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Abstract

An accurate knowledge of the three-dimensional (3D) distribution of water vapor in the atmosphere is a key el-
ement for weather forecasting and climate research. In addition, a precise determination of water vapor is also
required for accurate positioning and deformation monitoring using Global Navigation Satellite Systems (GNSS)
and Interferometric Synthetic Aperture Radar (InSAR). Several approaches for 3D tomographic water vapor re-
construction from GNSS-based Slant Wet Delay (SWD) estimates exist. Yet, due to the usually sparsely distributed
GNSS sites and due to the limited number of visible GNSS satellites, the tomographic system usually is ill-posed
and needs to be regularized, e.g. by means of geometric constraints that risk to over-smooth the tomographic
refractivity estimates.

Therefore, this work develops and analyzes a Compressive Sensing (CS) approach for neutrospheric water vapor
tomographies benefiting of the sparsity of the refractivity estimates in an appropriate transform domain as a prior
for regularization. The CS solution is developed because it does not include any geometric smoothing constraints
as applied in common Least Squares (LSQ) approaches and because the sparse CS solution containing only a few
non-zero coefficients may be determined, at a constant number of observations, based on less parameters than
the corresponding LSQ solution. In addition to the developed CS solution, this work introduces SWDs obtained
from both GNSS and InSAR into the tomographic system in order to dispose of a better spatial distribution of the
observations. The novelties of this approach are 1) the use of both absolute GNSS and absolute InNSAR SWDs
for tomography and 2) the solution of the tomographic system by means of Compressive Sensing. In addition,
3) the quality of the CS reconstruction is compared with the quality of common LSQ approaches to water vapor
tomography.

The tomographic reconstruction is performed, on the one hand, based on a real data set using GNSS and InSAR
SWDs and, on the other hand, based on three different synthetic SWD data sets generated using wet refractivity
information from the Weather Research and Forecasting (WRF) model. Thus, the validation of the achieved re-
sults focuses, on the one hand, on radiosonde profiles and, on the other hand, on a comparison of the refractivity
estimates with the input WREF refractivities. The real data set resp. the first synthetic data set compares the recon-
struction quality of the developed CS approach with LSQ approaches to water vapor tomography and investigates
in how far the inclusion of InSAR resp. synthetic InNSAR SWDs increases the accuracy and precision of the refrac-
tivity estimates. The second synthetic data set is designed in order to analyze the general effect of the observing
geometry on the quality of the refractivity estimates. The third synthetic data set places a special focus on the
sensibility of the tomographic reconstruction to different numbers of GNSS sites, varying voxel discretization, and
different orbit constellations.

In case of the real data set, for both the GNSS only solution and a combined GNSS and InSAR solution, the
refractivities estimated by means of the LSQ and CS methodologies show a consistent behavior, although the two
solution strategies differ. The synthetic data sets show that CS can yield very precise and accurate results, if an
appropriate tomographic setting is chosen. The reconstruction quality mainly depends on i) the accuracy of the
functional model relating the SWD estimates to the refractivity parameters and to the distances passed by the rays
within the voxels, ii) the number of available GNSS sites, iii) the voxel discretization, and iv) the variety of ray
directions introduced into the tomographic system.

The sizes of the study areas associated to the real resp. to the synthetic data sets are about 120 120km? and about
100 100km?, respectively. In the real data set, a total of eight GNSS sites is available and SWD estimates of GPS
and InSAR are introduced. In the synthetic data sets, different numbers of sites are defined and a variety of ray
directions is tested.






Zusammenfassung

Unvollstindig oder ungenau erstellte Modelle atmosphérischer Effekte schrinken die Qualitit geoditischer Welt-
raumverfahren wie GNSS (Globale Satelliten-Navigationssysteme) und InSAR (Interferometrisches Radar mit
synthetischer Apertur) ein. Gleichzeitig enthalten Zustandsgrofen der Erdatmosphire, allen voran die drei-
dimensionale (3D) Wasserdampf-Verteilung, wertvolle Informationen fiir Klimaforschung und Wettervorhersa-
ge, welche aus GNSS- oder InSAR-Beobachtungen abgeleitet werden konnen. Es gibt etliche Verfahren zur 3D-
Wasserdampf-Rekonstruktion aus GNSS-basierten feuchten Laufzeitverzogerungen. Aufgrund der meist spirlich
verteilten GNSS-Stationen und durch die begrenzte Anzahl sichtbarer GNSS-Satelliten, treten in tomographischen
Anwendungen in der Regel jedoch schlecht gestellte Probleme auf, die z.B. iiber geometrische Zusatzbedingungen
regularisiert werden, welche oft glittend auf die Wasserdampf-Schitzungen wirken.

Diese Arbeit entwickelt und analysiert daher einen Ansatz, der auf einer Compressive Sensing (CS) Losung des to-
mographischen Modells beruht. Dieser Ansatz nutzt die Sparlichkeit der Wasserdampf-Verteilung in einem geeig-
neten Transformationsbereich zur Regularisierung des schlecht gestellten tomographischen Problems und kommt
somit ohne glittende geometrische Zusatzbedingungen aus. Eine weitere Motivation fiir die Nutzung einer spir-
lichen Compressive Sensing Losung besteht darin, dass die Anzahl an zu bestimmenden von Null verschiede-
nen Koeffizienten bei gleichbleibender Anzahl an Beobachtungen in Compressive Sensing geringer sein kann
als die Anzahl an zu schitzenden Parametern in tiblichen Kleinste Quadrate (LSQ) Ansétzen. Zur Erhohung der
raumlichen Auflosung der Beobachtungen fiihrt diese Arbeit zudem sowohl feuchte Laufzeitverzogerungen aus
GNSS als auch aus InSAR in das tomographische Gleichungssystem ein. Die Neuheiten des vorgestellten Ansat-
zes sind 1) die Nutzung von sowohl GNSS als auch absoluten InSAR Laufzeitverzégerungen fiir die tomographi-
sche Wasserdampf-Rekonstruktion und 2) die Losung des tomographischen Systems mittels Compressive Sensing.
Zudem wird 3) die Qualitit der CS-Rekonstruktion mit der Qualitit iiblicher LSQ-Schitzungen verglichen.

Die tomographische Rekonstruktion der durch feuchte Refraktivititen beschriebenen atmosphérischen
Wasserdampf-Verteilung beruht auf der einen Seite auf realen feuchten Laufzeitverzogerungen aus GNSS und
InSAR und auf der anderen Seite auf drei verschiedenen synthetischen Datensitzen feuchter Laufzeitverzoge-
rungen, die aus Wasserdampf-Simulationen des Weather Research and Forecasting (WRF) Modells abgeleitet
wurden. Die Validierung der geschitzten Wasserdampf-Verteilung stiitzt sich somit zum einen auf Radiosonden-
Profile und zum anderen auf einen Vergleich der geschitzten Refraktivititen mit den WRF Refraktivititen, die
zugleich als Eingangsdaten zur Generierung der synthetischen Laufzeitverzogerungen genutzt werden. Der reale
bzw. der erste synthetische Datensatz vergleicht die Rekonstruktionsqualitit des entwickelten CS-Ansatzes mit
tiblichen Kleinste Quadrate Wasserdampf-Schitzungen und untersucht, inwieweit die Nutzung von InSAR Lauf-
zeitverzogerungen bzw. von synthetischen InSAR Laufzeitverzogerungen die Genauigkeit und die Prézision der
Wasserdampf-Rekonstruktion erhoht. Der zweite synthetische Datensatz wurde dafiir ausgelegt, den allgemeinen
Einfluss der Beobachtungsgeometrie auf die Refraktivitdtsschitzungen zu analysieren. Der dritte synthetische Da-
tensatz untersucht insbesondere die Empfindlichkeit der tomographischen Rekonstruktion gegeniiber variierenden
GNSS-Stationszahlen, unterschiedlichen Voxel-Diskretisierungen und verschiedenen Orbit-Konstellationen.

Im realen Datensatz verhalten sich die Kleinste Quadrate Schitzung und der Compressive Sensing Ansatz sowohl
fiir die reine GNSS-Losung als auch fiir die kombinierte GNSS- und InSAR-L6sung konsistent. Die synthetischen
Datensitze zeigen, dass Compressive Sensing in geeigneten Szenarien sehr genaue und prézise Ergebnisse liefern
kann. Die Qualitidt der Wasserdampf-Schitzungen hingt in erster Linie ab i) von der Genauigkeit des funktionalen
Modells, das die feuchten Laufzeitverzogerungen, die zu schétzenden Refraktivitdten und die von den Strahlen
in den Voxeln zuriickgelegten Distanzen in Beziehung zueinander setzt, ii) von der Anzahl verfiigbarer GNSS-
Stationen, iii) von der Voxel-Diskretisierung, und iv) von der Vielseitigkeit der in das tomographische System
eingebauten Strahlrichtungen.

Die mittels des realen Datensatzes bzw. mittels der synthetischen Datensitze untersuchten Regionen sind etwa
120 x 120km? bzw. 100 x 100km? groB. Im realen Datensatz stehen acht GNSS-Stationen zur Verfiigung und
es werden feuchte Laufzeitverzogerungen von GPS InSAR genutzt. In den synthetischen Datensitzen werden
unterschiedliche Stationsanzahlen definiert und vielseitige Strahlrichtungen getestet.
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1 Introduction

An accurate knowledge of the three dimensional (3D) distribution of water vapor in the atmosphere is a key
element for weather forecasting and climate research. Moreover, atmospheric water vapor causes a delay in the
microwave signal propagation. Thus, a precise determination of water vapor is required for accurate positioning
and deformation monitoring using Global Navigation Satellite Systems (GNSS) and Interferometric Synthetic
Aperture Radar (SAR) (InSAR). Yet, due to its high variability in time and space, the atmospheric water vapor
distribution is difficult to model. This work therefore meets the challenge of tomographically reconstructing the
3D water vapor field by means of developing an innovative Compressive Sensing (CS) solution that includes both
GNSS and InSAR observations. The CS solution is motivated by the fact that it does not include any geometric
smoothing constraints as applied in common Least Squares (LSQ) approaches and by the fact that the sparse CS
solution containing only a few non-zero coefficients may be determined, at a constant number of observations,
based on fewer parameters than the corresponding LSQ solution. Within this work, the developed CS approach is
compared to common LSQ solution strategies to water vapor tomography. The following details the relevance of an
accurate determination of the 3D water vapor field for meteorology, climatology, and space geodesy. Thereafter, a
motivation is given for the proposed CS approach using both GNSS and InSAR and for the analysis of the observing
geometry’s effect on the quality of the tomographic reconstruction. Finally, the goals and the contributions of this
work are summarized and an outline of the thesis is given.

1.1 Relevance of determining the 3D atmospheric water vapor
distribution

As water vapor is a necessary precondition to rainfall, it is important to accurately determine the 3D water vapor
distribution in the atmosphere. According to Tuller [1973], the air has to be saturated with water vapor in order to
form precipitation. Saturation is reached if the relative humidity RH attains 100%. If RH = 100 %, an air parcel
is saturated with water vapor. Given a constant temperature, it is not possible to add any further water vapor to
such a saturated air parcel. E.g. at a temperature of 30°C and a pressure of 1bar, 1kg of air can hold about 26 g of
water vapor. Following the Clausius-Clapeyron equation describing the relationship between the saturation vapor
pressure and the air temperature, the relative humidity increases if the water vapor density increases at a constant
temperature or if the temperature decreases. Therefore, one key mechanism for attaining saturated air is a decrease
in temperature, which may e.g. be reached by means of lifting the air parcel to higher altitudes as at the foot of
mountains. Consequently, the windward side of a mountain range usually disposes of more precipitation than the
lee side of the same mountain range. At the altitude at which RH = 100 %, clouds are generated.

However, water vapor only represents a necessary condition to rainfall. Water vapor does not correspond to a
sufficient condition for the formation of rainfall. Besides the saturation of air with water vapor, condensation
nuclei are necessary in order to form precipitation and the saturated air needs to condense on these particles in
order to let grow the water droplets that, if the prevalent buoyant force and updraft is overcome by the weight
of the droplets, fall down as precipitation. Condensation nuclei may e.g. originate from products of combustion,
oxides of nitrogen, aerosols, or salt particles. According to Park [1999] and Xin and Reuter [1996], the low
level water vapor content regulates the timing and the persistence of clouds and moisture convergence below the
clouds and the timing and the quantity of rainfall. Thus, variations in the atmospheric water vapor content can
cause significant changes in convective rainfall. A 1% moisture variation within a storm cell significantly affects



the storm intensity. Park and Droegemeier [2000] showed the effect of in-cloud moisture on the generation of
secondary storm cells and the role of environmental moisture in strengthening a main storm cell. In addition, Stull
[2016] states that storms get much of their energy from water vapor and that the amount of precipitation within a
storm depends on the amount of moisture in the storm.

Besides its importance as a precondition to rainfall, water vapor corresponds to an important factor within the
hydrological cycle. As stated in Mockler [1995], water vapor moves quickly through the atmosphere and redis-
tributes energy associated with its evaporation and recondensation. In the case of evaporation, energy is taken up
from the surroundings and the environment is cooled, analogously to the cooling effect of a sweating human body.
When water vapor condenses, it releases energy and warms the environment. These heat exchanges influence the
climate, and thus, good observations of the atmospheric water vapor are essential for understanding climatological
processes.

In addition, an accurate knowledge of the 3D water vapor field is crucial for climatology, because water vapor is
the most important natural greenhouse gas. According to Bowman [1990], without the natural greenhouse effect,
the Earth’s average temperature would be around 30°C lower than it is now. However, in contrast to the non-
condensable or long-living greenhouse gases like CO,, methane, N>O, and halocarbons, atmospheric water vapor
and clouds do not represent drivers of the greenhouse effect but act as fast feedbacks. I.e. water vapor reacts rapidly
on changes in temperature, e.g. by evaporation, condensation, or precipitation. In case of anthropogenic emissions
of CO,, methane, and other gases causing a rise in temperature, the evaporation rates and thus the atmospheric
water vapor density is increased. The increased amount of water vapor, in turn, acts again as a greenhouse gas,
absorbs energy that would otherwise escape to space, and so causes additional warming.

Finally, water vapor is an important error source in spaceborne GNSS and InSAR processing. In both techniques,
radio wave signals are emitted by the satellite. On their way to the receiver on the ground resp. to the backscattering
surface of the Earth (and back to the satellite, in the case of InSAR), these radio wave signals travel through the
atmosphere and are delayed by the neutrospheric water vapor. As the neutrospheric water vapor distribution is
highly variable both in time and space, the delays caused by water vapor are difficult to correct, when aiming ate.g.
geodetic positioning or deformation modeling resp. surface movement applications in GNSS, or at e.g. topographic
or deformation applications in InNSAR. When compared to the dispersive ionospheric delay accelerating the signal
propagation, the wet delay due to water vapor is much smaller but much more difficult to handle, as it cannot be
corrected or modeled by multi-frequency measurements. According to Rothacher [2002], the neutrospheric delay
in GNSS is highly correlated with the site height and with the receiver clock correction. Therefore it significantly
affects the vertical component of the positioning and its effect on the site height needs to be reduced when aiming
at precise positioning applications. Concerning InSAR, Zebker et al. [1997] state that the effects of water vapor are
larger in magnitude and less evenly distributed throughout the interferogram than neutrospheric variations caused
by pressure and temperature changes. Pressure variations typically cause 1.0 to 1.5 mbar root mean square pressure
variabilities in temperate regions, where a 1 mbar pressure change leads to a delay change of about 2.3 mm. In
contrast, Zebker et al. [1997] report phase changes due to neutrospheric water vapor corresponding to a delay of up
to 30cm. When translating these humidity variations into final deformation or topography products, according to
Zebker et al. [1997], changes of 20 % in relative humidity lead to 10cm errors in deformation products and perhaps
100m of error in topographic maps for pass pairs with unfavorable baseline geometries.

1.2 Relevance of the innovations in the proposed approach

In contrast to existing water vapor tomography approaches usually based on GNSS Slant Wet Delay (SWD) esti-
mates only, this work also includes absolute wet delays obtained from InSAR. The inclusion of InNSAR SWDs is
relevant, because the profile-wise GNSS observations are, in general, sparsely distributed over the study area. This
causes, especially in low atmospheric layers, a very low spatial resolution of the observations, which corresponds
approximately to the inter-site distance of the GNSS sites of some tens of kilometers. Due to this poor spatial
resolution of the GNSS rays in the lowest tomographic layers, the tomographic system of equations is ill-posed



and needs to be regularized. Including area wide InSAR SWDs may help to improve the observing geometry such
that the observations are more evenly distributed.

Moreover, thanks to the launch of modern SAR missions such as Environmental Satellite (Envisat), TerraSAR,
CosmoSkymed, or Sentinel-1, activities of Persistent Scatterer Interferometry (PSI) increased a lot. As stated
in Hansen and Yu [2001], Parker [2017], or Tang et al. [2016], during PSI processing, the atmospheric phase
screen can be estimated over wide areas at a temporal resolution of up to six days. Consequently, InNSAR can be
considered as a valuable resource for water vapor research and should be included within tomographic water vapor
reconstructions.

When compared to previous research in the field of water vapor tomography, which is often based on LSQ, a CS
solution approach is developed within this work. As in the case of the inclusion of InSAR data into the tomographic
system, the use of CS is also motivated by the fact that the tomographic system of equations is ill-posed and needs
to be regularized. The regularization can be performed e.g. by including additional observations (as those from
InSAR or from surface meteorology) or by imposing constraints on the solution. Yet, the geometric smoothing
constraints typically introduced within a LSQ solution to the tomographic system of equations showed to impose
unnatural behavior to the water vapor distribution. Therefore, research on alternative regularization schemes is
required. Based on the assumption that the signal can be sparsely represented in some appropriate transform
domain, CS exploits the sparsity of the transformed water vapor signal for regularizing the tomographic system.

Finally, a reasonable discretization of the analyzed atmospheric volume into volumetric pixels (voxels) of constant
water vapor content is essential for most water vapor tomography approaches. Independently of the choice of a
LSQ or a CS reconstruction algorithm, the observing geometry, composed e.g. of the satellite positions, the GNSS
site distribution, and the voxel discretization should be carefully chosen in order to enable a meaningful solution to
the tomographic system. If too few observations are available in order to reconstruct the water vapor distribution
at the chosen spatial resolution, or if these observations are too unevenly distributed, the applied constraints may
falsify the solution and feign a much higher resolved, but unrealistic solution. This research emphasizes the
importance of appropriate voxel sizes for accurately reconstructing the 3D water vapor field.

1.3 Objectives

This thesis aims at developing and analyzing a CS solution to tomographic water vapor reconstructions based
on GNSS SWD estimates. In addition, an approach for including InSAR SWD estimates into the tomographic
system is proposed. When comparing the reconstruction qualities of the LSQ and the CS solution strategy to the
tomographic model, the thesis specially focuses on the questions i) which solution approach is more accurate and
more precise, ii) in how far one of the strategies is more flexible, i.e. less constraint-driven, and iii) if the CS
solution can do with fewer observations than LSQ. Alternatively, question iii) investigates in how far CS is able to
estimate the neutrospheric water vapor field at a higher spatial resolution than LSQ, or if CS can estimate the water
vapor field more accurately and more precisely than LSQ, given a certain number of observations and a certain
spatial resolution. The influence of the observing geometry on the tomographic results is investigated by means
of first analyzing the effect of the number of GNSS sites and of their horizontal distribution within the considered
study area on the accuracy and on the precision of the tomographic results. This includes the questions i) if the
site distributions should differ in different latitudes and ii) if the sites should be randomly distributed within the
analyzed study area or rather situated along a regular grid. In addition, the effect of the ray geometry and of the
voxel discretization on the tomographic results is investigated. This is done by means of focusing on the question in
how far the inclusion of rays of more satellites than given by the Global Positioning System (GPS) orbits improves
the repeatability of the results and by means of investigating how large the tomographic voxels should be in order
to yield repeatable results within a changing orbit geometry.



1.4 Contributions

This thesis presents CS as a powerful tool for accurately reconstructing the 3D water vapor field. The sparsity of the
water vapor field in an inverse Discrete Cosine Transform (iDCT) Euler Dirac transform domain is shown to be able
to serve as a prior for regularizing the ill-posed system of equations encountered in the tomographic reconstruction
of water vapor. Moreover, the capacity of InNSAR SWD estimates to regularize the tomographic system resp. to
improve the accuracy of the tomographic water vapor reconstruction is tested. Finally, the differences between the
proposed CS approach and common LSQ approaches resp. between GNSS only resp. GNSS and InSAR solutions
to water vapor tomography are analyzed. The thesis shows that, in the case of a CS solution, the observing geometry
is of particular importance for the accurate determination of the 3D water vapor field based on profile wise SWD
estimates. Moreover, the thesis points out the relevance of carefully selecting the size of the tomographic voxels and
investigates the effect of the exact horizontal position of the GNSS sites on the accuracy and on the precision of the
tomographic results. The developed tomography approach is based on geometrical and physical models that allow
to combining and evaluating very different observation types and measurement techniques at a time. Therefore, the
tomography approach represents a very flexible tool, especially under the light of new and heterogeneous satellite
missions.

1.5 Outline

Many aspects need to be taken into account within a tomographic reconstruction of the 3D water vapor field.
Therefore, Figure 1.1 shows an advance organizer illustrating the steps yielding 3D water vapor estimates based on
e.g. slant wet delay input data. In the case of real data sets, common approaches to water vapor tomography mainly
refer on input observations from GNSS and from surface meteorology. If available, e.g. INSAR SWD estimates
and observations of Light Detection And Ranging (LiDAR) sensors, microwave radiometers, Very Long Baseline
Interferometry (VLBI), radiosondes, or imaging spectrometers may be added. In contrast, in the case of synthetic
data sets, the input SWDs are commonly deduced from meteorological quantities like temperature, pressure, and
water vapor mixing ratio simulated by Numerical Weather Models (NWM).

In general, the available input data automatically define the number and the spatial distribution of the GNSS sites
introduced within the tomographic system. Yet, many other components of the observing geometry need to be
defined by the user, e.g. the horizontal size of the study area as well as its upper boundary, the horizontal voxel
discretization as well as the thickness of the voxels and their orientation w.r.t. the North-South direction, the cutoff
elevation angle for the introduced GNSS rays, the decision for GPS observations only or for GNSS observations,
and the inclusion of rays entering the study area only on its top resp. also at the side.

Once the observing geometry settings are defined, a solution strategy can be selected. In this work, LSQ and CS
solution approaches are distinguished for the determination of the 3D water vapor distribution. The validation of
water vapor distributions estimated based on real data is carried out based on independent data sets that are not
yet introduced within the tomographic system. In the case of synthetic data sets, a 3D validation of the estimated
water vapor field is possible based on the simulations of e.g. temperature T, pressure p, and water vapor mixing
ratio w, resulting from NWM.

The main steps from the SWD input data to the interpretation of the tomography solution include the definition
of the tomographic model according to the available data sets and the associated observing geometry, choosing
a solution strategy, and validating the estimated 3D water vapor field. For each of these main steps, the advance
organizer in Figure 1.1 indicates which section of this thesis describes resp. analyzes the respective step. In order
to better guide the reader through the thesis, selected parts of the advance organizer will reappear at the beginning
of the sections corresponding to the main steps of the tomographic reconstruction of the 3D water vapor field. The
aspects relevant within the respective sections will then be highlighted within the advance organizer.
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Figure 1.1: Advance organizer illustrating the steps yielding 3D water vapor estimates Ny based on the input slant wet delay observations. The figure shall give an overview
over the main steps of a water vapor tomography illustrated in red. In this way, the advance organizer shall prepare the reader to more efficiently handle and to better understand
the thesis. At any one time that one of the steps is explained or investigated within the thesis, the advance organizer will appear and the respective step will be highlighted.
For each of the main steps shown in red, relevant aspects effecting the respective step of the tomographic reconstruction are summarized within the advance organizer. Blue
colors refer to the case of a tomographic reconstruction of water vapor using real data, whereas green colors stand for synthetic data. Gray colors are relevant for both real and
synthetic data sets. The orange boxes indicate the sections in which the respective aspects are described resp. analyzed.






2 The Earth’s atmosphere: physical foundations
and measurement techniques

Tomographic water vapor modeling with space geodetic techniques like GNSS and InSAR necessitates a good
understanding of the atmosphere’s structure, of measurement techniques quantifying the water vapor distribution,
and of interactions of electromagnetic waves with the atmosphere. Therefore, this chapter first gives an overview
over the Earth’s atmosphere and its common subdivision w.r.t. the temperature profile resp. w.r.t. the plasma den-
sity in Section 2.1. When subdividing the atmosphere according to the prevailing plasma density, the two main
horizontal layers neutrosphere and ionosphere are distinguished. In this work, the focus is set on the electrically
neutral lower ~ 10km of the atmosphere, the neutrosphere, in which most of the atmospheric water vapor resides.
Therefore, Section 2.2 introduces meteorological quantities describing the neutrospheric water vapor distribution.
The meteorological quantities are crucial for understanding the relation between the profile-wise SWD input data
to water vapor tomography and the 3D water vapor field that shall be tomographically reconstructed. As illustrated
in Figure 2.1, this work relies on both a real data set and synthetic data sets. The synthetic data sets are based on
simulations of the Weather Research and Forecasting Model (WRF) model. Thus, Section 2.3 generally explains
the modeling of the atmospheric state in NWMs for the synthetic data sets, and Section 2.4 presents, for the real
data set, both meteorological and geodetic measurement techniques quantifying the neutrospheric water vapor con-
tent. Since radio waves and the neutrosphere interact, GNSS and InSAR radio wave observations can be used for
water vapor tomography (Section 2.5). The GNSS and InSAR path delay modeling is explained in Section 2.6. In
the case of InSAR, a special focus is set on illustrating how absolute wet delays per Persistent Scatterer (PS) can
be obtained based on the temporally differentiated, short-wavelength water vapor signal observed as the InSAR
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Figure 2.1: Water vapor tomographies aim at reconstructing the 3D water vapor field Ny based on e.g. slant
wet delay input data. In the case of real data, such SWD input data can e.g. be derived from GNSS, InSAR, and
surface meteorological information. Alternatively, in synthetic data sets deduced from numerical weather models,
the SWD input information to tomography is commonly deduced from meteorological quantities like pressure p,
temperature 7', and water vapor mixing ratios w,.



