Observation of prompt J/ψ meson elliptic flow in high-multiplicity pPb collisions at $\sqrt{s_{NN}} = 8.16$ TeV

The CMS Collaboration*

CERN, Switzerland

A R T I C L E I N F O

Article history:
Received 2 October 2018
Received in revised form 14 February 2019
Accepted 14 February 2019
Available online 19 February 2019
Editor: M. Doser

Keywords:
CMS
Heavy-ion physics
Correlation
Flow
pPb
Heavy flavor

A B S T R A C T

A measurement of the elliptic flow (v_2) of prompt J/ψ mesons in high-multiplicity pPb collisions is reported using data collected by the CMS experiment at a nucleon-nucleon center-of-mass energy $\sqrt{s_{NN}} = 8.16$ TeV. Prompt J/ψ mesons decaying into two muons are reconstructed in the rapidity region in the nucleon-nucleon center-of-mass frame (y_{cm}), corresponding to either $-2.86 < y_{cm} < -1.86$ or $0.94 < y_{cm} < 1.94$. The average v_2 result from the two rapidity ranges is reported over the transverse momentum (p_T) range from 0.2 to 10 GeV. Positive v_2 values are observed for the prompt J/ψ meson, as extracted from long-range two-particle correlations with charged hadrons, for $2 < p_T < 8$ GeV. The prompt J/ψ results are compared with previous CMS measurements of elliptic flow for open charm mesons (D^0) and strange hadrons. From these measurements, constraints can be obtained on the collective dynamics of charm quarks produced in high-multiplicity events arising from small systems.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Strong collective behavior is found in the azimuthal correlations of particles emitted in relativistic nucleus-nucleus (AA) collisions at the BNL RHIC [1–4] and at the CERN LHC [5–10]. These correlations, which are long-range in pseudorapidity (η), suggest the formation of a strongly interacting quark-gluon plasma (QGP) that exhibits nearly ideal hydrodynamic behavior [11–13]. The azimuthal correlation structure of emitted particles is typically characterized by its Fourier components [14]. In particular, within a hydrodynamic picture, the second and third Fourier anisotropy components are known as elliptic (v_2) and triangular (v_3) flow, respectively, and reflect the QGP medium response to the initial collision geometry and its fluctuations [15–17]. In recent years, similar long-range collective azimuthal correlations have also been observed in events with high final-state particle multiplicity in proton-proton (pp) [18–21], proton-nucleus (pA) [22–30], and lighter AA collisions [31–33], raising the question of whether a fluid-like QGP is created in these much smaller systems. While experimental measurements in these small systems are consistent with the hydrodynamic expansion of a tiny QGP droplet, alternative scenarios based on gluon saturation in the initial state also claim to capture the main features of the correlation data (recent reviews are provided in Refs. [34,35]).

Because of their large masses, heavy quarks (charm and bottom) are primarily produced via hard-scattering processes at a very early stage of the collision. Thus, they are largely decoupled from the bulk production of soft gluons and light-flavor quarks at a later stage in AA collisions, and thereby probe the properties and dynamics of the QGP through its entire evolution [36]. A strong elliptic flow (v_2) signal has been observed for open heavy-flavor D^0 mesons in both AuAu collisions at RHIC [37] and PbPb collisions at the LHC [38–40], suggesting that charm quarks may develop strong collective flow behavior. Furthermore, a recent measurement of the elliptic flow of J/ψ mesons in PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV [41] has provided additional evidence for the collective behavior of charm quarks in the QGP.

In the study of collectivity in small systems, such as that occurring in pp or pPb collisions, a key open question is whether the strong collective behavior observed for bulk constituents in high-multiplicity events also extends to charm and bottom quarks. Long-range correlations involving inclusive muons at high transverse momentum (p_T) reveal a hint of heavy-flavor quark collectivity in pPb collisions [42]. Furthermore, the recent observation of a significant elliptic flow signal for prompt D^0 mesons in pPb collisions has provided evidence for charm quark collectivity in a small system [43]. The v_2 signal for D^0 mesons is found to be smaller than that of light-flavor mesons at a given p_T, indicating
that in these small systems there is a weaker collective motion for charm quarks, as compared to that of the bulk medium. However, as the D^0 meson carries both a light and a charm quark, the relative contribution of these different flavor quarks to the observed v_2 signal is not fully constrained. Without detailed theoretical modeling, a scenario is not excluded where the D^0 meson v_2 signal is entirely carried by the light-flavor quark. The observation of an elliptic flow signal for J/ψ mesons in a small system could provide more direct evidence of charm quark collectivity and could impose new constraints on the collective dynamics of heavy-quark production in such collisions. Furthermore, heavy-quark collectivity may also provide a hint of how, in small systems, hard probes interact with the QGP [36], assuming this is formed. First measurement of inclusive J/ψ (combined charmonia and J/ψ mesons from decay of open beauty hadrons) v_2 in pPb collisions was reported in Ref. [44], where positive v_2 coefficients were found in the range of $3 < p_T < 6.6$ GeV with center-of-mass rapidities $-4.46 < y_{cm} < -2.96$ or $2.03 < y_{cm} < 3.53$. A recent model calculation of J/ψ v_2 in pPb collisions suggests little v_2 signal arising from final-state interactions between charm quarks and the QGP medium [45].

