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1 Introduction

In the Standard Model (SM) the vacuum state is characterised by a non-zero vacuum

expectation value (vev) of the Higgs field arising from the postulated form of the Higgs

potential. This vacuum breaks the electroweak (EW) symmetry and gives masses to the

particles via the Brout-Englert-Higgs mechanism. In the standard model of big bang

cosmology, the phase transition into this EW vacuum happens within the first instants of

the existence of the universe. As the EW vacuum is formed at that time, its stability is

therefore required on time scales of the lifetime of the universe.

In the SM the EW vacuum is stable at the EW scale by construction. However, when

extrapolating the model to high scales this behaviour can change as a consequence of the

running of the quartic Higgs coupling λ [1–19]. Based on the present level of the theoretical

predictions and the experimental inputs on the top-quark and the Higgs-boson mass, an
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instability occurs at scales & 1010 GeV with a lifetime that is significantly larger than the

age of the universe. Such a configuration where the lifetime of the vacuum state is larger

than the age of the universe is called “metastable” and is considered to be theoretically

valid. The determination of the lifetime of the metastable vacuum follows the procedure

developed in [20, 21]. The presence of additional scalar degrees of freedom, as predicted

in many models of physics beyond the SM (BSM), is in principle expected to improve

the stability of the potential at high scales through its impact on the beta function of

the quartic Higgs coupling. On the other hand, additional scalar degrees of freedom have

the potential to destabilise the vacuum already at the EW scale by introducing additional

minima of the scalar potential.

In BSM theories the assessment of vacuum stability at the EW scale places important

constraints on the parameter space of the model under consideration. A sufficient condition

to ensure vacuum stability at the EW scale is to require the EW vacuum to be the global

minimum (i.e. true vacuum) of the scalar potential. In this case, the EW vacuum as the

state with lowest potential energy is favoured and thus absolutely stable. In case the

EW vacuum is a local minimum (false vacuum), the corresponding parameter region may

still be considered as allowed if it is metastable. On the contrary, any configuration that

predicts a shorter lifetime than the age of the universe is considered to be unstable and

thus excluded as it is inconsistent with the observed lifetime of the universe.

In rather simple models, such as the Two-Higgs-Doublet Model, analytic conditions

for absolute stability have been derived [22–28]. In theories with more scalars analytic

approaches can still be applied to a simplifying subset of fields. However, conclusions about

vacuum stability can change severely when additional degrees of freedom are considered (see

e.g. [29]). Thus, numerical approaches that can account for a variety of fields simultaneously

are of interest. Supersymmetry (SUSY) requires an extended Higgs sector as compared

to the SM case and adds a scalar degree of freedom for every fermionic one in the SM.

Therefore even the Minimal Supersymmetric Model (MSSM) corresponds to a multi-scalar

theory with a much richer scalar sector than the SM. Many different approaches have been

employed in order to obtain constraints from vacuum stability for the MSSM [30–57].

Public tools that allow one to efficiently obtain constraints from vacuum stability

in general BSM models would clearly be very useful in this context. To our knowledge

Vevacious [51, 58], which is designed to check the stability of the EW vacuum including

one-loop and finite temperature effects, is the only dedicated public tool that is applicable

to a variety of BSM models.1 In this paper we present an approach that provides a highly

efficient and reliable evaluation of the constraints from vacuum stability such that they

can be incorporated into BSM parameter scans, which typically run over a large number of

points in a multi-dimensional parameter space. Our approach is applicable to any model

with a renormalisable scalar potential and has been validated on SUSY and non-SUSY

models. In this work we outline our method and, as an example, apply it to the MSSM

benchmark scenarios for Higgs searches at the LHC that were recently defined in [60].

1The code BSMPT [59] — while not designed for vacuum stability studies — can also check for absolute

stability in several BSM models including one-loop and finite temperature effects.
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These benchmark scenarios were designed to provide interesting Higgs phenomenology at

the LHC. Limits from searches for SUSY particles as well as other constraints affecting the

MSSM Higgs sector were taken into account in the definitions of the benchmark scenarios,

while no detailed investigation of the parameter planes of the scenarios with respect to

constraints from vacuum stability has been carried out. We perform such an analysis of

the various benchmark planes and indicate the parameter regions that are incompatible

with the requirement of a sufficiently stable EW vacuum. A public tool based on the

implementation of our method with which the numerical results in this paper have been

obtained is in preparation.

This paper is organised as follows: we begin with the description of our method in

section 2 by discussing the most general renormalisable scalar potential in a form that is

suitable for vacuum stability calculations and compare different methods for estimating the

vacuum lifetime. In section 3, we fix our notation for the MSSM and the relevant field space.

Finally, we apply our method to the MSSM in section 4 and discuss in detail the results for

three of the benchmark scenarios defined in [60]. We conclude in section 5. Furthermore,

appendix A contains the full MSSM scalar potential and appendix B illustrates our results

for the remaining CP-conserving benchmark scenarios proposed in [60].

2 Vacuum stability in multidimensional field spaces

The vacuum state of a (quantum) field theory is determined by the state of lowest potential

energy. In field theory, this state is the minimum of the (effective) potential V (φ), which

describes the potential energy density of a field φ. In general, the Lagrangian for such a

real scalar field φ is given by

L =
1

2
(∂φ)2 − V (φ), (2.1)

where V can be an arbitrary function of the field φ that is bounded from below. In a

renormalisable quantum field theory at tree-level, it may contain all interactions up to

quartic terms. Formally, the effective potential is defined for classical field values φcl that

minimise the effective action. For our purpose, the field theoretical potential and the

effective potential are the same when replacing field operators φ by classical commuting

field values φcl and defining the effective potential V (φ = φcl) as function of φ ≡ φcl [61].

Thus, we treat all scalar fields as commuting variables.

We consider now the general case of n real scalar fields φa with a ∈ {1, . . . , n} in a

renormalisable quantum field theory at tree-level

V (~φ) = λabcdφaφbφcφd +Aabcφaφbφc +m2
abφaφb + taφa + c , (2.2)

where the sum over repeated indices is implied. The totally symmetric coefficient tensors

λabcd, Aabc, m
2
ab and ta as well as the constant c contain all possible real coefficients with

non-negative mass dimension. This potential includes in general up to 3n stationary points2

2Note that we discard complex solutions here as we consider real fields.
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out of which an initial vacuum at ~φ = ~φv is selected as minimum with

∂V

∂φa

∣∣∣∣
~φ=~φv

= 0 , (2.3)

and the mass matrix

Mab =
∂2V

∂φa∂φb

∣∣∣∣
~φ=~φv

(2.4)

is positive definite. After expanding eq. (2.2) around the vacuum as ~φ = ~φv + ~ϕ, with

~ϕ = (ϕ1, . . . , ϕn)T, we obtain

V (~ϕ) = λ′abcdϕaϕbϕcϕd +A′abcϕaϕbϕc +m′2abϕaϕb , (2.5)

where t′a vanishes due to eq. (2.3), and we have normalised the potential energy at ~ϕ = 0

to zero. For particle physics applications, this normalisation plays no role. Note, however,

that a constant term yields a non-vanishing cosmological constant [62]. We rewrite the field-

space vector as ~ϕ → ϕϕ̂ with a unit vector ϕ̂ and its absolute value ϕ =
√
ϕ2

1 + . . .+ ϕ2
n

and obtain

V (ϕ, ϕ̂) = λ(ϕ̂)ϕ4 −A(ϕ̂)ϕ3 +m2(ϕ̂)ϕ2 , (2.6)

where all the dependence on the normalised direction in field space ϕ̂ has been absorbed

into the coefficients λ, A and m2. The potential has to be bounded from below, so λ > 0

for all directions ϕ̂. Furthermore, in order to have a minimum at ϕ = 0, the condition

m2 > 0 has to be satisfied. There is a freedom of sign choice in either ϕ or A. We always

choose A > 0 without loss of generality and have defined the minus sign in eq. (2.6) such

that a possible minimum will be located in ϕ > 0.

Figure 1 shows the resulting possible shapes of the potential in eq. (2.6). Since it is a

quartic polynomial in one variable it can have at most two minima, one of which we have

chosen to lie at the origin. The second minimum exists as soon as

(A(ϕ̂))2 >
32

9
m2(ϕ̂)λ(ϕ̂) (2.7)

and is deeper than the minimum at the origin if

(A(ϕ̂))2 > 4m2(ϕ̂)λ(ϕ̂) . (2.8)

This discussion implies that large cubic terms A compared to the mass parameters and

self-couplings are potentially dangerous for the stability of the initial vacuum at the origin.

We call the directions ϕ̂ fulfilling eq. (2.8) deep directions.

This simple form is very useful for the calculation of vacuum decay in section 2.1.