2.1 The Earth’s atmosphere

The Earth’s atmosphere can be structured into different layers by means of, e.g. considering the prevailing temper-
ature profile or the plasma density. Figure 2.2 shows these two subdivisions of the atmosphere. When considering
the subdivision of the atmosphere with respect to the prevailing temperature profile, the lowest layer, extending
from the Earth’s surface up to the first temperature minimum, is called troposphere. In contrast, from the per-
spective of the ionization of the atmosphere, the lowest layer is called neutrosphere, followed, in higher altitudes,
by the ionosphere. As stated in Kelley [2009], due to the pervasive influence of gravity, the neutrosphere and the
ionosphere are to first order horizontally stratified. In this work, the focus is set on the non-ionized atmospheric
regions, especially on the lowest 10km of the neutrosphere, containing a large amount of the atmospheric water
vapor. Therefore, the term neutrosphere is preferred to the term troposphere in this thesis. The following two
subsections give a short overview over the ionosphere and the neutrosphere.
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Figure 2.2: Typical profiles of atmospheric temperature and ionospheric plasma density according to Kelley
[2009]. On the left, the various layers are distinguished by means of their temperature. On the right, the dif-
ferent layers are characterized by their ionization. The terms ionosphere and neutrosphere in blue were added to
the figure from Kelley [2009].

2.1.1 Ionosphere

League [1997] describes the ionosphere, starting at a height of about 60km above the Earth’s surface, as a region
in which the air pressure is so low that free electrons and ions can move for a while without getting close enough to
recombine into neutral atoms. The ionization is mainly caused by the ultraviolet solar radiation in the outer regions
of the atmosphere. However, the ionization does not uniformly increase with the distance from the Earth’s surface.
Instead, there are different layers of high ionization at well-defined heights between about 40km to 300km above
the Earth’s surface. As the effect of the ionosphere on radio wave signals is related to the time of day, the season
of the year, and variations in the solar activity characterized by the sunspot number, the intensity of the ionization
within each layer and the exact layer heights vary over time. For the last two decades, Figure 2.3 exemplary
shows that maximum sunspot numbers are observed at a repeat cycle of about eleven years. This repeat cycle is
superposed by an 80 to 100 years super cycle.
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Figure 2.3: Sunspot numbers of the last decades based on data from the American National Oceanic and Atmo-
spheric Administration (NOAA) Space Weather Prediction Center ftp://ftp.swpc.noaa.gov/pub/weekly/
RecentIndices.txt (09.07.2018).

In addition, as the ionosphere is a dispersive medium, the ionospheric delay on radio wave signals depends on the
signal’s frequency. Thus, as described in Hofmann-Wellenhof et al. [2008], multi frequency measurements enable
a significant reduction of the ionospheric effect on the GNSS signal propagation time. Béhm and Schuh [2013]
relate various GPS first-order measured parameters and the Total Electron Content (TEC) of the Earth’s ionosphere.
E.g. they state that a 1.000m range error, i.e. a delay of 3ns, is caused by an electron content of 6.15 x 10'%el/m?
resp. of 3.73 x 10'%el/m? at the GPS frequencies f; resp. at f>. In the case of InNSAR, the ionospheric delay,
however, is not corrected by dual frequency measurements. Thanks to the small wavelength of about 6¢m in the
case of C-band SAR observations and because of the low solar activity around the data acquisitions in 2005, the
ionospheric delay on InSAR as well as the Faraday rotation significant at L-band or lower frequencies (Jehle et al.
[2005]) are neglected in this work.

2.1.2 Neutrosphere

According to Caballero [2014], the neutrosphere can be considered, to an excellent approximation, as a two com-
ponent gas consisting of variable proportions of dry air and water vapor. Curry and Webster [1999] state that
“water vapor is the most important gas in the atmosphere from a thermodynamic point of view because of its ra-
diative properties as well as its ability to condense under atmospheric conditions”. Water is the only atmospheric
constituent that attains all three phases — gaseous, liquid, and solid — at the typical pressures and temperatures
experienced in the Earth’s atmosphere. According to Seidel [2002], nearly half of the atmospheric water vapor re-
sides in the lowest 1.5km of the atmosphere, and less than 5 % are contained above 5km. Radiosonde observations
have shown that the water vapor content in heights above about 10km is negligible in the study areas considered
within this research.

2.2 Meteorological quantities describing the neutrospheric water vapor
distribution

In order to get a better understanding of the both temporally and spatially highly variable neutrospheric water
vapor distribution and the relation between water vapor, temperature, and humidity, this section introduces several
meteorological quantities describing the neutrospheric water vapor field. The introduced quantities are essential
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for relating the tomography input SWDs to the 3D water vapor field. According to Stull [2016], the 3D water vapor
distribution can e.g. be expressed by the water vapor mixing ratio

W, = Myyater vapor ’ 2.1)

Mgry air
which is commonly given in g/kg because the mass of water vapor Myatervapor Within the air is much smaller than
the mass of dry air mgryair. Alternatively, the neutrospheric water vapor distribution can be described by the specific

humidity ¢,, also commonly given in g/kg,

w, in kg/kg _ Mywatervapor ing
1+w, inkg/kg Miotalair in kg’

gy = 1000- (2.2)

which can be related to the 3D water vapor field by solving

€-e

T p-e(l-¢) 23

qv

from Stull [2016] for the partial pressure e in hPa of water vapor:

qv' P
= 24
g (1-€) @
In the Equations 2.3 and 2.4, p in hPa is the atmospheric pressure and the ratio between the gas constant of dry air
and the gas constant of pure water vapor € = 0.622 is used. The factor 0.622 = 18/29 corresponds to the ratio of
the molecular masses of water and air.

Finally, the 3D water vapor distribution can also be described by the wet refractivity field Nye. The term refrac-
tivity will be explained in more detail in Section 2.5. According to Bevis et al. [1992], Ny in ppm, with ppm
standing for mm/km, is related to the partial pressure of water vapor e in hPa and to the temperature 7 in K as

follows:
. , e e
Nye in ppm =K - T +k3- T2 2.5)
with u
’ ter vapor
K, =ky —ky - — (2.6)
2 Mdryair

from Davis et al. [1985], where the constants Myagervapor = 18.0153 g/mol and My i = 28.9647 g/mol in Equa-
tion 2.6 are the molar masses of water vapor and of dry air. The constant factors kq, k, and k3 are given in Smith
and Weintraub [1953] as:

ki 77.6K/hPa

k, = 72K/hPa 2.7

ks = 3.75-10°K?/hPa

Besides Smith and Weintraub [1953], many research on the refractive indices was carried out. Therefore, Riieger
[2002] summarizes the developments in refractive index equations for radio wave and millimeter waves over the
years 1970 to 2000. In Table 2.1, typical values for ¢, and e from Stull [2016] as well as the corresponding wet
refractivities computed using Equation 2.5 are given for a pressure of p = 1013.25hPa.

Table 2.1: Typical values of g, and e at a pressure of p = 1013.25hPa.

Tin°C | g, in g/kg | e in hPa | Nye in ppm
-10 1.7666 2.875 15.8284
-5 2.5956 4.222 22.3923
0| 3.7611 6.113 31.2556
5| 5.3795 8.735 43.0839
10 | 7.6005 12.320 58.6574
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If the dew point temperature Tz and the temperature 7 are given instead of the partial pressure of water vapor, the
value of e can be derived from the relative humidity RH and the temperature, divided by Kelvin, using

RH
¢= 100" exp(—37.2465 +0.2131665 - T — 0.000256908 - T%) (2.8)

from Xu and Xu [2007]. Lawrence [2005] state that the relative humidity can be computed based on the tempera-
ture and the dew point temperature, both divided by Kelvin, by means of

RH=100-5-(T-Ty). 2.9

Integrating Ny, along the ith slant ray path sp; with differential d/ yields the observation equation for the SWD; ¢ont
along that path
SWD; cont (in m) = 1076 f Nyet (in ppm)d! (in m), (2.10)
Sp;
or the observation equation for SWD; g;sc along discretized segments d;; of the slant ray path in mm instead of m

L
SWD; gisc (in mm) = ZNwetj (in ppm) - d;; (in km). (2.11)
j=1

As illustrated in Figure 2.4, the variable d;; corresponds to the distance passed by the slant ray path i within voxel

J» and L is the total number of voxels within some tomographic grid.

ray i
’

’

’

‘ Nwetj
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Figure 2.4: Ray crossing the tomographic voxel grid.

In addition, the 3D wet refractivity field can be related to further integrated quantities like the Precipitable Wa-
ter (PW), the Integrated Water Vapor IWV), or the Zenith Wet Delay (ZWD) as indicated in Figure 2.5. The
discretized formula for obtaining PW is given in the following equation:

L
PW (inmm) = )" gy, (in g/kg)-p- denitn; (in k) (2.12)
j=1

where dyenim, j represents the distance passed by the zenith ray path crossing the voxel j, and p =1 g/cm? is the
density of water.

According to Bevis et al. [1992], the precipitable water is related to the integrated water vapor in the zenith direction
(IWVZnithy and to the ZWD as follows

vazenith
PW=——=]1-ZWD (2.13)
and the conversion factors Q and 17
1708.08 1
0=0.1022+——=— (2.14)
T,inK [II
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between delays and IWV and its inverse /7 can be approximated using
T, ~702+0.72-Ty (2.15)

for the computation of the neutrospheric mean temperature 7, based on the surface temperature T in K. Alshawaf
[2013] analyzed the sensitivity of Q w.r.t. to the surface temperature.

Figure 2.5 summarizes the relation between GNSS or InSAR integrated wet delays or precipitable water and
the 3D water vapor mixing ratios simulated by the WRF model. The figure shows the relation between one
dimensional (1D) wet delay input data to tomography and the 3D wet refractivity field Ny to be estimated.
In addition, related 1D quantities like the precipitable water or the integrated water vapor as well as related 3D
quantities like the partial pressure of water vapor, the specific humidity, or water vapor mixing ratios are visualized.
Understanding the relations between the respective quantities is important in order to be able to compare the water
vapor tomography approaches resp. the tomography results proposed by different research groups. Moreover, in
this work, the relations between the different humidity variables are essential when deducing synthetic SWD data
sets from NWM.
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ZWD SWD N wet
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Figure 2.5: Relations of the meteorological quantities describing the 3D water vapor distribution in the neutro-
sphere resp. 1D integrals of the neutrospheric water vapor field. The numbers on the arrows indicate the equation
numbers corresponding to the respective conversions. A mapping projects the slant integrated quantities in the
middle column into the quantities in the left column referring to the zenith direction.

2.3 Numerical weather models

Numerical weather models serve for describing the atmospheric behavior at a certain time and a certain location and
are, in this work, used in order to generate synthetic SWD data sets for water vapor tomography. Alternatively, they
could be used as prior knowledge to water vapor tomography or could be used for validation. Numerical weather
models are mainly based on the equations of motion solving Eulerian equations for the three wind components,
the first law of thermodynamics describing the air temperature, the water vapor budget equation modeling the
total-water mixing ratio, the continuity equation describing the air density, and the general gas equation containing
information on the air pressure. According to Stull [2016], all mentioned equations have a tendency term, i.e.
all of them contain a description of the temporal changing rate of the respective variable. In addition, advection
is included in all equations. Huschke et al. [1959] define advection as transport of an atmospheric property by
the mass motion of the air. Besides, the forecast equations describing the behavior of the wind components,
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the temperature, and the water vapor mixing ratio include a turbulence flux divergence term. As the equations
describing the atmospheric behavior are non-linear and coupled, i.e. as each equation contains variables that need
to be computed based on some of the other equations, all equations need to be solved together. Stull [2016] states
that no analytical solution for the whole set of equations has been found so far, i.e. it is not possible to establish an
algebraic equation that can be applied to every single location in the atmosphere.

In principle, three alternatives to such an analytical solution exist. Firstly, Stull [2016] proposes that an exact
analytical solution could be established to a simplified version of the governing equations. A second alternative
is to conceive a simplified physical model for which exact equations can be solved. Finally, an approximate
numerical solution to the full governing equations can be computed. This latter method is pursued in the case
of modern numerical weather prediction, in which the solutions of numerical approximations of the mentioned
equations are determined at discrete, regularly spaced grid points only. These approximate solutions include both
temporal and spatial discretization. That is, the continuum of space is subdivided into discrete grid cells, and
instead of considering a smooth progression of time, the computations are performed at discrete time steps only.

In addition to the variables described by the equations explained above, there may be further atmospheric processes
that are not well understood although their effects can be measured. Alternatively, there may be processes that may
involve motions that are too small to be resolved or that might be too complicated to compute in finite time. As
such physical effects cannot be neglected, they are physically or statistically parameterized by means of one or
more known terms within numerical weather models. Besides others, the physics parameterizations in Numerical
Weather Prediction (NWP) include cloud coverage, deep convection, radiation, and turbulence.

Typical grid cell sizes in NWP extend from one to hundreds of kilometers horizontal length and from one to
hundreds of meters in the vertical thickness. The smaller the grid cells, the higher the computational cost of the
model solution. Therefore, in the horizontal, a fast-running coarse grid can be used over a large domain, in order to
then embed a smaller-domain nested grid inside it. The coarse grid serves for modeling synoptic weather systems,
whereas the finer grid can capture mesoscale details. According to Stull [2016], the nesting can be continued within
the finer grid with successively finer nests. Due to important small-scale motions and strong vertical gradients, the
highest resolution in the vertical direction is necessary close to the Earth’s surface.

In contrast, the spatial resolution of the GNSS SWD observations commonly used as input for the tomographic
reconstruction of the water vapor field, is particularly low in the lowest atmospheric layers. Therefore, many
approaches to water vapor tomography include additional measurement techniques quantifying the atmospheric
water vapor distribution.

2.4 Measurement techniques quantifying the neutrospheric water vapor
content

Both meteorological and geodetic measurement techniques can be used in order to sense the atmospheric water
vapor. As shown in Table 2.2, meteorological and geodetic sensors contributing to the determination of the at-
mospheric water vapor content can be classified depending on their position during the measurement. On the one
hand, ground-based observations are performed in order to quantify the atmospheric water vapor content, on the
other hand, balloon-, air- or spaceborne sensors are used for the measurement of the neutrospheric water vapor
content or of related quantities like the specific humidity, the partial pressure of water vapor, or the wet refractivity
introduced in Section 2.2. Ground-based meteorological measurement techniques include surface meteorological
sites, radiometers, and LiDAR.

Surface meteorological sites mainly collect meteorological observations of pressure, temperature, and humidity.
However, as surface meteorological measurements are strongly related to land-air interactions, Braun [2004] warns
that the observations of surface meteorological sites in general do not accurately represent the entire boundary
layer.
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According to Stull [2016], microwave radiometers are passive sensors measuring the intensity of upwelling elec-
tromagnetic radiation at millimeter-to-centimeter wavelengths (microwaves) emitted from the Earth and from the
atmosphere. As stated in Rocken et al. [1993], this is done by means of measuring brightness temperatures. In
the case of ground-based Water Vapor Radiometers (WVR), the IWV along the radiometer’s line of sight is de-
duced from measurements of water vapor brightness temperatures around two different frequencies, one of them
sensitive to water vapor, and the other one sensitive to liquid water. In this way, the portion of liquid water can be
separated from that of water vapor. Using the optimal estimation technique described in Rodgers [2000], vertical
water vapor profiles can be deduced from the measured water vapor brightness temperature spectrum. The tem-
poral resolution of water vapor radiometer observations is generally very high. However, the spatial resolution of
ground-based water vapor sensing techniques is usually poor. In contrast to this, spaceborne down-looking WVRs
provide observations at high spatial and poor temporal resolution.

Similar to WVRs, that can be installed on the ground, on aircrafts, and on satellites, LiDAR sensors can also
operate satellite-based, airborne, and ground-based. According to Stull [2016], the basic principle of atmospheric
LiDAR measurements consists in transmitting electromagnetic radiation at two neighboring frequencies. One of
these frequencies is required to be affected by water vapor and the other one should not be affected by water
vapor. Whiteman et al. [1992] state that the water vapor mixing ratio can be determined from the LiDAR data by
evaluating the Raman shifted signals from water vapor and from nitrogen. Nitrogen is used, because it is known to
be in constant proportion to dry air.

Besides WVRs and LiDAR, satellites might carry imaging spectrometers for water vapor sounding like the
MEdium Resolution Imaging Spectrometer (MERIS) resp. the MODerate Resolution Imaging Spectrometer
(MODIS). Under clear skies, these infrared sensors are capable to measure the IWV with horizontal resolutions of
1km resp. of 300m in the case of MODIS resp. in the case of MERIS. The IWV is deduced from the attenuation
of near-infrared (IR) solar radiation by water vapor. Fischer and Bennartz [1997] explain that ratios of two close
channels, one within and one outside the absorbing band of water vapor, are computed in order to get information
on the IWV. In the case of clouds, the measured IWV corresponds to the water vapor content from the sensor to
the top of the cloud. Therefore, in order to avoid misinterpretation when dealing with IWV information, no water
vapor values are given in cloudy areas of MERIS images.

Imaging spectrometers can be subdivided into visible, IR, and water vapor imager. Stull [2016] states that IR
imaging spectrometers use long wavelengths in an IR transmittance window. Consequently, they are able to clearly
see through the atmosphere to the Earth’s surface resp. to the top of the highest cloud. IR imaging spectrometers
dispose of a day and night imaging capability because the Earth never cools down to absolute zero at night and
thus always emits IR radiation. In contrast to these IR imaging spectrometers, water vapor imaging spectrometers
obtain images by picking a wavelength that is situated outside of the transmittance windows of the atmosphere.
The IR radiation emitted by the Earth can only reach the satellite in case of a small amount of water vapor present
in the atmosphere. Satellite images from the visible wavelength range capture all those features that the human eye
would also capture. As a consequence, water vapor cannot be seen in such satellite images. Examples for imaging
spectrometers sensing the integrated water vapor are e.g. MODIS and MERIS, parts of the payloads of the Terra,
Aqua, and Envisat satellites.

Balloon-borne radiosonde observations complete the ground-based, air-, and spaceborne techniques measuring the
atmospheric water vapor. According to Dabberdt et al. [2002], a radiosonde is a device measuring the vertical
profile of meteorological variables and transmitting the measured data to a ground-based receiving and processing
station. From the surface up to heights of about 30km, the vertical variation of temperature, pressure, and humidity
along the balloon ascent are routinely measured.

When considering geodetic sensors, VLBI, GNSS, and InSAR can be applied in order to deduce information
on the atmospheric water vapor content. VLBI is based on the observation of extragalactic radio sources (e.g.
quasars) simultaneously by at least two ground-based radio antennas. Whereas a local radio interferometry uses a
direct cable to connect the two antennas with a correlator evaluating the observed signals, each VLBI site needs
an accurate atomic clock in order to combine the signals of very distant antennas and to thus enable an analysis
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Table 2.2: Meteorological and geodetic sensors resp. techniques measuring the atmospheric water vapor content, humidity, or similar. The first five lines contain meteorological

humidity measurement techniques, whereas the last three lines are rather considered as geodetic techniques that can be applied for water vapor sensing. The letter ‘M’ in the

first column indicates meteorological sensors resp. measurement techniques, the letter ‘G’ stands for geodetic sensors and techniques. In case of an entry ‘none’ in the sensing

requirements, the sensors or techniques are able to measure day and night and (nearly) independently of the weather. The sensors resp. techniques available within the real data

set in this work are highlighted in green.

Observing geometry

Humidity parameters

Spatial resolution

Temporal resolution

Sensing requirements

Sensor/Technique
M | Surface meteorology
M | Microwave radiometers
M | LiDAR

M | Radiosondes

M | Imaging spectrometers,
e.g. MERIS or MODIS

ground-based
ground-based,
air-, or spaceborne
ground-based,
air-, or spaceborne

balloon-borne

spaceborne

p, T, RH, and others
IWYV using brightness temperature;
water vapor profiles from inversion
water vapor profiles

p, T, RH, IWV, and others

IWYV using the attenuation of near
IR solar radiation by water vapor

tens of km (low)

very low (few operational
instruments)

low ... high

depending on observing
geometry

very low (2003 in average
315km in the US)

high

30min ... 2 hourly
seconds ... minutes

low ... high

depending on observing
geometry

typically 12h

low (depending on
orbit repeat time)

none
no rain on instrument

no clouds or observation
only from surface to cloud

none

cloud-free sky

G | VLBI
G | GNSS
G | InSAR

ground-based

spaceborne
spaceborne

wv

Iwv
partial IWV differences

very low (few sites)

tens of km (low)

e.g. 5x20m? in C-band
PS

InSAR (high)

days ... minutes
(depending on schedule)
minutes

at least 6 days

none

none
none



of the observed radio wave signals. The main application of VLBI is an accurate determination of the Earth
Orientation Parameters (EOP) and of the coordinates of the VLBI sites resp. the observed radio sources. Yet, as
these parameters are correlated with the neutrospheric delay and thus with the atmospheric water vapor content,
Bohm [2004] states that a determination of the EOP or of the VLBI site coordinates requires an exact modeling of
the water vapor content. Therefore, approaches estimating a site’s position, nutation parameters, and the prevailing
wet delay at a time are possible as described in Niell et al. [2001].

As VLBI, GNSS was not designed to measure the atmospheric water vapor distribution, but rather with the in-
tention of positioning or timing applications. Though, as shown by Bevis et al. [1992], GNSS is a powerful tool
for determining the atmospheric water vapor content, which is, similarly to the case of VLBI, correlated with the
GNSS site height and with the receiver clock parameters. Analogously to GNSS, although originally designed e.g.
for capturing surface displacements or generating Digital Elevation Models (DEM), InSAR is able to determine
partial IWV differences using a certain combination of spatio-temporal filtering routines. Further information on
the neutrospheric effects on GNSS and InSAR and on the determination of water vapor information using these
measurement techniques are given in Section 2.5.

2.5 Interactions of radio waves and the neutrosphere

As radio waves and neutrosphere interact, the neutrosphere effects both the GNSS and InSAR measurement tech-
niques, and thus a tomographic reconstruction of the atmospheric water vapor field by means of GNSS and InSAR
becomes possible. This section explains different kinds of interaction of radio waves and the neutrosphere. This
helps to accentuate the interaction between the neutrosphere and radio wave signals on which approaches to water
vapor tomography rely.

According to Barclay [2003], the atmospheric effect on radio wave signals can be subdivided into two main be-
haviors, depending on the state of matter of the atmospheric constituents interacting with the radio waves. In
general, influences of atmospheric gases like reflection, absorption, or effects on the refractivity index (causing
delays and bending) are distinguished from interactions with solid or liquid constituents of the atmosphere (as
clouds or aerosols) like scattering, absorption, and scintillation.

Figure 2.6 shows some of the possible interactions of a wave with the medium through which the wave is traveling.
Besides others, the wave can be transmitted, reflected, refracted, absorbed, diffracted, or scattered.

9]
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Figure 2.6: Wave behaviors: a) transmission; b) black: specular reflection, blue: diffuse reflection; c) refraction;
d) absorption; e) diffraction; f) scattering. The red frame highlights the refraction causing the neutrospheric delays
used in this work in order to reconstruct the 3D refractivity field.

If a wave is transmitted through the object, it can pass through the object without interacting with it. In the case of a
specular reflection, the wave hits a smooth surface and bounces off. In this context, the signal’s wavelength must be
large when compared with the roughness of the smooth surface. A wave (or a part of a wave’s energy) is absorbed
if the wave causes a vibration of the atoms and molecules within the hit object. The vibration heats up the object
and the heat is emitted as thermal energy. Diffraction corresponds to the bending of a wave when it encounters
an obstacle. Scattering occurs when a wave encountering an object bounces off in many different directions.
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Refraction occurs if a wave travels from a medium with some refractive index n; to a medium with some other
refractive index nj resulting in a bending of the ray path as also observed in electronic distance measurements
(EDM).

More information on refraction is given in Section 2.6, focusing particularly on ionospheric and neutrospheric
refraction. The neutrospheric refraction is subdivided into refraction caused by the dry part of the neutrosphere
and refractivity causing wet delays on radio wave signals. Thereafter, Section 2.6.1 explains how the dry delay can
be modeled based on surface meteorological measurements, and the Sections 2.6.2 resp. 2.6.3 describe the effects
of the wet refractivity on GNSS resp. InSAR observations and how information on the atmospheric water vapor
can be deduced from these measurement techniques.

2.6 Path delay modeling in GNSS and InSAR

Both GNSS and InSAR satellites emit electromagnetic waves propagating, in vacuum, with the speed of light c.
On their way from the satellites to the ground (and back to the satellite, when thinking of InSAR), the signals pass
the Earth’s atmosphere. Equation 2.16 describes the relation between the propagation velocity v in a medium with
refractivity n:
— (2.16)
v

Fermat’s principle cited in Hofmann-Wellenhof et al. [2008] states that an electromagnetic signal follows the
path between source and observer which takes the least amount of time. Due to the variation of the air masses
or densities along the ray path of a radio wave, the refractive index n along the signal transmitting path differs
from that in vacuum and takes a value slightly greater than unity, varying along the signal’s path through the
neutrosphere. As a consequence, according to Forssell [2008], the ray path deviates from a straight line and the
signal propagation is delayed. The refractive index in Equation 2.16 is related to the total refractivity N by
means of

Neotal = 10°-(n—1). (2.17)

The ionospheric refraction is dispersive, i.e. depends on the signal’s frequency, whereas the neutrospheric refraction
is related to the refractivity of gases, hydrometeors, and other particulates. The total refractivity and the total delay
on radio wave signals caused by refractivity are commonly subdivided into two parts, e.g. into a dry and a wet
component or into a hydrostatic and a non-hydrostatic part. The following sections explain how to model the
hydrostatic component of the delay by means of surface meteorology, and describe how to determine the wet
component of the delay using GNSS Precise Point Positioning (PPP) resp. PS-InSAR.

2.6.1 Modeling the hydrostatic component of the delay using surface meteorology

As stated in Section 2.5, the total refractivity and the total delay on radio wave signals caused by refractivity
are commonly subdivided into two parts, e.g. into a dry and a wet component or into a hydrostatic and a non-
hydrostatic part. According to Saastamoinen [1972], the hydrostatic component ZHD of the neutrospheric delay
only contains the delay caused by dry gases and can be computed based on the surface pressure pg, the zenith angle
z, and correction terms D and B using

ZHD = 0.002277-D- [p() - B-tan’ z] . (2.18)
In contrast, when applying a subdivision into dry and wet components, the dry component

ZDD = 0.002277- D[ py —0.155471 - ¢g - B - tan’z | (2.19)
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also contains contributions of the partial pressure of water vapor at the surface ¢g. In the Equations 2.18 and 2.19,
the components D and B are correction terms, where D is calculated from the ellipsoidal site height /4 and the

latitude ¢ using the formula
D =1+0.0026-cos2-¢+0.00028 - » in km, (2.20)

and B is taken from lookup tables depending on the site height 4.

