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32 Abstract
33 Herein we report the identification and characterisation of two linear antimicrobial peptides 

34 (AMPs), HG2 and HG4, with activity against a wide range of multidrug resistant (MDR) 

35 bacteria, especially methicillin resistant Staphylococcus aureus (MRSA) strains, a highly 

36 problematic group of Gram-positive bacteria in the hospital and community environment. To 

37 identify the novel AMPs presented here, we employed the classifier model design, a feature 

38 extraction method using molecular descriptors for amino acids for the analysis, visualization, 

39 and interpretation of AMP activities from a rumen metagenomic dataset. This allowed for the in 

40 silico discrimination of active and inactive peptides in order to define a small number of 

41 promising novel lead AMP test candidates for chemical synthesis and experimental evaluation. In 

42 vitro data suggest that the chosen AMPs are fast acting, show strong biofilm inhibition and 

43 dispersal activity and are efficacious in an in vivo model of MRSA USA300 infection, whilst 

44 showing little toxicity to human erythrocytes and human primary cell lines ex vivo. 

45 Observations from biophysical AMP-lipid-interactions and electron microscopy suggest that 

46 the newly identified peptides interact with the cell membrane and may be involved in the 

47 inhibition of other cellular processes. Amphiphilic conformations associated with membrane 

48 disruption are also observed in 3D molecular modelling of the peptides. HG2 and HG4 both 

49 preferentially bind to MRSA total lipids rather than with human cell lipids indicating that HG4 

50 may form superior templates for safer therapeutic candidates for MDR bacterial infections.

51

52 Author Summary
53 We are losing our ability to treat multidrug resistant (MDR) bacteria, otherwise known as 

54 superbugs. This poses a serious global threat to human health as bacteria are increasingly 

55 acquiring resistance to antibiotics. There is therefore urgent need to intensify our efforts to 

56 develop new safer alternative drug candidates. We emphasise the usefulness of complementing 

57 wet-lab and in silico techniques for the rapid identification of new drug candidates from 

58 environmental samples, especially antimicrobial peptides (AMPs). HG2 and HG4, the AMPs 

59 identified in our study show promise as effective therapies for the treatment of methicillin 
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60 resistant Staphylococcus aureus infections both in vitro and in vivo whilst having little 

61 cytotoxicity against human primary cells, a step forward in the fight against MDR infections.
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62 Introduction
63 The decline in effective treatment strategies for multidrug resistant (MDR) bacterial infections 

64 due to the problem of antibacterial resistance threatens our ability to treat infections now and 

65 in the future, and calls for an urgent need to explore new safe drug candidates and alternative 

66 treatment strategies 1. The MDR Gram positive bacteria, methicillin resistant Staphylococcus 

67 aureus (MRSA), a human opportunistic pathogen, has become a leading causative agent of 

68 hospital and community acquired infections over the past few decades, posing a number of 

69 challenges for physicians 2-5. Due to its pathogenicity and potential impact on a large population 

70 it is on the World Health Organization (WHO) list of priority pathogens 6. According to the 

71 Centre for Disease Control and Prevention (CDC), MRSA represents a major burden on health 

72 care as it can acquire resistance to almost any class of antibiotic 7, leading to more than 80,000 

73 invasive infections and 11000 deaths each year in the USA alone 8. The prevalence of MRSA 

74 infections in England and Northern Ireland increased for the first time since 2011 from 1.1 in 

75 2016 to 1.3 reports per 100,000 population in 2017 9. Moreover, treatment of MRSA 

76 bacteraemia is a long-standing challenge for the healthcare profession, often complicated by 

77 metastatic infections, treatment failure and mortality 4. Therefore, antimicrobial compounds 

78 with new modes of action for the treatment of MRSA infections are urgently needed.

79  

80 Research into identifying and optimising the use of antimicrobial peptides (AMPs) in infectious 

81 disease treatment has been intensifying as they are favoured as a promising new class of 

82 therapeutic agents 1, 10. AMPs have broad spectrum of activity (bacteria, fungi, viruses, 

83 parasites etc.), form amphipathic structures, which aid interaction with the cell membrane and 

84 have multimodal mechanism of action, which contributes to delayed onset of resistance in host 

85 cells against them 11.

86

87 The complex microbial community of the rumen of cattle (Bos taurus) adapts to a wide array 

88 of dietary feedstuffs and management strategies, and enzymes isolated from this ecosystem 
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89 have the potential to possess very unique biochemical properties with possible links to 

90 economically or environmentally important traits 12. Indeed, the rumen microbiome has been 

91 shown as an underexplored resource for antimicrobial peptide discovery 13-15 and its potential 

92 to contribute some of the much needed urgent alternative therapeutic candidates to tackle the 

93 looming problem of difficult to treat multidrug resistant bacterial infections. Advances in 

94 nucleic acid-based technology (second generation sequencing, meta ‘omic) and high-

95 throughput sequence analytic methods (advanced bioinformatic approaches) have created new 

96 opportunities to investigate the complex relationships and niches within microbial 

97 communities, redefining our understanding and improving our ability to describe various 

98 microbiomes, including the rumen microbiome. Such an enhanced understanding enable the 

99 identification and utilization of the beneficial traits in these microbiomes 16, 17. Several 

100 metagenomic datasets from the rumen have been generated in the last few years, illustrating 

101 some of the beneficial traits of the rumen microbiome including the presence of large numbers 

102 of novel glycosyl hydrolases 18-27, esterases 28-30, lypolytic enzymes 28, 31, 32, and more recently, 

103 antimicrobial compounds 15, 17, with the latter group of compounds possessing  therapeutic 

104 potential for the treatment of multi-drug resistant bacteria. 

105

106 Here we combined the application of metagenomics, using one of the largest rumen 

107 metagenomic dataset 19 available, with advanced computational analytic tools and chemical 

108 models to identify and characterise AMP candidates for the treatment of MDR infections. This 

109 metagenomic data set contains more than 268 Gb, or 1.5 billion read pairs, of metagenomic 

110 DNA from one single sample with the DNA from microorganisms that colonized plant fiber 

111 during incubation in the cow’s rumen. De novo assembly of reads resulted in more than 2.5 

112 million predicted open reading frames at an average of 542 bp and 55% predicted full-length 

113 genes. We employed the classifier model design, a feature extraction method using molecular 

114 descriptors for amino acids for the analysis, visualization, and interpretation of AMP activities, 

115 and for the in silico discrimination of active and inactive peptides in order to define a small 
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116 number of promising new lead AMP test candidates for chemical synthesis and experimental 

117 evaluation from this dataset. We also show the innocuity ex vivo, and the anti-MRSA efficacy 

118 of two of these AMPs both in vitro and in vivo.

119

120 Results and Discussion
121
122 In silico prediction and identification of AMPs using computational analysis

123 Following, the first selection criteria in the computational analysis, 917,636 sequences (36%) 

124 of the 2,547,270 predicted protein sequences in the Library “Cow” remained (i.e., protein 

125 sequences with a maximum length of 200 amino acids (AAs)33 and not more than 5% unknown 

126 AAs (marked by X, *). Of these 917, 636 sequences, only 829 sequences fulfilled the criteria 

127 of AA distances (AAD) <0.2 or a small AA pair distances (AAPD) <1.45, ensuring their 

128 potential to be AMPs. For example, only 65 sequences met these criteria in the first 68, 274 

129 sequences analysed, with isolated points outside a relatively dense distribution area as 

130 illustrated in Fig. 1a. Descriptor computations generated positively charged loading - 

131 hydrophobicity plots, indicating that the selected sequences from the Library “Cow” are 

132 represented in only a small portion of all AMP regions from the Library “AMP” (see Fig. 1b). 

133 Results from each computational step used in the identification of novel AMPs from the Hess 

134 et al 19 rumen metagenomic dataset is summarized in the supporting information (SI) Table S1. 
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135

136 Fig. 1 a) visualization of distances for AA acids (AAD) and AA pairs (AAPD) for the first 
137 68,274 sequences from library "Cow"19 meeting the first selection criteria: candidates with 
138 AAD<0.2 or AAPD<1.45 are selected as candidates (here: 65). b) standard hydrophobicity 
139 (TERM1 SEQ Hopp-Woods) - loading (positively charged, TERM3 SEQ Isoelectric Point) 
140 plot. Blue dots are known AMPs (library "AMP" consisting of AMPs from the APD234 and 
141 Hilpert Library35), green colored signs are AMP hits identified from library "Cow", and finally 
142 selected peptides HG2 (magenta) and HG4 (red).

