

Level and contour measurements on liquid metal surfaces

<u>LI</u>quid <u>M</u>etal <u>C</u>ompetence center <u>KA</u>rlsruhe (LIMCKA) compiled by Robert Stieglitz

INSTITUTE for NEUTRONPHYSICS and REACTOR TECHNOLOGY (INR)

www.kit.edu

KIT –Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Content

- Background, Importance & Application
- Liquid metal specifities
- Problem formulation , measurement requirements
- Level metering classical devices
 - Intrusive methods
 - Non-intrusive methods
- Range sensing by waves electromagnetic wave spectrum
- Techniques
 - Time of Flight ToF,
 - Interferometry ,
 - Triangulation- comparative overview
- Practical example (DLP –Double Layer Projection –Technique)
- Summary

Background, Importance & Application

Level metering

- loop operation (state control variable)
 - Loop filling/draining
 - Indication of power level (volumetric fluid expansion)
 - Potential leaks or altered bypass-flows (e.g. HEX failure, guide vane deformation)
- nuclear safety
 - Loss-of Coolant Accident (LOCA)
 - Pool sloshing –e.g. by earthquake, internal component defects (break)
- process control (bubble column reactors, float glass process, casting)

© L. Stoppel, 2017

3

Institute for Neutron physics and Reactor technology

Background, Importance & Application

Surface contour acquisition

- functional performance
 - neutron production targets MEGAPIE, IFMIF, MYRRHA, SNS,
 - Ion-fragmentation-target (Super -FRS)
- fabrication and manipulation technologies (Casting, automotive industry)

Myrrah-type target

IFMIF target (Li-flow)

Super-FRS target (Na-flow)

4

Institute for Neutron physics and Reactor technology

Liquid metals properties

- GENERAL FEATURES opaque (τ=0)
- reflecting (specular $\rho \rightarrow 1$)
- high temperatures,

corrosive

large surface tension σ

•high electric conductivity σ_{el}

	Unit	Water (@25°C)	Lithium (300°C)	Pb ⁴⁵ Bi ⁵⁵ (300°C)
melting point @ 0.1MPa	[°C]	0	180.5	125
boiling point @ 0.1MPa	[°C]	100	1317	1670
vapour pressure	Ра	3158	3.7·10 ⁻⁵	2·10 ⁻⁵
ρ density	[kg/m³]	1000	505	10325
v kinematic viscosity	[m ² /s]·10 ⁻⁷	9.1	9	1.75
σ_{el} electric conductivity	[A/(Vm)]·10⁵	2·10 ⁻⁴	33.5	8.43
α thermal expansion	[/] ·10 ⁻³	6	43.6	6.7
σ surface tension	[N/m]·10 ⁻³	52	421	410
<i>a</i> sound speed	m/s	1498	4500	1700

a = sound speed air a=343m/s

c = light speed c=2.997·10⁸m/s

 τ = optic transmission coefficient [/]

 $_{5}$ ρ = optic reflection coefficient [/]

Institute for Neutron physics and Reactor technology

Problem formulation –measurement requirements

 $h = |\overrightarrow{RP}|$

difference between level and surface contour ?

- level (h) =absolute value of distance vector
- countour (vector-set) $s = \sum_{i=1}^{n} h(\overrightarrow{RP})$ being steady & differentiable
- choice of reference point R decides on technique to acquire P !!
- most relevant in application is the resolution in z-direction

Problem formulation – measurement requirements

Karlsruher Institut für Technologie

Sensing aspects requirements

quantity & range	operational devices	functional devices
robustness, maintenance	life-time equipment	regular exchange
sensing distance	device dependent	device dependent
intervention measuring ambience	not excluded	not desired
auto-calibration	mandatory	indispensible
 accuracy temporal resolution spatial resolution repeatability [% meas. range] stability [% ob meas. value] 	50ms –10s x mm- x cm ~5% 0.3%-1%	ms 100nm-1mm < 1% <1%
signal to noise ratio (SNR)	>>10	>1
Price , access.	not relevant	selection aspect

