
highly dependent on the data set and the validity configuration
boost.

reference stations The impact of reference stations is
shown in Figure 59. In order to achieve reliable results, multiple
simulations are fused in the diagram. The reference stations
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Figure 60.: K-anonymity in dependency of validity discretiza-
tion, depicting the decrease in anonymity with
smaller discretization steps.

were placed strategically at the most frequented locations. It is
obvious that the deployment of more reference stations results in
better calibration gains. However, the difference compared to a
setting without reference stations diminishes with an increasing
number of nodes, resulting from the utilization of rendezvous
among imperfect nodes. This shows that our rendezvous-based
approach performs best when deployed in a greater scale, and
that the accuracy can compete with reference stations.

identification via rendezvous The risk of trace recon-
struction via rendezvous increases with low measurement den-
sity and high validity diversity. The validity diversity can be
measured with k-anonymity [221]. Here, k represents the num-
ber of validities that are discretized to the same value: the lower
the density and the higher the diversity, the lower k.

Figure 60 shows the percentage of achieved k-anonymity for
different discretization steps. It can be seen that the smaller
the discretization steps, the lower the percentage of achieved
k-anonymity and consequently the higher the potential privacy
risk. As the validity is only utilized as a weight, even a dis-
cretization with the largest of the tested steps is not expected
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to impair the calibration performance significantly. Thus, given
a reasonable validity discretization, a successful privacy pro-
tection with respect to trace reconstruction via rendezvous is
feasible.

5.3.4 Discussion

In the course of our evaluation we decided on certain parameters
(proximity thresholds, grid size etc.) for our simulation. While
these assumptions were certainly not made arbitrarily and are
in line with previous research, we would like to discuss in this
section whether our scheme generalizes to other settings or what
needs to be adjusted when applying it to different scenarios.

Our spatio-temporal parameters were chosen as previous
research suggested for ozone [103] (see above). This choice of
course is dependent on the phenomenon (i.e. environmental
parameter) that is sensed, respectively its homogeneity and
dispersion behavior. Different pollutants or phenomena dictate
a different choice of parameters. The same is true for the general
environment: A city with street canyons may call for other
proximity thresholds than an open area in nature.

An important prerequisite in this context is that the sensing
system somehow should ensure that the same phenomenon is
actually being measured in the first place and that measurement
takes place under the same circumstances. If, for example, one
sensor is used to measure the temperature in open sunlight
and another in the shadow, that means they actually are not
measuring the same parameter and of course this makes the
readings incomparable. Another example would be the usage
of air quality sensors in greatly different sampling contexts (e.g.
standing vs. riding a motorcycle), in which the difference in
speed could lead to an invalid air sample in the latter case.
However, such problems need to be addressed at a different
level, such as training of participants or outlier detection. Co-
location and proper handling of measurement equipment could
also be incentivized through the use of game elements [42].

Finally, the actual mobility patterns that are likely to be exhib-
ited in the sensing scenario may differ from the ones used in our
simulation. We used taxicab traces as basis because they reflect
the movement of real people through a real urban environment.
On the other hand, the authors are aware that if sensors were
actually deployed on the taxicabs, privacy problems would prob-
ably be secondary. Still, the general properties of the mobility
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data should be realistic for the underlying scenario: Everyday
people traversing the public spaces they live in.

All of these are aspects that need to be taken into account,
both when designing a Participatory Environmental Sensing
application and when determining the parameters for using our
scheme to calibrate sensors within them. Nevertheless, we do
not see that any of this would invalidate the general applicability
of our scheme to different environmental sensing scenarios.

5.4 conclusion

In this chapter, we first showed the application of different cal-
ibration schemes from the literature on real-world data from
laser-scattering fine dust sensors. Subsequently, we presented
a novel privacy-protecting calibration scheme for participatory
environmental sensing that combines collaborative blind macro-
calibration with Private Proximity Testing, personalized exclu-
sion zones, spatial generalization, pseudonymization and MIX
networks. This enables the calibration of low-cost sensors based
on rendezvous and the exchange of measurements between
them. We evaluated our scheme on 22 days of simulated data,
which combines real-world mobility traces with modeled cali-
bration errors. The results show that our method is capable of
achieving significant calibration gain even without reliable refer-
ence stations present and protecting the users’ location privacy
at the same time.
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6 Human Factors

This chapter deals with the user in Participatory Environmental
Sensing. So far, this thesis focused on the technology that
enables low-cost, mobile, and distributed dust sensing. However,
in Participatory Sensing, the human is actually an important
part of the sensing architecture, with potentially large effects on
data quality.

While the topic of this thesis is mobile Particulate Matter (PM)
measurement, some of the studies in this chapter entail the
measurement of other phenomena. Some studies were built on
the scenario of noise pollution sensing with smartphones, since
no additional hardware is needed for this type of application
and this greatly facilitated conducting user studies at a larger
scale.

A version of this chapter has been previously published in
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiqui-
tous Technologies (IMWUT) [45]. The exploratory study on audio
recording and annotation was conducted by Marcel Danz for
his bachelor’s thesis [66], pre-studies and the implementation of
the app for the field study have been carried out by Julien Hoff-
mann . Parts of the statistical analyses have been conducted by
Andrea Schankin.

6.1 introduction

Mobile and wearable devices – being always on, always with
the user and context-sensitive – present a perfect platform for
so-called Participatory Sensing [49]. Projects are highly diverse,
ranging from plant observation over data processing (e.g. classi-
fying and labeling data) to sensing environmental phenomena.
An extensive survey of Participatory Sensing was presented
by Christin et al. [64]. In contrast to the potential of such
systems stand the many sources of systematic error that may
affect data quality in mobile and wearable Participatory Sensing
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[39]. That is why, as Bonney et al. point out, “Despite the wealth
of information emerging from citizen science projects, the practice is
not universally accepted as a valid method of scientific investigation.
[. . . ] At the same time, opportunities to use citizen science to achieve
positive outcomes for science and society are going unrealized” [23].
This goes to the extreme that data from volunteers is consid-
ered undesirable by experts or policy makers and may even
be prohibited for official use [95]. On the other hand, research
shows that laypersons can collect data of comparable quality
to experts, if properly familiarized with the task [206]. The
problem is that non-experts are typically not, and thus cannot
ensure standardized sensing processes. They may be:

• Untrained: unfamiliar with the way the sensing process is
intended to be performed,

• Overwhelmed: uncomprehending or unable to recall the
correct measurement procedure,

• Inattentive: not paying attention to all details of the pro-
cess (esp. likely if participation is extrinsically driven, e.g.
through monetary incentives or gamification),

• Digital immigrants: not digital natives, i.e. have little or no
experience with mobile or wearable technology, or even

• Malicious: deliberately trying to influence the measurement
process or “to play” the system.

We argue that, in the design of Participatory Sensing tools and
applications, the user is still mostly regarded as someone who
needs to be motivated and should ideally have a good time
using it. Meanwhile it is neglected that in fact often she or he
is also an important part of the technical sensing architecture,
directly affecting the quality of the generated data or performed
task. Harding et al. recently recognized that “[. . . ] this applica-
tion domain is poorly understood by most system designers who focus
almost exclusively on empowering citizens rather than considering the
needs of both citizens and civic authorities and establishing trusted re-
lationships between these stakeholders” [102]. By designing for both
adequate data quality and intelligibility, this trust relationship
between users and authorities is strengthened.

This chapter and its contribution are divided into two parts:
In the first part (section 6.3), we present a series of empirical
field observations that we conducted to explore the variance
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in behavior that non-experts display in different Participatory
Sensing settings. We categorize our observations, focusing the
perspective of our analysis on the correct execution of the respec-
tive sensing process. Subsequently, we gather and categorize
mechanisms that can be employed to prevent or mitigate this
kind of adverse behavior (section 6.4). The collected knowledge
can be used to guide the development of systems that help non-
experts to perform measurement tasks more uniformly and to
prevent certain mistakes, thereby increasing data quality.

In the second part (section 6.5), we present a large field study
of an exemplary Participatory Sensing application. Four differ-
ent designs (’app flavors’) are compared to validate the effective-
ness of the collected measures, discuss their interplay with user
experience and illustrate the importance of making measures
understandable to the user.

6.2 related work

This section gives an overview of generally related work. An in-
depth discussion of measures that can be employed to increase
data quality is discussed in section 6.4 below.

As already shortly mentioned above, Harding et al. recently
recognized that the “perceived value of civic crowdsourcing appli-
cations has remained low’ and that the design space is yet poorly
understood [102]. However, their work focuses on engagement
and the important trust relationship between different stake-
holders, whereas this paper addresses the relationship between
non-expert user behavior and data quality. Also centering on
motivational aspects, specifically regarding online citizen science
platforms, is the work by Yadav et al. [255].

Sensr [122] is one of the rare systems to guide the design of
Participatory Sensing tools and deployments. It is a framework
for authoring mobile data-collection tools for citizen science.
The focus lies on facilitating the process of creating mobile
applications for people without technical skills, e.g. through a
visual programming environment. As such, it addresses novice
programmers more than novice users. Their work also includes
a short overview on approaches to ensure data quality. Other
than that, individual authors occasionally include discussion on
possible non-expert user errors in their work. Klakegg et al.
for instance presented a mobile sensing system that enables end-
users to perform portable Near Infrared Spectroscopy (NIRS)
[127]. As specific challenges, the authors list ensuring the correct
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distance and angle to the measured object, an even surface, and
environmental factors like avoiding stray light or interference.
In our own previous work, we included an overview of different
sources of systematic error in mobile sensing [39], one of them
being non-expert users. Alagarai Sampath et al. researched
how improving the presentation of a task to crowdworkers
affects their performance [5], and Dey et al. presented a tool to
support building intelligible context-aware systems by exposing
the application logic to the user [74]. We included exploiting
knowledge about the sensing context as a promising approach to
mitigating some non-expert user errors in our discussions below.
To the best of our knowledge, no work has yet comprehensively
explored the dimensions of non-expert user errors in mobile
sensing for citizen science.

Norman very early presented high-level design rules for com-
puter systems based on human error [169]. While his guidelines
are still applicable today and also valid for the design of Partici-
patory Sensing, they are very generic. Among other methods,
he proposes to “Use analyses of people’s performance in a variety of
situations – but especially their errors – to construct an analysis of
the appropriate form of human-machine interface that would optimize
performance and minimize [. . . ] error”. This is what this chapter
explores for Participatory Sensing.

6.3 empirical design space exploration

In the beginning we had little more than the idea that people’s
sensing behavior is likely to be diverse, considering the fact that
the concept of Participatory Sensing emphasizes distributed
sensing by everyday users with their personal mobile devices
in the public sphere [49], and scenarios generally aim at a large
scale. In order to gather information about how much variance
people display in their sensing behavior and to what extent
“naïve” users possess an intuitive knowledge of different sensing
tasks, we ran a series of small exploratory field studies that also
serve as a baseline for the subsequent research.

Methodologically, we opted against methods like interviews
since procedural knowledge is difficult to express verbally [89].
Instead, all studies were run in the field: We conducted three
measurement studies and one assembly study, each represen-
tative for environmental Participatory Sensing. Subjects were
merely put into the context (“Imagine [. . . ] How would you do
that?”), as the natural event of measuring with mobile devices
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is too rare for true ethnographic observation. No action options
or restrictions were specified. The behavior was observed (live
and partially additionally in video recordings) by an instructor
present throughout the trial run. As participants for the mea-
surement studies, passers-by were approached in urban public
spaces (such as a park near a university campus, in the street,
etc.). Volunteers were not paid.

To adequately explore the design space and capture the pe-
culiarities of different Participatory Sensing tasks, we selected
four different use cases for our empirical field research studies:
The first two both required the users to record an audio signal
with a smartphone, but differed in the source of the signal. For
Noise Level Monitoring, participants were asked to take audio
measurements with the goal of capturing the outdoor ambient
noise level. Audio Recording and Data Annotation required users
to generate an audio signal themselves, record it and finally
annotate the recorded data with a ground-truth label. In the
third use case, Participatory Air Quality Sensing, participants were
asked to use the iSPEX camera clip-on module [217] for fine
dust measurements. The first two settings both entail tasks that
are seemingly simple and that we expected people to have a cer-
tain intuition for, even without explicit instructions on “correct”
sensing behavior. The third use case was selected to observe
behavior in presence of a more complex sensing task and ac-
cording instructions. A fourth study covered the scenario of
Grassroots Sensing with DIY Hardware. In this setting, we ob-
served participants while assembling a Do-it-yourself (DIY) kit
of a sensor station for citizen science air quality monitoring.

The focus of observation in the exploratory studies was the
variance in exhibited behavior, specifically the kind that may
have an adverse effect on data quality. We refer to this kind of
behavior as human error in this paper, following Norman [169]:
Human error both covers mistakes (errors in the intention) and
slips (errors in carrying out the intention). We also explicitly
include “mistakes” that are beyond the direct control of the
user or caused because the user had incorrect or incomplete
information on the task. However, we would like to stress that
we do not imply that in these cases the user is to blame. Still,
from a technical perspective, they remain errors. An overview
of observed human errors is shown and discussed at the end of
this section in Table 13, after the presentation of the exploratory
studies.
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6.3.1 Exploratory Study 1: Noise Level Monitoring

The underlying scenario for this study is smartphone-based
noise pollution sensing. Multiple authors have built phone-
based sensing systems for this use case in the past [119], [149],
[164], [192], [203]. We selected this application case because it
represents the task of measuring an environmental phenomenon
with the internal sensors of a standard smartphone. The idea
was to get an insight into the varying behavior that we expected
to be exhibited for instance by standard users who download a
crowdsensing app from some app store and just intuitively start
recording. This use case is the same that also was explored in
the final field study in part II of this work.

