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Zusammenfassung

Faserverstärkte Polymere tragen wesentlich zu gewichtsreduzierten
Bauteilkonstruktionen im Automobil- und Luftfahrtsektor bei. Auf-
grund der Fließfähigkeit diskontinuierlich faserverstärkter Polymere
(DiCoFRP) während des Herstellungsprozesses können komplexe
Bauteilgeometrien erzielt werden. Im Gegensatz zu DiCoFRP erreichen
kontinuierlich faserverstärkte Polymere (CoFRP) durch ihren hohen
Faservolumengehalt eine hohe spezifische Steifigkeit und Festigkeit.
Das Ziel der Forschungsarbeiten des internationalen Graduiertenkollegs
DFG-GRK 2078 ist es, die Vorteile von DiCoFRP und CoFRP zu kom-
binieren. Die neu entwickelte Materialklasse zeichnet sich durch die
Integration von Funktionselementen in den Herstellungsprozess, eine
hohe Designfreiheit von Bauteilen und eine wirtschaftliche Großserien-
fertigung aus. Das übergeordnete Ziel des deutsch-kanadischen Konsor-
tiums dieses Graduiertenkollegs ist es, Konzepte zur Charakterisierung,
Modellierung, Dimensionierung und Verarbeitung von DiCoFRP und
CoFRP sowie der Kombination beider Materialsysteme zu entwickeln.

In der vorliegenden Arbeit wird ein diskontinuierlich faserverstärktes
Duroplast untersucht, das mit dem Sheet Molding Compound (SMC)
Verfahren hergestellt wurde. Aufgrund der prozessbedingten Faserorien-
tierungsverteilung entsteht ein Komposit mit anisotroper Mikrostruktur,
die die mechanischen Eigenschaften bestimmt.

Die zentralen Zielstellungen dieser Arbeit sind die Modellierung des
thermoelastischen Materialverhaltens des Komposites unter Berück-
sichtigung der vorliegenden Mikrostruktur sowie die experimentelle
Charakterisierung des Reinharzes und des Komposites.
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Zusammenfassung

Zur experimentellen Charakterisierung der thermoviskoelastischen
Materialeigenschaften, wird die dynamisch mechanische Analyse
(DMA) verwendet. Basierend auf diesen Tests werden materialspezi-
fische Eigenschaften, wie der temperaturabhängige E-Modul oder die
Glasübergangstemperatur ermittelt. Zudem werden Messungen zur
Bestimmung des thermischen Ausdehnungskoeffizienten des reinen
Matrixmaterials und des Verbundwerkstoffs durchgeführt. Die experi-
mentellen Daten des Matrixmaterials dienen als Eingangsdaten für die
Materialmodelle. Die numerisch ermittelten Materialparameter werden
mit den experimentellen Daten des Verbundwerkstoffs verglichen.

Zur Approximation des effektiven thermoelastischen Materialverhaltens
wird die Hashin-Shtrikman Mean-Field Homogenisierungsmethode,
basierend auf Willis (1981) und Walpole (1966), in der Formulierung
mit Eigendehnungen verwendet. Die effektiven Größen werden in
zwei Schritten bestimmt. Hierbei ist die Homogenisierungsmethode
in Abhängigkeit einer variablen Referenzsteifigkeit formuliert, was
eine Anpassung an die Materialklasse ermöglicht. Der Einfluss dieser
variablen Referenzsteifigkeit auf das effektive elastische und thermische
Verhalten wird diskutiert und mit experimentellen Daten verglichen.

Weiterhin wird mittels einer Full-Field Methode, die auf der schnellen
Fourier-Transformation (FFT) basiert, das lokale elastische und ther-
mische Materialverhalten berechnet. Hierbei findet eine direkte Anwen-
dung der Methode auf Voxel-Daten aus μCT Scans des Komposites
statt. Die effektiven elastischen und thermischen Eigenschaften werden
basierend auf den lokalen Feldern bestimmt. Somit können die
Simulationsergebnisse der Full- und der Mean-Field Methode quan-
titativ bezüglich der Anisotropie des E-Moduls und des thermischen
Ausdehnungskoeffizienten verglichen werden. Abschließend werden
die numerischen Ergebnisse der effektiven elastischen und thermischen
Materialparameter mit den experimentellen Daten verglichen und
diskutiert.
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Summary

Fiber-reinforced polymers contribute significantly to weight-reduced
components in the automotive and aerospace applications. Due to
the flowability of discontinuous fiber-reinforced polymers (DiCoFRP)
during the manufacturing process, complex component geometries
can be produced. In contrast to DiCoFRP, continuous fiber-reinforced
polymers (CoFRP) achieve a high specific stiffness and strength due
to their high fiber volume content. The aim of the research work
within the International Research Training Group DFG-GRK 2078 is
to combine the advantages of DiCoFRP and CoFRP. The resulting
material class is characterized by the integration of functional elements
into the manufacturing process, a high degree of design freedom for
components and an economical mass production. The overall goal of
the German-Canadian consortium of this Research Training Group is to
develop concepts for the characterization, modeling, dimensioning and
processing of DiCoFRP and CoFRP as well as the combination of both
material systems.

In the work at hand, a discontinuous fiber-reinforced thermoset material
is investigated produced by the Sheet Molding Compound (SMC)
process. Due to the process-related fiber orientation distribution, a
composite material with an anisotropic microstructure is created. This
microstructure crucially affects the mechanical properties.

The central objectives of this work are, on the one hand, the modeling
of the thermoelastic material behavior of the composite accounting for
the underlying microstructure and, on the other hand, the experimental
characterization of the pure resin and the composite material.
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Summary

Dynamic mechanical analysis (DMA) is used to experimentally charac-
terize the thermoviscoelastic material properties. Based on these tests,
material-specific properties such as the temperature-dependent elastic
modulus or the glass transition temperature are determined. In addition,
measurements are carried out to determine the coefficient of thermal
expansion of the pure matrix and composite material. The experimental
data of the matrix material serve as input for the material models. The
numerically determined material parameters are compared with the
experimental data of the composite.

To approximate the effective thermoelastic material behavior, the Hashin-
Shtrikman mean-field homogenization method is used which is based
on the eigenstrain formulation by Willis (1981) and Walpole (1966). The
effective quantities are computed in two steps. In this context, the
homogenization method is formulated in dependency of a variable
reference stiffness which enables an approach tailored to a specific
material class. The influence of this variable reference stiffness on the
effective elastic and thermal behavior is discussed, and compared to the
experimental data.

Furthermore, the local elastic and thermal material behavior is computed
using a full-field method based on the fast Fourier transformation (FFT).
Here, the method is directly applied to voxel data obtained by μCT
scans of the composite. The effective elastic and thermal properties are
determined based on the local fields. Thus, the simulation results of the
full- and mean-field methods can be compared quantitatively and with
respect to the anisotropy of Young’s modulus and the thermal expansion
coefficients. Finally, the numerical results of the effective elastic and
thermal material parameters are compared with the experimental data
and discussions are provided.
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Chapter 1

Introduction

1.1 Motivation

A global superior goal of today’s industrial companies is to comply
with the restrictions on carbon dioxide emissions. In the European
Union, for instance, car manufacturers are required to reduce their
emissions values for all newly produced cars to 95 g CO2/km by 2021
(European Union, 2018). One problem-solving approach is to substitute
the non-structural metal parts with fiber-reinforced polymeric composite
parts to reduce the fuel consumption. In addition to the weight savings,
these materials exhibit certain advantages with respect to their material
properties, such as exceptional specific strength and stiffness. As the
production technology has progressed in the last decades, low cycle
times have been achieved that enable a cost-effective manufacturing of
fiber-reinforced polymers (FRP) up to mass production. Thus, various
fields of applications have emerged, including not only the industrial
sectors such as aerospace and transportation but also leisure and sports
sectors, cf. Figure 1.1a. The tailored properties of composites are
achieved by combining the polymeric matrix with a specific type of
fiber. Thereby, the fibers carry the load; whereas, the matrix material
defines the shape of the component, specifies the position of the
fibers, and protects the fibers from environmental influences. Common

1



1 Introduction

types of reinforcements include glass, carbon, natural, and aramid
fibers, cf. Figure 1.1b.

Electrical and 
electronic equipment

Others

Transportation

Construction and 
infrastructure

15%

15%

Sports
and leisure 35%

34% 1%

(a)

85%

2%

7.1%
4.2%
1.9%

Glass fiber composites
Carbon, aramid and other composites
Wood plastic composites
Cotton fiber composites
Others

(b)
Figure 1.1: a) Distribution of glass fiber-reinforced composites by market segments in
Europe in 2017 (Witten et al., 2017). b) Percentage of fiber types used in Europe in 2010
(Reddy, 2015; Carus, 2011)

2

Generally, the fiber reinforcements are categorized into continuous
(endless) and discontinuous (chopped) fibers. In terms of continuous
fiber-reinforced polymers (CoFRP), a high fiber volume content of up to
60% can be achieved (Henning and Moeller, 2011). Typically, the fiber
length exceeds 50 mm. Combined with a controlled fiber alignment, high
stiffness and strength can be obtained with respect to the designated
fiber direction. In contrast, the formability of CoFRP is limited, and
long cycle times have to be considered. These drawbacks are overcome
by using discontinuous fiber-reinforced polymers (DiCoFRP), albeit a
lower stiffness and strength is given compared to CoFRP. In the context
of DiCoFRP, a distinction between short and long fiber reinforcements
is commonly made. Herein, short fibers exhibit fiber lengths of up to
1 mm, whereas long fibers have fiber lengths between 1 mm and 50 mm,
(Ehrenstein, 1999).



1.1 Motivation

International Research Training Group DFG-GRK 2018 aims to establish
an integrated engineering of this new material class. Based on an
interdisciplinary collaboration of the different projects, a virtual process
chain is constructed to design the structural parts. The different projects
within the process chain are illustrated in Figure 1.2.

Figure 1.2: Virtual process chain consisting of partial steps. Simulations are performed on
the macroscopic scale integrating results obtained at the microscopic scale.

A starting point in the process chain is given by the mold-filling
simulation that focuses especially on the fiber orientation resulting
from the manufacturing process, Hohberg et al. (2017). The local fiber
orientation and the effective viscosity are analyzed on the microscopic
level (Bertóti and Böhlke, 2017). During the production process, the
curing and the solidification of the plastificate are initially described by a
phase-field model on the microscopic scale (Schneider et al., 2017a). The
microstructure of the cured composite material is characterized bymeans
of μCT scans, by which the microstructural information such as the fiber
orientation is obtained, cf. Pinter et al. (2018). Thus, the fiber-matrix
interaction is investigated, and the interphase is characterized (Schober
et al., 2017). Taking the foregoing findings into account, the effective

3
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reinforced polymers (CoDiCoFRP), a new material class is created. The



1 Introduction

is optimized by shape-optimization simulations (Albers et al., 2017).
Areas exposed to particular high load are locally reinforced by patches
of continuous fiber reinforcements. These areas and the resulting optimal
patch positions are determined by patch optimization simulations, cf.
Fengler et al. (2018). For specific load cases, a structural analysis is
performed to investigate the damage behavior, cf. Schemmann et al.
(2018b). Experimental tests are performed by Trauth et al. (2018)
and serve to validate the foregoing simulations. Finally, the quality
assessment for the semi-finished product, as well as the cured SMC
composite, serves as an in-line process control as well as a quality control
for the final composite part (Zaiß et al., 2017). A reference structural part,
as shown in Figure 1.3, represents finally the successful implementation
of the virtual process chain.

Figure 1.3: Reference structure within the DFG-GRK 2078/1 consisting of DiCo fiber-
reinforced UPPH locally reinforced by patches of Co fiber reinforcements.

Research objectives of this thesis. Within the scope of the process
chain, mainly three topics are addressed: the (I) mean- and (II) full-
field homogenization to predict the effective thermoelastic material
properties, and the (III) experimental characterization of the thermo-
mechanical behavior using dynamic mechanical analysis (DMA) and
thermal expansion measurements, cf. Figure 1.4. The material system

4

material properties are determined by mean- and full-field simulations
(Kehrer et al., 2018). The structural part on the macroscopic length scale



1.1 Motivation

consists of a thermoset matrix reinforced with discontinuous (DiCo)
glass fibers.

Figure 1.4: Reinforced samples of the same material system that was used for the reference
structure are characterized in the first step. The microstructural information such as
fiber orientation or length is obtained. These microstructure characteristics are taken into
account in the simulation model, and the effective elastic properties are computed. The
presented material behavior is compared to the experimental data determined.

In detail, the main objective (I) of this thesis is to develop a thermo-
mechanical mean-field method that accounts for the fiber orientation
distribution of the SMC composite and reliably predicts the effective
elastic and thermal material properties. The orientation distribution
is given in terms of orientation tensors obtained by micro-computed
tomography (μCT) scans.

A benefit of the developed thermoelastic mean-field method is its
numerically efficient formulation. Hence, it can be connected to the
optimization or flow simulations and can thus be integrated into the
process chain. This is especially important since some commercial
software tools provide only simplified approaches for estimating the
overall properties. These approaches are mainly based on a rule of
mixture or on the Mori-Tanaka homogenization method. These built-in
methods exhibit limitations when applied to anisotropic constituents or
in terms of a multiphase composite with more than two distinct phases,
for instance. Hence, considering a more complex microstructure requires
a more elaborate method, such as the Hashin-Shtrikman (HS) two-step
method presented in this thesis.

5
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1 Introduction

Furthermore, the HS method is formulated in terms of a variable
reference stiffness which allows to tailor the mean-field model to a
specific material class. This is beneficial in terms of composites with a
high phase contrast.

The experimental analysis of the material reveal a strongly
temperature-dependent elastic modulus and temperature-independent
coefficient of thermal expansion (CTE) of the matrix. Thus, the HS
two-step method is formulated in terms of a temperature-dependent
stiffness to determine the effective elastic and thermal behavior not only
at room temperature but also within a reasonable temperature range.

The second aim (II) is to obtain the overall material properties by
application of a full-field method to raw μCT data. Based on the real
data, the local material behavior is calculated by the fast Fourier trans-
formation (FFT) method, and the effective properties are determined
by volume averaging. Due to comparatively high calculation times, the
full-field simulation is not directly applicable in combination with flow
simulations, for instance. The effective anisotropic Young’s modulus and
CTE computed by the full-field simulation, however, can be compared
to the results obtained by the mean-field simulation. This is necessary,
since the experimental data are only given with respect to a specific
point within the angular distribution of the effective quantities.

Furthermore, virtual microstructures that are related to real
microstructures can be created for a profound analysis of the
microstructural influence on the macroscopic material behavior. Due to
synthetic microstructures, influences from the segmentation procedures
are neglected.

The third objective (III) of this thesis is to experimentally characterize
the SMC composite by means of DMA. The DMA system is a commonly
used measuring technique to determine the thermoviscoelastic material

6



1.1 Motivation

parameters and the glass transition of polymers. The analysis of the
material allows quantifying the admissible temperature range of possible
applications. In addition, the thermal material behavior is characterized
by thermal expansion measurements. The measured data are used to
validate the numerical simulation results obtained by the mean- and
full-field homogenization.

Originality of this thesis. The thermoelastic mean-field method devel-
oped exhibits the following novelties:

• Direct use of orientation tensors: Many mean-field methods only
account for the microstructure via orientation distribution functions.
These, in turn, are derived from orientation tensors by taking
additional assumptions into account. To overcome this shortcoming,
an approach is developed that directly uses orientation tensors. The
benefit of this approach is that it enables a simple application in
combination with filling or flow simulations using, e.g., Moldflow®.
Methods, such as the Mori-Tanka estimate, are also formulated in
terms of orientation averages but can yield non-physical results when
applied to anisotropic constituents, for instance. Since the approach
developed does not exhibit such limitations, it is generally applicable
and particularly suitable for CoDiCo composites.

• Simple mathematical structure: The effective elastic stiffness approx-
imated by a Hashin-Shtrikman (HS) approach is formulated as stated
in Walpole (1966). This form is mathematical identical with the expres-
sion given in Willis (1977; 1981) but offers the advantage of a simpler
structure regarding the averaging performed on the tensors. Since,
the averaging of the tensors needs to be performed only once, instead
of twice, computation efforts are reduced, cf. Lobos Fernández (2018).

• Variable reference stiffness: The HS mean-field method is intro-
duced in terms of a variable reference stiffness which allows a
tailored approach to determine the effective thermoelastic material
properties. Since the choice of the proper reference material is not
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always unambiguous, a variable chosen reference stiffness allows
accounting for characteristics of a specific material class. Thereby, the
material modeling can be adjusted to a specific composite.

• Temperature-dependent stiffness: The HS two-step method is for-
mulated in terms of a temperature-dependent stiffness. This enables
to predict the effective elastic and thermal properties for the entire
temperature range in which the composite can be used.

The experimental investigations by means of dynamic mechanical
analysis (DMA) and measurements of the thermal expansion with a
video extensometer system provide the following new insights:

• New material class: A new material system consisting of a fiber-
reinforced polyester-polyurethane hybrid resin is considered. Thus,
an experimental characterization of the elastic and thermal properties
provides information about the material behavior. As a consequence,
conclusions can be drawn with respect to the material modeling of
this new material class.

• Field of application: Using DMA, the limitation of the field of appli-
cation, such as the temperature range of a possible application, is
identified by the glass transition.

1.2 State of the Art

Determining the microstructure. When using micromechanical ap-
proaches, profound information on the microstructure, including fiber
length, orientation, and volume fraction, is of crucial importance. During
the last decades, various methods for characterizing the microstructure
of a material have been developed. Generally, a classification into
destructive and non-destructive methods can be made. An often-applied
destructive method is represented by the 2D elliptical section method.
Applying this method, the sample is cut by a microtome, and the surface

8
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is polished. On the polished surface, the elliptical footprints of the
fibers are visible and can be subsequently evaluated by various image
analysis software tools. Herein, the angle between the fiber axis and
the direction perpendicular to the cutting surface can be determined
(Fakirov and Fakirova, 1985). Although this method is destructive, it is
still used due to its simplicity and low cost. Hine et al. (2014) applied
this method to determine the fiber orientation distribution and compute
the effective elastic tensile properties using a modified rule of mixture.
Major errors of the sectioning method are expected in terms of fibers
that are perpendicular to the cutting surface and thus exhibit a circular
cross-section (Clarke et al., 1993). Hence, this method works best in
terms of planar-oriented fibers.

Considering the non-destructive characterization of composites, the
computed tomography (CT) scans have gained significance, cf. Maire
and Withers (2014). In terms of μCT methods, the X-rays intersect
a sample which rotates around its center axis. Depending on the
absorption capacity of the constituents of the composite, the radiation
hits the detector plane behind the sample and produces a radiograph.
Some limitations arise in terms of the materials with a low absorption
index, such as carbon fibers in a polymer matrix. This drawback
can be overcome by applying non-conventional X-ray sources such as
synchrotron light (Bernasconi et al., 2008). From the projections, the
internal 3D microstructure can be reconstructed by stacking the 2D
images obtained previously (Feldkamp et al., 1984). The 3D voxel-based
image obtained is characterized by gray values and can be processed
for analyzing the internal fiber architecture such as the fiber orientation
distribution. In this context, manymethods can be found in the literature,
cf. Krause et al. (2010); Ohser and Schladitz (2009); Bernasconi et al.
(2012). In terms of low fiber volume contents, every single fiber can
be isolated, and the orientation angles are determined (Shen et al.,
2004). For increasing fiber volume contents, other methods are applied
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that are based on specific filtering algorithms applied to each voxel
of a reconstructed μCT scan. The overall fiber orientation within a
voxel-based image can be determined by means of common methods
like the Gaussian filter (Robb et al., 2007) or the Hessian matrix (Daniels
et al., 2006).

The microstructure analyzing tools or simulation methods are often
applied with respect to short fiber-reinforced composite. However, some
applications are given for injection-molded long fiber-reinforced plastics,
cf. Denault et al. (1989); Hine et al. (1995); Phelps and Tucker III (2009).

A general and complete description of the fiber orientation is given by
the orientation distribution function describing the probability of finding
a fiber of a specific orientation (Bay and Tucker III, 1992). This might
become time-consuming when computing more complex materials.
Introduced by Kanatani (1984), the mean fiber orientation distribution
can be quantitatively described in terms of fiber orientation tensors.
This representation is popular, especially in the context of simulating
flow-induced fiber orientation during the manufacturing process. For
injection molded applications, Advani and Tucker III (1987) presented
methods to compute the fiber orientation tensor of the fourth-order
based on the second-order tensor using a linear, quadratic, and hybrid
closure approximation.

In recent research works, the fiber length distribution is considered in the
material models, additionally to the fiber orientation distribution. The
studies and investigations performed aim at determining the influence of
the fiber length distribution and the volume fraction on the mechanical
properties, cf. Hine et al. (2002); Nguyen et al. (2008); Garesci and
Fliegener (2013).

Generally, for predicting the overall material behavior, both the raw data
obtained directly by conventional or synchrotron μCT scans and the
extracted orientation information given by orientation distributions or
orientation tensors are commonly used in modern methods. Müller et al.
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(2016) computed the effective elastic properties by means of orientation
tensors combined with mean-field homogenization. An extension for
considering the damage behavior is given in Schemmann (2018). Direct
use of the imported raw data is made using full-field methods such
as the Finite Element method (FEM) or the fast Fourier transformation
(FFT) method, cf. Schneider et al. (2016); Düster et al. (2012); Węglewski
et al. (2013). But also, orientation tensors are used combined with an
FFT-based homogenization, as presented in Goldberg et al. (2017), for
computing the effective nonlinear material properties.

Dynamic mechanical analysis. Dynamic mechanical analysis (DMA)
has become a widely used technique to characterize the thermoviscoelas-
tic behavior of materials. Using DMA, a stress or strain load is applied
to a sample, and the material’s properties obtained are analyzed as a
function of time, temperature, frequency, or load (Menard, 2008). Since
the technique is highly sensitive with respect to the movements of the
polymer chains, it represents a tool ideally suited for measuring the
transitions in polymers. Common synonyms throughout the literature
for DMA are dynamic mechanical thermal analysis (DMTA), dynamic
mechanical spectroscopy, or dynamic thermomechanical analysis.

One of the first attempt to measure the material’s response to an
oscillating load was made by Poynting et al. (1909). The first commercial
instruments for rheological measurements were developed in the 1950s,
such as the Weissenberg rheogoniometer or the Rheovibron (Gabbott,
2008). The viscoelastic properties were determined by cone-to-plate
measurements. In his first edition from 1961, Ferry (1980) presented
the phenomenological theory of linear viscoelasticity combined with
measured viscosity data. Since 1966, the modern period of DMA began
with the introduction of the torsional analyzer by Gillham, cf. Gillham
and Enns (1994). The early DMA systems, however, were difficult to
use and exhibited limitations with respect to the processability of the
data. In the early 1980s, Polymer Labs launched a DMTA for axial
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sample geometries. Following the instruments by Du Pont, PerkinElmer
and Triton Technologies developed sensors with higher sensitivity and
easy-to-use designs (Gabbott, 2008). The instruments developed offered
measurements with loading of up to maximal 40 N (Mettler Toledo),
whereas GABO developed systems with a loading of up to 150 N by 1981
and even 1500 N by 1988. Since the 1980s, the instruments have become
more user-friendly due to the progress in computers and software.

DMA systems have been applied to various composite systems. Some
attempts have been made by Reed (1980) and Mijović and Liang
(1984) to detect the presence of interphases in unidirectional carbon
fiber (CF)-reinforced polymers by applying DMA. Investigations by
Thomason (1990) for both glass and carbon reinforced epoxy composites
revealed that the interphases cannot be clearly detected due to the
complex interaction between matrix and fibers. Akay (1993) applied
DMA to a wide range of polymer systems, including short and long glass
fiber (GF)-reinforced thermoplastics as well as unidirectional CF epoxy.
Especially in the context of short fiber-reinforced polymers, studies
on the viscoelastic material properties were carried out by Tjong et al.
(2002). The dependency of the elastic and viscous material parameters
on the fiber volume content was investigated by Fung and Li (2006).
Mouzakis et al. (2008) used an environmental aging chamber and a DMA
system to experimentally investigate the failure of polymers exposed
to environmental effects. Their studies revealed a stiffening effect of
the matrix material exposed to UV radiation, accompanied by micro-
cracks. The behavior of a pre-damaged unidirectional CF-reinforced
epoxy is characterized in Kostka et al. (2016). In the context of a long
GF-reinforced thermoplastic, the nonlinear time-, temperature-, and
frequency-dependent behaviors were determined by Brylka et al. (2018),
who also derived the material’s parameters for the effective elastic
properties.
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Mean-field homogenization. Since materials exhibit a heterogeneous
microstructure at different length scales, the prediction of the overall
properties accounting for the underlying heterogeneities is the subject of
current and past research. Generally, the existing methods for predicting
the macroscopic material behavior can be divided into the bounding and
estimating methods (Dvorak, 2012).