143
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144 Six most promising AMP sequences (termed Hess-Gene 1-6 (HG1- HG6) (SI Table S2) were 

145 identified from the 829 sequences we utilized in silico approaches (Materials and Methods) 

146 sequences. The corresponding nucleotide sequence and additional information for the 

147 identified genes can be found in supporting information S3. 

148 Two of these six promising candidates, HG2 (MKKLLLILFCLALALAGCKKAP) and HG4 

149 (VLGLALIVGGALLIKKKQAKS) containing 22 and 21 AA residues respectively, were 

150 selected for subsequent characterisation. Sequence homology analysis using NCBI’s BLASTP 

151 36 against the non-redundant (nr) protein sequences suggests that HG2 is most similar to 

152 hypothetical or uncharacterised proteins with unknown functions from Treponema 

153 maltophilum ATCC 51939, Pedobacter soli and Bacteroides sp., while HG4 is most similar to 

154 Na+/H+ antiporter NhaC family protein from Fibrobacter sp. UWR2, and a hypothetical protein 

155 from Bifidobacterium adolescentis (Table 1). 

156
157 Table 1. Homology of antimicrobial peptides HG2 and HG4 to known sequences

Assigned AMP name HG2 HG4
Sequence MKKLLLILFCLALALAGCKKAP*                                                                                                                                                                                  VLGLALIVGGALLIKKKQAKS*                                                                                                                                                                                  

Amino acid (AA) (length) 22 21

Location on cow dataset NODE_664976_length_19740_cov_2.0
33485_orf_00810 19724..19789                                                                                                                      

NODE_3958153_length_85376_cov_8.525
382_orf_203250 82784..82849                                                                                                                    

APD ID AP00494 37 AP01737 38
Most similar 

homolog on APD2 
(stop codon ‘*’ 

removed)
Similarity % 40% 48%

Accession 
number EPF31931.1 WP_088636977.1

Description
Hypothetical protein 

HMPREF9194_02286 [Treponema 
maltophilum ATCC 51939]

Na+/H+ antiporter NhaC family protein 
[Fibrobacter sp. UWR2]

 

Most similar 
homolog on NCBI 
blastp (stop codon 

‘*’ removed) Score 
bits/Identities 

%/
E-value 43.5 bits (95)/ 17/24(71%) / 0.001 44.8 bits (98)/ 16/19(84%)/ 0.001

158

159 Similarly, homology analysis of the AMP sequences against the proteins from WGS 

160 metagenomic projects (env_nr) suggests that HG2 is most similar to hypothetical proteins from 

161 marine metagenomes, while HG4 is most similar to permease of the drug/metabolite transporter 
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162 (dmt) superfamily identified from a hydrocarbon rich ditch metagenome and hypothetical 

163 proteins from marine metagenomes. It is important to note that the AMPs match to only a small 

164 part of their homologous sequences. The high e-values and low bit scores and coverage of the 

165 homologous sequences to HG2 and HG4 (as the best hits still had relatively high e-values of 

166 0.001), as well as the fact that they are automatically curated unreviewed sequences should 

167 also be noted, as this indicates the potential novelty of the peptides. Therefore, this study has 

168 not only identified HG2 and HG4 sequences from the rumen metagenomic dataset as 

169 antimicrobial proteins but may also provide insight into the function of the full proteins 

170 carrying their homologous sequences currently annotated as hypothetical or uncharacterised 

171 proteins for the first time.

172

173 HG2 and HG4 were chemically synthesized as linear, C-terminal amidated peptides on resin 

174 (≥95% purity, see SI Fig. S1 for mass spectrometry analysis and peptide synthesis reports) 

175 using solid phase Fmoc peptide chemistry 39 before their antimicrobial activity was 

176 investigated. It should be noted that peptide HG2 was synthesised with a disulphide bond 

177 linking cysteine residues at positions 10 and 18, since HG2 showed little antimicrobial activity 

178 when lacking this disulphide bond (results not shown). Similar to previously reported 

179 antimicrobial peptides40-42, HG2 (C111H196N26O23S3; MW=2359.12 Da) and HG4 

180 (C99H182N26O24; MW=2120.69 Da) are cationic both having a net positive charge of +4. 

181 Whereas a hydrophobicity ratio of 57% was calculated for HG4 using ExPASy’s ProtParam 

182 tool 43, a hydrophobicity ratio of 72% was predicted for HG2, which is unusually high 

183 compared to the ratio that has been reported for most AMPs 44-47. This puts HG2 into the small 

184 group of AMPs, representing <1% of AMPs deposited in the APD3 database 33, for which a 

185 hydrophobicity ratio of ≥72% 33 has been reported. The positive charge and hydrophobicity of 

186 AMPs are known to contribute of their antimicrobial activity as they play a role in their ability 

187 to interact with the bacterial cell membrane 48.
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188 3-Dimensional molecular modelling of peptide structures
189 Three dimensional structural modelling of HG2 and HG4 using PEPFOLD 49 suggests that 

190 these peptides have a high proportion of helical content (Fig. 2). In the case of HG2, the 

191 cysteine bond stabilises the capping of the helix and the C-terminus region. Noteworthy is the 

192 clear amphipathic nature of the helix with the hydrophobic residues, particularly, Leu, aligned 

193 in a typical Leu-zipper motif. The Nt- C-termini includes a high proportion of the charge 

194 residues (Lys), which also contribute to the segregation of charges along the peptide. As shown 

195 for other examples 50, the amphipathicity of peptides, and in particular, peptides with helical 

196 conformation is an important feature of antimicrobial peptides that explains their membrane 

197 disruptive mechanism of action. 

198 Structural modelling also shows a high content of helical conformation in HG4 (Fig. 2). The 

199 peptide forms a helix-turn-helix motif with the C-terminal helix capping stabilised by 

200 hydrophobic interactions between the helices. The distribution of charges is asymmetrical as 

201 expected, given the sequence of the peptide with the C-terminal part including all charged 

202 residues (Lys mainly). The N-terminal helix contain mainly hydrophobic residues and the C-

203 terminal helix all charged residues with the exception of the first turn of the helix, containing 

204 a high proportion of hydrophobic residues that form a mini core with the previous helix 

205 possibly stabilising the conformation of the motif. The resulting conformation of the peptide is 

206 therefore an amphipathic molecule, albeit different from HG2, could also point to a mechanism 

207 of action on membranes.
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208
209 Fig. 2 Predicted 3D structures for peptides: a) HG2, b) HG4. Main-chain and side chains 
210 depicted in ribbon and stick representation respectively and coloured according to atom type: 
211 Carbon, Oxygen and Nitrogen in green, red and blue respective. Two orientations are shown 
212 rotated about the shown axis. Ct and Nt as well as selected residues are depicted in the figure. 
213 Figures were rendered using PyMol.

214
215
216
217 Antimicrobial susceptibility studies 
218 Determination of Minimum inhibitory concentrations (MIC)

219 We determined the antibacterial activity of HG2 and HG4 against various clinically important 

220 multidrug-resistant pathogens including strains of Acinetobacter baumannii, Klebsiella 

221 pneumoniae, Pseudomonas aeruginosa, Escherichia coli, Salmonella enterica serovar 

222 Typhimurium, Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis and Listeria 
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223 monocytogenes (Table 2). HG2 and HG4 had favourable antibacterial activity mostly against 

224 Gram-positive pathogens, including multidrug resistant (MDR) strains (Table 2), and were 

225 most potent against methicillin resistant Staphylococcus aureus (MRSA) strains. HG2 had a 

226 minimum inhibitory concentration (MIC) range of 16-32 µg/ml while HG4’s MIC was 32-64 

227 µg/ml depending on MRSA strain, falling within the range of MICs for other rumen-derived 

228 AMPs we identified previously 15, and for commercially available AMPs from isolates 51, 52. 

229 The peptides also showed activity against some Gram-negative bacteria strains, specifically 

230 some non-resistant A. baumannii strains and P. aeruginosa strains C3719 and LES400 isolated 

231 from cystic fibrosis patients (Table 2).