This Letter presents the first measurement of prompt J/ψ meson elliptic flow (excluding contributions from b hadron decays) from long-range two-particle correlations in very high multiplicity pPb collisions at $\sqrt{s_{NN}} = 8.16$ TeV. The v_2 harmonics for prompt J/ψ mesons in the range $-2.86 < y_{cm} < -1.86$ and $0.94 < y_{cm} < 1.94$ are determined over a wide p_T range from 0.2 to 10 GeV. To estimate the possible residual contribution from back-to-back jet-like correlations, the v_2 values are also presented after subtracting correlations obtained from low-multiplicity pPb events (denoted as v_2^{sub}), where jet-like correlations are assumed to dominate. The results are compared to those of the light strange-flavor K_S^0 and Λ hadrons, and the open-heavy-flavor prompt D^0 meson, which were previously reported by CMS [43] in the same p_T range but in a different rapidity range of $-1.46 < y_{cm} < 0.54$. In order to explore possible collectivity at the partonic level, a comparison is also presented in terms of the transverse kinetic energy per constituent quark (KE_T/n_q, where $KE_T = \sqrt{m^2 + p_T^2} - m$, and n_q is the number of constituent quarks).

2. The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume, there are four primary subdetectors including a silicon pixel and strip tracker detector, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Iron and quartz-fiber Cherenkov hadron forward (HF) calorimeters cover the range 3.0 < $|y|$ < 5.2. Muons are measured in the range $|y| < 2.4$ in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid, with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers. The silicon tracker measures charged particles within the range $|y| < 2.5$. For charged particles with $1 < p_T < 10$ GeV and $|y| < 1.4$, the track resolutions are typically 1.5% in p_T and 25–90 (45–150) μm in the transverse (longitudinal) impact parameter [46]. A detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [47].

3. Data selection and J/ψ meson reconstruction

The pPb data at $\sqrt{s_{NN}} = 8.16$ TeV used in this analysis were collected in 2016, and correspond to an integrated luminosity of 186 nb$^{-1}$. The beam energies are 6.5 TeV for the protons and 2.56 TeV per nucleon for the lead nuclei. Because of the asymmetric beam conditions, particles selected in the laboratory rapidity range of $1.4 < y_{lab} < 2.4$ ($-2.4 < y_{lab} < -1.4$) have a corresponding nucleon-nucleon center-of-mass frame rapidity range of $0.94 < y_{cm} < 1.94$ ($-2.86 < y_{cm} < -1.86$), with positive rapidity defined in the proton beam direction. To minimize statistical uncertainties, the quoted J/ψ meson v_2 results combine the individual values obtained for the proton and lead beam directions.

The pPb data are analyzed in different ranges of $N_{\text{trk}}^{\text{offline}}$, where $N_{\text{trk}}^{\text{offline}}$ is the number of primary charged particle tracks [46] with $|\eta| < 2.4$ and $p_T > 0.4$ GeV. The main results are obtained with events in the high-multiplicity range $185 \leq N_{\text{trk}}^{\text{offline}} < 250$. To select these events, dedicated triggers were developed, as discussed in Refs. [48,49]. Events with $N_{\text{trk}}^{\text{offline}} < 35$ are also used to estimate the possible contribution of residual back-to-back jet-like correlations. These lower-multiplicity events are selected online with a hardware-based trigger requiring two muon candidates in the muon detectors with no explicit momentum or rapidity threshold [50]. In the offline analysis, hadronic collisions are selected by requiring at least one HF calorimeter tower with more than 3 GeV of total energy in each of the two HF detectors. Events must contain a primary vertex close to the nominal interaction point of the beams, within 15 cm along the beam direction, and 0.2 cm in the plane transverse to beam direction. The $N_{\text{trk}}^{\text{offline}}$ range limits correspond to fractional inelastic cross sections from 100 to 57% for $N_{\text{trk}}^{\text{offline}} < 35$, and from 0.33 to 0.01% for 185 ≤ $N_{\text{trk}}^{\text{offline}} < 250$, respectively.