Modern mean-field methods can be traced back to approaches for-
mulated by Voigt (1889) and Reuss (1929). Based on the principle of
minimum potential and complementary energy, the effective stiffness
and compliance, respectively, were derived for predicting the linear
elastic behavior of a polycrystal. Hill (1952) showed that the approach by
Voigt represents the upper bounds, whereas Reuss formulated the lower
bounds for the linear elastic material properties. Since bothmethods only
account for the volume fraction as microstructural information, these
bounds are denoted as first-order bounds. Hashin and Shtrikman (1962)
derived closer bounds that are based on a variational principle, cf. also
Walpole (1966; 1969). These bounds consider additional information on
the geometry of the inclusions and thus represent second-order bounds.
A generalized formulation accounting for eigenstresses and eigenstrains
is derived by Willis (1977; 1981), introducing Green’s function for a
homogeneous comparison material. More elaborate and higher-order
bounds were introduced by Kröner (1977) and applied to particulates
and fibrousmaterials inMilton (1985; 2002) and Torquato (2002). In terms
of anisotropic polycrystalline materials, enhanced Hashin-Shtrikman
bounds were developed by Böhlke and Lobos (2014). Initiated by Willis
(1983), the Hashin-Shtrikman variational principle was extended to
account for the nonlinear material behavior of composites, cf. Talbot
and Willis (1985). This attempt was generalized by Castañeda (1991),
introducing a heterogeneous comparison material to determine the
bounds for nonlinear behavior. These second-order bounds were,
for instance, applied to porous media (Idiart and Castañeda, 2005)
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or for determining the viscoplastic behavior of polycrystals (Liu and
Castañeda, 2004).

Based on Eshelby’s solution for a single inclusions problem (Eshelby,
1957), various approximation methods for estimating the effective mate-
rial properties have been developed. One of the simplest approximation
methods is given by the dilute distribution method, cf. Torquato (2002).
Herein, the inclusions or particles do not interact with each other but
are dilute distributed. Based on these assumptions, Maxwell (1891)
developed the effective conductivity, and Einstein (1906) the effective
shear viscosity of spheres dispersed in a fluid. One drawback of this
method is given in terms of higher concentrations of the inclusions so
that the Voigt and Reuss bounds might be violated (Nemat-Nasser and
Hori, 1993).

This drawback is overcome by the approximation method proposed by
Mori and Tanaka (1973). Using this method, the inclusions are embedded
into an infinite matrix subjected to an effective stress field which equals
the average stress of the matrix material. Due to the simple structure
of the Mori-Tanaka method, there are numerous applications, e.g.,
Benveniste et al. (1989); Chen et al. (1990); Zhao et al. (1989). Benveniste
(1987) has shown that in more general cases, such as for multiphase
composites with different aligned or shaped inclusions, the fundamental
condition of a symmetric effective stiffness is not necessarily ensured.
For the special case of isotropic constituents and unidirectional fibers,
however, Tucker III and Liang (1999) showed that the effective elastic
properties obtained by theMori-Tanaka method coincide with the results
obtained by the lower Hashin-Shtrikman bounds. In Brassart et al.
(2009), an extended formulation of the Mori-Tanaka method accounts for
nonlinear constituents subjected to finite strains. The method applied
has limitations when a failure mechanism occurs. Recent applications of
an extended Mori-Tanaka method, formulated in terms of orientation
tensors, are given by Brylka (2017). An approach to characterize the
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heterogeneous microstructure of sheet molding compound composites
by means of biaxial testing and an inverse parameter identification
is presented in Schemmann et al. (2018a;c). In combination with an
enhanced Mori-Tanaka mean-field model, the damage behavior is
investigated (Schemmann et al., 2018b).

Another well-known approximation method is given by the self-
consistent scheme, introduced by Hershey (1954) and Kröner (1958).
For this purpose, an inclusion is embedded in an infinite matrix with
the properties of the effective, unknown material. Despite its implicit
mathematical structure, the self-consistent scheme is widely applied,
cf. Budiansky (1965); Hill (1965). The thermoelastic material properties
were derived by Laws (1973) and extended to linear viscoelastic materi-
als in Laws andMcLaughlin (1978). Variousmethodswere derived based
on the self-consistent scheme. The generalized self-consistent scheme
by Christensen and Lo (1979) is a well-known representative. Related
to the three-phase model, the heterogeneity is embedded into a matrix
which, in turn, is surrounded by the effective medium. The generalized
self-consistent method exhibits restrictions to spherical or cylindrical
heterogeneities (Benveniste, 2008). Aiming for a general use, Zheng
and Du (2001) developed the effective self-consistent scheme, which is
valid for multiphase composites with arbitrarily shapedmatrix-inclusion
cells. A major shortcoming of the latter method is its complicated
structure. Thus, linearizing the effective self-consistent method results
in the interaction direct derivative method (Zheng and Du, 2001; Du and
Zheng, 2002).

In recent publications, use is made of two-step homogenization methods,
cf. Pierard et al. (2004). In this context, the considered domain is
divided into subdomains consisting of two phases, a matrix and an
inclusion phase (Lielens et al., 1998; Camacho et al., 1990). In the first
step, the homogenized solution of each subdomain is determined. The
overall properties are obtained by averaging over all subdomains. Since
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a subdomain consists of only a two-phase material, the Mori-Tanaka
method is applicable and thus often used, cf. Doghri and Tinel (2005).
For the second step, the Voigt or Reuss methods are applied (Doghri
and Friebel, 2005). In Müller (2016), a two-step method applied to
a short fiber-reinforced composite is compared to the self-consistent
scheme and the interaction direct derivative. n-step or hierarchical
homogenization methods have been developed especially in the context
of hybrid composite systems, cf. Jendli et al. (2009). Anagnostou
et al. (2018) applied a hierarchical homogenization method to a SMC
consisting of three homogenization steps at different length scales.
The homogenization methods used in the corresponding steps are the
Mori-Tanaka method and the composite cylinders method (Christensen
and Lo, 1979; Meraghni and Benzeggagh, 1995; Matzenmiller and
Gerlach, 2004). Thereby, the effective viscoelastic behavior is determined,
as well as the anisotropic damage behavior, considering a penny-shaped
microcrack density of the matrix.

Full-field homogenization. In recent years, the considered composite
systems and applications exhibited increasingly complex microstruc-
tures. In this context, full-field methods, such as the finite element
method (FEM) or the fast Fourier transformation (FFT) approach, are
powerful tools to analyze the local and overall behavior of multiphase
composites. Generally, in the context of full-field homogenization, a
boundary value problem for a representative volume element or a unit
cell is defined. Caused by external loads, the local solution is obtained
by applying the full-field method. The homogenized properties can be
computed by volume averaging.

Using the FEM, the viscous and damage behavior of a long fiber-
reinforced thermoplastic is investigated by Fliegener (2015). Numerical
damage models with single and multi-fibers are considered in Wang
et al. (2009). Applications to linear as well as nonlinear problems
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in the context of viscoelasticity and thermoelasticity are presented in
Ostoja-Starzewski (2006).

Considering the FFT-based methods, no meshing or assembling is
necessary, and thus, arbitrary and complex microstructures can be
considered. Furthermore, the FFT-based computations are much faster
than computation by applying the FEM, for instance, cf. Michel et al.
(1999). Moulinec and Suquet (1994; 1998) first proposed an iterative FFT
method to solve the integral Lippmann-Schwinger equations (Kröner,
1977) that are equivalent to the periodic boundary value problem in
linear elasticity. In recent years, attempts have been made to speed
up solvers or to extend the field of applications and to account for
geometrically and physically nonlinear material behavior. In Michel et al.
(2001), modifiedmethods are derived for composites with high or infinite
contrasts between the constituents of a composite. These methods
allow for the handling of composite structures containing voids, rigid
inclusions, or exhibiting nonlinear material behavior, cf. also Monchiet
and Bonnet (2013). Vinogradov and Milton (2008) proposed applying an
enhanced FFT method to compute the thermoelastic material properties.
Various methods have been proposed to solve nonlinear Lippmann-
Schwinger equations and to determine the material behavior at finite
strains (Lahellec et al., 2003; Eisenlohr et al., 2013). Algorithms for
investigating damage phenomena (Sliseris et al., 2014) and progressive
damage in composite materials have been developed (Spahn et al., 2014).

Kabel et al. (2014) developed a numerically efficient Newton-Krylov
solver to compute the FFT-based homogenized properties at large
deformations. The significant reduction in the computational effort
was exemplarily demonstrated on a two-phase laminate and a glass
fiber-reinforced polymer structure. Schneider (2017a) developed a
gradient-based solver that can be directly applied to inelastic problems.

A comprehensive benchmark study is performed by Andrä et al. (2013)
for various segmented 3D images of geomaterials. In this study, the
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effective physical properties like the electrical conductivity or elastic
modulus are computed by various full-field methods such as the finite
difference method, FFT, or FEM. Thus, conclusions are drawn with
respect to the solver type, the boundary condition, or the segmentation
process.

Discretization by trigonometric polynomials leads to an ill-conditioned
problem in terms of high material contrasts. Schneider et al. (2016)
proposed a discretization method by finite differences on a staggered
grid to obtain a fast and robust solver for linear elastic problems. A
generalization by trilinear hexahedral elements for physically nonlinear
material behavior is presented in Schneider et al. (2017b). Kabel et al.
(2015) introduced a discretization method to treat interface voxels.
This so-called composite voxel technique increases the accuracy of the
computations with respect to local and effective elastic quantities. An
extension to the inelastic material behavior of composites is given in
Kabel et al. (2017).

1.3 Outline of the Thesis

The structure of this thesis is as follows.

Chapter 2 presents the continuum mechanical fundamentals and,
particularly, the thermoelastic constitutive equations with temperature-
dependent coefficients.

Chapter 3 addresses the characterization of the microstructure of the
SMC composite considered in this thesis. First, a general classification
of the fiber-reinforced composites is provided. Subsequently, the
microstructure of a DiCo fiber-reinforced composite sample is analyzed
based on reconstructed μCT data. This analysis reveals the characteristic
properties of the material considered.
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Chapter 4 introduces basic information with respect to DMA and, partic-
ularly, to the measuring system used. Experimental investigations of the
pure and fiber-reinforced thermoset material are discussed. Moreover,
the experimental setup for the measurements of the thermal expansion
coefficients is presented, and the results obtained are discussed.

Chapter 5 presents the mean- and full-field methods for predicting the
elastic and thermal properties. In terms of the mean-field method, a
variable reference stiffness is introduced, and the effective stiffness and
thermal expansion are determined by means of orientation averaging.
Moreover, the fundamentals of the FFT are explained for the full-field
method.

In Chapter 6, the application of the homogenization methods is
presented with respect to the SMC composite. The predicted elastic
and thermal properties are compared to experimental data from the
DMA and CTE measurements, and the results observed are discussed.

Finally, in Chapter 7, concluding and summarizing remarks are given.

1.4 Notation, Frequently Used Acronyms,
Symbols, and Operators

In this thesis, a direct tensor notation is preferred. Tensor components
are indicated by Latin subscripts and Einstein’s summation convention
is applied. Frequently used symbols, acronyms and operators are listed
below.

Acronyms

μCT Micro-computed tomography
CF Carbon fiber-reinforced
CoDiCoFRP Continuous-discontinuous fiber-reinforced

polymer
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CoFRP Continuous fiber-reinforced polymer
CTE Coefficient of thermal expansion
DiCoFRP Discontinuous fiber-reinforced polymer
FEM Finite element method
FFT Fast Fourier transformation
GF Glass fiber-reinforced
HS Hashin-Shtrikman
HS+ Upper Hashin-Shtrikman bound
HS− Lower Hashin-Shtrikman bound
LFRP Long fiber-reinforced polymer
ODF (Fiber) orientation distribution function
RVE Representative volume element
SMC Sheet molding compound
UD Unidirectional (microstructure type)
UPPH Unsaturated polyester-polyurethane hybrid resin
vol.% Volume fraction in %

Latin letters

a, b, A, B, D, . . . Scalar quantities
u, v, w, . . . First-order tensors
A, B, C, . . . Second-order tensors
A,B,C, . . . Fourth-order tensors
E′ Storage modulus
E′′ Loss modulus
E Young’s modulus
cF Fiber volume fraction
cM Matrix volume fraction
f(n) Fiber orientation distribution function
lF Fiber length
v Volume
a Second-order eigenstrain localization tensor
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G Eigenstress tensor
I Second-order identity tensor
N Orientation tensor of second-order
A Strain localization tensor
B Stress localization tensor
C0 Stiffness tensor of a reference medium
C Stiffness tensor
G0 Periodic Green operator for isotropic

reference medium
N Orientation tensor of fourth-order
P Hill’s polarization tensor
I
S Symmetric fourth-order identity tensor
P1 First isotropic projector: P1 = I ⊗ I/3
P2 Second isotropic projector: P2 = I

S − P1

Greek letters

αθ Coefficient of thermal expansion
ν Poisson’s ratio
tan δ Loss factor: tan δ = E′′/E′

θ Temperature
αθ Thermal expansion tensor
ε Infinitesimal strain tensor
ε∗ Eigenstrain tensor
εθ Thermal strain tensor
σ Cauchy stress tensor

Operators

AB Linear mapping of a second-order tensor
A = C [B] Linear mapping of a second-order tensor

by a fourth-order tensor
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A · B Dot product of two tensors A, B

A ⊗ B Dyadic product of two tensors A, B

C = A�B Box product: (A�B)[C] = ACB

det(·) Determinant
div(·) Eulerean divergence of a tensorial quantity of

second order and higher
Grad(·) Lagrangian gradient of a quantity
grad(·) Eulerean gradient of a quantity
sym(·) Symmetric part of a quantity
(̄·) Effective (macroscopic) quantity
〈·〉 Volume/ensemble average of a quantity
(·)α Quantity with respect to phase α

(·)0 Reference quantity
(·)TH Major transposition of a fourth-order tensor,

CTH
ijkl = Cklij

(·)TL Left minor transposition of a fourth-order tensor,
CTL

ijkl = Cijlk

(·)TR Right minor transposition of a fourth-order
tensor, CTR

ijkl = Cjikl

(·)TM Mid minor transposition of a fourth-order tensor,
CTM

ijkl = Cikjl
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Chapter 2

Fundamentals of Continuum
Mechanical Material Theory

2.1 General Continuum Mechanical Equations

2.1.1 Kinematics

In continuum mechanics, a body is defined as a set of material
points. Regarding the Cauchy continuum, each material point has three
translational degrees of freedom. A deformation χ describes the change
of the geometry of the body due to kinematic boundary conditions or
loads applied. In this context, it describes the shape of the body in a
current configuration with respect to an arbitrarily chosen reference
configuration. Regarding the reference configuration, the position of a
material point is identified by a vector X . In the current configuration,
the position of the same material point is defined by the vector

x = χ(X, t). (2.1)

In order to describe the deformation of a continuum, constraints have
to be introduced concerning χ(X, t). Thus, χ(X, t) has to be invertible,
and continuously and twice continuously differentiable, cf. Bertram
(2005). In this context, cracks or damaged material is not considered. The
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v(X, t) = ẋ = ∂χ(X, t)
∂t

|X=const.. (2.2)

The change of a line element dX of the reference configuration, due to
the deformation, is described by a two-point tensor F . Thus, the line
element dx of the current configuration is obtained by dx = F dX . The
tensor F is given by means of the gradient of the deformation χ(X, t)
with respect to X . Therefore, F is denoted as the deformation gradient
and is defined by

F = Grad (χ(X, t)) = ∂χ(X, t)
∂X

, F ∈ Inv+. (2.3)

To describe the displacement of material points, the displacement
field u(X, t) = χ(X, t) − X is used. Its gradient with respect to X

is denoted as the displacement gradient H(X, t) and is given by

H(X, t) = Grad (u(X, t)) = ∂u(X, t)
∂X

. (2.4)

2.1.2 Balance of linear and angular momentum

Balance equations relate the rate of change of an additive quantity in
a considered volume to the production and supply of this quantity
in the corresponding volume and the associated non-convective flux
across the boundary (Müller, 1985). Subsequently, a material volume v

is considered. Applying a localization procedure to the integral form of
a balance equation yields a local form of the balance equation.

In classical continuum mechanics, five balance equations hold, inde-
pendently of the material properties, and serve as universal physical
laws (Truesdell and Toupin, 1960). These are the balances of mass, linear
momentum, angular momentum, energy, and entropy. For a given
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rate of change of the linear momentum ρv is related to the resultant
external forces, consisting of surface and volume specific forces, t and
ρb, respectively,

d
dt

∫
v

ρv dv =
∫

v

ρb dv +
∫

∂v

t da. (2.5)

The surface traction field t on ∂v is related to the Cauchy stress σ by the
Lemma of Cauchy, i.e. t = σn, with the outward normal n. By means of
the divergence theorem and the Reynolds transport theorem for regular
volumes, and considering the balance of mass, the local form of the
balance of linear momentum is given by

ρv̇ = ρb + div (σ) , (2.6)

which reduces to 0 = ρb + div (σ) in the case of a quasi-static equilib-
rium. The balance of angular momentum in the integral formulation
reads

d
dt

∫
v

x × ρv dv =
∫

v

x × ρb dv +
∫

∂v

x × t da, (2.7)

resulting to Boltzmann’s axiom, stating the symmetry of the stress tensor
(Bertram, 2005)

σ = σT. (2.8)

2.1.3 Balance of internal energy

The first law of thermodynamics relates the rate of the total energy to
the power expended by surface and volume forces as well as by the
heat supply in the volume and the heat flow across the boundary of the
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d
dt

∫
v

ρe + 1
2ρv · v dv =

∫
v

ρb · v + ρr dv +
∫

∂v

t · v − q · n da, (2.9)

where e represents the internal energy, q the heat flux vector, and r

the heat supply. Taking into account the balance of mass and linear
momentum, the balance of internal energy is obtained

ρė = σ · D − div (q) + ρr. (2.10)

The rate of deformation tensor D is the symmetric part of the velocity
gradient L = Ḟ F −1, i.e. D = (L + LT)/2.

2.1.4 Dissipation inequality

The balance of entropy reads

d
dt

∫
v

ρη dv =
∫

v

ρrη dv +
∫

v

ργ dv −
∫

∂v

qη · n da, (2.11)

where η denotes the entropy, γ the entropy production, qη the entropy
flux, and rη the entropy supply. According to the second law of thermo-
dynamics, the entropy production is non-negative, i.e. Γ =

∫
v

ργ dv ≥ 0
for all thermodynamical processes. For a reversible thermodynamical
process, the entropy production vanishes, i.e. Γ = 0, while Γ > 0 holds
for an irreversible thermodynamical process. The local form of the
entropy balance can be transformed into the local dissipation inequality

ρδ = ρθη̇ − ρθrη + θdiv
(
qη

) ≥ 0, (2.12)

where δ = γθ is referred to as dissipation. For the entropy supply and
the entropy flux, rη = r/θ and qη = q/θ are assumed (Coleman and Noll,
1963). The internal energy can be expressed by means of the Legendre
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e = θη + ψ, (2.13)

with ψ as the Helmholtz free energy density. Considering the Legendre
transformation and the local form of the balance of internal energy, the
local dissipation inequality reduces to the Clausius-Duhem inequality,
reading

ρδ = σ · D − ρψ̇ − ρθ̇η − 1
θ

q · grad (θ) ≥ 0. (2.14)

2.2 Thermoelasticity with Temperature-
Dependent Coefficients

2.2.1 Exploitation of dissipation inequality

In the following, small deformations are considered, characterized by

‖ H ‖=
√

tr(HHT) � 1. Thus, no difference is made between the dif-
ferential operators, grad (·) and Grad (·). Hence, the displacement gradi-
ent is given by H = grad (u). Introducing a measure of deformation, the
infinitesimal strain tensor is defined by ε = (H + HT)/2. Furthermore,
D can be expressed in terms of the material time derivative of the
infinitesimal strain tensor reading D = ε̇. An additive decomposition of
the infinitesimal strain ε into an elastic strain tensor εe and an eigenstrain
tensor ε∗ is assumed, i.e. ε = εe + ε∗. Eigenstrains can be induced due
to phase transformation, initial strains, or as in this context, by thermal
expansion. In general, the free energy depends on the infinitesimal
strain ε, the temperature θ, the temperature gradient g = grad (θ), and
a set α of internal state variables, i.e. ψ = ψ(ε, θ, g, α). Describing a
thermoelastic material behavior, the internal state variables are not
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ψ = ψ(ε, θ, g). (2.15)

For the material time derivative of the free energy density, one obtains

ψ̇ = ∂ψ

∂ε
· ε̇ + ∂ψ

∂θ
θ̇ + ∂ψ

∂g
· ġ. (2.16)

Thus, the Clausius-Duhem inequality reads

(σ − ρ
∂ψ

∂ε
) · ε̇ − ρ(η + ∂ψ

∂θ
)θ̇ − ρ

∂ψ

∂g
· ġ − 1

θ
q · g ≥ 0. (2.17)

Since the dissipation inequality is linear in ε̇, θ̇, and ġ, the potential
relations

σ = ρ
∂ψ

∂ε
, η = −∂ψ

∂θ
, (2.18)

are necessary in order to ensure δ ≥ 0 for the arbitrary rates ε̇ and θ̇.
Furthermore, the free energy cannot depend on g, i.e. ∂ψ/∂g = 0. Thus,
the reduced dissipation inequality reads (Coleman and Gurtin, 1967)

−1
θ

q · g ≥ 0. (2.19)

2.2.2 Heat conduction

Combining the balance of internal energy in Equation (2.10) with the
Legendre transformation in Equation (2.13) and the potential relations
in Equation (2.18) yields

ρθη̇ + div (q) − ρr = 0. (2.20)
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Using Equation (2.18), the material time derivative of the entropy is
given by

η̇ = − ∂2ψ

∂θ∂ε
· ε̇ − ∂2ψ

∂θ2 θ̇ (2.21)

leading to

−ρθ
∂2ψ

∂θ∂ε
· ε̇ − ρθ

∂2ψ

∂θ2 θ̇ + div (q) − ρr = 0, (2.22)

(Haupt, 2002). By defining the heat capacity for constant strains as

cd = −θ
∂2ψ

∂θ2 , (2.23)

the differential equation for the heat conduction is derived

ρcdθ̇ = ρθ
∂2ψ

∂θ∂ε
· ε̇ − div (q) + ρr. (2.24)

2.2.3 Constitutive modeling

The previously discussed balance equations hold independently of
the material behavior. They constitute a system of underdetermined
equations, since fields are still included but not yet defined, such as the
stress tensor and the internal energy. This system cannot be solved
without additional constitutive relations that characterize a specific
material behavior reflecting experimental observations (Müller, 1985;
Truesdell and Toupin, 1960). Regarding, e.g., the previously discussed
differential equation of heat conduction, a constitutive law for the heat
flux q has to be chosen. Therein, Fourier’s law of heat conduction is
often considered, which fulfills the reduced dissipation inequality from
Equation (2.19). In this context, the heat flux vector is given in terms of
the heat conduction tensor K and the temperature gradient as q = −Kg
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(Bertram, 2005). For the special case of a thermal isotropic material,
K = κI , and Fourier’s law reduces to q = −κg, with κ denoting the
coefficient of heat conduction.