232
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233 Table 2: MDR bacteria susceptibility to HG2, HG4 and comparator antibiotics measured by MIC

Organisms MIC for peptides and comparator antibiotics (µg/ml)

Lab no./Strain ID Organism Resistances Cip/Levof  (L) Polymyxin B HG2 H-G4  Vancomycin Mupirocin
EMRSA-15 MRSA, Cip >256, 1(L) 256 32 32 2 -

ATCC 33591 MRSA 0.015 (L) - 64 32 2 -

USA300 BAA-1717 MRSA 0.0075 (L) - 16 32 2 0.12
RN4220

S. aureus

Sensitive >256 256 256 32 1 -
JH2-2 Ent. faecalis  64 32 256 128 64 -

NCTC 11994 L. monocytogenes  64 64 - 512 64 -
518842 CTX-M >128 2 512 512 - -

ATCC 700603 SHV-18 0.25 2 >512 >512 - -
NCTC 13442 OXA-48 64 8 512 512 - -

526903
K. pneumoniae

Sensitive 0.03 4 >512 512 - -
 IMI, MER 16 0.25 128 64 - -

515785 OXA-23, OXA-50 >128 0.5 256 128 - -
515908 Sensitive 16 0.5 32 64 - -
515722

A. baumannii

Sensitive 16 0.25 16 32 - -
K12 E. coli  0.06 2 256 512 128 -

SL1344 Sal. typhimurium  0.12 2 256 512 256 -
 B. cereus  0.015 - 256 512 - -

PA01 P. aeruginosa  0.5 2 >512 >512 64 -
AMT0060  0.12 0.5 256 256 - -

C3719  4 1 64 128 - -
LES400

P. aeruginosa (CF)
 4 1 64 128 - -

234 Cip Ciprofloxacin, Lev (L) Levofloxacin, CF isolates from cystic fibrosis infections, OXA Oxacillin, CTX-M extended spectrum β-Lactamase, SHV-18 β-Lactamase, IMI (imipenem), 
235 MER (meropenem).

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/577221doi: bioRxiv preprint first posted online Mar. 13, 2019; 

http://dx.doi.org/10.1101/577221
http://creativecommons.org/licenses/by/4.0/


14

236 Time kill kinetics
237 The bactericidal activity of HG2 and HG4 against logarithmic-phase MRSA USA300 cells was 

238 investigated by time kill kinetic studies. Compared with vancomycin and mupirocin, HG2 and 

239 HG4 (at 3x MIC concentration) had a rapid bactericidal activity against MRSA USA300 strain 

240 (Fig. 3a), causing reductions of >3 log10 CFU/ml and >6 log10 CFU/ml, respectively, within 

241 the first 10 min. HG2 and HG4 induced complete cell death within 5 hours and 10 min of 

242 treatment respectively, with no recovery observed after 24 hours of incubation.  This rapid and 

243 total loss in bacteria cell viability is similar to the killing kinetics that have been reported for 

244 many fast acting antimicrobial peptides 15, 53. As expected, vancomycin and mupirocin at 3x 

245 MIC produced ≥2 log10 CFU/ml reductions attributable to differences in kill kinetics and mode 

246 of action 54. 

247 Anti-biofilm activity
248 There have been numerous AMPs that have been reported to be capable of inhibiting biofilm 

249 formation for difficult to treat pathogens, favouring their application as antimicrobial agents in 

250 medical implants and other biomaterials55-61. This prompted us to utilize a 96-well biofilm 

251 model 15 to investigate the ability of HG2 and HG4 to dislodge/disrupt and disperse already 

252 formed and established MRSA USA300 biofilms. In general, all AMP treatments showed 

253 activity against established biofilms at MIC, 2x MIC and 4x MIC concentrations. No 

254 statistically significant anti-biofilm activity was observed in biofilms treated with 0.5x MIC 

255 AMP concentrations (Fig. 3b). The anti-biofilm activities of HG2 and HG4 indicate their 

256 suitability potential agents for the disinfection of medical devices as well as in the treatment of 

257 biofilm infections such as wounds.

258
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259

260 Fig. 3 Antimicrobial susceptibility and activity of HG2 and HG4.  a) Time dependent kill of MRSA 
261 USA300 cells by AMPs at 3x MIC concentration. Dashed lines indicate limit of detection. b) Anti-
262 biofilm activity against MRSA USA300 biofilms: *, ** and *** (P ≤ 0.05, 0.01 and 0.001 respectively- 
263 significantly different from untreated cells (positive). c) Resistance acquisition during serial passaging 
264 of MRSA USA300 cells in the presence of sub-MIC levels of antimicrobials. The y axis is the fold 
265 change in MIC during passaging. For mupirocin, 32x MIC was the highest concentration tested. The 
266 figure is representative of 3 independent experiments. d) ATP depletion activity in MRSA USA300 
267 cells.

268

269
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270 Selection for resistance (serial passage)
271 Although relatively uncommon, bacterial resistance to cationic antimicrobial peptides is an 

272 evolving phenomenon 62, 63. Resistance to many AMPs including polymyxin B has recently 

273 been reported 64-66, and it is therefore important to understand bacterial resistance to AMPs and 

274 to identify and design more robust AMPs. Mechanisms of resistance to AMPs, which are 

275 mostly non-specific and confer moderate levels of resistance 67, 68, are mainly based on changes 

276 in the physicochemical properties of surface molecules and the cytoplasmic membrane 62, 63. 

277 For therapeutic AMP candidates, it is important that bacterial AMP resistance, which may 

278 develop due to selective pressure is not based on mutations or acquisition of specific resistance 

279 genes, which can then be horizontally transferred between bacteria species as with conventional 

280 antibiotics 69, 70. Here, we assessed the likelihood of resistant mutants and/or resistance arising 

281 when MRSA cells are exposed to sub-MIC levels of HG2 and HG4. Continuous exposure of 

282 bacteria cells to sub-lethal doses of the AMPs over a period of 20 days did not produce resistant 

283 mutants (Fig. 3c), and MICs remained within 1-2 fold increases compared to mupirocin treated 

284 cells, which had a 32-fold MIC increase within the same period. The observed increase in MIC 

285 is rather common for many AMP-based molecules as a small change in the MIC after exposure 

286 to the AMP is to be expected 71, 72. Our inability to recover resistant mutants in this experiment 

287 suggests that the HG2 and HG4 may have non-specific or multiple cellular targets as has been 

288 described previously for peptides 73.

289
290 Biochemical mode of action studies
291 ATP depletion assay 
292 Adenosine triphosphate (ATP) is a high-energy nucleoside triphosphate molecule formed in 

293 the cytosol of bacteria and mitochondria of eukaryotes and drives most cellular and metabolic 

294 processes in microbial cells 74-76. Changes in the concentration of ATP can be used as an 

295 indicator of cell viability and competence. We tested the effect of HG2 and HG4 on ATP 

296 concentration levels in S. aureus MRSA USA300. As expected, untreated bacteria cells 
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297 generated increasing amounts of ATP over time, whereas significantly lower concentrations of 

298 ATP were observed in HG2 and HG4 treated cells (Fig. 3d). This decrease in ATP 

299 concentrations may be an indication of ATP depletion, limiting cellular energy and thus other 

300 related cellular processes (such as substrate transport, homeostasis and anabolism) likely linked 

301 to cell membrane disturbance. HG2 and HG4 induced a significant (P = 0.018 and 0.003, 

302 respectively) decrease in ATP concentration in S. aureus MRSA USA300 cells, which is 

303 similar to what was reported for other cationic AMPs 47, 77. Hilpert et al47 demonstrated that 

304 many short AMPs had a strong effect on ATP concentration whereas several 26mer α-helical 

305 peptides did not.

306
307 Bacterial membrane permeabilisation assay

308 Since HG2 and HG4 peptides possessed rapid bactericidal effect, we used the propidium iodide 

309 (PI) method 15, 78 to determine if these AMPs were able to permeabilise MRSA USA300 

310 cytoplasmic membrane similar to what was observed for other rumen derived AMPs 15. MRSA 

311 USA300 cells exposed to increasing concentrations of HG2 or HG4 both showed increase in 

312 PI entry/fluorescence over time, demonstrating that they were able to permeate the cytoplasmic 

313 membrane and therefore indicating that they may possess pore-forming activity (Fig. 4a, b). 

