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Abstract. In this work, we propose to decouple the arithmetic format
from the storage format in numerical algorithms. We complement this
idea with a modular precision storage layout that allows runtime preci-
sion adaptation such that a value can be accessed faster if lower accuracy
is acceptable. Combined with precision-aware numerical algorithms that
use full precision in all arithmetic computations, this strategy can result
in runtime savings without impacting the memory footprint or the accu-
racy of the final result. In an experimental analysis using the adaptive
precision Jacobi method we assess the benefits of the modular precision
format on a recent high-end GPU architecture.
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1 Introduction

Over the last decades, the scientific computing community witnessed a widening
gap between the computational performance in terms of the number of floating-
point operations per second (FLOPS) on the one side, and the memory through-
put in terms of how fast data can be brought into the computational elements
(bandwidth) on the other side. As a result, more and more algorithms are hitting
the “memory wall,” which means the performance being limited by the mem-
ory bandwidth, and the algorithms executing only at a fraction of the theoretical
peak performance. Already today, sparse linear algebra powering a large fraction
of the scientific simulations are memory bound on virtually all existing hardware
architectures. To continue the success story of simulation-based research, it is
therefore essential to develop novel strategies that allow to transfer the growing
computational power into algorithm performance.

In this work, we introduce a disruptive paradigm change with respect to
how data is stored and processed in numerical linear algebra. To reflect the im-
balance between computational power and memory bandwidth, we propose to
radically decouple the storage format from the arithmetic format. We comple-
ment this idea with the introduction of a “modular precision ecosystem” with
demand-fitted memory access routines. The idea behind is to decompose the
IEEE standard precision formats into segments, and to store those in a fash-
ion that enables efficient access to the values at variable accuracy. This allows



to maintain standard working precision in all arithmetic floating-point opera-
tions, but radically reduces the cost of accessing the data if lower accuracy is
acceptable.

We structure the rest of the paper as follows. In Section 2 we review some
existing work on mixed precision numerics before we introduce the idea of the
modular precision format in Section 3. We start the experimental section with
a review of the adaptive precision Jacobi that we employ to assess the efficiency
of the modular precision format and the developed memory access routines. The
experimental results we report in Section 4 are obtained from addressing a set of
artificial test problems on a high-end NVIDIA GPU. We conclude in Section 5
with an outlook on future work.

2 Related work on mixed precision numerics

To illustrate the approach we take and its uniqueness, we address the iterative
solution of linear systems, which is a common task in scientific computing. The
quality of an iteratively generated solution depends on the condition number of
the linear system and the floating-point format that is employed to represent the
numbers. Generally, numerical errors due to rounding result in a less accurate
solution if a lower precision format is used. For scientific simulation codes, IEEE
double precision has become the de-facto standard. The numerical values are
stored in a binary format where a certain number of bits is used for storing
mantissa, exponent, and sign of the floating-point number representation [10].

While running an iterative solver in lower than double precision typically re-
sults in a solution approximation of inferior quality, this solution approximation
can usually be generated much faster: The approximation accuracy stagnates
after fewer iterations, and every iteration only reads and writes data in reduced
precision, which, for memory bound algorithms, directly corresponds to runtime
savings. Leveraging this property in a smart fashion can enable savings also
when generating double precision solutions. The idea here is to combine differ-
ent precision formats inside a single algorithm, and use double precision only if
needed.

Among the most popular mixed precision strategies is the mixed precision
iterative refinement technique [5,8,12]. There, the idea is to refine a solution
approximation by solving a residual equation in lower than working precision.
In many situations, double precision accuracy can be achieved [9]. Other recent
work suggests the use of an incomplete factorization preconditioner computed
in lower precision inside an iterative F-GMRES framework [6], and even extends
this approach by cascading multiple formats of decreasing precision [7]. What all
these approaches share is the tight coupling between working precision format
and storage format. While this seems to be a natural choice, it ignores the
hardware trend of the computational power growing at a much faster pace than
the memory bandwidth.

In [2], a preconditioner stored in low precision is employed inside a high
precision iterative solver. The numerical properties of the preconditioner are



analyzed and, if the characteristics allow for it, stored in lower than working
precision. This can be seen as a step towards decoupling storage format from
arithmetic format, but as only IEEE standard formats are considered, the values
have to be converted between the formats with careful protection against under-
and overflow.

A different mixed precision strategy was presented in [3], where the distinct
components in the solution vector are handled in different precision formats,
each adapted to the component’s convergence progress. The underlying idea
is to truncate the double precision format by chopping off mantissa bits. The
iteration process is started with few mantissa bits, and the mantissa length
is then successively increased individually for each component as needed for
convergence to a solution of double precision accuracy. This way, and in contrast
to the previously-mentioned mixed precision strategies, the work in [3] does not
refer to the IEEE standard precision formats, but, as part of a more experimental
research, employs artificial precisions that arise by arbitrarily truncating the
mantissa of the IEEE double precision format. The elegance of this approach is
that the number of exponent bits remains unchanged, which virtually eliminates
the danger of over- and underflow. Once read into the processing units, the
values are converted to double precision by filling the truncated mantissa bits
with zeros. The floating-point operations themselves all use double precision
accuracy.