The offline muon reconstruction algorithm starts either by finding tracks in the muon detectors, which are then fitted together with tracks reconstructed in the silicon tracker (global muons), or by extrapolating tracks from the silicon tracker to match a hit on at least one segment of the muon detectors (tracker muons). The muon candidates are required to pass the identification criteria of the particle-flow algorithm [51], which suppresses contamination of “punch-through” hadrons misidentified as muons, based on energy deposition in the calorimeters. The soft muon selection criteria are also imposed, as defined in Ref. [52], to further improve the purity of muons.

The J/ψ meson candidates are formed from pairs of oppositely charged muons, originating from a common vertex. Based on the vertex probability distributions for signal and background candidates, the probability that the dimuon pair shares a common vertex is required to be larger than 1%, lowering the background from random combinations as well as from semileptonic decays of bottom and charm hadrons. Because of the long lifetime of b hadrons compared to that of J/ψ mesons, the nonprompt J/ψ meson component can be reduced by placing constraints on the pseudo-proper decay length [53]. This is defined by

$$L_{xy}^{3D} = \frac{m_{J/\psi}}{|p_{\mu\mu}|} L_{y}^{3D},$$

where L_{xy} is the distance between the primary and dimuon vertices, $m_{J/\psi}$ is the Particle Data Group [54] world average value of the J/ψ meson mass (assumed for all dimuon candidates), and $p_{\mu\mu}$ is the dimuon momentum. The upper limit (decreasing as a function of p_T) imposed on the L_{xy}^{3D} value is based on Monte Carlo (MC) studies with simulated event samples of $\sqrt{s_{NN}} = 2.0$ TeV [55,56], and found to reject 75–90% (from low to high p_T) of nonprompt J/ψ mesons, largely independent of multiplicity. The residual nonprompt J/ψ meson fraction in the data is estimated to be approximately 5% across the full p_T range, and its effect on the v_2 measurement is propagated as a systematic uncertainty, as described in Section 5.
4. Analysis technique

The azimuthal anisotropy of J/ψ mesons is extracted from the long-range (|Δη| > 1) two-particle azimuthal correlations, following an identical procedure to that described in Refs. [21,27,43]. A two-dimensional (2D) correlation function is constructed by pairing each J/ψ candidate with reference primary charged-particle tracks with 0.3 < p_T < 3 GeV and |η| < 2.4 (denoted as “ref” particles), and calculating

$$\frac{1}{N_{J/\psi}} \frac{d^2 N_{\text{Pair}}}{d \Delta \eta d \Delta \phi} = B(0,0) \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)},$$

(2)

where Δη and Δφ are the differences in η and in the azimuthal angle (φ) of the pair. The same-event pair distribution, S(Δη, Δφ), represents the yield of particle pairs normalized by the number of J/ψ candidates from the same event. The mixed-event pair yield distribution, B(Δη, Δφ), is constructed by pairing J/ψ candidates in each event with the reference primary charged-particle tracks from 20 different randomly selected events, from the same N_{trk} offline range and having a primary vertex falling in the same 2 cm wide range of reconstructed longitudinal, z coordinate. The analysis procedure is performed in each p_T and invariant mass (m_{inv}) range of J/ψ candidates. A correction for the acceptance and efficiency of the J/ψ meson yields is applied, but found to have a negligible effect on the measurements. The Δϕ correlation functions averaged over |Δη| > 1 (to remove short-range correlations, such as jet fragmentation) are then obtained from the 2D distributions and fitted by the first three terms of a Fourier series (including additional terms has a negligible effect on the fit results):

$$\frac{1}{N_{J/\psi}} \frac{d N_{\text{Pair}}}{d \Delta \phi} = N_{\text{assoc}} \frac{1}{2\pi} \left[1 + \sum_{n=1}^{3} 2 V_{n \Delta} \cos(n \Delta \phi) \right].$$

(3)

Here, V_{n \Delta} are the Fourier coefficients and N_{assoc} represents the total number of same-event pairs per J/ψ candidate for a given invariant mass interval. By assuming that V_{n \Delta} is the product of single-particle anisotropies of J/ψ mesons and reference charged particles [57], V_{n \Delta}(J/ψ, ref) = v_n(J/ψ) × v_n(ref), the v_n anisotropy harmonics for J/ψ candidates can be extracted as a function of invariant mass, v_n(J/ψ) = V_{n \Delta}(J/ψ, ref)/V_{n \Delta}(ref, ref). The V_{n \Delta}(ref, ref) represents the Fourier coefficients extracted by correlating two reference charged particles. With the current data, only the second order (n = 2) elliptic anisotropy harmonic can be measured with meaningful statistical precision.