Figure 61.: Exploratory Study 1: We investigated non-expert
user behavior for the use-case of Noise Level Monitor-
ing with smartphones.
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Participants and Task

Seven participants (four men and three women, ages ranging
from 21 to 26 years) were asked to record audio samples rep-
resenting environmental noise levels using the default Apple
iPhone audio-recording app (see Figure 61). All participants
were approached in the public sphere of a major city. First,
they were given a short introduction into the concept of partici-
patory noise pollution maps. Subsequently, participants were
instructed to use the phone to make an audio recording that is
representative of the ambient noise pollution level. The only
specification on how to do this was the abstract instruction to
do it in a way that they felt would yield the highest possible
data quality. They were asked to complete a single recording
and notify the observing instructor when they thought that they
had successfully completed the task. By design, subjects were
not instructed on correct or incorrect ways to perform the task,
in order to not artificially narrow down the range of possible
behavior.

Observations

We expected to observe human error in the measurement pro-
cedure, and participants’ behavior indeed showed both large
diversity and scale. As a baseline on what constitutes an error,
we adopted the best practices for noise level monitoring from
the PDF user guide of the NoiseTube project [149]. Of the seven
participants, six moved the phone around while recording, caus-
ing audible wind-noise in the recording. Six participants held
the device too close to their face, breathing into the microphone.
Two participants inadvertently covered the microphone with
their finger while holding the phone, leading either to muffled
recordings or loud scratching noises. In the absence of a timing
instruction, the measurement time participants deemed repre-
sentative of the ambient noise pollution level varied greatly: The
duration of the recordings ranged from a few seconds up to
more than three minutes. Several users actively tracked noise
sources, such as cars passing by, and one of them even tried
to close in on noise sources by approaching a group of people
that were talking and attempted to record the sound of their
conversation from a close distance. One participant proceeded
to record ambient noise levels without going outside first. Other
observed influences were users audibly walking around, scratch-
ing themselves loudly and even absurd behavior like talking or
whistling (out of boredom) while recording.
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6.3.2 Exploratory Study 2: Audio Recording and Annotation

In the second empirical study, we explored a scenario involving
data collection and annotation. This differs from exploratory
study 1 in two key aspects: The scenario dealt with additionally
performing an activity in contrast to just measuring, as well as
sampling an object rather than an environmental phenomenon.
This is a more complex setting which also presents more room
for human error.

Participants and Task

Thirty-one students (22 men and 9 women, aged between 19 and
32 years) volunteered for this study. We simulated a data collec-
tion and labeling task in the following way: Participants were
approached on a university campus and asked to shake a Kinder
Surprise egg and record the produced sound. Kinder Surprise
is a chocolate egg that contains a small toy inside, which may
either be a collectible figure or something that requires assembly.
“Experts” claim to be able to determine the type of surprise
by the sound of the egg when shaking it. For the use case of
building an automated classifier to detect the content of the egg,
participants were handed an egg and asked to recording the
shaking sound with their smartphone. The specific instruction
was to shake the egg and to use their smartphone to record
the sound for approximately five seconds and with as little as
background noise as possible. Actually opening the egg and
assigning a label to the recording was not part of the study.

Observations

While recording, only three participants shook the egg near the
microphone, all others shook it somewhere behind or in front of
the phone or at one of the sides (left or right). This observation
points to an incorrect mental model of sound recording with
a smartphone. Participants probably either related the sound
recording function to the camera or assumed that the distance
between sound source and microphone is irrelevant. Some
participants additionally produced unwanted noise by loosely
worn watches or bracelets on the arm they used to shake the
egg.

Regarding the activity, grip and shaking technique have a
large influence and determine the quality of the generated sound.
For later classification, it is important that the procedure is ide-
ally performed in the same defined way. The exploratory study
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Figure 62.: Exploratory Study 2: In Audio Recording and Anno-
tation, we observed a wide range of grip and shake
variations.

shows that, without further instruction, participants hold and
shake the egg very differently (see Figure 62b). Most partici-
pants held the egg at the long sides and shook it to the peaks
(N=13) or perpendicular to the peak axis (N=6). Others held
the egg at the peaks and shook it either to the peaks (N=6)
or perpendicular to the peak axis (N=2). Finally, some partici-
pants held the egg inside their closed hand (N=4). Half of the
participants held the egg with their dominant hand and the
smartphone with the other hand, the other half did it the other
way around. Although this is probably not relevant concerning
the data quality, it may be of interest in other use cases and
generally from the interaction design perspective.

Overall, the exploratory study shows high variance between
participants, indicating that the quality of the recorded audio
signal can not be guaranteed without more specific instruction.

6.3.3 Exploratory Study 3: Participatory Air Quality Sensing

The third exploratory study dealt with smartphone-based air
quality sensing. Participants were given the iSPEX system [217]
to measure the fine dust levels in the atmosphere. iSPEX is a
passive spectropolarimetric add-on for smartphones that uses
their camera to determine the levels of atmospheric particles by
analyzing the polarization of the light when pointing the sensor
add-on at a patch of blue sky.

The measurement process itself is quite intricate. Therefore,
the iSPEX app includes in-app instructions and mechanisms to
guide the user to correct measurements: The principle measure-
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ment process is explained both on a one-page paper manual as
well as in a tutorial inside the app. Since it is required that the
user orients himself so that the sun is in his back, the app calcu-
lates the position of the sun for the time of day and the user’s
location and uses a compass to point him or her in the right
direction. The app also tries to detect whether the hardware
module is installed and triggers an alert and prohibits measure-
ment if it is not. For a correct measurement, the user slowly
needs to raise his or her arm upwards. The app prompts the
user in real-time to do this and plays a sound after correct execu-
tion to indicate success. All of these features were present in the
exploratory study, as we used the standard app available from
the Apple App Store. Because of these measures, sometimes
users made errors during the study before the app detected and
prevented them and eventually enabled them to correctly follow
the measurement procedure. As we are interested in exploring
the range of possible behavior, we still included these errors in
our recordings and discussion at the end of this section.

We selected this use case because it represents a smartphone-
based measurement task for which users are likely to have no
intuition at all and that requires additional unfamiliar hardware.
Other examples for complex sensing tasks tasks like this are e.g.
smartphone-based portable near infrared spectroscopy (NIRS)
[127] or light-scattering particle measurements with camera-
phones [30].

Participants and Task

In this study, ten pedestrians (seven men and three women,
aged 19 to 28, were recruited in a inner-city park close to a
European university campus. For the study, they were given
an iPhone 5s with the most recent app version installed (last
updated: Oct, 2015) as well as an iSPEX module, complete in
box, including the sensor module, an adapter for the iPhone 5s
and a quick manual (see Figure 63). The purpose of measuring
fine dust using a camera smartphone was shortly introduced to
them and they were then asked to use the phone (respectively
the app) and the sensor add-on to perform measurements. No
specific instructions, e.g. on how to install the add-on were
given. All participants owned a smartphone themselves, three
of them an iPhone and the rest Android phones. While the
iSPEX system only exists for the iPhone and thus there was
no alternative, our observations do not suggest any impact of
providing participants with an unfamiliar phone.
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Figure 63.: Exploratory study 3: Participatory Air Quality Sensing
using the iSPEX clip-on module [217] for the iPhone
5s.

Observations

Six participants immediately hit the “start measurement” button
after starting the app, without having installed the iSPEX add-on
or reading the instructions. Three participants then still left the
module in the box at first and tried to take measurements with
the app without the hardware add-on being installed, one of
them even over and over again for several minutes. Conversely,
one user carefully read the included paper manual, installed
the module correctly and then started performing the correct
procedure, but without having pressed the “start measurement”
button first.

All participants encountered problems when attaching the
iSPEX module to the phone, as they first had to attach the
separately packed iPhone 5s adapter, and it took a lot of time
for them to get it to fit right. Still, for some of them, the app
even then wrongly kept displaying the alert “add-on missing”,
preventing them from taking a measurement. One user installed
the add-on module facing the wrong way. After receiving an
alert, the user corrected this. Another user at first installed
the hardware add-on at the bottom side of the iPhone over
the microphone, because he read in the manual that he should
enable the sound on his phone and therefore thought that the
microphone or speaker was used to make the measurements.
After reading the in-app tutorial, the user corrected his mistake.
The subjects generally had trouble understanding what kind of
arm movement was expected from them and that they should
continue to raise their arm until the phone was over their head.
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Apart from the above errors that were eventually prevented by
the mechanisms of the iSPEX app, we observed several errors
that the app was not able to catch: Of the ten participants,
seven tried to take measurements even though no sufficiently
large patch of blue sky was visible, five were too close to trees or
buildings for a valid measurement. Three participants measured
while being seated, without orienting themselves away from the
sun.

Overall, a noteworthy observation is that even though the app
successfully prevented many types of misbehavior quite reliably
by interrupting the measurement attempt, it did not inform the
user concerning the reason for the interruption. As a result,
three of the ten participants eventually became frustrated and
aborted the measurement attempt. As main problem with the
use of the app they spontaneously reported the lack of specific
feedback (participant #7: “The app does not tell me what I am
doing wrong!”). Regardless of the source of errors, alerts almost
exclusively contained the message “add-on missing”.

6.3.4 Exploratory Study 4: Grassroots Sensing with DIY Hardware

The underlying scenario for this study is grassroots environ-
mental monitoring. Around the world, we increasingly witness
examples of sensing campaigns that are driven by activists.
Hackspaces and Fab Labs, along with according project descrip-
tions that are widely available over the Internet, have enabled
citizens to build and operate sensor stations who could not
have done this before. A real-world example for this is the DIY
fine dust sensor by the so-called OK Lab of the Open Knowledge
Foundation (OK) Germany in Stuttgart, Germany, a nonprofit
organization that advocates open knowledge, open data, trans-
parency, and civil participation. The OK Lab provides an online
manual1 that explains the assembly and installment of a sen-
sor station. They also operate and maintain a server to which
measurements can be uploaded and an online platform which
visualizes the data.

Participants and Task

In this exploratory study, no instructions were given at all. Nine
participants (five men and four women, ages ranging from 21 to
57 years) agreed to being observed while assembling the DIY

1 Assembly instructions for the do-it-yourself (DIY) fine dust sensor node:
http://luftdaten.info/feinstaubsensor-bauen/.
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sensing kit of the OK Lab. All participants worked at a local
newspaper, most of them as journalists, one as technical staff.
They chose to build the DIY kit on their own accord. Prior to
the observation, they had as a group ordered all parts necessary
for the assembly, as listed on the project’s website: 10 pcs. each
of the WiFi enabled NodeMCU ESP8266 board, the SDS011 dust
sensor, and the DHT22 temperature/humidity sensor, as well as
some wires, a USB power supply, plastic tubing and a piece of
flexible hose. Subsequently, they chose to assemble the individ-
ual devices in a group session (see Figure 64a), as explained on
the project’s website and a Frequently Asked Questions (FAQ)
video.

Assembling the sensor station required connecting seven
wires to the appropriate pins, connecting the flexible hose to the
air inlet of the sensor, flashing the firmware onto the NodeMCU
from a shell, and finally installing the resulting system into the
plastic tubing (see Figure 64b).

Observations

When assembling the sensor, each of the participants worked
by himself on one sensor kit. Three of the participants at least
partially failed to connect the wires to the correct sockets. In
four of the assembled sensors, individual wires had slipped
out of the sockets. Two of the participants were not able to
build the kit by themselves and eventually asked others in the
group for help. Three participants complained the manual being
unstructured or even missing steps. To verify that they had
successfully assembled the DIY kit, participants connected the
completed kits to a power outlet and listened whether the dust
sensor’s fan started to make a light noise. However, this test
did not prevent further error: One participant did not succeed
in flashing the firmware without noticing, leaving the stock
firmware on the device. Inserting the finalized sensor into the
plastic tubing housing went smoothly for all but one participant,
who experienced this as being difficult. None of the participants
shortened the piece of flexible hose that was connected to the air
inlet of the optical dust sensor, which might enable stray light
to be reflected into the measurement chamber. When trying
to register the sensors in the local WiFi, three of the sensors
did not advertise their Service Set Identifier (SSID) as described
in the instructions and as needed to finalize the configuration.
Of the five sensors that were successfully registered, only two
included all of the sensor data in their communication. The
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(a)

(b)

Figure 64.: Exploratory Study 4: Nine participants (a) assembled
a do-it-yourself (DIY) sensor station for air quality
monitoring and (b) prepared it for installation for
the use case of Grassroots Sensing with DIY Hardware.

other three transmitted empty values for either the dust sensor
or the temperature sensor, probably due to bad connections or
cable breaks.

Since some of the observed errors (and the underlying causes)
are not directly evident to the user, after our study, we discussed
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our findings with an organizer of the OK Lab. He reported that
they perform regular sanity checks at the back-end, especially
on newly registered sensors, as they also observed missing
data or that the connectivity of sensors sometimes varies. This
apparently happens mostly either because people install them
in an inappropriate place outside of the range of their own WiFi
or when users do not maintain proper operating conditions, e.g.
by switching off their WiFi over night to save energy. To be able
to give the users feedback on this, the OK Lab has started to
transmit the WiFi signal strength along with the sensor data.
While the SDS011 dust sensor comes pre-calibrated and user
calibration of the DIY station is not intended in the project,
long-term data on stability of the sensor is not yet available and
(re-)calibration or sensor replacement may be required [47].

6.3.5 Analysis of Observed Human Error

The exploratory studies revealed many ways in which partici-
pants exhibited human error (both slips and mistakes [169]) in
the measurement process, even in seemingly elementary tasks.
We collected all our observations in Table 13. The table includes
behavior which arguably may not strictly be erroneous per se,
but which varied strongly between participants, suggesting a
potentially significant effect on the resulting measurement.

Subsequently, we grouped similar instances of behavior into
more abstract types of errors in smartphone-based mobile mea-
surements and finally defined six dimensions of human error to
form a taxonomy (see Figure 65).

Hardware

This aspect both concerns the employed smartphone (or other
personal mobile devices) as well as potentially any other hard-
ware, active or passive, that may be required for the sensing
task. In general, one can assume that users will be most com-
fortable with their own device and that unfamiliar platforms
and especially add-ons and external devices are more likely to
promote erroneous behavior. This is especially likely if they
include intricate assembly and/or maintenance.