What [3] fails to address is a concept that handles the artificial precision
format in memory. While this seems to be an implementation detail, the ques-
tion of how data is accessed is performance-crucial, in particular on streaming
architectures such as GPUs. There, each memory read accesses 128 bytes of
contiguous memory, and utilizing only part of the data inevitably results in low
performance [11]. Usually, mixed precision numerics duplicate the data (in differ-
ent precision formats) in memory. However, this not only increases the memory
footprint of the algorithm, but also makes it difficult to efficiently access different
subsets of the values in different formats.

3 Modular precision format

The two key ideas of the modular precision format are (1) to completely decouple
the storage format from the operating format, and (2) to abandon the IEEE-
supported standard precision formats to store the data, but split the arithmetic
format into segments, and store the segments of the values in the dataset in
interleaved fashion such that the same segments of all values are consecutive in
memory.

These two ideas can be addressed independently, however, they work ef-
ficiently in particular when used in combination. Decoupling the operational
format from the storage format is motivated by the performance of many linear
algebra routines being bound by memory bandwidth: If the algorithm can ac-
cept reading values with less accuracy, the data can be accessed much faster in
a lower precision format. The arithmetic operations can still use high precision



without impacting the performance as long as the algorithm remains memory
bound. Decoupling the storage format from the operational format in an envi-
ronment supporting IEEE standard precision requires to duplicate the data in
memory if it is used in different precision formats over the algorithm execution.
Also, as the IEEE standard formats differ in the exponent length (and therewith
in the range or representable values), the conversion between the formats has to
meticulously protect against under- and overflow.
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Fig. 1: Splitting an IEEE double precision number into “head” and “tail” (top)
and storing head and tail of the data in the customized precision format in
separate blocks (bottom).

The customized precision format based on mantissa segmentation (“CPMS”)
does not convert between IEEE standard formats, but instead splits the high
precision number into segments. In Figure 1 (top) we visualize this strategy for
a 2-segment splitting of the IEEE double precision format. For this specific de-
composition we refer to the two 32-bit segments as “head” and “tail” of the
customized precision format. Other splittings are possible. As the CPMS strategy
preserves the length of the exponent, the first 32 bits include less mantissa bits
than the 32 bits of IEEE single precision [10]. Hence, the head of the 2-segment
CPMS carries less accuracy than the IEEE single precision format. The advan-
tages of this strategy are that (1) for specialized data access routines, no format
conversion is necessary; (2) preserving the length of the exponent avoids over-



flow/underflow; and (3) the data does not have to be duplicated in memory, but
reading additional segments of the value will increase the value’s accuracy.

We point out that by preserving the exponent bits of the IEEE standard
precision format, the segmentation can not turn a valid number into “NaN” or
infinity, as both are defined by all exponent bits being filled with “1 bits” [10].

To enable efficient access to the values in low precision, e.g. only the first
segment of each value, it is important to separate the head from the tail in
memory, and store the head of all values consecutively in memory, see bottom
of Figure 1. As long as considering all values under the accuracy of the head
is acceptable, no access to the second part of the memory is necessary. We
emphasize that the memory footprint for storing the values only is identical
to storing the data in IEEE standard double precision, if the data is accessed
in different precisions, an additional array is needed for storing the segment
information for each value.

Obviously, the customized precision format could be realized independent
of the format decoupling, but not only are the arithmetic operations in this
non-standard format not natively supported by hardware, but also would this
introduce additional rounding errors in the numerical operations. Combining
CPMS with the idea of decoupling the arithmetic format eliminates the need of
customized routines for a format that is not natively supported by hardware, and
incurs no performance penalty as long as the algorithm remains memory-bound.

4 Experimental evaluation

Problem description and algorithm details. The problem we consider is
the iterative solution of a sparse linear system via the adaptive precision Jacobi
method proposed in [3]. The algorithm is based on the numeric property of
the Jacobi relaxation method typically having a constant convergence rate, and
the possibility to detect stagnation in the iteration vector on a component level.
Concretely, this property establishes that, for any component of the approximate
solution vectors at relaxation step k and k − 1, there exists a θi < 1:
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Furthermore, due to the linear convergence rate of the Jacobi iteration, the ratios
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are, in general, different for the distinct components, but they remain constant

up to convergence; i.e., c
{2}
i = c

{3}
i = c

{4}
i = . . . = ci, where we note that

ci > 1 is necessary for convergence [3]. The adaptive precision Jacobi presented

in [3] utilizes this property by monitoring z
{k}
i at component level and some



periodicity φ, and use a stagnation test with some threshold δ̃∣∣∣∣∣z{k−φ}i

z
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− cφi

∣∣∣∣∣ > δ̃ (3)

that detects the necessity of mantissa extension [3].
While the test periodicity φ and the stagnation test threshold δ̃ can be

optimized for each problem individually, we use the default setting of δ̃ =

0.9 ·
(
cφi − 1

)
and φ = 10.

