KIT | KIT-Bibliothek | Impressum | Datenschutz

Probabilistic Energy Forecasting using Quantile Regressions based on a new Nearest Neighbors Quantile Filter [in press]

González Ordiano, Jorge Ángel; Gröll, Lutz; Mikut, Ralf; Hagenmeyer, Veit

Abstract (englisch):
Parametric quantile regressions are a useful tool for creating probabilistic energy forecasts. Nonetheless, since classical quantile regressions are trained using a non-differentiable cost function, their creation using complex data mining techniques (e.g., artificial neural networks) may be complicated. This article presents a method that uses a new nearest neighbors quantile filter to obtain quantile regressions independently of the utilized data mining technique and without the non-differentiable cost function. Thereafter, a validation of the presented method using the dataset of the Global Energy Forecasting Competition of 2014 is undertaken. The results show that the presented method is able to solve the competition's task with a similar accuracy and in a similar time as the competition's winner, but requiring a much less powerful computer. This property may be relevant in an online forecasting service for which the fast computation of probabilistic forecasts using not so powerful machines is required.

Seitenaufrufe: 7
seit 04.04.2019
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Publikationstyp Zeitschriftenaufsatz
Jahr 2019
Sprache Englisch
Identifikator ISSN: 0885-6125, 1573-0565
KITopen-ID: 1000092793
HGF-Programm 37.98.11 (POF III, LK 01)
Erschienen in Machine learning
Bemerkung zur Veröffentlichung arXiv:1903.07390
Vorab online veröffentlicht am 18.03.2019
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page