However, many disjoint regions of deep directions may exist which makes the numerical

search for such directions on the unit (n − 1)-sphere of directions ϕ̂ infeasible, see e.g.

ref. [57]. We instead use the numerical method of polynomial homotopy continuation

(PHC) (see e.g. [63] or [64]) to find all stationary points of eq. (2.2). From these stationary

points we select the deep directions by comparing their depth to the initial vacuum.
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Figure 1. Behaviour of the generic quartic potential as given in eq. (2.6) for different relations

between the coefficients A, m2 and λ as indicated in the legend for arbitrary units on both axes.

PHC efficiently finds all solutions of systems of polynomial equations. We use it to solve

~∇φV = 0 (2.9)

and find all real solutions, i.e. the stationary points of the scalar potential. While PHC

in theory never fails to find all solutions of the system, solutions may be missed due to

numerical uncertainties in judging whether a solution is real or complex. This can be

avoided by a careful preconditioning of the system of equations [63]. Another subtlety

is that PHC only finds point-like, isolated solutions. This is especially important in the

physically interesting cases of gauge theories where any vacuum is only unique up to gauge

transformations. If any gauge freedom is left in the model, this turns all isolated solutions

into continuous curves which cannot be found by the algorithm. For this reason it is

essential to implement models with all gauge redundancies removed. For the case of at least

one Higgs doublet this can be achieved by setting the charged and imaginary components

of one Higgs doublet to zero without loss of generality.

2.1 Calculation of the bounce action

We briefly review the definition of the so-called bounce action, which describes the decay of

a false vacuum. Consider a single real field Lagrangian as in eq. (2.1). The semi-classical

tunnelling and first quantum corrections were calculated in [20, 21]. It was found that

the decay rate Γ of a metastable vacuum state per (spatial) volume VS is given by the

exponential decay law
Γ

VS
= Ke−B , (2.10)

where K is a dimensionful parameter that will be specified below, and B denotes the bounce

action which gives the dominant contribution to Γ. The bounce φB(ρ) is the solution of
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the euclidean equation of motion

d2φ

dρ2
+

3

φ

dφ

dρ
=
∂U

∂φ
(2.11)

with the boundary conditions

φ(∞) = φv ,
dφ

dρ

∣∣∣∣
ρ=0

= 0 . (2.12)

U is the euclidean scalar potential, ρ is a spacetime variable and φv is the location of the

metastable minimum. The bounce action B is the stationary point of the euclidean action

given by the integral

B = 2π2

∫ ∞
0

ρ3dρ

[
1

2

(
d

dρ
φB(ρ)

)2

+ U(φB(ρ))

]
. (2.13)

In the one field case, eqs. (2.13) and (2.11) can be solved numerically by the under-

shoot/overshoot method (see e.g. [65]). While all of the above equations generalise trivially

to the multi-field case φ→ ~φ, the strategy for obtaining the decay rate becomes consider-

ably more involved. In order to judge the stability of the EW vacuum we need to obtain

the minimal bounce action for tunnelling into a deeper point in the scalar potential. There

exist methods for solving eq. (2.11) numerically in multiple field dimensions [38, 66–75] us-

ing optimization, discretisation, path-deformation or multiple shooting. As we will show in

the next section a fast evaluation of the bounce action is more important for our purposes

than an extremely precise result. For this reason, we approximate the path of the bounce

by the straight line in a given deep direction. The potential along this straight path is a

simple quartic polynomial as given by eq. (2.6). For this form of the potential there exists

a semi-analytic result for the bounce action [76]

B =
π2

3λ
(2− δ)−3 (13.832 δ − 10.819 δ2 + 2.0765 δ3

)
(2.14)

with

δ =
8λm2

A2
. (2.15)

The expression in brackets was obtained in [76] by fitting a cubic polynomial in δ to the

numerical result. The coefficients do not depend on any model parameters, and the poly-

nomial approximation agrees with the numerical result within a 0.004 absolute tolerance

for all values of δ. We use this formula to calculate B for all deep directions from the initial

vacuum. The deep direction with the smallest bounce action is the dominant decay path.

The value of B is not invariant under rescaling of the field ϕ of eq. (2.6)

ϕ→ nϕ⇒ λ→ n4λ , A→ n3A , m2 → n2m2 , δ → δ (2.16)

⇒ B → n−4B . (2.17)

This dependence on the field normalisation arises from the equation of motion, where

eq. (2.11) only applies to fields with canonically normalised kinetic terms. A consistent

expansion of the form of eq. (2.6) therefore requires all real field components to have

canonically normalised kinetic terms. It is crucial to ensure that the implementation of the

scalar potential fulfils this requirement.

– 6 –



J
H
E
P
0
3
(
2
0
1
9
)
1
0
9

101 102 103 104 105

 [GeV]

380

390

400

410

420

430

440

450

B

5  survival 5  decay

10 2

10 1

100

101

102

de
ca

y/t
un

i

Figure 2. The lifetime of the metastable vacuum τdecay relative to the age of the universe tuni
is given in the plane of the scale M and the bounce action B. The contour lines denote a 5σ

probability for decay and survival, respectively.

2.2 Lifetime of the metastable vacuum

The vacuum lifetime in eq. (2.10) also depends on the quantity K. The value of K is both

challenging to calculate and a subdominant effect towards the tunnelling rate as it does

not enter in the exponent. Since it is a dimensionful parameter, [K] = GeV4, it can be

estimated from a typical scale M of the theory as

K =M4 . (2.18)

Comparing the vacuum decay time τdecay with the age of the universe tuni [77] yields [17]

τdecay

tuni
=

(
Γ

VS

)− 1
4 1

tuni
=

1

tuniM
eB/4 . (2.19)

Figure 2 shows the relative lifetime τdecay/tuni as a function of B andM. As expected,

the threshold of instability where τdecay ∼ tuni is highly sensitive to B and only mildly

sensitive to M. In figure 2 we also show the contours corresponding to a 5 σ expected

decay or a 5σ expected survival of the vacuum during the evolution of the universe. The

survival probability is given by

P = exp

(
− Γ

VS
Ṽlight-cone

)
= exp

(
−M4Ṽlight-conee

−B
)
, (2.20)

where the (spacetime) volume of the past light-cone is Ṽlight-cone ∼ 0.15/H4
0 [10], and H0 is

the current value of the Hubble parameter [77]. The points in the green region of figure 2
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are definitely long-lived with respect to the age of the universe, while the red points are

definitely short-lived. We see that varying the scale M over a generous range from 10 GeV

to 100 TeV shifts the border between metastability and instability by less than 10% in B.

We therefore consider any point where B > 440 as long-lived and any point where B < 390

as short-lived. We treat the intermediate range 390 < B < 440 as an uncertainty on the

stability threshold from the unknown M.

2.3 Parameter scans and the reliability of vacuum stability calculations

Our main objective is to enable the use of vacuum stability constraints in fits and param-

eter scans of BSM theories. Typical BSM parameter scans consider millions of different

parameter points which places strong requirements on evaluation time and reliability.

The first trade-off between speed and precision is in the calculation of the bounce action

described in section 2.1. Instead of using one of the available sophisticated solvers [73, 74]

— which may take a lot of runtime and could encounter numerical problems — we approx-

imate the tunnelling path with a straight line in field space and use the semi-analytic solu-

tion eq. (2.14) [76]. A comparison between such simple approximations and the multiple-

shooting method of [74] has been performed in [78] where agreement within O(10%) for

polynomial potentials has been found. The approximation according to eq. (2.14) is eval-

uated instantaneously while the available solvers typically take between a few seconds and

several minutes per tunnelling calculation.

This approximation, as well as the discussion of section 2, relies on the potential be-

ing a quartic polynomial which is only true at tree-level. In contrast, vacuum stability in

the SM has been studied up to full NNLO [1, 2, 7, 10, 11, 14, 17] precision involving the

two-loop effective Higgs potential and NNLO running and threshold effects. Even for BSM

models the public tool Vevacious [51, 58] can perform vacuum stability calculations using

the one-loop Coleman-Weinberg potential. However, it has recently been shown [79, 80]

that the use of the loop-corrected effective potential for stability calculations is not in gen-

eral a consistent perturbative expansion. This happens because the effective action is a

perturbative expansion in both the usual powers of ~ and the momentum transfer, where

the effective potential corresponds to the zeroth order term of the momentum expansion.

Truncating this second expansion does not in general provide a good approximation in

calculations of the bounce action. Therefore, higher momentum terms of the full effec-

tive action can give contributions to the bounce action comparable to the contributions

from the effective potential. Since it seems unfeasible to calculate even the leading higher

momentum terms of the effective action in general BSM models it appears questionable

whether using the one-loop effective potential for stability calculations leads to more pre-

cise results. For this reason we stick to the tree-level potential which allows us to apply

the very concise formulation of sections 2 and 2.1 and considerably increases the speed and

numerical stability of our calculation.