If a hydrostatic equilibrium can be assumed, the hydrostatic component can be accurately computed based on
surface pressure. Therefore, in this work, the total refractivity or delay is subdivided into a hydrostatic and a
non-hydrostatic part. However, for reasons of readability, and consistently with the International Earth Rotation
and Reference Systems Service (IERS) conventions of Petit and Luzum [2010], the terms wet refractivity resp.
wet delay are used in the following for the non-hydrostatic component Ny, of the refractivity resp. of the delay,
yielding, with a hydrostatic refractivity Npydrostatic

Niotal = Nhydrostatic + Nyvet (2.21)

resp.
ZTD =ZHD +ZWD. (2.22)

Figure 2.7 shows differences between dry and hydrostatic delays, which are based on surface meteorological
observations in Karlsruhe. In humid summer months, the difference between Zenith Hydrostatic Delays (ZHD)
and Zenith Dry Delays (ZDD) composing the Zenith Total Delays (ZTD) attains values of up to 4cm.
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Figure 2.7: Differences in m between dry and hydrostatic delays from surface meteorological measurements at
Karlsruhe (synoptic site 4444).

As described in Section 2.6.3, a computation of the zenith hydrostatic delay is necessary both for deducing GNSS
ZWDs and for deriving absolute ZWDs from a combination of partial InSAR ZWD differences, GNSS ZWDs, and
surface meteorological observations. The ZHD is modeled using the Saastamoinen model from Equation 2.18.

As surface meteorological measurements are often spatially poorly sampled, Dach et al. [2007] use standard at-
mospheres in order to deduce the surface pressure py, the surface temperature 7, and the partial pressure of water
vapor at the surface eg for the computation of the ZHD, see also Berg [1948]. Alternatively, the ZHD can be
computed using surface meteorological observations. Based on pressure and temperature observations pmeteo and
T meteo Of the closest synoptic site, Alshawaf et al. [2015b] and Alshawaf [2013] compute the pressure pgnss at a
certain location, e.g. a GNSS site, using the hydrostatic equation

hGNsSs — Pmeteo ) RLr

T meteo

PGNSS = Pmeteo |1 — L7 - (2.23)

with AgNss 1esp. fmeteo Standing for the height of the considered GNSS site resp. for the height of the used surface
meteorology site. The temperature lapse rate Ly is equal to 6.5°/km, the quantity g = 9.80665m/s” is the mean
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Earth’s gravity acceleration, R is the universal gas constant R = 8.31447J/(mol - K), and My i is the molar mass
of dry air. When applying Equation 2.23, in the case of a smooth topography, a meteorological site may be up to
100km distant to the GNSS site for which the pressure shall be computed.

If multiple meteorological sites are available close to the location for which the ZHD shall be computed, the
pressure resp. temperature at the height of the location can be obtained by means of a linear regression model.
To account for spatial variations, Alshawaf et al. [2015b] use the residuals of this linear regression to calculate a
correction value at any point by applying, for example, inverse distance weighting.

2.6.2 Determining the wet component of the delay content using GNSS PPP

Subtracting the ZHD obtained from surface meteorological observations as described in the previous section from
GNSS ZTDs yields the both spatially and temporally highly variable and thus difficult to precisely model neu-
trospheric Zenith Wet Delay ZWD. The GNSS ZTDs are deduced from an overall least squares adjustment also
yielding the receiver coordinates, the receiver clock correction, and the carrier-phase ambiguities.

In this work, the GNSS processing is performed using the PPP strategy introduced in 1997 by Zumberge et al.
[1997]. In contrast to differential GNSS positioning approaches, PPP requires only one single receiver. As a refer-
ence station is no longer necessary, the efforts and the equipment cost within the field work are reduced. Moreover,
the PPP solution refers to a global reference frame whereas differential GNSS solutions are relative to the local
base station. Therefore, PPP enables a greater positioning consistency than differential positioning. Moreover,
there are no common parameters between the different sites to be solved within the PPP processing, which makes
it possible to process the data site by site. Consequently, large networks can be processed on distributed systems
using PPP. In return, the initialization time in PPP is longer than in differential positioning, which renders the use
of PPP challenging in the case of real time measurements. Moreover, when compared to differential GNSS, orbit
deviations and satellite clock offsets are no longer minimized or eliminated by building differences (Teunissen
and Montenbruck [2017], Rizos et al. [2012]). That is, precise ephemerides as well as satellite clock corrections,
provided e.g. by the International GNSS Service (IGS), are absolutely necessary in the case of PPP.

Since the satellite clock offset is known precisely for PPP, Kouba and Héroux [2001] describe the ionosphere-free

linear combinations I, _ ,
pseudo

and @ as a function of

resp. lo of dual-frequency GPS pseudo-range resp. carrier-phase observations ppseudo

o the geometric range between the satellite at its Earth Centered Earth Fixed (ECEF) coordinates
(Xsv,Ysv,Zsv) and the receiver at its ECEF coordinates (Xyec,Yrec>Zrec)s

e the receiver clock offset At,

o the slant total delay STD obtained from the zenith total ZTD delay using STD = mf - ZTD with a mapping
function mf,

o the ambiguity N of the carrier-phase at a carrier-phase wavelength Ag,

e the constant speed of light c,

e and measurement noise on the pseudo-range resp. on the carrier-phase signal €, ., resp. €o

as shown in the following equation:

ll’pscudo = Pgeom +C- Ar+mf-ZTD + Eppscudo (2.24)
lo = pgeom + ¢+ At+mf - ZTD + N - Ao + €0,
In Equation 2.24, the Euclidean distance pgeom between the satellite and the receiver is
Pgeom = \/(XSV — Xree)? + (Ysv = Yree)? + (Zsv = Zrec)? (2.25)

By means of a linearization of the observation equation from Equation 2.24 around some a-priori parameters, a
linear system of equations can be established that can then be solved using a least squares adjustment. The design
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matrix for this linear problem is obtained by computing the partial derivatives of the single terms of Equation 2.24
w.r.t. the unknown parameters, i.e. w.r.t. the receiver position, the receiver clock offset, the slant total delay, and
the carrier-phase ambiguities.

In this work, the goal of the GNSS processing consists in the determination of SWDs as input for the tomographic
reconstruction of water vapor. Based on the ZTDs deduced from the GNSS adjustment, SWDs can be computed.
This is done by means of subtracting the ZHDs derived from the Saastamoinen model in Equation 2.18 from the
ZTDs

ZWD — ZTDeStimatC _ ZHDIHOdCl, meteo. (226)

and by means of mapping these ZWDs to the azimuth angles A and to the elevation angles € of the respective
GNSS rays. The mapping is performed using a wet mapping function mfy. In order to obtain complete GNSS
SWDs, horizontal neutrospheric gradients in Northing AN and Easting AE are added as proposed by Chen and
Herring [1997]:

SWD = (ZTDestimate _ ZHDmodel, meteo) mf e+

(2.27)
+AN- C_O—t6 -cosA+AE- ({o_te “sinA,
Sine simne

When including all components considered in this work, the SWDs are composed of

e ZWDs, i.e. the difference between estimated ZTDs using the Berner GPS Software (Bernese) software and
the dry model deduced e.g. from surface meteorology as described in Section 2.6.1

o the mapping of the ZWDs according to the elevation angle of the considered GNSS satellite, and

e horizontal gradients in Northing and Easting AN and AE estimated by Bernese.

While the horizontal gradients are mapped by a simple 1/ sin e mapping function, the SWDs are mapped using the
wet Niell mapping function given in Equation A.1. The Niell mapping function has been selected for two main
reasons. For high elevation angles, the curvature of the atmosphere can be ignored and a simple 1/ sin e mapping is
sufficient. Atlower elevation angles, this is not the case anymore. At the cutoff elevation angle €., = 7° used in this
work, the error in the SWD obtained by a simple 1/ sine mapping is over 3%, thus not negligible. If the curvature
of the atmosphere were ignored in the tomographic method, i.e. if the voxels were cuboids, such a simple mapping
function might still be acceptable, but within the ellipsoidal shape of the atmosphere considered in this work, the
SWD should also contain the effect of the ellipsoidal voxel shape. A simple 1/sine mapping is not appropriate for
low elevation rays and consequently, i) a more advanced mapping function is required. Yet, ii) as meteorological
parameters might be unavailable in some cases, the wet Niell mapping function depending only on the site latitude
was selected for this work. More details about the Niell mapping function are given in Appendix A.2.

2.6.3 Determining the wet component of the delay using PS-InSAR

Due to the emission of pulses of electromagnetic radiation, RAdio Detection And Ranging (RADAR) sensors
can be classified as active sensors. According to NTIA [2015], an active sensor is a measuring instrument in the
Earth exploration-satellite service or in the space research service by means of which information is obtained by
transmission and reception of radio waves. In contrast to passive sensors, active sensors are detection devices
requiring input energy from a source other than that which is being sensed.

Having its own illumination, radar sensors have a day-and-night measuring capability. In addition, the radar
microwave signals are hardly affected by clouds, dust, fog, wind and bad weather conditions. However, as shown
in Zebker et al. [1997], radar signals are delayed by atmospheric water vapor. Such signal propagation delays are
observed both for Side-Looking Airborne Radar (SLAR) and for SAR. Due to the better spatial resolution and the
possibility of using persistent scatterers on the ground, SAR is used in this work rather than SLAR.
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Each SAR image consists of the two complex components amplitude and phase. The amplitude represents the
brightness of the backscatterers, whereas the phase of each resolution cell is composed of a scattering phase and
a component proportional to the distance traveled by the signal between the SAR satellite and the backscattering
surface. When aiming at an analysis of the atmospheric effects on SAR, the scattering phase is eliminated by
means of building interferograms. When compared to SAR, InSAR always considers the interferometric difference
between two acquisitions. This difference can be either spatial (single pass InSAR) or, as in this work, temporal
(repeat pass InSAR).

Yet, only in the case of constant backscattering characteristics of a resolution cell, the scattering phase of a resolu-
tion cell cancels out when building complex interferograms by multiplying the first Single Look Complex (SLC)
SAR image with the conjugate complex of the second SLC SAR image. In order to obtain constant backscattering
characteristics within the analyzed resolution cells, a PSI processing considering only coherent scatterers is per-
formed. Thus, for each persistent scatterer within the interferogram, an interferometric phase is obtained. Within
this interferometric phase, the contributions of topography, displacement, the neutrosphere and the ionosphere, the
orbits, the Earth’s reference phase, and noise are superposed. In order to separate the InSAR neutrospheric phase
from the other phase components, a collection of spatio-temporal filtering routines is performed, as explained e.g.
in Alshawaf [2013]. Figure 2.8 summarizes in more detail how, for each PS point, absolute INSAR ZWD estimates
are obtained from short-wavelength InNSAR ZWD differences, GNSS ZWDs, and surface meteorological data.

Short-wavelength InSAR phase differences between two acquisition times

Equations 2.28 and 2.14

Y

Short-wavelength InSAR IWV differences between two acquisition times: AIWV

Zero mean assumption for AIWV
Y

Short-wavelength InSAR IWVs per acquisition time

15 2 4
" e o]
2
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GNSS and surface meteorology
Y

Absolute InNSAR IWVs

Figure 2.8: Generation of absolute InNSAR ZWD estimates based on short-scale neutrospheric phase differences
from InSAR as well as additional information form GNSS ZWDs and surface meteorological data, as proposed
in Alshawaf et al. [2015a] and Alshawaf et al. [2015c]. The elevation-dependent, long-wavelength, and short-
wavelength components of the neutrospheric signal are illustrated according to Alshawaf [2013]. As the different
components of the water vapor distribution are introduced in terms of IWVs in Alshawaf [2013], the IWV in mm
is plotted in this figure instead of ZWDs.

Per definition, InNSAR phases are relative measurements given, in the case of a temporal baseline between the
two acquisitions, as a temporal difference between two dates. Therefore, Alshawaf et al. [2015a] analyzed the
differences between GNSS and InSAR estimates of the neutrospheric delays. They point out that GNSS and InSAR
show complementary features. As shown by Alshawaf [2013], the neutrospheric phase differences contained in
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the SAR interferograms correspond to the short-wavelength component of the wet delay experienced by radio
wave signals, while GNSS delays contain the long-wavelength and the elevation dependent component of the
neutrospheric delay. By means of

4.

Aradar
from Alshawaf [2013], the InSAR phase differences @y, can be transformed into short-scale ZWD differences
AZWD. The quantity A,qor in Equation 2.28 corresponds to the wavelength of the SAR system used in this work,

AZWD = —

* Dpey - COS Ginc (2.28)

and 6y, is the incidence angle. In the case of the Envisat SAR system, the incidence angle corresponds to about
23°. Assuming the average neutrospheric phases over the whole stack to equal zero e.g. according to the research
of Rocken and Braun [2000], short-scale InSAR neutrospheric phases per acquisition time are deduced. As shown
in Alshawaf [2013], the remaining two components of the total neutrospheric delay, i.e. the long-wavelength
component as well as the elevation-dependent component, can be modeled based on additional information from
GNSS and from surface meteorology. Adding these two components to the short-scale delay from InSAR yields
an absolute wet delay value at each PS point. In the following, the term InSAR ZWD will stand for the described,
absolute wet delays from the combination of InSAR, GNSS, and surface meteorology.

2.7 Summary

This chapter gives an overview on common subdivisions of the atmosphere in order to well classify this work
on water vapor tomography focusing on the electrically neutral lower ~ 10km of the atmosphere. Various mea-
surement techniques contributing to the quantification of the neutrospheric water vapor are presented and basic
knowledge on numerical weather prediction is given. Moreover, the path delay modeling for the measurement
techniques GNSS and InSAR used in this research is detailed so as to prepare the reader to i) notice the differ-
ences between this work and previous research when reading the state of the art in Section 3 and to ii) understand
how SWD observations can be deduced from GNSS and InSAR, when considering Chapter 6 that explains the
generation of the real GNSS and InSAR data set used in this work.
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3 State of the art in tomographic water vapor
reconstruction

Current approaches to tomographic water vapor reconstruction can be distinguished e.g. by means of the method-
ology and the data sets used for the solution of the tomographic model. The different solution strategies e.g. vary
in their ways of regularizing the tomographic problem. Much research has been carried out on regularizing the
tomographic reconstruction by means of constraints or prior knowledge. In addition, the effect of the observing
geometry on the quality of the tomographic reconstruction has been analyzed within current research on tomo-
graphic water vapor reconstruction. Depending on the geometric settings and the chosen solution methodology,
the uncertainty of the wet refractivity reconstruction varies. In the following, each of the described components of
the domain of tomographic water vapor reconstruction is explained in more detail.

Methodologies:

Current methodologies for the solution of the tomographic model based on space-geodetic SWD observations are
mainly based on a discretization of the analyzed atmospheric volume into voxels. The existing methodologies
applied to such a discretized atmosphere can be distinguished into iterative and non-iterative techniques. While
Bender et al. [2011] apply different iterative Algebraic Reconstruction Techniques (ART), Champollion et al.
[2004], Flores et al. [2000], Hirahara [2000], Notarpietro et al. [2008], Troller [2004], Song et al. [2006], and
Rohm [2013] propose different non-iterative approaches to solving the tomographic system by means of LSQ.
As ART algorithms iteratively process observation by observation, no matrix inversion is necessary, and thus,
ART algorithms are particularly profitable for large data sets. Due to its good capability to estimate dynamically
changing parameters, Flores et al. [2000] and Gradinarsky and Jarlemark [2004] propose a Kalman filter approach.
Hirahara [2000] applies a damped least squares adjustment known from seismic tomography to the tomographic
system. Xia et al. [2013] present a combination of iterative and non-iterative techniques. They firstly apply iterative
reconstruction algorithms in order to determine a refractivity field that is then introduced as initial value for a non-
iterative tomography approach. Adavi and Mashhadi-Hossainali [2015] use a hybrid regularization method based
on the LSQ QR and Tikhonov regularization techniques deriving a regularized solution independent of initial
values. In their approach, the water vapor content is only estimated for voxels that are crossed by enough rays.
The refractivities of voxels which are not adequately constrained are averaged based on the refractivities estimated
in the surrounding voxels.

While most studies on tomographic water vapor reconstruction are mainly based on slant wet delay estimates from
GNSS, Hurter and Maier [2013] include both slant wet delays from GNSS as well as wet refractivity profiles
from radio occultation and radiosonde measurements into a combined least squares collocation. Instead of using
slant wet delay observations, Nilsson and Elgered [2007] propose an approach relying directly on GPS phase
observations. In their approach, the resulting ill-posed system of equations is regularized by relating the refractivity
at different points according to atmospheric turbulence theory and by using a Kalman filter modeling the variations
in time as related to the wind speed.

Regularization:

Independently of the reconstruction strategy and of the introduced data sets, the ill-posed tomographic system
of equations can be regularized i) by introducing constraint equations to the tomographic system, which can be
considered as pseudo observations, ii) by including additional observations from other sensors, from models, or
from simulations, or iii) by increasing the percentage of voxels crossed by rays. An increased percentage of voxels
crossed by rays can be obtained e.g. by adapting the voxel sizes to the ray density. Alternatively, instead of using
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only rays entering the volume on its top, both rays entering the study area on its top and on its side can be introduced

into the tomographic system. In addition, as stated by Rohm [2013], when considering a general inverse approach

based on singular value decomposition, the inverse system can be stabilized by carefully selecting the meaningful

singular values. The following gives more details on the state of the art in regularizing the tomographic system of

equations.

i)

iif)
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Constraints:

In order to regularize the solution by means of constraints, both Flores et al. [2000] and Gradinarsky and
Jarlemark [2004] add horizontal and vertical smoothing constraints to the tomographic system and introduce
a boundary constraint assuming zero refractivity above a certain height. E.g. in Flores et al. [2000], the hor-
izontal constraints are implemented by means of additional observation equations imposing the refractivity
in a voxel to be a weighted average of its neighbors’ refractivities. In contrast, Song et al. [2006] generate
horizontal smoothing constraints by assuming a certain degree of correlation between neighboring voxels
using Gaussian weighted mean with controllable width. According to Gradinarsky and Jarlemark [2004],
this Gaussian weighted mean can also be used for the implementation of vertical constraints. Alternatively,
as proposed in Elosegui et al. [1998], the refractivity decay with increasing height can be assumed to follow
an exponential law. Rohm [2013] presents an unconstrained approach for water vapor tomography, which is
based on a combination of consecutive epochs of data. The work in Heublein et al. [2018] uses the sparsity
of the signal in a specific, predefined transform domain as a prior for regularization and then reconstructs the
signal by means of L{-norm minimization. While helping a lot in regularizing the solution, both geometric
constraints and exponential decay in most cases do not reflect the real atmospheric state.

Prior knowledge:

In addition to the constraints, the ill-posed tomographic system can be regularized by means of prior knowl-
edge. While Flores et al. [2000] add radiosonde profiles as profile-wise a priori knowledge, Champollion
et al. [2004] use a standard atmosphere as a priori field. Champollion et al. [2004] and Xia et al. [2013]
introduce water vapor profiles above 2km from radio occultation into the tomographic system, that are e.g.
obtained from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC).
In addition, Champollion et al. [2004] suggest the inclusion of surface meteorological observations for the
regularization of the refractivity estimates in the lowest layer. Besides, Song et al. [2006] use a priori knowl-
edge from numerical weather prediction. According to Chen and Liu [2016], water vapor radiometers and
sun photometers can also yield observations that can regularize the tomographic system. With the aim of
minimizing the smoothing effects of geometrical constraints, Benevides et al. [2016] include InSAR SWD
difference maps as a constraint to GNSS tomography.

Reduction of the number of voxels without crossing rays:

Besides introducing constraints and prior knowledge for regularization of the tomographic system, Yao et al.
[2016], Yao and Zhao [2016] and Yao and Zhao [2017] suggest approaches to regularize the tomographic
solution by means of a reduction of the number of voxels without crossing rays. Using the support of
radiosonde data, Yao et al. [2016] increase the number of crossed voxels by including rays leaving the test
region at the side. According to Yao and Zhao [2016], the utilization rate of SWD observations can not
only be increased by the use of rays entering the study area both on its top and on its side, but also by a
careful selection of the upper boundary of the analyzed atmospheric volume. First of all, Yao and Zhao
[2016] select a reasonable vertical tomography boundary based on several years of radiosonde observations.
Then, they suggest a two-step refractivity estimation that optimally uses GNSS rays entering the study area
both on its top and on its side. In the first step, they define a study area larger than the analyzed study area
and estimate the refractivities of this study area by using only the rays entering the area on its top. In the
second step, they reduce the study area to the size of the final tomographic grid. In this step, the refractivities
determined within the larger study area are used in order to compute a scale factor describing, for each ray,
the ratio of SWD situated within or outside of the study area. This scale factor is then applied for reducing
the total SWDs of side rays to the portion of SWDs corresponding to the tomographic grid. The reduced
side ray SWDs can then be appended to the observation equation. In spite of the increased number of voxels



passed by rays in Yao and Zhao [2016], horizontal smoothing constraints and vertical a priori conditions
remain necessary for the solution of their tomographic system. Yao and Zhao [2017] present a tomography
approach that is based on a non-uniform symmetrical division of the horizontal voxels, such that the available
information is distributed more evenly among all voxels than in the case of regular voxel divisions.

A similar idea of decreasing the number of voxels without crossing rays is pursued by Rohm [2013]. Yet, in
contrast to Yao and Zhao [2016] and Yao and Zhao [2017] focusing on geometric aspects of the tomographic
model, Rohm [2013] focuses on introducing a large amount of data, namely a combination of consecutive
epochs of synthetic observations of at least three interoperable GNSS into a synthetic data set. As long as
the consecutive epochs of observations are linked with one state of the atmosphere, Rohm [2013] combines
them within an unconstrained approach for water vapor tomography. As SWD estimates from various GNSS
are included, the number of crossed voxels is automatically increased. Yet, due to the cone shaped GNSS
observing geometry, the ray geometry remains limited, and there remain voxels that are not crossed by any
rays at all. As a consequence, many voxels are still underdetermined and the tomographic system needs to
be regularized. Rohm [2013] solves the tomographic system by means of computing a general inverse. lLe.
the system is regularized by means of a careful selection of the singular values used for the computation of
the general inverse.

Vertical resolvability:

Besides the ill-posedness of the mathematical model, one of the main challenges encountered in GNSS water vapor
tomographies consists in the vertical resolvability of the 3D wet refractivity field. According to Flores et al. [2000],
the interchange of two different layers in a refractivity field that does not have any horizontal variation would lead
to the same integrated delay measurements and therefore, a distinction between the refractivities of the two layers
would not be possible. This challenge has to be faced in particular if no rays entering the study area on its side are
included within the tomographic model. In addition to the interchangeability of different height layers, Perler et al.
[2011] state that their tomographic approach has a limited ability to resolve vertical structures above the highest
GNSS site of the used network. Troller et al. [2006] recommend large height differences between the GPS stations
for better vertical resolvability and for an accurate tomographic solution.

Including InSAR SWDs into water vapor tomography:

Including InNSAR SWD difference maps as a special case of additional data into the tomographic system as pre-
sented in Benevides et al. [2016] reduces the smoothing effects of geometric constraints. Yet, the approach pro-
posed in Benevides et al. [2016] considers temporal changes of PW only. Moreover, they do not carefully distin-
guish between the different components of the precipitable water. According to Alshawaf et al. [2015c¢], the PW is
composed of a stratified (elevation-dependent) component, a turbulently mixed short-scale component, and a long-
wavelength component. Parts of the elevation-dependent component as well as the long-wavelength PW risk to be
canceled out within the InSAR processing. These drawbacks of the InSAR processing for water vapor analyses are
overcome in Alshawaf et al. [2015¢c] by combining PW values estimated at GNSS sites and PW difference maps
extracted from SAR interferograms to maps of absolute PW at high spatial resolution. Alternatively, Alshawaf
et al. [2015a] propose a data fusion of InSAR, GNSS, and simulations of the WRF model in order to derive PW
maps. In this work, absolute PW maps from InSAR as described by Alshawaf et al. [2015c] are introduced into
the tomographic system.

Compressive Sensing in water vapor tomography:

In addition to a classical LSQ approach as encountered in many previous studies on water vapor tomography,
CS and sparse reconstruction are exploited in this work for 3D tomographic water vapor reconstruction. Initially
proposed by Candes et al. [2006], Donoho [2006], Baraniuk [2007], and Candes and Wakin [2008] for the re-
construction of images or signals from a number of samples which is far smaller than the desired resolution or
than required by the Nyquist rate, CS has been, in the meantime, applied to various remote sensing problems in
which sparse signals occur. While Potter et al. [2010] and Alonso et al. [2010] present CS applications in SAR
imaging, Aguilera et al. [2013], Budillon et al. [2011], Zhu and Bamler [2010] and Zhu and Bamler [2014] apply
CS for SAR tomography. Alternatively, Pruente [2010] presents an approach to CS-based ground moving target
identification, and Grohnfeldt et al. [2013], Jiang et al. [2014], Li and Yang [2011], Zhu et al. [2016], and Zhu
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and Bamler [2013] apply CS for pan-sharpening and hyperspectral image enhancement. Compared to classical
LSQ adjustments, possibly including L;-norm regularization, Compressive Sensing and sparse reconstruction led
to promising results. For general applications of CS, Rauhut [2010] states that involving randomness in the acqui-
sition step enables one to utilize the minimum number of measurements. When considering image reconstructions
based on frequency data, e.g. Candes et al. [2006] advise to randomly measure frequency coefficients in order to
sense sparse objects by taking as few measurements as possible.

Voxel discretization:

Most approaches to tomographic water vapor reconstruction discretize the study area into voxels of constant inner-
voxel refractivity. Perler et al. [2011] parameterize the inner-voxel refractivities by means of trilinear and spline
functions in ellipsoidal coordinates, yielding a substantially smaller maximal error than in non-parameterized
voxels. They state that the parameterization of the voxels reduces the effects of discretization while increasing
only negligibly the computational costs. Moreover, Perler et al. [2011] point out that the interpolation of in situ
measurements to voxel central points becomes obsolete in the case of parameterized voxels. Instead of discretizing
the analyzed atmospheric volume into voxels, Ding et al. [2018] propose a node parameterization approach using
a combination of three meshing techniques to dynamically adjust both the boundary of the tomographic region and
the position of nodes at each tomographic epoch. Zhao et al. [2018] try to reconstruct the water vapor field without
imposing horizontal and vertical constraints referring to a voxel grid. They do not discretize the study area in the
horizontal direction, but only distinguish different vertical layers. A horizontal parameterized quadratic function is
introduced for each layer to describe the continuous water vapor change within that layer. L.e. their approach is, in
some degree, similar to the approach of Heublein et al. [2018] parameterizing the wet refractivity field by iDCT,
Euler, and Dirac base functions. However, in contrast to Heublein et al. [2018] performing the parameter estimation
in a transform domain and thus benefiting of the sparsity of the refractivity field in that transform domain, Zhao
et al. [2018] directly use the quadratic parameterization for the refractivity estimation. While Zhao et al. [2018]
avoid a discretization of the study area in the horizontal direction, Heublein et al. [2018] still distinguish voxels
horizontally.