Experiment environment and test matrices. The experimental analysis
was conducted on a single node of the Piz Daint supercomputer3 featuring an
NVIDIA P100 GPU. The complete algorithm was implemented in the CUDA
language [11] and compiled and executed with CUDA in version 8.0.

The test matrices we consider are all of size 1,000,000 × 1,000,000. They
differ in the number of nonzeros they carry in each row, the bandwidth, and
the condition number. The matrices are generated as band matrices with the
aggregated number of nonzeros in a row on the main diagonal, and the values
adjacent to the main diagonal set to −1.
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Fig. 2: Runtime for reading and writing data in double precision or customized
precision with the accuracy of the data accesses indicated in the brackets.

Experimental results. In a first experiment we assess the cost of reading
and writing data not stored in IEEE-supported formats but in the 2-segment and
the 4-segment CPMS, respectively. The access routines for CPMS are not natively
supported by hardware, and the hardware-specific implementations we developed
include the access to the segment information array, the element-individual deci-
sion of the segment access, some instruction logic to access the distinct segments
in memory, the type cast to the double precision operating format, and the
reassembling of the double precision format from head and mantissa segments.

3 https://www.cscs.ch/computers/piz-daint/

https://www.cscs.ch/computers/piz-daint/


The results in Figure 2 reveal that reading 64-bit accuracy is 8% slower when
using 2-segment CPMS and 13% slower when using 4-segment CPMS. The advan-
tage of the customized precision format lies in the fact that the data access is
much faster if reading the values with a shorter mantissa is acceptable. Read-
ing 32-bit heads only is 1.6× faster than reading the data in double precision;
Reading 16-bit heads is about 1.9× times faster.
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Fig. 3: Accuracy needs in adaptive Jacobi in a 2-segment (left) and a 4-segment
(right) CPMS realization. The white-colored area indicates only the head is ac-
cessed, the blue areas indicate additional mantissa segment reads.

Next, we realize the adaptive precision Jacobi in the modular precision for-
mat. In Figure 3 we visualize for a small example problem with 129 nonzeros
per row how the adaptive precision Jacobi method accesses the modular preci-
sion formats over the algorithm execution. Initially, the iteration process only
reads the heads. As the execution progresses, mantissa segments are accessed
on a component-individual basis once the stagnation test indicates the need for
higher accuracy. The 16 bit head in the 4-segment modular precision format
quickly becomes insufficient. We notice that the wavefront indicating the need
for higher accuracy than 32 bits (which is reflected in the switch to 64 bits in the
2-segment modular precision and the switch to 48 bits in the 3-segment modular
precision) is in both cases detected at the same iteration.

The experimental results presented in [3] reveal that the adaptive Jacobi
can exhibit some convergence delay compared to a plain Jacobi as the mantissa
extension detector may, depending on the test periodicity φ, not immediately
identify stagnating components, and the threshold δ̃ has to accept some rounding
effects [3]. The question is whether this convergence delay, the overhead of the
modular precision access routines, and the overhead of the stagnation detector is
compensated by the faster access to reduced precision values in some relaxation
steps. For this we compare the time-to-solution of the adaptive precision Jacobi
with a reference implementation of plain Jacobi in IEEE double precision, both
returning a solution approximation of the same accuracy. We consider different
relative residual stopping thresholds as Jacobi relaxations are often employed as
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Fig. 4: Speedup factors of the adaptive precision Jacobi in a 2-segment modular
precision realization.

smoother in multigrid methods or for providing rough solution approximations,
e.g. in approximate sparse triangular solves [1,4].

Taking the plain Jacobi as reference, we report in Figure 4 the speedup factors
of the adaptive precision Jacobi in a 2-segment modular precision realization for
the distinct matrix/threshold combinations. The experimental results reveal that
the adaptive precision Jacobi is attractive (about 30% faster) in particular for
settings where a significant amount of matrix data has to be accessed in every
iteration (many nonzero elements in every matrix row), and a large residual norm
is acceptable (few component iterations requiring the data with 64 bit accuracy).
The faster access to the matrix values fails to compensate the overhead of the
stagnation detection for problems with only few nonzeros in every row.

In Figure 5 we report the same data for adaptive precision Jacobi in a 4-
segment modular precision realization. Here, the reference Jacobi is always faster.
This indicates that the modular precision format with finer segmentation is suit-
able only if high iteration counts allow to reduce the frequency of the stagnation
test.

5 Concluding Remarks

We have presented the idea of radically decoupling the arithmetic format used
in the floating-point operations from the format to store the data. We have pro-
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precision realization.

posed a customized precision format that allows to access values much faster
in memory if reduced accuracy is acceptable. Experimental results on high-end
GPUs revealed that realizing mixed precision algorithms in the customized preci-
sion format can render resource savings without impacting the memory footprint
or the accuracy of the final result.

We are convinced that the application field of customized precisions is much
wider than what is presented in this work. We envision the customized preci-
sion realization of selection and sorting algorithms, as well as memory-bound
algorithms like PageRank that are central for Big Data analytics.
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