Sensing options –challenges

- electric contact (geometry)
- force (gravity, buoyancy)
- pressure waves (ultrasound)
- electromagnetic waves (high frequency –HF, optic)

•	surface	tension.	intrusive
· ·	0011000		

- spatial integration, intrusive
- spatial integration, transmission
- ambiguity, encoding, acquisition

Institute for Neutron physics and Reactor technology

^{gy} ***NR**

Level metering -classical devices

electrical contact

7

 safety equipment (expansion tank, pool arrangements)

mechanical force

 safety & operational equipment (expansion tank, pools)

- electric contact on touch
- accuracy

functionality

- given by geometry of built in
- (temperature dependent, surface tension) acquisition
- binary signal, SNR $\rightarrow \infty$

functionality

- Buoyancy = Gravity $F_{Buoyancy} = \rho_f \cdot V_O \cdot g = F_{g,Swimmer}$ accuracy
- integration over swimmer dimensions (temperature dependent, surface tension)
 acquisition
- continuous signal, temporal resolution inertia dependent

Institute for Neutron physics and $\ensuremath{\textbf{R}}\xspace$ actor technology

Level metering -classical devices

- differential pressure
 - operational equipment

functionality

- hydrostatic pressure $\Delta p = \rho \cdot g \cdot \Delta h$ accuracy
- resolution of pressure gauge (temperature dependent, integration of column heights)

acquisition

 continuous signal, transducer depende time resolution

μ=4π·10⁻⁷ N/ A²

- f=frequency (Hz)
- σ= spec. electric fluid conductivity A/(Vm) ρ=density (kg/m3)
- g=gravity constant m/s²

- inductive*
 - operational equipment (sump tank)

functionality

- breakdown of induced voltage in sensing coil at liquid level
- limitation of frequency by skin depth $\delta = \frac{1}{\sqrt{\pi f \mu \sigma}}$
- integration over diameter of tube (temperature dependent), accuracy ~3-5%

acquisition

- indirect signal, temporal resolution related to transmission frequency
- typical *f*=50-400Hz,

*GEC Energy systems (1981), LE8 3LH, United Kingdom; Khalilov, *Measurement Techniques, Vol. 50, No. 8, 2007*

Range sensing by waves – general

- wave utilization allow benefitting from wave characteristics
 - Time-of-Flight (ToF)
 - wave modulation (amplitude, frequency, interferometry)
 - stereo vision techniques (phased arrays, antenna fields, multiple cameras, ...)

applying various physics princples

- time measurement Δt
- cross-correlation techniques
- en-/decoding techniques

but, with all drawbacks of waves

- speckle noise(from interference)
- multiple reflections (uniquenessambiguity)
- jitter (transit time, phase)
- crosstalk (ambient sources)

Electro-magnetic range sensing options

reflection

D = distance to be measured

 x_1

x,

x

X

- c = wave propagation speed B = noise level
- A = amplitude emitter
- A' =amplitude sensor
- Δt = time delay
- T = time period

noise level

 $x_3 - x_1$

 $x_4 - x_2$

distance measurement

error due noise after

summed n periods

 $\Delta D = \frac{c}{2} \cdot \frac{T \cdot \sqrt{B}}{4 \cdot A' \cdot \sqrt{2 \cdot n}}$

 $\phi = a \tan a$

ToF - Methods

Time of Flight (ToF) -features

Important impact parameters

propagation speed c: c_{air} =350m/s , $c_{EM-waves}$ =3.10⁸m/s

Quality aspects

- accuracies of time measurement, sensor acceptance
- opening angle of transmitted beam (especially ultrasonic range sensors)
- interaction with target (surface properties(absorption), specular/multiple reflections)
- **variation** of **propagation speed** (sound=*f* (temperature))
- speed target (shape)

Ultra-Sound range sensors

- piezoelectric emitter/sensor
- ranges (cm \rightarrow m).
- piezoelectric emitter/sensor, opening angle 15°
- ranges (air cm→m), accuracy ~1mm, 40-180kHz