In case of a discretization of the analyzed refractivity field into voxels, depending on the number and on the
distribution of the available GNSS sites, different voxel sizes have been used in previous research. A decrease
of the spatial resolution increases the discretization error. In turn, an increase of the spatial resolution makes the
accurate estimation of the inner-voxel refractivity more challenging. Hirahara [2000], Gradinarsky and Jarlemark
[2002], Nilsson and Elgered [2007], Champollion et al. [2009], and Yao and Zhao [2017] discretize the refractivity
field into non-uniform voxels with horizontal resolutions between a few and some tens of kilometers. Yao and Zhao
[2017] propose a non-uniform symmetrical division of horizontal voxels in order to increase the number of voxels
crossed by rays. In contrast, most other approaches discretizing the refractivity field into voxels horizontally define
uniform voxel sizes, i.e. voxels with constant sizes in longitude and latitude within the whole study area. Nilsson
et al. [2005] and Nilsson and Elgered [2007] suggest to use small horizontal voxel sizes of a maximum of 10km in
order to minimize the voxel discretization error. According to Chen and Liu [2014], the optimal voxel resolution
for a specific region should be determined before conducting water vapor tomography for that region. Therefore,
they optimize the horizontal boundaries of their study area by moving in 0.001° large steps in longitude and latitude
and maximizing the number of ray-crossing voxels. However, as this approach needs to relocate the tomographic
area before every tomography experiment, the approach is hard to operate in practice. Notarpietro et al. [2011] also
define the voxel grid based on several tests. They state that voxel grid rotations of +15° w.r.t. the North-South resp.
the East-West direction produced changing tomography results. Champollion et al. [2004] state that the optimal
horizontal size of a voxel should be equal to the mean inter-site distance between the available GNSS sites. In
their approach, the thickness of the layers should be such that rays starting from a GNSS site situated at the center
of a voxel are able to cross neighboring voxels, given a certain cutoff elevation angle. Rohm [2012] advises to
use increasing height layer thicknesses with increasing altitude, because the wet refractivities in the upper layers
are very small and the tomographic solutions may thus be sensitive to errors in the input data. While e.g. Troller
et al. [2006], Perler et al. [2011], Chen and Liu [2014], and Ding et al. [2017] use non-uniform layer thicknesses,
e.g. Flores et al. [2000], Gradinarsky and Jarlemark [2002], Champollion et al. [2004], Notarpietro et al. [2011],
Bender et al. [2011], Xia et al. [2013], and Zhao et al. [2018] decided for uniform layer thicknesses. Table 3.1

26



gives the mean number of GNSS sites per 100km? within the tomographic approaches of different research groups.
Depending on the network, the site densities range from less than one site in mesoscale tomography approaches
like Bi et al. [2006], Perler et al. [2011], or Heublein et al. [2018] to about 20 sites per 100km? in a special water
vapor tomography campaign at the Onsala Space Observatory described in Flores et al. [2001]. In this work, the
site density corresponds to that of Heublein et al. [2018] and is comparably low w.r.t. most of the other tomographic
approaches shown in Table 3.1. Therefore, the selection of an appropriate voxel size is of particular importance in
this work, and the effect of the voxel discretization on the tomographic results will be analyzed.

Table 3.1: GNSS site densities encountered in the selected tomographic approaches discretizing the refractivity
field into horizontally uniform voxels.

approach number of sites | size of study area | horizontal voxel number | sites / 100km?
Flores et al. [2000] 16 400km? 4x4 4.0
Flores et al. [2001] 7 0.05°x0.1° 4x4 20.8
Champollion et al. [2004] 17 20 x 20km? 3x5 4.3
Bi et al. [2006] 4 100 x 100km? 5%6 <0.1
Troller et al. [2006] 73 300 x 150 km? 6x%x3 0.2
Song et al. [2006] 14 60 x 60km? 4x4 04
Nilsson and Elgered [2007] 17 20 x 20km? 3x5 4.3
Perler et al. [2011] 46 3°%x1.5° 6x%x3 0.2
Notarpietro et al. [2011] 11 18 x 26 km? 4x4 2.4
Heublein et al. [2018] 8 117 x 122km? 5%5 <0.1

Besides others, the uncertainty of the tomographic reconstruction depends on the aspects mentioned above, i.e. on
the solution strategy, the sizes of possible discrete voxels, the type and the size of the included SWD data sets,
the type of constraints applied for regularization, the characteristics of the possibly introduced prior knowledge,
and the number of rays per voxel. Rohm [2012] asserts that he takes all factors influencing the final uncertainty
into account, mainly the uncertainties of ZWD, pressure and temperature, antenna phase center height, satellite
elevation angle, mapping function, and the tomography solution. He realizes that the mathematical properties
of the design matrix largely influence the uncertainty of the tomographic solution. Yet, he does not discuss the
influence of the horizontal distribution of the GNSS sites within the study area, the prevailing orbit geometry or
the voxel discretization that he selected. However, in case of a campaign or the installation of new permanent sites,
a knowledge on a good site distribution for water vapor tomography applications may be important. In addition,
when developing new solution methodologies to the tomographic equation, the effect of the orbit geometry and of
the voxel discretization should be analyzed.

Relation of the presented approach to water vapor tomography and the state of the art:

Similarly to the LSQ approaches described in the state of the art, this work presents an approach to water vapor
tomography relying on LSQ. Yet, in addition, a CS solution strategy is developed. This CS approach to water
vapor tomography does not include any geometric smoothing constraints as applied in common LSQ approaches.
Instead, the CS solution benefits of the sparsity of the parameters in an appropriate transform domain as a prior for
regularization. The proposed CS approach is compared to a LSQ approach regularized by means of a horizontal
smoothing constraint and a vertical constraint assuming the water vapor content to exponentially decrease with
increasing height. Prior knowledge from surface meteorology is included in both the CS and the LSQ solution. In
order to increase the number of voxels crossed by rays, INSAR SWDs are added to the GNSS SWDs commonly
introduced into the tomographic system. Finally, as the rule of thumb of Champollion et al. [2004] suggesting
horizontal voxel sizes corresponding to the mean inter-site distance between the available GNSS sites is only valid
for LSQ, this work investigates the effect of the observing geometry (e.g. satellite position, GNSS site distribution,
and voxel discretization) on the quality of the tomographic results.
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4 Tomographic model

The word tomography originates in the Ancient Greek tomos, ‘slice’, ‘section’, and graféin, ‘to write’. This ety-
mology already gives an idea of the basic principle of a tomographic reconstruction. A tomographic reconstruction
consists in deriving the inner structure of some object, e.g. of the human body or of the Earth’s atmosphere, based
on cross-sections of that object observed along different viewing angles.

E.g. this work aims at reconstructing the 3D water vapor field based on profile-wise observations of the slant wet
delays at different directions. The radio wave signals originating e.g. from GNSS satellites and received at GNSS
sites are integrated along their raypath. In order to derive the 3D water vapor distribution based on these integrated
slant wet delays, a tomographic model needs to be defined.

Tomographic models in water vapor tomography commonly subdivide the refractivity field into discrete voxels of
a certain size. In addition, based on the voxel definition and a raytracing of the GNSS rays within these voxels, a
functional model relating the 3D refractivity field to the observed slant wet delays is established (Section 4.1).
As described in Section 4.2, both rays entering the analyzed atmospheric volume on its top resp. on its side
may be included into the tomographic system. As emphasized in Section 4.3, the careful definition of the voxel
discretization within the tomographic model is important because the voxel discretization significantly effects
both the spatial resolution and the quality of the reconstructed refractivities. Section 4.4 describes the raytracing
approach yielding, in this work, the distances passed by straight GNSS rays within voxels defined by ellipsoidal
upper and lower boundaries as well as planes of constant longitudes and constant latitudes. L.e., as illustrated in
Figure 4.1, the tomographic model including the voxel discretization and the raytracing within the defined voxels
is required in order to link the 1D slant wet delay observations and the 3D refractivity parameters in the functional
model.

horizontal number
and vertical of sites
distribution

inclusion
of side rays

of sites

uniformity of
height layer
thicknesses

voxel
discretization

SWD and other T T — Nyt from
observing geometry [ solution strategy l—)[ validation |—> tomography
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orientation only vs.
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Figure 4.1: The tomographic model links the 1D slant wet delay observations and the 3D refractivity parameters.
Besides the voxel discretization and the raytracing within the defined voxels, the tomographic model e.g. needs
to define the horizontal size and the upper boundary of the study area as well as the cutoff elevation angle deter-
mining down to which elevation the GNSS rays are included into the tomography. The highlighted aspects of the
tomographic model are explained in more detail in this section.
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4.1 Tomographic equation within a discretized refractivity field

In February 2000, Flores et al. [2000] were the first to publish research on neutrospheric tomography using GNSS
SWDs. They introduce the functional model

SWD; cone = 1076 f Nyerdl, 4.1)
SP;

already given in Equation 2.10, where SWD; ¢onc are the slant wet delay observations integrated from a certain
GNSS site to a certain satellite. The variable sp; stands for the ith slant raypath, i.e. for a slant raypath of the
radiowave signal between a certain receiver and a certain satellite, and the variable Ny, is the wet refractivity
along this path. The index i is defined as

ieNwithl <i<N, 4.2)

where N corresponds to the number of observations available within this work between any receiver and any
satellite. When aiming at a tomographic reconstruction of the wet refractivity, however, the continuous functional
model from Equation 4.1 is commonly replaced by a discrete functional model

L
SWD; gise = 107 > Ny j -, 4.3)
j=1

see Section 2.2. That is, the 3D water vapor field is subdivided into L = P x Q X K voxels in longitude, latitude,
and height, in which the refractivity is e.g. assumed to be constant. In this work, a uniform voxel discretization is
performed in the horizontal directions, whereas the voxel sizes in the vertical direction may increase with increasing
height. Horizontally, the voxels are limited by constant longitudes and latitudes. In the vertical direction, the voxels
dispose of ellipsoidal upper and lower boundaries. The numbers and the sizes of the voxels are essential for the
quality of the tomographic reconstruction. Therefore, they are specified for each of the different settings analyzed
in Section 7. Summarizing all observations SWD; gisc in an observation vector SWD =y € RM*1 a1l unknown

refractivities Ny j for
jENwWithl <j<L (4.4)

in a parameter vector 2 € R, and all distances d; ;in a design matrix @ € RM*L_ the linear system of equations
from Equation 4.3 can be reformulated in the form

y=&-o 4.5)

with

d;; 1if ray i crosses voxel j

D@, j) = { (4.6)

0 otherwise.

Figure 2.4 in Section 2.2 illustrates the distances passed by a ray within the voxel grid. As each ray only crosses
a small subsection of the voxel grid, the matrix ¢ contains many zero elements and just a few non-zero elements
(e.g. only about 4.5 % of the entries of @ are non-zero in the case of 5 x5 X5 voxels, seven GNSS sites, and ten
rays per site). Voxels that are not crossed by any rays yield a zero column in ®.

Figure 4.2 shows how the voxels are numbered within the tomographic grid. The voxel numbering is performed
layer-wise, starting from the lowest height layer. Within each layer, the voxel numbering starts at the voxel with the
smallest longitude and latitude and then runs row-wise through the considered height layer, firstly along increasing
longitudes A, then along increasing latitudes ¢. Each element of the 3D parameter vector x3p is related to a distinct
entry of the 1D parameter vector by means of the vec operator:

x = vec(x3p) “.7)

The vec operator converts the 3D parameter vector x3p into a 1D column vector by means of stacking the elements
of x3p on top of one another:

vec(x3p) = [X3D(1,1,1), iy XID@P,1,1)s ++-» XID@Q1)s -+ s x3D(¢’,Q,‘K)] (4.8)
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Figure 4.2: Schematic representation of the voxel numbering within the tomographic model. The left plot exem-
plarily shows the indices of the L = £ x @ X K voxels in longitude A, latitude ¢, and height 4. The middle plot
shows refractivities that linearly decrease resp. increase with increasing longitude resp. latitude and that decrease
with increasing height within a £ X @ X K = 4 x4 x 3 voxel discretization. While the numbers within the left plot
stand for the indices [1, L] of the respective voxels, the numbers in the middle plot correspond to the refractivities
within the respective voxels, that are also indicated by the color coding. Considering both the left and the middle
plot of the figure shall help to understand how the refractivities of the respective height layers can be represented
w.r.t. their voxel numbers in the two dimensional (2D) plot on the right, in which dashed gray lines separate the
height layers.

4.2 Side rays for better vertical resolution

If all rays integrate the whole neutrospheric water vapor between the top and the bottom of the study area, as
illustrated in the left plot in Figure 4.3, whole layer disturbances (e.g. in the case of inversion weather) can be
hardly reconstructed. This also means that the vertical refractivity decay cannot be well reconstructed based on
the input SWD data sets. If no side rays are and no flat-angle rays from GNSS radio occultation (GNSS RO)
are included, the vertical water vapor distribution is mainly determined in a model-based way. Any horizontal
refractivity layers could be interchanged without a change in the SWD estimates.

- %N\( H )
Figure 4.3: Left: whole layer disturbance without side rays, right: whole layer disturbance with side rays

Possible ways to model the portion of the side rays situated outside the study area could be i) approximating the
missing part of the ray by means of radiosonde profiles, ii) computing the portion of the ray outside the study area
using NWMs, iii) assuming the refractivity to decay exponentially with increasing height, or iv) solving the inverse
system in a two-step estimation as described in Yao and Zhao [2016]. Without side rays, they firstly deduce a pure
top ray solution from a larger study area than the area of interest, in order to then reconstruct the wet refractivity
field in the area of interest by means of including side rays and by means of computing the portion of these side
rays situated outside of the area of interest based on the top ray solution obtained within the larger study area.
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4.3 Effects of the voxel discretization

When analyzing the effect of discretizing the refractivity fields into voxels of constant refractivity, different aspects
need to be discussed. First of all, the assumption that the inner-voxel refractivity is constant should be questioned.
In addition, the relation between the functional model from Equation 4.5 and the chosen voxel discretization has
to be analyzed. The description of the observations y as a product of the parameters  and the design matrix
@ within the forward model corresponds to a weighting of the voxel’s refractivities by means of the distances
passed within the voxels. Depending on the selected voxel sizes, the smoothing of the parameters induced by the
voxel discretization varies. Finally, within the synthetic data set, both the precision of the observation vector y
and the precision of the refractivity values Ny used for validation depend on the voxel discretization. Thus, the
voxel discretizations used for determining the observation vector and the refractivity values for validation should
be carefully selected.

In the following, firstly, the error committed by approximating constant inner-voxel refractivities is analyzed. This
is done by comparing constant inner-voxel refractivities with exponentially decaying inner-voxel refractivities,
assuming the exponential decay approximation to better represent the true atmospheric state than the approximation
of constant inner-voxel refractivities. In the real, continuous atmosphere, the refractivity Nyet,const,cont Within a
voxel of constant refractivity, limited by lower and upper voxel boundaries 4 and /4 indexed by k, can be

approximated by
gt 1

Nwet, const, cont(hka hk+l ) =
scale

h—h
. Nyet(ho) - exp (— ") dh (4.9)
hie1 =i g,

with a scale height Hle of the local neutrosphere and with /g standing for some reference height with known
Nwet(ho), e.g. hgp = Om at the surface, with Ny.(hg) corresponding to the surface refractivity. In the discrete case,
the exponential refractivity decay with height can be approximated by the Trapezoidal rule
1 nb_h 1
Nwet,const,disc(hks cees hk+nb_h) = ﬁ : Z 5 . [Nwet(hk—l) + Nwet(hk)] . (hk - hk—l) (4 10)
k+nb_h k =

with nb_h corresponding to the number of discrete refractivity values available along one vertical profile through
the considered voxel between its lower and upper voxel boundaries % and 7gnp_p.

The left plot within Figure 4.4 illustrates the approximation of a voxel’s refractivity to a constant value based on
continuous refractivity information using Equation 4.9. The right plot in the same figure shows how a constant
inner-voxel refractivity could be deduced from discrete refractivity information according to Equation 4.10. E.g.
constant inner-voxel refractivities can be deduced from the discrete WRF refractivity information in order to gen-
erate a synthetic SWD data set as well as a validation data set for this synthetic data set. However, for the sake of
simplicity, instead of using Equation 4.10, the constant inner-voxel refractivities in the synthetic data set described
in Section 6.3.2 are determined by a simple averaging of the refractivities of all those WREF cells situated within the
considered voxel. The deviation w.r.t. the discrete formulation from Equation 4.10 showed to be less than 0.1 ppm
and was judged to be insignificant.

In order to illustrate the approximation errors generated by the assumption that the inner-voxel refractivity is
constant, an exemplary setting with a surface refractivity of 41 ppm is defined. This value for the surface refractivity
corresponds to the atmospheric behavior at the exemplarily chosen meteorological site 4444 (Karlsruhe Nordwest)
on 2005-08-01 at 12 pm, with a temperature of 21.8°C, a pressure of 1006.00hPa, and a dew point temperature of
8.8°C. In such a setting, the approximation error between a constant inner-voxel refractivity and refractivity values
drawn from an exponential approximation to the refractivity decay corresponds to about 9.5 ppm resp. to about
7.2 ppm on the bottom resp. on the top of a voxel extending from, e.g. 500m to 1750 m. In general, the maximum
error between an exponential decay approximation and a constant inner-voxel refractivity approximation to such
an exponential decay is equal to

A]\[wet,exp vs. disc = Nwet(hO) - Nwet,const, disc(h(), cees hl)

4.11
h )1 (4.1D)

1
= Nyet(ho) — E *Nwet(ho) - Hscale - | —€xp(—

scale

32



Nwet Nwet

- N, wet, const, cont

he B h he s h

Figure 4.4: Schematic illustration of the approximation of constant inner-voxel refractivities from continuous (left)
resp. discrete (right) refractivity information. In the left plot, the blue curve shows an exponential approximation
to the refractivity decay with increasing height, whereas the top of the gray rectangle corresponds to the constant
refractivity attributed to the voxel extending from /Ay to A1, i.e. to the value resulting from Equation 4.9. Thus, the
area of the gray rectangle equals the integral of the exponential decay curve. In the right plot, the same exponential
decay approximation is shown, but the constant refractivity value deduced for a certain voxel extending from the
discrete height 7 to the discrete height /.5 is deduced according to Equation 4.10, i.e. according to the Trapezoidal
rule. In the case of constant inner-voxel refractivities deduced from WREF as in this work, the discretization steps
are given by the discrete height levels of e.g. the WRF cell layers. The black dots schematically illustrate discrete
refractivity values, e.g. taken from WREF.

Assuming a scale height of Hycye = 1480m, Table 4.1 gives the ratio between the maximum error ANyet, exp vs. disc
and the surface refractivity Nyei(ho). Figure 4.5 schematically shows the approximation error committed by as-
suming a constant inner-voxel refractivity instead of an exponential decay approximation to the refractivity.

Figure 4.6 shows refractivity differences between the refractivities deduced from WRF at a 36 X 36 X 20 voxel
discretization and the refractivities deduced from WREF at different other, coarser voxel discretizations originating
from merging neighboring small voxels of the 36 X 36 X 20 voxel discretization.

N wet
discretization errors due to
constant inner-voxel refrac-
tivity approximation
Nwet, const, cont
ANyt exp vs. disc
layer thicknessinm | ————
N, wet(hO)
250 8%
500 15%
750 22%
1000 27% he  hie h
1500 37%

Figure 4.5: Approximation error committed by assuming a con-
Table 4.1: Ratio between the maximum er- stant inner-voxel refractivity instead of an exponential decay ap-
1ror ANyet, exp vs. disc and the surface refractiv- proximation to the refractivity decay with increasing height. The
ity Nyet(ho), given a scale height of H,e = approximation error depends on the height and on the thickness of
1480m. the considered voxel.
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Figure 4.6: Refractivity differences between refractivities deduced from WREF at different voxel discretizations
and the refractivities deduced from WRF at a 36 x 36 x 20 voxel discretization. On the axis of abscissae, the voxel
number within the 36 X 36 x 20 discretization is given, the axis of ordinates corresponds to the shown refractivity
difference in ppm. The subfigure titles indicate the respective discretization of a 100 x 100km? study area of
10km height. The height layers are uniformly distributed, i.e. all height layers are equally thick. Assigning the
36 x 36 x 20 voxel indices of the finest discretization to the voxels in which they are situated within the coarser
discretizations enables a comparison of the refractivity values at 36 x36x20 voxel level. E.g. if the first voxel of the
18 x 18 x 20 voxel discretization contains the sub-voxels 1 to 18, 37 to 54, ..., and 613 to 630 of the 36 X 36 x 20
voxel discretization, then, the first voxel value of the 18 X 18 x 20 voxel discretization is assigned to all these
36 x 36 X 20 sub-voxels.

The plot shows that the horizontal and the vertical effect of the voxel discretization differ. If the difference between
the refractivities in a reference 36 x 36 x 20 voxel discretization and the refractivities within a selected P X Q x K
voxel discretization is to be small, a fine voxel discretization in the vertical direction is more important than a fine
horizontal voxel grid.

When analyzing the influence of the voxel discretization on the functional model
y=®-x 4.12)

from Equation 4.5, the voxel discretization shows to have an effect on the smoothing of the refractivity parameters.
The coarser the voxel grid, the smoother the refractivity parameters. On the one hand, when increasing the voxel
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sizes from a fine to a coarse voxel grid by merging neighboring voxels to coarser voxels, the observations within
the coarser grid are obtained by an unweighted average of the refractivities within the finer grid, i.e. the distances
d;j passed within the fine grid are simply summed up:

D Noews )i 4.13)

J=1 j

L

4
Yi=

=1

However, on the other hand, the functional model is not consistent with such an unweighted average. As shown in
Figure 4.7, the functional model weighs the different refractivities with respect to the distances passed within the
voxels of the current voxel grid:

4
yi= ZNwet,j'dij (4.14)
=

Therefore, the observations deduced based on different voxel discretizations differ in the synthetic data set. When
taking into consideration the inverse model determining the parameters based on the observations, the functional
model is only exact if the same voxel discretization is taken as a basis both for the computation of the observations
and for the estimation of the parameters. I.e. in the real data set, where the observations correspond to the integrated
wet delay along the signal path, the functional model would only be exact if infinitesimally small voxels were used
for the tomographic reconstruction. Similarly, in the synthetic data set, the functional model can only describe
the exact relation between the estimated parameters and the observations, if the observations are deduced from the
same voxel discretization, i.e. at the same spatial resolution, at which the parameters are estimated.

Nwet,3 Nw

d3; =0
in

Nwet,l Nwet,2
d

et,4 d4

e

4
ZNwet,j
=1

4
Z dj
=1

ENY

Figure 4.7: Relation of slant wet delay observations, refractivity parameters, and distances passed within the
respective voxels within, on the left, a fine voxel grid, and on the right, a coarse voxel grid. In the case of
the fine resp. coarse voxel grid, the observations are related to the parameters and to the distances according to
Equation 4.14 resp. according to Equation 4.13

4.4 Raytracing on the ellipsoid

For this work, the raypaths from the satellites to the receivers are traced within the voxels described in Section 4.1.
As these voxels are limited by ellipsoidal upper and lower boundaries, and as their sides are defined by con-
stant ellipsoidal longitudes and latitudes, the raytracing is performed in an ellipsoidal coordinate system. More
specifically, since the GNSS coordinates are given w.r.t. the World Geodetic System 1984 (WGS84), all ellip-
soidal coordinates used within this work refer to WGS84, and thus, the raytracing is performed w.r.t. the WGS84
reference ellipsoid. Yet, without loss of generality, the presented raytracing algorithm can be transferred to any
ellipsoid.

As shown in Figure 4.8, the raytracing w.r.t. any ellipsoid is based, for a straight ray path, a) on an intersection of
the ray with constant latitudes corresponding to an intersection of the ray with an unbent plane, b) on an intersection
of the ray with constant latitudes implemented by means of an intersection of the ray with a cone, and c) on an
intersection of the ray with constant ellipsoidal heights obtained by solving a linear system of equations. In the
following, these three main steps are explained in more detail.
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Figure 4.8: Schematic representation of the basic principle of a raytracing in ellipsoidal coordinate systems: The
intersections of a straight ray path with the voxels must be situated a) at the intersection of the ray path with an
unbent plane of constant longitude corresponding to a voxel border in longitude, b) on a cone of constant latitude
corresponding to a voxel border in latitude, and c) on one of the layers of constant height representing the vertical
voxel borders. The variables A, ¢, h, and N, stand for ellipsoidal longitudes, latitudes, and heights as well as for
the radius of curvature of a reference ellipsoid. The remaining variables shown in the figure are auxiliary quantities
explained within the mathematical details on the raytracing.
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a) Intersection with constant longitudes

The intersection X ipersect Of a straight ray path

Xo AX
g =Xo+r-AX =| Yo |+r-| AY
Zy AZ

with origin X and direction AX with an unbent limiting plane of constant longitude A

cosAd 0
fa(s,t)=s+] sind |[+¢-] O
0 1

is obtained by setting
8(r) = fa(s,0)

yielding
Xo AX cosAd 0
Yo |+r-| AY |=s-| sind [+t-] O |,
Zo AZ 0 1
solving for r, and computing
Xintersect
Xinterseet =| Yinterseet |= Xo+7-AX.
Zinterscct

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

In this context, r, s, and ¢ are free parameters describing the ray path and the face of the plane. The vector

Xsv —Xo
Ysv—Yo
AX Zsv—Zo
AX =| AY |=
AZ Xsv —Xo
Ysv—Yo
Zsv—Zy
obtained based on the satellite position

Xsv

Xsv=]| Ysv

Zsy

and the ray origin X describes the direction of the ray. The Y-component of Equation 4.18

Yo+r-AY = s-sinAd
can be solved for s
Yo+r-AY
§=—
sinA
and can be inserted in the X-component of Equation 4.18:

(Yo+r-AY)-cosA

Xo+r-AX = "
sinA

Multiplying by sin A and expanding yields
Xo-sind+r-AX-sind=Ygp-cosd+r-AY-cosAd
and, after sorting by r and after factoring out r,

Xo-sind—Ygy-cosd=r-(AY-cosd—AX-sinAd).