Experimental investigations of both pure and fiber-reinforced thermoset
materials reveal a highly temperature-dependent but less pronounced
frequency-dependent material behavior. Hence, the viscoelastic effects
are neglected, and a thermoelastic material model is considered. A
detailed discussion is given in Section 4.1.3. In order to capture
the temperature-dependency of the material, the physical properties
are modeled as functions of the temperature θ. Thus, according to
Equation (2.15), the free energy is specified by

ρψ = 1
2ε · C(θ)[ε] − G(θ) · ε + h(θ). (2.25)

Herein, the quantity C(θ) denotes the stiffness tensor, G(θ) represents
thermal stresses with respect to an unstrained state, and h(θ) represents
an additional function of temperature that is related to the specific heat
capacity (Schapery, 1967; 1968). Using Equation (2.18), the Cauchy stress
tensor σ and the entropy η are given by

σ = ρ
∂ψ

∂ε
= C(θ)[ε] − G(θ), (2.26)

η = −∂ψ

∂θ
= − 1

2ρ
ε · ∂C(θ)

∂θ
[ε] + 1

ρ

∂G(θ)
∂θ

· ε − 1
ρ

∂h(θ)
∂θ

(2.27)

Considering the additive decomposition and Equation (2.26), the
following relation is obtained

ε∗ = ε − εe = ε − C(θ)−1[σ] = C(θ)−1[G(θ)], (2.28)

resulting in

G(θ) = C(θ)[ε∗]. (2.29)
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An expansion of Equation (2.25) into a Taylor series with respect to a
reference temperature, i.e. θ = θ0, results in

ρψ = 1
2ε·(C(θ0) + ∂C(θ)

∂θ

∣∣∣∣
θ0

Δθ + O(Δθ2))[ε] (2.30)

−(G(θ0) + ∂G(θ)
∂θ

∣∣∣∣
θ0

Δθ + ∂2G(θ)
∂θ2

∣∣∣∣
θ0

Δθ2 + O(Δθ3)) · ε

+h(θ0) + ∂h(θ)
∂θ

∣∣∣∣
θ0

Δθ + ∂2h(θ)
∂θ2

∣∣∣∣
θ0

Δθ2 + O(Δθ3),

with Δθ = θ − θ0. It is assumed that the stiffness C(θ) depends linearly
on the temperature

C(θ) = C(θ0) + ∂C(θ)
∂θ

∣∣∣∣
θ0

Δθ = C1 + C2Δθ, (2.31)

and the thermal stress contribution G(θ) is a quadratic function of the
temperature

G(θ) = G(θ0) + ∂G(θ)
∂θ

∣∣∣∣
θ0

Δθ + ∂2G(θ)
∂θ2

∣∣∣∣
θ0

Δθ2

= G1 + G2Δθ + G3Δθ2. (2.32)

With Equation (2.29) and a Taylor series expansion with respect to θ = θ0

for the eigenstrains, the eigenstress contribution reads

G(θ) = C(θ)[ε∗(θ0) + ∂ε∗(θ)
∂θ

∣∣∣∣
θ0

Δθ + ∂2ε∗(θ)
∂θ2

∣∣∣∣
θ0

Δθ2]. (2.33)

At the reference temperature θ0, a strain-free state is assumed, i.e.
ε∗(θ0) = 0, and thus, G1 = 0. Furthermore, the first derivative of the
eigenstrains with respect to θ is identified as a thermal expansion,
i.e. ∂ε∗(θ)/∂θ = α(θ), with α(θ) denoting the second-order tensor of

31

thermal expansion. Thus, Equation (2.33) yields



2 Fundamentals of ContinuumMechanical Material Theory

G(θ) = C(θ)[α(θ0)Δθ + ∂α

∂θ

∣∣∣∣
θ0

Δθ2] = C(θ)[α2Δθ + α3Δθ2]. (2.34)

To be consistent with the notation in Equations (2.31) and (2.32),
coefficients in front of Δθ are denoted by index 2, while coefficients
in front of Δθ2 are labeled by index 3.

In the following, three special cases are in the field of interest. In this
view, the additional contribution h(θ) = ρhc(Δθ − θ ln(θ/θ0)) is used,
with the constant heat capacity hc (Bertram and Krawietz, 2012).

Linear thermoelasticity with temperature-dependent coefficients.
Using the Taylor series expansion of the stiffness and the eigenstress
contribution from Equations (2.31) and (2.34), respectively, the stress and
entropy expressions read

σ = (C1 + C2Δθ)[ε] − (C1 + C2Δθ)[α2Δθ + α3Δθ2] (2.35)

η = − 1
2ρ

ε · C2[ε] + 1
ρ

(C2[α2Δθ + α3Δθ2] (2.36)

+ (C1 + C2Δθ)[α2 + 2α3Δθ]) · ε − hc ln θ

θ0
. (2.37)

In this context, the stiffness C(θ) is assumed to be isotropic and is
modeled in terms of the temperature-dependent Young’s modulus, i.e.
C = C(E(θ), ν), with E(θ) = E1 + E2Δθ. The distribution of E(θ) is
identified by the experimental investigations presented in Section 4.1.3.
For an isotropic thermal expansion α(θ) = (α2Δθ + α3Δθ2)I , the
coefficients α2 and α3 are determined analogously by means of the
experiments discussed in Section 4.2.3.
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Equations (2.31) and (2.34) are reduced to

C(θ) = C1 = C, (2.38)

G(θ) = C[α]Δθ, (2.39)

considering a strain-free initial state. Hence, the stress and the entropy
are obtained by

σ = C[ε] − C[α]Δθ, (2.40)

η = 1
ρ
C[α] · ε − hc ln θ

θ0
. (2.41)

Hyperelasticity. For the last special case, a purely linear elastic
material behavior is considered, i.e. an isothermal state at θ = θ0. Thus,
Equations (2.31) and (2.34) yield

C(θ) = C, (2.42)

G(θ) = 0, (2.43)

for the stiffness and the thermal stress contribution. The resulting stress
is given by the linear elastic Hooke’s law, and the entropy vanishes
identically, i.e.

σ = C[ε], (2.44)

η = 0. (2.45)
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Linear thermoelasticity with constant coefficients. In view of a
linear thermoelastic material behavior with constant coefficients,





Chapter 3

Microstructure Characterization of
Long Fiber-Reinforced Polymers

3.1 Fiber-Reinforced Composites

3.1.1 Classification of fiber-reinforced composites

The knowledge of the overall or effective properties of a composite is of
essential need for designing structural parts. These overall properties
are highly influenced by the physical properties of the constituents
and by the microstructure of the composite. In this context, the phase
volume fraction represents the weakest information concerning the
microstructure. More profound microstructural information is given
by the orientation, size, shape, or spatial distribution of the phases.
In order to account for these local properties and their impact on the
effective behavior, it is essential to introduce characteristic length scales
(Torquato, 2002). Considering a certain scale, the local properties, as
well as the interactions between the phases of the composite, depend
on the material properties and on the phase geometry. Hence, many
different length scales can be considered, depending on the characteristic
size of the constituent or phase considered. In the simplest case, two
length scales are assigned to the composite, namely a macroscopic and
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a microscopic scale. For more complex structures, intermediate scales
are needed, referred to as mesoscopic scales. The macroscopic scale
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of a sheet molding compound (SMC) composite is associated with the
length scale of the sample, where the material behavior appears to be
“homogeneous”. On the smaller mesoscopic scale, the fibers tend to
agglomerate and form bundled fiber structures. The distinct phases
of the mesoscopic scale can be modeled by the bundled fibers and
the matrix material. Typically, the microscopic length scale is smaller
than the dimensions of the mesoscopic length scale but much larger
than the length scale on the molecular level (Milton, 2002). On the
microscopic level, the heterogeneous material behavior can be modeled
by resolving each phase. In terms of the SMC composite, the different
phases are given by the single fiber filaments and the surrounding matrix
material. Regarding other types of composite materials, heterogeneities
are represented by, e.g., the particles or different grains of a polycrystal.
In heterogeneous media, phases can be determined that exhibit certain
constant physical properties at the length scale considered, e.g., elastic
moduli or thermal conductivity. These phases can be modeled as
aggregates of the homogeneous phases occupying a subdomain Ωγ of
the total volume Ω.

In what follows, a fibrous, polymer-based composite is exclusively
considered. Regarding this type of composite, a distinct phase is referred
to as matrix phase and embeds glass or carbon fiber reinforcements.
Focusing first on thematrix material, a possible classification of polymers
is given with respect to their bonding structure, cf. Figure 3.1. This
submicroscopic structure is only visible on the molecular length scale.
Due to the present chemical processes, the bonding structure and chain
morphology differ and consequently contribute to the thermomechanical
behavior. Thus, a classification into thermosets, thermoplastics, and
elastomers is commonly applied, based on the characteristic submi-
crostructure (Brinson and Brinson, 2015). Especially, thermosets are
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more resistant against higher temperatures and flexible with respect to
design options, whereas thermoplastics offer the capability of reshaping
after temperature treatment.
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(a) (b) (c)
Figure 3.1: Characteristic polymer chain structure of a) polyethylene (thermoplastic),
b) polyurethane (thermoset), and c) natural rubber (elastomer), cf. Hall (1981).

The reinforcements can be classified into continuous (Co) and discon-
tinuous (DiCo) fibers. The former are adjusted during the production
process. Thus, the fiber orientation in the final structure can be controlled
in terms of the Co fibers. The adjustment of the fibers is often used to
define a unidirectional fiber orientation, leading to a high anisotropy
of the material properties. Hence, important design criteria concerning
strength, modulus, or thermal expansion can be customized. Composites
reinforced with DiCo fibers offer advantageous characteristics in the
production of complex part geometries and for functional integration.
Commonly, DiCo reinforcements are subdivided into long and short
fibers. Figure 3.2 gives an overview of the classification of the fibrous
reinforcements.

In the following, a thermoset-based composite reinforced with DiCo
glass fibers is considered. The composite is produced as plaques by
a sheet molding compound at the Fraunhofer Institute for Chemical
Technology (ICT). The manufacturing process is described in detail by
Bücheler (2018).
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Figure 3.2: Classification of discontinuous (DiCo) and continuous (Co) fiber reinforcements.
From the composite structural part (left) (demonstrator part fromDFG-GRK 2078/1 project
with continuous and discontinuous (CoDiCo) reinforcements), samples are extracted at
different locations (middle). The samples exhibit different microstructural characteristics
that can be analyzed by means of μCT scans. All μCT scans depicted are generated by
Pascal Pinter of the Institute of Applied Materials (IAM-WK, KIT). Depending on the
application requirements, fiber reinforcements with an endless, a short, or a long fiber
length can be used (right).

3.1.2 Computed tomography scans

Computed tomography scans (μCT) are widely used to characterize the
microstructure of a heterogeneous material (Kak et al., 2002). In a non-
destructive method, X-rays pierce through a sample, reach a detector,
and generate a radiograph. While the sample is rotated around a central
axis, the procedure is performed from several angles. Herein, each
radiograph depicts the absorption within the sample at a specific angle.
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The radiographs produced are transformed into slice images and stacked
as a volumetric image representing the microstructure of the considered
domain of the sample. Generally, the resolution of the image can be
adjusted by varying the distance between the object and the sample
or the object and the detector. By implication, the resolution competes
with the image size, since a higher resolution leads to a smaller scanned
region and vice versa. All μCT scans within this workwere performed by
Pascal Pinter at the Institute of Applied Materials (IAM-WK, KIT). The
collaboration took place within the context of the project DFG-GRK 2078.
The scans were made on a YXLON precision computed tomography
system with an open X-ray-reflection tube with a tungsten target. It uses
a 2048 × 2048-pixel Perkin Elmer flat panel detector with a pixel pitch of
200μm. The images are acquired with an acceleration voltage of 80 kV
and a target current of 0.1 mA.

3.1.3 Mathematical description of a
fibrous microstructure

For engineering applications, it is desirable to obtain the information on
the microgeometrical configuration of a composite. This includes the
fiber length distribution or, particularly, the fiber orientation distribution.
For this purpose, each voxel is applied to a filtering algorithm (Pinter
et al., 2018) from which fiber orientation tensors, fiber orientation
distribution functions, or discrete fiber orientation histograms are
determined. In this context, the resulting orientation information
is limited to straight fibers. The orientation distribution for fibers
with arbitrary curvatures or waviness is not clearly defined (Abdin
et al., 2014). One approach is given by Komori and Marishima (1978)
who approximate the orientation distribution of curved fibers by a
various number of subdivided straight segments. This procedure,
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however, is dependent on the segment lengths and thus might lead
to a computationally complex problem.

In terms of fiber orientation histograms, the fiber orientation is discretely
given by the fiber orientation axis nγ of a certain straight fiber γ.
The fiber axis is parametrized by the angles ϑ and ϕ, using spherical
coordinates, i.e. n=̂(sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ)T with respect to the
{x, y, z} coordinate system, see Figure 3.3a. On the macroscopic level,
homogenized quantities such as the effective stiffness C̄ are introduced.
For discretely given fiber orientations nγ and a parameter set pF and pM
for the fiber and the matrix material, respectively, the effective stiffness
can be formulated in terms of

C̄ = �(pF, pM, nγ). (3.1)

Fiber orientation histograms represent the orientation distribution and
serve as a graphical description, see Figure 3.3b.

(a)

0 30 60 90 120 150 180
Orientation angle in ◦

0

1

2

3

4

5

6

7

N
u

m
b

e
r 

o
f 

v
o
x
e
ls

 ×
1
0
7

(b)
Figure 3.3: a) Parametrized fiber orientation in spherical coordinates {ϑ, ϕ}. b) Fiber
orientation histogram of an SMC composite sample.
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A more general description of the fiber orientation is given by the fiber
orientation distribution function (ODF) (Advani and Tucker III, 1987). It
represents the orientation density of fibers aligned in any unit direction
n as a continuous distribution over the unit sphere. Using the fiber ODF
f(n), the effective stiffness is expressed by

C̄ = �(pF, pM, f(n)). (3.2)

Considering the surface on a unit sphere S = {n ∈ R
3 : ‖n‖ = 1}, the

ODF is normalized and non-negative, i.e.

∫
S

f(n) dS = 1, f(n) ≥ 0, ∀n ∈ S, (3.3)

with the surface element dS = sin ϑ dϕ dϑ/(4π). Moreover, f(n) is
centrosymmtric, i.e. f(n) = f(−n) (Zheng and Zou, 2001). By means
of Dirac’s delta distribution function δ(n, nγ) and N equally weighted
fiber orientations n, the empirical fiber ODF is defined by

f(n) = 1
N

N∑
γ=1

δ(n − nγ), (3.4)

(Advani and Tucker III, 1987; Kanatani, 1984).

Depending on the microstructure considered, a description of the
orientation state by fiber orientation distribution functions can exhibit a
computational effort (Lee et al., 2003). In contrast, orientation tensors
compactly represent the fiber orientation. Thus, some homogenization
methods provide a direct use of orientation tensors. For this purpose, the
stiffness is formulated in terms of the orientation tensor of the second-
and fourth-order, N and N, respectively,

C̄ = �(pF, pM, N ,N). (3.5)
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According to Kanatani (1984), fiber orientation tensors are moment
tensors of the ODF referred to as orientation tensors of the first kind
defined by

N =
∫

S

f(n)n ⊗ n dS, N =
∫

S

f(n)n ⊗ n ⊗ n ⊗ n dS. (3.6)

In terms of an empirical fiber ODF, the orientation tensors read

N = 1
N

N∑
γ=1

nγ ⊗ nγ , N = 1
N

N∑
γ=1

nγ ⊗ nγ ⊗ nγ ⊗ nγ . (3.7)

Herein, the fiber lengths, as well as the fiber diameters, are considered
constant quantities. The orientation tensors of the first kind possess all
symmetries, i.e.

N = NT, N = N
TH = N

TR = N
TL = N

TM . (3.8)

Furthermore, they are not linearly independent; thus, a contraction
N = N[I] lowers the rank. For discussions on orientation tensors of the
second and third kinds, the reader is referred to Kanatani (1984).

In the case of microstructures with fibers distributed isotropically in
one plane or in space, as well as fibers aligned unidirectionally, the
orientation tensors are given analytically and illustrated in Figure 3.4.

3.2 Microstructure Characterization
of SMC Composites

The composite considered in this work consists of unsaturated polyester-
polyurethane hybrid resin (UPPH) as the matrix material. It is reinforced
with discontinuous long glass fibers of an approximately constant length
of lF = 25 mm, a constant diameter of dF = 12μm, and at a fiber content
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(a) (b) (c)
Figure 3.4: Orientation tensors for a) planar isotropic, b) isotropic, and c) unidirectionally
oriented fibers with illustrations of the corresponding microstructures.

of cF = 22 vol.%. Detailed descriptions of the production process by
SMC are given in Section 4.1.2. For reinforced UPPH samples, μCT
scans are performed. The results of the μCT scan of a specific sample
are given in Figure 3.5. The geometric dimensions of the sample are
illustrated in Figure 3.5a. The orange-colored area indicates the scanned
area. A reconstruction of the μCT scan as a three-dimensional volume
image is shown in Figure 3.5b. Herein, the matrix material is colored in
black, and the fibers are illustrated in white color. The volume element
consists of 1826 × 1887 × 560 voxels in the x-, y-, and z-directions and
exhibits a resolution of 5.5μm. The resulting geometric dimensions
of approximately 10 × 11 × 3 mm3 are illustrated in Figure 3.5b. The
orientation distribution is analyzed for the μCT scan considered and
depicted in Figure 3.5c. Using the HSV color map, each fiber orientation
is identified by its corresponding color. The procedure for the orientation
analysis is explained in detail in Pinter (2018). Fibers that are aligned
purely in the x-direction are colored in red, and fibers in the y-direction in
blue. Mixed colors represent mixed orientations. The color distribution
indicates a slightly bigger amount of the blue color. Thus, the fibers
oriented in the y-direction are slightly dominant compared to those in
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the x-direction. A part of the considered volume element is scanned at
a higher resolution of 3μm and depicted in Figure 3.5d. Consequently,
a smaller volume region is obtained. Thus, the single fiber filaments
are visible at a higher resolution at the upper surface. At the areas in
between, the fibers exhibit a layered structure of fiber bundles.

(a) (b)

(c) (d)
Figure 3.5: a) Geometry of the sample used for μCT analysis. b) Reconstructed μCT data
for a 0◦ sample from a 1D plaque. c) Orientation analysis for μCT data with a resolution
of 5.5μm, and d) a resolution of 3μm. The top layer corresponds to z = 0 mm, and the
bottom layer to z = 3 mm.

Regarding both scanned volume images, slices in the x-y-plane at
different positions on the z-axis are depicted in Figure 3.6. Figure 3.6a
illustrates the slices for every 0.5 mm along the thickness obtained for
the resolution at 5.5μm, whereas Figure 3.6b presents the corresponding
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results for the higher resolution. The microstructure in the slices at the
bottom and the top of the volume image, i.e. at z ≈ 0 mm and z ≈ 3 mm,
exhibits curved fibers. In these regions, the microstructure is governed
by individual fiber filaments that have split away from the fiber bundles.
In the slices in between, a strongly geometric arrangement of the fibers is
detected, forming straight fiber bundles. This geometrical configuration
on the microscale is typically found in SMC composites. Due to
the resulting domain-like structure, SMC composites are sometimes
referred to as aggregated systems (Böhm, 2004). Since these domains are
characterized by roughly straight fiber segments, a mean-field method
can be applied which is generally based on straight, ellipsoidal shaped
single inclusions.

Figure 3.7a depicts the diagonal components of the orientation tensor
of the second-order N over the thickness z for the volume image
shown in Figure 3.5b. As typically studied for SMC composites, an
orientation distribution with respect to the thickness is given. However,
no characteristic distributions are observed that indicate a layered
structure such as the core-shell distributions which are typical of LFT
materials. The Nzz component exhibits an almost vanishing contribution
and indicates a planar orientation distribution. This is reasonable since
the fiber length is significantly larger compared to the thickness of the
composite plaque. A comparison between the Nxx and Nyy components
reveals a more dominant fiber orientation distribution with respect to
the y-direction. The y-direction corresponds to the direction of the flow
during the production process, cf. Section 4.1.2.

Figure 3.7b shows the distribution of the fiber volume fraction along the
thickness in the z-direction. A variation along the thickness is observed.
The mean value is given by c̄F = 0.225 with a maximal and minimal
deviation of about ±20%.
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(a)

(b)
Figure 3.6: Orientation analysis for slices at different positions with respect to the z-axis in
the thickness direction. Orientation analysis is performed for 0◦-oriented sample with a
resolution of a) 5.5μm and b) 3μm.
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Figure 3.7: a) Diagonal components of the second-order orientation tensor N over the
thickness. b) Fiber volume fraction over the thickness.
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Chapter 4

Experimental Investigations of
Pure and Reinforced Polymers

4.1 Dynamic Mechanical Analysis

4.1.1 Fundamentals

A dynamic mechanical analysis (DMA) is performed to investigate the
thermoviscoelastic behavior of the thermoset-based composite and the
corresponding matrix material (Ferry, 1980). The elastic stiffness and the
viscous behavior of a sample can be determined using this measuring
method. Regarding DMA, a phase-shifted material response is analyzed
with respect to the dynamic excitation of the sample. First, a constant
strain εstat = ε0 is applied to the sample, cf. Figure 4.1a. This preload
is superimposed by a sinusoidal oscillation εdyn = ε̃0 sin(ωt), with ε̃0

denoting the constant amplitude, and ω the frequency of the oscillation.
The total excitation consists of a static and a dynamic load reading

ε(t) = εstat + εdyn = ε0 + ε̃0 sin(ωt). (4.1)

Hence, the material’s response due to the excitation is also sinusoidal.
Especially for polymers, a phase shift δ between the excitation ε(t) and
the response σ(t) is observed, cf. Figure 4.1a. Thus, the resulting stress
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σ(t) = σ0 + σ̃0 sin(ωt + δ) (4.2)

(Menard, 2008). In the context of polymeric composites, the temperature-
dependent behavior is of interest as well. Thus, the sample is addition-
ally subjected to temperature load. In this context, strain-controlled tests
are recommended: The increasing temperature leads to a softening of
the sample. In terms of a stress-controlled excitation, the dynamic strain
amplitude increases with higher temperatures, leading to increasing
deformations of the sample. Thus, nonlinear, irreversible deformations
of the sample are obtained at some point. However, when a constant
strain load is applied, the deformation of the sample will remain in the
linear, reversible region.

(a) (b)
Figure 4.1: a) Sinusoidal excitation ε(t) and material’s response σ(t) with amplitudes ε0
and σ0. The phase shift δ is given between excitation and response. b) Representation
of the complex modulus E∗ by the storage modulus E′ as the real part and by the loss
modulus E′′ as the imaginary part.

The magnitude of the complex modulus E∗ is determined by the ratio
of the stress amplitude to the strain amplitude, reading

|E∗| = σ̃0

ε̃0
. (4.3)
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As sketched in Figure 4.1b, E∗ consists of a real and an imaginary
part, denoted as storage modulus E′ and loss modulus E′′, respectively,
reading

E∗ = E′ + iE′′. (4.4)

The storage modulus and the loss modulus are defined by

E′ = |E∗| cos δ = σ̃0

ε̃0
cos δ, E′′ = |E∗| sin δ = σ̃0

ε̃0
sin δ (4.5)

(Ehrenstein, 1999). The integral stress power consists of a stored and a
dissipative part, Wstor and D, respectively, and is given by

∫
σ(t)ε̇(t) dt = Wstor + D (4.6)

(Busfield and Muhr, 2003). Choosing exemplarily a quarter cycle, one
obtains for the stored contribution

Wstor = ε̃2
0E′

∫ π/(2ω)

0
sin(ωt) cos(ωt) dt = ε̃2

0
2 E′. (4.7)

As Equation (4.7) reveals, Wstor is proportional to the storage modulus.
Hence, the storage modulus represents the instantaneous elastic material
response to the cyclic load. In contrast, the loss modulus characterizes
the viscous behavior caused by internal friction, for instance. The loss
modulus is proportional to the dissipation, reading

D = ε̃2
0E′′

∫ π/(2ω)

0
cos2(ωt) dt = π

4 ε̃2
0E′′. (4.8)
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The ratio of the loss to the storage modulus is referred to as the loss
factor tan δ

tan δ = sin δ

cos δ
= E′′

E′ , δ ∈ [0◦, 90◦]. (4.9)

Thus, E∗ = E′ and δ = 0◦ for a purely elastic behavior. A purely viscous
behavior is obtained for E∗ = E′′ and δ = 90◦ (Ehrenstein, 1999).

Depending on the load type, the experiments can be classified into

• Temperature sweeps: varying temperature at a constant frequency

• Frequency sweeps: varying frequencies at a set temperature

• Dynamic stress-strain sweeps: increasing dynamic load amplitudes at
a fixed load rate

Generally, a sweep indicates the varying part of the load applied. A time
sweep, e.g., identifies the time as the varying quantity, whereas all other
load parameters, such as temperature or frequency, remain constant.