-30

- https://www.electrodragon.com/product/ultrasonicproximity-sensor/ 20th march 2019, 1.15€/pcs
- Applications
 - distance measurement also for transparent media collision detection (remote handling) Institute for Neutron physics and Reactor technology

-60

measurement cone 30°

60°

amplitude [dB]

Time of Flight (ToF) -light

- same principle drawbacks as ultrasound, but larger propagation speed \vec{c}
- **LiDAR** (LADAR) = <u>*Li*ght</u> <u>*D*etection <u>And</u> <u>*R*anging</u> (time delay principle Δt)</u>

15

Institute for Neutron physics and Reactor technology *Baumann et al., Speckle phase noise in coherent laser ranging: fundamental precision limitations, Opt. Lett. 39, 2014

Time of Flight (ToF) -light

- LiDAR (LADAR) = Li ght Detection And Ranging (phase shift ϕ)
 - modulation of optical power with constant frequency $f(c=\lambda \cdot f, typ)$. operation freq. MHz range).
 - after target reflection photodiode collects a part of the laser beam.
 - unambiguous distance Λ measurement given by $\Lambda = (c / f)$
 - two mixers outputs are filtered by a passband circuit tuned on f (bandwidth Δf)

- only "Lambert reflection" part can be used (if ρ>0.8-0.9 no signal is obtained)
- problematic for laser (beam size ≈ target shape amplitude), good for HF waves (beam spot>>target contour fluctuations')

Time of Flight (ToF) –radar (light or HF)

- FMCW technique with periodic and linear frequency chirp
 - cy chirp tions in receiver
- superposition of target and reference mirror reflections in receiver
 main ac component of mixed signals occurs at frequency difference *f*_{if}
- Intermediate frequency f_{if} of reflected signal is measured by frequency counter
- due to mixing of both signal amplitudes f_{if} ~ amplitudes (of both target + reference)
- >dynamic range of FMCW technique is twice as large as that of pulsed radar technique

Interferometry-various approaches

Interferometry -principle

• Interference based technology (constructive for $\lambda/2$, destructive for $\lambda/4$) functionality

Karlsruher Institut für Technologie

- intensity peak each time the object position changes by $\lambda/2$
- counting number of minimum-maximum transitions in interference pattern
- over time, when the object moves, the distance of movement can be incrementally
- determined at an accuracy of O(λ)

Triangulation –various approaches

Triangulation – passive

pure geometric approach (stereovision, photogrammetry, theodolite) principle

- observation of target point from two different sites A and B of known distance x
- **•** measurement of viewing angles α and β with respect to the base AB

Triangulation – active

principle

- projection of point (or line) to target and observation on screen by detector
- triangulation based on similarity object triangle and image triangle (defined by optical) axis of image screen, focal length h and recorded position of point projection x')

- auto-calibration (cameras to account for camera & target motion)
- high precision pixel resolution 22

target distance D

geometric relation

$$D = h \cdot \frac{x}{x'}$$

- accuracy δz : $\delta z = \frac{1}{h} \cdot \frac{D^2}{x} \cdot \delta x'$ high resolution δz requires small D.
 - large triangulation base x and
 - high screen resolution δx

improvement options

- line projection
 scanning
- 3D projection ⇒ full world image
- relatives of triangulation techniques

structured light imagining

- phase shifted projected
- gray code approach
- phase shifted Moire coded patterns
- random texture
- colour coded light
- Institute for Neutron physics and Reactor technology

Accuracies –US/HF/optics for nuclear applications

summary in theory

- US limited to milimeter range resolution requiring dense media (no vacuum)
- **HF/light ToF robust** with sub-milimeter resolution for absolute distance $|\overrightarrow{RP}|$
 - requiring Lambert type reflection (easy in HF due to beam expansion, challenging for light)
 - robust with autocalibration
 - many reliable coding options
 - spatial resolution x,y-plane ???
- triangulation higher resolution than ToF absolute and in *x*,*y*-plane but considerable effort for
 - re-construction techniques
 - auto-calibratrion
 - shadowing
 - interferometry with highest precision but
 - ambiguity challenge for large D
 short target distances
 - fragile against rapid target motion
 - ²³ auto-calibration ????