(4.20)

4.21)

(4.22)

(4.23)

4.24)

(4.25)

(4.26)
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b)

Therefore, the possible intersection points of the ray with the planes of constant longitude of the voxel grid
can be obtained by means of Equation 4.15 with

Xop-sind—Yg-cosA
r= .
AY-cosdA—AX-sinA

(4.27)

If applied to all planes of constant longitudes limiting voxels of the tomographic model, this approach may
yield a high number of theoretic intersection possibilities. However, only those intersection possibilities are
kept that are not only situated on any voxel faces within the voxel grid, but on faces of those voxels that the
considered ray passes.

Intersection with constant latitudes
As described in Perler [2011], the intersection X iqersect Of the ray with constant latitudes corresponds to an
intersection of the ray with a cone obtained by rotating, at the considered latitude, a normal vector on the
Earth’s surface around the Earth’s rotation axis. The ray is parameterized as in Equation 4.15, whereas the
cone of radius Rgone can be described by the parameterization of a circle

X2 +Y2 Reone”- (4.28)

intersect intersect —

The cone’s radius Reone depends on the height Z and on the constant latitude ¢ of the cone

VA
tang’

Recone =

(4.29)

This height Z corresponds, as illustrated in Figure 4.8, to the distance between the cone’s vertex and the Z-
coordinate Ziyersect Of the intersection point within the ECEF coordinate system associated to the ellipsoidal
coordinate system used for defining the voxels.

Inserting Equation 4.29 in Equation 4.28 and replacing tan¢ by sin¢g/ cos ¢,

(x> +Y? -sin?p = 7% -cos? @ (4.30)

ntersect ntersect

is obtained. With Equation 4.19 for the X- and Y-components,
[(Xo +r-AX)* + (Yo + r'AY)Z] -sin g = 7z cos’ ¢ (4.31)

can be deduced. According to Heck [2003], the ellipsoid’s radius of curvature in the prime vertical Ny, is

dell

Ny = — (4.32)
\[ 1- eeuz . sinzgo

with a semi-major axis ae; and a first numeric eccentricity ey of the considered ellipsoid, and
Zen = (1 —een®) - N -sing (4.33)

holds for the relation between ECEF Cartesian coordinates and ellipsoidal coordinate systems. Labeling the
Z-coordinate of the raypath’s intersection with the considered reference ellipsoid with Zj; and the distance
of the cone’s vertex from the ellipsoid’s center with Z,,, Figure 4.8 b) and the Euclidean geometry show that

based on
ZitZn _ no, (4.34)
N,
the value of
Zm = Nga . singa - Zeu (4.35)
can be computed. Introducing
Z = Zintersect + Zm (4.36)

into Equation 4.31, this yields a quadratic equation of the form

a-r2+ﬂ-r+7=0, (4.37)



)

namely:
[(Xo+7-AX)? + (Yo + - AY)?| - sin> ¢ = (Zinterseer + Zm) - O8> ¢ (4.38)

Introducing the third line of Equation 4.19 for Zjpersect
[(Xo +rAX) +(Yo+r- AY)Z] -sin®@ = (Zo+r-AZ+Zy)? - cos p, (4.39)
expanding the right side, and sorting by the power of r

P [(AX?+ AY?)-sin? g — AZ? - cos? | +
rle 2-|(Xo-AX + Y- AY)-sin> g — (Zo- AZ + Zm - AZ) - cos g + (4.40)
P X2+ YD) sin® o (Z2+2-Zy Zm+Z2) - cos? ¢ = 0,

the coefficients @, 8, and y of Equation 4.37 can be deduced. Labeling
Zo =Zo+Zn, 4.41)

the coefficients are
(AX% +AY?)-sin? o — AZ? - cos? ¢

a =
B = 2:[(Yo-AX+Yo-AY)-sin?—Z-AZ-cos?g] (4.42)
y = (X2+Y2)-sin®p—Z;-coslp

deviating (by a factor 2 in the first term of 3) from the coefficients given without derivation by Perler [2011].

A stable numerical solution of Equation 4.37 can be obtained using the numerical solver vpasolve.m in-
stead of solve.m in MATLAB®. Again, each value for r yields a possible intersection point. Intersection
possibilities that are not situated on faces of the voxels passed by the considered ray are rejected.

Intersection with constant heights
In the case of an intersection with constant height layers of height Ay delimiting the tomographic voxels,
based on Equation 4.15 and based on the relation between ECEF and ellipsoidal coordinates

Xinterseet = (Ng+hen)-cosg-cosd

) (4.43)
Yinterseet = (Ngo + hepr) - Cosp-sind
from Heck [2003], a non-linear system of equations
(Ny +h)-cosp-cosd—Xog—r-AX =0 (4.44)

(Ny+h)-cosp-sind—Yo—r-AY =0

can be established. As no closed solution is available for Equation 4.44, the intersection with constant height
layers is solved using an iterative method, e.g. the Newton-Raphson algorithm.
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S5 Methodology for 3D tomographic reconstruction

Tomographic approaches are always inverse problems, and as the number of viewing angles is often limited, many
tomographic problems are ill-posed and difficult to solve. Therefore, this work develops a new solution strategy
to water vapor tomography, disposing of a different way of regularizing the tomographic system. As shown in
Figure 5.1, this work compares the proposed Compressive Sensing solution to a common Least Squares solution
to water vapor tomography. Section 5.1 clarifies the terms inverse problems and ill-posed problems and introduces
additional mathematical basics necessary for the solution of the linear system of equations encountered, indepen-
dently of the solution strategy, in the tomographic reconstruction of the neutrospheric refractivity. Section 5.2 ex-
plains the terms Li-norm and L,-norm solution. Thereafter, the Sections 5.3 and 5.4 contrast the classical Lp-norm
Least Squares method and a sophisticated L;-Ly-norm Compressive Sensing approach for tomographic refractivity
reconstruction. Finally, Section 5.5 summarizes the chapter on 3D tomographic reconstruction techniques.

5 Methodology for
3D tomographic
reconstruction

SWD and other - : —— Nyt from
[ oy G ]—)' observing geometry '—)[ solution strategy '—»[ validation ]—>| tomography

() (o)

smoothing prior dictionary
constraints knowledge

e.g. surface

meteorology

trade-off:
data driven
vs. model
based terms

Figure 5.1: This thesis proposes a Compressive Sensing solution to water vapor tomography. Based on SWD
input data, both a common Least Squares solution and the proposed Compressive Sensing solution are applied to
different observing geometries.

5.1 Mathematical basics for the solution of inverse problems

For any physical system to be studied, Tarantola [2005] states that a parameterization of the system, considering a
given point of view, is the discovery of a minimal set of model parameters whose values completely characterize
the system. According to Tarantola [2005], a direct or forward model is encountered, if by means of some known
physical laws and for given values of the model parameters, the results of measurements on some observable
parameters can be predicted. Inverting this reasoning as illustrated in Figure 5.2, a model is said to be inverse,
if the results of some measurements of the observable parameters at some state of the system are used to derive
the model parameters at that state. This is exactly the case in tomographic applications: based on the observations
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model data
direct problem

design matrix &

inverse design matrix &~
inverse problem

parameters x observations y

Figure 5.2: Direct resp. inverse problem: the observations y can be predicted by means of the design matrix @ for
given values of the model parameters x resp. the model parameters are derived based on observations. The design
matrix @ contains the physical relation between the parameters x and the observations y.

of the object’s cross-sections, the inner structure of the object, i.e. its model parameters, is reconstructed. In the
case of the human body and a computer tomography, X-ray absorption profiles are generated along many different
viewing angles in order to reconstruct the inner structure of the examined body. The densities of the radiographed
body sections represent the model parameters and can be deduced from the absorption profiles, which can be
considered as measurements of the observable parameters. Similarly, in a neutrospheric tomography, the unknown
wet refractivity values represent the model parameters, which are inferred from slant wet delay observations e.g.
from GNSS corresponding to measurements of the observable parameters.

The introduction to Chapter 5 already states that many tomographic problems are ill-posed. Based on a study on
the solution of differential equations, Hadamard [1902] defines a well-posed problem by

e the existence of a solution,

o the uniqueness of the solution, and by

o the well-conditioning of the problem, given if the solution continuously depends on the input data and a
small change in the input observations does not lead to a large change in the output parameters.

In contrast to well-posed problems, an ill-posed problem is a problem that is not well-posed.

The existence and the uniqueness of an exact solution of a linear system of equations as given in Equation 4.5,
with observations y € RVX! parameters 2 € RE!, and a design matrix & € RV<L

y=b-x 6.1

can be analyzed by means of the rank of the matrix rank (@) as well as the rank of an augmented matrix (®|y). The
rank of the augmented matrix rank (®|y) can attain values greater or equal than rank (P)

rank (®|y) > rank (D), 5.2)
but a solution exists, if and only if
rank (@|y) = rank (D). 5.3)
If a solution exists, the dimension dim(S) of the solution space S of the augmented matrix (®|y) can be computed
using
dim (S (?|y)) = min(N, L) —rank (P). 64
Hence, the solution is unique if
rank () = min(N, L) and  rank(®) =rank(P|y). 5.5

As rank (P|y) > rank (P) for most overdetermined problems, such problems usually don’t have an exact solution.
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Besides the existence and the uniqueness of a solution, the well-conditioning of the linear problem is a requirement
for a well-posed linear problem. The conditioning of a problem is characterized by its sensitivity with respect to
small errors in the measurement data y. In the case of an ill-posed problem, small errors in the input data may cause
large effects in the solution. In general, the condition number cond (@) of a linear inverse problem is considered as
a measure for the degree of well-posedness. The condition number of ¢ can be computed as the ratio between the
largest and the smallest singular value o-yax and oy, of @

O max (P)

cond (45) = O'—@ .

(5.6)

If the condition number is large, the problem is said to be ill-conditioned and therefore it is ill-posed.

There are two main ideas on how to overcome the non-uniqueness and the ill-conditioning illustrated in Figure 5.3.
On the one hand, prior knowledge on the parameters can be introduced, on the other hand, constraints can be
added. Such constraints can e.g. be introduced as additional observations in order to regularize the inverse problem.
Both the Least Squares approach presented in Section 5.3 and the Compressive Sensing reconstruction within
Section 5.4 regularize the ill-posed tomographic system of equations. However, as the regularization methods and
the reconstruction algorithms in the two sections differ, the estimated solutions are not equal.

There are two main motivations in this work for developing a Compressive Sensing solution to the tomographic
problem and for comparing it to a Least Squares solution. Firstly, the Compressive Sensing solution may be more
robust and less sensitive to errors in the input SWD observations. Secondly, as the Compressive Sensing solution is
expected to be sparse, less parameters need to be determined, while the number of observations remains the same
as in the case of a Least Squares solution. While the Least Squares solution only involves L,-norm minimizations,
the Compressive Sensing also makes use of an L;-norm minimization. Therefore, the following section introduces
the terms L;-norm and L;-norm and explains the main differences between the L;-norm solution and the L;-norm
solution to an inverse problem.

non-uniqueness

ill-conditioning

design matrix &

parameters x observations y

non-uniqueness

ill-conditioning

design matrix @

parameters observations y

Figure 5.3: Non-uniqueness vs. ill-conditioning: The same observation might point towards different parameters,
and small errors in the observations might cause large effects in the determination of the parameters. If at least
one of these two characteristics, non-uniqueness or ill-conditioning, is fulfilled, then the problem is ill-posed. The
upper resp. lower plot illustrates a linear system of equations without resp. with prior knowledge reducing the
ill-posedness of the problem. The arrows indicate the operation performed by the matrix ¢. Observations pointing
towards parameters could be represented by arrows in the contrary direction, corresponding to the operation that
&~ ! performs, if &' exists. Constraints can be considered as additional observations limiting the solution space.
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5.2 L, solution vs. L solution to an inverse problem

Section 5.1 showed in which cases a linear inverse problem can be exactly solved. For linear inverse problems
without an exact solution, the linear Least Squares solution aims at estimating the best approximate solution. The
term best means that the estimated parameters & shall minimize the L;-norm observation residuals between the
observed data y and the data predicted based on the estimated parameters ¢ -  using Equation 5.1:

& = argmin{||y - & - |3} (5.7)
x

In the following, Least Squares resp. LSQ will be written for linear Least Squares. An approximate Least Squares
or Ly-norm solution may be necessary e.g. in the case of an overdetermined linear system of equations disposing
of more observations than parameters, i.e. in a system of equations with N > L. Besides an Lp-norm minimization
of the observation residuals, other cost functions could be applied in order to solve the tomographic system of
equations. E.g. a cost function minimizing the L,-norm of the observation residuals may be extended by an L;-
norm minimization of the parameters as in the case of a Tikhonov regularization (Menke [2012]):

&= arg;nin{”y—@-w”%+F%ikh0n0v-||ac||%} (5.8)

Alternatively, the cost function minimizing the L,-norm of the observation residuals may be extended by an L;-
norm minimization of the parameters, similar to the case of Compressive Sensing (Candes and Wakin [2008]):

& = argmin{||ly - & @3 + Tgg -l | (5.9)

The parameters I'Tikhonov and I'cs in the Equations 5.8 and 5.9 are trade-off parameters weighing the penalty terms,
i.e. the Li-norm resp. Ly-norm minimizations of the parameters, w.r.t. the observing residuals generating fidelity
of the solution & w.r.t. the input observations y.

In order to better understand the difference of Lp-norm minimizations as applied to the observation residuals
in Section 5.3 and solutions obtained using both an L;-norm minimization of the parameters and an L,-norm
minimization of the observation residuals as those in Section 5.4, this section gives basic information on the terms
L;- and Lp-norm and on the characteristics of the solutions obtained when minimizing the respective norms of the
parameters.

For a real number p > 1, the Ly-norm of some & € R™! is defined by
llly = (1P + 2P + ..+ [ P) /P (5.10)
The Le,-norm of 2z € R™! is defined as
llzllp = max {lxi[,xa],.... |xel}. (5.11)
Yet, for 0 < p < 1, the triangle inequality
llx +wllp < llflp +[lwllp (5.12)

considering some second variable w € R¥! besides & does not hold. Therefore, Equation 5.10 does not define a
norm, but just a quasi norm for these values of p. Decreasing p even further, i.e. considering the limit of the pth
power of the L,-quasi norm of x for p — 0, a quantity

llzlly = card ({; : x; # 0}) (5.13)

often called the Ly-norm of x, is obtained. However, it is neither a norm nor a quasi norm. Rauhut [2010] gives
precise definitions of these notations.

Geometrically, linear inverse problems as that from Equation 5.1 can be imagined, in the case of & € R*! resp.
x € R¥! as a line equation resp. as a plane equation. For larger parameter vectors than a € R>!, the Euclidean

44



geometry is exceeded, and Equation 4.5 generally represents an affine subspace. Finding a solution to Equation 4.5
means intersecting this affine subspace with the solution space, which depends on the solution strategy. In the
case of an Lp-norm minimization of the parameters, the solution lies on a so-called L;-ball, whereas the L;-norm
minimization of the parameters is found on an L;-ball. Selected Ly-balls, computed based on the above definition
of L,-(quasi) norms, are schematically shown in Figure 5.4 for the case of a parameter vector x € R>*!. In addition,
Figure 5.4 shows the Li-norm and L,-norm solutions to a linear inverse problem.

X2 X2 .
A + Li-solution

L>-solution

L
Ly

X1 X1

L>-solution

Figure 5.4: Left: Ly-balls represent the solution spaces for Ly-norm minimization problems. Right: The affine
subspace y = @ - x intersects the Li- resp. Lp-norm solution space in a most likely sparse resp. most likely non-
sparse solution. In the plot, sparse solutions are situated on the axes because they are defined as disposing only
of p non-zero or significant elements, where p is required to be smaller than the number of parameters L. The
continuous resp. dashed orange lines show that in very unlikely cases, the Li-norm solution may be non-sparse.

As both x; and x, in Figure 5.4 are non-zero in the solution obtained by means of Ly-norm minimization of the
parameters, the solution is called non-sparse. In contrast, the solution derived using Li-norm minimization of the
parameters is called sparse because it is non-zero only for some elements, i.e. only for x; # 0.

In general, a signal « is called «-sparse in a basis resp. w.r.t. a transform matrix ¥ if the coefficient vector s with
x=V-s (5.14)

has only « non-zero or significant elements, where « is required to be smaller than the number of parameters L. This
already indicates that the L;-norm minimization of the parameters does not necessarily need to take place in the
original domain of x. Instead, the Li-norm minimization regularizing a linear inverse problem can be performed
in a transform domain in which the signal  can be sparsely represented as s.

Applying an Li-norm minimization to the parameters is said to most likely yield a sparse solution. In contrast,
minimizing the Ly-norm of the parameters does not promote sparseness. This is due to the fact that in an L;-
norm minimization of the parameters, large weights are assigned to large parameters, because each parameter is
squared. Consequently, the L,-norm minimization unlikely reduces small values to even smaller values or to zero.
In contrast, the Li-norm minimization gives the same weight to all parameters, which implies that in the case of an
Li-norm minimization, setting a parameter to zero is favorable.

Figure 5.4 illustrates that all L,-norms with p € [0, 1] are suitable for the estimation of sparse solutions. However,
Baraniuk et al. [2011] state that for p < 1, the inverse problem is Non-deterministic Polynomial-time (NP) hard.
Therefore, when aiming at a sparsity of the parameters as a prior for regularization, an L;-norm minimization is
commonly applied. In the case of an L;-norm minimization, sparse solutions can be obtained by means of solving
convex optimization problems.

In addition to influencing the sparsity of the solution, the application of an L;-norm resp. of an Lj-norm mini-
mization also effects the robustness of the solution. As stated in Menke [2012], successively higher norms give
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the largest observation residual resp. the largest parameter value successively larger weights. Menke [2012] even
proclaims that Least Squares weighs large errors so heavily that a single bad data point can completely throw
off the result. In contrast, L;-norm methods are expected to be more robust, i.e. yielding more reliable estimates
tolerating a few bad data points.

5.3 Constrained Least Squares solution

As introduced in Equation 5.7, a Least Squares solution &
:ic:argmin{(@w—y)T~P-(@~:E—y)}, (5.15)
x

to a linear functional model is obtained by minimizing the squares of the observation residuals where the matrix P
in Equation 5.15 introduces, if desired, a weighting among the observations. In the unconstrained Gauf3-Markov
solution, the minimization of the squares of the observation residuals is done by means of

&=@ P& .dT.P.y. (5.16)

In the case of a tomographic reconstruction of the neutrospheric refractivity field, small weights could e.g. be
applied to low elevation rays suffering of site specific effects like multipath. Yet, in this work, all observations
are equally weighted, yielding P = I. The design matrix ¢ obtained for water vapor tomography as described in
Section 4.1 may be a fat, a square or a thin matrix. This is due to the fact that the shape of the matrix depends both
on the number of available observations and the number of parameters, which is a function of the selected voxel
discretization. I.e. depending on the number of observations and on the number of parameters, the system of equa-
tions may be underdetermined, even-determined, or overdetermined. In the case of underdetermined problems,
Menke [2012] states that there can exist several exact solutions that have zero observation residuals. In contrast, in
the case of even-determined problems, there is only one exact solution, and it has zero observation residuals. When
considering overdetermined problems, too much information may be introduced into the system of equations to
derive an exact solution and the Least Squares method approximates the best L,-norm solution.

However, there may also occur scenarios that are neither completely overdetermined nor completely underdeter-
mined. Namely, in this work, similarly to the example of an X-ray tomography shown in Menke [2012], there
may on the one hand be voxels through which several rays pass. The refractivity within such voxels may be
clearly overdetermined. On the other hand, some voxels may have been missed entirely. These voxels are com-
pletely underdetermined. In addition, there may exist voxels that cannot be individually resolved because every
ray that passes through one of these voxels also passes an equal distance within another voxel. The refractivities
within such two voxels are underdetermined, since only their mean refractivity can be determined. In typical wa-
ter vapor tomography settings, such partly overdetermined and partly underdetermined problems, shortly called
mixed-determined problems, have to be solved. L.e. this work does not deal with purely overdetermined problems,
even if the number of observations may be larger than the number of parameters. Therefore, computing a solution
to Equation 5.15 is not straightforward. Instead, prior knowledge on the parameters or additional observations
constraining the solution need to be introduced into the system of equations.

Table 5.1 gives an idea of the number of parameters and of the number of observations encountered if nine satellites
are assumed to be visible on average from each GNSS site. As detailed in Section 6.1, in the real data set, the
observations of a total of seven GNSS sites are available per epoch. I.e. when still assuming that nine satellites
were visible on average from each site, the number of observations in the real data set would only be larger than
the number of parameters if the 95 x 99 km? large study area were discretized into only 3 x 3 voxels of a size of
about 33 x 33 km? in longitude and latitude, with only five height layers. This rough estimate of the number of
observations resp. of parameters as well as the mixed-determined nature of the tomographic model emphasize the
importance of regularizing the system of equations from Equation 5.15 by means of introducing prior knowledge
or additional observations constraining the system.
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Table 5.1: Number of observations N resp. number of parameters L as a function of the number of GNSS sites resp.
as a function of the selected voxel discretization. The number of observations is computed by means of assuming
nine satellites to be visible on average from each of the GNSS sites.

number of sites | number of observations N number of parameters L | voxel discretization
7 63 45 3x3x5
9 81 80 4x4x5
16 144 180 6X6X5
25 225 405 9%x9x%x5

For regularization purposes, in the case of the LSQ solution in this work, the refractivity of a voxel (a,b,k),
with voxel indices a, b, and k& in latitude, longitude, and height, is assumed to equal the mean refractivity of the
remaining resp. of a certain number of surrounding voxels of the same kth height layer. As described in Heublein
et al. [2018] to which the LSQ methodology described in this section refers, these horizontal smoothing constraints
are applied for regularization of Equation 5.15:

Nyet abk = Z Wm-a,q-b* Nyet m,q.k (5.17)

m,q

Here, the voxel indices m and g correspond to the voxels in the kth height layer. The weights can be e.g. computed
according to inverse distances

1
neach i (0,)  (mg)
Wm—a,q-b = Z d s (5.18)
m.gq °q
-1 if (a,b):(m,4)~

The distances dy,—q4-p are the distances between the center of voxel (m,q) and the center of voxel (a,b) of the
considered height layer.

Applying the horizontal constraints, the observation equation, Equation 5.15, can be extended to

[ 0 )-(5 )=

where @y, contains wy,—q4-» and Py, weighs the additional observation equations resulting from the horizontal
constraint w.r.t. the unconstrained observation equation.

The horizontal constraint can be considered as approximating physical prior knowledge and helps to regularize the
tomographic system of equations by increasing the rank of @ to that of the column vector composed of both &
and ®y,,. However, the inverse problem may still be ill-posed. If the parameters can not yet be determined, further
constraints or prior knowledge may be added, if available. In the case of the LSQ solution to the tomographic
problem, additional constraints are included into the system of equations from Equation 5.15. According to Davis
et al. [1993], an average refractivity profile can be approximated by an exponential decay with height:

Nyet(hi) = Nyer(ho) - exp (—M) (5.20)

scale

In Equation 5.20, the variable /4 stands for the height of the kth layer with
keNwithl <k<¥K (5.21)

and a total of K height layers. The variable Ap in Equation 5.20 represents some reference height with known
refractivity Nyei(ho) and Hgcye is the scale height of the local neutrosphere. Since the scale height is essential for
the definition of the exponential refractivity decay with height, the value of Hcqje is selected during the adjustment
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from a set of possible values between 1000m and 2000m. The known wet refractivity Nye(ho) could originate
e.g. from surface meteorological observations, but is, here, estimated within the adjustment. An estimation of
Nyet(ho) within the adjustment becomes possible, if Nyei(fo) is considered as unknown parameter, i.e. if Nyet(fg)
is appended to the parameter vector :

N wet(hO)

Nyer(vx1)
T = )

(5.22)

Nyer(vXL)

Then, Equation 5.20 needs to be adapted to the extended parameters and yields, for the refractivity Nye((vX;) of
each voxel vx;, as well as for the surface refractivity Nyei(ho), one line of equations for the vertical constraint. The
voxel index range is defined as

jeENwithl1<j<L=P-Q-K, (5.23)

with P resp. Q representing the voxel number in longitude resp. latitude. The design matrix for the vertical
constraint then reads

exp(-gie) 0 - 0
Byert = : S (5.24)
exp(-3r) 0 - 0

In matrix notation, the relation of & and @Pyere can be written as

T = Pyert - . (5.25)

After factoring out @ and setting @Pyert = Dyert — I, this reads
Dyert - =0. (5.26)

Including both the horizontal and the vertical constraints as well as prior knowledge from surface meteorology into
the observation equation, Equation 5.15 can be extended to

Pyata * Ydata Pgata -+ Pdata
P . P - @
hz Yhz — hz hz .x, (527)
Pt © Yvert Prert © Dyert
P meteo ° Ymeteo P meteo ° SZimeteo

with matrices Pyert and Ppeteo Weighing the vertical constraint and the prior knowledge from surface meteorology
w.r.t. the unconstrained observation equation and w.r.t. the horizontal constraint. The matrix @Pgata € RNX(L+D) ig
composed of

DPata = (0 P) (5.28)
and the constraint matrices @y, € RLXE+D
0 -1 w121 vee WP’QJ
0 -1 :
&y, =| M2 (5.29)
0 Wp QK1
0 W1, K Wp QK -1

using wp 4k = wp., from Equation 5.18 and Pyery € REHDXE+D from Equation 5.26.

Both additional observations yy, € RE*!
Ynz =0 (5.30)
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and Yvert € R(L+1)><1
Yvert =0 (53D

as well as prior knowledge from surface meteorology

Ymeteo = Pmeteo " T (5.32)

are included into the system of equations. The prior knowledge from surface meteorology is of dimension
Ymeteo € RE*! and the entries of the corresponding design matrix @megeo € REXEHD are

1 if synoptic site in voxel (b,a, k)
(Dmeteoa,b,k = (5.33)
0 elsewhere.

No prior knowledge from surface meteorological sites situated in the vicinity of radiosonde sites used for validation
is included.

As stated above, the matrix Pgata Weighing the SWD estimates to each other is set to the identity matrix in this
work. In contrast to Pgata, the matrices Py, Pyert, and Ppeteo do not refer to the SWD estimates but to the
additional observations introduced with the constraints. As each constraint shall have a similar effect on all voxels,
and in order to equally weigh the a priori information from surface meteorology for all voxels in which prior
knowledge is available, the entries of the matrices Pp, € REXUAD | Py € READXEAD “and Priegeo € REXEHD
only contain the effect of the horizontal and vertical constraints as well as of the prior knowledge from surface
meteorology on the data fidelity term. Thus, Equation 5.27 can be reformulated as

Ydata Pyata
r . r - @
hz Yhz — hz hz .z (534)
Tert © Yvert Tyert -+ Dyert
1—‘meteo, LSQ °  Ymeteo l—‘meteo, LSQ - DPmeteo

In Equation 5.34, a total of N+3- L+ 1 lines of equations are used in order to determine L+ 1 parameters. Therefore,
even if no SWD estimate at all were available, a total of 3-L+ 1 lines of equations would be left in order to
determine L+ 1 parameters. That is, a combined design matrix composed of @p;, Pyert, and Pmeteo Would still be
a thin matrix, meaning that the system of equations would still seem overdetermined.