The tunnelling time with respect to the age of the universe as given in eq. (2.19)

depends exponentially on the value of the bounce action B. For any given parameter point,

small uncertainties on B are therefore amplified to large uncertainties on the tunnelling

time. While this makes precise predictions for the lifetime of individual parameter points
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very challenging, it is less problematic for constraining the parameter space of BSM models

since the bounce action B is also very sensitive to the values of the model parameters.

Therefore, a small shift in parameter space typically leads to a change in the bounce action

substantially larger than the uncertainties described above. For this reason the resulting

constraints on the model parameter space depend only mildly on the precise way B is

calculated. This dependence can be estimated from the width of the uncertainty band

390 < B < 440 (see section 2.2) that we will show in all of our results (see e.g. figures 4

and 9 below).

3 Application to the minimal supersymmetric Standard Model

Constraints from vacuum stability can have an important impact on supersymmetric mod-

els. The main reason is their abundance of scalar fields with at least two Higgs doublets as

well as two scalar superpartners for each SM fermion. The MSSM is the simplest and best

studied supersymmetric model where only a second Higgs doublet is added to the Higgs

sector [81–83]. The most important vacuum stability constraints in the MSSM concern

instabilities in directions with sfermion vevs. These are commonly referred to as charge

or colour breaking (CCB) vacua [30–57]. The existing results include both analytic and

semi-analytic studies of specific directions in field space as well as fully numeric approaches.

After specifying our notation for the scalar potential of the MSSM we are going to illus-

trate our treatment of vacuum stability constraints for an example application to MSSM

benchmark scenarios for Higgs searches.

3.1 Treatment of the MSSM scalar potential

For our discussion, we focus on the third generation of SM fermions and their corresponding

superpartners as those have the largest couplings to the Higgs sector. We comment on the

impact of the sfermions of the first and second generations below. The superpotential of

the MSSM including only third generation fermion superfields is given by

W = µHu ·Hd + ytQL ·Hut̄R + ybHd ·QLb̄R + yτHd · LLτ̄R , (3.1)

with the chiral Higgs superfield SU(2)L doublets Hu = (H0
d , H

−
d ) and Hd = (H+

u , H
0
u),

the left-chiral superfields containing the SM quark and lepton doublets QL = (tL, bL) and

LL = (νL, τL), respectively, as well as the superfields containing the SU(2)L singlets t̄R, b̄R
and τ̄R. The Yukawa couplings are denoted by yt,b,τ and the dot product is the SU(2)L
invariant multiplication Φi ·Φj = εabΦ

a
iΦ

b
j with the totally antisymmetric tensor εab, where

ε12 = −1. The superpotential gives rise to the F -terms

F =
∑
φ

|∂xW |2 , φ ∈ {h0
u, h

+
u , h

0
d, h
−
d , t̃L, b̃L, τ̃L, ν̃L, t̃

∗
R, b̃
∗
R, τ̃

∗
R} (3.2)

contributing to the scalar potential, where the sum runs over all scalar components of the

superfields in eq. (3.1). Note that the F -terms contain quadratic, cubic and quartic terms.

– 9 –
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Additional supersymmetric contributions to the scalar potential come from the gauge

structure of the model. These D-terms are given by

D = DU(1)Y
+DSU(2)L

+DSU(3)c
, (3.3a)

DU(1)Y
=
g2

1

8

(∑
φ

Yφ|φ|2
)2

, (3.3b)

DSU(2)L
=
g2

2

8

∑
Φi

∑
Φj

2(Φ†iΦj)(Φ
†
jΦi)− (Φ†iΦi)(Φ

†
jΦj) , (3.3c)

DSU(3)c
=
g2

3

6

(
|t̃L|2 − |t̃R|2 + |b̃L|2 − |b̃R|2

)2
, (3.3d)

where the sum over φ runs over all scalar components as in eq. (3.2), and Φi,Φj ∈
{hu, hd, Q̃L, L̃L} run over the scalar SU(2)L doublets. The different prefactor for the SU(3)c
D-term arises from the sum over the SU(3)c generators. The D-terms only contain quar-

tic terms.

Finally, another contribution to the scalar potential of the MSSM are the soft SUSY

breaking terms

Vsoft = m2
Hu
h†uhu +m2

Hd
h†dhd + (Bµhu · hd + h.c.)

+m2
Q3
Q̃†LQ̃L +m2

L3
L̃†LL̃L +m2

U3
|t̃R|2 +m2

D3
|b̃R|2 +m2

E3
|τ̃R|2

+
(
ytAtt̃

∗
RQ̃L · hu + ybAbb̃

∗
Rhd · Q̃L + yτAτ τ̃

∗
Rhd · L̃L + h.c.

)
,

(3.4)

where yt,b,τ are the Yukawa couplings of eq. (3.1). We shall express the soft breaking

parameter Bµ via the mass mA of the CP-odd Higgs boson,

Bµ = m2
A sinβ cosβ , (3.5)

using the ratio of the vevs of the two Higgs doublets at the EW vacuum

tanβ = vu/vd . (3.6)

The full scalar potential of the MSSM including all Higgs and third generation sfermion

fields is thus given by

V = F +D + Vsoft , (3.7)

see appendix A for the explicit expression.

We have so far written V in terms of complex fields, while the method outlined in

section 2.1 relies on a reduction of the field space to a direction parametrised by a single

real scalar field. For eq. (2.14) to be applicable, this field also needs to have a canonically

normalised kinetic term. We ensure both requirements by expressing V exclusively through

real scalar fields with canonically normalised kinetic terms and by expanding all complex

scalar fields as

φ→ 1√
2

Re(φ) +
i√
2

Im(φ) . (3.8)
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This ensures that ϕ is canonically normalised after expanding ~ϕ = ϕϕ̂ to obtain eq. (2.6)

as long as |ϕ̂| = 1. In this notation the EW vacuum is given by

Re(h0
u) = v sinβ , Re(h0

d) = v cosβ , (3.9)

where v =
√
v2
u + v2

d ≈ 246 GeV is the SM Higgs vev.

It would be unfeasible to vary all real scalar degrees of freedom simultaneously since

the runtime of the minimisation procedure scales exponentially with the number of fields

considered.3 For our studies of the MSSM we combine all stationary points found by

varying the three sets of fields{
Re(h0

u), Re(h0
d), Re(t̃L), Re(t̃R), Re(b̃L), Re(b̃R)

}
, (3.10a){

Re(h0
u), Re(h0

d), Re(t̃L), Re(t̃R), Re(τ̃L), Re(τ̃R)
}
, (3.10b){

Re(h0
u), Re(h0

d), Re(b̃L), Re(b̃R), Re(τ̃L), Re(τ̃R)
}
. (3.10c)

All sets contain the real parts of the neutral Higgs fields that participate in EW symmetry

breaking. The first set additionally contains the real t̃ and b̃ fields, the second set the t̃ and

τ̃ fields and the third set the b̃ and τ̃ fields. This method will not be able to find stationary

points for which t̃, b̃ and τ̃ vevs are simultaneously non-zero. The distance in field space

between the EW vacuum and another minimum is expected to increase as more fields take

non-zero values at this second minimum. We therefore neglect these configurations since

the tunnelling time increases with the field-space distance. Moreover, we found ν̃ vevs

and vevs of the first and second sfermion generations to have no impact on the observed

constraints. Therefore we are not going to show and discuss them in detail in the following,

but we will comment on their impact below. We also do not take charged or CP-odd Higgs

fields and the imaginary parts of the sfermion fields into account. Ignoring the CP-odd

and charged Higgs directions is motivated by the absence of any spontaneous CP or charge

breaking in the Higgs sector of the 2HDM [22, 23] (and thus the MSSM). While non-zero

charged and CP-odd Higgs vevs can in principle develop in the presence of sfermion vevs

we found no region of parameter space where these are relevant. We neglect the imaginary

parts of the sfermions as they are not expected to add new features in the absence of CP-

violation.4 Note that this discussion is specific to the MSSM. In the NMSSM for example

the different kinds of Higgs vevs are expected to be more relevant [84].

3.2 The impact of Yukawa couplings

The third generation Yukawa couplings are the largest Yukawa couplings and sensitively

depend on tan β already at the tree level. Their value is determined via the quark masses5

3For example, considering the set of fields in eq. (3.10a) yields ∼ 10 times longer runtimes than varying

the two sets of fields {Re(h0
u), Re(h0

d), Re(t̃L), Re(t̃R)} and {Re(h0
u), Re(h0

d), Re(b̃L), Re(b̃R)} separately.
4Apart from the CP-violation in the CKM matrix which does not enter our study.
5We treat the quark masses as running masses at the SUSY scale. To this end we use RunDec [85–87] to

run the MS quark masses to the SUSY scale assuming SM running.
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and the vev of the Higgs doublet coupling to them at the tree level:

ytree
t =

√
2mt

vu
=

√
2mt

v sinβ
and ytree

b =

√
2mb

vd
=

√
2mb

v cosβ
. (3.11)

For small tan β, the value of the bottom Yukawa coupling is suppressed with respect to the

top Yukawa coupling, while for large tan β they become comparable.