314 Indeed, significant permeabilisation (p < 0.01) of MRSA USA300 cytoplasmic membrane was 

315 observed even at sub-MIC concentrations, e.g. as low as 1 and 16 µg/ml for HG2 and HG4, 

316 respectively (MIC values being 16 and 32 µg/ml for HG2 and HG4 respectively). The Effective 

317 Concentration 50 (EC50) (defined as the concentration of a drug at which the drug is half-

318 maximally effective) of HG2 and HG4 measured after 80 min of incubation were 1.351 (±0.27) 

319 and 13.85 (±3.22) µg/ml, while total membrane permeabilisation was observed at 3.9 and 62.4 

320 µg/ml, respectively (Fig. 4c). Membrane permeabilisation kinetics of HG2 and HG4 at their 

321 MIC concentration, showed that HG2 was able to permeabilise the membrane faster (80% 
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322 permeabilisation at 1 min and maximal effect after 5 min) than HG4 (minor permeabilisation 

323 at 20 min, maximal effect after 40 min) (Fig. 4d).

324

325 Fig. 4 Membrane permeabilisation action of HG2 and HG4 against MRSA: a) Membrane 
326 permeabilization activity of HG2 at different concentrations (µg/ml) against MRSA USA300 cells 
327 measured by propidium iodide assay over time. b) Membrane permeabilization activity of HG4 at 
328 different concentrations (µg/ml) against MRSA USA300 cells measured by propidium iodide assay over 
329 time. c) Determination of EC50 (Effective Concentration 50) of HG2 and HG4 membrane 
330 permeabilisation measured after 80 min. d) Membrane permeabilisation kinetics of HG2 and HG4 at their 
331 MIC concentration. In all cases, values are from three independent replicates; results are expressed as 
332 means ± standard deviation).
333
334 Transmission electron microscopy
335 Transmission electron micrographs (TEM) of cells treated with HG2 and HG4 at 3x MICs for 

336 1 h revealed changes in cell morphology and some cytoplasmic damage (Fig. 5). The 

337 morphological changes observed in the HG2 and HG4 treated MRSA USA300 cells correspond 

338 with the membrane permeabilisation activity of the peptides. The semi-quantitative nature of 
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339 TEM analysis means that investigation into events leading up to changes in cell morphology 

340 may be necessary.

341
342 Fig. 5 Representative transmission electron micrographs of MRSA cells. a) micrographs 
343 untreated MRSA USA300 cells. b) HG2 treated (3x MIC for 1 h) MRSA USA300 cells. c) 
344 HG4 treated (3x MIC for 1 h) MRSA USA300 cells. Scale bars are 200 or 500 nm as shown 
345 on micrographs.
346
347 In vitro and ex vivo innocuity and cytotoxicity studies 
348 Haemolytic activity
349 To establish the potential of HG2 and HG4 as therapeutic agents, the haemolytic effect of HG2 

350 and HG4 were tested on human red blood cells. HG2 and HG4 induced low haemolysis, with 
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351 HC50 (i.e. the concentration of peptide causing 50 % haemolysis) of 409 ±67 and 458 ±101 

352 µg/ml, respectively, with safety factors of 26.2 and 14.6X MIC respectively (Table 3).

353 Cytotoxicity studies on human primary cells and cells lines 
354 Cytotoxicity of HG2 and HG4 against different human cell types was evaluated by measuring 

355 the IC50, which is the concentration of peptide inhibiting 50% of the cell viability. Lung 

356 fibroblast (IMR-90) cells were found to be the most sensitive to HG2 and HG4 with IC50 of 96 

357 ± 21 and 294 ± 42 µg/ml for HG2 and HG4. Lung epithelial (BEAS-2B) and liver (HepG2) 

358 cells) cells were the least sensitive to HG2 and HG4 with IC50 of 120 ± 25 and 359 ± 76 µg/ml 

359 for HG2 and IC50 ˃1000 µg/ml for HG4 (Table 3). As a whole, cytotoxicity data showed that 

360 HG4 was less toxic than HG2 for human cells and that epithelial cell types (BEAS-2B and 

361 HEPG2) were the least sensitive, while fibroblast and endothelial cells were more susceptible 

362 to the peptides (Table 3). The high hydrophobicity of HG2 may contribute to its higher toxicity 

363 to human erythrocytes and cell lines. This is similar to Gramicidins that possess high 

364 hydrophobicity ratios and are exclusively used topically due to their haemolytic side-effects 79-

365 81, it is possible that the future application of HG2 might be restricted to topical application to 

366 treat superficial infections, unless modified derivatives/analogues of HG2 with improved 

367 cytotoxicity become available. 

368 Table 3. Cytotoxicity and haemolytic activities of HG2 and HG4 on human cells. 
369 Cytotoxicity is expressed as IC50 (i.e. the concentration of peptide in µg/ml causing a reduction 
370 of 50% of the cell viability). Haemolytic activity is expressed as HC50 (i.e. the concentration 
371 of peptide causing 50% haemolysis). IC50 and HC50 are expressed in µg/ml concentrations. 
372 Therapeutic Indexes (T.I) corresponding to the fold difference between IC50 or HC50 and MIC 
373 values (for MRSA USA300) are given in brackets. 

Cell type (human) HG2 (X MIC) HG4 (X MIC)

BEAS-2B 120 +/- 25 (X 7.7) >1000 (> 32)

HEPG2 359 +/- 76 (X 23) >1000 (> 32)

IMR-90 96 +/- 21 (X 6.1) 294 +/- 42 (X 9.4)

Erythrocytes 409 +/- 67 (X 26.2) 458 +/- 101 (X 14.6)
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374 Peptide-lipid interaction and insertion assay
375 The interaction of HG2 and HG4 with lipid monolayers was measured by the critical pressure 

376 of insertion, reflecting the affinity of the peptides for specific lipids. Insertion capacity was 

377 first measured using total lipids extracts obtained from MRSA USA300 cells or human 

378 erythrocytes (Fig. 6a, b, and SI Table S4) and obtained data suggested that HG2 and HG4 had 

379 higher affinity and insertion ability in MRSA lipids, with critical pressure of insertion of 35.07 

380 and 30.99 mN/m and 42.59 and 44.18 mN/m for HG2 and HG4 in MRSA and erythrocyte 

381 lipids, respectively. These results showing that HG4 is less able than HG2 to insert into 

382 erythrocyte lipids is in accordance with the lower haemolytic activity observed in HG4 

383 compared to HG2 (HC50 of 409 and 458 µg/ml for HG2 and HG4, respectively). 

384 To identify the lipid partner(s) recognized by HG2 and HG4 in bacterial and eukaryotic 

385 membranes measurement of the critical pressure of insertion in pure lipids were performed 

386 (Fig. 6c, d and SI Table S4). Results indicated that HG2 and HG4 had different affinities and 

387 insertion capacities in pure lipids from bacteria or eukaryotes. Whereas HG4 interacts 

388 preferentially with bacterial lipids expressed in the outer leaflet of the membrane (1-palmitoyl-

389 2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG or PG), 1-palmitoyl-2-oleoyl-sn-

390 glycero-3-phosphoethanolamine (POPE or PE), cardiolipin, lipoteichoic acid from S. aureus 

391 (LTA), lipopolysaccharide from E. coli (LPS) over eukaryotic lipids (1-palmitoyl-2-oleoyl-

392 glycero-3-phosphocholine POPC or PC) (i.e. PG ˃ cardiolipin ˃ LTA ˃ LPS ˃ PE ˃ PC), HG2 

393 displayed the opposite order of selectivity, with first the major lipid present in the outer leaflet 

394 of the eukaryotic membrane (PC) followed by bacterial membrane lipids (i.e. PC ˃ PG ˃ LTA 

395 ˃ Cardio ˃ PE ˃ LPS). These observations are in accordance with the higher toxicity of HG2 

396 (high susceptibility of human cells to HG2) against human cell lines compared to HG4 (Fig. 