The LSQ solution to Equation 5.34 is derived by solving the following minimization problem with the trade-off
parameters I, vert, and I'imereo, 1.5Q for the constraints as well as for the prior knowledge:

A : 2 2 2

€= argmm{“ydata = Diata- |5 + I}, - |Yhz — Puz - |5 +

x (5.35)
2 2 2 2

+ Tert [1Yvert — Pvert - 51:”2 + rmeteo, LSQ" 1/ meteo — Pmeteo - 15”2} .

Simultaneously to the choice of the value of Hcale, the trade-off parameters I'ng, I'vert, and I'imeteo, 1.5 are selected
from a certain number of logarithmically scaled possible trade-off parameters. As described in Heublein et al.
[2018], this selection is performed in two steps. In the first step, all those combinations of trade-off parameters
are preselected that satisfy the eigenvalue cutoff criterion defined in Flores et al. [2000]. The work in Hajj et al.
[1994] and Wiggins [1972] indicate that the input noise is amplified into the solution by a factor given by the
smallest non-zero eigenvalue. Based on the assumption of standard deviations (std) of the observations y resp.
of the parameters x to be estimated of std,, = 5Smm resp. std, = 3.5mm/km = 3.5ppm from Flores et al. [2000],
following the approach proposed in Heublein et al. [2018], the cutoff value w for the eigenvalues is

td,, \°
wz(s—y) = 2km?. (5.36)
std,

The result of this preselection step yields a large set of stable solutions, which do not necessarily match equally
well with the observations. As a consequence, in a second step, the combination of trade-off parameters resulting
in minimum observation residuals is selected as final trade-off parameters.
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5.4 Sparse Compressive Sensing solution

Section 5.2 introduced the terms Lj-norm and L;-norm and stated that a Compressive Sensing solution to the
tomographic system was obtained using a sparse L;-norm minimization. If the signal to be reconstructed is sparse,
its coeflicients only have a small number of non-zeros. In this work, as described in Heublein et al. [2018], the wet
refractivity signal x itself is not sparse, but the assumption is that a sparse representation s of it can be obtained
after an appropriate transform

r=V-s. (5.37)

Then, a Compressive Sensing solution as introduced, e.g. by Baraniuk et al. [2011] and Candes and Wakin [2008],
can be applied in order to reconstruct a sparse signal s in an appropriate, sparsifying transform domain. Instead of
estimating the parameters « in the original domain as proposed in Equation 5.9, sparse parameters s are estimated

3 = argmin{|ly - & & - 5|3 + T lIsll; | (5.38)
S

The sparsity « of a signal is, in this work, defined by the number of coefficients containing 99 % of the total signal
power.

The Least Squares solution described in Section 5.3 is obtained via Ly-norm minimization of the observation resid-
uals and some geometric and meteorological regularization constraints. Instead of such a Least Squares solution,
and instead of minimizing the observation residuals as in the case of Least Squares, but applying an L;-norm as
length measure, the Compressive Sensing solution is based on both an L,-norm minimization of the observation
residuals and an Lj-norm minimization of the sparse parameters s. The L,-term ensures data fidelity, whereas the
L;-term regularizes the system by generating a sparse solution, if both terms are appropriately weighted w.r.t. each
other.

Cai et al. [2010] state that x-sparse signals can be recovered exactly resp. stably using L;-norm minimization
techniques, provided that the sensing matrix 6
0= (5.39)

satisfies the Restricted Isometry Property (RIP) in the absence resp. in the presence of noise. The RIP is fulfilled
if the restricted isometry constant § defined by Candeés and Wakin [2008] as the smallest § > 0 satisfying

(1=6)-Iwli5 <10 vl < (1+6)-IIvli3 (5.40)

for any vector v attains values smaller than ¢ < 0.307. Yet, the RIP is difficult to verify for an infinite number of
possible vectors v. Therefore, the mutual coherence between the design matrix @ and the transform matrix ¥

'<¢n§ ’ 'l;bn\p >|
wP,¥)= max — (5.41)
1zngnw=L ||, [ |,
is used in this work as a metric for assessing the CS recovery properties, although the coherence provides weaker
reconstruction guarantees than the RIP. The vectors ¢, resp. 1, in Equation 5.41 stand for row ng of @ resp.
for column ng of ¥. The coherence can reach values within the interval [1/ VI, 1]. The smaller the coherence, the
less coherent are @ and ¥, and the better the L;-norm reconstruction is expected to perform.

When aiming at a Compressive Sensing solution to Equation 5.1, a transform matrix ¥ is required that represents
the wet refractivity parameters x as sparse parameters s. The observation equation in the sparse domain then reads

y=&-U-s. (5.42)

Section 5.4.1 describes the generation of 3D transform matrices ¥ using Kronecker multiplication as well as the
definition of dictionaries for sparse representation. Thereafter, Section 5.4.2 shows how Compressive Sensing can
be applied to the tomographic reconstruction of atmospheric water vapor and how Equation 5.38 can be extended
by additional constraints.
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5.4.1 Sparse dictionaries using Kronecker bases

In the following, some important terms are explained before investigating the generation of 3D sparsifying bases.
The definition of 3D transform matrices using Kronecker multiplication is described and general aspects on trans-
form matrices — or dictionaries — for sparse representation are given.

A base function resp. an atom corresponds to one column of the sparsifying basis ¥. In the case of orthogonal ¥,
the terms transform matrix and base function are commonly used. More generally, when considering rectangular
but non-square ¥, the terms dictionary and atom are preferred because they do not require orthogonality of ¥
(Rauhut et al. [2008]). The expressions dictionary and atom can also be used in a generalizing way for the terms
transform matrix and base functions. When thinking of languages, an atom would correspond to a word within
a dictionary. As each word within a language dictionary is composed of different letters, each atom within the
dictionary for sparse representation results from the Kronecker product of smaller items, that will be called letters
in the following. To some extent, the explained terms may seem inconsistent, because the term arom does not
match well with letters and dictionaries. The term word would be more appropriate. However, since the terms
dictionary and atom are commonly used in the available literature on Compressive Sensing, this work also adopts
the term afom instead of the term word. A better consistence and understanding could be obtained by imagining
either the molecules, atoms, and quarks, or dictionaries, words, and letters.

In order to sparsely represent a 3D signal, a sparsifying basis jointly characterizing the signal structure present
in each of the three dimensions is required. This is done by means of generating 3D transform matrices using
Kronecker multiplication. According to Duarte and Baraniuk [2012], the restriction of a multidimensional signal
to fixed indices for all but its wth dimension is called a w-section of the signal. Using this notation, Duarte and
Baraniuk [2012] state that a single sparsifying basis ¥ can be obtained for a whole multidimensional signal by
applying the Kronecker product of sparsifying bases for each of its w-sections. l.e. Kronecker products can be
applied in order to design the sparsifying basis .

For the purpose of understanding the Kronecker product and its application for generating transform matrices, a
closer look on the Kronecker product is necessary. Any matrices A € R™" and B € RP*4 can be represented as

1
A={ai i) =laran]=| i |and B={bigjp)=[b1-bg|=| : |, (5.43)
ap, BL
where Greek letters denote the rows, and bold Roman letters denote the columns of the matrices. Single matrix

elements of A resp. of B are called g; , j, resp. b 5. According to Henderson and Searle [1981], the Kronecker
product of the matrices A and B of Equation 5.43 is defined as the mp X nq matrix

al BIT

an-B ap-B -+ anB
a-B ap-B -+ an-B
A®B={aiAjA'B}= ) . ‘ o (5.44)
am B am-B -+ am-B
Applying the Kronecker product
U= W,W; (5.45)

to the 3D separable bases ¥, W5, and W3 of the first, second, and third dimension of the considered 3D signal
yields a single basis ¥ for the entire 3D signal. According to Boussakta and Holt [1995], a basis is called separable
if its base functions along the different dimensions can be represented as a product of the respective 1D base
function, which holds for the most common bases like wavelets, iDCT base functions, and Fourier base functions as
stated in Rivenson and Stern [2009]. If the signal 2 € RE*! shall be sparsely represented by applying the transform
matrix ¥ € RE¥E both the sparse signal s and the initial 3D parameters x3p € R”*@* must be represented by
vectors. According to Equation 4.7,

x = vec(x3p). (5.46)
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For the matrix A of Equation 5.43, the vec operator is defined similarly to the vec operator transforming the 3D
parameters x3p into a parameter vector « in Equation 4.7 of Section 4.1. Namely, the vec operator stacks the
columns of the matrix one on top of one another in order to yield a vector-reshaped signal representation:

a
vec(A) =] : (5.47)
ap
This yields
s=W - vec(x3p). (5.48)

In this context, it is important to note that each element of the vector-reshaped form vec (x3p) of the 3D signal x3p
corresponds to a clearly defined element of x3p, which can be identified by an index triple along the three signal
dimensions, see also Figure 4.2 for better understanding of the voxel indexing. Therefore, even though vec () is
a 1D representation of the 3D signal x3p, the 3D characteristics of the signal x3p are preserved in & = vec(z3p).
In a similar way, each element of the transform matrix ¥ from Equation 5.61 corresponds to a product of three
clearly defined elements of the 1D transforms along the three different dimensions. Thus, these elements are again
associated to the 3D position of the considered voxel. In this way, the 2D matrix ¥ in Equation 5.48 performs a
3D multiplication of the 3D signal . According to Henderson and Searle [1981], this fact and the relation from
Equation 5.48 can be understood based on

vec(A-xz3p-B) = (BT®A) -vec(x3p) (5.49)
established for any three matrices A, x, and B for which the matrix product A -x - B is defined.

For illustration, it might be easier to imagine a 2D transform instead of the 3D case. If a transform shall be applied
to a 2D signal (e.g. an image), two 1D transforms A and B can be performed along each dimension of the image
x, thanks to Equation 5.49. Thus, a 1D transform matrix is first applied to the rows, and then, the same or some
other 1D transform is applied to the columns of the image. In matrix notation, the transform x 4 g of  is obtained
via

xag =vec(A-x3p-B) = (BT®A)~Vec(:1:3D). (5.50)

As described above, a single transform matrix ¥ can be obtained for the whole 3D refractivity signal by applying
the Kronecker product of base functions for each of the signal’s dimensions. Now, the notion of transform matrices
is extended to that of dictionaries in order to be able to generate dictionaries for sparse representation. Mallat
[1999] states:

“In natural languages, a richer dictionary helps to build shorter and more precise sentences. Similarly, dictionar-
ies of vectors that are larger than bases are needed to build sparse representations of complex signals.”

As an example, Mallat [1999] chooses an orthogonal basis with the three basis vectors vy, v2, and v3
=[v; vy v3 (5.51)

representing a dictionary of minimum size, also referred to as complete dictionary. This can for example be a
3D discrete Fourier basis, a 3D discrete cosine basis, or a 3D discrete wavelet basis. Using such a basis resp.
dictionary, a sparse representation of simple signals might be achieved. However, complex signals might require a
dictionary that is larger than a single basis, i.e. a dictionary which contains additional atoms v1, U2, and v3:

T=[vy vy v B B B3 ... (5.52)

Such a dictionary containing more columns than rows is called overcomplete. In contrast to the basis vectors of
a transform matrix, the elementary signals represented by the column vectors generating a dictionary are termed
atoms. Dictionaries intend to represent a signal using a set of atoms to decompose the signal.
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Obviously, as soon as a dictionary contains more columns than rows, the atoms cannot be mutually orthogonal
anymore and the signal is represented in a redundant way. Then, the available atoms may allow multiple, equally
well matching decompositions of the signal. Coming back to the natural languages Mallat [1999] is referring to,
there are many different ways to express the content of some message adequately. However, it is often not easy to
find the expression that fits best to the intention of the speaker. The same holds for sparse signal representations:
an overcomplete dictionary implies that it is computationally hard to choose the best signal representation.

5.4.2 Application of CS to the tomographic reconstruction of atmospheric water vapor

When aiming at a tomographic reconstruction of atmospheric water vapor by means of Compressive Sensing, the
sparse parameters $ are estimated by

§ = argmin{lly - @ - 5|3 + T lIsl;
) (5.53)
+ 1—‘rzneteo, cs” [[Ymeteo = Pmeteo - P - S||%}

from Heublein et al. [2018], which serves as a basis for the approach described below. When compared to the
LSQ solution in Equation 5.35, instead of adding horizontal and vertical constraints to the data fidelity term as
in Equation 5.38, an L;-norm regularization term is introduced here to promote sparse solutions for s. Here,
minimizing the Li-norm of the sparse parameters reduces the solution space. Subsequently, the wet refractivity
estimates & can be reconstructed by

r=v-5 (5.54)

with a dictionary ¥ € RE*M | The dimension M of the parameters s € R¥*! in the transform domain depends on
the number of base functions resp. atoms defined in .

In the case of a tomographic reconstruction of water vapor, we assert that a sparse representation of the refractivity
field can be obtained using e.g. a dictionary composed of Kronecker products of inverse iDCT letters in longitude
and latitude directions and of Euler letters and Dirac letters in the height direction. Thus, the letters C schematically
shown in Figure 5.5 represent iDCT letters in longitude and latitude and the letters 9 and & stand for Dirac letters
and for Euler letters in the height direction.

In the context of a neutrospheric water vapor tomography, based on physical prior knowledge on the atmospheric
water vapor distribution, the iDCT letters in longitude and latitude shall represent horizontal refractivity variations,
the Euler letters model an exponential refractivity decay with height, and the Dirac letters describe deviations from
a decay that could exactly be described by a linear combination of Euler letters. Examples for the mentioned letters
are shown in Figure 5.6. An example for atoms of a 3D dictionary is shown in Figure 5.7. As the Dirac letters in
Figure 5.7 are combined with constant letters in longitude and latitude, the resulting atoms only attain the values
zero (in all but one height layer) or one (in one height layer).

Applying Equation 5.45, the atoms of the sparsifying matrix ¥ in Equation 5.53 are built using the Kronecker
product of inverse iDCT letters in the longitude and latitude directions (¥; and ¥;) and Euler and Dirac base
functions in the height direction (¥3). The 3D refractivity distribution is assumed to be sparsely representable by
means of linear combinations of these atoms.

In the following, the computation of the iDCT, Euler, and Dirac letters is explained. According to Annadurai
[2007], a signal f(r) (e.g. the 3D refractivity distribution) is obtained based on its Discrete Cosine Transform
F(r) (e.g. the sparse parameters) by means of

R

fro= Y wira)-cos( 3= @ =12 = D) - Fr) (5.55)

rp=1

with parameter indices r| resp. r; in the original domain resp. in the transform domain with

ri,r €N with 1<r,m<R (5.56)
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. P letters Q letters K letters P letters Q letters K letters
Kronecker multiplication of size Px1 of size @x1 of size KxI of size Px1 of size Qx1 of size KxI
L=%-Q-K atoms or “words”
. L atoms of size Lx1 L atoms of size Lx1
Concatenation -~
DCT DCT
dictionary ¥ DCT DCT
Dirac Euler

1 dictionary of size Lx(2-L)

Figure 5.5: Relation of letters, atoms, and dictionaries from Heublein et al. [2018]. An atom corresponds to one
column of the dictionary ¥. When referring to languages, an atom would correspond to a word within a dictionary.
As each word within a language dictionary would be composed of different letters, each atom within the dictionary
for sparse representation is obtained by Kronecker multiplication of smaller items, called letters in the following.
The dictionary ¥ is used in order to transform the coefficients in the sparse representation to the parameters in the
original domain: « = ¥ - s. In this work, the square C summarizes £ iDCT letters of size £ x 1 in longitude or Q
letters of size @ X 1 in latitude. The squares D and & summarize K Dirac letters of size K x 1 and the K Euler
letters of size K X 1 in the height direction. In case of the iDCT letters and the Dirac letters, the number of letters
is consciously chosen equal to the letters’ dimension in order to span the whole iDCT space and the whole Dirac
space. In contrast, when considering the Euler letters, the number of letters could also differ from %K.
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Figure 5.6: Representation of six 1D inverse Discrete Cosine Transform letters on the left resp. of six 1D Euler
letters on the right describing the neutrospheric behavior in the longitude or latitude directions resp. modeling
the refractivity decrease with height, according to Heublein et al. [2018]. Atoms for the 3D dictionary for sparse
representation can be deduced by Kronecker multiplication of the iDCT letters in longitude with those in latitude
and with the Euler and Dirac letters in the height direction. The gray dotted lines indicate the course of the function
of the iDCT letters. The sampling points are highlighted in blue. The axis of abscissae shows the voxel number in
longitude or in latitude.
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Atoms of a Dirac basis in height
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Figure 5.7: Representation of six atoms of a 3D Dirac basis dictionary, which might be used in order to correct
deviations from a decay with height represented by linear combinations of atoms that are based on Euler letters in
the height direction, according to Heublein et al. [2018]. The Dirac letters in the height direction are combined
with constant letters in longitude and latitude. The gray dotted lines indicate the course of the function of the 3D
Dirac basis. The sampling points are highlighted in blue. The axis of abscissae shows the parameter numbers 1 to
M in the transform domain. The estimated solution in the transform domain is a linear combination of all atoms.

and by means of

1
— ifr2:1

VR

w(rp) = 5 (5.57)
\/j else.
R

Thus, the iDCT letters for the longitude and latitude direction correspond to

Clr1.72) = w(ry) ~cos<% 2o =1)-(ra— 1)). (5.58)

As a function of the steepness acs > 0 of the exponential decay, the r; 1D Euler letters E(ry,r,) for the vertical
direction are given by

“(rp—1
E(rm) = exp(—w) (5.59)
acs
where the kth element of 7, again with
keNwith 1 <k <K, (5.60)

is proportional to the height of the upper border of the kth voxel layer.

Each letter can be imagined to describe the neutrospheric behavior in one of the three signal dimensions longitude,
latitude, and height. The parameter R in Equation 5.58 stands for the number of voxels in the respective dimension.
For this work, different values of acs out of the interval acs € [2;10] that showed to yield reasonable results are
introduced. The Dirac atoms have compact support: They deviate from zero only in a small interval. If Dirac letters
in the height direction are considered, they can e.g. be zero for all but one height layer. Specifying Equation 5.45
for the tomographic reconstruction of water vapor using Compressive Sensing, the corresponding 3D dictionary
is obtained based on a Kronecker product of many different 1D letters ¥ p for each of the three signal directions
longitude, latitude, and height, represented by indices A, ¢, and h.

U=U;p,;,0%p,®%¥ip, (5.61)

Figure 5.7 shows atoms of a 3D dictionary resulting from the Kronecker product of two constant functions corre-
sponding to letters in longitude and latitude and Dirac letters in the height direction.
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The coeflicients of s are obtained from solving Equation 5.53, where the minimization of the L;-norm in the regu-
larization term ensures that only a small number of atoms are selected and most of the coefficients are zero. In this
work, the MATLAB cvx package for disciplined convex programming was used in order to solve Equation 5.53.

As in the case of LSQ, equal weights have been assigned to the observations, and prior knowledge from three
surface meteorological sites is introduced. The solution is varied by varying the trade-off parameters I'cs and
I'meteo, cs that weigh the sparse prior and the information from surface meteorology w.r.t. the data fidelity term.
From the resulting large amount of theoretical solutions, a reasonable solution is determined by means of selecting
the trade-off parameters I'cs and I'nereo, cs as carefully as the trade-off parameters I'nz, I'vert, and I'meteo, 1.5Q in the
case of LSQ in Section 5.3. Yet, instead of setting an eigenvalue cutoff criterion as in the LSQ case, a set of stable
solutions is selected based on the sparsity of the solution. The number of sparse coefficients in the iDCT Euler
Dirac domain containing 99 % of the signal power is required to attain values between 5% and 15 % of the total
number M of coefficients in the transform domain, which ensures a sparse, yet not too sparse solution. Based on
this preselection, the final trade-off parameter is then again chosen by minimizing the observation residuals. As
Hgcale is essential for the vertical constraint in the LSQ case, the definition of an appropriate steepness parameter
acs is essential for the parametrization of the vertical decay in CS. In contrast to the LSQ case, where Hcyje 1S
chosen during the selection of the trade-off parameters, in the case of CS, acsg is selected automatically by choosing
appropriate atoms out of the dictionary within the minimization process. In addition, the scaling of the atoms is
essential for an accurate solution. A very sparse solution with only a single, very high coefficient corresponding to
one of the decreasing Euler atoms is not attractive. Instead, a linear combination of e.g. 5% to 15 % of the atoms
is searched that generates a more accurate solution than a single atom could produce. This is only possible if the
scaling of the most prominent Euler atoms is reasonable.

While the rank of the design matrix @, compared to the rank of the augmented design matrix (P|y), gives infor-
mation on the existence and uniqueness of an exact solution to an inverse problem, the coherence introduced in
this section is a measure for assessing the CS recovery properties. The smaller the coherence, the better should be
the CS recovery. Figure 5.8 shows both the ratio of the ranks of the design matrix @ and of the augmented design
matrix (@|y) and values of the coherence u of @ and the sparsifying matrix ¥ for different numbers of GNSS sites,
different distributions of these sites within the used study area, different voxel discretizations, different numbers of
orbital planes, and different orbits. The figure mainly shows that the rank ratio resp. the coherence increases resp.
decreases with increasing voxel number. The decreasing coherences suggest that Compressive Sensing should
perform better within fine voxel grids than within coarse voxel grids.
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Figure 5.8: Ratio of the ranks of the design matrix ¢ and of the augmented design matrix (@|y) as well as values
of the coherence u of @ and the sparsifying matrix ¥ for different numbers of GNSS sites, different distributions
of these sites within the used study area, different voxel discretizations, different numbers of orbital planes, and
different orbits.
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5.5 Summary

As the rank of the design matrix ¢ and the design matrix augmented by the observations (®|y) are never equal
in this work, no exact solutions to the analyzed tomographic models exist. Consequently, the tomographic model
needs to be regularized. In this work, LSQ and CS are distinguished as two main approaches for the regulariza-
tion and the solution of the tomographic equation. In the case of LSQ, the tomographic equation is regularized
by means of i) introducing horizontal smoothing constraints, ii) assuming the vertical refractivity decrease with
height to follow an exponential decay, and iii) adding prior knowledge on the surface refractivity from surface me-
teorological sites. Instead of the horizontal and vertical constraints in LSQ, the CS solution benefits of the sparsity
of the parameters s in some transform domain. This transform domain is defined by a dictionary composed of
discrete iDCT letters in the longitude and latitude directions and by means of Euler and Dirac letters in the height
direction. L.e. both the LSQ and the CS solution strategy make use of physical prior knowledge on the atmospheric
water vapor distribution. The horizontal refractivity variations are expected to be much smaller than the vertical
refractivity variations and the vertical refractivity decrease is approximated by means of an exponential decay with
increasing height. There are two main motivations for regularizing the tomographic model by means of a sparse
prior. Firstly, the CS solution may be more robust and less sensitive to errors in the input SWD observations.
Secondly, as the L;-norm solution is expected to be sparse, depending on the dictionary size, less parameters need
to be determined, while the number of observations remains the same as in the case of an LSQ solution. Chapter 7
will compare the reconstruction quality of the LSQ and the CS solution within different tomographic settings re-
sulting from both a real and a synthetic data set and from varying orbit geometries. The following section gives
details on the analyzed study areas as well as on the data sets.
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6 Study areas and data sets

In this chapter, the approaches for neutrospheric tomography from Chapter 4 are applied to both a real data set in
the Upper Rhine Graben (URG) study area presented in Section 6.1 and to different synthetic data sets. As shown
in Figure 6.1, for both the real and the synthetic data sets, SWD input data are necessary for the tomographic
reconstruction of water vapor. The real data set in this work uses real GNSS SWD estimates as well as prior
knowledge from surface meteorology. If available, real INSAR SWDs are added. In the case of the synthetic data
sets, the SWD data originate from simulations, e.g. from the WRF model. The real resp. one of the synthetic
data sets is used in order to investigate in how far the inclusion of InSAR SWDs resp. synthetic INSAR SWDs
in addition to the GNSS SWDs resp. synthetic GNSS SWDs improves the accuracy and the precision of the
reconstructed refractivity field. Additional synthetic data sets are generated with the purpose of investigating the
effect of the observing geometry on the quality of the tomographic reconstruction. While the observing geometry
in the real data set is mainly predetermined by the position of the GNSS sites and by the GNSS orbit around
the considered acquisition times, the observing geometry in the synthetic data sets can be flexibly designed. In
addition, tomographic water vapor reconstructions within the synthetic data set can be validated based on the 3D
input WRF refractivities, whereas the real data set is only validated using a single radiosonde profile. Both the
real and the synthetic data sets analyze the differences between the proposed CS solution and a common LSQ
approach to water vapor tomography. Section 6.2 describes the data sources GNSS, InSAR, surface meteorology,
and radiosonde for the real data set. Section 6.3 gives information on the data source WRF for the synthetic data
set. Moreover, the derivation of the input SWD estimates for the real resp. for the synthetic data sets is explained
in the Sections 6.2.5 and 6.3.2. The height systems associated to the different input data sets are presented in
Section 6.4. A summary of the chapter is given in Section 6.5.
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Figure 6.1: In this work, both a real and different synthetic data sets are used. While the observing geometry
in the real data set is predetermined by the position of the GNSS sites and by the GNSS orbit geometry, the
observing geometry can be flexibly selected in the real data sets. Tomographic water vapor reconstructions within
the synthetic data set can be validated based on the 3D input WREF refractivities, whereas the real data set is only
validated using a single radiosonde profile.
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6.1 Study areas

For this work, two 95 x 99 km? resp. 117 x 122 km? large study areas (Study Area 1 resp. Study Area 2) in the
URG in southern Germany and eastern France were chosen. According to Fuhrmann et al. [2013], the URG area
is geophysically very stable within the considered time period, disposing of annual deformations in the order of
0.5mm in the horizontal direction and about £0.2mm in the vertical direction. This simplifies the distinction of
InSAR atmospheric phases from InSAR deformation phases and makes the study area suitable for our research.
The URG study area is characterized by the river Rhine flowing within an about 35km large valley. The URG
valley is surrounded by forested mountainous regions, e.g. the Black Forest in the East. As a result, the weather is
mainly cold and dry in winter, but active and highly variable in summer.