Device Handling

This dimension regards the handling of the employed device(s).
Requirements may range from virtually non-existing for robust
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Type Example Behavior Study

H
ar

dw
ar

e

Faulty installation clip-on module missing 3

clip-on module incorrectly installed 3

Incomplete / wrong assembly incorrectly built DIY kit 4

Undocumented / surplus parts polarization foil 3

incomplete manual 4

Missing maintenance operating conditions not ensured 4

No / faulty calibration un- or decalibrated sensors 4

Faulty device association sensing device not paired, loss of
data

4

D
ev

ic
e

ha
nd

lin
g

Wrong orientation user turns around own axis while
measuring

1

microphone pointing in the wrong
direction

1

moving device in wrong angle 3

Wrong height or distance microphone too close to face 1

arm not extended 1

Unwanted device movement user noisily moves device around 1

user shakes device instead of (or
along with) egg

2

Covering sensor user has finger on microphone 1

U
se

r
A

ct
iv

it
y

Generating noise talking, whistling 1

coughing, clearing one’s throat,
breathing noisily

1

scratching, clapping 1

unwanted noise (watches rattling) 2

Unwanted user movement walking around 1

Phone use making a call or texting 1

M
ea

su
re

m
en

t/
O

bs
er

va
ti

on

Wrong sample properties recording too short 1

Wrong amount of samples only one measurement instead of
two

3

Not actually sensing / recording user forgot to press recording but-
ton

3

False or no annotation wrong label assigned by mistake 2

no position data, as GPS disabled /
no signal

1

O
bj

ec
t/

Ph
en

om
en

on

Wrong object handling wrong grip or shake 2

Wrong object/phenomenon no blue skies visible 3

Wrong alignment shaking egg nowhere near micro-
phone

2

user follows noise source and tries
to get very close

1

En
vi

ro
nm

en
t/

C
on

te
xt

Inappropriate weather noisy wind in audio recording 1

no blue skies visible 3

Indoors instead of outdoors (or v.v.) attempting to measure ambient
noise levels indoors

1

Environmental disturbances stray light entering sensor 4

Wrong time and/or place measuring at wrong location or
point in time

4

Table 13.: Non-expert behavior from exploratory studies (study
1: Noise Level Monitoring, study 2: Audio Recording and
Annotation, study 3: Participatory Air Quality Sensing,
study 4: Grassroots Sensing with DIY Hardware).

tasks (e.g. recording and submitting textual observations) to
tightly constrained procedures that the user is unfamiliar with
and/or need to be followed precisely in order to collect mean-
ingful data.
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Figure 65.: Ishikawa diagram of the identified dimensions
through which users may affect the quality of the
measurement result.

User Activity

The next dimension concerns any behavior of the user that is
unrelated to the measurement process and may still affect it,
potentially reducing data quality. Mostly, this covers unwanted
physical activity and the like. As with device handling, there
may be tight constraints regarding this dimension or none at all,
depending on the sensing task.
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Measurement/Observation

This dimension concerns requirements regarding the recorded
observation. Such requirements for high quality data may range
from completely free observations to tightly defined constraints,
e.g. regarding sample size, annotation requirements, synchro-
nization of different readings etc. The fewer constraints are
defined, the more diverse data will probably be collected across
participants. Generally, this will likely make comparison and/or
data fusion more difficult.

Object/Phenomenon

This dimension covers any requirements regarding the phe-
nomenon or an object that is at the center of the observation.
Constraints may range from basically none to looking at pre-
cisely defined aspect of a specific object. The boundaries be-
tween this dimension and the handling of the device may over-
lap, e.g. when a certain alignment between device and object is
required.

Environment/Context

The last dimension concerns the environmental context2 of the
user. Measurements may be robust to external factors and be
allowed anywhere and anytime or again, tightly constrained
and well-defined.

6.4 enhancing data quality

After having analyzed and compiled ways in which participants’
behavior may adversely affect data quality in Participatory Sens-
ing, we look at ways to prevent the undesired behavior or
mitigate its effects in this section. Research on mobile sensing
recognizes the need to ensure viable readings from low-cost
sensors [135], even though the focus is seldomly placed on the
effects that are caused by non-expert users. Many general ap-
proaches exist in the literature, some of which are applicable
to typical Participatory Sensing scenarios and some of which
are not. Whether or not a technique is suitable or not depends

2 We are aware that in Ubiquitous Computing, the term Context by itself
usually includes aspects that are already covered in other dimensions here,
e.g. activity. Context has i.a. been defined as “any information that can be
used to characterize the situation of an entity” [73]. In contrast, environmental
context here is meant more narrow.
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on a variety of aspects, such as the specifics of the task at hand,
the scale of the deployment, etc. This section discusses classes
of possible countermeasures gathered from literature review.
Table 14 summarizes the results.

Participant Selection is an approach that has been used in differ-
ent fields to identify and separate suitable personnel from such
that is unfit for a task. Wickens et al. review different methods
of identifying people who are likely to perform successfully
along with different measures of ability, albeit with a focus on
assigning people to jobs [245]. However, by definition, Partic-
ipatory Sensing addresses everyday users, which may make
pre-selection an undesirable step. Additionally, at larger scale,
screening may become prohibitively expensive.

The most intuitive approach to ensure that users perform
a task correctly is training [144], [206], [210]. Thelen et al.
reported that “numerous studies have demonstrated that volunteers
can successfully perform basic data collection tasks when given a half
day or more of practical field training.” [228]. This highlights
the biggest drawback of training sessions: A lot of resources
(experts, facilities, etc.) are needed and the approach does not
scale. Slightly different forms of training that do not require
the user to keep a mental model of the process are instructions
(e.g. manuals or tutorials). The key difference to training is that
instructions are typically given in writing or otherwise fixed
form (video, etc.) which is used to make the non-experts to
understand the measurement process. Understanding is defined
as the ability to hold and process all elements that define the
measurement process simultaneously in working memory [222].
However, working memory is extremely limited in capacity
[157] and in duration [183], in particular for novel information
that needs to be processed in a novel way [222]. That is, people
might fail to understand or completely recall new material if
it is sufficiently complex, as may be the case in Participatory
Sensing. As we have shown in our exploratory studies, even a
seemingly easy task like recording an audio signal involves a
complex measurement process for the user. Also, pure manuals
are of little help, as people tend to not read them [173], especially
if they do not encounter problems, as would be the case in a
badly but successfully performed measurement process. On
the other hand, instructions can be given much “closer” to the
actual task (spatially and temporally). In shorter form and
in-situ, instructions provide an advantageous approach, up to
providing a step-by-step walk-through.
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Another popular approach are reputation systems [113]. There
are different flavors, ranging from picking users based on their
reputation or skill level [193] (cmp. selection above) over assess-
ing it beforehand [230] to building it through data analytics.
However, this again requires some kind of ground truth deter-
mined by expert users or a series of campaigns, making it an
intricate option. In Participatory Sensing systems, individual
readings can often not be re-evaluated and the classification of
them as being correct or wrong after-the-fact is often infeasi-
ble, making reputation levels difficult to build. Additionally,
“ranking users can backfire” [126], influence the participants’
motivation, and paradoxically lead to the best performing par-
ticipants quitting, as they would feel they had “won the game”.

Verification of data entries is another approach to increase data
quality. Gardliner et al. [94] differentiate between verified
and direct citizen science. Entry verification can either be ap-
proached automatically by using some sort of computational
recognition or simple sanity tests. The advantage of this sort
of verification is, that it can be performed in real-time and the
user can be prompted before leaving the area, as proposed by
Burke et al. (“Did you really just see 40 diesel trucks go by in
five minutes?”) [49]. In community-based data validation [249],
instead of revisiting their own data, participants verify data
from their peers. Another form of verification are expert reviews
[122] of data. They have the disadvantage that data has already
been collected and can only be discarded, as the analysis takes
place after-the-fact.

Computational approaches are diverse. The simplest ones
are of a statistical nature: redundancy [122] and/or repetition
[206] both lead to multiple instances of the same data which
can then in turn be processed, e.g. to remove outliers. These
approaches only work, if the underlying assumption holds that
the overall error is non-systematic, i.e. people will on average
perform the task correctly. However, as we have seen in our
exploratory studies, there are certain errors which the majority
of people tend to make. More sophisticated approaches like
outlier/anomaly detection or Bayes filtering take the structure of the
data into account. The drawbacks of filtering out anomalies is
that the smoothing makes the approach less suitable for highly
dynamic phenomena. If only few data points are available or
no model can be constructed, filtering is also not applicable.

A different way of computationally addressing procedural
errors is context recognition. Mechanisms may be as simple as

144



6.4 enhancing data quality

detecting whether the GPS receiver is turned on or the accelera-
tion sensors of a device pick up movement when there should
be none, to integrating full-fledged activity recognition. A ro-
bust way to deal with different types of error afflicted data is
signal reconstruction from noise [39]. However, it is not generally
applicable, as the measured phenomenon must be modelable as
particles, among other constraints.

An interesting approach is data design, i.e. using HCI methods
not only to design interfaces, but also to assess the needs of data
consumers to collect reliable, standardized and overall more
useful data [124]. However, this works for observations that
are reported in a free form (e.g. textual), but not so much for
pure sensor data. Additionally, models have been developed to
exchange, revise and merge structured offline data, e.g. from
contributions that are accomplished via paper [211].

Finally, one of the most universal mechanisms is feedback.
Since we assume that the user actually is interested in collecting
and submitting high-quality data3, it is important to make the
measurement process as transparent as possible. Feedback (e.g.
on the correct execution of a step, etc.) can greatly contribute to
this understanding.

Some of the discussed approaches can be combined with
Gamification techniques. In this way, the location-based game
GeoSnake [156] has been used to boost verification rates, the
game PhotoCity gamifies training [235] and it has been proposed
to use game contexts to ensure correct execution of a sensing
task [42]. This approach is discussed in-depth in chapter 7.

3 We disregard malicious users here, as we are convinced that someone deter-
mined to willingly submitting false data will find a way to do so.
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Measure Advantages Disadvantages

Participant Se-
lection

domain expertise / prior
knowledge

usually requires thorough
analysis, high resource cost;
selection success hard to
verify

Training best / covers everything;
trainer can assess success

high resource cost, experts
needed continuously

Instruction
(manual)

clear mentally demanding; pas-
sive access

Instruction (in-
situ)

very clear; temporally close requires some sort of dis-
play

Reputation good for sorting out single
users; helps against mali-
cious intent

can de-motivate users; may
be hard to build

Verification ensures data quality infeasible for many tasks;
after-the-fact;

Expert Re-
views

ensures data quality infeasible for many tasks;
experts needed continu-
ously; after-the-fact

Redundancy very simple only robust against sta-
tistical error, not system-
atic; may be difficult to
achieve; bad readings still
contribute

Outlier/
Anomaly
Detection

eliminates implausible
readings

prevents capturing “true”
anomalies

Bayes Filter adapts to available data needs basic models and
multiple readings

Repetition simple only robust against statis-
tical error, not systematic;
needs to be triggered some-
how

Context Recog-
nition

potentially fine grained
control over measurements

only certain class of errors;
maybe technically difficult

Reconstruction extremely robust only applicable in special
cases

Data Design provides structure mostly for textual data

Feedback supports user in verifying
correct procedure himself;
almost always possible

may overwhelm or frus-
trate user if not carefully
balanced

Gamification motivates; increases hedo-
nic quality; may enhance
measurement frequency

may distract from sensing
task: can demotivate in-
trinsically motivated partic-
ipants

Table 14.: Overview of possible measures to improve the data
quality in mobile non-expert sensing.
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6.5 field study

The previous observation studies revealed a surprising diversity
in user behavior, which is likely to yield a high variance in data
quality. Thus, it is important not only to unify the measurement
process per se but also to guide the user behavior, in particular
in Participatory Sensing. As already discussed in section 6.4,
there are two main strategies to achieve this goal. First, users
could be trained or instructed to show the required behavior or,
second, the correct user behavior could be supported by techni-
cal measures. At the same time, user experience is important in
order to keep the user motivated to participate in citizen science.

We argue that implementing purely technical measures to
prevent certain errors may increase data quality but at the same
time may have adverse effects on the general user experience.
Conversely, focusing purely sensing on ease of use and an
understandable process may still result in users keeping to make
certain kinds of errors. We hypothesized that the combination
of both will lead to substantially better systems. To test this
hypothesis, four functional variants (flavors) of a mobile sound
recording app were developed. The four app flavors mainly
differed in (a) the way participants were instructed how to
record an audio signal properly and (b) the technical measures
supporting correct recording (see below).

6.5.1 Participants

A total of 535 passing-by pedestrians were recruited to volunteer
in the study (opportunity sample; 209 women, 321 men; 5

missing values, mean age: 30 years, age range: 18-76 years). The
experiment was conducted face-to-face in field (e.g. on the street
or in parks). The overall education level of the participants was
rather high. About one third had a university degree. About half
of the participants (N = 267) had a technical or natural scientific
background, the others had a commercial (N = 80), medical
(N = 24), juristic (N = 7), pedagogic (N = 53), administrative
(N = 15), manual (N = 22) or artistic (N = 18) education. Forty-
nine participants worked in other branches (N = 41) or did not
indicate their line of business (N = 8).

All participants were well familiar with using mobile phones,
most of them (96.6%) also using a smartphone. Almost all
participants had used their smartphone to call someone (94.2%)
or had sent messages (93.6%) before. Most participants had also
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in the past sent emails (76.6%) or taken pictures (81.7%). More
important in the context of the study, only fewer than half of the
participants had used their smartphone to record videos (47.5%),
speech (26.0%) or music (16.4%). None of the participants were
experts in Participatory Sensing, only 18 of them (3.3%) had
already participated in a previous Participatory Sensing study.
Overall, the sample was heterogeneous with regard to age and
education and representative for app users.

All participants gave their written informed consent and did
not receive any compensation for their participation. The study
was carried out in accordance with the ethical standards laid
down in the 1964 Declaration of Helsinki.

6.5.2 Material, Study Design, and Procedure

Figure 66.: Session structure of the field study.