For large tan β, the bottom Yukawa coupling is very sensitive to SUSY loop corrections

that are enhanced by tan β. The leading corrections can be resummed [88–91], and it is

advantageous to include them despite the fact that the scalar potential is evaluated at the

tree level, since they effectively change the value of the bottom Yukawa coupling. The

impact of the resummed corrections on the Yukawa coupling can be included by replacing

ytree
b in eq. (3.11) by

yres
b =

√
2mb

vd(1 + ∆b)
, (3.12)

where ∆b contains SUSY loop corrections. The dominant contributions arise from the

gluino-sbottom and higgsino-stop loop, which enter in the sum ∆b = ∆gluino
b + ∆higgsino

b :

∆gluino
b =

2αs
3π

µM3 tanβ C(m2
b̃1
,m2

b̃2
,M2

3 ) , (3.13a)

∆higgsino
b =

y2
t

16π2
µAt tanβ C(m2

t̃1
,m2

t̃2
, µ2) , (3.13b)

where mt̃1,2
, mb̃1,2

are the masses of the t̃ and b̃ mass eigenstates, M3 denotes the gluino

mass, and µ is the higgsino mass parameter. The function C(x, y, z) is given by

C(x, y, z) =
xy ln y

x + yz ln z
y + xz ln x

z

(x− y)(y − z)(x− z)
. (3.14)

These ∆b corrections lead to an enhancement of yb especially for large µ < 0 and

At,M3 > 0 as both contributions are negative in this case and reduce the denominator

of eq. (3.12). For ∆b → −1 the bottom Yukawa coupling gets pushed into the non-

perturbative regime. Taking eq. (3.12) into account can lead to important effects of b̃

vevs in the MSSM, see [56], as will be visible in our numerical analysis below. We also

take into account a similar but numerically smaller effect for the Yukawa coupling of the τ

lepton, yτ [92].

4 Constraints from vacuum stability in MSSM benchmark scenarios

In the following we are going to present an example application of our method for obtaining

vacuum stability constraints. We will study vacuum stability constraints for some of the

MSSM benchmark scenarios defined in [60] to illustrate the impact of the constraints and

compare our method to previous approaches.
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Figure 3. Constraints from vacuum stability in the M125
h scenario defined in [60]. The colour code

in the left panel indicates the lifetime of the EW vacuum, while the centre and right panels illustrate

which fields have non-zero vevs at the most dangerous and the global minimum, respectively. The

black × marks the same point shown in figure 4.

4.1 Vacuum stability in the M125
h scenario

The first benchmark scenario defined in [60] is the M125
h scenario. It features rather heavy

SUSY particles with a SM-like Higgs boson at 125 GeV and can be used to display the

sensitivity of searches for additional Higgs bosons at the LHC. Its parameters are given by

mQ3 = mU3 = mD3 = 1.5 TeV , mL3 = mE3 = 2 TeV , µ = 1 TeV ,

Xt = At −
µ

tanβ
= 2.8 TeV , Ab = Aτ = At ,

M1 = M2 = 1 TeV , M3 = 2.5 TeV ,

(4.1)

while mA and tan β are varied in order to span the considered parameter plane. The soft

SUSY breaking parameters At,b,τ vary as a function of tan β for fixed Xt. Note that the

gaugino mass parameters M1,2,3 only enter our analysis through the ∆b and ∆τ corrections.

Figure 3 shows the vacuum stability analysis in this benchmark plane.

In the left panel of figure 3, the colour code indicates the lifetime of the EW vacuum

at each point in the parameter plane. In the dark green region the EW vacuum is the

global minimum of the theory, and the EW vacuum is stable in this parameter region.

The light green area depicts regions where deeper minima exist but the lifetime of the

false EW vacuum is large compared to the age of the universe (see section 2.2). For these

parameter points the EW vacuum is metastable and the parameter points are allowed. For

points in the red region, on the other hand, the tunnelling process is fast, and they are

excluded as the EW vacuum is short-lived. The small yellow region contains all points

in the intermediate region discussed in section 2.2 where an estimate of the uncertainties

gives no decisive conclusion on the longevity of the false vacuum. This plot of figure 3 left

shows that the M125
h benchmark plane is hardly constrained by the requirement of vacuum

stability. Only a parameter region with small values of tan β . 1 can be excluded.
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The middle panel of figure 3 shows the character of the most dangerous minimum

(MDM), i.e. it displays which fields acquire non-vanishing vevs at this vacuum. The MDM

is defined as the minimum with the lowest bounce action for tunnelling from the EW

vacuum. One can see that for small values of tan β or both moderate tan β and mA the

MDM is a CCB minimum with t̃ vevs (yellow). For larger values of tan β and mA a

minimum with b̃ vevs takes over (blue). This behaviour is expected as for higher tan β the

couplings of the Higgs sector to d-type (s)quarks are enhanced which also increases the

impact of b̃ vevs on our vacuum stability analysis.

The right panel of figure 3 displays the character of the global minimum for the M125
h

benchmark plane. It is important to note that the MDM and the global minimum of the

scalar potential can in general differ from each other.6 We see that the global minimum

has only b̃ vevs for most of the parameter space, while there is a large region where the

MDM involves t̃ vevs.

4.1.1 Impact of the trilinear terms

We noted in section 2 that the parameters entering the cubic terms of the potential are

expected to be especially important for the stability of the EW vacuum. Since mA is

related to a bilinear term in the potential, and tan β mostly affects the quartic Yukawa

couplings, we switch to a different slice of the parameter space which is more relevant for

the stability studies. We start from a point in the mA–tanβ plane of the M125
h scenario

that is absolutely stable and given by

tanβ = 20 , mA = 1500 GeV . (4.2)

This point is indicated with a × in figures 3 and 4. It features a Higgs mass of mh ≈
125 GeV and is allowed by all the constraints considered in [60]. Among these, the non-

observation of heavy Higgs bosons decaying into τ pairs [93, 94] is the most relevant con-

straint. In contrast to the mA–tanβ plane of theM125
h scenario, we now vary the parameters

µ and A ≡ At = Ab = Aτ starting from this point. Figure 4 shows the vacuum stability

analysis in this new parameter plane.

The left panel of figure 4 indicates the lifetime of the EW vacuum. The colour coding

is the same as in the corresponding plot of figure 3, i.e. red points depict short-lived

configurations, while the EW vacuum for light green points is metastable, and the EW

vacuum in the dark green area is stable. The thin yellow band indicates the uncertainty

band of 390 < B < 440 discussed in section 2.2. The EW vacuum becomes more and more

unstable for larger absolute values of µ and A. For small values of these parameters the

potential is absolutely stable with a region of long-lived metastability in between. Note that

also in this parameter plane the yellow uncertainty region of 390 < B < 440 corresponds

to only a thin band between long- and short-lived regions. The point marked by the × is

the starting point in the M125
h plane depicted in figure 3. One can see that in the plane of

figure 4 this point is close to a region of metastability, but quite far from any dangerously

6Out of the minima that are deeper than the EW vacuum, the MDM is usually the one that is closest to

the EW vacuum in field space. However, this is not always the case, see figure 6 below for a counterexample.
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Figure 4. Constraints from vacuum stability in the plane of µ and A containing the selected

point from the M125
h benchmark scenario. The starting point in the M125

h plane of figure 3 with

tanβ = 20 and mA = 1500 is indicated by the black ×. The colour code is the same as in figure 3.

The dashed line corresponds to constant Xt = 2.8 TeV.

short lived parameter regions. The missing points in the top-left corner of the plot are

points with tachyonic tree-level b̃ masses where the EW vacuum is a saddle point.

The character of the MDM, i.e. the fields that acquire non-zero vevs in this vacuum,

is shown in the middle panel of figure 4. It is dominated by yellow t̃ vevs in this plane, but

blue b̃ vevs are also important for large negative values of µ. The ∆b corrections described

in section 3.2 are enhanced in this parameter region and have a large impact. They are also

the cause of the tachyonic region for large negative µ and positive A. Between the t̃-vev and

b̃-vev regime a region appears (shown in green) where t̃ and b̃ vevs occur simultaneously.

The small blue region for µ > 0 is visible because the more dangerous minima with t̃ vevs

only appear for slightly higher values of A and µ, and the global b̃-vev minimum is the only

other vacuum in this parameter region besides the EW vacuum.

In the right panel of figure 4, the fields which acquire non-zero vevs at the global

minimum are indicated. In this parameter plane, there are large regions with simultaneous

t̃ and τ̃ vevs at the global minimum. Through most of the plane the fields acquiring vevs

differ between the MDM and the global minimum. The green region of simultaneous t̃

and b̃ vevs which is visible in the middle panel of figure 4 does not correspond to the

global minimum of the theory. This is expected as additional large quartic F and D-term

contributions appear if multiple kinds of squarks take on non-zero vevs simultaneously.