As shown in Figure 6.2, GNSS observations of seven resp. eight GNSS sites are available within Study Area 1
resp. Study Area 2. However, due to the lack of radiosonde validation data, Study Area 1 is only used for the
synthetic data set based on WRF data. Study Area 2 was selected for the real data set relying, for the tomographic
reconstruction, on surface meteorological prior information, GNSS and InSAR data, and on radiosonde data for
the validation of the estimated refractivities. The dates at which tomographic solutions are computed for Study
Area 1 differ from those of Study Area 2, because the WRF data for Study Area 1 are available at other dates than
the InSAR acquisitions for Study Area 2.

49°30" 49°30
49°00' 49°00
48°30' 48°30

Figure 6.2: Study areas for the synthetic and the real data set according to Heublein et al. [2018]. The Study Area 2
(real data) contains the Envisat SAR frame of Track 22 in the Upper Rhine Graben. Yellow squares indicate the
available GNSS sites. The black star indicates the radiosonde site 10739 in Stuttgart. Green triangles indicate the
location of the surface meteorological sites available for the computation of the ZDDs, whereas the observations
of surface meteorological sites illustrated by white circles are used in order to determine prior knowledge on the
surface refractivity.
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In the following, the GNSS observing geometries for the real and for the synthetic data set are described. The
term observing geometry shall, here, comprise the position of the GNSS sites and the ray directions. Within Study
Area 1, a realistic GNSS observing geometry defined by seven real GNSS sites, real orbits, and three real surface
meteorological sites is used for generating the synthetic SWD data sets for the sensitivity analysis presented in
Section 7.2.1. In contrast, artificial ray directions are defined from artificial site positions and from artificial
satellite positions when analyzing the effect of the GNSS observing geometry on the tomographic results in the
Sections 7.2.2 and 7.2.3. Within Study Area 2, the GNSS observing geometry is defined by eight real GNSS sites,
real orbits, and three surface meteorological sites. A validation of the estimated 3D refractivities is possible along
radiosonde profiles at the radiosonde site 10739 in Stuttgart. Further details on the generation of the real and of
the synthetic SWD data set from GNSS as well as on the inclusion of synthetic InSAR data from WREF resp. of
neutrospheric phases from InSAR are given in the Sections 6.2.5 and 6.3.2.

6.2 Real data set

As illustrated in Figure 6.3, the real data set contains GNSS and InSAR data as well as surface meteorological
measurements. Therefore, the GNSS observing geometry within the real data set is predefined by the position of
the GNSS sites and by the orbit geometry of the GNSS satellites. The section presents the GNSS, InSAR, and
surface meteorology data introduced within the real data set. In addition, the radiosonde data used for validating
the refractivity estimates are described.

GNSS GNSS 20000 km

800 km =

Ionosphere

...............

......

Figure 6.3: Schematic illustration of the observing geometry of point-wise GNSS and area-wide InSAR observa-
tions. The real data set is composed of GNSS and InSAR data and prior knowledge from surface meteorology.
Radiosonde observations are used for validating the 3D refractivity estimates from tomography.

6.2.1 GNSS data availability

The GNSS observations used in this work originate from the German satellite positioning service (SAPOS®)
permanent GNSS sites and cover the period of time from 2002 to 2014. The data given within Receiver Independent
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Exchange Format (RINEX) files is sampled at a temporal resolution of 15s. On average, there is a GNSS site every
37km resp. 42km in Study Area 1 resp. in Study Area 2. Table 6.1 gives an overview over the GNSS sites of the
two study areas. In this work, GNSS refers to GPS only. Using the Bernese PPP processing scheme given in A.2,
ZTDs estimates were deduced for all SAR acquisition of the year 2005.

Table 6.1: GNSS sites within the study area: names, locations, coordinates, and assignment to the study areas

site name | locations Ain® @in° hey inm | Study Area 1 | Study Area 2
0384 Stuttgart 9.1709 | 48.7795 341.0 v
0386 Heilbronn 9.2183 | 49.1385 234.8 v
0387 Heidelberg 8.6753 | 49.3889 168.8 v v
0388 Iffezheim 8.1126 | 48.8301 185.4 v v
0394 Tiibingen 9.0559 | 48.5177 386.0 v
0520 Ludwigshafen | 8.4506 | 49.4687 158.3 v v
0521 Landau 8.1094 | 49.1998 208.0 v v
0522 Pirmasens 7.6025 | 49.2021 448.4 v
0523 Kaiserslautern | 7.7740 | 49.4441 307.4 v

KARL Karlsruhe 8.4113 | 49.0112 182.9 v v

6.2.2 InSAR: data availability, PSI processing, and absolute InNSAR ZWD generation

A total of 17 C-band Envisat SAR acquisitions at a repeat cycle of 35 days is available for each of the two study
areas. Track 294 corresponds to Study area 1, whereas Track 22 corresponds to Study Area 2. Table 6.2 shows
the available acquisition dates for the respective tracks. As no radiosonde validation data are available for Study
Area 1, only the SAR Track 22 situated within Study Area 2 is used. For Study Area 2, independently of the
acquisition date, the SAR acquisition time in Track 22 is constant at 9h48 UTC. The SAR acquisition itself takes
29 seconds. A total of 332828 PS points are detected in the SAR swath of Track 22. Within the real data set, this
work focuses on the seven PS-InSAR neutrospheric phase maps of Track 22 acquired in the year 2005, for which
GNSS SWDs have been computed.

Table 6.2: InSAR acquisition dates covering the URG Study area in Track 294 resp. Track 22

index | date Track 294 | date Track 22 index | date Track 294 | date Track 22

1 2003-01-03 2003-08-13 10 2005-08-01 2006-03-15
2 2004-07-12 2005-01-19 11 2005-09-05 2006-05-24
3 2004-11-29 2005-02-23 12 2005-11-14 2006-06-28
4 2005-01-03 2005-03-30 13 2006-07-17 2006-09-06
5 2005-02-07 2005-05-04 14 2006-10-30 2007-01-24
6 2005-03-14 2005-08-06 15 2007-01-08 2008-07-02
7 2005-04-18 2005-07-13 16 2007-04-23 2008-09-10
8 2005-05-23 2005-08-17 17 2008-12-08 2009-01-28
9 2005-06-27 2005-10-26

As explained in Section 2.6.3, a PSI processing is applied in order to identify stable points in the interferograms. At
these persistent scatterers, the scattering phase cancels out and the targets thus show phase stability at all acquisition
times. These stable points are then used to estimate the neutrospheric phase maps using a collection of spatial and
temporal filtering routines. I.e. the different phase components contained in the interferometric phase are separated
by assuming their spatial and temporal structures. The InSAR atmospheric phases used within this work were
provided by Fadwa Alshawaf who carried out many research on fusing GNSS and InSAR data for deriving maps
of PW (see, e.g. Alshawaf [2013], Alshawaf et al. [2015c], Alshawaf et al. [2015b], and Alshawaf et al. [2015a]).
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6.2.3 Surface meteorology

Meteorological data received from the Landesanstalt fiir Umwelt, Messungen und Naturschutz Baden-
Wiirttemberg (LUBW) are used to model the ZDD at the GNSS sites. The location of the LUBW surface me-
teorological sites are shown in Figure 6.2. At a temporal resolution of 30min to 1h, they measure air pressure,
temperature and dew point temperature. Based on this information, ZDDs can be computed as described in Sec-
tion 2.6.1. The height of the surface meteorological sites is given as orthometric height. In order to stay consistent
with the GNSS ellipsoidal heights, the geoid undulation U has to be added to the orthometric heights when com-
puting ZDDs for the GNSS sites according to the Saastamoinen model from Equation 2.18. Besides using the
surface meteorological information for the ZDD modeling, prior knowledge on the surface refractivity can be de-
rived from the surface meteorological sites by means of applying Equation 2.5. In order to derive the ZDD at a
GNSS site, the closest surface meteorological site to that GNSS site, up to 100km distant, is used.

6.2.4 Radiosonde data

Radiosondes are usually carried into the atmosphere by a weather balloon. They contain instruments that measure
various atmospheric parameters and transmit the measured values to a receiver on the ground by means of radio
waves. Global radiosonde data are freely available at a temporal resolution of 12 hours on http://weather.
uwyo.edu/upperair/sounding.html (2018-04-26). Within the two study areas introduced in Section 6.1, a
single permanent radiosonde site is available in Stuttgart, i.e. in Study Area 2. The radiosonde profiles associated
to the radiosonde site Stuttgart 10739 are available at 0UTC and at 12UTC for most Track 22 SAR acquisition
dates. Besides others, during their ascents, radiosondes capture pressure, height, temperature, dew point, relative
humidity, and water vapor mixing ratios. Based on these data, wet refractivity profiles can be computed. In
this work, the radiosonde refractivity profiles are assumed to extend vertically above the radiosonde ascent site,
even though the radiosonde is driven by winds and may change direction during its ascent. For the nine dates
for which WRF simulations are available, the first line of plots within Figure 6.4 compares refractivities from
radiosonde profiles above Stuttgart with the simulated WRF refractivities above the radiosonde ascent site. In
contrast to the simulated WREF refractivities, the radiosonde refractivity profiles are considered to represent the
true atmospheric state. Depending on the acquisition date, the simulated and the radiosonde refractivities deviate
significantly. On 2005-02-07 and at heights above about 3km, the WRF refractivities simulated for 9h5S0UTC
seem to attain refractivity values between the two values deduced from radiosonde observations at OUTC and at
12UTC. In lower heights, WRF overestimates resp. the radiosonde underestimates the refractivity at that date. In
contrast, on 2005-05-23 and on 2005-08-01, the simulated refractivities from WRF are smaller than the radiosonde
refractivities for all heights above 2km.

Consequently, the available WRF data can neither represent good prior knowledge for the tomographic reconstruc-
tion of water vapor nor a means for validation. Moreover, Figure 6.4 motivates future research on alternatives to
the exponential decay of the wet refractivity introduced as vertical constraint into the LSQ solution. As shown in
this figure, the refractivity decay observed along the radiosonde ascent only follows an exponential law in eight out
of the 17 plotted radiosonde acquisition times. The exponential character of the decay is determined as follows.
For each setting (i.e. for WRF and for the two radiosonde ascents at 0UTC and 12 UTC), an exponential fit to the
WREF resp. to the radiosonde refractivity decay is computed. In a next step, the residuals between this exponential
fit and the WREF resp. the radiosonde refractivity decay are derived. In case of an exponential refractivity decay,
the residuals are assumed to be normally distributed. A Shapiro-Wilk test is used in order to statistically return a
test decision for the null hypothesis that the residuals come from a distribution in the normal family, against the
alternative that it does not come from such a distribution. The significance level of the test is set to 5%. The
Shapiro-Wilk test of Shapiro and Wilk [1965] has been selected due to its suitability for sample sizes below 50
samples. The analyzed WRF and radiosonde height profiles dispose of such small sample sizes of about 30 to 50
values, depending on the acquisition date.
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Figure 6.4: The first line of plots compares mean WREF refractivities per height layer for the SAR acquisition time with, if available, radiosonde profiles of the neutrospheric
refractivity above Stuttgart at the radiosonde ascent times OUTC and 12UTC for all SAR acquisition dates in 2005. The three lower pairs of lines show frequency distributions
and quantile-quantile plots (Q-Q plots) of residuals between the WRF resp. radiosonde data shown in the first line and an exponential fit to these data. If the bar color in the
histograms is opaque, a Shapiro-Wilk test judged the residual distribution to follow a normal distribution, otherwise, in case of transparent fill colors in the bars, the hypothesis

test rejected the null hypothesis that the residuals follow a normal distribution. The frequency distributions of the residuals are plotted with 1 ppm wide bars within the range

from —20ppm to 20 ppm. The axes of ordinate of the Q-Q plots covers the interval [-5, 5], even though there are also dates at which this range is exceeded. For this dates, only
a zoom to the interval [-5,5] is shown. The axes of abscissae of the Q-Q plots cover the interval [-2.3,2.3].



In addition, quantile-quantile plots (Q-Q plots) are generated in order to assess visually whether the residual dis-
tribution comes from a normal distribution. The Q-Q plot orders the residual distribution from the smallest to
the largest residual value and then plots these values against the values expected for a normal distribution at each
quantile in the residual distribution. Quantiles of the residual distribution are points dividing the distribution into
intervals with equal probabilities. The 2-quantile of a distribution e.g. corresponds to the median of the distribution,
i.e. to the value dividing the distribution into two equal-sized groups.

As illustrated in the zoom of Figure 6.4 in Figure 6.5, the axes of ordinate of the Q-Q plots in Figure 6.4 show the
quantile values of the residual distribution, while the axes of abscissae contain the theoretical values of a normal
distribution at the same quantiles at which the residual distribution is analyzed. If the Q-Q plot is linear as it
is approximately the case in Figure 6.5, the residual distribution can visually be judged to come from a normal
distribution, and thus, the refractivity decay is assumed to follow an exponential decay.

S
(e

80

(O8]
]
T
|

—
(e}
T

Frequency
[\
S
T
|

D

o
e
|

‘ ol e
. -20 -10 O 10 20
Discretized residuals in ppm

w.r.t. exponential fit

Refractivity in ppm
N
S
T
|

ks
s 4 -
20| . S ot F
. =S
. z Y M
~. .., % -2 et

0 | | | fenl o 'z -4 | |

0 2 4 6 8 10 ~ -2 0 2

Height in km Standard normal quantiles

Figure 6.5: The left plot shows a zoom on the radiosonde refractivity decrease on 2005-05-23 at 12UTC. On the
top right, the frequency distribution of the residuals between the radiosonde refractivity decrease of the left plot
and an exponential fit to this refractivity decrease is plotted. On the bottom right, the associated Q-Q plot is given.

6.2.5 Real SWD data set based on GNSS and InSAR

According to Heublein et al. [2018], to which this whole section refers, the tomographic reconstruction relies on
total SWD estimates from GNSS PPP and PSI in the case of the real data set. GNSS SWD estimates are included
into the system of equations. As described in Section 2.6.2, these ZWDs are separated from the ZTDs by means of
subtracting the ZHDs derived from the Saastamoinen model from Equation 2.18 and including horizontal gradients
in northing and easting. The GNSS SWDs are derived from the ZWD values as described in Section 2.6.2 and are
mapped according to the azimuth and elevation angles of the real GPS satellites, as shown in Figure 6.6 a).

The neutrospheric model within the GNSS processing is composed of the Saastamoinen zenith model (hydrostatic,
wet), the hydrostatic and wet Niell mapping functions, and a tilting gradient model. The estimation interval of the
ZTDs corresponds to 15 min. Each set of total horizontal gradient parameters is estimated for 24 h.

The optimal scenario for building 3D wet refractivity fields using GNSS tomography is to have a dense GNSS
network. At each GNSS site, an SWD estimate is available as input for the tomographic system. In reality, as
stated in Section 6.2, the GNSS mean inter-site distance in Study Area 2 is about 42km, i.e. the site density is
quite low. However, InSAR provides a dense network of PS points at which atmospheric phases are available.
Consequently, while considering GNSS SWDs on the one hand, on the other hand, 2D absolute ZWD maps as
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Figure 6.6: Observing geometry of real resp. synthetic GNSS and InSAR SWDs. The real GNSS observing
geometry is shown in the subfigure a). Zenith wet delays averaged over all visible GNSS satellites within a cone
defined by the cutoff elevation angle €., are mapped according to the zenith angle z into the direction of the
considered GNSS satellite. In contrast, in the case of real InSAR data in subfigure b), the InNSAR ZWDs of all
those persistent scatterers are averaged that are situated within a radius 7ayerage around the considered InSAR site.
The obtained mean ZWD within 7ayerage is then mapped into artificial ray directions. In the case of synthetic
GNSS, mean refractivities per voxel are deduced, based on a certain voxel discretization, from the WRF cells’
refractivities. As shown in subfigure c), the artificially defined rays are then traced within the voxel grid in order
to obtain SWDs in the respective ray direction. Finally, subfigure d) illustrates how synthetic INSAR SWDs are
obtained. For each WREF cell of the lowest WRF cell layer situated within r,yerage around the considered synthetic
InSAR site, a ZWD value is integrated along the vertical column above the cell. Similarly to the averaging of the
SWDs of all those PS points situated within ryerage around an InSAR site in subfigure b), these ZWDs for the
WREF cell columns surrounding the synthetic InSAR site are averaged, and the corresponding SWDs are obtained
by means of mapping the cylindric average ZWDs into artificial ray directions.

The small blueish grids in the figure schematically represent WRF cells, whereas the large grids stand for the voxel
discretization. Dotted lines correspond to the ray directions introduced into the tomographic system, while dashed
lines represent the directions in which the slant resp. zenith wet delays are primarily obtained. In case of satellites
at the beginning of a ray, the ray corresponds to a real satellite position. If no satellite is drawn at the beginning of
a ray, then the ray direction is artificial.
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defined in Section 2.6.3 are introduced into the tomographic system. When compared to the +15min of GNSS
SWDs around the SAR acquisition time that are included within the real data set, the InNSAR ZWD maps represent
short snapshots of the atmospheric state. These InNSAR ZWD estimates can be aggregated to derive real wet delay
input data at given points, called /nSAR sites in the following, as if corresponding to GNSS sites within the study
area. Such InSAR ZWDs can be estimated for any /nSAR site simulated within the InSAR swath. As shown in
Figure 6.7, this is done by means of averaging the INSAR ZWDs of all those persistent scatterers that are situated

within a radius 7ayerage

Vaverage = %C;:t 6.1)
around the InSAR site, where Hg,e is set to some mean scale height for the considered study area, e.g., in this
work, to 1480m. The InSAR ZWDs averaged around the InSAR sites could be visualized as averaging cylinders,
whereas in the case of GNSS, the water vapor distribution is averaged within conical shapes centered at the GNSS

site of the GNSS observing geometry.

In this first study incorporating absolute InNSAR ZWDs into the solution of a water vapor tomography, and as
illustrated in Figure 6.6 b), the obtained mean ZWDs per cylinder are mapped into artificial directions that simulate
a possible satellite geometry, e.g. with azimuth angles A € [0°,360°[ and elevation angles € € [7°,90°].

Latitude

Longitude

Figure 6.7: Schematic illustration of the PS distribution around an InSAR site from Heublein et al. [2018]. In the
figure, the ZWDs of the PS points (blue dots) are averaged within a radius of 5km (black circle) around the shown
InSAR site.

Since these ray directions are artificially selected, the mapped SWDs do not necessarily represent the real atmo-
spheric behavior in the considered direction. In the case of azimuthal refractivity variations or a large tilting of
the local atmospheric horizon around the InSAR site, the artificial ray directions may corrupt the InNSAR SWDs,
even though the InNSAR ZWDs contain a large component originating from azimuthally averaged GNSS ZWDs.
Nevertheless, these InNSAR SWDs are introduced into the tomographic system of equations in order to provide
additional rays in many different directions.

In this work, one InSAR site is defined in the horizontal center of each voxel of the lowest tomographic layer and
20 artificial rays are defined per InSAR site. The heights of the InSAR sites are deduced from the height of the
PS points situated within 7ayerage around the InSAR site. Surface meteorological prior knowledge on the surface
refractivity of the three synoptic sites indicated by white circles in Figure 6.2 is included into the tomographic
system. The validation of the tomographic reconstruction using external data is only possible in Stuttgart. As in
the case of GNSS, the mapping from the zenith direction to the slant direction is performed using the Niell mapping
function.
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6.3 Synthetic data set

When compared to the real data set, the synthetic data set fully originates from WRF simulations. For each
component of the real data set, Table 6.3 shortly describes the equivalent component within the synthetic data set.

Table 6.3: Comparison of the components of the real and of the synthetic data set

Real data set

Synthetic data set

GNSS SWDs

from each GNSS site to each visible GNSS
satellite, deduced from real GNSS ZTDs as
well as from ZDDs from surface meteoro-
logical observations

synthetically derived from WRF ZWDs,
e.g. from each GNSS site of the real data
set to each GNSS satellite that would be
visible in the real data set, or, alternatively,
based on artificial site locations and artifi-
cial ray directions

InSAR SWDs

obtained for artificially defined InSAR sites
and artificially defined ray directions using
absolute SWD maps from InSAR

synthetically derived from WRF SWD
maps for artificially defined InSAR sites
and artificially defined ray directions

prior knowledge on
surface refractivity

from surface meteorology

from WRF

validation

1D radiosonde refractivity profiles

3D refractivity fields from WRF

6.3.1 WREF data set

The SWD estimates of the synthetic data set are generated based on simulations of the WRF modeling system.
According to Skamarock et al. [2008], WRF is a NWP and atmospheric simulation system serving both research
and operational needs. NWP applies mathematical models of the atmosphere and oceans in order to predict the
weather based on current weather conditions. Contrary to the voxels with ellipsoidal upper and lower boundaries in
the tomographic model, the upper and lower boundaries of the WRF cells do not correspond to parallel ellipsoidal
surfaces of constant ellipsoidal height. Instead, the vertical coordinate of the WRF output corresponds to terrain-
following geopotential heights. Moreover, while the tomographic voxels are defined by their outer corners, the
WREF cells are defined by the coordinates of their centers. As indicated in Skamarock et al. [2008] and shown in
Figure 6.8, vectorial quantities like velocities v are staggered one-half cell length from scalar variables given at the
cell centers.

The WRF simulations are based on compressible, non-hydrostatic Euler equations extended by the effects of mois-
ture in the atmosphere. In fluid mechanics, Euler equations govern adiabatic and inviscid flow, represent the
conservation of mass, and balance momentum and energy.

For this work, 3D WREF simulations with a horizontal resolution of 900 m were received from Franz Ulmer (Remote
Sensing Technology Institute, German Aerospace Center) for the nine Track 294 SAR acquisition dates within
2005. They contain, for example, simulations of temperature, pressure, and water vapor mixing ratios. The WRF
model is run with three nested domains at horizontal resolutions of about 9km, 3km, and 900m. With increasing
height above the surface, the thickness of the WREF cells increases from about 75m to about 500m, as shown in
Figure 6.9.

On the considered acquisition dates, the simulation was run at a temporal rate of ten minutes for the URG study
areas centered at (1,¢) = (8.15°,49.15°). The domain with the highest spatial resolution has a horizontal extension
of 200km x 200km and contains a total of 49 height layers extending up to approximately 20km. For all dates
at which WREF simulations are available, Figure 6.4 shows the WRF height layer-wise refractivity decay averaged
over the whole simulation area. The figure shows that the weather is dry and cold in winter time, and that the
refractivity generally decreases with increasing height. If the exponential character of the WRF refractivity decay
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Figure 6.8: Spatial discretization in WRF: The WREF cells are defined by the coordinates of their centers. Vectorial
quantities v are staggered one-half cell length form scalar variables w given at the cell centers. The left plot shows
a top view on a horizontal layer, whereas the right plot shows a vertical slice at some position within the xy-plane.
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Figure 6.9: Thicknesses of the WRF cells at the constant longitude and latitude (4, ¢) = (6.93°,48.33°) and different
heights for 2005-05-23, deduced from the WRF simulation

is tested as shown in Figure 6.4 and described in Section 6.2.4, the WREF refractivity decay does not follow an
exponential law. As the initial boundary conditions for the WRF simulations originate from global atmospheric
models, locally and temporally occurring atmospheric phenomena cannot be expected to be accurately simulated.

6.3.2 Synthetic SWD data set based on WRF

Based on the observing geometry of the available GNSS and InSAR measurements, synthetic SWDs are calculated
from the WRF data as described in Heublein et al. [2018], on which this whole section is based. Computing the
synthetic SWDs from the WRF data enables a direct comparison of the later estimated 3D water vapor field with
the reference data available from WRF.

The synthetic GNSS data set is generated based on WRF using the azimuth and elevation angles of real GNSS
rays as well as real GNSS site coordinates in longitude and latitude. The heights of the sites for the synthetic
data set correspond to the heights of the WRF DEM at the longitudes and latitudes given by the GNSS sites. The
WREF simulation output (water vapor mixing ratios, pressure, temperature) is transformed into wet refractivities as
shown in Figure 2.5. As described in more detail in Section 4.3, a single WREF refractivity value is derived for each
tomographic voxel by averaging all WREF cells situated within that tomographic voxel. Thereafter, Equation 2.11
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and a direct raytracing along the real GNSS rays within the tomographic voxels, as illustrated in Figure 6.6 c),
yield the synthetic GNSS SWDs.

For the synthetic InSAR data set, additional sites and rays can be simulated at any point on the WRF DEM using
artificial directions that emulate a possible satellite geometry, e.g. with azimuth angles A € [0°,360°[ and elevation
angles € € [7°,90°]. For these synthetic InSAR sites, the procedure generating synthetic SWDs is the following.
All those WREF cells of the lowest WRF layer are determined that are horizontally situated within a radius 7ayerage
around the considered synthetic InSAR site. For each of the selected WRF cells of the lowest layer, a ZWD value
is then integrated along the vertical column above the cell. As shown in Figure 6.6 d), similarly to the averaging of
the SWDs of all those PS points situated within 7yyerage around an InSAR site in Section 6.2.5, these ZWDs for the
WREF cell columns surrounding the synthetic InNSAR site are averaged, and the corresponding SWDs are obtained
by means of mapping the cylindric average ZWDs into the artificial ray directions defined above. The mapping of
the ZWDs to the slant direction is performed by dividing the ZWDs by the sine of the respective elevation angle.
No gradients are considered in the synthetic data set. In this work, 35 synthetic InSAR sites are defined within the
horizontal centers of the 5 x5 ground voxels, at a height given by the WRF DEM. A total of 20 rays per site is
defined.

As described in Section 5, the tomographic system is regularized by means of horizontal and vertical constraints
as well as prior knowledge from surface meteorology. In case of the synthetic data set, this prior knowledge is
obtained from the WRF model. A 3D validation of the reconstructed refractivities within the tomographic voxels
is done using the input WREF refractivities averaged in the tomographic grid.

6.4 Geodetic and meteorological height systems

When dealing with several different data sources, the respective height systems have to be taken into account. In
this work, ellipsoidal GNSS site heights are given with respect to the geodetic datum WGS84. The raytracing is
also performed in ellipsoidal coordinates. In contrast, the PS points’ heights as well as the heights of the surface
meteorological sites refer to orthometric heights. As shown in Figure 6.10, the difference between ellipsoidal
heights &y and orthometric heights H is the geoid undulation U:

U=hg—-H (6.2)

According to Seeber [2003], the undulations can reach up to 100m for a global reference ellipsoid. Since undula-
tions of about 50 m are observed in the URG study area, the differences between orthometric and ellipsoidal heights
must be corrected before introducing data sources from satellite geodesy (with ellipsoidal heights) and from ter-
restrial geodesy (with orthometric heights defined w.r.t. the gravity field) into a combined adjustment. Applying
Equation 2.11, the effect of a 50 m height error on the SWD corresponds, at a surface refractivity of 50 ppm, to
2.5mm.

