High-temperature thermal energy storage with liquid metals

J. Pacio, M. Daubner, T. Wetzel – Liquid Metal Competence Platform Karlsruhe (LIMCKA)

Motivation

Liquid metal as high-temperature heat transfer fluid

- Integration of renewable energies and residual heat from industrial processes
- (Power-to-) Heat-to-X applications at high temp., e.g. power or fuels (H_2)

Optimization strategies for a LM-thermocline

- Model validated with salt + oil data [1]
- Challenge for liquid metals: axial heat transfer in the thermo-cline region
- Best results with:
 - Low porosity
 - Small particles
 - Large H/D ratio
 - Fast cycles
 - Reduced stand-by

Proof-of-concept in an existing facility

- THEADES facility uses LBE ($T=200-450^{\circ}C$), up to 500 kW
- Thermo-cline tests in laboratory scale: ca. 100 kWh_th

Why liquid metals as heat transfer fluids?

- Stable liquids at high temperature and low pressure
- Efficient heat transfer due to high thermal conductivity
- Limitation: lower heat capacity → dual-media approach

Demonstration scale: NADINE initiative

- National Demonstrator for Isentropic Energy Storage
- Joint initiative by University of Stuttgart, DLR and KIT
- Modular approach: liquid metals for highest temp. range

Support infrastructure: study of structural materials for T up to 1000°C (in sodium, lead, tin, …), instrumentation, …

New experimental facility planned for demonstration of system and further test of key components

- Capacity: 1.0 MWh
- Power: 500 kW
- $T = 350$-750°C
- Uses lead and quartzite
- Key component: storage vessel $H=3.2m$, $D=1.2m$ (3.7 m3)
- Additional ports for installing components (heat exchangers, reactors) to be tested in flowing LM environment

This work received support from the German Federal Ministry for Economic Affairs and Energy in the frame of the project DESI-NADINE: Design project for NADINE (2018-19)