These are positive contributions to the scalar potential that lift up these regions of field

space. No such contributions appear in the case of simultaneous squark and slepton vevs

which is why the orange regions of simultaneous t̃ and τ̃ vevs are present in the right panel

of figure 4. Note that the quartic F and D-term contributions do not prevent the minima

with mixed t̃ and b̃ vevs from being the MDM as figure 4 (centre) shows. However, for the

parameter plane considered here these minima featuring simultaneous t̃ and τ̃ vevs have

no impact on the stability constraints of figure 4 (left).
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We finally comment on the impact of the detailed field content, in particular the first

and second generation sfermions and the ν̃ vevs, on these results. The small Yukawa cou-

plings of these particles tend to push any additional minima to very large field values, which

renders these configurations long-lived. As a consequence, the metastability bound (yellow

region in figure 4, left) and the character of the MDM (figure 4, centre) are insensitive to

the impact of those fields. On the other hand, the character of the global minimum may be

significantly affected by fields with relatively small couplings to the Higgs sector. Indeed,

if we were to include c̃ and s̃ vevs they would dominate the global minimum (figure 4,

right) through most of the parameter plane. They would even cut slightly into the edges

of the stable dark green region turning it long-lived. Our analysis therefore shows that

neither the investigation of just the region of absolute stability nor of the character of the

global minimum yields reliable bounds from vacuum stability. This is due to the fact that

both these quantities can sensitively depend on the considered field content, where even

very weakly coupled scalar degrees of freedom can have a significant impact. Instead, the

correct determination of the boundary between the short-lived and the long-lived region

crucially relies on the correct identification of the MDM, which in general can be very

different from the global minimum. This boundary, and accordingly the constraint on the

parameter space from vacuum stability, is in fact governed by the fields with the largest

Yukawa couplings and therefore insensitive to effects from particles with a small coupling

to the Higgs sector.

4.1.2 Comparison to semi-analytic bounds and existing codes

We now compare our results shown in figure 4 with results from the literature. An approx-

imate bound for MSSM CCB instabilities including vacuum tunnelling is given by [36, 38]

A2
t + 3µ2 < (m2

t̃R
+m2

t̃L
) ·

{
3 stable,

7.5 long-lived.
(4.3)

Furthermore, a “heuristic” bound of

max(At̃,b̃, µ)

min(mQ3,U3)
. 3 (4.4)

is sometimes used to judge whether a parameter point might be sufficiently long-lived (see

e.g. the discussion in [95]).

The public code Vevacious [51, 58] can calculate the lifetime of the EW vacuum

in BSM models using the tree-level or Coleman-Weinberg one-loop potential, optionally

including finite temperature effects, see e.g. [50].

Figure 5 displays our results in comparison to the approximate bounds given in eqs. (4.3)

and (4.4), where the contours arising from eqs. (4.3) and (4.4) are superimposed on our

results. The solid black contour arising from eq. (4.3) should be compared with the edge of

the dark green region where the vacuum is stable. This comparison shows significant devi-

ations. This is in particular due to the fact that the absolute stability bound from eq. (4.3)

considers only the D-flat direction. The dashed black contour should be compared with the
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Figure 5. Constraints from vacuum stability in the plane of µ and A containing the selected

point (black ×) from the M125
h benchmark scenario. The results from figure 4 are shown with

superimposed contours indicating the approximate absolute and metastability bounds of eq. (4.3)

and the heuristic bound of eq. (4.4).

yellow region at the border between the long-lived (light green) and short-lived (red) re-

gions and shows similar deviations. One source of these deviations is that the metastability

bound in eq. (4.3) becomes less reliable for values of m2
t̃R

+ m2
t̃L

& (1200 GeV)2 and large

(A2
t̃

+ 3µ2) (see figure 4 in [38]). Moreover, the dependence on tan β [53] is not included in

the approximate bound. Another reason is that only t̃-related parameters enter eq. (4.3),

while our analysis shows that also b̃ vevs have important effects in this case.

The heuristic bound eq. (4.4) (dotted black contour in figure 5) should also be com-

pared to the yellow region. While there are clear differences in shape, the size of the

long-lived region in our result roughly matches the heuristic bound. This can be quali-

tatively understood from eq. (2.8). For λ ∼ O(1) this yields A/m > 2 as a bound for

absolute stability. Therefore A/m > 3 as a bound for metastability appears to be a reason-

able estimate. While we only show these comparisons for one parameter plane they hold

very similarly for every plane we have studied. Our comparison shows that all of these

approximate bounds have deficiencies in determining the allowed parameter region, and

dedicated analyses are necessary to obtain more reliable conclusions.

Next we compare our results (figure 6, left) to the tree-level (figure 6, centre) and

one loop (right) results of Vevacious. In the Vevacious runs we have taken into account

only the fields from eq. (3.10a) since we found no relevant constraints from τ̃ vevs in

this plane. Vevacious by default considers tunnelling to the minimum which is closest in

field space to the EW vacuum. In the newest version (1.2.03+ [96]) one can optionally

consider tunnelling to the global minimum instead. In generating figure 6 we combined the

results from both of these approaches by choosing the option giving the stronger bound

at each individual point. One obvious difference between our results and Vevacious are

the metastable regions that Vevacious finds for µ ∼ 3 TeV and |A| ∼ 5 TeV. In this

region Vevacious considers the wrong minimum to be the MDM. The global minimum
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Figure 6. Constraints from vacuum stability in the plane of µ and A containing the selected point

(black ×) from the M125
h benchmark scenario. The results from figure 4 are shown in the left panel.

The other two plots show results of the code Vevacious for the tree-level (centre) and one-loop

effective potential at zero temperature (right) for the same parameter plane.

(with b̃ vevs, see figure 4, right) is closest to the EW vacuum in field space. Therefore,

Vevacious can only consider tunnelling into this minimum instead of a slightly further and

shallower minimum with t̃ vevs which gives the stronger constraints shown in our results.

A similar issue is responsible for the edge in the Vevacious result around µ ∼ −2.5 TeV

and A ∼ 4 TeV. A second kind of visible difference is the absence in the Vevacious

result of the bumps in the long-lived region in our result around |µ| ∼ 2 TeV and |A| ∼
5 TeV. The optimization of the bounce action by CosmoTransitions [73], which is used

by Vevacious, leads to a slightly stronger and more reliable metastability bound in this

region.7 Apart from these deviations our results are in good agreement with the tree-level

results of Vevacious. The deviations for individual points and the rugged edges of the light

green region in the Vevacious result are likely signs of numerical instability. This especially

includes the isolated red points in the light green region which result from numerical errors

in the calculation of the tunnelling time.

The comparison with the Vevacious results using the Coleman-Weinberg one-loop

effective potential at zero temperature (figure 6, right) shows that the one-loop effects

on the allowed parameter space are small for this scenario. The one-loop result from

Vevacious clearly suffers from numerical instabilities. However, the stable region is nearly

identical to the tree-level results, and the long-lived region is similarly sized as the tree-

level Vevacious result with differences in shape. The long-lived region appearing around

A ∼ 5 TeV and µ ∼ 4 TeV as well as the missing region around A ∼ −5 TeV and the

spikes around µ ∼ −2.5 TeV are consequences of the same MDM misidentification as in

the Vevacious tree-level result (see previous paragraph). Comparing the runtime of our

code to the runtime of Vevacious in this parameter plane including only the field set of

eq. (3.10a) we find our tree-level code to be ∼ 5 times faster than the tree-level and ∼ 200

times faster than the one-loop Vevacious run.

7As a cross check, forcing Vevacious to use the direct path approximation yields the same lifetimes as

our approach.
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Figure 7. Depth of the different types of stationary points along the line of constant Xt = 2.8 TeV

from figure 4. The colour code indicates which fields acquire vevs at the stationary point. The

dashed line indicates which of the stationary points is the MDM. The grey line is the EW vacuum.

4.1.3 Parameter dependence of the vacuum structure and degenerate vacua

The dashed line in figure 4 is the line where Xt has the same value as in the benchmark

plane, figure 3. The mass mh of the SM-like Higgs boson depends dominantly on the

parameters tan β, Xt and the stop masses. We therefore expect the Higgs mass to stay

close to 125 GeV when moving away from the point × along this line.8 We use this as

motivation to further investigate the vacuum structure along this line.

Figure 7 shows the depth of the stationary points of the scalar potential as a function

of µ along this line. The constant depth of the EW vacuum is shown in grey while the

other colours indicate the CCB stationary points. Note that not only local minima, but

all stationary points including saddle points and local maxima are shown in figure 7. The

dashed line indicates the MDM for each value of µ.

It can be seen from figure 7 that for large negative µ simultaneous t̃ and τ̃ vevs

(orange) dominate the global minimum for the considered field content until the τ̃ vevs at

these stationary points approach zero around µ = −2.2 TeV, and pure t̃ vevs take over.