397 6c, d and SI Table S4). Interestingly, neither HG2 nor HG4 insert efficiently into LPS. This 

398 corresponds to the low antimicrobial activity of HG2 and HG4 against Gram negative bacteria 

399 compared to their potent activity against Gram positive bacteria). Measurement of the speed of 
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400 insertion of HG2 and HG4 in total lipid extracts or pure lipids at an initial surface pressure of 

401 30 ± 0.5 mN/m (corresponding to the theoretical surface pressure of eukaryotic and prokaryotic 

402 membranes) showed that HG2 inserts faster into all lipid monolayers compared to HG4 (Table 

403 2 in supporting information), confirming results obtained in the membrane permeabilisation 

404 assay, which indicated a faster bacterial membrane permeabilisation of HG2 when compared 

405 to HG4.

406

407 Fig. 6 Peptide lipid interaction and insertion measurements: a) Interaction of HG2 and HG4 (at 1 
408 µg/mL final concentration) with lipids (either total lipid extracts or pure lipids) was measured using 
409 lipid monolayers. a) interaction HG2 and HG4 with total MRSA lipid extract. b) interaction HG2 and 
410 HG4 with total lipid extract from human erythrocytes. c) interaction of HG2 with pure lipids and c) 
411 interaction of HG4 with pure lipids. 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) 
412 (PG), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (PE), Cardiolipin (Cardio), 
413 Lipoteichoic acid (LTA) from S. aureus, Lipopolysaccharide (LPS) from E. coli and (1-palmitoyl-2-
414 oleoyl-glycero-3-phosphocholine (PC).
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415 In vivo efficacy studies
416 Galleria mellonella has been used widely as an effective model for testing antimicrobials drugs 

417 and their toxicity 82-85. We investigated the toxicity of HG2 and HG4 against G. mellonella 

418 larvae as well as their ability to protect the larvae from a lethal dose of an MRSA USA300 

419 infection. The peptides HG2 and HG4 showed no toxic effect in G. mellonella at either 1x MIC 

420 or 3x MIC concentrations (Fig. 7a). As with the control group of larvae, no phenotypic 

421 modification such as melanisation and/or motility reduction was observed in larvae injected 

422 with HG2 and HG4.

423

424 The MRSA USA300 infective dose (LD50) was determined as being 105 CFU/larvae, while the 

425 lethal dose (LD) was determined as 2.25x106 CFU/larvae (caused melanisation and death of all 

426 larvae within 24 h (Fig. 7a). Larvae infected with MRSA USA300 LD and treated with peptides 

427 HG2 and HG4, at 1x MIC concentration had increased survival rate by ~20% (Fig.7b). In 

428 comparison to larvae in the untreated control group, larvae infected with MRSA USA300 LD, 

429 followed by treatment with peptides 3x MIC increased survival by 4.6-fold and 4.4-fold for 

430 HG2 and HG4 with a survival rate of 78% and 75%, respectively (Fig. 7b). 

431

432 We were able to show that both peptides, especially at 3x MIC, concentration can effectively 

433 control MRSA USA300 infection in vivo in G. mellonella. Other pharmacological aspects of 

434 the peptides need to be investigated in order to improve the efficacy of HG2 and HG4, as 

435 survival rate of AMP-treated larvae was comparable to the LD50 survival rate, probability due 

436 to distribution and/or bioavailability of the peptides in vivo (in G. mellonella model). 

437 Nonetheless, our results show that the peptides HG2 and HG4 at 3x MIC concentration are 

438 capable of significantly improving the survival of larvae infected with a lethal dose MRSA 

439 USA300 and are active against this clinically important drug resistant pathogen in an in vivo 

440 model.

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/577221doi: bioRxiv preprint first posted online Mar. 13, 2019; 

http://dx.doi.org/10.1101/577221
http://creativecommons.org/licenses/by/4.0/


24

441

442 Fig. 7 In vivo efficacy assessment in G. mellonella MRSA infection model: a) representative images of toxicity assay of peptides- i) HG2, and ii) 
443 HG4 in G. mellonella 120 h post treatment with 3x MIC concentrations. The larvae remained alive and without melanisation. iii) virulence assay of 
444 MRSA USA300 in G. mellonella using a lethal dose inoculum of 106 CFU/per larvae- iii) 24 hours post infection: some larvae were dead and partial 
445 melanisation was observed. iv). 48 hours post infection: most larvae were dead and complete melanisation was evident. The experiment was done with 
446 three experimental replicates, each containing groups of 10 larvae. b) Kaplan-Meier survival curves of G. mellonella infected with a lethal dose of S. 
447 aureus (2.25 x 106 CFU/larvae) and treated with placebo (showing a 100% larvae survival rate) or peptides HG2 and HG4 at a 1x and 3x MIC 
448 concentrations.
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449 Conclusion
450 The two AMPs, HG2 and HG4, identified using in silico approaches from a rumen 

451 metagenomic dataset have further confirms the rumen as an invaluable resource for urgently 

452 needed alternatives to currently available antibiotics. Furthermore, study presented here 

453 emphasises the usefulness of complementing wet-lab and in silico techniques for the rapid 

454 identification of new AMP candidates from environmental samples. The low similarity of the 

455 newly identified AMPs to previously known sequences suggest their novelty from an 

456 evolutionary point of view. Experimental evaluation and characterisation of the antimicrobial 

457 properties of HG2 and HG4, two of the identified AMP candidates revealed their antimicrobial 

458 activity against Gram positive bacteria. Their activity against MRSA suggest that membrane 

459 permeabilisation and decrease in intracellular ATP concentration might play a role in their 

460 antimicrobial activity. HG2 and HG4 both preferentially bind to MRSA total lipids rather than 

461 with human erythrocyte lipids. HG4 was less cytotoxic against all cell lines tested and was 

462 observed to bind more specifically to pure bacterial membrane lipids, indicating that HG4 may 

463 form a more superior template for a safer therapeutic candidate than HG2. The non-toxic effect 

464 of the peptides against G. mellonella larvae, and their in vivo efficacy against MRSA USA300 

465 infection in the G. mellonella infection model suggests that these peptides might possess 

466 potential as safe alternative therapeutic agents with anti-biofilm activity for the treatment of 

467 bacterial infections. Given the technological advances, improvements in genomic methods and 

468 computational analytic approaches as well as the growing abundance of omics data, it is likely 

469 that the approach developed and presented here for the identification of novel AMPs, might 

470 facilitate the discovery of a growing number of other AMPs and other bioactives from 

471 environments where conventional isolation and cultivation of microorganisms is challenging.

472

473 Materials and Methods
474 In silico prediction and identification of AMPs using computational analysis 
475 Antimicrobial peptide prediction and similarity analysis was performed on the rumen 

476 metagenomic dataset from the study by Hess et al, 19. The dataset was termed the Library 
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477 “Cow” dataset and contains 2,547,270 predicted protein sequences 

478 ('metagenemark_predictions.faa.gz') which were downloaded from the weblink 

479 (http://portal.nersc.gov/project/jgimg/CowRumenRawData/submission/). All other datasets 

480 (libraries) used for similarity analysis prediction/identification of novel AMP candidates from 

481 the “Cow” dataset and their respective sources are as follows: The Library “AMP1”, which 

482 contained a list of 2308 known antimicrobial peptides (AMPs) downloaded from APD2 34 

483 (downloaded on November 10, 2013 and available at http://aps.unmc.edu/AP/main.php) and 

484 the Library “AMP2”, which contains of a list of 48 synthetic AMPs (Hilpert Library) identified 

485 by Ramon-Garcia et al 35. The MATLAB toolbox Gait-CAD and its successor SciXMiner 

486 (http://sourceforge.net/projects/scixminer/) 86, 87 including the Peptides Extension Package 88 

487 were mostly used for the computational analysis.

488 The "fastread" function of MATLAB Bioinformatics toolbox was used to import the “Cow” 

489 dataset. For easier computational analysis, the imported dataset was then split into 26 parts 

490 with ~100,000 sequences each. Following recommendations that small antimicrobial proteins 

491 should have a length <200 amino acids (AAs), with most AMPs (>90%) on the APD2 database 

492 having a length of <60 AAs 34, only protein sequences with a maximum length of 200 AAs33 

493 and not more than 5% unknown AAs (marked by X, *) were selected from the “Cow” dataset 

494 predicted protein sequences (metagenemark_predictions.faa.gz). Libraries "AMP1" and 

495 "AMP2" were combined to produce Library "AMP" composing of a total of 2356 peptides. 