To extract the genuine v_2 values of the J/ψ meson signal (v_2^S), the contribution from background candidates (v_2^B) has to be subtracted from the v_2 values of all J/ψ meson candidates, as obtained in the previous step. The procedure is to first fit the di-muon mass spectrum with a function composed of three components: two Crystal Ball functions [58] with different widths but common mean and tail parameters for the J/ψ signal (the tail parameters are fixed to the values obtained from simulation), S(m_{inv}), and an exponential function to model the background, B(m_{inv}). Then, the signal plus background v_2^{S+B}(m_{inv}) distribution is fitted with:

$$v_2^{S+B}(m_{inv}) = \alpha(m_{inv}) v_2^S + [1 - \alpha(m_{inv})] v_2^B(m_{inv}),$$

(4)

where

$$\alpha(m_{inv}) = \frac{S(m_{inv})}{S(m_{inv}) + B(m_{inv})}.$$

(5)

Here, v_2^B(m_{inv}) for the background J/ψ candidates is modeled as an exponential function of the invariant mass, and α(m_{inv}) is the J/ψ signal fraction obtained from the mass spectrum fit. An example of fits to the mass spectrum and v_2^{S+B}(m_{inv}) in the p_T interval 6.0–8.0 GeV for the multiplicity range 185 ≤ N_{trk} offline < 250 is shown in Fig. 1. The residual contribution of back-to-back dijets to the measured v_2 results is estimated from low-multiplicity ppB events and is removed from the signal after accounting for the jet yield ratio of the selected events, following a jet subtraction procedure similar to that established in Refs. [21,43,57]. The Fourier coefficients, V_{n \Delta}, extracted from Eq. (3) for N_{trk} offline < 35, are subtracted from the V_{n \Delta} coefficients obtained in the high-multiplicity region, with

$$V_{n \Delta}^{\text{sub}} = V_{n \Delta} - V_{n \Delta}(N_{\text{trk}}^{\text{offline}} < 35) \times \frac{N_{\text{assoc}}}{Y_{\text{jet}}(N_{\text{trk}}^{\text{offline}} < 35)},$$

(6)

Here, Y_{jet} represents the jet yield obtained by integrating the difference of the short-range (|Δη| < 1) and long-range event-normalized associated yields for each multiplicity class. The ratio, Y_{jet}/V_{n \Delta}(N_{trk}^{\text{offline}} < 35), is introduced to account for the enhanced jet correlations resulting from the selection of higher-multiplicity events. For p_T(J/ψ) < 4.5 GeV, the jet yield ratio cannot be directly estimated from the two-particle azimuthal correlations, as the J/ψ candidates tend to have larger η values than the acceptance for
charged particles. Therefore, the value is assumed to be the same as that for the high-\(p_T\) region, where no \(p_T\) dependence has been observed. It was also previously observed that the values of jet yield ratio for \(D^0\) and strange particle species show little dependence on \(p_T\) over the full \(p_T\) range [43].

5. Systematic uncertainties

Sources of systematic uncertainties on the prompt \(J/\psi\) meson \(v_2\) measurement include the \(J/\psi\) meson yield correction (acceptance and efficiency correction derived from \textsc{pythia} simulation), the nonprompt \(J/\psi\) meson contamination, the background \(v_2^B(m_{inv})\) functional form, the signal and background invariant mass PDF, the jet subtraction procedure, the contamination of events containing more than one pPb interaction (pileup), and the trigger bias. In this Letter, the quoted uncertainties in \(v_2\) are absolute values, and are found to have no dependence on \(p_T\), except those for the jet subtraction procedure. Systematic uncertainties originating from different sources are added in quadrature to obtain the overall systematic uncertainty shown as boxes in the figures.