Procedure

At the beginning of the experiment, participants were intro-
duced to the scenario. They were told to imagine that they were
part of a community that tries to build a noise map of their city.
For that purpose, they would use an app on a smartphone to
record the ambient noise level of their environment with the
goal to achieve data quality as high as possible. Participants
were then asked to record ambient noise levels with a quality as
good as possible. They were given one of the recording apps,
which they could use as long as they wanted and undertake so
many trials until they felt that they recorded a good signal. No
further instruction about the measurement process or the han-
dling of the app was given. After completing the task, they filled
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in the User Experience Questionnaire (UEQ) and the System
Usability Scale (SUS) and gave qualitative feedback to evaluate
the app. In addition, they answered some questions about their
smartphone usage behavior as well as a few questions concern-
ing demographics and their habits regarding technology use.
The whole experiment took about 15-20 minutes per participant.
An overview of the session structure is shown in Figure 66.

App Flavors

Four functional variants (flavors) of a mobile sound recording
app were developed (see screenshots in Figure 67). The four
app flavors mainly differed in (a) the way participants were
instructed how to record an audio signal properly and (b) the
technical measures supporting correct recording (see Table 15).
App 1 (Basic) was a simple one-button app that only allowed
starting and stopping a recording. In app 2 (Basic+) a short
tutorial at the beginning provided detailed instructions of how
to avoid erroneous behavior while recording an audio signal
and how to use the app. The presented best practices included,
for example, instructions to point the microphone of their smart-
phone away from their body and avoid shaking it.

Basic Basic+ Premium Premium+

Animated Button × × × ×
Time Display × × × ×
Button Vibration × × × ×
In-App-Tutorial × ×
In-App-Manual × ×
Flipped Interface × ×
Check: GPS on? × ×
Check: Orientation? × ×
Check: No shaking? × ×
Check: Rec. time? × ×
Alerts × ×

baseline instruction technology both

Table 15.: The four different experimental conditions, i.e. app
flavors: A simple 1-button recording app (Basic) serves
as baseline for our study. The Premium flavor features
multiple measures to improve data quality, includ-
ing sensor-based verification of parts of the sensing
context. Basic+ and Premium+ additionally display an
in-app tutorial (see also Figure 67).
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(a) Basic / Basic+ (b) Premium / Premium+

(c) Tutorial: best practices (d) Tutorial: app manual

Figure 67.: Screenshots: The simple Basic flavors only feature an
animated recording button and a time display (a). In
Premium flavors, recording is disabled unless certain
constraints are met (b). Additionally, the Basic+ and
Premium+ versions each feature an in-app-tutorial
explaining best sensing practices (c) and the app (d).
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App 3 (Premium) helped avoiding common errors by providing
feedback such as status indicators, e.g. when no GPS signal was
available or error messages when the user shook their smart-
phone too strongly (see Figure 67). By flipping the orientation
of the display upside-down, the user was forced to rotate the
smartphone so that the microphone pointed away from the body.
In app 4 (Premium+) the same short tutorial was included as in
app 2. Aside from the sound sample, all app flavors automat-
ically recorded certain events (tutorial usage, recording times,
etc.) in a logfile for evaluation.

Study Design

The study consisted of four experimental conditions, i.e. the four
app flavors. Test conditions were evenly assigned to participants
in a between-subject design, i.e. each participant used only one
of the four app flavors (Basic: N = 123; Basic+: N = 137;
Premium: N = 130; Premium+: N = 145).

Collected Data

We captured (i) the number and types of errors that users made
with different variants of the citizen science app, as well as (ii)
the user experience while performing the sensing task. User
errors were recorded in categories by the study instructor in an
observation protocol, following the previously identified error
dimensions (cmp. Figure 65 above). Erroneous behavior was
defined by the same best practices as in our exploratory studies.
User experience and usability were measured with the German
versions of the User Experience Questionnaire (UEQ) [136] and
the System Usability Scale (SUS) [28]. The SUS is a standardized
questionnaire with ten short questions that primarily measures
the usability aspect of a product. The UEQ is supposed to
measure user experience in a wider scope and consists of 26

bipolar items that are assigned to the six scales Attractivenes,
Perspicuity, Efficiency, Dependability, Stimulation, and Novelty. In
addition, qualitative feedback was collected.

6.5.3 Data Analysis

Data was analyzed by comparing only those app flavors with
each other which were of interest regarding our study goals: (i)
To analyze the effect of instruction (i.e. in-app tutorial) alone,
Basic and Basic+ were compared; (ii) the effect of technical mea-
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sures alone (without explanation), was evaluated by comparing
Basic and Premium; (iii) to explore the difference between the
effects of instruction and technical measures, Basic+ (instruction
only) and Premium (technical measures only) were compared;
and (iv) Basic and Premium+ were compared to show the com-
plementary effect of instruction and technical measures.

Statistically, four independent t tests were computed, sepa-
rately for usability and user behavior data.

t =
X̄1 − X̄2

SX1X2 ·
√

1
n1

+ 1
n2

,

SX1X2 =

√
(n1 − 1)S2

X1
· (n2 − 1)S2

X2

(n1 − 1) + (n2 − 1)

(24)

Because of multiple comparisons, p values were adjusted
according to Bonferroni. For this correction, the alpha level
(usually p < .05) is divided by the total number of pairwise
comparisons. Then each of the p values are compared to that
shrunken value of alpha. To improve the readability of the text,
we did not reduce the level of significance but report Bonferroni
adjusted p values that allow a direct comparison to a level of
significance of p < .05. This is common practice, for example,
by statistics software such as SPSS. SPSS multiplies each of the
actual p values by the total number of possible pairs. That is,
a test can be considered statistically significant if the reported
p < .05. The descriptive results are presented in Figure 68

(user behavior during the measurement process) and Table 16

(usability and user experience).
Qualitative data was analyzed with a content analysis. We

started with small clusters of semantically related comments
which were further grouped on the basis on the categories of the
DIN EN ISO 9241/110 (software ergonomics). Some clusters

were related to very specific aspects of the app (e.g. the tutorial).
On the most abstract level, we grouped the clusters based on
pragmatic quality (perspicuity, efficiency, and dependability),
hedonic quality (novelty and stimulation), and attractiveness
in order to compare them to the results measured with the
UEQ. It is important to note that the apps were developed
with the objective to observe the measurement process, i.e. the
functionality of the app was limited4. This was also noticed

4 Specifically, after sensing, there was no visualization of the measurement
result in a map, as dB value, or the like. This was by design, as we focused

152



6.5 field study

by the participants. While these comments were omitted from
analyses, they do explain the low ratings for all four app flavors
in some of the categories of the UEQ.

6.5.4 Study Results

The study results are reported sorted by (i) the effect of instruc-
tion alone (Basic vs. Basic+); (ii) the effect of technical measures
alone (Basic vs. Premium); (iii) the difference between the effects
of instruction and technical measures (Basic+ (instruction alone)
vs. Premium (technical measures alone)); and (iv) the comple-
mentary effect of instruction and technical measures (Basic vs.
Premium+). A summary is given at the end of this section.

Figure 68.: Measurement errors observed in the four different
test conditions (i.e. app flavors).

Effect of Instruction Only

Adding a tutorial (Basic+) to a simple one-button app (Basic)
improved the measurement process in terms of errors made. In
particular, the microphone was less frequently directed to the
user, t(258) = 4.845, p < .001, or being covered, t(258) = 3.280,
p = .008; users shook the smartphone less often, t(258) = 3.224,

on measurement error and did not want to solicit qualitative feedback on
the visualization in this study.
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Figure 69.: Results from the SUS and UEQ questionnaires.

p = .008; the required recording duration was achieved more
frequently, t(243) = 6.126, p < .001; and the user produced less
interfering noise, t(258) = 4.781, p < .001. However, despite the
general reduction in errors, users still made some errors.

Adding a tutorial (Basic+) that described the measurement
process did not change the usability of the app. The SUS score re-
mained the same, t(246) = 0.066, p = 1.000, as well as perspicu-
ity, t(258) = 2.225, p = .112, efficiency, t(258) = 1.840, p = .268,
and dependability, t(258) = 1.259, p = .836, as measurement
of pragmatic aspects of user experience. The perceived hedo-
nic quality increased, i.e. stimulation, t(258) = 4.764, p < .001,
and novelty, t(258) = 7.466, p < .001. Overall, an app with a
tutorial was perceived as being more attractive than without it,
t(258) = 3.713, p < .001.

The qualitative data allowed a more detailed understanding
of these results. With regard to the pragmatic quality, most users
mentioned that both one-button apps were easy and fast to use
and it was easy to understand how to use it. The observed
change in hedonic quality was also reflected in the qualitative
data. While 14 users mentioned that using the basic app was
boring or uninteresting, this number reduced to 5 when adding
a tutorial. More important, 15 participants even rated the app as
being innovative or that they felt fun while recording the audio
signal. The low value in attractiveness was probably due to the
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SUS Att Per Eff Dep Sti Nov

Basic 76 0.2 1.8 1.5 0.8 -0.9 -0.9 (baseline)
Basic+ 76 0.7 2.1 1.3 0.9 -0.1 0.3 (instruction)
Premium 69 0.4 1.2 1.0 0.5 -0.2 0.3 (technology)
Premium+ 75 0.7 2.0 1.2 1.0 0.1 0.6 (both)

Table 16.: Results from the SUS and UEQ questionnaires (Att =
attractiveness; Per = perspicuity; Eff = efficiency; Dep
= dependability; Sti = stimulation; Nov = novelty).
While technical measures alone (Premium) reduce user
errors in a similar way as instructions alone (Basic+,
see Figure 68), the perceived usability is lower.

overall look of the app. Although most participants liked the
clear and simple design, it also appeared empty to them.

Effect of Technical Measures Only

The technical implementations were also able to improve user
behavior: The microphone was less frequently directed to the
user, t(250) = 8.227; p < .001, or covered, t(250) = 3.785,
p < .001. The recording duration was less frequently below
30 sec, t(234) = 6.143, p < .001; and the user produced less
interfering noise, t(250) = 4.110, p < .001. In this case, the
usability decreased: The SUS score was significantly lower,
t(242) = 3.022, p = .012, and also two of the UEQ scales that
are supposed to measure the perceived pragmatic quality of a
product showed reduced values, i.e. perspicuity, t(250) = 4.151,
p < .001, and efficiency, t(250) = 4.526, p < .001; dependability
did not change, t(250) = 1.855, p = .264.

The qualitative data show that participants liked the respon-
sive design. They mentioned that the technical measures helped
them avoiding measurement errors. However, without an ex-
planation, not all participants did understand how to use the
technical measures correctly. Although participants were able
to complete the task, the task itself (e.g., the goal or the action
steps) often remained unclear.

Difference Between Instruction and Technical Measures Only

The behavior when using technical measures to guide the mea-
surement process was comparable to that observed when a
tutorial was provided, all t(264) < 1.0, p = 1.0, except for the
direction of the microphone. Here, the technical implementation
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Basic vs. Basic+ Basic vs. Premium

Variable Change p value Change p value

U
se

r
Ex

pe
ri

en
ce SUS 0.1 1.0 -6.4 .012

UEQ Attractiveness 0.5 <.001 0.3 .192

UEQ Perspicuity 0.3 .112 -0.6 <.001

UEQ Efficiency -0.2 .268 -0.6 <.001

UEQ Dependability 0.2 .836 0.2 .264

UEQ Stimulation 0.8 <.001 0.6 <.001

UEQ Novelty 1.2 <.001 1.2 <.001

U
se

r
B

eh
av

io
r Microphone to user 28.8 <.001 44.7 <.001

Microphone covered 13.8 .008 15.7 <.001

Microphone touched 2.9 1.0 1.1 1.0
Shaking 10.0 .008 7.5 .128

Length < 30 sec 24.1 <.001 23.0 <.001

Inside building 7.0 .156 5.9 .376

User makes noise 26.6 <.001 23.8 <.001

Basic vs. Premium+ Basic+ vs. Premium

Variable Change p value Change p value

U
se

r
Ex

pe
ri

en
ce SUS 0.6 1.0 6.5 .004

UEQ Attractiveness 0.6 <.001 -0.3 .208

UEQ Perspicuity 0.1 1.0 -0.9 <.001

UEQ Efficiency -0.3 .064 -0.3 .020

UEQ Dependability 0.2 .348 -0.4 .004

UEQ Stimulation 0.9 <.001 -0.1 1.0
UEQ Novelty 1.4 <.001 0.0 1.0

U
se

r
B

eh
av

io
r Microphone to user 52.5 <.001 15.9 .008

Microphone covered 18.3 <.001 1.9 1.0
Microphone touched 6.6 .032 -1.8 1.0
Shaking 11.5 <.001 -2.5 1.0
Length < 30 sec 27.1 <.001 -1.0 1.0
Inside building 7.9 .068 -1.1 1.0
User makes noise 32.2 <.001 -2.7 1.0

Table 17.: Statistical study results. The Change value represents
the observed difference between the two conditions,
whereby negative values represent an aggravation rela-
tive to the Basic app, whereas positive values represent
improvements. The change is statistically significant
if p < .05. Because of multiple comparisons, p values
were adjusted according to Bonferroni.
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worked more effectively, t(264) = 3.088, p = .008. However,
the usability was much better when providing a tutorial, all
t(264) > 2.829, p < .021, while the perceived hedonic quality
was similar, all t(264) < 1, p = 1.0.

The qualitative data show that the tutorial enhanced the com-
prehension of the task (i.e. the measurement process per se),
whereas the technical measures mainly help the users to handle
the smartphone correctly.

Complementary Effect of Technical Measures and Instruction

The previous comparisons showed that the technical implemen-
tation and the instruction led to a similar user behavior, but
the usability was reduced dramatically when technical features
were implemented without explaining them to the user. The
users made fewer errors in all categories, all t(265) > 2.690,
p < .033, except for the location, t(265) = 2.417, p = .068. This
might be a statistical artifact of the study, as about 80% of the
participants were already outside of a building when asked
to participate in the study. Because we recorded the initial lo-
cation and the location of the actual measurement, we were
able to assess how many participants changed their location.
When using the Basic app, 10 of 24 participants (41.7%) left the
building, whereas 24 of 29 participants (82.8%) left the building
when using the Premium+ app. This difference was statistically
significant, χ2(1, N = 53) = 9.642, p = .002.