496 Thereafter, AA distribution and AA dimer (pair) distribution were computed, resulting in 

497 proportion for 20 AAs (and 20x20 = 400 AA dimers) for Libraries "Cow" and "AMP". Pairwise 

498 distances of AA acid distributions between two peptides (termed “AAD”) were computed with 

499 a minimal value of 0 for identical and increasing values for different AAs. Pairwise distances 

500 of AA acid and AA acid pair distributions between two peptides were computed respectively 

501 (distance for 400 + 20 features), termed "AAPD". For each candidate of Library "Cow", the 

502 values of “AAD” and “AAPD” to each peptide in Library "AMP" were computed. Again, for 

503 each sequence in Library "Cow", minimal distance values from the previous computational 
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504 step and the number of most similar peptide from Library "AMP" were saved as separate 

505 features. To select only promising candidates of AMP predictions, only sequences from the 

506 Library "Cow" with small AA distances AAD <0.2 or a small AA and AA pair distances AAPD 

507 <1.45 were saved. The distances were computed using the 1-norm (Manhattan norm). The 

508 thresholds for AAD and AAPD were heuristically chosen to balance the trade-off between too 

509 many weak candidates (too high values of AAD and AAPD) vs. the loss of promising 

510 candidates (too low values of AAD and AAPD). All sequences that fulfilled the conditions in 

511 the preceding step were collected and some interesting hits were used to check similarity in 

512 APD2 database (criteria: small values of AAD or AAPD, different neighbours to explore the 

513 variety of the candidates found, short peptide length). Finally, descriptors were computed 

514 following procedures described by Mikut et al 88, 89 to check the expected balance between 

515 hydrophobicity and positively charged AAs as a typical design criterion for AMPs.

516
517 Peptide synthesis and 3-dimensional molecular modelling of peptide structures
518 Pure peptides (≥95% purity) were synthesized on resin using solid phase Fmoc peptide 

519 chemistry 39 by GenScript Inc. USA. A de novo structural prediction method, PEP-FOLD 49 

520 was used to model the 3D conformation of peptides HG2 and HG4. 200 simulations were ran 

521 for each peptide and resulting conformations where clustered and ranked using the sOPEP 

522 coarse grained force field 90. In the case of HG2 the formation of the cysteine bond between 

523 Cys10 and Cys18 was imposed as restraint to the simulation.  The best 3D models for each 

524 peptide was chosen and manually analysed using PyMOL v1.7.6 91.

525
526 Antimicrobial susceptibility of bacterial cells
527 To determine the antimicrobial activity of new antimicrobial peptides, HG2 and HG4, their  

528 minimum inhibitory concentrations (MICs) were determined by broth microdilution method 92 

529 in cation adjusted Mueller Hinton broth (MHB) following the International Organization for 

530 Standardization (ISO) 20776-1 standard for MIC testing using a final bacterial inoculum of 5 

531 × 105 CFU/ml 93. The lowest concentration of the AMPs that inhibited the visible growth of 

532 the bacteria tested after an overnight incubation at the appropriate temperatures (37oC for all 
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533 organisms except for Listeria monocytogenes 30oC) and growth conditions was taken as the 

534 MIC. The peptides dissolved in sterile distilled water were added to bacteria culture and 

535 incubated overnight at appropriate conditions. The MICs of the peptides and comparator 

536 antibiotics were recorded after 18-24 h. The minimum bactericidal concentrations (MBCs) 

537 were also determined and were taken as the lowest concentration of the antimicrobial that 

538 prevented the growth of bacterial cells after subculture of cells (from MIC treatment) onto 

539 antibiotic-free media.

540
541 Time kill kinetics
542 The bactericidal activity of HG2, HG4 and comparator antimicrobial compounds was assessed 

543 as previously described 94 using exponential-phase cultures of MRSA USA300 grown in MHB 

544 (1 × 106-8 CFU/ml). Cells were treated with antimicrobial compounds at 3 times their MIC 

545 concentrations (final concentrations), incubated 37oC with gentle shaking at 110 rpm. Samples 

546 were taken at different time points and inoculated onto MH agar plates using the spread plate 

547 technique. After overnight incubation, the colony forming units per millilitre of cell culture 

548 (CFU/ml) was calculated. Experiments were performed in quadruplicates.

549
550 Anti-biofilm activity

551 The ability of HG2 and HG4 to disrupt established S. aureus biofilms was measured using a 

552 96 well format as described by 15. MRSA USA300 cultures grown overnight in Brain Heart 

553 Infusion (BHI) broth was re-suspended to an OD600nm = 0.02 and grown without shaking at 

554 37oC in 96 well tissue culture plates for another 24 h. The planktonic cells were removed by 

555 three PBS (phosphate buffered saline) washes. Thereafter, fresh BHI broth containing peptides 

556 HG2 or HG4 at sub- and supra MIC concentrations (0.5X, 1X, 2X and 4X MIC) was added to 

557 wells containing adherent cells and incubated without shaking for another 24 h. Planktonic 

558 cells were again removed by three PBS washes. Biofilms were fixed with methanol for 20 min, 

559 stained with 0.4% (w/v) crystal violet solution for 20 min and re-solubilised with 33% (v/v) 

560 acetic acid. The optical density of re-solubilised biofilms was measured at 570nm in a microplate 
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561 spectrophotometer. The growth of biofilm per treatment was calculated as a percentage of the 

562 untreated cells and anti-biofilm activity was determined for statistically significant treatments.

563
564 Serial passage/resistance assay
565 In vitro evaluation of the potential for MRSA USA3000 cells to develop resistance to HG2 and 

566 HG4 was performed as previously described 95. Briefly, on Day 1, overnight cultures grown 

567 from a single colony of MRSA USA300 strain in MHB at 37oC with shaking at 225 rpm was 

568 subjected to microbroth dilution susceptibility testing performed using a standard doubling-

569 dilution series of AMP concentrations as described for MIC determination. Cultures from the 

570 highest concentration that supported growth were diluted 1: 1000 in MHB and used to provide 

571 the inoculum for the next passage day. This process was continued for 20 days. Any putative 

572 mutants recovered were colony purified for three generations on MHA, prior to further 

573 characterization.

574
575 ATP determination assay
576 Adenosine triphosphate (ATP) drives many cellular and metabolic processes and can be used 

577 to ascertain the integrity of cells 75, 76. To determine whether HG2 and HG4 affected ATP levels 

578 in S. aureus treated cells, we used the ATP colorimetric/fluorometric assay kit (Sigma Aldrich) 

579 which determines ATP concentration by phosphorylating glycerol, resulting in a colorimetric 

580 product that shows absorbance at 570nm. Briefly, in a clear 96 well plate, samples and ATP 

581 standard provided with the kit were added in a reaction mix containing ATP assay buffer, ATP 

582 Probe and Converter and Developer mix. The reaction mix was incubated in the dark at room 

583 temperature for 30 min. The absorbance at 570nm was then measured in a microplate 

584 spectrophotometer. The background ATP levels obtained from samples and ATP standards 

585 were autocorrected by subtracting ATP levels from blank treatments. The amount of ATP in 

586 unknown samples were determined from the ATP standard curve and calculated using the 

587 formula in the instruction manual. All samples were tested in triplicates.  

588
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589 Membrane permeabilisation assay
590 Permeabilisation of the bacterial cytoplasmic membrane by HG2 and HG4 peptide was 

591 evaluated using the cell-impermeable DNA probe propidium iodide as previously described 15, 

592 78. Logarithmic phase bacterial suspension of MRSA USA300 was prepared by diluting over-

593 night cultures in fresh MHA broth (1 in 10 dilution), incubated 3 h at 37°C, 200 rpm, and 

594 pelleted by centrifugation for 5 min at 3000 g. Bacterial cell pellet was then resuspended in 

595 sterile PBS at about 109 bacteria/ml. Propidium iodide (at 1 mg/ml, Sigma Aldrich) was added 

596 to the bacterial suspension at a final concentration of 60 µM. This suspension (100 µl) was then 

597 transferred into black 96-well plates already containing 100 µl of serially diluted HG2 or HG4 

598 peptide in PBS. Kinetics of fluorescence variations (excitation at 530nm / emission at 590 nm) 

599 were then recorded using a microplate reader over 80 min period with incubation at 37°C. Cetyl 

600 trimethylammonium bromide (CTAB) (at 300 µM) served as positive control giving 100% 

601 permeabilisation. The permeabilisation effect of HG2 and HG4 were expressed as percentage 

602 of total permeabilisation.