To evaluate the uncertainties arising from the efficiency correction to the \(J/\psi\) meson yield, the \(v_2\) values are compared to the uncorrected ones, yielding an uncertainty of 0.008. The effect on the measured \(v_2\) due to the residual contribution from nonprompt \(J/\psi\) mesons is evaluated by varying the \(E^\text{miss}_{T}\) requirement such that the nonprompt \(J/\psi\) meson yield is doubled. The \(v_2\) values are found not to change by more than \(\pm 0.004\), which is assigned as the systematic uncertainty due to the \(J/\psi\) meson yield correction. Possible differences in the rejection efficiency of nonprompt \(J/\psi\) mesons between data and simulation are investigated and found to be negligible. The systematic uncertainties from the background \(v_2\) functional form are evaluated by comparing \(v_2^B(m_{inv})\) values based on first-, second-, and third-order polynomial fits to the background distribution. The resulting \(J/\psi\) signal \(v_2\) values are found to vary by less than 0.009. Systematic effects related to signal invariant mass PDF are found to be negligible by releasing, one at a time, the fixed tail parameters of the Crystal Ball functions. The variation of \(v_2\), while changing the background invariant mass PDF to a second- or third-order polynomial function is also found to be negligible. In the jet subtraction procedure, the statistical precision of the jet yield ratio is limited. The \(v_2^{sub}\) results are found to be consistent within \(\pm 0.002\) to \(\pm 0.014\) (increasing with \(p_T\)) when varying the jet yield ratio by its statistical uncertainty. The systematic uncertainties from the potential pileup effect and the trigger bias are taken to be the same as for inclusive charged particles in Ref. [49], where they can be established with good statistical precision. The pileup and trigger bias uncertainties are negligible compared to the other sources of systematic uncertainties, as the fraction of residual pileup events is only a few % and the trigger efficiency is close to 100%.

6. Results

Fig. 2 shows the \(v_2\) results of prompt \(J/\psi\) mesons at forward rapidities \((-2.86 < y_{cm} < -1.86\) or 0.94 < \(y_{cm} < 1.94\)) for high-multiplicity (185 < \(N_{\text{off}}\) < 250) pPb collisions, covering a \(p_T\) range from 0.2 to 10 GeV. Results obtained separately for \(J/\psi\) meson rapidity in the Pb- and p-going direction are compared, and found to be consistent within statistical uncertainties. Thus, as mentioned earlier, combined \(v_2\) values are presented for the best statistical precision. The \(v_2\) results for \(K^0_S\) and \(\Lambda\) hadrons (light, strange-flavor), and prompt \(D^0\) mesons (open heavy-flavor), reported in a previous CMS publication [43] for the midrapidity region \(-1.46 < y_{cm} < 0.54\), are also shown for comparison.

Positive prompt \(J/\psi\) meson \(v_2\) values are observed over a wide \(p_T\) range from about 2 to 8 GeV. The prompt \(J/\psi\) meson \(v_2\) results show a trend of first increasing up to \(p_T \approx 4\) GeV and then decreasing toward higher \(p_T\). This observed trend appears to be in common with the other hadron species shown. In the \(p_T\) range below 5 GeV, the \(v_2\) values for \(J/\psi\) and \(D^0\) mesons are consistent with each other within the uncertainties, while an indication of smaller \(v_2\) values for \(J/\psi\) mesons than that for \(D^0\) mesons is seen for \(p_T > 5\) GeV, although the difference is not significant within current experimental uncertainties. Over the full \(p_T\) range, the \(v_2\) signal values for both \(J/\psi\) and \(D^0\) mesons are smaller than those for \(K^0_S\) and \(\Lambda\) hadrons. This observation is consistent with the earlier conclusion that charm quarks develop a weaker collective dynamics than light quarks in small systems [43]. Because of experimental limitation, \(v_2\) values for the prompt \(J/\psi\) meson and the other meson species are not compared within the same \(p_T\) range, possibly affecting their comparison. The rapidity dependence of \(v_2\) values for charged particles in pPb collisions has been measured [59,60], suggesting up to around 15% variation from \(|y_{lab}| \approx 0\) to 2.4.

To better study the elliptic flow signal coming purely from long-range collective correlations, the \(J/\psi\) \(v_2\) results are corrected for residual jet correlations. The resulting \(v_2^{sub}\) values are shown in Fig. 3 (upper) for prompt \(J/\psi\) mesons as a function of \(p_T\) with 185 < \(N_{\text{off}}\) < 250, and compared to similarly corrected \(K^0_S\), \(\Lambda\), and \(D^0\) hadron results [43]. The effect of the correction for all particle species is most noticeable at very high \(p_T\), while the overall \(p_T\) dependence of the \(v_2\) data remains unchanged. The \(K^0_S\) mesons have a larger correction applied to their \(v_2\) values (possibly because \(K^0_S\) mesons are more correlated with the bulk multiplicity, and thus are biased toward stronger jet correlations due to the selection of high multiplicities) and their \(v_2^{sub}\) values after the correction tend to converge to those of the prompt \(J/\psi\) and \(D^0\) mesons at high \(p_T\).