When combining the positive effects of the technical measures
with those of the instruction, compared to the Basic app, the
usability did not significantly decrease, measured with the SUS,
t(252) < 1.0, p = 1.0, and the three scales of the UEQ that are
supposed to measure the pragmatic aspects of a product, i.e.
perspicuity, t(265) < 1.0, p = 1.0, efficiency, t(265) = 2.417,
p = .064, and dependability, t(265) = 1.724, p = .348. However,
the hedonic aspects, i.e. novelty, t(265) = 9.704, p < .001, and
stimulation, t(265) = 6.000, p < .001, increased.

In the qualitative data two clusters were observed that grouped
together likes and dislikes of (i) the technical support of the user
(which was described as responsive behavior of the app), and
(ii) the tutorial of the Premium+ app. Overall, the responsive
behavior was perceived as very positive. None of the users
commented not to understand the function of the technical sup-
port. The Basic and the Premium+ app were described as easy
and fast to use. However, only when a tutorial was provided,
the participants reported to comprehend the task. They even
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reported that they felt that they could not make any mistakes.
However, it should be noted that the hedonic quality remained
low and the task itself was still experienced as being boring.

Summary of the results

The study showed that (i) technical measures as well as in-
structions reduced observed error rates, (ii) technical measures
without explanation reduced the perceived usability and user
experience, and (iii) technical measures and instructions nicely
complement each other. The instruction enhanced the com-
prehension of the task (i.e. the measurement process per se),
whereas the technical measures mainly help the users to handle
the smartphone correctly.

6.6 discussion and lessons

In this section we discuss our previously presented findings and
summarize takeaway messages.

6.6.1 Empirical Taxonomy

In the course of empirically building our taxonomy of human
error in Participatory Sensing and Citizen Science (as summa-
rized above in Figure 65) we had many discussions concerning
the comprehensiveness of the collection, its value to others as
well as the selection of the use cases for building it.

We are of course aware that there are many areas of mobile
sensing and current devices’ capabilities afford for the collection
of multiple types of data, some more prone to user error than
others. In order to build an abstract characterization of problems,
we attempted to select specific but representative use cases that
entail different aspects of Participatory Sensing. On an abstract
level, many applications fit the topics of the four selected use
cases (sensing phenomena, handling objects, annotating data,
using additional unfamiliar hardware/devices and assembling
equipment). As such, we are convinced that the taxonomy will
be a useful resource for designers and researchers concerned
with improving non-expert data collection from mobile devices.

Regarding the comprehensiveness of the taxonomy, we are
not aware of analytical work on errors in Participatory Sensing
that could have served as a baseline for comparison with our
empirical approach. We have however recently become aware
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of a characterization of all factors that make up uncertainty in
measurement processes in industrial testing, authored by the
German Association of the Automotive Industry (VDA) [242]. They
distinguish influences between pertaining to the measurement
system (measurement standard, mounting fixture, measuring
equipment and measurement parameters) or the measurement
process (environment, object, methods, and operator). Our
own taxonomy can be mapped well to most of these aspects,
indicating a high degree of completeness. The most notable
difference is that in industrial processes, the human operator has
no power over the process or the system, while in mobile sensing,
the user directly or indirectly influences all of its aspects.

6.6.2 Balancing Data Quality and Usability

The results of our study show that technical measures alone can
already help to significantly reduce human error in Participa-
tory Sensing. However, an interesting finding is that built-in
automated mechanisms for improving data quality may be detri-
mental to the user experience. While technical measures alone
and instructions alone each seem to have a roughly similar ef-
fect in terms of error reduction, technical measures without
explanation notably reduce the perceived usability of the app,
potentially frustrating the users.

Instructions vs. technical measures

Taken at face value, this seems to suggest that citizen science
mobile sensing app designers may be better off focusing on
making clear instructions (and embedding them into the app)
before designing mechanisms to nudge user behavior towards
accurate data collection. Looking closer, it is not that simple.
While quantitatively, both technical measures and instructions
reduce error by a similar amount, they address different kinds
of adverse behavior. Obviously, some errors are not preventable
using technical measures: not making noise in sound sensing is
a good example. While e.g. algorithms for voice activity detec-
tion have existed for a long time [112], it is nigh impossible to
automatically decide if the detected speech is part of the ambient
noise or an artifact of improper measurement procedure. On the
other hand, we can simply instruct participants to not talk while
recording (and hope that they do). Another difficulty in using
technical measures was illustrated in our empirical study with
the iSPEX system (see Exploratory Study 3 above). Mechanisms
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that automatically verify certain aspects of the sensing context
may be designed poorly or too restrictive. When the user is
certain he has done everything correctly and the system insists
that this is not the case, this results in frustration. Approaches
to improve this include either imposing less strict constraints or
making the app more intelligible, e.g. by making it possible for
the user to better comprehend and maybe even override auto-
matic decisions, thus providing control over the context-aware
application to the user [14].

Instructions on the other hand have their drawbacks as well.
Designing adequate instructions is a complex task [253], and on
top of that, people tend to not read manuals [173] and/or skip
tutorials. A downside of written instructions also is readabil-
ity, particularly outdoors: one of the participant in Exploratory
Study 1 performed their measurements in direct sunlight, hav-
ing a lot of trouble reading the screen and moving around a lot
as a result. Varying levels of literacy may also need to be consid-
ered when designing tutorials in certain countries. Solutions to
these problems may include using different kinds of instructions
(icons, videos) or displays (audio instructions, vibration, etc.).

Remaining Uncertainty

A finding that one may overlook in the face of the observed
improvements is that even in the best of our four cases, a sig-
nificant amount of participants still exhibit erroneous behavior:
More than 12% of the participants made noise while recording
despite being instructed not to and roughly 8% of the users still
attempted to sense with the interface of the app being upside-
down and after being explicitly prompted to flip their phone.
This suggests that even if considerable effort is placed into re-
ducing human error, a certain amount of afflicted data with
questionable quality may always have to be expected. Of course,
this can not simply be generalized. An important aspect in that
is to not only think about types of errors and the frequency of
their occurrence, but also rate them regarding their severity in
terms on their effect on the quality of the measurement. The
qualitative feedback that participants gave in our field study
also provided some insights into why some errors still might
have remained. The requirement to measure over a longer time
period, e.g. more than 30 seconds as in the current study, was
perceived as being boring and uninteresting. This phase may
have contributed to the occurrence of users making noise. Here,
some strategy to reduce boredom, such as embedding the sens-
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ing task in a game context [42], might work to mitigate this type
of erroneous behavior.

Recurring Users / Long-term Behavior

In our study, we sampled every participant exactly once, so in
that sense, we have shown that the implemented measures can
effectively mitigate errors caused by people who have not per-
formed the task before. This is important as it can significantly
lower the threshold for newcomers and infrequent participants.
But what about recurring participants? Without further mea-
sures, it can be both argued that performing a task repeatedly
may either increase data quality or not. On the one hand, revis-
iting data collection activities should reduce slips, i.e. errors in
carrying out the intention [169], over time. Mistakes (errors in
the intention) on the other hand are more likely to be repeated.

Concerning the effect of instructions and technical measures,
we would argue that technical measures are likely to maintain
their positive effect over time and maybe even combat slips
that would have otherwise occurred, e.g. due to decreasing
motivation. Regarding instructions, it is likely that in the long
run, people will read the tutorial less carefully or not at all
anymore. However, the instructions do not only have a teaching
character but also serve as a reminder. Not revisiting them
may result in an increasing amount of mistakes in the long run,
as people may forget individual steps or mix them up. This
also relates to certain design choices that may be important
for the long-term experience: Should tutorials be skippable?
If so, would people skip them already the first time without
reading them? If not, will people be annoyed by them in the
long run? One approach could be to reshape the tutorial over
time to slowly transform from a tutorial to a shorter reminder.

Gamification approaches, in which participants are extrinsi-
cally motivated through the use of game elements, may also
have a positive effect on long-term motivation. We present the
concept of embedding sensing tasks into games in order to
incentivize correct sensing in chapter 7 of this work.

6.6.3 Stakeholders

Both for grassroots movements, like the campaign of the OK Lab
described in Exploratory Study 4, and “top-down” approaches,
often driven by experts, it is important to incorporate the inter-
ests of all relevant parties. If e.g. activists gather information
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concerning environmental stress, it is crucial to talk to civic
authorities early on, because in the end they will judge whether
they accept the data quality as being adequate and make deci-
sions concerning data use. Conversely, organizers need to keep
the interests of participants in mind, as people do not want to
be instrumentalized and reduced to data collection tools.

However, there is not only a range of stakeholders (partici-
pants, organizers, researchers, authorities,. . . ), in our discussions
so far we have also seen different positions within these groups.
For example, we have heard of municipalities that are strongly
interested in the possibilities that distributed low-cost sensing
may offer and that actively work towards integrating such ap-
proaches into their current monitoring networks. On the other
hand, there are civic authorities that are either wary, or even
actively work against crowdsensing projects, possibly out of
fear that the gained information may result in financial burden.
But even among participants, we have seen both citizens that
are e.g. interested in improving air quality and those that are
opposed, because they feel that the pollution does not really
affect them, but measures to combat it probably would, like
bans on motorized traffic. Things get even more complicated if
extrinsic motivation to participate is present, like gamification or
monetary incentives, because the primary goal of the participant
may not be data collection anymore.

In the end, we believe that project coordinators need to work
closely with volunteers and system designers, and ultimately
successful systems will have to involve a creative collaboration
between the variety of actors and stakeholders, which also ad-
dresses non-technical aspects like social, cultural, and political
issues [170]. Human-centered design, starting with observations
on how participants err in real-world situations can be used to
build software systems for high-quality Participatory Sensing
in an incrementalist approach, that in turn can help to establish
mutual trust among stakeholders.

6.6.4 Takeaway Lessons

Gardliner et al. [94] argue, that while the risk of low data
accuracy is present in citizen science, the cost-effectiveness of
crowd-sourced science compared to the conventional approach
outweighs the risk, if properly handled. We summarize our key
findings regarding the proper handling of risks from our studies
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and discussions, respectively the recommendations for building
Participatory Sensing systems in the following list:

• Be aware of the diversity of human error and the effect it
may have on data quality.

• Analyze people’s errors in order to adopt user interfaces
that help to prevent them.

• Address different classes of error with appropriate mea-
sures (e.g. instructions and/or technology).

• Design for intelligibility: It’s not just what technology can
do, but also how a user perceives it.

• Do not overreach, too strict constraints will frustrate the
user.

• Involve stakeholders early on to balance required data
quality and necessary complexity.

While we encourage designers to shift the perspective towards
the correct execution of the measurement process, data quality
should not be the only goal. Rather, the focus on data quality
should complement proven user-centered design processes. Our
study shows that technical measures and instructions nicely
complement each other. Our findings highlight the criticality
of balancing technological features and their perceived ease of
use, a fact which both practitioners and researchers need to be
aware of.

Given the problems inherent in accurately predicting sys-
tem performance in real-world environments, conducting small
exploratory studies has proven to be an easy way to collect
erroneous behavior specific to the task at hand. The error di-
mensions presented in this work should provide a useful starting
point for system designers developing interfaces and interaction
in a way that minimizes the occurrence of human error and
thus leads to more uniform and overall better data quality in
Participatory Sensing. This is the theme of this paper.

6.7 conclusion

This chapter focused on the interplay between non-expert user
behavior and data quality in Participatory Sensing. To fos-
ter a deeper understanding of citizen science tools, it explores
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the design space of mobile citizen science sensing tools and
applications, with the focus on human error. We have pre-
sented an empirical taxonomy of errors exhibited in non-expert
smartphone-based sensing, based on four small exploratory
studies. A large field study that compares instructions and
technical measures to address these errors shows that techni-
cal measures without explanation notably reduce the perceived
usability and the combination of technology and instructions
achieves a significant reduction in observed error rates while
not affecting the user experience negatively.
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7 Sensified Gaming

The previous chapter concerned itself with the errors non-expert
users may make when taking environmental measurements
with their phones. In this chapter, we employ gamification tech-
niques for the same purpose. Because Participatory Sensing (PS)
scenarios often require a critical mass of users, applying gamifi-
cation to different areas in order to increase user engagement
has been proposed. However, existing attempts often default to
the standard points, badges, and leaderboards and fail to recog-
nize the potential of exploiting game design elements beyond
creating user engagement. We propose not to think of Gamified
Participatory Sensing when designing such systems, but rather
of Sensified Gaming. To this end, this chapter presents a collec-
tion of design patterns and game mechanics that can be used
to identify or design suitable games, into which participatory
sensing tasks can be embedded. Eventually, we present a mobile
minigame that opportunistically performs ambient noise level
measurements during gameplay.

Parts of this chapter have previously been published and pre-
sented on the 2016 International Conference on Advances in Com-
puter Entertainment Technology (ACE) [42]. The initial collection
of Game Design Patterns for Gameful Environmental Sensing
was composed by Rikard Johann Öxler for his diploma thesis
[175], and reviewed jointly with Jussi Holopainen for publi-
cation. The game SpaceMaze was partially designed and fully
implemented by Jan Felix Rohe for his bachelor’s thesis [196].

7.1 introduction

In Participatory Sensing [48], users with personal mobile devices
(e.g. smartphones) collaboratively collect information at differ-
ent locations and upload it for a joint cause. Applications cover
a wide range, including urban issue tracking [125], real-time
monitoring of road congestion, weather conditions, air quality
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[82] or noise pollution [148]. Of the many tasks and systems that
exist, practically all depend on a certain level of participation
and user engagement to function. Gamification has been pro-
posed as an approach to provide incentives for participation [9],
[25], [155], [204], [239]. However, often attempts at gamifying
such systems are executed half-heartedly or fail to recognize
the potential of gamification techniques beyond standard PBLs
(points, badges, leaderboards). In this paper we propose the
concept of Sensified Gaming as an alternative way of thinking as
opposed to gamified Participatory Sensing: The idea is – rather
than gamifying a task – to think of designing a game in the
first place, that secondly also is suitable to support a sensing
task. Depending on the application case, Participatory Sensing
has various requirements (e.g. moving around, being outside,
visiting certain locations of interest, etc.). This paper focuses
on the research question what the crucial elements to create
Sensified Gaming are, i.e. how to support participatory sensing
in games. For this, we (1) identify core tasks from the field of
participatory sensing and (2) collect and map game mechanics
that are suitable to embed these tasks, presenting a set of design
patterns.