Regarding temperature sweeps, the material’s response is measured as
a function of the temperature applied. Additionally, various thermal
transitions in the polymer can be detected. In general, thermal transitions
can be described by relaxation times or, equivalently, by free volume
changes of polymers, including SMC materials (Dlubek et al., 2005).
Based on the free volume concept, the particular size of local free
volumes is related to the mobility of the molecular polymer chains.
At low temperatures, the molecules are in a compressed state. Heating
up the material, the free volume increases due to the bond and side chain
movements, referred to as γ-transition. Ongoing heating leads to the
β-transition which is characterized by movable whole side chains. By
further heating, the α-transition or glass transition θg is finally reached.
In general, the glass transition is denoted as the major transition. In
Figure 4.2, an illustration of the changing bonding structures associated
with the corresponding transitions is given for thermosets. For this
class of materials, heating above θg inhibits the slipping of the chains
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by the cross-linked polymer chains (Brinson and Brinson, 2015). This
results in the degradation and in the burning of the material. For some
semi-crystalline polymers such as polypropylene, θg marks a lower
temperature limit above which applications are recommended. Hence,
θg is used to define the upper or lower temperature limits for possible
applications. This operating range is particularly important with respect
to the strength and stiffness requirements in industrial applications. In
terms of purely crystalline polymers, no glass transition is observable.

Figure 4.2: Qualitative illustration of the distribution of tan δ over increasing temperature
for a thermoset polymer. The minor transitions are denoted by γ and β, whereas the glass
transition α is given at θg . With increasing temperature θ, the movement of polymer chains
of the bonding structure increases as well. Thus, the free volume increases as illustrated
by the corresponding bonding structure. After θg , a degradation of the chains occurs.

Frequency sweep tests focus on the viscoelastic material properties
and aim at studying the effect of frequency on the temperature-driven
changes of the material properties. From these tests, the relaxation
behavior of polymer chains can be extracted (Lobo and Bonilla, 2003). A
combination with a temperature sweep yields a so-called temperature-
frequency sweep test that accounts for a varying temperature as well as
a varying frequency. In this context, higher frequencies induce a more
elastic-like behavior, resulting in a stiffer material behavior. Regarding
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the glass transition, a higher frequency shifts the observed θg to a higher
temperature. As described in Ehrenstein (1999), there are at least five
common methods to determine θg, e.g., the maximum loss modulus or
by the 2%-method. In this work, the maximum loss factor is used to
indicate the glass transition.

From dynamic stress-strain sweeps, the range of the strain amplitude
that defines a load leading to a deformation within the linear elastic
region can be determined. This quantifies the proper operating range of
a material.

4.1.2 Experimental setup

The composite used in this thesis is produced by a sheet molding
compound (Bücheler, 2018). In the first step, the pure resin material
is mixed and reinforced with chopped fibers at a constant length of
2.5 cm. Afterward, the resulting semi-finished product is rolled between
foils andmatured for a specified time at a controlled temperature. Finally,
the semi-finished product is cut into pieces and pressed into plaques.
During the compression molding, temperature and pressure loads are
applied to the material, leading to the curing of the resin.

In this thesis, three differently produced plaques are considered. In the
first case, the semi-finished product is placed in the left third of the mold
so that it flows in y-direction during the pressing process, see Figure 4.3a.
Regarding the second type, the semi-finished material is positioned
in the middle of the mold, leading to flow in the x- and y-directions
(Figure 4.3b). With respect to the third type, the mold is completely
filled with the semi-finished product so that during the production, no
flow occurs, cf. Figure 4.3c. From the resulting plaques, samples were
extracted at 0◦, 45◦, and 90◦ angles to the y-direction, cf. Figure 4.3d.
The geometry of the samples is sketched in Figure 4.3e.
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(a) (b) (c)

(d) (e)
Figure 4.3: a) Production of a composite plaque for which the semi-finished product is
placed in the left third of the mold. By means of pressure and temperature load, the
semi-finished product is pressed into a cured plaque. During the production process, the
uncured material flows from the left part to the end of the mold, i.e. in the y-direction.
b) Production of a composite plaque for which the semi-finished product is placed in
the middle of the mold. During the production process, the uncured material flows in
two directions, i.e. in the x- and y-directions, until it reaches the side walls of the mold.
c) Production of a composite plaque for which the mold is completely filled with the
semi-finished product. During the production process, no flow of the uncured material
occurs. d) The cutting plan of the cured plaques. From the middle of each plaque, samples
are taken at different orientations and are considered for DMA tests. e) The geometry of a
DMA sample.
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The DMA tests are performed by means of the testing system GABO
Eplexor® 500N at the Institute of Engineering Mechanics, Chair for
Continuum Mechanics, at the Karlsruhe Institute of Technology (KIT)
see Figure 4.4. The tests were performed under tension mode at a
controlled strain load. The temperature load is applied to the sample
inside the temperature chamber. Temperature control is assured by
heating elements in the temperature chamber and by instreaming liquid
nitrogen. The static and the dynamic load are applied by two drivers.
The static preload is applied by a displacement-controlled spindle drive,
whereas the dynamic load is applied by means of a force-controlled
electromagnetic shaker.

Figure 4.4: Photographs of the DMA system GABO Eplexor® 500N in the laboratory at
the Institute of Engineering Mechanics, Chair for Continuum Mechanics, at the Karlsruhe
Institute of Technology (KIT).

During the production process, the curing can cause stresses to be
enclosed in the material. Heating up the material afterward leads
to a rearrangement of the molecules, which thus relieves the trapped
stresses. Furthermore, a not fully completed curing process can induce
an unstable behavior in the material. Since an annealed and completely
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cured state of the material is desired, the samples are conditioned before
the DMA tests are performed. This treatment is done by slowly heating
up the samples in a tempering oven and holding the target temperature
for a specified time. Depending on the sample’s size and the polymer
material, recommendations can be found in Ehrenstein (1999). The
samples in this work are conditioned at 120◦C for 12 h.
The following section presents the experimental results obtained for
the pure and fiber-reinforced UPPH material. First, the matrix material
is considered. The material behavior of an unconditioned sample is
investigated by means of temperature sweep tests. Thus, conclusions
can be drawn with respect to the material behavior of samples directly
after the production process. Subsequently, the fiber-reinforced samples
are considered for which temperature and frequency sweep tests are
performed. The test parameters for the experimental procedures are
listed in Table 4.1.

Static load ε0 = 0.1% Dynamic load ε̃0 = 0.05%
Temperature θ ∈ [−30, 200]◦C Frequency f ∈ [0.5, 50] Hz
Contact force Fc = 5 N Heating/cooling rate 1 K/min
Load cell capacity 1500 N

Table 4.1: Test parameters for the temperature sweep and frequency sweep tests.

4.1.3 Temperature- and frequency-dependent material
behavior of pure and DiCo fiber-reinforced UPPH

Pure resin material. The production of the pure matrix samples is
documented in Appendix B. The preceding tests were performed with
pure resin samples. In this context, the storage modulus E′ is measured
at controlled room temperature of θ = 20◦C and at a fixed frequency
load of f = 5 Hz. The results are illustrated in Figure 4.5. Therein, the
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values of E′ for different samples show small deviations from each
other. The mean value of all samples is 3.37 GPa. The scatter of the
measured values is given by the standard deviation from the mean
value, cf. Figure 4.5. Based on the negligible scatter, the storage modulus
at room temperature for the pure resin material is considered constant.
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Figure 4.5: Time sweep tests for various pure UPPH samples indicate a nearly constant
elastic modulus for the matrix material.

For further investigations, temperature sweep tests at constant frequency
load of f = 5 Hz were performed for four different samples, see
Figure 4.6. In each case, two samples are from the same plaque,
i.e. the description “GF12” refers to one plaque as well as “R0”.
Regarding all samples considered, a highly temperature-dependent
behavior is observed, given by the drop in the storage modulus for
increasing temperatures. Especially, for temperatures θ ≥ 100◦C, the loss
factor tan δ increases and indicates pronounced viscoelastic behavior.
The peak in the tan δ curves detects the glass transition between 155◦C
and 160◦C. The distribution of E′ and tan δ shows deviations between
samples from different plaques, especially for θ ≥ 50◦C. This behavior
indicates a sensitivity of the material properties in the production
process.
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Figure 4.6: Temperature sweeps at the constant frequency f = 5 Hz for selected pure
UPPH samples show the temperature dependency of E′ and tan δ.

For two samples of the R0-plaque, the temperature sweeps are per-
formed at three different frequencies as depicted in Figure 4.7 on the
top. A frequency-dependent behavior of E′ is observed throughout the
temperature region considered. The behavior is more pronounced for
higher temperatures toward the glass transition. The loss factor tan δ

exhibits a fairly frequency-independent behavior for temperatures up to
100◦C, illustrated in Figure 4.7 on the bottom. For higher temperatures,
an increasing influence of the applied frequency on the tan δ distribution
is shown. Typically, the peak of tan δ is shifted to a higher temperature
for higher frequencies. In particular, the peak of tan δ is given at nearly
155◦C for f = 0.5 Hz whereas it is shifted by almost 18 K to 173◦C for
f = 50 Hz.
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Figure 4.7: Frequency sweeps for selected pure UPPH samples. The storage modulus E′
and loss factor tan δ are depicted over temperature θ for three frequency decades.
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Reinforced material. As stated previously, a conditioning of the
samples before the tests are performed leads to a decreasing scatter
of the experimental data. Consequently, the measured behavior of
conditioned samples is not affected by the post-curing effects of the
material, for instance. However, the quantitative difference between the
unconditioned and conditioned material behavior is of interest. Thus, in
order to investigate the behavior of the fiber-reinforced material directly
after the production, temperature sweep tests have been performed
using an unconditioned sample. For these investigations, a 90◦-oriented
sample from the 1D plaque is used. During the DMA test, the sample
is first cooled down from room temperature to -30◦C and kept constant
at this temperature for 30 min. Subsequently, the chamber is heated
to 200◦C and exposed to this temperature for 90 min. This cyclic
temperature load is repeated as sketched in Figure 4.8. Exposing
the sample to a high temperature during the first cycle constitutes a
conditioning of the sample. Thus, the behavior of the sample for the
second and further cycles corresponds to a conditioned sample, and
can be compared to the first cycle which represents the material at
unconditioned state.

Figure 4.8: Heating and cooling cycles for a 90◦-oriented, fiber-reinforced UPPH sample.

The results of the temperature sweep tests are depicted in Figure 4.9.
The storage modulus over the temperature is depicted on the left y-axis,
whereas the loss factor over temperature is shown with respect to the
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right y-axis. Regarding the two heating cycles, E′ and tan δ show
negligible deviations. The same is observed for the two cooling cycles.
Slight deviations are observed between the heating and the cooling
phases. The test was performed for other samples, showing comparable
results. Thus, no pronounced curing processes are observed directly
after the production of the samples. However, in order to ensure that no
process-induced behavior affects the interpretation of the results, all the
samples used for further investigations have been conditioned ahead of
time.
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Figure 4.9: Storage modulus E′ and loss factor tan δ over temperature θ for the different
heating and cooling cycles.

For the three types of differently produced plaques, the temperature
sweep tests are performed for three differently oriented samples at
f = 5 Hz. The storage and the loss modulus, as well as the loss factor
over temperature, are depicted in Figure 4.10. All fiber-reinforced UPPH
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samples exhibit a highly temperature-dependent behavior. Especially,
the storage modulus E′ for all samples exhibits a drop between the
maximal andminimal value of 75% to 80%. Regarding the 1D plaque, the
storage modulus decreases with an increasing inclination angle between
the flow direction and the orientation of the sample in the cured plaque.
This indicates a fairly anisotropic behavior. In contrast, the samples of
the 2D and the fully filled plaque show no distinct anisotropic behavior.
The distribution of E′ is approximately the same for all orientations of
these samples. This indicates a planar isotropic material behavior. The
loss modulus E′′ of all samples is characterized by a nearly constant
distribution for temperatures lower than 100◦C. For temperatures
above 100◦C, E′′ increases nonlinearly for all samples until it reaches a
maximum at approximately 155◦C. Quantitative deviations are observed
in terms of the different plaques. For samples of the 1D plaque, E′′

depends on the orientation of a sample. This is far less pronounced
with increasing planar isotropic oriented samples of the 2D and fully
filled plaque. The loss factor tan δ in all samples exhibits a similar
behavior as that for the loss modulus. For temperatures below 100◦C,
small values of nearly 0.02 are measured, whereas a strong increase is
observed at higher temperatures. An increase of tan δ indicates a distinct
viscoelastic behavior, whereas the small values below 100◦C show a
pronounced elastic behavior with negligible viscous effects. Compared
to the results for the pure material, the glass transition temperature
for the fiber-reinforced material is shifted to higher temperatures. In
particular, the glass transition temperature θg is detected between 160◦C
and 170◦C, depending on the sample considered. Consequently, the
operating temperature range of the reinforced thermoset material is also
shifted toward higher temperatures.

In addition to the temperature sweep tests, varying the frequency
allows investigating the frequency-dependent and thus viscoelastic
behavior. For these investigations, three samples of the 1D plaque are
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considered. The frequency is varied between 0.5 Hz and 50 Hz, which
covers three frequency decades. Analogous to the foregoing studies,
a temperature range of −30◦C to 200◦C is considered. The results are
shown in Figure 4.11. The storage modulus and the loss factor for seven
frequencies are depicted over temperature. Regarding the results for
E′, a remarkably small influence of the different frequency loads on the
measured behavior is observed for temperatures less than 100◦C.

A pronounced frequency-dependent behavior is detected for tempera-
tures higher than 100◦C. Especially near θg, an increasing frequency
yields an increased storage modulus of approximately 33% when
comparing the highest and lowest frequency load for all considered
samples. The frequency load affects the tan δ distribution particularly
for temperatures above 100◦C. Moreover, the peak of tan δ is shifted
toward higher temperatures for increasing frequencies. In particular, the
peak for the lowest frequency is shifted by nearly 20 K compared to the
peak for the highest frequency.
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(a) 1D plaque

(b) 2D plaque

(c) Fully filled plaque
Figure 4.10: Temperature sweep tests for samples of the three differently produced plaques.
Storage modulus E′, loss modulus E′′, and loss factor tan δ over temperature for 0◦-,
45◦-, and 90◦-oriented samples of the a) 1D plaque, b) 2D plaque, and the c) fully filled
plaque.

65



4 Experimental Investigations of Pure and Reinforced Polymers

−30 0 50 100 150 200

Temperature in ◦
C

0

2

4

6

8

10

12

S
to

ra
g

e
 m

o
d

u
lu

s
 E

′
 i

n
 G

P
a

0
◦  sample

45
◦  sample

90
◦  sample

0.5Hz

1.07Hz

2.3Hz

5.0Hz

10.7Hz

23.2Hz

50.0Hz

−30 0 50 100 150 200

Temperature in ◦
C

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

L
o
s
s
 f

a
c
to

r 
t
a
n
δ

Figure 4.11: Frequency sweep tests for fiber-reinforced UPPH samples of the 1D plaque.
Storage modulus E′ and loss factor tan δ of the 0◦-, 45◦-, and 90◦-oriented sample are
depicted over temperature for seven frequencies in three decades.
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4.1.4 Summary of results

The DMA tests performed for the pure and fiber-reinforced UPPH
samples reveal a highly temperature-dependent behavior. For the entire
temperature range, the E′ of the composite samples is shifted by an
approximately constant factor of 2.5 (90◦ sample) to 3.0 (0◦ sample)
toward higher values compared to E′ of the pure resin material. This
shows the reinforcing effect of the fibers within the composite material.
Furthermore, the pure UPPH samples show a more pronounced
frequency dependency for the entire temperature region compared to
the reinforced samples. Samples from differently produced plaques
reveal an anisotropic behavior when the flow of the uncured resin
occurs during the production process. The viscoelastic behavior is
analyzed using the loss factor. For all composite samples, the loss factor
exhibits a constant distribution at a small value regarding temperatures
below 100◦C. Increasing viscoelastic behavior is observed only for the
temperatures above 100◦C. These results are confirmed by the frequency
sweeps since a pronounced frequency dependency is measured for the
higher temperatures near glass transition temperature and above. As
discussed previously, θg identifies the temperature operating range of
a polymeric composite. The composite cannot be used above θg due to
degradation. A typical range of application in automotive engineering
does not exceed 100◦C. In the range from −30◦C to 100◦C, viscous
effects can be neglected with respect to the computation of the effective
properties. Thus, the mean- and full-field methods considered in this
thesis account for the thermoelastic material behavior.
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4.2 Measurement of Thermal Expansion

4.2.1 Experimental setup

The DMA results in Section 4.1.3 reveal a significant temperature-
dependent behavior for both the pure and fiber-reinforced UPPH
material. To characterize the thermal material behavior, tests are
performed to determine the coefficient of thermal expansion (CTE).
These tests were carried out at the Fraunhofer Project Center (FPC)
in London, Canada, in collaboration with Prof. Wood from the
University of Western Ontario (Canada). The MTS Environmental
Chamber 651 is used to control temperature load applied to the samples.
The thermal strain is measured using the video extensometer system
Imetrum IM-Lens-MT010 in combination with the MTS TestSuite™
TWE software, see Figure 4.12a. For this purpose, a speckle pattern
is sprayed onto the samples. Inside the environmental chamber, the
sample is fixed at the bottom end, whereas the upper end is unattached.
The video extensometer camera, placed in front of the environmental
chamber, recordes the pattern on the sample. Using the MTS TestSuite™
TWE software, two target points are defined on the sample. During
the test, the longitudinal strain between the two target points is
measured. After its calibration at room temperature, the environmental
chamber is manually heated up. Measurements are performed at target
temperatures of θ = [50, 100, 150, 200]◦C. To ensure a moderate heating
rate of approximately 2 K/min, the environmental chamber is heated up
in discrete temperature increments of 10 K and held for 2 min at each
increment, see Figure 4.12b.

At each target temperature, the temperature load is held constant for
15 min to ensure a homogeneous temperature distribution within the
sample. Subsequently, the thermal strain is measured by recording 20
measuring points. The mean value and the corresponding standard
deviations are determined based on the values measured.
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(a)

(b)
Figure 4.12: a) Experimental setup for CTE measurements. The sample is fixed at the
bottom end and placed into the environmental chamber. When heating up the thermal
chamber, the sample elongates. This temperature-induced expansion is tracked by a video
extensometer camera. The thermal strains are measured using the MTS TestSuite™ TWE
software. b) Temperature ramps during the CTE measurements, exemplarily depicted
between two recorded temperature points, 50◦C and 100◦C.
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4.2.2 Validation based on aluminum

Prior to the thermal expansionmeasurements of the UPPHmaterial, tests
were performed using an aluminum sample. Since the CTE of aluminum
is well known from the literature, these tests serve as validation of the
experimental procedure.
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Figure 4.13: Validation tests for the CTE measurements using an aluminum sample.
The experimental data of the thermal strains are captured by a linear fit (left). The
corresponding CTE is given on the right. A reference temperature of about 30◦C was used
for the experiments.

In Figure 4.13 (left), the thermal strain εθ is depicted over Δθ for three
test runs. In the temperature range of 20◦C to 100◦C, the distribution of
the thermal strain can be considered linear (Touloukian and Ho, 1970).
Thus, the least square fit of a linear function serves as an approximation
of the measured thermal strain as depicted in Figure 4.13. The CTE
is calculated by αθ = dεθ/ dθ. Therefore, the corresponding CTE is
a constant value as shown in Figure 4.13 on the right. Herein, the
determined CTE values are in the range between 2.26 × 10−5 K−1 and
2.7 × 10−5 K−1. According to data given in, e.g., Nix andMacNair (1941);
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Touloukian andHo (1970); Cverna (2002), the CTE of aluminum amounts
to 2.1 − 2.51 × 10−5 K−1. Thus, the values determined for the CTE are in
good agreement with values given in the literature, indicating a correct
calibration of the experimental setup.

4.2.3 Thermal expansion and CTE of pure
and DiCo fiber-reinforced UPPH

Pure resin material. For the pure UPPH material, two tests with
two samples are performed as depicted in Figure 4.14. The upper
diagrams show the measured thermal expansions εθ, depicted as dots.
Illustrated by solid lines, a linear fit of the measuring points (left),
as well as a quadratic fit (right), is shown for each sample. Since
the scatter of the measured values is small, the standard deviations
almost vanish. The thermal strains measured for both samples are close
together. In the first test, both linear and quadratic least square fits
show a good approximation of the measured data. In the case of the
second UPPH sample, no experimental data at high temperatures are
available. Thus, the quadratic fit is not appropriate for the second sample
and is only presented for completeness. The diagrams below show the
corresponding distribution of the thermal expansion coefficient αθ. From
the linear fit of the thermal strain data, a constant CTE distribution is
obtained. Thus, a quadratic fit of εθ results in a linear distribution
of αθ. Herein, the first test shows a monotonically decreasing curve
for αθ, whereas the second test exhibits an increasing linear curve.
This contradictory behavior is due to the quadratic fit of the second
test, which, however, is not representative as previously mentioned.
Consequently, in the following chapters, a constant CTE of the matrix
material is used for computing the effective CTE of the composite
material.
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Figure 4.14: Thermal expansion measurements and resultant CTE of the pure UPPH
material. The linear (left) and quadratic (right) fits to the experimentally obtained thermal
strains are shown in the upper row. The corresponding constant (left) and linear (right)
fits for the resultant CTE is shown in the lower row. A reference temperature of about
θ0 = 35◦C was used for the experiments. The quadratic fit of the second test is not
appropriate and only presented for completeness.

Reinforced material. Of the 1D plaque, three differently oriented
samples are considered. The experimental data represented by dots
and their corresponding standard deviation are depicted in the upper
diagrams of Figure 4.15. In the left diagram, a linear fit to the
experimental data is given. The right diagram shows a quadratic fit
for one dataset chosen of each orientation of a sample.
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subsequently motivates the modeling of the CTE as a function of the
temperature.
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Figure 4.15: Thermal expansion measurements and resultant CTE of the 0◦-, 45◦-, and
90◦-oriented, fiber-reinforced UPPH samples from the 1D plaque. Linear (left) and
quadratic (right) fits to the experimentally obtained thermal strains are shown for each
sample in the upper row. The corresponding constant (left) and linear (right) fits for the
CTE is given in the diagrams below. A reference temperature of about θ0 = 25◦C was
used in the experiments.
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The linear fit for each orientation and sample exhibits the deviations
of the data points measured. In contrast, the quadratic fits are in good
agreement with the experimentally obtained thermal expansions. This
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of the glass fibers which exhibit a CTE value of αθ = 0.5 × 10−5 K−1

(Granta Design, 2016). As for the linear fit of εθ, the CTE values scatter
between nearly 1.1 × 10−5 K−1 and 2.5 × 10−5 K−1 for the differently
oriented samples. The monotonically decreasing linear functions for αθ

are obtained from the quadratic fit of εθ.

4.2.4 Summary of results

In this thesis, a rather new material class is considered. Thus, the
experimental data needed for modeling the material behavior are
hardly available. As discussed previously, the UPPH composite
exhibits a pronounced temperature-dependent behavior. In this view, a
thermoelastic material model needs to be considered. Therefore, tests are
performed tomeasure the thermal expansion of pure and fiber-reinforced
UPPH samples. The CTE is then determined from these tests. In terms of
the pure resinmaterial, a fairly linear behavior of the thermal strains with
increasing temperature is measured. Thus, a constant CTE is obtained
for the matrix material. In contrast, the fiber-reinforced UPPH samples
exhibit a pronounced nonlinear distribution of εθ with increasing
temperatures. Hence, a linear temperature-dependent function is
obtained for the CTE of the fiber-reinforced samples. Moreover, the
CTE of the composite material exhibits anisotropic behavior.
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In general, an anisotropic behavior for the thermal strain is observed.
The sample with a 0◦ orientation exhibits the least thermal expansion,
whereas the 90◦-oriented sample shows the highest values. The dia-
grams below illustrate the corresponding coefficients of thermal expan-
sion. The CTE values of the fiber-reinforced material are 3 to 5 times
smaller than those of the pure UPPH material, indicating the influence



Chapter 5

Homogenization for
Fiber-Reinforced Polymers

5.1 Mean-Field Homogenization

5.1.1 Fundamental equations

As analyzed in the previous chapters, the SMC composite exhibits
a highly heterogeneous microstructure. This significantly affects the
material behavior on the macroscopic scale. The transition from the
microscopic to the macroscopic scale is accomplished using homoge-
nization techniques (Dvorak, 2012). The aim of the homogenization
techniques is to determine an equivalent medium on a macroscopic
level that exhibits comparable material properties to those of the
heterogeneous medium. In the classical homogenization theories,
a representative volume element (RVE) is introduced. An RVE is
considered as the minimal material volume that contains enough
information on the microstructure to statistically represent the composite
material. On the surface of the RVE, macroscopically homogeneous
boundary conditions are applied, leading to bounds or estimates of the
overall stiffness or compliance. To obtain results that are independent of
a specific choice of boundary conditions and of the absolute size of the
constituents of the composite, an RVE is required to be sufficiently large
(Hill, 1963). Simultaneously, it is required that the RVE is sufficiently
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small compared to the macroscopic dimensions. Consequently, the
appropriate size of an RVE is closely related to the type of composite and
the underlying microstructure. Thus, determining it can be a challenging
task. In the special case of a composite containing spherical inclusions,
for instance, Drugan and Willis (1996) determined that the RVE size is
sufficiently large by choosing twice the reinforcement diameter. In some
cases, an RVE cannot be found. This is due to the great variety of the
microstructural characteristics from one realization to another. In cases
such as these, use is made of statistical or stochastic volume elements
(SVE) (Ostoja-Starzewski, 2006).