A recent model calculation of \(J/\psi\) \(v_2\) in minimum bias pPb collisions, based on final-state interactions between produced charm quarks and a QGP medium, suggests a very small \(v_2\) signal of less than 0.01 [45]. This calculation indicates that additional contributions, e.g., those from initial-state interactions, may be needed to account for the observed \(v_2\) signal of prompt \(J/\psi\) mesons for high-multiplicity pPb events reported in this Letter.

Motivated by the possible formation of a hydrodynamically expanding QGP medium in small systems, the elliptic flow signals for \(K^0_S\), \(\Lambda\), \(J/\psi\) and \(D^0\) hadrons are compared as a function
of transverse kinetic energy \((KE_T) \) in Fig. 3 (lower), to account for the mass difference among the four hadron species \([61,62]\). Here, the values of \(v_{T}^{sub} \) and \(KE_T \) are both divided by the number of constituent quarks, \(n_q \), to represent the collective flow signal at the partonic level in the context of the quark coalescence model \([63–65]\), which postulates that the elliptic flow signal of a hadron is a sum of contributions from individual constituent quark flow values. As was previously reported in pPb collisions \([27,43]\), a scaling of \(n_q \)-normalized \(v_{T}^{sub} \) values is observed between the \(K^0_S \) meson and \(\Lambda \) baryon, shown in Fig. 3 (lower). This scaling between light baryon and meson species systems produced in the collision (known as the number-of-constituent-quark or NCQ scaling) was first discovered in AA colliding systems \([61,62,66]\), indicating that collectivity is first developed among the partons, which later recombine into final-state hadrons. The elliptic flow signal per quark \((v_{T}^{sub}/n_q) \) for prompt \(J/\psi \) mesons at low \(KE_T/n_q \) range is consistent with those of \(K^0_S \) and \(\Lambda \) prompt D mesons, all of which are above the prompt D meson data. However, the difference between the present prompt D meson and \(J/\psi \) meson results deviates from \(0 \) with a significance of only about 1.2 standard deviations at \(KE_T/n_q \approx 0.4 \, \text{GeV} \). A more definitive conclusion could be drawn with future high precision data. For \(KE_T/n_q > 1 \, \text{GeV} \), the \(v_{T}^{sub}/n_q \) for prompt D mesons are consistently below that of the \(K^0_S \) meson. An indication of smaller \(v_{T}^{sub}/n_q \) values for \(J/\psi \) mesons than for D mesons is seen for \(KE_T/n_q \approx 1 \, \text{GeV} \). As \(J/\psi \) mesons contain two charm quarks, while \(D^0 \) mesons contain a charm and a light-flavor quark, this observation would be consistent with a weaker collective behavior of heavy-flavor quarks than light quarks, possibly a consequence of the much smaller size of the collision system. Future data with improved precision will provide crucial insights to fully constrain the collective behavior of light- and heavy-flavor quarks in high-multiplicity, small systems.

7. Summary

In summary, the elliptic flow harmonic \((v_2) \) for prompt \(J/\psi \) mesons in high-multiplicity proton-lead (pPb) collisions at \(\sqrt{S_{NN}} = 8.16 \, \text{TeV} \) is presented as a function of transverse momentum \((p_T) \). Positive \(v_2 \) values are observed for prompt \(J/\psi \) mesons at forward rapidity \((-2.86 < y_{cm} < -1.86 \) or \(0.94 < y_{cm} < 1.94) \), as well as for \(K^0_S \) and \(\Lambda \) hadrons, and prompt \(D^0 \) mesons at midrapidity \((-1.46 < y_{cm} < 0.54) \), as a function of \(p_T \) for pPb collisions at \(\sqrt{S_{NN}} = 16 \, \text{TeV} \) with \(185 < N_{\text{coll}} ^{\text{min}} < 250 \). Lower: the \(n_q \)-normalized \(v_{T}^{sub} \) results. The \(K^0_S \) and \(\Lambda \) and \(D^0 \) \(v_{T}^{sub} \) data are taken from Ref. [43]. The error bars correspond to statistical uncertainties, while the shaded areas denote the systematic uncertainties.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, ROSATOM, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, CTI, and FEDER (Spain); MoST (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020.
Grant, contract No. 675440 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the "Excellence of Science – EOS" – be.h project no. 30820817; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Lendület ("Momentum") Programme and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences; the New National Excellence Programme ÚNKP, the NKFIAP research grants 123842, 123959, 124845, 124850 and 125105 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02848 (Poland); the Citia programme 2012/07/E/01/01660 of the National Priorities Research Program by Qatar National Research Fund; the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