7.2 participatory sensing

Participatory Sensing is one of many similar concepts that overlap
to a certain degree: Citizen Science, Volunteer Monitoring, Crowd
Sensing, Citizen Observatories, Amateur Science, Community Science,
just to name a few. They all have in common that a group of
(often untrained) people collaboratively works on (parts of) a
joint task. The tasks itself and the platforms that are used
differ between the individual concepts. Participatory Sensing,
as defined by Burke et al. [48], emphasizes distributed sensing
done by everyday users with the personal mobile devices they
carry and control in the public sphere. In this work, we focus on
such settings: environmental sensing with smartphone sensors
(or other personal devices connected to them), in the real-world
(e.g. a city) by ordinary (i.e. non-expert) people. Still, the
presented core tasks generalize to a wide range of applications.

7.2.1 Core Tasks

We have identified four core tasks as requirements environmen-
tal sensing:
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• Coverage

• Touch POI

• Rendezvous

• (Correct) Sensing

Coverage

Since the goal of Participatory Sensing generally speaking is
to crowdsource a task to people in a public space, achieving
suitable coverage of that area is an obvious requirement. This is
especially true for applications in which a map is constructed
from individual measurements or observations, like in environ-
mental sensing. Here, coverage is meant both in time and in
space, i.e. ascertaining that sufficient measurements are recorded
across the area of interest continuously over time.

Touch POI

This core task subsumes activities that require going to a point-
of-interest (POI), i.e. a specific location (or one of a set of loca-
tions). The reasons for this can be diverse. In scenarios with
low-cost sensors, especially air quality sensing, the need for
regular (re-)calibration of sensors is present [47]. Calibration
can be carried out by co-locating a sensor with a high-precision
reference device or station whose readings are used for calibra-
tion. Scenarios with user-generated reports may also require
measurements at certain locations to verify data points or com-
plement automatic data cleaning approaches [36]. Another need
to travel to a certain location may be data offloading [138]. Es-
pecially in data heavy sensing tasks, e.g. if high-volume data
like video or high-frequency data of many sensors is recorded,
the need to move data off the participant’s device may arise
regularly. This may require offloading traffic to a WiFi network
in case the participant does not have a data plan or wireless
service reception is bad. The same is true for situations with no
connectivity in which the collected data needs to be uploaded
within a certain time to be of value.

Rendezvous

Calibration can not only be carried out against high-precision
data (so-called ground truth), but also against other already
calibrated devices. Such an approach was e.g. presented for low-
cost gas sensors by Hasenfratz et al. [104]. They proposed
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a multi-hop calibration scheme in which the sensors exchange
measurements collected during a rendezvous in order to im-
prove their individual calibration “on-the-fly”. Other similar
approaches exist [254], among them one that additionally incor-
porates privacy protecting measures [153]. Other reasons for
co-locating participants may be the desire to collect redundant
readings, the need to collaboratively collect readings (e.g. for
verification), or again for data offloading.

(Correct) Sensing

In participatory sensing with low-cost sensors, the potential for
systematic error that leads to low-quality or even useless data is
high [39]. As usually non-experts perform the tasks, ensuring
the correct execution of the measurement process is important.
Aspects of a correct sensing procedure with smartphones in-
clude correct body posture, device orientation, environmental
constraints (good weather, being outside, remaining motionless,
etc.), sufficient measurement duration, data annotation as well
as the correct sequence of the steps.

7.3 sensified gaming

We argue that gamification can do much more for Participatory
Environmental Sensing applications than ‘merely’ provide in-
centives for participation. Different mechanics can be used to
support the presented core tasks. As it is important that the
various mechanics are not looked at individually but rather in
the context of their interplay, we encourage the notion of “sen-
sifying a game” rather than “gamifying a task”. This section
attempts to more closely define the term Sensified Gaming and
place it on the continuum of existing nomenclature.

Mobile Games are (video) games that are played on mobile
devices, as phones, tablets, smartwatches, and the like. As we
focus on support for smartphone-based sensing applications,
Sensified Gaming naturally (but not necessarily) entails Mo-
bile Gaming. At the same time, since sensing clearly pertains
to the real world, we touch the field of Pervasive Games [146].
Depending on the definition, Pervasive Games can narrowly
be seen as a combination of game reality and physical reality
within the gameplay or more broadly as games that have “one or
more salient features that expand the contractual magic circle of play
spatially, temporally, or socially” [161]. A deep discussion includ-
ing a classification has been presented by Hinske et al. [107].
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One sub-class that is certainly closely related are Location-based
Games.

The distinction between gamified applications and games
is often made according to the underlying design goals [72],
[151]: In Gameful Design, game-like thinking is applied to a
design process without the actual inclusion of game elements.
Gamification, as defined by Deterding et al. is “the use of game-
elements in non-game contexts”, explicitly excluding full-fledged
games [72]. Serious Games, in contrast, are “full-fledged games for
non-entertainment purposes”. More fine grained distinctions of
Serious Games exist, again characterized along the difference
in design goals. Marczewski [151] sub-categorizes them into
Teaching Games / Games For Learning, Simulators, Meaningful Games
/ Games For Good and Purposeful Games. Of these, none perfectly
accommodates our notion of Sensified Gaming. While the term
Purposeful Games covers it best, there are notable differences,
e.g. that sensing itself does not directly affect the real world,
as the definition of purposeful games entails. Also, the player
does not really need to know that playing the game achieves
something in the real world – at least from a classification point
of view1. Finally, (Full-fledged) Games are the ones that are
designed purely for entertainment.

One could argue that while defining these classes according to
the design goal makes sense, thinking too much about the task
when designing a serious game may result in a badly designed,
unenjoyable or shallow game. Another issue of designing such
a purposeful game with the task being the first thing in mind is
that the resulting game almost automatically will be tailored to
the people who are expected to work on the task anyway. The
fear that a badly designed system may be counter-productive
was e.g. expressed by the developers of the citizen science game
Floracaching, who “. . . don’t want glitches in the technology to de-
motivate this important group of contributors, potentially preventing
them from submitting future data.” [25]. In contrast, the target user
group of Sensified Gaming is gamers that don’t need to have any
motivation regarding the underlying purpose. While technically,
the ultimate design goal of Sensified Gaming is in fact supporting
a Participatory Sensing task, we argue that this should not make
a difference and propose to still put entertainment first in the
design process. Overall, we introduce the term Sensified Gaming
as a simpler way of saying “Digital Purposeful Pervasive Mobile

1 Whether it is right to deceive or coerce a participant into working on a task
without knowing it is a question of its own.
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Games for Participatory Sensing that are designed to be full-fledged
games.”

7.3.1 Gamified Participatory Sensing

There are some success stories of lightly gamified Participatory
Sensing systems, but all with the focus on motivation/engage-
ment and – with one notable exception – not taking into account
additionally supporting any of the core tasks. Ueyama et al. for
instance present a system of badges, points and leaderboards
(PBL) to supplement monetary incentives, the core goal being
to reduce the cost spent on monetary incentives [239]. This
work was continued by Arakawa et al. [9]. PBLs are also
the core of the gamification design for the participatory noise
pollution monitoring system NoiseMap, whose authors could
show an increase of recorded measurements in a comparison of
different prototypes with varying degree of gamification [204].
In this app, the sensing task is still clearly central and it is not
intended to be a full-fledged game. The exception mentioned
above also is in the field of noise pollution sensing: NoiseBat-
tle and NoiseQuest [155] are two game prototypes addressing
different player types (the types Killer and Explorer according
to Bartle [13]). Both games are designed not only to encourage
participation but also to increase coverage in the game area by
making players explicitly explore the area respectively battle
for control of cells in a grid by measuring ambient noise with
smartphones. Unfortunately, the games seem to have been re-
search prototypes that were never publicly released. A notable
commercial project that incorporates players collecting infor-
mation in urban environments is the pervasive game Ingress2,
which managed to attract an enormous player base of several
million people around the world. While this manuscript was
undergoing review, the game Pokémon GO3 was released by the
same company, quickly surpassing Ingress’s success and being
played massively all over the world, players having walked a
total of 4.6 billion kilometers so far [129]. This shows the great
potential of such location-based games and indicates that they
will become of interest to a broader audience.

To the best of our knowledge, game design elements have
today not been used further to support the presented core tasks.
While Flata et al. presented so-called calibration games [91],

2 https://www.ingress.com/
3 http://www.pokemongo.com/
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their notion of calibration does not relate to the calibration of
mobile environmental sensors, but rather to the adjustment of
input devices such as eye-trackers.

7.4 game design patterns

Design patterns [6] were introduced within the discipline of
architecture for easy knowledge transfer between professionals
and non-specialists. These patterns encode design practices
as problem-solution pairs with accompanying information and
interrelate to form hierarchies or nets. This design patterns
concept has spread from architecture to several other areas, e.g.
programming [86] and interaction design [24], [65], [86].

Design patterns are an example of explicitly creating a design
language [195], as a way of understanding a design discipline
through the relevant elements and materials, how these elements
can be structured, and in which situations specific elements
and choices of structures are appropriate. Specifically, they let
those involved in the process consciously consider and discuss
what the implications of design choices would be for the final
design. Design patterns are not complete design languages in
themselves since they focus on the basic elements and do not
describe the steps of a design process.

The idea to use design patterns for game design was intro-
duced by Kreimeier [130] in the context of computer games and
has since then been generalized to all types of games [20], [21],
resulting in a pattern collection of nearly 300 gameplay design
patterns [19]. These patterns differ from the original structure by
replacing the problem-solution pair with a causes-consequences
pair describing how the pattern can occur in a game design
and how it can affect the gameplay and player experiences. The
reason for the change was because the patterns are intended
to support both the design and analysis of games and also to
allow the use of specific patterns as design goals. In 2009, Björk
started a wiki to collect more patterns, and has up to this point
assembled an extensive (and still growing) gameplay design
patterns collection [18]. The selection of patterns in this work is
largely based on that collection.

7.4.1 Methodology

After having identified the core tasks, we surveyed literature
and online sources for game design elements that are fitting to
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build (or identify) games suitable for Sensified Gaming. Björk’s
wiki [18] is with currently 536 entries the by far largest collection
and was therefore the main source for the mechanics presented
in this work. Other pattern collections [19], [67], [109] mostly
contained subsets of the set of mechanics found in this wiki. A
small number of patterns was added from these sources, as well
as individual ones that we did not find in any collection but
rather came up with ourselves in the process of discussing the
core tasks and the concept.

The pattern analysis was conducted by three researchers who
were familiar with the patterns approach, the pattern collections
used in the analysis, and the principles of participatory sensing.
One of the researchers did the initial selection of relevant pat-
terns based on whether the pattern could substantially support
at least one of the core tasks. The selection was then reviewed
by the two other researchers, suggesting additional patterns to
be included. Patterns that are generally suitable for all types
of games but that were classified by us as not being especially
relevant regarding the core tasks were left out to provide a more
condensed collection. This includes patterns such as tension or
the “usual suspects” points, badges, leaderboards and achieve-
ments. However, this does not mean that we think other patterns
should not be used in Sensified Gaming, but rather that they
do not indicate specific suitability. Finally the patterns were
categorized with input from all three researchers following the
principles of thematic analysis [27].

7.4.2 Pattern Collection

All of the selected mechanics are shown in Table 18, divided into
categories. The table features the name of each design element4

and one column for each of the core tasks (‘×’ indicates special
suitability for the respective task). In addition to these, we added
a column for Sustained Engagement to the table, which is used
to denote mechanics that especially encourage “replayability”
(rather then generally motivate, which would basically be any
game mechanic). This section elaborates on the elements in our
collection and their categorization.

4 For the sake of better readability, the textual description of the mechanics
were omitted in the table. It can be found in the running text of this chapter
and in Björk’s wiki [18].
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s Game Servers × × ×
Mediated Gameplay × × × ×
Dedicated Game Facilitators × × × ×
Hybrid Gameplay Spaces ×
Persistent Game Worlds ×

M
od

es

Pervasive Gameplay ×
Asynchronous Gameplay × ×
Attention Demanding Gameplay ×
Casual Gameplay ×
Lull Periods × × ×
Massively Single-Player Online
Games

×

Real-Time Games × ×

Ex
pl

or
at

io
n

/
Ex

pa
ns

io
n Area Control × ×

Capture × ×
Expansion × ×
Game World Exploration × ×
Fog of War × ×
Free-roam / Open World × ×
Configurable Gameplay Areas × ×
Physical Navigation × × ×
Artifact-Location Proximity × ×
Real Life Activities Affect Game
State

× × × ×

(continues on next page)

Table 18.: Design patterns for Sensified Gaming, mostly selected
from Björk’s wiki [18] according to their suitability to
support the core tasks in participatory environmental
sensing.
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on

/
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y

Player-Location Proximity × ×
Player-Artifact Proximity × ×
Bases × ×
Game Items ×
Pick-Ups ×
Resource Locations × ×
Point of Interest Indications × × ×
Events Timed to the Real World × × × ×
Geo-fencing × × × ×
Location-Fixed Abilities × ×

S o
ci

al

Instances ×
Massively Multiplayer Online
Games

× × ×

Multiplayer Games × ×
Synchronous Gameplay ×
Late Arriving Players × ×
Player-Player Proximity × × ×
Common Experiences × ×
Game Element Trading × ×
Mutual Goals × ×
Symbiotic Player Relations × ×
Collaborative Actions ×
Cooperation ×
Privileged Abilities/Orthog. Dif-
ferentiation

×

Team Strategy Identification ×
(continues on next page)

Table 18.: Design patterns for Sensified Gaming, mostly selected
from Björk’s wiki [18] according to their suitability to
support the core tasks in participatory environmental
sensing.
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(continued from previous page)

S e
ns

in
g

Feelies × ×
Unlocking × ×
Mimetic Interfaces/Physical En-
actment

×

Minigames ×
Tutorials ×
Reputation ×

En
ga

ge
m

en
t Predetermined Story Structures × × × ×

Alarms × ×
Dyn. Diff. Adjustm./Challeng.
Gameplay

×

Notifications × ×
Replayability × ×
Ubiquitous Gameplay × ×

To
co

ns
id

er Extra-Game Input × ×
Inaccessible Areas × × ×
Player Physical Prowess ×
Unmediated Social Interaction ×
Extra-Game Consequences ×

Table 18.: Design patterns for Sensified Gaming, mostly selected
from Björk’s wiki [18] according to their suitability to
support the core tasks in participatory environmental
sensing.