R. Schwarte, 1999, Principles of 3-D Imaging Techniques", in *Handbook Computer Vision and Applications*, Academic Press.

Institute for Neutron physics and $\ensuremath{\mathsf{R}}\xspace$ actor technology

Overview -Techniques

Karlsruher Institut				
principles	Ultra-Sound	High Frequency	Optic	
media transport	air/liquid	any	any	
transport velocity	sound speed	light speed	light speed	
emitter	piezo	UHF/VHF	laser/coherent light source	
modulation freq. ampl.	x no	X X	x x	
CW operation	no	yes	yes	
beam expansion	10°-30°	5°-15°	0.15°	
receiver type	piezo	antenna	photodiode CCD/CMOS	
transmission 90° turns	wave guide no	hollow cavity (quasi-optic)	fibre mirror	
amplifier	conv. electric	conv. electric	dynodes	
radiation hardness	medium	proven	???	

 application requires adequate functioning for all elements (source-transmission-acquisition-signal processing @ given boundary conditions)

- specular surface in sizeable distance from observer $(D \sim O(m))$
- in nuclear environment
- typical motion velocities of O (u=m/s)
- accuracy in vertical direction $\delta z << 1$ mm, lateral accuracy δx , $\delta y < 1$ mm
- temporal resolution f >50Hz

Institute for Neutron physics and Reactor technology

ay **PNR**

Double Layer Projection (DLP)-functional principle

fundamental idea

- project a focussed laser beam on the specular surface \Rightarrow generation of straight g_1
- record points P_1 and P_2 via a observer camera \Rightarrow calculate g_2
- compute position of *P* through intersection of $g_1 \cap g_2$

drawbacks

- high sensitivity due to changes of source and receiver (x)
- determination of absolute distance to target (auto-calibration)
- screen I sensitivity to incident deflection transparent beam angle θ mirror screen L plate $(\tau - 1, n)$ v light world coordinate source $P_2(x_2, y_2)$ system $P_{1}(x_{1}, y_{1}, z_{1})$ A х g, observer g (receiver) (x_0, y_0, z_0) target

Double Layer Projection (DLP)-technical solution

- (x-problem) record both incoming beam (g_1 by P_1 , P_2) and reflected beam (g_2 by P_3 , P_4)
- (auto-calibration) use different wave length laser since refractory index $n = f(\lambda)$
- (incident beam angle θ) scanner allows for line (area) tracing but limits θ

Double Layer Projection (DLP)-technical solution

Double Layer Projection (DLP)-technical solution

target motion speed [ω=5Hz] = temporal

Double Layer Projection (DLP)-pixel assignment

Double Layer Projection (DLP)- image processing

how to find P1 to P4 in an image ?

Institute for Neutron physics and $\ensuremath{\text{Reactor}}$ technology

DLP -Liquid metal validation

Institute for Neutron physics and Reactor technology

DLP -Liquid metal validation

Institute for Neutron physics and Reactor technology

DLP -Liquid metal validation

■ shape-resolution→line measurement

35

SUMMARY

37

LEVEL METERING

- traditional analogue techniques are robust, reliable and self-calibrating means (unfortunately intrusive)
- non-intrusive techniques require liquid metal specific adaptions (especially for optic devices) of industrially available products
 qualification

SURFACE ACQUISITION (DLP - lessons learnt)

DLP -Liquid metal validation

- no general technique recommendable (choice dependent on application boundary conditions- e.g. distance from target)
- way to establish a qualified technique requires exploitation of vast parameter range
 qualification
- although quality of technical equipment, AD conversion computational processing capabilities increased
 - verification and validation is indispensable
 - requires lots of preparations and
 - exhibits many (unexpected) surprises
- adaption of a technique and qualification for liquid metal surfaces is quite challenging even if proof of principle has been shown

Institute for Neutron physics and Reactor technology