From µ ≈ −1.8 TeV onwards the EW vacuum is the global minimum until a CCB vacuum

with b̃ vevs appears at µ ≈ 1.6 TeV. The MDM, on the other hand, is the second deepest

b̃-vev minimum for µ . −3.5 TeV, before switching to the t̃-vev minimum, followed by the

window of absolute stability µ ∈ [−1.8 TeV, 1.5 TeV]. For positive values of µ > 1.5 TeV

the instability first develops towards the global b̃-vev minimum until the t̃-vev minimum

takes over at µ ≈ 2 TeV.

In figure 7 several stationary points with multiple kinds of sfermion vevs appear. Sta-

tionary points with mixed squark and slepton vevs can be deeper than the corresponding

8We have verified using FeynHiggs 2.14.3 [97–103] that 124 GeV . mh . 126 GeV indeed holds along

this line as long as |µ| . 3 TeV.
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stationary points with only one type of vev (this can be seen for instance by comparing the

deepest stationary point with orange t̃ and τ̃ vevs to the ones with yellow t̃ vevs and red

τ̃ vevs). A stationary point with multiple kinds of squark vevs, however, is always higher

than one with only one kind of the involved vevs. This is due to the additional positive

quartic contributions to the potential for stationary points with both kinds of squark vevs.

Another feature visible in figure 7 is the b̃-vev stationary point approaching the EW

vacuum at µ � 0 from above. In this regime the ∆b corrections significantly enhance the

bottom Yukawa coupling giving rise to a large mixing in the b̃ sector and a corresponding

decrease of one of the b̃ masses. The depth of this stationary point becomes degenerate

with the EW vacuum. For even larger negative µ one b̃ squark becomes tachyonic, and the

EW vacuum turns into a saddle point. The plot ends before this happens (corresponding

to the white region in figure 4) as we require the existence of an EW vacuum.

The scalar potential eq. (3.7) for our field sets eqs. (3.10a), (3.10b) and (3.10c) has two

accidental Z2 symmetries. The potential is symmetric under simultaneous sign flips of the

left- and right-handed sfermions of a kind

Re(f̃L), Re(f̃R)→ −Re(f̃L), −Re(f̃R) with f̃ ∈ {t̃, b̃, τ̃} (4.5)

and under simultaneous sign flips of all doublet components

Re(h0
u), Re(h0

d), Re(t̃L), Re(b̃L), Re(τ̃L)

→ − Re(h0
u), −Re(h0

d), −Re(t̃L), −Re(b̃L), −Re(τ̃L) .
(4.6)

This results in sets of degenerate and physically equivalent stationary points related by

these symmetries.9 Since the EW vacuum is also invariant under eq. (4.5) the tunnelling

time to minima related by this symmetry is always identical. However, since the EW

vacuum breaks eq. (4.6)10 the tunnelling time into two stationary points related through

this transformation can differ. In most cases, whichever of these two points is closer in field

space to the EW vacuum gives the lower value for B. Note that this is not a small effect.

The values of B for stationary points related by eq. (4.6) can differ by more than an order

of magnitude. This effect has recently been studied for the simpler case of a 2HDM in [104].

4.2 Vacuum stability in the M125
h (τ̃) scenario

A benchmark scenario with light τ̃ has been proposed in [60] under the name M125
h (τ̃). It

is defined by

mQ3 = mU3 = mD3 = 1.5 TeV , mL3 = mE3 = 350 GeV , µ = 1 TeV ,

Xt = At −
µ

tanβ
= 2.8 TeV , Ab = At , Aτ = 800 GeV ,

M1 = M2 = 1 TeV , M3 = 2.5 TeV .

(4.7)

The scenario differs from the M125
h scenario of eq. (4.1) only in greatly reduced soft τ̃

masses with a correspondingly reduced Aτ̃ . However, µ is not reduced and is now µ ∼ 3mτ̃ .

9Since these minima are degenerate they cannot be distinguished in figure 7.
10We can, without loss of generality, choose the EW vacuum with Re(h0

u), Re(h0
d) > 0.
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Figure 8. Constraints from vacuum stability in the M125
h (τ̃) scenario. The colour code in the left

plot indicates the lifetime of the EW vacuum, while the centre and right plots illustrate which fields

have non-zero vevs at the MDM and the global minimum, respectively.

According to eq. (4.4) we would therefore expect vacuum stability constraints to be relevant

in the M125
h (τ̃) benchmark plane. The authors of [60] used Vevacious to check for vacuum

instabilities in this scenario and found a short-lived region in the parameter space for large

tanβ and small mA.

Our results shown in figure 8 confirm these observations. Figure 8 (left) shows a short-

lived region for large tan β. This region extends towards smaller values of tan β in the low

mA regime as noted in [60] but also in the region of large mA. Also visible is the small

region of instability for tan β < 1 noted in figure 3. The MDM for the instability at large

tanβ is a vacuum with τ̃ vevs as can bee seen from figure 8 (centre). Compared to figure 3

the absolutely stable region is additionally reduced by a t̃-τ̃ -vev minimum appearing around

mA ∼ 1 TeV and tan β < 30. The minima with b̃ vevs, which were the MDM for large

regions of the M125
h scenario, are entirely replaced by minima with τ̃ vevs. Only a very

small purple region with simultaneous b̃ and τ̃ vevs at the MDM exists. In figure 8 (right)

the global minimum with b̃ vevs is very similar to figure 3 (right). Only at larger mA —

where the EW vacuum in the M125
h scenario was absolutely stable — global minima with τ̃

vevs are now present. Our results in the M125
h (τ̃) scenario compared to the M125

h scenario

illustrate that constraints from vacuum stability indeed become relevant when the cubic

terms in the scalar potential become larger than the quadratic terms. Since µ ∼ 3mτ̃ in

this scenario, a further increase of µ or a decrease of mτ̃ could render the M125
h (τ̃) scenario

entirely short-lived. In the region of µ ∼ 3mτ̃ chosen in the M125
h (τ̃) scenario, the vacuum

stability constraints show a significant dependence on the parameters mA and tan β.

4.3 Vacuum stability in the M125
h (alignment) scenario

In this section we turn to another scenario from [60], the M125
h (alignment) scenario, where

constraints from vacuum stability turn out to have a very large impact. The scenario is
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Figure 9. Constraints from vacuum stability in the plane of µ and A containing the selected point

from the M125
h (alignment) scenario marked with the black ×. The selected point in the mA-tanβ

plane of the M125
h (alignment) scenario with tan β = 6 and mA = 500 GeV is shown in figure 11,

see appendix B. The colour code in the left plot indicates the lifetime of the EW vacuum, while

the centre and right plots illustrate which fields have non-zero vevs at the MDM and the global

minimum, respectively. The contours in the left plot indicate the mass of the Higgs boson h, and

the dashed line shown in the centre and right panels indicates the line of constant Xt = 5 TeV.

defined by

mQ3 = mU3 = mD3 = 2.5 TeV , mL3 = mE3 = 2 TeV ,

µ = 7.5 TeV , At = Ab = Aτ = 6.25 TeV ,

M1 = 500 GeV , M2 = 1 TeV , M3 = 2.5 TeV ,

(4.8)

with mA ∈ [100 GeV, 1 TeV] and tan β ∈ [1, 20]. It is chosen to accommodate

light additional Higgs bosons through the so-called alignment without decoupling be-

haviour [95, 105–112]. Alignment without decoupling in the phenomenologically interest-

ing region of relatively small tan β requires µ,At � mt̃. This requirement — according to

eq. (4.4) — has already been noted to be problematic for vacuum stability in [60]. Indeed

we find that the EW vacuum in this scenario is short-lived through all of its parameter

space with instabilities in directions with t̃ vevs. The corresponding figure 11 can be found

in appendix B.

In order to assess how far away this scenario is from a region of metastability we again

select a phenomenologically interesting point in its parameter plane,

mA = 500 GeV , tanβ = 6 , (4.9)

and vary A = At = Ab = Aτ and µ starting from this point. The resulting plane is shown

in figure 9. The colour code and the quantities shown in the sub-plots are the same as in

figures 3 and 4. In the left panel we have superimposed the contours for the mass of the

light Higgs boson calculated with FeynHiggs 2.14.3 [97–103]. This shows that in order

to obtain a long-lived scenario while keeping the correct Higgs mass one could for example
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change

µ = 7.5 TeV→ 4 TeV and A = 6.25 TeV→ 5 TeV . (4.10)

Other choices are possible within the theoretical uncertainty of the Higgs mass prediction.

The alignment-without-decoupling behaviour implies that the 125 GeV Higgs boson has

SM-like properties. In the MSSM this behaviour arises from a cancellation between tree-

level mixing contributions and higher-order corrections in the Higgs-boson mass matrix.