603

604 Transmission electron microscopy
605 Transmission electron microscopy was used to investigate the effects of HG2 and HG4 on S. 

606 aureus cell morphology as described by15. Mid-log phase S. aureus

607 cultures treated with HG2 and HG4 (at 3× MIC for 1 h) were fixed with 2.5% (v/v)

608 glutaraldehyde and post-fixed with 1% osmium tetroxide (w/v). They were then

609 stained with 2% (w/v) uranyl acetate and Reynold’s lead citrate after which they were

610 observed using a JEOL JEM1010 transmission electron microscope (JEOL

611 Ltd, Tokyo, Japan) at 80 kV.

612
613 Haemolytic activity
614 The ability of HG2 and HG4 to cause leakage of erythrocytes from human whole red blood 

615 cells was determined to ascertain probable cytotoxicity to mammalian cells and the suitability 

616 of peptides for use as therapeutic agents. The haemolytic activity of HG2 and HG4 was 

617 determined as previously described 15. Briefly, fresh human erythrocytes (obtained from Divbio 
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618 Science Europe, NL) were washed 3 times by centrifugation at 800 g for 5 min with sterile 

619 phosphate buffer saline (PBS, pH 7.4). The washed erythrocytes were resuspended in PBS to 

620 a final concentration of 8%. 100 μl of human erythrocytes were then added per well into sterile 

621 96 well microplate already containing serial dilutions of the peptides in 100 µl of PBS. The 

622 treated red blood cells were incubated at 37°C for 1 h and centrifuged at 800 g for 5 min. The 

623 supernatant (100 μl) were carefully transferred to a new 96 well microplate and absorbance 

624 OD450nm measured using microplate reader. Triton-X100 at 0.1% (v/v) was used as positive 

625 control giving 100% haemolysis and haemolysis caused by HG2 and HG4 was expressed as 

626 percentage of total haemolysis. The HC50 values for HG2 and HG4 (i.e. the concentration of 

627 peptide causing either 50% of haemolysis) were calculated using GraphPad® Prism 7 software.

628 Peptide-lipid interaction and insertion assay
629 Peptide-lipid interaction was measured using lipid monolayer formed at the air:water interface 

630 with total lipid extracts and pure lipids. Total lipids were extracted from overnight cultures of 

631 MRSA or human erythrocytes using Folch extraction procedure as previously described 15, 78, 

632 96. Extracted total lipids were dried, resolubilised in chloroform:methanol (2:1, v/v) and stored 

633 at -20 °C under nitrogen. Pure prokaryotic and eukaryotic lipids used were: cardiolipin, POPC 

634 (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine), POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-

635 phosphoethanolamine) and POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-

636 glycerol) (Avanti Polar Lipid). LTA (Lipoteichoic acid from S. aureus) and LPS 

637 (lipopolysaccharide from E. coli) (both obtained from Invitrogen) were also tested. Pure lipids 

638 were reconstituted in chloroform:methanol (2:1, v/v) at 1 mg/ml and stored at -20 °C under 

639 nitrogen. For peptide-lipid interaction assay, lipid monolayers at the air:water interface were 

640 formed by spreading total lipid extract or pure lipids at the surface of 800 µl of sterile PBS 

641 using a 50 µl Hamilton’s syringe. Lipids were added until the surface pressure reached the 

642 desired value. After 5-10 min of incubation allowing the evaporation of the solvent and 

643 stabilization of the initial surface pressure, 8 µl of HG2 or HG4 diluted in sterile PBS at 100 

644 µg/ml were injected into the 800 µl sub-phase of PBS under the lipid monolayer (pH 7.4, 

645 volume 800 µl) using a 10 µl Hamilton’s syringe giving a final concentration of peptide of 1 
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646 µg/ml, as preliminary experiments had shown that this concentration was optimal. The 

647 variation of the surface pressure caused by peptide insertion was then continuously monitored 

648 using a fully automated microtensiometer (µTROUGH SX, Kibron Inc) until it reached 

649 equilibrium (maximal surface pressure increase being usually obtained after 15-25 min). To 

650 reflect physiological situations, the initial surface pressure was fixed at 30 ± 0.5 mN/m in some 

651 experiments as this value corresponds to a lipid packing density theoretically equivalent to that 

652 of the outer leaflet of the eukaryotic and prokaryotic cell membrane 97. In other experiments, 

653 the critical pressure of insertion of HG2 or HG4 in the total lipid extracts and pure lipids was 

654 measured as previously described 15, 96. Briefly, in these experiments, the initial pressure of 

655 lipid monolayer was set-up at different values (between 10 and 30 mN/m) and the variation of 

656 pressure caused by the injection of peptide was measured. Critical pressure of insertion was 

657 calculated by plotting the variation of surface pressure caused by peptide insertion as a function 

658 of the initial surface pressure, and corresponds to the theoretical value of initial pressure of 

659 lipid monolayer that does not allow the insertion of the peptide, i.e. a variation of pressure 

660 equal to 0 mN/m. All experiments were carried out in a controlled atmosphere at 20 °C ± 1 °C 

661 and data were analyzed using the Filmware 2.5 program (Kibron Inc.). The accuracy of the 

662 system under our experimental conditions was determined to be ± 0.25 mN/m for surface 

663 pressure measurements.

664
665 Human cell culture and cytotoxicity studies
666 The toxicity of HG2 and HG4 was tested as previously described 98-100.  The following human 

667 cells were used: BEAS-2B (normal airway epithelial cells, ATCC CRL-9609), IMR-90 

668 (normal fibroblasts, ATCC CCL-186) and HepG2 (liver cell line, ATCC HB-8065). BEAS-

669 2B, IMR-90 and HepG2 cells were cultured in Dulbecco's modified essential medium (DMEM) 

670 supplemented with 10% fetal calf serum (FCS), 1% L-glutamine and 1% antibiotics (all from 

671 Invitrogen). Cells were routinely grown onto 25 cm2 flasks maintained in a 5% CO2 incubator 

672 at 37°C. Briefly, cells grown on 25 cm2 flasks were detached using trypsin-EDTA solution 

673 (Thermofisher) and seeded into 96-well cell culture plates (Greiner Bio-one) at approximately 
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674 104 cells per well (counted using Mallasez’s chamber). The cells were grown at 37°C in a 5% 

675 CO2 incubator until they reached confluence (approximately 48-72 h of seeding). Wells were 

676 then aspirated and increasing concentrations of HG2 or HG4 were added to the cells and 

677 incubated for a further 48 h at 37°C in a 5% CO2 incubator. The wells were then emptied, and 

678 cell viability was evaluated using resazurin based in vitro toxicity assay kit (Sigma-Aldrich) 

679 following manufacturer’s instructions. Briefly, resazurin stock solution was diluted 1:100 in 

680 sterile PBS containing calcium and magnesium (PBS++, pH 7.4) and emptied wells were filled 

681 with 100 µl of the resazurin diluted solution. After 4 h incubation at 37°C with the peptide 

682 treated cells, fluorescence intensity was measured using microplate reader (excitation 

683 wavelength of 530 nm/emission wavelength of 590 nm). The fluorescence values were 

684 normalized by the controls and expressed as percentage of cell viability. The IC50 values of 

685 HG2 or HG4 on cell viability (i.e. the concentration of peptides causing a reduction of 50% of 

686 the cell viability) were calculated using GraphPad® Prism 7 software.

687
688 In vivo efficacy in Galleria model
689 All procedures of larvae rearing, injection and G. mellonella killing assays were conducted as 

690 previously described 101. In each assay, ten (10) larvae weighing between 280 - 300 mg each 

691 were randomly selected. Larvae with previous melanisation of the cuticle were not used in the 

692 experiments. All the experiments were designed in at least four experimental and biologic 

693 replicates. 