References

The CMS Collaboration

A.M. Sirunyan, A. Tumasyan
Yerevan Physics Institute, Yerevan, Armenia

Institut für Hochenergiephysik, Wien, Austria

V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez

Institute for Nuclear Problems, Minsk, Belarus

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussels, Belgium

Université Libre de Bruxelles, Brussels, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

S. Ahuja, C.A. Bernardes, L. Calligaris, T.R. Fernandez Perez Tomei, E.M. Gregores, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

a Universidade Estadual Paulista, São Paulo, Brazil
b Universidade Federal do ABC, São Paulo, Brazil

A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, A. Marinov, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria

A. Dimitrov, L. Litov, B. Pavlov, P. Petkov

University of Sofia, Sofia, Bulgaria

W. Fang, X. Gao, L. Yuan

Beihang University, Beijing, China

Institute of High Energy Physics, Beijing, China

Y. Ban, G. Chen, A. Levin, J. Li, L. Li, Q. Li, Y. Mao, S.J. Qian, D. Wang, Z. Xu

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

Y. Wang

Tsinghua University, Beijing, China

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France

S. Gadrat

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

T. Toriashvili15

Georgian Technical University, Tbilisi, Georgia

I. Bagaturia16

Tbilisi State University, Tbilisi, Georgia

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

G. Flügge, O. Hlushchenko, T. Kress, A. Künsken, T. Müller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, D. Roy, H. Sert, A. Stahl17

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

M. Akbiyik, C. Barth, M. Baselga, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, K. El Morabit, N. Faltermann, B. Freund, M. Giffels, M.A. Harrendorf, F. Hartmann17,

University of Hamburg, Hamburg, Germany
R. Chudasama, D. Dutta, V. Jha, V. Kumar, P.K. Netrakanti, L.M. Pant, P. Shukla

Bhabha Atomic Research Centre, Mumbai, India

T. Aziz, M.A. Bhat, S. Dugad, G.B. Mohanty, N. Sur, B. Sutar, Ravindra Kumar Verma

Tata Institute of Fundamental Research-A, Mumbai, India

Tata Institute of Fundamental Research-B, Mumbai, India

S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma

Indian Institute of Science Education and Research (IISER), Pune, India

S. Chenarani28, E. Eskandari Tadavani, S.M. Etessami28, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, F. Rezaei Hosseinabadi, B. Safarzadeh29, M. Zeinali

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

M. Felcini, M. Grunewald

University College Dublin, Dublin, Ireland

M. Abbrescia a,b, C. Calabria a,b, A. Colaleo a, D. Creanza a,c, L. Cristella a,b, N. De Filippis a,c, M. De Palma a,b, A. Di Florio a,b, F. Errico a,b, L. Fiore a, A. Gelmi a,b, G. Iaselli a,c, M. Ince a,b, S. Lezki a,b, G. Maggi a,c, M. Maggi a, G. Miniello a,b, S. My a,b, S. Nuzzo a,b, A. Pompilia a,b, G. Pugliese a,c, R. Radogna a, A. Ranieri a, G. Selvaggio a,b, A. Sharma a, L. Silvestris a, R. Venditti a, P. Verwilligen a, G. Zito a

a INFN Sezione di Bari, Bari, Italy
b Università di Bari, Bari, Italy
c Politecnico di Bari, Bari, Italy

G. Abbiendi a, C. Battilana a,b, D. Bonacorsi a,b, L. Borgonovi a,b, S. Braibant-Giacomelli a,b, R. Camparoni a,b, P. Capiluppi a,b, A. Castro a,b, F.R. Cavallo a, S.S. Chhibra a,b, C. Ciocca a, G. Codispoti a,b, M. Cuffiani a,b, G.M. Dallavalle a, F. Fabbri a, A. Fanfani a,b, E. Fontanesi, P. Giacomelli a, C. Grandi a, L. Guiducci a,b, F. Iemmi a,b, S. Lo Meo a, S. Marcellini a, G. Masetti a, A. Montanari a, F.L. Navarria a,b, A. Perrotta a, F. Primavera a,b, T. Rovelli a,b, G.P. Sirola a,b, N. Tosi a

a INFN Sezione di Bologna, Bologna, Italy
b Università di Bologna, Bologna, Italy