Shifting the parameters towards the region where the vacuum is metastable like it is done

in eq. (4.10) could affect these cancellations and therefore spoil the alignment properties.

Indeed, with FeynHiggs we obtain ∼ 10% enhanced couplings of h to bottom and tau pairs

leading to a ∼ 10% reduced BR(h→ γγ) compared to the SM for the parameter point of

eq. (4.10). While the change in the couplings indicates that the cancellation that is present

in the alignment without decoupling regime does not fully occur for the shifted point, this

parameter point is nevertheless still compatible with the LHC Higgs measurements within

the present uncertainties [113].

In the middle panel of figure 9 one can see that the MDM directions through most of

the parameter space are directions with t̃ vevs. If the instabilities were in directions with b̃

or τ̃ vevs, the requirement of a long-lived vacuum could have been achieved by increasing

mD3,L3,E3 and/or decreasing Ab,τ while keeping µ and the t̃ sector unchanged such that

the phenomenology would not be much affected. However, our analysis shows that the

parameter region associated with the alignment-without-decoupling behaviour gives rise

to minima with t̃ vevs that render the electroweak vacuum short-lived. Accordingly, the

behaviour of alignment without decoupling and the requirement of a long-lived vacuum are

in some tension with each other, since adjusting mQ3,U3 and At to ensure vacuum stability

in the stop directions would change the mass and phenomenology of the light Higgs boson

h. The right plot of figure 9 illustrates that the global minimum has non-vanishing τ̃ vevs

through significant parts of the parameter plane, while for large values of A,µ & 5 TeV b̃

vevs take over. However, the deepest minima appear to be nearly degenerate as can be

seen from figure 10.

The depth of the stationary points of the scalar potential along the line of constant

Xt = 5 TeV (which is indicated in figure 9 centre and right) is shown in figure 10. It includes

all stationary points in the selected field sets that are at least as deep as the EW vacuum.

The EW vacuum is shown in grey, and the CCB stationary points are distinguished by the

other colours. The plot illustrates that there is no stable region along this slice of parameter

space, in accordance with figure 9. As already pointed out, the MDM along this line is a

minimum with t̃ vevs through most of the parameter range, with the exception of the region

with small values of µ where the MDM has τ̃ vevs. There exist stationary points that are

deeper than the MDM with b̃ vevs11, t̃-τ̃ vevs and τ̃ vevs with the τ̃ -vev minimum being

the global minimum until the b̃-vev minimum takes over for µ & 5.5 TeV. These deeper

minima are however very far from the EW vacuum in field space with high barriers and

have no impact on the tunnelling rate. For large values of µ stationary points with both

11The b̃-vev stationary point is almost degenerate with the deepest t̃-τ̃ -vev stationary point for most of

the parameter range and therefore hidden behind the orange points.
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Figure 10. Depth of the different types of stationary points along the line of constant Xt = 5 TeV

from figure 9. The colour code indicates which fields have non-zero vevs at the stationary point.

The dashed line indicates which of the stationary points is the MDM. The EW vacuum is shown

in gray.

t̃ and b̃ vevs develop. In agreement with the previous discussions these stationary points

are less deep than the stationary points with only one kind of squark vev. All points along

this line of constant Xt = 5 TeV would be long-lived if the MDM with t̃ vevs was absent.

A detailed analysis of the question whether adjustments of the proposed scenarios for

alignment without decoupling could bring these scenarios into better agreement with the

constraints from vacuum stability while retaining their alignment properties goes beyond

the scope of this work. We leave this issue for future studies.

5 Summary and conclusions

In this work we have presented a fast and efficient method for determining the constraints

from vacuum stability on the model parameters of multi-scalar theories beyond the Stan-

dard Model. The stability of the EW vacuum at the tree level is investigated using polyno-

mial homotopy continuation for the minimization of the scalar potential and approximating

the decay rate of the EW vacuum into a deeper vacuum by an exact solution of the bounce

action in the one-field case. The method has been designed to combine a fast evalua-

tion with high numerical stability, enabling a reliable use in large scale parameter scans.

The generic approach admits a wide range of applications in many different BSM models.

We have argued that this approach is appropriate for applications in multi-dimensional

parameter spaces since the dependence of the vacuum stability constraint on the model

parameters is typically much stronger than the impact of high precision calculations of the

bounce path and the tunnelling action. Therefore, the constraints on the parameter space

are relatively insensitive on the details of the calculation of the lifetime, and uncertainties

in the classification of long- and short-lived configurations only affect small regions in the

parameter space.
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In order to evaluate the constraints from vacuum stability it is in principle desirable to

simultaneously take into account all possible vevs of all the scalar fields in the considered

model. However, this often becomes impractical in models with large scalar sectors. We

have illustrated our approach by determining the constraints from vacuum stability for

a set of benchmark scenarios for Higgs searches in the MSSM that have recently been

proposed in [60]. Our efficient approach has allowed us to consider up to six real degrees of

freedom simultaneously. We have included the possible vevs of the particles with the largest

Yukawa couplings (namely t̃, b̃ and τ̃) in addition to the Higgs vevs when searching for

unstable directions. We have observed that this yields reliable vacuum stability constraints

— especially when including multiple kinds of sfermions simultaneously. However, for the

studied scenarios we would have obtained very similar vacuum stability constraints if we

had considered each kind of sfermion separately as an approximation.

The result that the sfermions of the first and second generation and the sneutrinos

have a minor impact on the determination of the boundary between long-lived and short-

lived vacua is related to the fact that their smaller Yukawa couplings lead to additional

minima at very large field values, which renders these configurations long-lived. On the

other hand, the global minimum — and to some extent also the region of absolute stability

— shows a significant dependence on additional field content that couples only weakly to

the Higgs sector. We also found several parameter regions where the global minimum is

characterised by vevs of different sfermions that are simultaneously non-zero.

As a result, our analysis shows that neither the investigation of just the region of

absolute stability nor of the character of the global minimum is sufficient to obtain reliable

bounds from vacuum stability. Instead, the determination of the boundary between the

short-lived and the long-lived region crucially relies on the correct identification of the most

dangerous minimum (MDM), which is the minimum with the shortest tunnelling time from

the EW vacuum. The MDM often differs from the global minimum.

For the considered M125
h MSSM benchmark scenario we have found that the impact

of vacuum stability constraints is small in the mA–tanβ parameter plane defining the

scenario. However, a variation of the parameters µ and A around their values chosen

in the benchmark scenario shows an important impact of vacuum stability constraints.

In this plane we have illustrated that the most dangerous and the global minimum are

in general different. We have furthermore stressed the importance of corrections to the

relation between the bottom-quark mass and the bottom Yukawa coupling in certain regions

of parameter space. These ∆b corrections can significantly enhance the value of the bottom

Yukawa coupling and thus trigger b̃-vev instabilities.

We have also used this parameter plane to compare our results with existing studies

and codes. Comparing our results to approximate analytic vacuum stability bounds we

have seen that those approximations can serve as a rough estimate of the effect of vacuum

stability constraints. However, they cannot capture the complexity of a detailed numer-

ical analysis. Furthermore, we have compared the results of our code to the public code

Vevacious. The tree-level results of the codes show some notable differences. The largest

differences arise from the determination of the MDM. By default, Vevacious uses the

closest minimum in field space — and can be optionally forced to use the global minimum.
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In contrast, by the use of an analytic expression for the bounce action, we are able to easily

calculate all tunnelling times to deeper minima and select the one with the shortest time

as the MDM. We have seen that in the benchmark plane under consideration there are

regions where the MDM is neither the global minimum nor the minimum closest to the EW

vacuum in field space. We have also seen that the impact of the more sophisticated tun-

nelling path calculation in Vevacious (using the path deformation of CosmoTransitions)

is visible but in most cases does not substantially change the boundary between parameter

regions with long- and short-lived EW vacuum. Calculating the vacuum stability bounds

in Vevacious using the one-loop effective potential leads to results qualitatively similar

to the tree level results. The one-loop calculation showed strong indications of numerical

instability in addition to the problems in the identification of the MDM. Even ignoring the

latter problem we have found the potential improvement by the one-loop effective poten-

tial on the vacuum stability constraints to be relatively small in view of the significantly

increased amount of numerical instabilities and the much longer runtime. Furthermore, as

discussed above it is still an open conceptual question whether the application of a loop-

corrected effective potential can at all be expected to yield a systematic improvement of

vacuum stability constraints compared to a tree-level analysis. The tree-level constraints

of our approach using the straight tunnelling path approximation yield numerically stable

results in a fraction of the runtime of Vevacious and CosmoTransitions.

We have exemplarily studied the depths of the different stationary points along a line of

mh ∼ 125 GeV through the parameter space. This has shown a typical number of stationary

points appearing in an analysis of vacuum stability and illustrated the importance of the

different scalar degrees of freedom. The MDM was found to coincide with the global

minimum only within a restricted part of the relevant parameter range. We have also

discussed the impact of degenerate stationary points that are related to each other by a

discrete symmetry and found that — in agreement with recent results in the literature [104]

— if such a symmetry is broken by the EW vacuum the tunnelling times into the degenerate

vacua can be vastly different.