Section 3.2 introduces an SMC composite with discontinuous glass
fibers. A sample of the composite material represents a realization w

of a stochastic process. The collection of all possible realizations is
referred to as an ensemble. The phases of uniform material properties
are identified within a specific realization or sample of volume Ω. In
terms of an N -phase composite, each phase γ occupies a subvolume Ωγ ,
with γ = 1, . . . , N . The indicator function Iγ(x, w) is introduced by

Iγ(x, w) =

⎧⎨
⎩1, x ∈ Ωγ ,

0, x /∈ Ωγ ,
(5.1)

describing the geometry of the microstructure (Nemat-Nasser and Hori,
1993). Furthermore, the heterogeneous microstructure is characterized
by a function Ψ(x, w) that describes certain material properties. The
distribution of the material properties within an N -phase composite
with phase-wise constant material properties Ψγ is obtained by

Ψ(x, w) =
N∑

γ=1
Iγ(x, w)Ψγ(w). (5.2)

In the context of the ergodic hypothesis, averaging the material
properties over all realizations of the ensemble is equivalent to the
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average results, considering the volume of one realization w0 in the
infinite-volume limit. Thus, the ensemble average of the function Ψ(x)
is identified by the volume average in the limit of an infinitely large
volume

〈Ψ(x)〉 = lim
N→∞

1
N

N∑
w=1

Ψ(x, w) = lim
Ω→∞

1
Ω

∫
Ω

Ψ(x, w0) dΩ. (5.3)

Subsequently, a specific realization is considered; thus, w0 is omitted in
the following equations. The volume fraction is related to the indicator
function by

〈Iγ(x)〉 = cγ , (5.4)

with
∑N

γ=1 cγ = 1. From Equations (5.2) and (5.3), in terms of piecewise
constant material properties, one obtains

〈Ψ(x)〉 = 〈
N∑

γ=1
IγΨγ〉 =

N∑
γ=1

Ψγ〈Iγ(x)〉 =
N∑

γ=1
Ψγcγ . (5.5)

To ensure a consistent transition between microscopic and macroscopic
quantities, the equivalence between the macroscopic power and the
volume average of the microscopic power is presumed (Hill, 1963).
Considering the special case of linear elasticity, the same holds true for
themacroscopic strain energy and the volume average of themicroscopic
strain energy. These conditions, known as the Hill-Mandel conditions,
read

〈σ · ε̇〉 = 〈σ〉 · 〈ε̇〉, (5.6)

〈σ · ε〉 = 〈σ〉 · 〈ε〉, (5.7)

and are valid independently of the constitutive assumptions. The
stress and strain fields are decomposed into a mean value and a
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fluctuating contribution, i.e. σ(x) = σ̄ + σ̃(x) and ε(x) = ε̄ + ε̃(x).
The Hill-Mandel condition implies that the averaged stress and strain
fluctuations do not contribute to the internal work, i.e.

〈σ̃ · ε̃〉 = 0. (5.8)

In addition, the effective stress and strain fields on a macroscopic scale,
σ̄ and ε̄, are defined as the volume average of the local stress and strain
field, respectively,

σ̄ := 〈σ(x)〉 = 1
Ω

∫
Ω

σ(x) dΩ = 1
Ω

N∑
γ=1

∫
Ωγ

σ(x) dΩ =
N∑

γ=1
cγσγ , (5.9)

ε̄ := 〈ε(x)〉 = 1
Ω

∫
Ω

ε(x) dΩ = 1
Ω

N∑
γ=1

∫
Ωγ

ε(x) dΩ =
N∑

γ=1
cγεγ . (5.10)

In this context, fibers are regarded as heterogeneities on the microstruc-
ture; thus, voids, cracks, or pores are not considered.

In the following, the effective thermoelastic properties of an SMC
composite are derived. By means of the constitutive equation

σ = C[ε] − G, (5.11)

cf. Equation (2.26), the effective stress on the macroscopic scale is
obtained based on the mechanical loads and eigenstress contributions
by

σ̄ = 〈C[ε]〉 − 〈G〉. (5.12)

The local strains within the microstructure are commonly related to the
globally applied external strains and eigenstrain contribution. To this
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end, localization tensors of the second- and fourth-order are introduced

ε = A[ε̄] − a, (5.13)
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with A denoting the mechanical strain localization tensor of the fourth-
order and a representing the eigenstrain localization tensor of the
second-order. The local strains evoked by a uniform overall strain load
are determined by A, which is, moreover, independent of the applied
eigenstrains. Furthermore, a corresponds to the strains within an RVE
subjected to a uniform eigenstrain load, e.g., a uniform temperature
change Δθ while no deformation is applied, i.e. under strain-free
boundary conditions. Generally, the mechanical strain localization
tensor exhibits the minor symmetries but not necessarily the major
symmetry, i.e. A = A

TL = A
TR �= A

TH . The eigenstrain localization tensor
is symmetric as well, i.e. a = aT. Averaging Equation (5.13), the
normalization conditions are directly determined

〈A〉 = I
S, 〈a〉 = 0. (5.14)

Combining Equations (5.12) and (5.13) yields

σ̄ = 〈CA〉[ε̄] − 〈C[a] + G〉. (5.15)

From the latter equation, the effective stiffness is determined by

C̄ = 〈CA〉. (5.16)

Considering the Mandel-Levin relation (Levin, 1976; Mandel, 1965), the
effective eigenstress contribution Ḡ = 〈C[a] + G〉 can be expressed in
terms of the mechanical localization tensor, reading

Ḡ = 〈ATH [G]〉, (5.17)
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cf. Appendix A.2.2. Using Equation (2.28), the effective eigenstrain
tensor ε̄∗ is determined by

ε̄∗ = C̄
−1〈ATHC[ε∗]〉. (5.18)
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Thermally induced eigenstrains caused by a uniform temperature
load are referred to as thermal strains, ε∗ = εθ. Relating the thermal
eigenstrains to the thermal expansion coefficient as given in Section 2.2.3,
the effective thermal expansion is calculated by

ᾱ = C̄
−1〈ATHC[α]〉. (5.19)

Equivalently, using the stress localization tensor B, the effective thermal
expansion can be determined by ᾱ = 〈BTH [α]〉.
Assumptions with respect to A lead to various estimates for determining
the effective material properties. In the context of fibrous composites, the
fibers can be modeled as ellipsoidal-shaped inclusions. The geometry
of the fibers is accounted for by means of Hill’s polarization tensor P0

for ellipsoidal inclusions. For special choices of the ellipsoid’s half-axes,
the special cases of spherical, needle-, and disk-shaped inclusions can
be derived. In these cases, Hill’s polarization tensor is analytically
given, cf. Willis (1977). Taking the long discontinuous fibers of the
SMC composite into account, the fibers are modeled as needle-shaped
inclusions using the notation by Walpole (1969). The general form of P0

for an ellipsoid, as well as the analytical expressions for the special case
of spherical and needle-shaped inclusions, are given in Appendix A.1
(Castañeda and Suquet, 1998). Introducing a reference medium with an
isotropic reference stiffness C0, the strain localization tensor for solving
the boundary value problem is given in the normalized form by

A = M〈M〉−1, M = (P−1
0 + δC)−1, (5.20)
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(Willis, 1981; Walpole, 1969), with δC = C − C0. The eigenstrain
localization tensor is related to the strain localization tensor by

a = A〈M[G]〉 − M[G], (5.21)

cf. Appendix A.2.3.
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The SMC material considered in this work is regarded as a two-phase
composite with isotropic phases. For a phase γ, the elastic stiffness Cγ

is formulated in terms of the first and second fourth-order projectors,
P1 = I ⊗ I/3 and P2 = I

S − P1, respectively,

Cγ = Eγ

1 − 2νγ
P1 + Eγ

2(1 + νγ)P2, (5.22)

with the engineering constants Eγ denoting Young’s modulus, and
νγ denoting Poisson’s ratio of the corresponding phase. In terms of
temperature loads, the isotropic tensor of thermal expansion for the
CTE αγ of a specific phase reads

αγ = αγI. (5.23)

Within this thesis, two cases are distinguished. On the one hand, the
full- and mean-field homogenization methods are compared regarding a
fixed temperature, Section 6.2.1 and Section 6.3.2. Thus, the engineering
constants and the CTE values are considered temperature-independent.
On the other hand, the temperature dependency of the stiffness and
of the CTE is considered. This is motivated by the experimental
results presented in Section 4.1.3. In order to capture the temperature
dependency, the stiffness of the matrix material is modeled by means
of the temperature-dependent Young’s modulus, i.e. CM = C(EM(θ), ν)
with EM(θ) = EM1 + EM2Δθ and Δθ = θ − θ0. Due to the lack of exper-
imental data, Poisson’s ratio is assumed to be temperature-independent.
Analogously, the CTE of the matrix material is modeled in terms of
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temperature-dependent coefficients by αM = αM1 + αM2Δθ with respect
to a reference temperature θ0.
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5.1.2 Mean-field homogenization based
on a variable reference stiffness

Based on the Hashin-Shtrikman method, a two-step homogenization
method with variable reference stiffness is presented. In view of this, the
formulations from Walpole (1969) and Willis (1981) are used, accounting
for eigenstrains.

Figure 5.1: Schematic illustration of the Hashin-Shtrikman based two-step
homogenization.

A two-phase composite material is assumed to consist of N ellipsoidal
fibers embedded in a polymeric matrix. In a first step, the microstruc-
ture is partitioned into domains with fibers of a specific orientation
surrounded by the matrix material, cf. Figure 5.1. For these domains
with unidirectional fibers, the effective elastic and thermal properties
are determined by applying the Hashin-Shtrikman (HS) variational
principle and computing the upper and lower HS bounds. The upper
HS bounds of the first step are derived by choosing the fiber stiffness
as reference stiffness, whereas the lower HS bounds are computed in
terms of the matrix stiffness as reference stiffness. A detailed derivation
is given in Appendix A.2.1. The effective elastic material properties can
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then be calculated for each domain γ by

C̄
UD+
γ = Cγ + cMδCγ(IS + cγP

UD
γ δCγ)−1, (5.24)

C̄
UD−
γ = CM − cγδCγ(IS − cMP

UD
γ δCγ)−1, (5.25)
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and the effective thermal expansion is determined by

ᾱUD+
γ = (C̄UD+

γ )−1(Cγ [αγ ] + cM(IS + cγP
UD
γ δCγ)−TH)[δβγ ],

ᾱUD−
γ = (C̄UD−

γ )−1(CM[αM] + cγ(IS − cMP
UD
γ δCγ)−TH)[−δβγ ], (5.26)

with δCγ = CM − Cγ and δβγ = CM[αM] − Cγ [αγ ]. The matrix material
is denoted by a subscripted M, whereas the index γ = 1, . . . , N denotes
the modeled fibers. The fiber volume fraction is given by cγ , for which∑N

γ=1 cγ + cM = 1 holds. Hill’s polarization tensor for the special case of
unidirectional fibers PUD is analytically given in Equation (A.7) (Willis,
1986).

In the second step, the total effective stiffness is computed by averaging
over all domains

C̄
HS± = 〈 1

cF
C̄

UD±
A〉 = C0 − P

−1
0 + 〈 1

cF
(P−1

0 + C̄
UD± − C0)−1〉−1

= C0 − P
−1
0 + 〈A∗〉−1

oa , (5.27)

with the strain localization A given in Equation (5.20). The effective
thermal expansion is approximated by

ᾱHS± = (C̄HS±)−1〈 1
cF

A
THC̄

UD±[ᾱUD±]〉

= (C̄HS±)−1〈M〉−TH〈 1
cF

M
TH [β̄UD±]〉

= (C̄HS±)−1〈M〉−TH
oa 〈β∗〉oa. (5.28)
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A detailed derivation is given in Appendix A.2.1. For the modeling of the
material behavior in the foregoing equations, for simplicity, an isotropic
two-point correlation of the domains is assumed. Thus, P0 denotes the
spherical polarization tensor, which is given in Equation (A.5). The
reference stiffness C0 is formulated in terms of a variable parameter k by

C0 = (1 − k)CM + k CF, k ∈ [0, 1]. (5.29)

Since the mechanical properties of a composite are bounded by those
of its constituents, k ∈ [0, 1] is a physically motivated choice, leading to
C0 = CM for k = 0, and C0 = CF for k = 1. Thus, the reference stiffness
takes values in the range of the matrix and the fiber stiffness.

In Equation (5.27), P0 and C0 exhibit the isotropic material symmetry
whereas C̄UD± is a transversely isotropic tensor. Thus, the expression
within the brackets, i.e. A∗, is of the transverse isotropic structure as
well, with the symmetry axis in e1-direction. According to Advani
and Tucker III (1987), the orientation average 〈A∗〉oa and 〈β∗〉oa can be
evaluated using the orientation tensors of second- and fourth-order, N

and N,

〈A∗〉oa = b1N + b2(N ⊗ I + I ⊗ N) + b3(N�I + (N�I)TR (5.30)

+ (I�N)TH + (I�N)TR) + b4I ⊗ I + b5I
S,

〈β∗〉oa = β1N + β2I, (5.31)

with the coefficients

b1 = A∗
1111 + A∗

2222 − 2A∗
1122 − 4A∗

1212, (5.32)

b2 = A∗
1122 − A∗

2233,

b3 = A∗
1212 + (A∗

2233 − A∗
2222)/2,

b4 = A∗
2233,

b5 = A∗
2222 − A∗

2233,
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and

β1 = λmax(β∗) − λmin(β∗), (5.33)

β2 = λmin(β∗),

where λmin and λmax denote the minimal and maximal eigenvalue of β∗

(Camacho et al., 1990; Mlekusch, 1999).

5.2 Full-Field Homogenization Based on Fast
Fourier Transformation

In order to determine the effective as well as local properties of composite
materials with a complex microstructure, Moulinec and Suquet (1994;
1998) developed an iterative method based on fast Fourier transforma-
tion (FFT). Since the overall behavior of a composite is largely influenced
by its microstructure, a detailed resolution of the constituents on the
microscale plays an important role in predicting the effective properties.
Based on computed X-ray tomography, the microstructure of a sample
is provided by images containing pixels to which mechanical properties
can be assigned. By stacking these images, a three-dimensional image is
derived that represents a volumetric microstructure. A periodic, statistic,
or unit cell containing a heterogeneousmaterial with position-dependent
stiffness C(x) is loaded by a prescribed strain ε̄. The periodic boundary
value problem for unknown displacement fluctuations ũ reads

div (σ(x)) = 0 ∀x ∈ Ω,

σ(x) =C(x)[ε̄ + sym(grad (ũ(x)))] ∀x ∈ Ω,

ũ(x) periodic ∀x ∈ ∂Ω,

σ(x)n(x) anti-periodic ∀x ∈ ∂Ω.

(5.34)
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As an auxiliary problem for a volume element with homogeneous
stiffness C0, the stress polarization τ (x) is introduced by

τ (x) = (C(x) − C0)[ε(x)]. (5.35)

The boundary value problem can be reduced to an integral equation for
ε(x), known as the Lippmann-Schwinger equation (LSE) (Kröner, 1977).
The periodic LSE in real and Fourier space, respectively, is given by

ε(x) = ε̄ − G0(x) ∗ τ (x), (5.36)

ε̂(ξ) = −Ĝ0(ξ)τ̂ (ξ), ∀ξ �= 0, ξ̂(0) = ε̄, (5.37)

with the convolution G0(x) ∗ τ (x) =
∫

Ω G0(x − y)[τ (y)] dΩ. In the
latter equation, the periodic Green operator G0 is associated with
the reference material C0, cf. Kabel et al. (2014). A μCT image is
discretized into N1 × N2 pixels in the two-dimensional case or into
N1 × N2 × N3 voxels for three-dimensional problems. Thus, the
continuous form of the Fourier transform given in Equation (5.37) is
replaced by the discrete Fourier transform (DFT) using trigonometric
interpolation. According to Moulinec and Suquet (1998), the algorithm
for the DFT reads

Initialization: ε0(xd) = ε̄, ∀xd ∈ Ω
Iterate i + 1: i) τ i(xd) = (C(xd) − C0)[εi(xd)], ∀xd ∈ Ω

ii) τ̂ i = FFT(τ i)
iii) ε̂i+1(ξd) = −Ĝ0(ξd)[τ̂ i(ξd)], ∀ξd �= 0, ε̂i+1(0) = ε̄

iv) εi+1 = FFT−1(ε̂i+1)
v) convergence test:

res = ‖εi+1−εi‖L2
‖ε1−ε0‖L2

Herein, xd denotes coordinates of the voxels in real space, and ξd

indicates the corresponding frequencies in Fourier space. Furthermore,
the L2-norm is defined as ‖ (·) ‖2

L2
=

∫
Ω ‖ (·) ‖2 dΩ.
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Using the principle of equivalent strain energy

1
2 〈εα · C[εβ ]〉 = 1

2 〈εα〉 · C̄[〈εβ〉], (5.38)

(Hill, 1963), the effective stiffness C̄ is calculated by solving the periodic
boundary value problem given in Equation (5.34) for six linearly
independent load cases εα and εβ with α, β ∈ {1, . . . , 6}. The effective
stiffness is then given by

〈C[εβ ]〉 = C̄[〈εβ〉], (5.39)

(Bishop and Hill, 1951a;b). By means of the commercial software tool
GeoDict®, a voxel-based image obtained by a μCT scan can be directly
imported as a ∗.raw file. After the segmentation process, further FFT-
based analysis can be performed, and the local, as well as the overall
material properties, are computed.
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Chapter 6

Mean- and Full-Field Simulations
for Long Fiber-Reinforced
Polymers

6.1 Preliminaries

The mean- and full-field methods are widely used to compute the
effective behavior of composite materials. In this chapter, the mean- and
full-field simulation techniques as applied to different SMC composite
samples are presented. The samples are extracted from individual
composite plaques at different orientations. The production of the
SMC plaques is described in Section 4.1.2. For the results presented
in this chapter, the two plaques considered are denoted by 1D/1 and
1D/2. During the production of these plaques, the semi-finished product
flows in the y-direction, cf. Figure 4.3a in Section 4.1.2. Additionally, a
third plaque is considered, referred to as 2D, where the semi-finished
product flows in the x- and y-directions during the production process,
cf. Figure 4.3b. A μCT-scan is provided for each sample. The images
of the samples of the plaques 1D/1, 1D/2, and 2D have a resolution of
5.5μm, i.e. the edge length of each voxel amounts to 5.5μm. Moreover,
a higher resolution of 3μm is provided for the samples of plaque 1D/2.
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at higher resolutions are denoted as 1D/2 HR. The datasets used are
summarized in Table 6.1.

1D/1 1D/2, 2D
1D/2 HR

Elastic properties HS two-step,
FFT

HS two-step,
FFT

HS two-step

DMA data � � �
Thermal properties HS two-step,

FFT
HS two-step,
FFT

HS two-step

CTE data � – –

Table 6.1: Datasets used for the simulations and experimental investigations. Available
datasets are indicated by “�” whereas “–” denote non-available datasets.

The parameter set used for the numerical calculations is listed in
Table 6.2. For the numerical simulations presented in this chapter, the
fiber and matrix stiffnesses are assumed to be isotropic. Therefore,
two engineering constants are used, namely, Young’s modulus E and
Poisson’s ratio ν of the correspondingmaterial. Analogously, the thermal
expansion of the fiber and matrix materials is assumed to be isotropic as
well and is given in terms of the scalar coefficients of thermal expansion
(CTE) αθ listed in Table 6.2. The values EM and αM of the matrix material
are determined by means of DMA and CTE measurements presented
in Sections 4.1.3 and 4.2.3. The nominal fiber volume content for the
composite is predefined by the production process and amounts to
22 vol.%. However, Trauth and Weidenmann (2018) determined the real
fiber volume content by thermogravimetric analyses for various samples
from SMC plaques. According to their findings, the real fiber volume
content is significantly higher than the nominal content. Thus, the
simulations presented in the following sections, consider a fiber content
of 25.6 vol.%, cf. Table 3 in Trauth and Weidenmann (2018). In addition,
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results of the mean-field calculations with respect to the theoretical fiber
volume content of cF = 0.22 are provided in Appendix C.2.

Material Parameters

Matrix EM = 3.4 GPa, νM = 0.385, αM = 7.4 × 10−5/K, cM = 0.744
Fiber EF = 73.0 GPa, νF = 0.22, αF = 0.5 × 10−5/K, cF = 0.256

Table 6.2: The parameter set for the UPPH matrix is determined by DMA and CTE
measurements, cf. Section 4.1.3 and Section 4.2.3. The parameter values for the glass
fiber material (E-glass fibers) are taken from Granta Design (2016).

The mean-field results are computed by the HS method presented in
Section 5.1.2. This method consists of two steps, for which either the
fiber or the matrix stiffness is used as reference stiffness in the first step,
leading to the upper or lower bound, respectively. If the upper bound
is considered in the first step, the overall result after the second step is
briefly denoted by HS+. By implication, if the lower bound is used in the
first step, the overall result is referred to as HS−. Additionally, a variable
reference stiffness dependent on parameter k is introduced in the second
step. In the following sections, this parameter k is varied between 0.0
and 1.0 in ten equidistant steps. Thus, the influence of the reference
stiffness is investigated, and the smallest deviations from experimental
data are sought. The fiber orientation tensors used for the orientation
average within the HS mean-field homogenization are documented in
Appendix A.3. The programming language Python (version 2.7.12) with
the libraries NumPy and SciPy (Jones et al., 2001; Oliphant, 2006) is used
for the implementation of the mean-field method.

The full-field results are computed by the fast Fourier transformation
(FFT) implemented in the commercial software tool GeoDict®. The
setting parameters for the full-field computations are documented in
Appendix A.4.
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The effective stiffness computed by the mean- and full-field simulations
is illustrated by a contour plot of the effective Young’s modulus
given by Ē(d) = (d ⊗ d · C̄−1[d ⊗ d])−1 (Böhlke and Brüggemann, 2001).
The vectorial direction d is parametrized in spherical coordinates,
considering a unit sphere with d = d(ϑ, ϕ) and ‖d‖ = 1. The quantities
ϑ and ϕ denote the azimuth and the polar angle, respectively. Moreover,
the effective thermal expansion coefficient is presented by ᾱθ = d · ᾱθ[d].
In the subsequent sections, the contour plots of the effective Young’s
modulus and the effective CTE are depicted in the x-y-plane which
corresponds to d = d(π/2, ϕ). In this context, Ē(d) and ᾱθ(d) refer to
d = d(π/2, ϕ).
To present a short overview of the results provided in the following
sections, the outline of this chapter is as follows. First, the effective elastic
stiffness at θ = 20◦C is computed by the HS± mean-field method. For
different oriented samples of three plaques, the effective Young’s moduli
are compared to the corresponding experimental data obtained by DMA.
Using the FFT-based full-field method, the synthetic microstructures are
considered in what follows. The influence of the resolution of a μCT scan
on the effective elastic properties is investigated. Subsequently, for real
microstructures obtained by μCT scans, the effective elastic properties
computed by the full-field method are compared to both mean-field
results and experimental data. For the next investigations, the effective
elastic material behavior with temperature-dependent elastic properties
are computed using the mean-field method. The temperature-dependent
effective Young’s moduli are compared to the storage moduli from the
temperature sweep tests presented in Section 4.1.3. Furthermore, the
effective CTEs at θ = 20◦C are computed by the full- and mean-field
methods. Additionally, the temperature-dependent CTE over the
considered temperature range is predicted by the mean-field method
and compared to the experimentally determined data.
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6.2 Mean-Field Homogenization for DiCo
Fiber-Reinforced UPPH at θ = 20◦C

6.2.1 Effective elastic material properties

The average fiber orientation tensors within a volume element can be
calculated from a μCT scan of a microstructure (Pinter et al., 2018). As
discussed in Section 3.2, the fiber length is significantly larger than the
thickness of a plaque or a sample. Thus, the contribution along the
thickness direction, i.e. the z-direction, is neglected. As a consequence,
deviations from the planar isotropic orientation tensor Npi, given by

Npi =̂1
2

⎛
⎜⎝1 0 0

0 1 0
0 0 0

⎞
⎟⎠ , (6.1)

serve as a measure of anisotropy. For each sample with the fiber orienta-
tion tensorNα, the relative error api

α = ‖Nα − Npi‖/‖Npi‖ is calculated,
with α ∈ {0◦, 45◦, 90◦} indicating the orientation of the sample in the
cured plaque. The relative error api

α quantifies the overall deviation of
the averaged orientation of a sample from the planar isotropic reference
orientation Npi. Additionally, the eigenvalues for the corresponding
orientation tensor are calculated. In this context, λ1 ≥ λ2 ≥ λ3 holds.
The third eigenvalue λ3 can be calculated by means of the other two
eigenvalues since tr(N) = 1 holds true. Thus, it is sufficient to plot
the tuple {λ1, λ2} in R2 to provide a graphical representation of the
orientation tensors of the second-order. Characteristic eigenvalues
are given in terms of isotropic, planar isotropic, and unidirectional
microstructures, cf. Figure 3.4 for a graphical visualization. These
characteristic eigenvalues define the edges of a triangle in the {λ1, λ2}
plane. The edge between the points PI and UD contains microstructures
with perfectly planar distributed fibers corresponding to orientation
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tensors with λ3 = 0. The location of the plotted tuples {λ1, λ2} within
this triangle specifies the main orientation tendency of a considered
microstructure, cf. e.g. Figure 6.1b. In addition to the relative error api

α ,
the depicted eigenvalue tuple resolves the deviation from the planar
isotropic reference orientation Npi in more detail.