Prerequisites

There are some design elements that are important, if not cru-
cial to sensified games. Since typically a central instance that
coordinates players is needed, having Game Servers is more or
less mandatory. Since the system presents the game state and
controls the interactions with other players before a possible
meeting in the real world, we usually have Mediated Gameplay.
Dedicated Game Facilitators are responsible for this mediation.
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They keep track of the game state and guide the players through
the game world, e.g. by Game Element Insertion, controlling non-
player characters or by giving information to the players. As
the measurements take place in the real-world, Hybrid Gameplay
Spaces are a direct consequence. Persistent Game Worlds are not a
necessity, but can enable a deeper and more complex interaction
by enabling players to play asynchronously.

Modes

There are different modes of gameplay that can be used. Some of
them are conflicting, so they can not be used at the same time but
it is possible to switch between them in different parts or stages
of a game. A possibility that e.g. lets players embed playing into
other everyday life activities is some sort of Pervasive Gameplay
or Casual Gameplay with many Lull Periods. When someone is
waiting for the bus they can just start the game to kill some time.
Attention Demanding Gameplay is fitting for more thrilling games
(or phases of a game) when players want to devote themselves
more. Massively Single-Player Online Games with Asynchronous
Gameplay could be used if users just play by themselves instead
of with others. Further modes are presented in the category
Social below.

Exploration / Expansion

This category mostly covers mechanics that motivate players
to move around the world (both game and physical) and are
therefore especially suitable to support the core task of reaching
coverage. Possibilities to free-roam around the world and/or
increasingly discover it through Game World Exploration promote
player movement, e.g. to discover locations of other game ele-
ments. Mechanics such as Fog of War can be used in different
ways to motivate travel to certain areas: If discovered areas
on a map are e.g. covered again after a certain time, regular
movement around the (entire) world is stimulated. Techniques
like Area Control (for regions) or Capture (for items) also promote
player movement, but do so by addressing the desire to increase
the zone of influence. This can either happen continuously or
during an explicit Expansion phase in a game. Most of these
elements also encourage players to come back to play the game,
as they address a sense of accomplishment. A bit of an exception
to this are Inaccessible Areas, which are described further below.

Physical Navigation can help to increase coverage and – de-
pending on the sensing task – may also be used to support
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correct sensing. Artifact-Location Proximity is a mechanism that
can be used when, for example, sensors are not embedded in
personal smartphones but rather in separate devices or real-
world items that are not carried by the player continuously. An
example are environmental sensors that are built into rentable
public city bikes [47], as mentioned in the discussion of sensing
scenarios in chapter 2. A game element could entail moving the
bikes in the real world so that they then take measurements at
different locations even after the player has moved on.

Location-based / Proximity

Instead of motivating to explore and roam the world, attempts
can also be made to guide or lure players to specific locations.
The mechanics in this category are mainly suitable for touching
POI by encouraging players to travel to certain places. Indirectly,
by that many mechanisms also support player rendezvous, as
(randomly or deliberately) guiding people to certain locations in
parallel greatly includes the probability of co-location. In both
cases, an effect of this can be increased coverage, provided the
locations in question are spread around the world accordingly.
Basis to attract the user to special places are the Player-Location
Proximity and Player-Artifact Proximity. Special places in the
game can e.g. be Bases or locations of Game Items (Pick-Ups or
Resource Locations), which in turn can in the real world be loca-
tions that feature ground truth reference stations for calibration
or WiFi hotspots for data offloading. Such places can be made
even more interesting to players if they feature Location-Fixed
Abilities. Point of Interest Indications can lead players to special
locations. To also increase temporal coverage, Events Timed to
the Real World can be used. A possibility would be to e.g. only
allow certain actions at specific points in time, under certain
weather conditions etc. Geo-fencing is a way to trigger certain
actions when a player crosses a certain perimeter, a mechanic
that can be used in various ways for the core tasks, e.g. to alert
players that they are close to a location of interest or entering an
area of Attention Demanding Gameplay (see Modes above).

Social

Multiplayer Games form the principle basis for games with social
interaction, by enabling Synchronous Gameplay for multiple play-
ers. Especially Massively Multiplayer Online Games seem suitable
to support interaction in pervasive games as they increase the
chance of finding other players in the vicinity. Supporting Late
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Arriving Players is almost a necessity, as players should be able
to independently start, join or leave a running game. Instances
can help to reduce technical requirements like server load and
can facilitate the formation of closer social groups.

Player-Player Proximity is an element that can be used for
encouraging calibration rendezvous. In order to bring users
together at the same time and place, Common Experiences can
be used. Players can e.g. be brought together by Mutual Goals,
Collaborative Actions, that increase a sense of community or
Game Element Trading that requires real-world proximity. Also,
elements that support Team Strategy Identification, like Symbiotic
Player Relations, e.g. by Orthogonal Differentiation, can be used to
bring players together.

(Correct) Sensing

An interesting and until now relatively unexplored area is the
use of game design elements to ensure the sensing task being
triggered and carried out correctly. Whether and how mechanics
can be used strongly depends on the concrete sensing applica-
tion and the employed sensor(s). If for example sensing requires
using external sensors, gadgets, or smartphone extensions such
as e.g. clip-on air quality sensors for smartphones [30], [217],
they could also be shipped with the game and act as Feelies to
increases the game experience. To reduce cost and improve data
quality, it would also be a possibility to give out sensors only
after Unlocking to the best performing players as an in-game
reward. The players with the best coverage, social interaction
and most accurate simulated measurements unlock the sensor,
which they then receive as hardware. Another approach could
be to offer sensors of different quality and cost as tangible game
items that can be bought with real-world currency. A related
example for this is the Pokémon GO Plus wristband5, that acts
as a physical accessory to the digital game. Such wearables
could easily also house sensing capabilities, act as tangible or
Mimetic Interfaces or real-world items that e.g. boost game stats.
Smartphone sensors such as accelerometer, light sensor, proxim-
ity sensor, etc. can provide information on the way the player
handles the measurement device or on his physical activities,
which can in turn be used to monitor if the user handles the
device correctly. Another possibility to e.g. ensure a certain
device orientation is the use of Minigames. The sensing itself
could be a small Minigame, like balancing a virtual marble on

5 http://www.pokemongo.com/en-us/pokemon-go-plus/
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the screen to steady the phone. If desired, in-game Tutorials can
be used to enable the players to learn how to use the sensors
correctly. In contrast to manuals, players benefit from getting
immediate feedback. Tutorials can take different forms, they
could e.g. also be embedded in training missions. If the game
behavior that involves sensing has an effect on Reputation (either
of the players themselves or their game avatars), data quality
can possibly be increased. Aside from comparing the quality
of the measured data to that of other players, the game could
also try to verify that the players are real persons. In both cases
players will probably be more eager to make more accurate
measurements.

Engagement

This section covers mechanics that provide the player with rea-
sons to play the game (more often), i.e. to sustain engagement.
Replayability is very important for these types of games. To be
able to collect a lot of data, it is important to keep up the interest
of the player. Predetermined Story Structures, such as Adventures
or Quests, can be used to keep the game from getting boring by
constantly supplying new content. As an added benefit they also
can be used for all of the core tasks: to bring players together
or to certain places, to increase coverage or to task them with a
certain procedure. Through Dynamic Difficulty Adjustment play-
ers can be kept in flow and steadily have Challenging Gameplay
which would provide an incentive to collect even more sensor
data. Since players carry their smartphones with them most of
the time anyway, Ubiquitous Gameplay should be possible. If the
player is running the game anyway, she can be alerted to phases
of Attention Demanding Gameplay and “pulled into to the action”
by Alarms. If not, Notifications may remind them that the game
still exists.

To consider

There are also some game elements which are not purely bene-
ficial (or even intended) but should be kept in mind (see also
Discussion below): As players move in the real world, they may
encounter Inaccessible Areas. Private property should not be
entered and the players thus not prompted to do so. Places
that require an admission fee (e.g. a zoo) should maybe also
be excluded. In addition, environmental measurements should
typically only take place outdoors. If the game allows being
played inside of buildings, it should possibly recognize this and
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hence not record sensor data or dismiss the recordings after the
fact. Another thing to bear in mind is possibly varying Player
Physical Prowess. Games should ideally be accessible to anyone
and players with poorer physical abilities should not be demoti-
vated by being tasked with something they can not compete in
with other players. Unmediated Social Interaction should also be
considered. As players encounter each other during the game,
they may talk to each other, befriend each other, etc. Possible
effects should be contemplated. The same is true for Extra-Game
Input or Extra-Game Consequences. If the players know that the
measurements could have consequences in the real world (e.g.
air quality data is used for automatic traffic control), it could
make them try to manipulate the data and play the real-world
effect rather than the game, to for instance deliberately close off
a street for traffic.

7.5 discussion

While this work attempts to provide building blocks for Sensified
Gaming, there are of course general design considerations to
be followed. There has been more than a decade of research
on the design of pervasive games alone, and many lessons can
be learned from previous work, like believable story-telling
[99], wisely choosing technology platforms, carefully balancing
single- and multi-player content of the game, and offering suffi-
ciently diverse possibilities in the game to the players [178]. It
should also be kept in mind that e.g. external sensing devices
should fit the overall design of the game, as this can influence
the players’ perception and attitude towards them [116]. An-
other important aspect is that while supporting one of the core
tasks, some of the mechanics may have adverse effects regarding
another core task or (sustained) engagement.

An important aspect that should not be underestimated con-
cerns the ethical issues connected to Extra-Game Consequences.
Some vivid examples for this were encountered by people play-
ing the recently released augmented reality app-based game
Pokémon GO: There have been reports of people being robbed
after being lured into a trap by muggers specifically targeting
players of the game [259], as well as numerous cases of injuries
and dangerous behavior. Also, inserting competitive game el-
ements in a pervasive game could excite unwanted real-world
interaction between players. Situations in which players could
be tempted to compensate in-game inferiority by somehow en-
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gaging opponents in the real-world should not occur. It may
be prudent to design games without shared resources that play-
ers compete for. But not only undesired interaction between
rivaling players may be an issue, unforeseen problems involving
people outside the game may also occur: As an example, a man
attacked a Pokémon GO player, slashing him across the face, as
he apparently thought the gamer was video-recording him on
his phone [198]. While this surely is an extreme example, it
pays to consider how the sensing procedure could be seen and
possibly misinterpreted by bystanders. Such effects are possibly
strongest and extremely hard to foresee if the game is played
without bounds, i.e. by anyone, at any time and in any place. In
contrast, so-called event games constrain the game environment
to a certain playing time, game area, player group and/or lim-
ited hardware, allowing the game organizer to exercise more
powerful control over the game [160]. Many ethical issues such
as the use of public places and different aspects of privacy and
security are discussed at length by Montola et al. in a report
on Ethics of Pervasive Gaming in the IPerG project6, which can
also be read as a guideline document for reflecting individual
game designs from the ethical point of view [162].

Overall, many things have to be considered to create games
that are fun to play, deliver meaningful data and do not place
players in harm’s way. We would like to stress that simply se-
lecting mechanisms from the list and combining them together
is not what this work proposes as a design practice. As men-
tioned before, design patterns do not describe the steps of a
design process. Rather, the selection and the accompanying
discussion in this work can serve as a tool to facilitate building
new games or identifying existing ones that could be suitable to
be ’sensified’. Games are hard to design and good games even
harder, that is why there are game designers. We believe that for
the process to work best, game designers and sensing experts
should ideally work hand-in-hand to successfully realize the
concept of Sensified Gaming.

7.6 real-world example : spacemaze

This section presents the design and evaluation of SpaceMaze,
a sensified game for noise level monitoring. Similar to the
audio recording app flavors that were presented in chapter 6,
we created a mobile minigame with the purpose of guiding the

6 http://iperg.sics.se/index.php
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user to performing a correct sensor procedure. SpaceMaze was
implemented by Jan Felix Rohe as part of his bachelor’s thesis
[196].

7.6.1 Design

The idea behind SpaceMaze is similar to that of the Premium app
flavor from the user study in section 6.5: The phone’s internal
sensors can be used to determine whether the sensing context
is correct and allow or deny the recording of ambient audio
levels accordingly. As requirements of the sensing scenario,
we therefore also have the same constraints (as derived from
the best practices for noise level monitoring from the PDF user
guide of the NoiseTube project [149]). When recording, . . .

• the device should be upside down, so that the microphone
points away from the user.

• the device should be held very still, no shaking or moving
too much.

• a recording must at least 30 seconds long to be valid.

• the user should not talk or make other noise.

• the user should be outside.

• no phone usage, e.g. typing, chatting or any other device
functions for the duration of the recording.

The latter two aspects are actually hard to control. On a

Figure 70.: Game Elements used in Space Maze (left-to-right):
dark green finish line, light green checkpoint, blue
moving obstacle, yellow pickup, player space ship,
red player-killing obstacle, and warp point

purely technical level, it is not possible to ensure that the player
is quiet during the game. We mapped the remaining require-
ments to possible game design patterns. As a result, SpaceMaze
features the following visible game elements (see Figure 70)
corresponding to their appropriate game design patterns.
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Figure 71.: Screenshots from the gameplay of SpaceMaze.

In SpaceMaze, the players need to steer a spaceship through a
labyrinth (see Figure 71). The ship always moves and cannot be
stopped. A shield protects the ship from damage, preventing
it from being destroyed on collisions with blue obstacles or
the level walls. Red obstacles will always destroy the ship,
regardless of its shield’s status. Upon destruction, the ship is
respawned instantaneously at the last checkpoint. Yellow orbs
are placed throughout the level as pickups. When collected,
they increase the ship’s movement speed, potentially allowing
the player to clear the level faster. The total time upon finishing
a level directly corresponds to the points earned.