In a benchmark scenario with light τ̃ we have shown important constraints from vac-

uum stability arising in the mA–tanβ plane defining the scenario. In [60] a parameter

region with high tan β and low mA of this benchmark plane was identified as being ex-

cluded by vacuum stability constraints. Our results provide a more detailed study of these

constraints and show that the excluded region extends to high mA.

A further scenario that we have studied in detail is a benchmark scenario in the align-

ment without decoupling regime. We have found that all parameter points in the bench-

mark plane yield short-lived EW vacua. We have shown what kind of shift in parameter

space could lead to a sufficiently long-lived vacuum while approximately preserving the

correct value of the Higgs mass. We found that this näıve approach would not obviously

spoil the alignment without decouplings behaviour. The question to what extent the align-

ment without decoupling behaviour can be realised in phenomenologically viable scenarios

where vacuum stability constraints are taken into account would require a detailed study

that is beyond the scope of the present work. The remaining CP-conserving benchmark
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scenarios12 of [60] behave similarly to the ones we have studied. The vacuum stability

constraints in these benchmark planes are shown in appendix B.

While we have focused our numerical analysis on the example of MSSM scenarios, a

detailed investigation of models with additional structures in the Higgs sector is in progress.

We plan to make our implementation of the described procedure publicly available, which

is meant to serve as an easily applicable tool for evaluating vacuum stability constraints

that is suitable for the inclusion in scans over multi-dimensional parameter spaces.
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A The MSSM scalar potential

In this appendix we give the scalar potential of the MSSM in expanded form. We include

all fields appearing in eqs. (3.10a), (3.10b) and (3.10c). The potential is given by

V = V2 + V3 + V4 , (A.1)

consisting of a quadratic (V2), cubic (V3) and quartic (V4) part. The quadratic part is

given by

V2 =
m2
Q3

2

(
Re(b̃L)2 + Re(t̃L)2

)
+
m2
U3

2
Re(t̃R)2 +

m2
D3

2
Re(b̃R)2

+
m2
L3

2
Re(τ̃L)2 +

m2
E3

2
Re(τ̃R)2 −m2

ARe(h0
d)Re(h0

u) sin(β) cos(β)

+
1

2
Re(h0

d)
2
(
m2
Hd

+ µ2
)

+
1

2
Re(h0

u)2
(
m2
Hu

+ µ2
)
,

(A.2)

the cubic part is given by

V3 =
yb√

2
Re(b̃L)Re(b̃R)

(
AbRe(h0

d)− µRe(h0
u)
)

+
yτ√

2
Re(τ̃L)Re(τ̃R)

(
AτRe(h0

d)− µRe(h0
u)
)

+
yt√

2
Re(t̃L)Re(t̃R)

(
AtRe(h0

u)− µRe(h0
d)
)
,

(A.3)

12It should be noted that we have omitted the CP-violating scenario that was proposed in [60] for

simplicity only. Our approach is fully applicable also to models containing CP-violating phases.
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and the quartic part is given by

V4 =
g2

1 + g2
2

32

(
Re(h0

u)2 − Re(h0
d)

2
)2

+
g2

1 − 3g2
2 + 12y2

t

48
Re(h0

u)2Re(t̃L)2 +
3y2
t − g2

1

12
Re(h0

u)2Re(t̃R)2

+
g2

1 + 3g2
2

48
Re(h0

u)2Re(b̃L)2 +
1

24
g2

1Re(h0
u)2Re(b̃R)2

+
g2

2 − g2
1

16
Re(h0

u)2Re(τ̃L)2 +
1

8
g2

1Re(h0
u)2Re(τ̃R)2

+
3g2

2 − g2
1

48
Re(h0

d)
2Re(t̃L)2 +

g2
1

12
Re(h0

d)
2Re(t̃R)2

−
g2

1 + 3g2
2 − 12y2

b

48
Re(h0

d)
2Re(b̃L)2 −

g2
1 − 6y2

b

24
Re(h0

d)
2Re(b̃R)2

+
g2

1 − g2
2 + 4y2

τ

16
Re(h0

d)
2Re(τ̃L)2 − g2

1 − 2y2
τ

8
Re(h0

d)
2Re(τ̃R)2

+
g2

1 + 9g2
2 + 12g2

3

288

(
Re(t̃L)2 + Re(b̃L)2

)2
− g2

1 + 3g2
2

48
Re(t̃L)2Re(τ̃L)2

− g2
1 + 3g2

3 − 9y2
t

36
Re(t̃L)2Re(t̃R)2 +

g2
1 − 6g2

3 + 18y2
b

72
Re(t̃L)2Re(b̃R)2

+
g2

1

24
Re(t̃L)2Re(τ̃R)2

+
3g2

2 − g2
1

48
Re(b̃L)2Re(τ̃L)2 − g2

1 + 3g2
3 − 9y2

t

36
Re(b̃L)2Re(t̃R)2

+
g2

1 − 6g2
3 + 18y2

b

72
Re(b̃L)2Re(b̃R)2 +

g2
1

24
Re(b̃L)2Re(τ̃R)2

+
g2

1 + g2
2

32
Re(τ̃L)4 +

g2
1

12
Re(τ̃L)2Re(t̃R)2 − g2

1

24
Re(τ̃L)2Re(b̃R)2

− g2
1 − 2y2

τ

8
Re(τ̃L)2Re(τ̃R)2

+
4g2

1 + 3g2
3

72
Re(t̃R)4 − 2g2

1 − 3g2
3

36
Re(t̃R)2Re(b̃R)2 − g2

1

6
Re(t̃R)2Re(τ̃R)2

+
g2

1 + 3g2
3

72
Re(b̃R)4 +

g2
1

12
Re(b̃R)2Re(τ̃R)2 +

g2
1

8
Re(τ̃R)4

+
ybyτ

2
Re(b̃L)Re(τ̃L)Re(b̃R)Re(τ̃R) .

(A.4)

B Constraints from vacuum stability in the other benchmark scenarios

of [60]

In this appendix we present our results for the vacuum stability constraints in the remaining

CP-conserving benchmark scenarios defined in [60].

The vacuum stability analysis for the M125
h (alignment) benchmark plane defined in

eq. (4.8) is displayed in figure 11. As noted in section 4.3, all parameter points in this

plane give rise to short-lived EW vacua. The MDM is characterised by t̃ vevs throughout
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Figure 11. Constraints from vacuum stability in the M125
h (alignment) scenario. The left panel

indicates the lifetime of the EW vacuum, which is short-lived all over the displayed plane. In

the middle and right panel the character of the MDM and the global minimum is illustrated,

respectively. The black × indicates the same point shown in figure 9.

the parameter plane, while the global minimum has b̃ vevs for tan β & 5.5 and t̃-τ̃ vevs for

smaller values of tan β.

The light neutralino scenario M125
h (χ̃) is defined through

mQ3 = mU3 = mD3 = 1.5 TeV , mL3 = mE3 = 2 TeV , µ = 180 GeV ,

Xt = At −
µ

tanβ
= 2.5 TeV , Ab = Aτ = At ,

M1 = 160 GeV , M2 = 180 GeV , M3 = 2.5 TeV .

(B.1)

The entire benchmark plane features an absolutely stable EW vacuum.13 This is unsur-

prising, since it has a very small µ and relatively large soft sfermion masses while the A

parameter is not much larger than the soft masses. The small gaugino mass parameters

do not lead to instabilities as they only enter the scalar potential through the ∆b and ∆τ

corrections.

Finally, the heavy Higgs alignment scenario M125
H is defined through

mQ3 = mU3 = 750 GeV − 2(mH± − 150 GeV) ,

µ = (5800 GeV + 20(mH± − 150 GeV))mQ3/(750 GeV) ,

At = Ab = Aτ = 0.65mQ3 , mD3 = mL3 = mE3 = 2 TeV ,

M1 = mQ3 − 75 GeV , M2 = 1 TeV , M3 = 2.5 TeV .

(B.2)

In this scenario the heavy Higgs boson H has a mass of about 125 GeV with SM-like

couplings. Since the scenario has small soft SUSY-breaking squark mass parameters and

a very large µ it is unsurprising that the entire benchmark plane has a short-lived EW

vacuum. Throughout the plane, the MDM has non-vanishing t̃ vevs while the global

minimum has t̃-τ̃ vevs.13 Considering how constrained the region of phenomenologically

13The corresponding plots are omitted as they do not add any information.
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viable parameter space for this scenario is (see figure 10 of [60]) we do not expect that a

heavy Higgs alignment scenario with a long-lived vacuum exists in the MSSM. However, a

detailed assessment of this possibility would require a dedicated study.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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