2D plaque. For samples from the 2D plaque, values of api
α for the

{0◦, 45◦, 90◦}-oriented samples are shown in Figure 6.1a. The deviations
of the 0◦ and 45◦ samples from the planar isotropic state are smaller
than 10%. A relative error of nearly 15% is obtained between the
average fiber orientation of the 90◦ sample and the planar isotropic
state. In Figure 6.1b, the eigenvalues λ1 and λ2 for the three samples are
shown. Both eigenvalues for the 0◦ and 45◦ samples assume the value
of approximately 0.5, whereas a small deviation of the 90◦ sample of the
planar isotropic orientation is present. However, the eigenvalue tuples
are located close to the PI point. Thus, the three samples approximately
exhibit a planar isotropic fiber orientation.
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Figure 6.1: a) Relative error api
α = ‖Nα − Npi‖/‖Npi‖ between the orientation tensors

Nα of α ∈ {0◦, 45◦, 90◦} samples of the 2D plaque and the planar isotropic reference
orientation tensor Npi. b) Eigenvalues λ1 and λ2 of the orientation tenors, with λ1 ≥ λ2.
The abbreviations PI, Iso, and UD denote planar isotropic, isotropic, and unidirectional.
All samples exhibit a pronounced planar isotropic microstructure.

94



6.2 Mean-Field Homogenization for DiCo Fiber-Reinforced UPPH at θ = 20◦C

In Figure 6.2, the measured elastic modulus and computational results
of the mean-field simulations are shown in the x-y-plane, corresponding
to Ē(π/2, ϕ). The effective Young’s modulus for the HS+ method is
shown in the upper row for the three differently oriented samples. The
corresponding results for the HS− method are depicted in the lower
row. Both, the upper and the lower rows illustrate the effective material
behavior, depending on the parameter k. The experimental results for
the corresponding orientation are depicted by a red dot in each case. The
effective material properties of the other plaques under consideration
are presented analogously.

For the HS+ method, the effective elastic modulus Ē(d) in the polar
plane exhibits approximately the same quantitative and qualitative
distribution in all the three samples. Moreover, for each sample, the
angular distribution of Ē(d) exhibits a circular shape, predicting a
distinct planar isotropic behavior. The influence of the parameter k

on the effective elastic behavior is negligibly small for all three samples.
Furthermore, the results of HS+ are significantly stiffer than the
experimental data.

In the HS− method, the distribution of Ē(d) slightly differs from
one sample to another. The angular distribution of Ē(d) for each
sample depends weakly on the polar angle ϕ. This indicates a slight
anisotropy of the effective elastic behavior. The HS− results of all
three samples depend on the parameter k. The values of Ē(d) vary
between approximately 8 GPa and 12 GPa, depending on the choice
of k. Furthermore, the results of HS− are consistently smaller than or
equal to the experimental data for all values of k. In particular, the
computed effective elastic behavior exhibits small deviations from the
experimental data for the 0◦- and 45◦-oriented samples with increasing
values of k. Comparatively larger deviations are observed for the
90◦-oriented sample. For all three orientations, the HS− results are
more compliant compared to the results from the HS+ method. Since
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the HS+ method is formulated in terms of the fiber stiffness CF in the
first step, consequently, the effective behavior is rather stiff. In contrast,
the HS− method uses the softer matrix stiffness CM in the first step, and
thus, a reasonably more compliant effective behavior is obtained.

Figure 6.2: Experimental data are compared to results of the HS mean-field simulations
for 0◦, 45◦ and 90◦ samples of the 2D plaque. The HS+ and HS− results are depicted in
the upper and lower row, respectively. The parameter k of the variable reference stiffness
varies. The experimental results are depicted by the red dots. The effective Young’s
modulus is illustrated in the x-y-plane, corresponding to Ē(π/2, ϕ). The simulation
results are based on a μCT scan at a resolution of 5.5μm. A negligible sensitivity of
the HS+ method on the variation of k is observed. Significant overestimation of the
experimental results by the HS+ method is given. The results of the HS− method are close
to experimental data.
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In order to quantify the deviations between the experimental data and
the effective results obtained by the HS method, the relative error is
computed depending on parameter k. Since the effective results from
HS+ exhibit a vanishing sensitivity with respect to k, only the relative
error between experimental data and results from the HS− method is
shown in Figure 6.3. Irrespective of the considered sample’s orientation,
the relative error decreases monotonically with an increasing value
of k. For k = 1.0, the relative error of the 90◦-oriented sample amounts
to nearly 16 % whereas it is approximately 5 % for the 45◦-oriented
sample. With respect to the 0◦-oriented sample, the deviation between
the experiment and the simulation almost vanishes.

Figure 6.3: The relative error ε = |Esim/Eexp − 1.0| · 100 % between experimental data
and simulations for HS− is depicted for different values of k. Experimental data are
obtained for 0◦, 45◦ and 90◦ samples of the 2D plaque. The relative error decreases
monotonically for increasing values of k. Deviations increase with increasing angle
between sample and load direction.

1D/1 plaque. The flow of the semi-finished product during the
production process strongly influences the orientation of the fibers. This
is illustrated by the orientation analysis, cf. Figure 6.4a. All the three
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samples exhibit deviations from the planar isotropic orientation state,
quantified by the relative error api. Herein, the 0◦-oriented sample
exhibits a deviation of nearly 30%. The smallest deviation is given for
the 90◦ sample with api = 18%. This is also illustrated in more detail
in Figure 6.4b. The 0◦ and 45◦ samples exhibit a more pronounced
anisotropic behavior compared to the 90◦ sample, as is shown by λ1

and λ2. The three points are located close to the PI-UD segment. Thus,
the considered orientation is still significantly planar. However, the
points are considerably shifted from the PI corner toward the UD corner,
compared to Figure 6.1b. This illustrates the strong influence of the
production process on the fiber orientation.
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Figure 6.4: a) The relative error api
α = ‖Nα − Npi‖/‖Npi‖ between the orientation

tensors Nα of the {0◦, 45◦, 90◦} samples of the 1D/1 plaque and the planar isotropic
reference orientation tensor Npi. b) Eigenvalues λ1 and λ2 of the orientation tenors,
with λ1 ≥ λ2. The abbreviations PI, Iso, and UD denote planar isotropic, isotropic, and
unidirectional. A pronounced deviation from the planar isotropic state is determined,
especially for the 0◦ and 45◦ samples.

In Figure 6.5, the effective Young’s modulus, computed by the HS
method, is depicted for samples of the 1D/1 plaque.

The effective elastic behavior of the HS+ method shows characteristic
similarities to the previous findings. In particular, the computed
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effective Young’s modulus exhibits a tendency toward an isotropic
behavior with a negligible influence of parameter k on the effective
behavior. Analogously, stiffer results are obtained compared to the given
experimental data.

Figure 6.5: The experimental data are compared to the results of the mean-field simulation
for different values of k for 0◦, 45◦ and 90◦ samples of the 1D/1 plaque. The HS+ and
HS− results are depicted in the upper and lower row, respectively. The experimental
results are depicted by red dots. The effective Young’s modulus is illustrated in the
x-y-plane, corresponding to Ē(π/2, ϕ). The simulation results are based on a μCT scan at
a resolution of 5.5μm. A significant overestimation of experimental results by the HS+

method is observed. The HS− results are close to experimental data.
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In the HS− method, Ē(d) for the three samples varies significantly
from each other, which indicates the influence of the flow during the
production process on the microstructure. The distribution of Ē(d)
for a particular sample is strongly dependent on the polar angle ϕ,
exhibiting a pronounced anisotropic behavior. Moreover, the effective
results approach the experimental data with respect to increasing k. This
holds true for all the three samples considered.

The relative error between the experiment and the effective Young’s
modulus of the HS− method is depicted in Figure 6.6. For the 45◦ and
90◦ samples, the error is a monotonically decreasing function of k. The
0◦-oriented sample attains the smallest relative error at k = 0.4. Higher
values of k again lead to an increase in the relative error. At k = 1.0,
the relative error amounts to less than 6 % in the case of the 45◦ sample
and the 0◦ sample. The minimal relative error is about 1 % for the 90◦

sample.

Figure 6.6: The relative error ε = |Esim/Eexp − 1.0| · 100 % between the experimental
data and the simulations for HS− is depicted for different values of k. The experimental
data are obtained for 0◦, 45◦ and 90◦ samples of the 1D/1 plaque. The relative error
decreases monotonically for increasing values of k, considering the 45◦ and 90◦ sample.
The deviation of the 0◦ sample exhibits a local minimum at k = 0.4.
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1D/2 HR plaque. The third set of samples considered are taken from
the 1D/2 plaque. Besides a scan with a resolution of 5μm, an additional
scan at a higher resolution of 3μm is provided for this plaque. Thereby,
the influence of the resolution of the μCT scans on the predicted behavior
is investigated. The results of the mean-field homogenization for the
same samples with a resolution of 5.5μm are given in Appendix C.1 for
completeness.

Consistent with the previous considerations, the relative error api is
depicted in Figure 6.7a. For this set, the largest deviation from the planar
isotropic state is observed in the 45◦ sample with 30%, followed by the
90◦ sample. A relative error of nearly 18% is computed for the 0◦ sample.
This is also illustrated in more detail in Figure 6.7b. The 45◦ and 90◦

samples exhibit a more pronounced anisotropic behavior compared to
the 0◦ sample. Similar to the 1D/1 plaque, the eigenvalue tuples are
located close to the PI-UD segment. The points are also shifted from the
PI corner toward the UD corner. Again, this indicates the influence of
the production process on the fiber orientation.
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Figure 6.7: a) The relative error api
α = ‖Nα − Npi‖/‖Npi‖ between the orientation

tensors Nα of the {0◦, 45◦, 90◦} samples of the 1D/2 HR plaque and the planar isotropic
orientation tensor Npi. b) Eigenvalues λ1 and λ2 of the orientation tenors, with λ1 ≥ λ2.
The abbreviations PI, Iso, and UD denote planar isotropic, isotropic, and unidirectional. A
pronounced deviation from the planar isotropic state is determined, especially for the 45◦
and 90◦ samples.
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The results from the HS+ method for the samples of the 1D/2 HR plaque
are shown in Figure 6.8.

Figure 6.8: The experimental data are compared to the results of the HS mean-field
simulations for different values of k for 0◦, 45◦ and 90◦ samples of the 1D/2 HR plaque.
The HS+ and HS− results are depicted in upper and lower row, respectively. The
experimental results are depicted by red dots. The effective Young’s modulus is illustrated
in the x-y-plane, corresponding to Ē(π/2, ϕ). The simulation results are based on a μCT
scan at a resolution of 3.0μm. A significant overestimation of the experimental results by
the HS+ method is observed whereas results of the HS− method are close to experimental
data.
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Similar to the foregoing results depicted in Figures 6.2 and 6.5, the
effective elastic results from the HS+ method exhibit a pronounced
isotropic behavior. Moreover, the results are stiffer than the experimental
data, and parameter k has nearly no influence on the material behavior.

The distribution of Ē(d) from HS− for the different samples are rather
ellipsoidal-shaped for varying ϕ. This is in contrast to the previous
results of the 1D/1 plaque where a distinct anisotropic distribution of
Ē(d) on the polar angle ϕ is observed. Consistent with the results of the
samples from the other plaques, the effective elastic behavior depends
on parameter k and is more compliant compared to experiments and the
corresponding HS+ results.

The relative error between the numerical results of the HS− method and
the experimental data is depicted in Figure 6.9.

Figure 6.9: The relative error ε = |Esim/Eexp − 1.0| · 100 % between the experimental
data and the simulations of the HS− method for different values of k. The experimental
data are with respect to the 0◦, 45◦, and 90◦ samples of the 1D/2 HR plaque. The relative
error monotonically decreases for increasing values of k regarding the 45◦ and 90◦ sample.
The deviation of the 45◦ sample exhibits a local minimum for k = 0.8.
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The error decreasesmonotonically with increasing k values. Theminimal
deviations from the corresponding experimental data are given for
k = 1.0 regarding the 0◦- and 90◦-oriented sample. In terms of the
45◦-oriented sample, the smallest deviation is obtained for k = 0.8. At
k = 1.0, the relative error amounts less than 10 % for 0◦ and less than
5 % for 45◦ and 90◦.

6.2.2 Summary of results

The effective elastic moduli at 20◦C obtained by the HS+ method for
all cases are considered isotropic. Moreover, the results obtained are
generally stiffer than those obtained in the experiments. Müller (2016)
observed the same tendencies for an alternative derivation of an HS two-
step bounding method. This behavior is caused by the use of the fiber
stiffness within the first step of the homogenization procedure. Since the
phase contrast EF/EM for the SMC composite considered amounts to
nearly 21, the elastic fiber properties are significantly stiffer than those
of the matrix material. Furthermore, only a slight dependence on the
parameter k is observed for the HS+ method. An essential disadvantage
of the HS+ method is reflected in the approximately similar predicted
effective behavior, irrespective of the sample considered. Thus, the
effective elastic material properties computed by HS+ are less affected
by the microstructure.

In contrast, the HS− method exhibits an anisotropic effective stiffness
throughout all plaques considered. Generally, more compliant results
are obtained compared to the experimental data and the HS− method.
There is a pronounced dependency of the homogenization results on the
parameter k. The largest deviation from the experimental data is present
for k = 0.0, which corresponds to choosing C0 = CM in the second step.
For increasing values of the parameter k, the deviation decreases and
a reasonable fit to the experimental data is achieved. Except in two
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cases, the smallest deviation reached is for k = 1.0. Additionally, a
dataset with a higher resolution is considered. In this case, a more
ellipsoidal-shaped distribution of Ē(d) is obtained compared to the
coarser resolution. However, for k reaching 1.0, both resolutions yield
results that exhibit minor deviations compared to the corresponding
experimental data. Since the relative deviation is only given with respect
to one specific point, the full angular distribution of Ē(d) cannot be
validated by the experimental data available. For this purpose, the
full-field homogenization results are investigated in the next section.

6.3 Full-Field Homogenization for DiCo
Fiber-Reinforced UPPH at θ = 20◦C

6.3.1 Preliminary studies on synthetic fiber structures

The FFT-based full-field method is directly applied to the segmented
microstructure obtained by a μCT scan. The microstructure of an SMC
composite is governed by bundled fibers, cf. Section 3.2. Separating the
individual fibers in these closely packed bundles poses a significant
challenge for image reconstruction. To investigate the influence of
the resolution of the μCT scan on the effective elastic properties in
detail, a resolution study was performed in a first step. To this end,
volume elements with generated microstructures are considered. For
this purpose, the synthetic fibers are modeled as straight fibers exhibiting
a fiber diameter of dF = 10μm and an aspect ratio of 100. The fiber
volume content of the synthetic microstructures is set to 27 vol.%. As
an average orientation, the second-order orientation tensor of the
90◦-oriented sample of the dataset 1D/2 is chosen. The volume elements
at different resolutions are generated by an algorithm described by
Schneider (2017b). Table 6.3 lists the considered resolutions as well
as the dimensions of the volume elements. Based on a given volume
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element, a subvolume at different resolutions is considered as illustrated
in Figure 6.10 for the subsequent resolution study.

The commercial software tool GeoDict® (Math2Market, 2017) is used for
the FFT-based full-field homogenization of the SMCmaterial considered.
The settings for the computations are documented in Appendix A.4.

Resolution Dimensions
1.5μm 846 × 846 × 216 voxels
2.0μm 640 × 640 × 160 voxels
3.0μm 432 × 432 × 106 voxels
4.0μm 320 × 320 × 80 voxels
5.0μm 256 × 256 × 64 voxels

Table 6.3: Resolution and dimensions of the synthetic volume elements generated.

Figure 6.10: Synthetic microstructures for different resolutions.
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Figure 6.11a shows the effective Young’s modulus for the FFT solution
for the corresponding resolutions.
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Figure 6.11: a) FFT-based solutions for microstructures at different resolutions. The red
arrows indicate the tendencies of the results for decreasing resolution. b) Computation
times for the corresponding simulations.

For a high resolution of 1.5μm, an anisotropic distribution of Ē(d)
is obtained. For coarser resolutions, the contour plot turns into a
rather ellipsoidal-shaped distribution. In the ranges of ϕ ∈ [π/8, π/2]
and ϕ ∈ [9π/8, 3π/2], the elastic moduli predicted for the resolutions
of 5.5μm and 4μm are stiffer and become more compliant with
increasing resolutions. In contrast, in the ranges of ϕ ∈ [π/2, 9π/8]
and ϕ ∈ [3π/2, π/8], the observed behavior is reversed. Since the space
between the single fibers within a fiber bundle is fairly small, only
few voxels are present between the single fibers in the case of the high
resolution of 1.5μm or 2μm. With a coarser resolution, the voxel size
becomes larger than the gaps between the fibers. Thus, with coarser
resolutions, fibers appear connected and form bundles. This is illustrated
by the ellipsoidal shape of Ē(d) in coarser resolutions compared to
the higher resolutions. A pronounced ellipsoidal shape of Ē(d) is
obtained for resolutions with voxel edge lengths greater than 4μm. The
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maximum deviation between the highest and the coarsest resolution
considered is nearly 17 %. According to expectations, a higher resolved
microstructure results in longer calculation times due to the increase
in the number of voxels. This is illustrated in Figure 6.11b. The results
for resolutions coarser than 3μm exhibit a substantial reduction in
calculation time. Coarsening the resolution by a factor of 2 leads to
a savings in computation time of factor 8 since the voxel size decreases
nearly by a factor of 8. For instance, when using a resolution of 2μm
instead of 4μm, the results obtained in this particular case are improved
by a maximum of 10%, but the computation time increases significantly.
Moreover, for real microstructures, increasing the resolution either leads
to a decrease of the geometrical dimensions of the volume element
considered or to a high memory demand. Taking this and a reasonable
computation time into account, resolutions of 3μm and coarser are
appropriate.

6.3.2 Effective elastic material properties

Original μCT data. The effective elastic material behavior is computed
by an FFT-based homogenization for three differently oriented samples
of the dataset 1D/2. To keep the computation effort to a minimum,
a resolution of 5.5μm is used. As input parameters for the matrix as
well as for the fiber material, the isotropic material constants used are
according to Table 6.2. The μCT data are directly imported, either as
∗.RAW file or as stacked ∗.TIF files.

Figure 6.12 shows the effective Young’s modulus Ē(d). In addition to the
numerical results by the FFTmethod, the mean-field solutions are shown
for the HS− method with k = 1.0 and the corresponding experimental
data. A scan at a higher resolution of 3μm is additionally used for the
mean-field method. The results of the mean-field method associated to
the scan with a 3μm resolution are denoted by “HR”.
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Figure 6.12: Full-field simulation results compared to the experimental data as well as to
the mean-field simulation results at resolutions of 5.5μm and 3μm.

The left picture in Figure 6.12 shows the results of the 0◦ sample. The
mean-field results for the distribution of Ē(d) reveal no significant
differences between the results of both resolutions. Deviations are
observed in the FFT results with respect to the angular distribution
of Ē(d) for varying ϕ values. Furthermore, the Ē(d) values are stiffer
in the FFT method compared to the mean-field solutions. Moreover,
the predicted result of the FFT method slightly overestimates the
experimental data. However, the deviation between the FFT simulation
result and the experimental data is small. For the 45◦-oriented sample,
slight deviations between the HS− method are observed for the two
datasets regarding the angular distribution of Ē(d). Furthermore, the
mean-field method exhibits a higher predicted stiffness compared to
the FFT results. The distribution of Ē(d) in the FFT method is in line
with that in the HS− (HR) method. Indeed, both methods predict a
rather ellipsoidal-shaped distribution of Ē(d). For ϕ values close to
the loading direction, i.e. π/2, all considered methods nearly coincide.
In the case of the 90◦ sample, all numerical results exhibit deviations
in the ranges of ϕ ∈ [3π/4, 5π/4] and ϕ ∈ [7π/4, π/4]. However, a good
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agreement between all methods and the experimental data is given in
loading direction.

The relative error ε of the simulation results with respect to the
experimental data of the three orientations is depicted in Figure 6.13. All
the three simulation results show the largest relative error in the case of
the 0◦ sample. The FFT result exhibits the smallest deviations among
the computations considered. The application of the methods to the
45◦ sample shows an almost perfect fit for the high-resolution dataset
and the FFT method. The HS− results for the coarser dataset exhibit
comparatively larger deviations. However, the relative error of ε ≈ 6 %
is sufficiently small. In the case of the 90◦ sample, all numerical results
have nearly the same relative error value. Herein, the relative error is
less than 3 % for all three computations.
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Figure 6.13: The relative error ε = |Esim/Eexp − 1.0| · 100 % between the experimental
data and the simulation results for the FFT-based homogenization and the HS− method at
two resolutions, 5.5μm and 3μm. Samples of the 1D/2 plaque are considered.

Processed μCT data. For a dataset of nearly 1800 × 1900 × 560 voxels
with an edge length of 5.5μm, the FFT solution1 takes about 3-4 days,
1 Computations were performed on a 64-bit workstation system with a AMD OpteronTM

Processor (6238 × 24), and 128GB RAM.
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whereas the mean-field solution is obtained in a few milliseconds. To
compare the mean-field results in detail with the results obtained by
the FFT method, shorter computation times for the FFT method are
desirable. To reducing the computation time while maintaining the
accuracy of the results, a pre-processing step is employed. Based on the
processing modules offered by the GeoDict® software tool, the geometry
of the considered volume element can be reduced. By shrinking the
volume data, the microstructure is made coarser. Since the fibers are
strongly bundled after this pre-processing step, transversely isotropic
material properties are assigned to the bundles. The material and setting
parameters are given in Appendix A.4. An extended investigation
regarding the pre-processing of CT data and microstructures with
bundled fibers is given in Sliseris et al. (2014).

The reconstructed μCT scan of the 90◦-oriented sample of the 1D/2
plaque is considered in the following. The original structure, as well
as the processed structure, are shown in Figure 6.14. On the left-hand
side, a 3-D and 2-D reconstruction of the μCT data is shown. The fibers
within the original microstructure are poorly resolved and gaps within
the fiber filaments are present. The pre-processing step causes the fibers
to cluster into bundles. The gaps between the fibers in the left image
are refilled, and thicker fiber bundles are obtained. Using the processed
image, the microstructure is shrunk by the factors 2 and 4, respectively.
Table 6.4 lists the dimensions of the volume elements and the calculation
time for the corresponding microstructure.

Dimensions Shrink
factor

Comp.
time

FFT, original, 1821×1926×558 voxels [−] ≈ 90h
FFT, shrink factor 2 900 × 960 × 256 voxels 2 ≈ 5h
FFT, shrink factor 4 455 × 481 × 139 voxels 4 < 1h

Table 6.4: Dimensions, shrink factors, and corresponding computation times of the original
and the reduced microstructures.
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Figure 6.14: Imported original and processed microstructure of a μCT scan of the
90◦-oriented sample of the 1D/2 plaque.

By reducing the geometry dimensions by a factor of 2, and thus the
volume considered by a factor of 8, the computation time is already
significantly reduced. The effective elastic properties are computed for
the three microstructures and depicted in Figure 6.15.