Aside from the general gameplay, some of the elements were
specifically selected to guide the device handling during the
measurement process (see Table 19): Tho most central design
pattern is Mimetic Interfaces [18]. By controlling the ship via the
phone’s inertial sensors (accelerometer and gyroscope), well-
defined constraints are placed on the possible device motion.
Mimetic interfaces are again used in conjunction with the warp
points game element. In order to beam the spaceship to the next
stage of the level, the user needs to rotate the phone by 180°. By
that, the correct orientation of the phone for a measurement is
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Task/
Constraint

Design
Pattern(s)

Game Element

Avoid shaking
or movement;
no phone us-
age

Mimetic
interfaces;
Player
physical
prowess

The spaceship is controlled by ro-
tating the device ever so slightly.
A transmission of 1:12 makes
sure that the phone movement
is minimized: 1° of rotation of
the phone causes 12° of rotation
in-game.

Avoid shaking
or movement;
no phone us-
age

Mimetic
interfaces;
Game items
that pro-
tect from
damage

In the game’s status bar, the
status of the ship’s engineer is
shown. If the device is shaken
or held in the wrong orientation,
the engineer get’s sick and the
ship’s shields power down. With-
out shields, the ship will explode
when touching anything, e.g. the
level walls.

Device should
be held upside-
down

Mimetic in-
terfaces

Warp-points transport the ship
from one part of the level to an-
other. To activate them, the user
needs to turn the phone by 180°.

Record for at
least 30 s

Real-time
games;

The ship is always moving for-
ward and can not be stopped.
The camera is locked on the ship,
keeping it centered in the display.
The continuous gameplay facil-
itates longer periods in which
recordings can be made.

Record for at
least 30 s

Pre-defined
goals

The levels have a linear struc-
ture, i.e. the user knows a-priori
that he simply needs to play un-
til reaching the end of the level,
giving ample time for recording
in the background.

Table 19.: Selected game design patterns and their effect con-
cerning the constraints of the measurement task.

ensured. Mechanisms to ensure a certain length of recordings
are Real-time games and Pre-defined goals.

7.6.2 Evaluation

We conducted a user study in order to explore whether the
design of SpaceMaze indeed has a positive effect on the perfor-
mance of the measurement process, and if so, how this relates
to the non-gamified app prototypes that we studied before [45],
as presented in section 6.5. We recruited a total of 17 study
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Figure 72.: Map of the first level of SpaceMaze: Players start in
part 1 and are beamed to part 2 using a warp-point.
This larger area is where the phone opportunistically
performs the ambient audio sensing in the back-
ground. After having cleared the obstacle course
the ship is eventually warped to part 3 of the level,
leaving the user with a normally oriented phone on
level completion.
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participants (eleven male, six female), aged from 18 to 27 (mean
age: 22). We approached passing pedestrians inside a city park
and on a university campus and asked them if they would vol-
unteer to participate (sample of opportunity, response rate at ca.
2/3). All participants were accustomed to mobile phone usage,
stating they used their device daily. Additionally, each of them
had played games on their mobile device in the past, many of
them (N=9) still playing at least once a week. All participants
gave their written informed consent and did not receive any
compensation for their participation.

After having introduced the scenario, participants played the
tutorial level once to familiarize themselves with the principle
of the game. Then, they were asked to play one full level
until they completed it or gave up. No further instructions
were given. The study instructor observed participants and
recorded all user errors (cmp. section 6.5). Besides that, the game
recorded automatically logged gameplay data. After having
finished, participants were asked to fill in the User Experience
Questionnaire (UEQ) [136], the System Usability Scale (SUS)
[28] and provide written qualitative feedback.

Study Results

All participants were able to generate valid noise recordings
(mean duration: 85 s) during gameplay sessions. Almost all
players (N=16) completed the main level, one gave up. Still,
that participant still created a valid recording of 31 seconds.
SpaceMaze reached a SUS score of 77, indicating an overall good
usability, comparable to that of the non-gamified apps from
chapter 6. The mimetic interface pattern was well-received, N=8

participants stating that they liked the unconventional motion
control.

While all of the participants created a valid recording accord-
ing to the game log, the observer log showed some erroneous
behavior. Most prominently (N=11), participants made noise,
specifically by talking. This was often prompted by events inside
the game, such as collisions leading to the destruction of the
spaceship. One participant (N=1) disrupted the recording by
covering the device’s microphone during play and one partici-
pant (N=1) tapped the device screen every time his ship crashed,
seemingly attempting to accelerate the respawning of the ship.

Figure 73 shows the amount of errors made while playing
SpaceMaze in comparison to those made with the Basic and Pre-
mium versions of the noise recording app presented in chapter 6.
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Figure 73.: Measurement errors observed during the sensing
process in the mobile minigame SpaceMaze as well
as the two applications Basic and Premium (cmp. sec-
tion 6.5).

The Basic version is a simple 1-button recording app, whereas
the Premium version features technical measures to guide the
measurement process.

Since SpaceMaze opportunistically selects the longest possible
recording interval that occurred during gameplay, naturally the
error of too short recordings is eliminated entirely. For the
same reason, errors on the account of device not being held
upside-down did not occur. The handling errors that could not
be automatically prevented are the touching or covering of the
microphone. Quantitatively, they seem to occur at comparable
levels to those of the Premium app, but a larger sample size
would be needed to confirm this. The one error that occurred
disproportionately often was user-made noise: Two thirds of the
participants (N=11) talked or otherwise made sounds during
gameplay.

7.6.3 Discussion

We believe that two factors mainly contribute to the fact that a
large percentage of users made noise during recording. First,
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while we mentioned that the applications was a game which also
happened to record noise levels during gameplay, participants
were instructed to focus on playing the game. Therefore, we
believe that they foremost perceived the application as a game
and not as a measurement tool.

Second, participants were only asked to play each the tuto-
rial as well as the main level exactly once. Since most of the
observed instances of making noises were sounds of frustration
or surprise upon death or when struggling with an obstacle,
their frequency may be lower if players are a bit more familiar
with the game. Also, we believe that the presence of a study
instructor may have actually acted as a catalyst: If there were
no-one to hear the people vent their frustration, they might not
have expressed it out loud. However, this would need to be
confirmed in a future study. Either way, a technical approach
to deal with this may be to remove the parts recorded directly
after player death from the analysis.

A final point worth mentioning is that of design effort. While
we have shown that it is clearly possible to aid the correct
execution of sensing tasks through the use of games, designers
should balance the effort that goes into the creation of a game
with the expected benefits regarding the quality of the collected
data. For smaller studies, other approaches like e.g. training (see
section 6.4 for an overview) may be more sensible that creating
a game. On a larger scale, such as the PS scenarios that are the
basis for this work, the effort may become less significant in
perspective.

7.7 conclusion

In this chapter, we presented the notion of Sensified Gaming,
which proposes not to think of gamifying Participatory Sensing
applications but rather embedding Participatory Sensing tasks
into games that can support them. We highlighted the potential
of exploiting game design elements beyond creating user en-
gagement and presented a collection of game design elements
that can be used to identify or design suitable games. For this,
we identified four core tasks from participatory environmental
sensing and sensor networks research, reviewed hundreds of
game design elements from different collections and mapped
our selection of 63 game design patterns to the core tasks.

As an example to evaluate this novel concept, we built the
game SpaceMaze that opportunistically performs ambient noise
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level measurements during gameplay. The evaluation of its
performance in terms of error reduction shows the validity of
our approach.
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8 Conclusion and

Outlook

This chapter concludes this dissertation on distributed, low-
cost, non-expert fine dust sensing with smartphones. After a
summary of the research and its contributions, we provide an
outlook on future work.

8.1 summary

The paradigm of computing is changing. Computers are in-
creasingly pervading our daily lives and the environments we
live in. Through the ubiquity of smartphones and the rise of
the Internet of Things (IoT), more and more sensor-equipped,
always-connected devices surround us, that have the potential
to let us see the world in an unprecedented manner. Driven by
this, the paradigm of environmental sensing is changing as well.

This dissertation deals with the question of how Particulate
Matter (PM) can be measured using low-cost sensors and with
high resolution, both spatially and temporally. To this end, we
have approached several challenges, ranging from the identifi-
cation of suitable sensing scenarios, over the design of low-cost
instrumentation to addressing human factors and incentivizing
correct sensing behavior. These are all aspects that relate to the
data collection, respectively its quality, in Participatory Sensing
(PS). Addressing these challenges together in a wholistic way is
important to satisfy the dependencies between them.

The main contributions of this dissertation are:

• We showed that meaningful Particulate Matter (PM) mea-
surements are possible with low-cost Commercial-of-the-
shelf (COTS) dust sensors.
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• We presented the design of the first handheld environmen-
tal monitor to include a COTS PM sensor for mobile and
participatory environmental sensing.

• We successfully adapted the light-scattering measurement
principle of low-cost sensors to camera smartphones using
a self-designed passive external hardware add-on.

• We extended the existing light-scattering principle by chang-
ing both the optical layout as well as the image analysis
algorithms so that counting individual particles at realistic
concentration levels becomes possible. Since the sensor is
still based on light-scattering, this approach has the po-
tential to allow simultaneous size segregation and particle
counting in software in the future.

• We presented a robust signal processing algorithm that
can be used to reconstruct the “true” signal from signals
that are heavily afflicted by systematic error. The only
prerequisite of the algorithm is that the phenomenon can
be modeled ad a Poisson process. We show that this makes
it applicable to other phenomena besides PM by applying
it to data from low cost gas sensors.

• We extended existing multi-hop calibration algorithms
with several measures to protect the identity and location
privacy of the participants.

• We empirically created a taxonomy of the errors made by
non-expert users when measuring environmental phenom-
ena with smartphones and surveyed possible approaches
to mitigate or avoid them.

• We conducted a large field study with > 500 participants in
which we compared the effect of instructions vs. technical
measures to address user error in smartphone-based noise
level sensing. Our results show that technical measures
without explanation notably reduce the perceived usabil-
ity and the combination of technology and instructions
achieves a significant reduction in observed error rates
while not affecting the user experience negatively.

• We introduced the notion of Sensified Gaming as a way of
supporting smartphone-based environmental sensing in
mobile games. We presented a set of design patterns for
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the design of such games and demonstrated the feasibil-
ity through the development and evaluation of a mobile
minigame.

8.2 outlook

We have addressed a number of challenges that present them-
selves when attempting to perform Particulate Matter (PM) mea-
surements using low-cost sensors and with high spatio-temporal
resolution. Still, bringing it into reality entails a number of open
challenges, several of which we attempt to approach in the re-
cently started project SmartAQnet. Parts of this section have
previously been published as part of the project outline [43].

8.2.1 Extending Existing Networks

While it has become clear that air quality monitoring will change
fundamentally in the future [218], it is unlikely — and also
counterproductive — that existing networks will be replaced
completely by distributed measurement networks. Instead, in
order to pursue this new generation of air quality monitoring
consistently, the existing measurement stations should be sup-
plemented with a narrow, heterogeneous sensing network, a
part of which could also be Participatory Sensing (PS) activities.

A sensible combination of technology requires both the in-
tegration of data from existing high-end devices and low-cost
sensors, as well as possibly the development of new devices in
between. The challenges in the development of such new sensor
systems include weighing low investment costs and mobility
against high precision, long-term stability and a high tolerance
to environmental influences (e.g. temperature, pressure and
humidity).

In order to integrate a wide range of measurements with
instruments of various price and quality classes, aspects such
as network capability and smartphone connection must be ad-
dressed as well. This is e.g. a prerequisite for the real-world
validation of distributed calibration approaches like the one
presented in this work.
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Figure 74.: One challenge for future air quality monitoring net-
works is the integration of heterogeneous measure-
ment technology into one joint sensing grid [43].

8.2.2 From Mobile Sensing to Big Data Analytics

Researching under which conditions low-cost sensor technology
(operated by non-experts) can be used to generate valuable large
high-resolution data sets is not a question that can be answered
with classical evaluation of individual sensors, e.g. through com-
parison measurements. Instead, it is expected that the fusion
with other data will enable us to better understand relative influ-
ences from weather, traffic or building situations. This requires
appropriate big data analytics for quality improvement and
model validation. Research questions include novel algorithms,
e.g. for central calibration of distributed sensors, verification
of data sources, source appointment, etc. Figure 75 shows the
data architecture of project SmartAQnet, which implements a
complete Internet of Things (IoT) stack using state-of-the-art
SmartData technology [43]. The underlying software architec-
ture is a so-called kappa architecture, in which live data as well
as historical data can be integrated continuously from constantly
growing data sources.
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Figure 75.: Architecture of the SmartAQnet data management
system [43].

8.2.3 Closing the Loop

Ultimately, the challenge lies in the development of a wholistic
overall system for the recording, visualization and prediction of
the spatial distribution of air pollutants in urban atmospheres
that is relevant to the citizens. Important aspects concerning
the sustainability of such a system is an open and participatory
approach, which requires awareness and active participation
([49]). To ensure long-term recording and provision of the
data, citizens should be able to record data and feed it into
the systems, e.g. via their smartphones, which in turn could
for instance provide more accurate air quality information for
the user’s location or movement route. Challenges that have
not been in the focus of this work include the development of
appropriate visualization schemes that are capable of conveying
additional information (such as the measurement uncertainty),
as well as the design of novel applications and services based
on the obtained data.
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This appendix lists all peer-reviewed publications that were pub-
lished in the course of the author’s PhD studies. Aside from the
work presented in-depth in this dissertation, this also includes
individual publications on side-projects as well as contributions
to colleagues’ research.

Most notable among these is the design and evaluation of
a usable security system that provides a WiFi access point,
the signal of which is physically constrained to the surface
of a 2D waveguide sheet, which can be used for usable WiFi
authentication [41], [44].

Furthermore, contributions to measures that aim at establish-
ing research-oriented teaching at a much earlier stage than in
traditional university teaching were made [38].

Other activities in the course of the author’s doctoral research
include contributions to colleagues’ work on mobile activity
recognition [15]–[17], [32], [105], urban analytics [36], [68], [69]
and vibro-tactile feedback [77], [180], [181].
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