c INFN Sezione di Firenze, Firenze, Italy

S. Albergo a,b, A. Di Mattia a, R. Potenza a,b, A. Tricomi a,b, C. Tuve a,b

a INFN Sezione di Catania, Catania, Italy
b Università di Catania, Catania, Italy

c INFN Sezione di Firenze, Firenze, Italy

G. Barbaglia a, K. Chatterjee a,b, V. Ciulli a,b, C. Civinini a, R. D’Alessandro a,b, E. Focardi a,b, G. Latino, P. Lenzi a,b, M. Meschini a, S. Paololetta a, L. Russo a,30, G. Sguazzoni a, D. Strom a, L. Villani a

a INFN Sezione di Firenze, Firenze, Italy
b Università di Firenze, Firenze, Italy

c INFN Sezione di Firenze, Firenze, Italy

L. Benussi, S. Bianco, F. Fabbri, D. Piccolo

INFN Laboratori Nazionali di Frascati, Frascati, Italy

F. Ferro a, F. Ravera a,b, E. Robutti a, S. Tosi a,b

a INFN Sezione di Genova, Genova, Italy
b Università di Genova, Genova, Italy

Kyungpook National University, Daegu, Republic of Korea

H. Kim, D.H. Moon, G. Oh

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Republic of Korea

B. Francois, J. Goh31, T.J. Kim

Hanyang University, Seoul, Republic of Korea

Korea University, Seoul, Republic of Korea

H.S. Kim

Sejong University, Seoul, Republic of Korea

Seoul National University, Seoul, Republic of Korea

University of Seoul, Seoul, Republic of Korea

Y. Choi, C. Hwang, J. Lee, I. Yu

Sungkyunkwan University, Suwon, Republic of Korea

V. Dudenas, A. Juodagalvis, J. Vaitkus

Vilnius University, Vilnius, Lithuania

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

J.F. Benitez, A. Castaneda Hernandez, J.A. Murillo Quijada

Universidad de Sonora (UNISON), Hermosilla, Mexico

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

Universidad Iberoamericana, Mexico City, Mexico

J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

A. Morelos Pineda

Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, Russia

A. Babaev, S. Baidali, V. Okhotnikov

National Research Tomsk Polytechnic University, Tomsk, Russia

P. Adzic 42, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

C. Albajar, J.F. de Trocóniz

Universidad Autónoma de Madrid, Madrid, Spain

J. Cuevas, C. Ericc, J.F. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezon, V. Rodríguez Bouza, S. Sanchez Cruz, P. Vischia, J.M. Vizan Garcia

Universidad de Oviedo, Oviedo, Spain

Instituto de Fisica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

N. Wickramage

University of Ruhuna, Department of Physics, Matara, Sri Lanka

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

Carnegie Mellon University, Pittsburgh, USA

University of Colorado Boulder, Boulder, USA

Cornell University, Ithaca, USA

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

Y.R. Joshi, S. Linn

Florida International University, Miami, USA

Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

University of Wisconsin–Madison, Madison, WI, USA

1 Also at Vienna University of Technology, Vienna, Austria.
2 Also at IFN, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
3 Also at Universidade Estadual de Campinas, Campinas, Brazil.
4 Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
5 Also at Université Libre de Bruxelles, Bruxelles, Belgium.
6 Also at University of Chinese Academy of Sciences, Beijing, China.
7 Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
8 Also at Joint Institute for Nuclear Research, Dubna, Russia.
9 Also at Suez University, Suez, Egypt.
10 Also at Heriot-Watt University, Edinburgh, United Kingdom.
11 Also at Sultan Qaboos University, Muscat, Oman.
12 Also at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.
13 Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
14 Also at University of Florida, Gainesville, USA.
15 Also at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.
16 Also at University of Manitoba, Winnipeg, Canada.
17 Also at University of Wisconsin–Madison, Madison, WI, USA.
62 Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
63 Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
64 Also at Monash University, Faculty of Science, Clayton, Australia.
65 Also at Bethel University, St. Paul, USA.
66 Also at Karamanoğlu Mehmetbey University, Karaman, Turkey.
67 Also at Utah Valley University, Orem, USA.
68 Also at Purdue University, West Lafayette, USA.
69 Also at Beykent University, Istanbul, Turkey.
70 Also at Bingol University, Bingol, Turkey.
71 Also at Sinop University, Sinop, Turkey.
72 Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
73 Also at Texas A&M University at Qatar, Doha, Qatar.
74 Also at Kyungpook National University, Daegu, Korea.