Maximum deviations are observed in the range of 10 − 13 % between
the three solutions. The simulation with a shrink factor of 2 results in
slightly stiffer values of Ē(d) whereas the results with a shrink factor of
4 are more compliant. The effective Young’s modulus for the original
microstructure is distributed between the solutions for the shrink factors
2 and 4. However, the deviations from the experimental data are less
than 6%.
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Figure 6.15: FFT-based results for the original and the processed microstructure. Shrink
factors of 2 and 4 are used to reduced the volume element. The results are compared to
experimental data for the 90◦-oriented sample of the 1D/2 plaque.

6.3.3 Summary of results

Motivated by the studies on synthetic microstructures, a compromise
has to be found between accuracy and computation time. When using
a rather coarse resolution of 5.5μm (Pinter, 2018), the question arises
of how well the numerical results will fit the experimental data. The
foregoing findings indeed reveal a good agreement of the mean- and the
full-field simulation results with the experimental data. These deviations
do not exceed the experimental data by 10 %. Thus, the presented
methods are reliable regarding the prediction of the effective elastic
material behavior. However, it has to be considered that this comparison
is only given for one single point in the x-y-plane. Due to the lack of
experimental data in different directions of one sample, the distribution
of Ē(d) can only be compared for different simulation methods. The
effective Young’s modulus computed using the HS− mean-field method
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reveals deviations from the FFT-based full-field results with respect to
the angular distribution of Ē(d).
The FFT results exhibit a rather ellipsoidal-shaped distribution whereas
the mean-field results show a slightly more anisotropic behavior. Since
the mean-field method uses orientation tensors as microstructural
information, a different input is given compared to that used in the
full-field method. This difference has an impact on Ē(d) and presumably
causes the deviations in the contour of the plot. Additionally, the
microstructure of the SMC composite is governed by bundled fibers that
affect the overall behavior. The fiber bundles are not yet considered in
the mean-field method and are poorly resolved in the full-field method.
This might additionally contribute to the deviations observed.

The resolution study for a synthetic microstructure revealed that
coarsening the resolution by a factor of 2 significantly reduces the
computation time. Compared to the mean-field method, the FFT-
based homogenization of microstructures of nearly 2.0 × 109 voxels
requires extended computation times and considerable computation
resources such as RAM (a minimum of 100GB). Motivated by the μCT
microstructures processed, it is recommended to generate realistic virtual
structures. This, however, requires an intensive study of the underlying
real microstructures and a further consideration of the fiber bundles.

6.4 Temperature-Dependent Effective
Elastic Material Properties

6.4.1 Mean-field homogenization results

The pure and fiber-reinforced SMC material was characterized exper-
imentally in Section 4.1.3. The temperature strongly influences the
material properties of the matrix and the composite. Thus, temperature-
dependent material parameters need to be considered within the
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homogenization method. To investigate the temperature-dependent
effective elastic material properties, the effective stiffness is computed
as temperature-dependent function. Computing the effective stiffness
for the discrete temperatures considered in the experiments results
in a large number of computations. Due to the numerical efficiency,
only mean-field but no full-field results are considered in the following
investigations.

Young’s modulus of the matrix material EM(θ) is determined as a
function of temperature by conducting DMA tests. Due to the lack of
experimental data for the temperature-dependent Poisson’s ratio of the
matrix material, it is modeled as temperature-independent. Moreover,
Young’s modulus and Poisson’s ratio of the fiber material are assumed
to be temperature-independent, as well.

The effective temperature-dependent stiffness C̄(θ) in terms of EM(θ) is
calculated by means of the HS− method with k = 1.0. The temperature-
dependent effective Young’s modulus Ē(θ, d) is determined and evalu-
ated for ϕ = π/2 and ϑ = π/2, corresponding to the tension direction of
the corresponding sample.

Figure 6.16 shows the simulation results and the experimental data for
the three samples of the 1D/2 plaque for the same temperature range
considered in Section 4.1.3. The experimental data are depicted by a
dotted line, whereas the simulation results are represented by solid
lines. For the 0◦ sample, the numerical results are more compliant
compared to the distribution of the experimental storage modulus. This
deviation remains nearly constant for increasing temperatures of up to
150◦C. In Section 6.2.1 a slight deviation between the simulation and
the experimental data was already observed at 20◦C. In the temperature
range of 100◦C and close to the glass transition temperature at 150◦C,
the measured behavior of the composite becomes nonlinear. Since the
storage modulus of the matrix material nearly vanishes above 150◦C,
cf. Section 4.1.3, the effective elastic stiffness is only affected by the
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temperature-independent fiber material. This behavior is not captured
well by the mean-field method. However, for common applications of
SMC composites, a temperature of 100◦C is generally not exceeded.
Hence, the results of the HS− method are in good agreement with
experimental data for reasonable temperature ranges up to 100◦C.

Figure 6.16: Comparison of the effective, temperature-dependent Young’s modulus,
obtained by the HS− method, with the experimental data of the 0◦, 45◦, and 90◦ samples.
The simulations are performed for k = 1. The experimental data are obtained from the
1D/2 plaque. The deviation between the simulation and the experiment decreases with
the increasing angle between the orientation of the sample in the cured plaque and the
flow direction. The temperature range for common applications is highlighted in green.

Within the temperature range of −30◦C to 100◦C, the predicted effective
Young’s modulus for the 45◦-oriented sample exhibits small deviations
from the measured storage modulus. A similar behavior is observed
for the 90◦-oriented sample. In particular, the simulation results exhibit
excellent agreements with the experiments up to 100◦C. Generally, the
deviation between the effective and the storage modulus decreases for
an increasing inclination angle between the main fiber orientation and
the loading direction. Similar to the findings for the 0◦ sample, the
behavior above 150◦C is not captured.
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Figure 6.17 quantifies the relative error between the predicted and
the measured elastic moduli depending on the temperature. For all
orientations considered, the relative error increases for temperatures
above 100◦C. For temperatures below 100◦C, the deviations are in the
range of ε ≈ 2 % (90◦ sample) to ε ≈ 14 % (0◦ sample).

For an increasing temperature and, thus, a decreasing storage modulus
of the matrix, the relative error increases substantially. In the region
of θ > 100◦C, the error ε increases to a local maximum. Thereafter,
it decreases again and shortly after 150◦C, it finally blows up. The
decreasing storage modulus correlates with an increasing viscous
behavior of the material, which is not captured by the mean-field model.
Thus, the observed increase of the relative error with an increasing
temperature is expected. Moreover, the physical processes around the
glass transition temperature are not accounted for by the mean-field
model as well. Consequently, the transition region around the glass
transition temperature θg is not captured well by the model. The
behavior for θ ≤ 100◦C, however, exhibits small deviations from the
experimental data for all three samples.

Figure 6.17: The relative error ε = |Esim/Eexp − 1.0| · 100 % between the experimental
data and the effective, temperature-dependent Young’s modulus, obtained by the HS−
method for varying k. The experimental data are with respect to the 0◦, 45◦, and 90◦
samples of the 1D/2 plaque. The singularity of the error is for values of θ close to θg . The
temperature range for common applications is highlighted in green.
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6.4.2 Summary of results

As discussed in Section 4.1.3, the matrix behavior is strongly influenced
by the temperature load. Thus, inevitably, a material model has to
account for this temperature dependency. In the temperature range
θ ∈ [−30, 100]◦C, the predicted effective elastic moduli Ē(θ) of all three
samples agree well with the corresponding experimentally determined
storage moduli. The deviation between the simulation results and the
experimental data decreases with an increase in the angle between the
main fiber orientation and the load direction. In particular, the fibers
of the 90◦-oriented sample are preferably oriented transversely to the
direction of the tension load. This leads to a matrix-dominated behavior
which is captured well by the HS− mean-field model. For temperatures
around 100◦C and close to the glass transition temperature at 150◦C, a
nonlinear decreasing behavior of the storage moduli is measured. These
effects are not accounted for by the mean-field model. Consequently, the
deviations between the experiments and the simulation results increase
in this temperature region. However, this temperature region is out of the
reasonable range of applications. Regarding the reasonable temperature
range, the results of the developed mean-field method are in good
agreement with the experimental data.

6.5 Effective Thermal Properties

6.5.1 Mean-field homogenization results for θ = 20◦C

The effective coefficient of thermal expansion (CTE) of the SMC
composite is calculated by the HS+ and HS− methods as stated in
Equation (5.28). For this purpose, the CTE values of the fiber and the
matrix material are used according to Table 6.2. Applying HS+ and
HS− to the three differently oriented samples of the plaque 1D/1, the
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effective CTE ᾱθ(d) is determined and shown in Figure 6.18. As with the
results previously presented, the results obtained by the HS+ method
are depicted in the upper row, while the HS− results are given in the
lower row. The values of parameter k vary between 0.0 and 1.0 in ten
equidistant steps.

Regarding the HS+ method, an ellipsoidal-shaped distribution of ᾱθ(d)
is observed for the three samples. A dependency of the simulation
results on the parameter k is present. Choosing values smaller than
0.3 for k yields a more pronounced ellipsoidal-shaped distribution of
ᾱθ(d). For increasing values of k, the shape tends toward a planar
isotropic contour. Compared to the corresponding experimental data,
the HS+ method generally overestimates the measured material data
in the case of the 0◦ and the 45◦ sample. For the 90◦-oriented sample,
the calculated effective CTE is close to the experimental CTE value and
exhibits vanishing deviations.

For the HS− method, an ellipsoidal-shaped distribution of ᾱθ(d) is
obtained as well. The impact of small values of k on the distribution
ᾱθ(d) is higher compared to the HS+ method. Values of k ≤ 0.3 lead to
a pronounced ellipsoidal-shaped distribution of ᾱθ(d), whereas k ≥ 0.3
yield a more planar isotropic behavior of the results. Irrespective of the
orientation considered, the effective CTE overestimates the experimental
CTE values.

Comparing the results from HS+ and HS− with the experimental CTE,
the smallest deviations are computed for the results obtained by the HS+

method with k = 1.0. The HS− method leads to results that overestimate
the experimental data due to the high CTE of the matrix in the first
homogenization step. In contrast, the HS+ method uses the CTE of the
fibers in the first step which is significantly lower compared to CTE of
the matrix. Thus, smaller ᾱθ values are expected. Consequently, the HS+

with k = 1.0 is used for the subsequent computations.
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Figure 6.18: Comparison of the experimental data with the results of the mean-field
simulations for different values of k regarding the 0◦, 45◦ and, 90◦ samples of the 1D/1
plaque. The HS+ and HS− results are depicted in the upper and lower rows, respectively.
The experimental results are depicted by red dots. The illustration of the effective CTE in
the x-y-plane corresponds to ᾱθ(π/2, ϕ). The simulation results are based on a μCT scan
at a resolution of 5.0μm. There is a slight overestimation of experimental results by the
HS− method. Good agreements with experimental data are achieved for the HS+ method
for the 45◦ and 90◦ samples.
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6.5.2 Full-field homogenization results for θ = 20◦C

Bymeans of the software tool GeoDict®, the effective CTE is computed by
applying the FFT method to the μCT data for the three different samples
of the 1D/1 plaque. In Figure 6.19, the effective CTE ᾱθ(d) is plotted in
the x-y plane, obtained by both the FFT-based homogenization and the
HS+ method for k = 1.0. The corresponding experimentally determined
CTE values are represented as red dots.

Figure 6.19: Comparison of the effective CTE, obtained by the HS+ method and the
FFT method, with the experimental data regarding the 0◦, 45◦, and 90◦ samples. The
mean-field simulations are performed with k = 1.0. The experimental data are depicted
for samples from the 1D/1 plaque.

The results of the FFT method exhibit a pronounced ellipsoidal-shaped
distribution of ᾱθ(d). The HS+ method for k = 1.0 shows a rather planar
isotropic distribution. For the 0◦ sample, the results of the FFT method
are closer to the experiments than the results of mean-field methods are.
Regarding the 45◦ and 90◦ sample, both methods yield results that are in
good agreement with the experimental data. The angular distribution of
ᾱθ(d) exhibits deviations from the FFT results with respect to the varying
polar angle ϕ. In particular, for the 0◦ and 45◦ samples, the mean-field
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method yields higher ᾱθ(d) values compared to the FFT-based results
for ϕ values near tension direction. The 90◦ sample exhibits an inverse
behavior. Analogous to the differences already observed in terms of the
predicted effective Young’s modulus, this may result from the different
input in terms of the orientation of fibers within the composite.

6.5.3 Temperature-dependent effective
thermal material properties

The effective CTE for varying temperatures is analyzed analogously
to the investigations in Section 6.4. Therefore, a function of αM(θ)
dependent on the temperature is needed. As discussed in Section 4.2.3,
the least square fit using a linear function is reasonable for the
measured thermal strains of the matrix material. Thus, a constant
value, independent on the temperature, is derived for αM. However, the
temperature-dependent elastic properties EM(θ) of the matrix are used
as input for the computation of the effective thermal behavior. Thus,
only Young’s modulus of the matrix EM(θ) is regarded as temperature-
dependent in the following investigations. The material parameters of
the fiber {EF, αF, νF}, as well as of the matrix {αM, νM}, are assumed to
be temperature-independent.

The effective temperature-dependent CTE is computed by means of
the HS+ with k = 1.0. The resulting distributions are depicted over
the temperature, starting at the reference temperature of 20◦C up to
100◦C. As discussed previously, temperatures above 100◦C are out
of the range of possible applications and, therefore, not considered
here. The mean-field results are compared to the experimental CTE
extracted from thermal strain measurements for the composite. In this
context, a quadratic least square fit to the measured thermal strain data
is considered, leading to a linear distribution of the CTE of the composite
material.
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Figure 6.20 shows the computed and experimentally obtained CTE for
the temperature range considered for the 0◦, 45◦, and 90◦ samples of the
plaque 1D/1. The effective CTE exhibits a nearly linear distribution
for the different samples. In the temperature ranges of 20◦C and
50◦C, a flatter slope is observed when compared with the results
depicted for temperatures between 50◦C and 100◦C. The results for
the effective stiffness already exhibited deviations from the experimental
data, cf. Section 6.4.1. As the effective stiffness is used in the
computation of the effective CTE, the deviations observed here are
more pronounced. In contrast, the results for the 45◦ and 90◦ samples
are close to the experimentally determined distribution. For the 90◦

sample, vanishing deviations are obtained especially for θ ≥ 50◦C. Thus,
using a temperature-dependent EM(θ) but assuming a temperature-
independent αM, in turn, captures the temperature-dependent effective
CTE.
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Figure 6.20: Effective temperature-dependent CTE obtained by the HS+ method for
k = 1.0, and samples of the 1D/1 plaque compared to the experimental CTE over
temperature.
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6.5.4 Summary of results

To model the thermomechanical material behavior of composites, elastic
and thermal material properties of the constituents have to be taken
into account. The DMA and CTE measurements provide the basis for
computing homogenized solutions for both the effective elastic and
effective thermal behavior. In this context, the effective CTE is compared
with the experimentally determined CTE. The effective thermal behavior
obtained by the HS+ method at a constant temperature θ = 20◦C are
closer to the experimental data than the HS− results are. The CTE of the
fiber material, used in the first step of the HS+ method, is smaller than
the CTE value of the matrix material. Consequently, the effective CTE
computed by the HS+ method is smaller than the results obtained by the
HS− method and, closer to the experimental data. Consistent with the
linear elastic investigations, the choice of k = 1.0 exhibits the smallest
deviation from the experimental CTE. However, to quantify and validate
the distribution of ᾱθ(d) for both mean- and full-field homogenization,
experimental CTE values at different directions within a sample are
needed.

As investigated in Sections 4.1.3 and 4.2.3, the elastic and thermal
behavior of the composite exhibits temperature-dependent material
parameters. The thermal expansion measurements provide a constant
CTE of the matrix material with respect to the temperature. Thus, only
Young’s modulus of the matrix material is considered temperature-
dependent. However, using EM(θ) within the computations of the
effective CTE, yields a temperature-dependent effective solution. The
predicted effective CTEs at the varying temperatures show the highest
deviations for the 0◦-oriented sample. A close approximation to the
experimental data is obtained for the 45◦ and 90◦ samples.
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Chapter 7

Summary and Conclusions

Modern composite materials combine the advantages of a lightweight
polymer matrix with those of fiber reinforcements to obtain a high
specific stiffness and strength. In the last decades, many composite
systems that contain short or long fibers have been developed. A new
composite class, which consists of a discontinuous fiber-reinforced
thermoset matrix locally reinforced with patches of continuous
reinforcements, combines the advantages of both composite systems,
and is subject of current research within the research training group
DFG-GRK 2078. The thesis at hand specifically addresses discontinuous
glass fiber-reinforced thermoset-based composites manufactured
of SMCs. The pure and fiber-reinforced thermoset material is
experimentally characterized by DMA and thermal expansion
measurements. A thermoelastic mean-field model is developed to
predict the effective thermal and elastic material behavior. Moreover,
the mean-field results are compared to both numerical results obtained
by full-field simulations and experimental data. The results of these
investigations are summarized in the following.

One of the three main objectives of this thesis is to experimentally
characterize the thermoviscoelastic behavior of the SMC material using
DMA. This study considers samples of pure matrix material, as well
as of reinforced composite material, and investigates their temperature-
and frequency-dependent material behavior. The analysis of these tests
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reveals an anisotropic behavior of the reinforced samples. Both the pure
and composite materials show a pronounced temperature dependence
of the material properties for the considered temperature range of
−30◦C to 200◦C. In contrast, the frequency dependence is comparatively
less pronounced. An increasing viscoelastic behavior is observed for
temperatures exceeding 100◦C. The glass transition temperature is
determined, representing the maximum application temperature. In
addition, the coefficient of thermal expansion (CTE) is measured in an
environmental chamber and using a video extensometer system. Based
on the provided database, the CTE of the matrix material is constant
throughout the considered temperature range. The CTE of the composite
material exhibits a linear behavior.

The experimental data for the matrix material are used as input data
for the mean- and full-field simulations to predict the measured
thermoelastic behavior of the composite.

The second main objective of this thesis is to develop a completely
thermomechanical mean-field method for predicting the effective elastic
and thermal properties. Typically, the overall behavior of a fibrous
composite is crucially influenced by the heterogeneities on the micro-
scopic level. Hence, the fiber orientation distribution, volume fraction,
length distribution, and aspect ratio are important quantities in addition
to the elastic and thermal material constants. The SMC composite
considered in this thesis consists of long, discontinuous glass fibers
at nearly constant lengths of 2.5 cm. The mean fiber orientation is given
in terms of orientation tensors of the second- and fourth-order. These
tensors are computed directly on the basis of reconstructed voxel-based
images obtained by μCT scans (Pinter, 2018). To take the orientation
tensors into account, the two-step mean-field method introduced is
formulated explicitly in terms of orientation averages. This approach
is based on the Hashin-Shtrikman (HS) homogenization method as

126



7 Summary and Conclusions

proposed byWillis (1981) andWalpole (1966). The formulation provided
offers a simple and numerically efficient structure. Other mean-field
methods, like the Mori-Tanaka, also provide a simple mathematical
and computation time-efficient structure. Since non-physical overall
results can be obtained for the Mori-Tanka method when applied to
anisotropic constituents, it is limited to specific composite classes and
thus not suitable for Co or CoDiCo composites. In contrast, the approach
developed can be applied to various material systems, and is not limited
to isotropic constituents or two-phase composites, for instance.

Within the HS approach, the reference stiffness is commonly chosen
to equal either the matrix or the fiber stiffness. However, this yields
rather broad bounds due to the high phase contrast between the fiber
and the matrix material of the composite considered. Hence, in this
thesis, a variable reference stiffness is introduced to obtain a more
tailored approach. Moreover, this enables studying the influence of the
reference medium on the effective material behavior. In this context,
several choices of the reference medium are determined, for which the
mean-field approximation is in good agreement with the experimental
data previously obtained by DMA and CTE measurements.
Due to the temperature-dependent elastic modulus observed in
DMA tests, the HS two-step method is formulated in terms of a
temperature-dependent stiffness. Further, measurements provide
a constant value for the CTE of the matrix material as input
for the homogenization. By applying the HS two-step method,
a temperature-dependent effective CTE is obtained due to the
temperature-dependent effective stiffness. The elastic and thermal
mean-field results are in good agreement with the experimental
investigations for reasonable application temperatures.

Additionally, full-field simulations are performed to draw quantitative
conclusions on the effective direction-dependent Young’s modulus
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and the CTE obtained by the mean-field simulation. The μCT data are
directly imported and segmented using the commercial software tool
GeoDict®. Based on these voxel data, the local fields are computed using
a fast Fourier transformation. The effective properties for comparing
both the mean-field results and the experimental data are determined
by volume averaging the local solution. The solutions obtained exhibit
vanishing deviations with respect to the experimental elastic and
thermal data. Deviations are observed between the solutions obtained
by the full-field method and the mean-field results regarding the shape
of the orientation-dependent effective Young’s modulus, as well as that
of the effective thermal expansion. A possible reason for the deviations
occurring is given by the different input regarding the fiber orientation
for both methods. Moreover, the microstructure characterization reveals
clustering effects of the fibers. These clusters, areas of bundled fibers,
cannot simply be scanned at a higher resolution to resolve each single
fiber filament, since the resulting volume elements are then no longer
representative. Thus, a competition between resolution and volume
size is given. Prospective studies are advised to generate synthetic
volume elements that represent the real microstructure. Based on these
structures, a more profound analysis could be performed that allows for
a quantitative comparison between the different simulation methods.

The following concluding remarks can be made:

• By means of the dynamic mechanical analysis, the thermoviscoelastic
material behavior is characterized. A pronounced temperature-
dependent behavior is revealed. Additionally, the coefficient of
thermal expansion is identified by thermal expansion measurements
of the matrix and the composite material. These experimental findings
motivate the development of a thermoelastic mean-field method.
Moreover, substantial input, as well as validation data, are provided
for simulating the overall thermomechanical behavior.
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• The mean-field model presented is derived from the Hashin-
Shtrikman scheme, which is enhanced to account for the thermo-
mechanical behavior. It provides the basis for considering more
complex materials such as carbon fiber-reinforced composites for
which methods like the Mori-Tanaka model cannot be generally
applied to. Its formulation in terms of orientation tensors of second-
and fourth-order and its explicit mathematical structure leads to
time-efficient computations. Thus, it is suitable for the integrated
use with shape-optimization simulations, for instance, and enables
designing structural composite parts. The variable reference stiffness
offers the opportunity to adjust the mean-field method to a certain
composite class.

• The outcome of the experimental investigations is that the matrix
stiffness needs to be modeled temperature-dependent to capture
the behavior of the composite over a wide temperature range. The
measurements provide a temperature-independent behavior for the
CTE of the matrix material. Thus, the temperature-dependency of
the effective CTE is induced by the temperature-dependent matrix
stiffness, used as input for the mean-field homogenization. In this
context, a comprehensive thermomechanical model is developed.

• The FFT-based full-field simulations offer the opportunity to deter-
mine the effective elastic and thermal properties directly from μCT
data. The deviations observed between the mean- and the full-field
results can presumably be traced back to the different orientation
input for both methods. Besides, the microstructure is governed by
bundled fibers which are poorly resolved and thus affect the full-field
results. To overcome this drawback, it is recommended to generate
realistic synthetic structures.

For prospective studies, the mean-field method developed could be
extended to account for damage and failure mechanisms. Mate-
rial classes based on thermoplastic matrices exhibit a pronounced
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viscoelastic behavior. Since the homogenization method presented is
based on an eigenstrain formulation, it can be extended to consider
the thermoviscoelastic behavior of composites. In the context of long
fiber-reinforced thermoplastics, the length distribution of the fibers plays
an important role. The length distribution of fibers can be considered
within the orientation averaging of this mean-field approach; it can thus
easily be applied to long fiber-reinforced thermoplastics.
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Appendix A

Mean- and Full-Field
Homogenization

A.1 Hill’s Polarization Tensor

For an ellipsoidal shaped inclusion as it is illustrated in Figure A.1, Hill’s
polarization tensor is determined by

P(C, Z) = 1
4πdet(Z)

∫
S

H(C, n)(n · (Z−TZ−1n))−3/2 dS, (A.1)

H(C, n) = I
S(K−1�(n ⊗ n))IS, K = C�n ⊗ n�,

(A.2)

with S = {n ∈ R
3 : ‖n‖ = 1}. The contraction operator �·� is defined

by (a ⊗ b) · C�a ⊗ b� = (a ⊗ b) · C[a ⊗ b]. The quantity Z describes
the ellipsoidal geometry of the fibers. The half axes of the ellipsoid
correspond to the reciprocal eigenvalues of Z.