694 Firstly, we evaluated the putative toxic effect of the peptides HG2 and HG4 in G. mellonella. 

695 Each peptide solution prepared in sterile H2O was injected in larvae at the concentration of 1x 

696 MIC, as 16 mg/kg of larvae body weight (LBW) for HG2 and 32 mg/kg LBW for HG4; and 

697 3x MIC 64 mg/kg LBW HG2 and 98 mg/kg LBW HG4 as previously determined. After 

698 injection with peptides, the larvae were maintained at 37ºC in the dark. Phenotypic aspects 

699 such as melanisation and mobility of the larvae as well as survival were monitored every 24 

700 hours for 96 hours. Larvae not inoculated with APMs were used as controls. 
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701 To determine the LD50 and LD of S. aureus MRSA USA300 in G. mellonella, an inoculum of 

702 10 µl of MRSA USA300 suspension in PBS 1X (103 to 106 CFU/larva) was injected into the 

703 larvae hemocoel using insulin syringes (Becton Dickinson, USA). Larvae inoculated with PBS 

704 and larvae not inoculated were used as negative controls. After the injections, the larvae were 

705 maintained at 37ºC in the dark, the survival was recorded every 24 hours for 96 hours and the 

706 LD50 and LD were determined.  

707 The efficacy of the peptides HG2 and HG4 to control MRSA USA300 infection in vivo, was 

708 evaluated following the protocol by Peleg et al., 84. The groups of G. mellonella larvae were 

709 infected with the predetermined lethal dose of MRSA USA300. After 30 minutes of the larvae 

710 injection with the bacteria, the peptides were injected at 1x MIC and 3x MIC concentrations 

711 respectively. Larvae injected with PBS solution, and HG2 or HG4 peptides solution (1x MIC 

712 or 3x MIC) alone were used as negative controls. Injected larvae were maintained at 37ºC in 

713 the dark and their survival was monitored and analyzed as above.

714

715
716 Statistical analysis
717 All biological experiments were repeated at least three times and three biological replicates 

718 were used wherever applicable. Results are expressed as mean ± standard error. The MRSA 

719 USA300 LD50 value was calculated by linear regression using software R v.2.13.0 102. The 

720 Kaplan–Meier method was used to plot the survival curves. Differences in survival were 

721 calculated using the log-rank test with the software SigmaPlot from Systat Software Inc., San 

722 Jose, California 103. A P-value of 0.05 was considered to be statistically significant.
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945 Figure Legends

946 Fig. 1 a) visualization of distances for AA acids (AAD) and AA pairs (AAPD) for the first 

947 68,274 sequences from library "Cow"19 meeting the first selection criteria: candidates with 

948 AAD<0.2 or AAPD<1.45 are selected as candidates (here: 65). b) standard hydrophobicity 

949 (TERM1 SEQ Hopp-Woods) - loading (positively charged, TERM3 SEQ Isoelectric Point) 

950 plot. Blue dots are known AMPs (library "AMP" consisting of AMPs from the APD234 and 

951 Hilpert Library35), green colored signs are AMP hits identified from library "Cow", and finally 

952 selected peptides HG2 (magenta) and HG4 (red).

953 Fig. 2 Predicted 3D structures for peptides: a) HG2, b) HG4. Main-chain and side chains 

954 depicted in ribbon and stick representation respectively and coloured according to atom type: 

955 Carbon, Oxygen and Nitrogen in green, red and blue respective. Two orientations are shown 

956 rotated about the shown axis. Ct and Nt as well as selected residues are depicted in the figure. 

957 Figures were rendered using PyMol.

958 Fig. 3 Antimicrobial susceptibility and activity of HG2 and HG4.  a) Time dependent kill 

959 of MRSA USA300 cells by AMPs at 3x MIC concentration. Dashed lines indicate limit of 

960 detection. b) Anti-biofilm activity against MRSA USA300 biofilms: *, ** and *** (P ≤ 0.05, 

961 0.01 and 0.001 respectively- significantly different from untreated cells (positive). c) 

962 Resistance acquisition during serial passaging of MRSA USA300 cells in the presence of sub-

963 MIC levels of antimicrobials. The y axis is the fold change in MIC during passaging. For 

964 mupirocin, 32x MIC was the highest concentration tested. The figure is representative of 3 

965 independent experiments. d) ATP depletion activity in MRSA USA300 cells. 

966 Fig. 4 Membrane permeabilisation action of HG2 and HG4 against MRSA: a) Membrane 

967 permeabilization activity of HG2 at different concentrations (µg/ml) against MRSA USA300 

968 cells measured by propidium iodide assay over time. b) Membrane permeabilization activity 

969 of HG4 at different concentrations (µg/ml) against MRSA USA300 cells measured by 

970 propidium iodide assay over time. c) Determination of EC50 (Effective Concentration 50) of 
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971 HG2 and HG4 membrane permeabilisation measured after 80 min. d) Membrane 

972 permeabilisation kinetics of HG2 and HG4 at their MIC concentration. In all cases, values are 

973 from three independent replicates; results are expressed as means ± standard deviation). 

974 Fig. 5 Representative transmission electron micrographs of MRSA cells. a) micrographs 

975 untreated MRSA USA300 cells. b) HG2 treated (3x MIC for 1 h) MRSA USA300 cells. c) 

976 HG4 treated (3x MIC for 1 h) MRSA USA300 cells. Scale bars are 200 or 500 nm as shown 

977 on micrographs.

978 Fig. 6 Peptide lipid interaction and insertion measurements: a) Interaction of HG2 and 

979 HG4 (at 1 µg/mL final concentration) with lipids (either total lipid extracts or pure lipids) was 

980 measured using lipid monolayers. a) interaction HG2 and HG4 with total MRSA lipid extract. 

981 b) interaction HG2 and HG4 with total lipid extract from human erythrocytes. c) interaction of 

982 HG2 with pure lipids and c) interaction of HG4 with pure lipids. 1-palmitoyl-2-oleoyl-sn-

983 glycero-3-phospho-(1'-rac-glycerol) (PG), 1-palmitoyl-2-oleoyl-sn-glycero-3-

984 phosphoethanolamine (PE), Cardiolipin (Cardio), Lipoteichoic acid (LTA) from S. aureus, 

985 Lipopolysaccharide (LPS) from E. coli and (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine 

986 (PC). 

987 Fig. 7 In vivo efficacy assessment in G. mellonella MRSA infection model: a) representative 

988 images of toxicity assay of peptides- i) HG2, and ii) HG4 in G. mellonella 120 h post treatment 

989 with 3x MIC concentrations. The larvae remained alive and without melanisation. iii) virulence 

990 assay of MRSA USA300 in G. mellonella using a lethal dose inoculum of 106 CFU/per larvae- 

991 iii) 24 hours post infection: some larvae were dead and partial melanisation was observed. iv). 

992 48 hours post infection: most larvae were dead and complete melanisation was evident. The 

993 experiment was done with three experimental replicates, each containing groups of 10 larvae. 

994 b) Kaplan-Meier survival curves of G. mellonella infected with a lethal dose of S. aureus (2.25 

995 x 106 CFU/larvae) and treated with placebo (showing a 100% larvae survival rate) or peptides 

996 HG2 and HG4 at a 1x and 3x MIC concentrations.
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997 Supporting Information Legends
998
999 Fig. S1. Mass spectrometry and certificate of analysis (COA) report for AMP chemical synthesis: 

1000 a) HG2 and b) HG4. Peptides were synthesised by GenScript Inc. USA. Mass spectrum analysis and 

1001 COA report show correct molecular weight and purity grade for both peptides.

1002

1003 Table. S1 Summary of results from computation steps

1004

1005 Table. S2 Six most promising antimicrobial peptide candidates (HG1-HG6) identified in 

1006 cow rumen metagenome dataset

1007

1008 Table. S3 Scaffold nucleotide sequences from which putative antimicrobials H-G1- H-G6 were 

1009 identified

1010

1011 Table. S4 Peptide lipid interaction and insertion measurements: interaction of peptides, HG2 and 

1012 HG4 with total MRSA and erythrocyte lipid extracts, and interaction of HG2 and HG4 (at 1 µg/mL final 

1013 concentration) with pure lipids the initial surface pressure of lipid monolayer. Maximal variation of 

1014 surface pressure induced by the injection of peptide in lipid monolayer with initial surface pressure of 

1015 30+/-0.5 mN/m.
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