Figure A.1: Ellipsoid with half axes a1, a2 and a3.
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Introducing the notation fromWalpole (1969), a transversely isotropic
tensor with symmetry axis in x1-direction is represented by

P=̂(2α, β, γ, 2δ, 2ε), (A.3)

and thus,

P=̂

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ β β

β α + δ α − δ

β α − δ α + δ

2δ

2ε

2ε

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.4)

For the special case of a spherical inclusion, Hill’s polarization tensor is
given by

P0=̂(2α, β, γ, 2δ, 2ε), (A.5)

with

2α = 2
3(3λ + 6μ) + 1

15
3λ + 8μ

μ(3λ + 6μ) ,

β = 2
3(3λ + 6μ) − 1

15
3λ + 8μ

μ(3λ + 6μ) ,

γ = 2
3(3λ + 6μ) + 2

15
3λ + 8μ

μ(3λ + 6μ) ,

2δ = 1
5

3λ + 8μ

μ(3λ + 6μ) , 2ε = 2δ. (A.6)
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Furthermore, for the special case of needle shaped, unidirectional
inclusions, Hill’s polarization tensor reduces to

P
UD=̂(2α, 0, 0, 2δ, 2ε), (A.7)

2α = 1
2

1
λ + 2μ

, 2δ = λ + 3μ

4(λ + 2μ)μ, 2ε = 1
4μ

.

A.2 Hashin-Shtrikman Mean-Field
Homogenization

A.2.1 Hashin-Shtrikman functional

The stress-strain relation reads

σ = ∂W

∂ε
= C[ε] − G, (A.8)

with the energy density

W = 1
2ε · C[ε] − ε · G − 1

2k (A.9)

= 1
2ε · σ − 1

2ε · G − 1
2k.

The ensemble average is then given by

2〈W 〉 = 〈ε · σ〉 − 〈ε · G〉 − 〈k〉. (A.10)

According to Willis (1981), a homogeneous comparison medium is
introduced with stiffness C0 for which the polarization field is defined
by

τ = (C − C0)[ε] − G = δC[ε] − G, (A.11)
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with δC = C − C0. Thus, the stress-strain relation from Eq. (A.8) reads

σ = τ + C0[ε]. (A.12)

By this, the boundary value problem div (σ) = 0 reads

div (C0[ε]) + div (τ ) = 0. (A.13)

Thus, the initial problem without body forces and a heterogeneous
material is reformulated to a problem containing homogeneous material
and apparent body forces b = div (τ ). The boundary value problem for
known polarizations τ is formally solved by

ε = ε̄ − G{τ}, (A.14)

with G denoting the integral Green operator, cf. Willis (1981; 1977),
defined by G{τ} =

∫
Ω G(x, x′)τ (x′) dv′. Combining Eqs. (A.11) and

(A.14), yields

δC−1(τ + G) = ε̄ − G{τ} (A.15)

ε̄ − δC−1[G] = δC−1[τ ] + G{τ} (A.16)

ε̃ = δC−1[τ ] + G{τ}, (A.17)

with ε̃ = ε̄ − δC−1[G]. Rearranging yields the consistency condition
reading

K := δC−1[τ ] + G{τ} − ε̃ = 0, (A.18)

for which K(τ = τ̂ ) = 0 for exact polarizations τ̂ . Using K, the varia-
tion functional according to Hashin and Shtrikman (1962) considering
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F = 〈1
2τ · δC−1[τ ] + 1

2τ · G{τ} − τ · ε̃〉 (A.19)

= 1
2 〈τ · K〉 − 1

2 〈τ · ε̃〉. (A.20)

The first variation reads

δF = 〈K · δτ 〉, (A.21)

which is stationary for exact polarizations τ̂ . By means of the second
variation, the minimum and maximum of the HS functional F is
determined by

δ2F = 〈δτ · (δC−1 + G)[τ ]〉, (A.22)

for which

δ2F =

⎧⎨
⎩> 0, F min,

< 0, F max,
(A.23)

is obtained. According to Willis (1977), a positive (negative) definite
δC implies a positive (negative) definite δC−1 + G. For an isotropic
homogeneous comparison material with stiffness C0, the Green operator
simplifies to G{τ} ≈ P0[τ ], with P0 denoting Hill’s polarization tensor
for an isotropic medium.
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The value of F for exact polarizations τ̂ reads

F(τ̂ ) = −1
2 〈τ̂ · ε̃〉 (A.24)

= −1
2 σ̄ · ε̄ + 1

2C0[ε̄] · ε̄ + 1
2 〈G · ε〉 − 1

2 〈G · δC−1[G]〉 (A.25)

− 1
2 〈k〉 + 1

2 〈k〉

= −W̄ + 1
2C0[ε̄] · ε̄ − 1

2 〈G · δC−1[G]〉 − 1
2 〈k〉 (A.26)

= −W̄ + W̄0. (A.27)

Thus, from the HS principle, it follows

W̄ HS+ = W̄0 − max
τ

F(τ ) ≥ W̄ (A.28)

W̄ HS− = W̄0 − min
τ

F(τ ) ≤ W̄ . (A.29)

Formally,

W̄ HS = 1
2 ε̄ · C̄HS[ε̄] − ε̄ · Ḡ

HS − 1
2 k̄HS, (A.30)

and furthermore with

W̄ HS = W̄0 − F(τ ) = W̄0 + 1
2 〈τ · ε̃〉 (A.31)

= 1
2C0[ε̄] · ε̄ − 1

2 〈G · δC−1[G]〉 − 1
2 〈k〉 + 1

2τ · ε̃ (A.32)

and ε = A[ε̄] − a, a comparison of coefficients yields

C̄
HS = 〈C0 + δCA〉 = 〈CA〉 (A.33)

Ḡ
HS = 〈ATH [G]〉. (A.34)
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and thus, the effective stiffness is given by

C̄
UD−
γ = CM + 〈δCA〉

= CM + cγ(Cγ − CM)AHS
γ . (A.35)

With A
HS
γ = Mγ〈M〉−1,Mγ = (IS + P

UD
γ δCγ)−1 and

δCγ = Cγ − C0 = Cγ − CM, it follows

C̄
UD−
γ = CM + cγδCγ(IS + P

UD
γ δCγ)−1〈(IS + P

UD
γ δCγ)−1〉−1

= CM + cγδCγ(IS + P
UD
γ δCγ)−1(cM(IS + P

UD
γ (CM − CM))−1

+ cγ(IS + P
UD
γ δCγ)−1)−1

= CM + cγδCγ(IS + P
UD
γ δCγ)−1(cMI

S + cγ(IS + P
UDδCγ)−1)−1

= CM + cγδCγ((cMI
S + cγ(IS + P

UDδCγ)−1)(IS + P
UDδCγ))−1

= CM + cγδCγ(cM(IS + P
UDδCγ) + cγI

S)−1

= CM + cγδCγ((cM + cγ)IS + cMP
UDδCγ)−1

= CM + cγδCγ(IS + cMP
UDδCγ)−1. (A.36)

Analogous calculations with C0 = Cγ within the first step yield C̄
UD+.

The effective eigenstress contribution is determined by

Ḡ
HS = 〈ATH [G]〉

= 〈ATHC[ε∗]〉
C̄

HS[ᾱHS] = 〈ATHC[α]〉
ᾱHS = (C̄HS)−1〈ATHC[α]〉. (A.37)

From Eq. (A.33), in the first step for a domain γ with unidirectional
polarization tensor PUD, C0 = CM is chosen leading to W̄ HS = W̄ HS−
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For the domain γ and choosingC0 = CM, the effective CTE is determined
in the first step by

ᾱUD−
γ = (C̄UD−)−1(CM[αM] + cγA

TH
γ (Cγ [αγ ] − CM[αM]))

= (C̄UD−)−1(CM[αM] + cγ〈(IS + P
UDδCγ)−1〉−TH

(IS + P
UDδCγ)−TH(Cγ [αγ ] − CM[αM]))

= (C̄UD−)−1(CM[αM] + cγ(cMI
S + cγ(IS + P

UDδCγ)−1)−TH

(IS + P
UDδCγ)−TH(Cγ [αγ ] − CM[αM]))

= (C̄UD−)−1(CM[αM] + cγ((cMI
S + cγ(IS + P

UDδCγ)−1)
(IS + P

UDδCγ))−TH(Cγ [αγ ] − CM[αM]))
= (C̄UD−)−1(CM[αM] + cγ((cM + cγ)IS + cMP

UDδCγ)−TH

(Cγ [αγ ] − CM[αM]))
= (C̄UD−)−1(CM[αM] + cγ(IS + cMP

UDδCγ)−TH

(Cγ [αγ ] − CM[αM]))
(A.38)

Analogous calculations with C0 = Cγ within the first step yields ᾱUD+.
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The effective stiffness is calculated by

C̄ = 〈CAHS〉
= 〈CM〉〈M〉−1

= 〈δCM〉〈M〉−1 + 〈C0M〉〈M〉−1

= 〈δCM〉〈M〉−1 + C0〈M〉〈M〉−1

= C0 + 〈δCM〉〈M〉−1

= C0 + 〈P−1
0 P0δCM〉〈M〉−1

= C0 + 〈P−1
0 (−I

S + I
S + P0δC)M〉〈M〉−1

= C0 + 〈P−1
0 (−I

S + M
−1)M〉〈M〉−1

= C0 + 〈P−1
0 − P

−1
0 M〉〈M〉−1

= C0 + P
−1
0 〈M〉−1 − P

−1
0

= C0 − P
−1
0 + 〈MP0〉−1

= C0 − P
−1
0 + 〈(IS + P0δ)−1

P0〉−1

= C0 − P
−1
0 + 〈(P−1

0 + δC)−1〉−1. (A.39)

The latter equation is reformulated according to Walpole (1966; 1969) to
obtain a computational efficient and simple expression for the effective
stiffness. The effective stiffness within the second step of the HS method
is determined by

C̄
HS± = 〈 1

cF
C̄

UD±
A

HS〉

= 1
cF

N∑
β=1

cβC
UD±
β Aβ

= C0 − P
−1
0 + 〈 1

cF
(P−1

0 + C̄
UD± − C0)−1〉−1 (A.40)
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A.2.2 Effective quantities

The effective energy density reads

W̄ = 1
2 〈ε · σ〉 − 1

2 〈ε · G〉 − 1
2 〈k〉

= 1
2 〈ε · C[ε]〉 − 〈G · ε〉 − 1

2 〈k〉

= 1
2 〈A[ε̄] · CA[ε̄] − A[ε̄] · C[a] − a · CA[ε̄] + a · C[a]〉

− 〈G · A[ε̄] − G · a〉 − 1
2 〈k〉

= 1
2 〈ε̄ · ATHCA[ε̄]〉 − 1

2 〈a · CA[ε̄]〉 − 1
2 〈a · CA[ε̄]〉+

1
2 〈a · C[a]〉 − 〈ATH [G] · ε̄〉 + 〈G · a〉 − 1

2 〈k〉,
(A.41)

with ε = A[ε̄] − a.
Considering the Hill-Mandel relations, 〈CA[ε̄] · a〉 = 〈CA〉[ε̄] · 〈a〉 = 0
and 〈(C[a] + G) · a〉 = 〈C[a] + G〉 · 〈a〉 = 0, the effective density yields

W̄ = 1
2 〈ε̄ · ATHCA[ε̄]〉 − 〈ATH [G]〉 · ε̄ − 1

2 〈k〉. (A.42)

With W̄ = ε̄ · C̄[ε̄]/2 − Ḡ · ε̄ − k̄/2, one yields from Eq. (A.42)

C̄ = 〈ATHCA〉, Ḡ = 〈ATH [G]〉 (A.43)

A.2.3 Mechanical strain and eigenstrain localization

Given is Hooke’s law including eigenstresses G

σ = C[ε] − G. (A.44)

140



A Mean- and Full-Field Homogenization

By div (σ) = 0 and τ = δC[ε] − δG, an equivalent boundary value
problem is derived for which the solution formally reads

ε = ε̄ − G{τ}
= ε̄ − G{τ − 〈τ 〉}. (A.45)

For an isotropic material, G{τ} ≈ P0[τ ] holds, with P0 denoting Hill’s
polarization tensor for an isotropic comparisonmaterial with stiffnessC0.
Thus, one yields

δC−1[τ ] + C
−1[δG] = ε̄ − P0[τ − 〈τ 〉]

(δC−1 + P0)[τ ] − P0[〈τ 〉] = ε̄ − δC−1[δG]
(δC−1 + P0)(δC[ε] − δG) − P0〈δC[ε] − δG〉 = ε̄ − δC−1[δG]

(IS + P0δC)[ε] − δC−1[δG] − P0[δG] − P0〈δC[ε] − δG〉 = ε̄ − δC−1[δG]
(IS + P0δC)[ε] − 〈(IS + P0δC)[ε]〉 = P0[δG − 〈δG〉].

(A.46)

IntroducingM = (IS + P0δC)−1 and D = P0[δG], the expressions above
yield

M
−1[ε] − 〈M−1[ε]〉 = D − 〈D〉. (A.47)

The solution is given by

ε = A[ε̄] − a, A = M〈M〉−1, M = (IS + P0δC)−1. (A.48)

Combining Eq. (A.48) and Eq. (A.47) yields

M
−1(M〈M〉−1[ε̄] − a) − 〈M−1(M〈M〉−1[ε̄] − a)〉 = D − 〈D〉

〈M〉−1[ε̄] − M
−1[a] − 〈〈M〉−1[ε̄] − M

−1[a]〉 = D − 〈D〉
〈M−1[a]〉 − M

−1[a] = D − 〈D〉. (A.49)
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In order to solve the latter equation, a = −MD is assumed, leading to

〈−M
−1

MD〉 + M
−1

MD = D − 〈D〉
−〈D〉 + D = D − 〈D〉, (A.50)

resulting to a true statement.

From Eq. (A.48)2,3, it follows

A = MP0P
−1
0 〈M〉−1

= (IS + P0δC)−1
P0P

−1
0 〈(IS + P0δC)−1〉−1

= (P−1
0 + δC)−1〈(P−1

0 + δC)−1〉−1

= R〈R〉−1, (A.51)

with R = (P−1
0 + δC)−1. Thus, for the eigenstrain localization it follows

a = −MD

= −MP0[δG]
= −MP0[G − G0]
= −MP0[G] + MP0[G0]. (A.52)

Using the normalization condition 〈a〉 = 0, the reference eigenstrain
field G0 can be eliminated, yielding

0 = 〈−MP0[G]〉 + 〈M〉P0[G0]
〈M〉P0[G0] = 〈MP0[G]〉

G0 = P
−1
0 〈M〉−1〈MP0[G]〉 (A.53)
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Inserting in Eq. (A.52), one obtains

a = −MP0[G] + MP0P
−1
0 〈M〉−1〈MP0[G]〉

= −MP0[G] + M〈M〉−1〈MP0[G]〉
= −R[G] + A〈R[G]〉. (A.54)

A.3 Orientation Tensors for the SMC
Composite Samples

The orientation tensors of second- and fourth-order used as input for the
mean-field homogenization are computed based on μCT scans (Pinter
et al., 2018). The tensors computed for each sample are listed in Tables
A.1 to A.3.
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A.4 Settings for the Full-Field Simulations

The full-field simulations are performed with the commercial software
tool GeoDict® (standard edition, version 2017) by the Math2Market
GmbH. The effective elastic and thermal properties of the composite are
computed using the Elasto-Dict module and the FeelMath solver. The
settings and solver options for the full-field computations are listed in
Table A.4.

Constituent materials
Matrix EM = 3.4 GPa, νM = 0.385,

αθ = 7 × 10−5 K−1

Fiber EF = 73 GPa, νM = 0.22, αθ = 0.5 × 10−5 K−1

UD-fibers E1 = 31.29 GPa, E2 = 8.23 GPa, ν1 = 0.45,
ν2 = 0.31, G = 2.92 GPa, αθ = 0.5 × 10−5 K−1

Load case

Load type Strain
Strain increment 0.05%
Boundary
conditions

Periodic

Solver

Tolerance 0.0001
Max. iterations 100 000
Method Neumann series (memory efficient)
Parallelization Local, 4 threads

Table A.4: Settings and solver options for the full-field simulations.
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Appendix B

Production of Pure Resin Samples

For the mean-field and full-field simulations presented in Chapter 6,
parameters for the pure resin material are desired. The pure resin
plaques have been produced by compression molding at the Institute
of Production Science (wbk). The uncured material is prior portioned
to cylinder-shaped pieces at 10 cm × 2.5 cm, see Figure B.1a. The mold
has been heated to a fixed temperature. Subsequently, each piece is
positioned into the mold, cf. Figure B.1b and pressed for a specific
time until a cured plaque is yielded. Since the production parameters
were not clear prior to the compression molding, several trials have
been performed, listed in Table B.1. As it is shown in Figure B.1c, some
process parameters for the mold lead to plaques that are irregular cured
and exhibit areas that are darker or brighter compared to other areas.
Furthermore, voids and holes are detected within the plaque. In contrast,
setting a temperature of 145◦C, a pressure of 2000 kN and a compression
time of 90 sec as process parameters for the mold, yields plaques with
greater areas of homogeneously cured material and without voids, cf.
Figure B.1d. From these plaques, DMA samples were extracted and used
to determined the storage modulus and the CTE value for the matrix
material. Table B.1 lists the process parameters that yield successful and
unsuccessful compression molding results.
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B Production of Pure Resin Samples

(a) (b)

(c) (d)
Figure B.1: a) Uncured pure UPPH piece with geometrical dimensions. b) Mold with
pure resin piece. c) Cured pure resin plaque with unregular cured areas. d) Cured pure
resin plaque with areas of homogeneous cured material. The pure resin plaques were
manufactured at the Institute of Production Science (wbk), Production Systems.

Mold
temp.

Compr.
force

Compr.
time

Resultant plaques

120◦C -
130◦C

980 kN -
1500 kN

5 min -
15 min

Unregular, heterogeneous curing,
voids in the plaques

145◦C 2000 kN 90 sec Regular, homogeneous curing,
nearly no voids

Table B.1: Parameters for the production by compression molding.
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Appendix C

Application to Sheet Molding
Compound Composite

In Section 6.2.1, mean-field results for samples from the 1D/2 plaque for
3μm resolutions are presented. The same samples have been scanned
beforehand at a resolution of 5.5μm. In addition to the results from
Section 6.2.1, the mean-field simulation results for the coarser resultion
are presented here.

The relative deviation of the orientation tensor for each sample from the
planar isotropic orientation tensor is depicted in Figure C.1a. The 0◦- and
90◦-oriented samples exhibit a relative error from the planar isotropic
state of approximately 20%. For the 45◦ sample, a pronounced deviation
of approximately 35% is reached. In Figure C.1b, the eigenvalue tupels
are shown. In particular, the 45◦ sample exhibits pronounced anisotropic
properties with tendencies toward the UD fiber orientation. In contrast,
the 0◦- and 90◦ samples are close to each other and exhibit a less
pronounced anisotropic orientation of the microstructure compared to
the 90◦ sample.
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Figure C.1: a) Relative error api
γ = ‖Nγ − Npi‖/‖Npi‖ between the orientation tensors

Nγ of α = {0◦, 45◦, 90◦} samples from 1D/2 plaque and the planar isotropic reference
orientation tensor Npi. b) Eigenvalues λ1 and λ2 of the orientation tenors, with λ1 ≥ λ2.
The abbreviations PI, Iso and UD denote planar isotropic, isotropic and unidirectional.
The 45◦ sample exhibits a pronounced anisotropic microstructure, it is less pronounced
for the 0◦ and 90◦ sample.

In Figure C.2, the mean-field results from the HS± method are shown. In
the upper row, the results from HS+ are presented, whereas the results
from the HS− method are depicted in the lower row. For the HS+, a
rather isotropic distribution of the effective Young’s modulus Ē(d) is
computed. Slight deviations in terms of the shape of Ē(d) are shown
for the different orientation of the samples. Furthermore, a vanishing
influence of parameter k on the HS+ results is observed. In general, the
simulation results are consistently stiffer compared to the experimental
data. In contrast, the effective modulus for the HS− method exhibits a
pronounced anisotropic behavior. The results depend on the orientation
of the sample. Furthermore, for increasing values of parameter k, the
results from HS− are closer to the corresponding experimental data.
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C Application to Sheet Molding Compound Composite

Figure C.2: Experimental data are compared to results of the HS mean-field simulation
for 0◦, 45◦ and 90◦ samples from 1D/2 plaque. HS+ and HS− results are depicted in the
upper and lower row, respectively. Parameter k of the variable reference stiffness is varied.
Experimental results are depicted by red dots. The effective Young’s modulus is illustrated
in the x-y-plane, corresponding to Ē(π/2, ϕ). Simulation results are based on a μCT scan
with a resolution of 5.5μm. Negligible sensitivity of the HS+ method on the variation of k
is observed. Significant overestimation of the experimental results by the HS+ method is
given. Results from HS− are close to experimental data.
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C Application to Sheet Molding Compound Composite

Figure C.3 shows the relative error between experimental data and
mean-field results from the HS− method dependent on parameter k

With increasing values of k, the relative error decreases monotonically.
The highest deviations from the experimental data are computed for the
0◦ sample. The smallest relative error for all three samples is obtained
for k = 1.0 in the range of 10% (0◦) and 2% (45◦).
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Figure C.3: Relative error ε = |Esim/Eexp − 1.0| · 100 % between experimental data and
simulations for HS− is depicted for different values of k. Experimental data are obtained
for 0◦-, 45◦- and 90◦ samples from the 1D/2 plaque. The relative error decreases
monotonically for increasing values of k. The relative error varies between 10% (0◦)
and 2% (45◦) for k = 1.0.
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C Application to Sheet Molding Compound Composite

C.2 Mean-Field Simulation Results
for cF = 0.22

For samples from the 1D/1 plaque, the mean-field simulations are
performed with the input values listed in Table 6.2, except the fiber
volume content is set to the nominal value of 22 vol.%.

The relative error between the average fiber orientation of each sample
and the planar isotropic state is shown in Figure 6.4.

The effective Young’s modulus Ē(d) from the HS± methods is depicted
in Figure C.4. The HS+ results yield stiffer and rather isotropic results
for Ē(d). From the HS− method, the results show anisotropic effective
behavior and are dependent on the choice of k. In comparison to
experimental data, small deviations are computed.
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C Application to Sheet Molding Compound Composite

Figure C.4: Experimental data are compared to results of the HS mean-field simulation
for 0◦, 45◦ and 90◦ samples from 1D/1 plaque for cF = 0.22. HS+ and HS− results are
depicted in the upper and lower row, respectively. Parameter k of the variable reference
stiffness is varied. Experimental results are depicted by red dots. The effective Young’s
modulus is illustrated in the x-y-plane, corresponding to Ē(π/2, ϕ). Simulation results
are based on a μCT scan with a resolution of 5.5μm. Negligible sensitivity of the HS+

method on the variation of k is observed. Significant overestimation of the experimental
results by the HS+ method is given. Results from HS− are close to experimental data.
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The relative error between simulation results for the HS− method
dependent on parameter k, and the experimental data is shown in
Figure C.5. With increasing k, the relative error ε decreases. The smallest
error is determined for k = 1.0 for all samples. The relative error varies
between 5% (0◦) and 15% (45◦).
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Figure C.5: Relative error ε = |Esim/Eexp − 1.0| · 100 % between experimental data and
simulations for HS− is depicted for different values of k and cF = 0.22. Experimental
data are obtained for 0◦, 45◦ and 90◦ samples from the 1D/1 plaque. The relative error
decreases monotonically for increasing values of k. The relative error varies between 15%
(45◦) and 5% (0◦) for k = 1.0.
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In current industrial applications, fiber-reinforced composites significantly 
contribute to reduce the weight of components. In this work, a discontin-
uously fiber-reinforced thermoset material is considered which is produced 
by the Sheet Molding Compound (SMC) process. The key objectives are the 
modeling of the thermoelastic material behavior accounting for the under-
lying microstructure, and the experimental characterization. To approximate 
the effective thermoelastic material behavior, a two-step method based on 
the Hashin-Shtrikman mean-field homogenization is derived. The method is 
formulated in terms of orientation tensors to account for the fiber orientation 
and to ensure numerically efficient computations. A variable reference stiff-
ness is introduced to tailor the approach to a specific material class. Addition-
ally, a full-field homogenization based on FFT is applied. Thus, the simulation 
results of the full- and mean-field methods can be compared quantitatively.  
Dynamic mechanical analysis (DMA) is performed to experimentally charac-
terize the thermoviscoelastic material properties. The thermal expansion coef-
ficients are measured by a video extensometer camera system and thermal 
expansion tests. The experimental data provide a basis for the validation of 
the numerical results of the effective elastic and thermal material parameters.
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