For the available surface meteorologic sites, undulations were provided by Kurt Seitz from the Geodetic Institute
of the Karlsruhe Institute of Technology using the model European Gravity Geoid 1997 (EGG97). They are given
with respect to the geodetic datum WGS84 which coincides with the Geodetic Reference System 1980 (GRS80).
According to Seeber [2003], the gravity field associated to GRS80 is the Earth Gravitational Model 1996 (EGM96).
EGMO96 is a spherical harmonic model of the Earth’s gravitational potential complete to degree and order 360.

In a similar way, undulations were derived for the whole study area from the difference between EGM96 and
GRS8O0 at a grid spacing of 0.0083°. Based on these undulations, orthometric heights of any PS point within the
study area can be transformed into ellipsoidal heights. Consequently, GNSS and InSAR data as well as surface
meteorological information can be used in a combined adjustment.
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Figure 6.10: Relation between geoid undulation U, orthometric height H, and ellipsoidal height /¢ according to
Seeber [2003]

Besides ellipsoidal and orthometric heights, this work works with data given with respect to geopotential heights.
Firstly, the WRF data refer to perturbation geopotential PH and base state geopotential PHB, which are related to
the geopotential height Hgeopotentiat by means of

PH +PHB
H geopotential = T (6.3)

with gravity g. Secondly, the radiosonde data used for validation often refer to the geopotential height Hgeopotential -

According to Wallace and Hobbs [2006], geopotential heights are used as the vertical coordinate in most atmo-
spheric applications in which energy plays an important role. They relate the geopotential height Hgeopotential to a
surface point’s potential Wp, difference to the geoid potential Wp

P P
C=Wp,—Wp= —f dw = f gdv (6.4)
Py Py

by means of c

H geopotential Wallace — g_o’ (6.5)
where the value of g( corresponds to the globally averaged acceleration due to the gravity at the Earth’s surface.
The geopotential number C is computed based on the potentials Wp, and Wp of an arbitrary point Py on the
geoid and a point P on the surface. The potential difference can be derived from geometric leveling and gravity
measurements. As described in Torge [2001], this is done by integrating the mean gravity g along leveling segments

dv along any path between Py and P.

In Kraus [2007] and in Lewis [2007], the geopotential height is defined as the geopotential number C divided by
the normal gravity gy = 9.80665m/s? at a latitude of ¢ = 45°, which corresponds, according to Yilmaz [2008], to

the definition of dynamic heights:

C
ngopotentialKraus = (6.6)
8N

In contrast, orthometric heights are computed by means of

H=

ool O

) 6.7)

with g standing for the actual average gravity along the plumb line. As described in Torge [2001], this definition of
orthometric heights corresponds to the common understanding of heights above sea level. In meteorological liter-
ature like Kraus [2007] or Lewis [2007], orthometric heights defined w.r.t. a reference geoid are called geometric
heights.

In order to get an idea of the differences between orthometric heights and geopotential heights, Kraus [2007]
approximate the geopotential number C at a latitude ¢ by means of

C~g(p,H)-H (6.8)
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with

8(p. H) = gy -(1-0.0026373 - cos(2- ¢) +0.0000059 - cos>(2- ¢)) - (1 - 3.14- 107" - H), (6.9)
where H is divided by meter. For the URG study area situated around a latitude of ¢ =~ 49°, differences between
orthometric heights and geopotential heights are given in Table 6.4. Up to heights of about 2000 m, geopotential
and geometric heights correspond to each other on less than 1m. In higher altitudes around 10km, the geopo-
tential heights are about 30 m smaller than the orthometric heights. Taking also into account that the orthometric
heights in our study area are about 50 m smaller than ellipsoidal heights yields maximum height deviations between
geopotential heights and ellipsoidal heights of about 80 m, which cannot be neglected within this work.

In this work, geopotential heights are used within the synthetic data set and become relevant when validating
the estimated refractivities by means of radiosonde observations. After conversion of the geopotential heights
Hgeopotential into ellipsoidal heights heyy, the validation is performed within the tomographic voxel grid. As described
by Wang et al. [2016], this is done by first transforming the geopotential heights into orthometric heights H and by
then converting the orthometric heights into ellipsoidal heights according to Equation 6.2. Wang et al. [2016] state
that the conversion from orthometric heights to geopotential heights can be performed using

8s (©) Rearn(p)-H
8N REarth(QD) +H’

where gg () corresponds to the normal gravitation acceleration at some latitude ¢ and Rgarh (@) is the effective
radius of the Earth at some latitude ¢, both defined below. Consequently, orthometric heights H can be deduced

ngopotential (p,H) = (6.10)

from geopotential heights Hgeopotential by means of

8s
— * Igeopotential * Rearm ()
N

H(p, ngopotential) = & . (6.11)

S
REartn(p) — —- H, geopotential
8N

The normal gravitation acceleration at some latitude ¢ on the surface of the ellipsoid, gs, is computed using

1+0.00193185 - (sin¢)?
g5 () = 9.780325 2 . (sing)” (6.12)
s2 1-0.00669435 - (sin ¢)?
and the effective radius of the Earth at some latitude ¢ is derived from
6378.137m
REarm(p) = (6.13)

1.006803 — 0.006706 - (sing)?

The numbers in the Equations 6.12 and 6.13 are given for converting geopotential heights to orthometric heights
referring to the WGS84 ellipsoid.

Table 6.4: Differences between orthometric heights and geopotential heights

Hinm | H geopotential inm | H-H, geopotential inm
0 0 0

500 500.1 -0.1
1000 1000.1 -0.1
2000 1999.5 0.5
5000 4994.0 6.0
10000 9972.3 27.7

Finally, if no metric height information was contained in the radiosonde output variables, the height could be
approximated based on temperature and pressure information using the international height formula given in Burde
et al. [2015] or Wiegleb [2016]

K , 5255
0.0065 in o ngopotential mn m

pngopolential =Po- - TO iIl K ’

(6.14)
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reformulated as
TO in K

= N K
0.0065 in o

ngopotential inm (6 1 5)

1= (pngnpntemial )1/5.255
po '

The values of pg and Ty correspond to reference values of pressure and temperature at some reference height and
the reference height is set to the start point of the radiosonde. The international height formula is valid for heights
up to 11km.

6.5 Summary

Chapter 6 gives an overview over the study areas selected for this work. Both study areas are situated in the URG.
Due to the availability of WRF data and the lack of radiosonde validation data, Study Area 1 is only used for the
synthetic data set. Study Area 2 is defined in order to perform a tomographic reconstruction of water vapor based
on real GNSS and InSAR SWD estimates. A summary of the available data sets is given in Table 6.5. The next
chapter will present the tomographic results obtained for the respective data sets.

Table 6.5: Summary of the available data sets

Data set Spatial resolution Temporal resolution | Availability Height system
GNSS (GPS) point-wise 15 seconds 2002-2014 ellipsoidal
PSI (Envisat) here: @ 23 points per km? | 35 days 2003-2009 orthometric
Surface meteorology | point-wise 30-60 min since 1991 orthometric
Radiosonde along point-wise profiles 12h (site 10739) as of 1973 geopotential
WRF 3.1 3% 3km? 10min 9 days in 2005 | geopotential
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7 Tomography results

This chapter aims at

e analyzing in how far the inclusion of InNSAR SWD estimates improves the tomographic reconstruction of the
3D neutrospheric refractivity field,

e comparing the reconstruction quality of the LSQ and the CS solution to the tomographic model, and

e investigating to what extent the observing geometry has an effect on the tomographic results.

As illustrated in Figure 7.1, the quality of the tomographic results is evaluated, in the real resp. in the synthetic
data sets, by means of validating using a single radiosonde ascent resp. by means of comparing the estimated 3D
refractivity field with input WREF refractivities.

LiDAR InSAR

imaging
microwave spectro-

radiometers — | ___— meters, e.g.
MERIS

surface — T~
meteorology GNSS
VLBI radiosondes
7 Tomography
results
|
SWD and other . . —_— Nyer from
[ T . ]—)[ observing geometry l—y[ solution strategy l—)[ valld‘atlon )—)[ TR

7 Tomography
results

numerical weather
models, e.g. WRF

Figure 7.1: The quality of the tomographic results is evaluated, in the real resp. in the synthetic data sets, by means
of validating using a single radiosonde ascent resp. by means of comparing the estimated 3D refractivity field with
input WREF refractivities. Therefore, the radiosondes are highlighted as validation possibility for the real data set.
If available, any other technique yielding independent data sets that are not yet introduced into the tomographic
system could also be used for validation, e.g. microwave radiometers or LiDAR.

The analysis of the improvement obtained by introducing InSAR SWD estimates within the tomographic system
considers in how far the inclusion of InNSAR SWD estimates regularizes the inverse model and improves the accu-
racy and the precision of the estimated wet refractivity parameters. When comparing the reconstruction qualities
of the LSQ and the CS solution strategy to the tomographic model, special focus is set on the questions i) which
solution approach is more accurate and more precise, ii) in how far one of the strategies is more flexible, i.e. less
constraint-driven, and iii) if the CS solution can do with fewer observations than LSQ. Alternatively, question iii)
investigates in how far CS is able to estimate the neutrospheric water vapor field at a higher spatial resolution than
LSQ, or if CS can estimate the water vapor field more accurately and more precisely than LSQ, given a certain
number of observations and a certain spatial resolution.
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In addition, the effect of the observing geometry on the tomographic results is investigated by means of firstly
answering the question in how far the number of GNSS sites and their horizontal distribution within the analyzed
study area effect the accuracy and the precision of the tomographic results. This includes the questions i) if the
site distributions should differ at different latitudes and ii) if the sites should be randomly distributed within the
analyzed study area or rather situated along a regular grid. Secondly, the effect of the ray geometry and of the voxel
discretization on the tomographic results is investigated. This is done by means of focusing on the question in how
far the inclusion of rays of more satellites than given by the GPS orbits improves the reliability of the results and
by investigating how large the tomographic voxels should be in order to yield reliable results within a changing
orbit geometry.

The following indicates in which of the following sections the three main research questions stated at the beginning
of this section are answered. At the end of each section, the answers to the respective research questions are
summarized in a green box. While Section 7.1 refers to a real data set, Section 7.2 presents results obtained within
different synthetic data sets.

Section 7.1: Real data set

e In how far does the inclusion of InNSAR SWDs in addition to GNSS SWDs improve the tomographic recon-
struction of the 3D refractivity field?

e Which of the two solution strategies LSQ and CS yields more accurate and more precise results?

Section 7.2: Synthetic data set comparable to real data set

e In how far does the inclusion of synthetic INSAR SWDs in addition to synthetic GNSS SWDs improve the
tomographic reconstruction of the 3D neutrospheric water vapor field?

e Which of the two solution strategies LSQ and CS yields more accurate and more precise results?

e Which solution strategy is more flexible, i.e. less constraint-driven?

Section 7.2.2: Synthetic data set designed for analyzing the general effect of the observing geometry

e In how far do the number of synthetic GNSS sites and their horizontal distribution within a general study
area have an effect on the accuracy and on the precision of the refractivity reconstruction by means of LSQ
resp. CS?

— Should the horizontal site distribution differ at different latitudes?

— Should the horizontal site distribution within the analyzed study area be drawn at random from a
uniform distribution or should the sites rather be situated along a regular grid?

e To what extent does a higher number of satellites than in the case of GPS improve the accuracy and the
precision of the results obtained using the two solution strategies?

o In how far does the LSQ resp. the CS solution depend on the current position of the satellites within a certain
orbit constellation?

Section 7.2.3: Synthetic data set designed for analyzing the effect of the orbits and of the voxel discretization

e In how far does the inclusion of the rays of more satellites than in the case of GPS improve the reliability of
the results?

e How large should the tomographic voxels be in order to yield reliable results within a changing orbit geom-
etry?
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7.1 Real data set

This section presents a water vapor tomography solution obtained within the real data set available in Study Area 2
introduced in the Sections 6.1 and 6.2.5. This is done in order to investigate, for the real data set, in how far the
inclusion of InSAR SWDs improves the tomographic reconstruction of the 3D neutrospheric refractivity field and
in order to compare the LSQ and CS solution strategies. Section 7.1.2 tests the GNSS, InSAR, and radiosonde
data used within the real data set for consistency. Only in case of consistent input data, the validation of the
tomographic results obtained from GNSS and InSAR by means of radiosonde observations in Section 7.1.3 is
possible. As neither the number nor the position of the GNSS sites can be influenced within the real data set, and
as the validation of the tomographic results based on a single radiosonde site is challenging, the last of the three
research questions itemized at the beginning of Chapter 7 is analyzed based on synthetic data only.

At the beginning of each section, an information box summarizes the observing geometry characteristics (real vs.
artificial number and distribution of sites, ray directions, voxel discretization) as well as the input data (real vs.
synthetic, GNSS only vs. GNSS and InSAR) of the data sets considered in that section. The information boxes
shall serve as a means for better orientation of the reader, e.g. when thumbing through the thesis after a first read
or when comparing the different analysis within this result section.

7.1.1 Tomographic settings in the real data set

The observing geometry and the input data of the tomographic setting used for reconstructing the water vapor
distribution within Study Area 2 based on real SWD estimates are summarized in Table 7.1. As schematically
illustrated in Figure 7.2, eight GNSS sites are available in the 117 x 122km? large study area. A total of 36
InSAR sites is defined in the center of the 6 X 6 ground voxels. Including the vertical direction, the analyzed
atmospheric volume is subdivided into 6 X 6 x5 voxels. For the GNSS sites, the ray directions are given by the
GPS satellite positions around the SAR acquisition time, whereas in the case of the InSAR sites, artificial directions
simulating a possible satellite geometry are defined, e.g. with azimuth angles A € [0°,360°[ and elevation angles
€€ [7°,90°].

Table 7.1: Observing geometry characteristics as well as input data for the real data set.

r—‘ Real data set N

Observing geometry and input data:

study area about 117 x 122km? in the URG, containing SAR Track 22
voxel discretization 6Xx6X5
functional model inaccurate because y is integrated along infinitesimally small steps of the ray path,
y=%-x while @ and x refer to a 6 X 6 X 5 voxel discretization
GNSS InSAR
number of sites 8 one per voxel, i.e. 36
site distribution as given by the SAPOS® network regular within voxel grid
ray directions as given by the GPS satellites around artificial ray directions simulating a
the SAR acquisition time possible satellite geometry:
A €[0°,360°[, € € [7°,90°]
side rays not included
input data GPS SWD estimates absolute SWDs from InSAR
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In the following, the reasoning yielding the 6 X 6 X 5 voxel discretization is explained. According to Table 3.1, the
density of the available GNSS sites is comparably low w.r.t. the site densities encountered in other studies. The
most comparable tomographic setting in previous research is described by Bi et al. [2006].

g

Figure 7.2: Schematic illustration of the real data set. The left plot schematically shows a top view on eight GNSS
sites (blue dots) and on the regularly distributed InSAR sites (black triangles). The right plot shows a side view
including the ray directions of the blue dashed GNSS rays that are given by the real GPS observing geometry and
the ray directions of the black solid InSAR rays that are are artificially defined.

Bi et al. [2006] dispose of only four GNSS sites with maximum height differences of about 70m within their
100km? large study area. Horizontally, they discretize their study area into 5 x 6 voxels of 16 x 20km? size. They
obtain best results at a constant thickness of the horizontal layers of 800 m, when solving the tomographic system
by means of LSQ adjustment with horizontal smoothing constraints as described in Section 5.3. In the vertical
direction, instead of the exponential decay described in Section 5.3 and used in this section, Bi et al. [2006] add
a priori information obtained from the average of three days of radiosonde observations.

In the setting described in this section, twice the number of GNSS sites than that in Bi et al. [2006] is available
in an about 40 % larger study area. IL.e. the site density of the real data set described here is about 43 % larger
than in the tomographic approach described in Bi et al. [2006]. Therefore, the tomographic setting in Bi et al.
[2006] is, on the one hand, worse than in the setting used in this section. On the other hand, Bi et al. [2006]
dispose of a priori knowledge on the vertical refractivity decay from radiosondes, which is not available in this
work. Although the horizontal voxel sizes of about 20 x 20km? used for the real data set analyzed in this section
are comparable to those in Bi et al. [2006], these voxel sizes are still much smaller than recommended by the rule
of thumb of Champollion et al. [2004]. According to Champollion et al. [2004], the horizontal voxel sizes should
be greater than or equal to the mean inter-site distance between the available GNSS sites, i.e. the voxel sizes should
be greater than or equal to 42 x 42km? in the data set analyzed in this section. Due to the small size of the analyzed
study area and motivated by the goal of testing CS and its capability to do with fewer observations than LSQ for
the tomographic solution, the rule of thumb of Champollion et al. [2004] is consciously broken.

In the vertical direction, five height layers are distinguished within the tomographic approach presented in this
section. The lowest layer’s thickness is set to about 1300 m, and with increasing height, the height layer thicknesses
increase from 1300m up to 2900 m. The lowest layer’s thickness is set to 1300m in order to ensure at least for rays
with very low elevation angles that a ray arriving at the center of an about 20 x 20km? large voxel is able to pass
the horizontally neighboring voxel within the same height layer. As illustrated in Figure 7.3, this is only possible if
the minimum thickness A# of the height layers is related to the horizontal voxel size Ahz = 20km and to the cutoff
elevation angle €., = 7° by means of

1
Altin = 7 - Abz-tan . (7.1)

The tomographic setting for the real data set does not include any side rays. In the real data set presented here, side
rays cannot be approximated using radiosonde profiles, because the radiosonde profiles originating from the single
radiosonde launch site available within Study Area 2 are used for validation. Moreover, according to Figure 6.4,
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Figure 7.3: For rays with very low elevation angles close to €, a ray arriving at the horizontal center of a voxel
should be able to pass the neighboring voxel of the same height layer.

the available WRF data do not match well with the real weather patterns. Therefore, the possibility of computing
the portion of the ray outside the study area using NWMs is rejected. Figure 6.4 also shows that the refractivity
decay with height often does not follow an exponential law. As a consequence, side rays are not approximated by
means of assuming an exponential refractivity decay with height. Finally, due to the limited size of the available
SAR track, no two-step solution approximating side rays within the area of interest based on a pure top ray solution
in a larger study area is implemented.

7.1.2 Consistency of GNSS, InSAR, and radiosondes

This section, which is based on Heublein et al. [2018], analyzes the quality of the GNSS and InSAR fusion yielding
absolute water vapor maps and checks the GNSS and the radiosonde observations for consistency. These quality
analyses need to be performed because i) the absolute ZWD maps from InSAR must match well with the GNSS
ZWDs when introducing both GNSS and InSAR into the tomographic system and because ii) a validation using
radiosondes is only possible if the radiosonde humidity information and that estimated from GNSS are consistent.
Therefore, the INSAR ZWDs of all PS points situated within rayerage around the available GNSS sites are averaged
and compared with the respective GNSS ZWDs. If the mean difference of GNSS and InNSAR ZWDs is less than
10mm over all GNSS sites per acquisition date, i.e. less than twice the standard deviation of the input observations
assumed within Section 5.3, the InSAR ZWDs are introduced into the tomographic system. In this work, this is
the case for all acquisition dates except 2005-07-13 and 2006-06-28.

In addition, the precipitable water PW measured within the whole radiosonde profiles is compared with the PW
derived from GNSS ZWDs. The radiosonde GNSS PW comparison is performed at OUTC and at 12UTC, which
correspond to the start times of the available radiosonde 10739 ascents over Stuttgart. As the distance between the
Stuttgart radiosonde site and the Stuttgart GNSS site 0384 is about 6km, the radiosonde ascent section should be
covered by the GNSS geometry, even if the radiosonde does not ascend exactly vertically but is driven by winds.
In addition, GNSS PW values have been computed for the SAR acquisition time at 9h48 UTC. This is done in
order to get an idea of the humidity change between OUTC and 12UTC.

As neutrospheric water vapor is highly variable in time and space, a validation of refractivities estimated around
9h48 UTC by means of radiosonde observations at 0UTC and 12 UTC is not optimal. However, a linear interpo-
lation between the two radiosonde acquisition times is an acceptable option if i) the two sensors radiosonde and
GNSS match well at both OUTC and 12UTC, and if ii) a linear interpolation of the GNSS PW values at 0UTC
and 12UTC is close to the GNSS PW value observed at 9h48 UTC. In this context, a good matching and close PW
values shall denote PW differences smaller than 2mm between GNSS and the radiosonde at the three considered
times of day. As shown in Figure 7.4, this is the case on 2005-01-19, 2005-07-13, 2005-10-26, 2006-03-15, and
2006-05-24 at the radiosonde site 10739 in Stuttgart. The accepted value of 2mm PW difference is selected based
on other studies comparing radiosonde and GNSS PW. The studies in Bock et al. [2005] and Niell et al. [2001]
obtained mean PW differences between the two sensors of 1 mm to 2mm, Bock et al. [2007] even 3 mm or more.
The low temporal resolution as well as the unassured consistency of GNSS and radiosonde observations already
indicate some weaknesses of a radiosonde validation. In addition, in reality, the radiosonde ascent takes some time,
whereas the validation for this work assumes the radiosonde to take all the measures along the profile within a time
instant.
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Figure 7.4: Precipitable water in mm from GNSS and from a radiosonde at the SAR acquisition dates of Track 22,
according to Heublein et al. [2018]. The radiosonde PW values at OUTC and 12 UTC correspond to radiosonde
ascents starting at these times above the Stuttgart radiosonde site 10739. In the case of GNSS, the PW values
are deduced from GNSS ZWD estimates of OUTC, 9h48 UTC, and 12UTC. The dotted lines indicate linear
interpolations between the sampling points at 0UTC and 12 UTC. The shown PW range is equal for all subplots.

7.1.3 Validation of GNSS and InSAR based wet refractivities from CS and LSQ using
radiosonde profiles

All in all, as in Heublein et al. [2018], to which this whole section refers, considering both the consistency of GNSS
and InSAR as well as that of radiosonde and GNSS, the acquisition dates 2005-01-19, 2005-10-26, 2006-03-15,
and 2006-05-24 remain for validation. Within these dates, the most resp. the least water vapor resides in the atmo-
sphere on 2005-10-26 resp. on 2006-03-15. Therefore, these two dates representing different atmospheric states
are selected for the radiosonde validation in this section. For these selected dates, Figure 7.5 shows the agreement
between the wet refractivities reconstructed by means of LSQ or CS and the radiosonde profiles. The results shown
in the figure are obtained based on GNSS rays corresponding to the real GPS orbit geometry around the SAR ac-
quisition time and based on a set of artificial directions that simulate a possible satellite geometry, e.g. with azimuth
angles A € [0°,360°[ and elevation angles € € [7°,90°]. No prior knowledge from the surface meteorological site
Stuttgart is included into the solution of the tomographic system. The height resp. the refractivity in Figure 7.5 are
consciously plotted on the abscissae resp. on the ordinate, in order to make the exponential refractivity decay with
height visibly similar to the Euler letters used in the height direction and introduced in Section 5.4.

The accuracy of the tomographic results is similar for LSQ and CS. For both LSQ and CS, the deviations of
the tomographic solution from the exponential decay resp. from the linear combination of atoms based on Euler
letters and Dirac letters in the height direction are not represented by the reconstructed refractivities. The LSQ
solution overestimates the refractivity in the low atmospheric layers, while CS overestimates the refractivity in
high altitudes on 2005-10-26 in the case of both GNSS only and GNSS and InSAR and on 2006-03-15 in the case
of the GNSS only solution. However, as the radiosonde observations correspond, both temporally and locally, to
other atmospheric snapshots than the GNSS and InSAR based tomographic results, no quantitative comparisons
are drawn. Based on the real data set, no clear effect of including INSAR SWD observations as described in
Section 6.2.5 is visible. Yet, the results depend on the directions defined for the synthetic InNSAR rays. If the
directions of the synthetic InSAR rays are varied, the solution obtained using both GNSS and InSAR changes.
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Figure 7.5: Wet refractivity in ppm on 2005-10-26 and 2006-03-15. The tomographic refractivity estimates are
based on GNSS SWDs only resp. on GNSS and InSAR SWDs. The tomography solution corresponds to 9h48 UTC.
The temporal window of GNSS SWDs introduced into the tomographic system is set to +15min.

In order to derive reliable conclusions from the real data set, a high number of different synthetic InNSAR ray
directions should be tested. Moreover, the validation should be performed for many SAR acquisition dates and at
more than only a single radiosonde site. Table 7.2 summarizes the results obtained within the real data set.

When compared to the real data set presented in Heublein et al. [2018], the main difference consists in the much
larger height layer thicknesses. In Heublein et al. [2018], the thickness of the lowest height layer is set to 500m,
whereas here, it corresponds to 1300m. As a consequence, in this work, the voxel discretization error is much
larger and the functional model from Equation 4.5 is less accurate than in Heublein et al. [2018]. While the
observations still result from a continuous integration of the slant wet delay along the whole ray path, the design
matrix discretizes the analyzed atmospheric volume into much coarser voxels than in Heublein et al. [2018].

Table 7.2: Research questions answered using the real data set.

r—{ Real data set

Research questions: Answers based on the real data set:

e In how far does the inclusion of InSAR o In the analyzed real data set, no clear effect
SWDs in addition to GNSS SWDs improve of the inclusion of InNSAR SWDs in addition
the tomographic reconstruction of the 3D re- to the GNSS is visible.
fractivity field?

o Which of the two solution strategies LSQ and o In the analyzed real data set, both solution
CS yields more accurate and more precise re- strategies yield comparable results.
sults?
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7.2 Synthetic data set

When compared to the real data set presented in Section 7.1, one advantage of synthetic data sets consists in the
possibility to perform a 3D validation of the estimated wet refractivity field w.r.t. the WRF input data. In addition,
the observing geometry can be flexibly designed within the synthetic data sets, i.e. the number and the distribution
of the synthetic GNSS sites as well as the ray directions can be varied. Finally, a clear focus on the reconstruction
qualities of LSQ and CS within the considered tomographic settings is possible, if no measurement noise is added
to the observations. Different synthetic data sets are defined in this section in order to test different tomographic
settings. For each tomographic setting, the corresponding synthetic data sets are obtained from WRF simulations
of the neutrospheric wet refractivity.

7.2.1 Synthetic data set comparable to real data set

Table 7.3 characterizes the synthetic data set used in this section. In terms of observing geometry, this synthetic
data set is comparable to the real data set of Section 7.1.3. The analyzed study area (Study Area 1) is about 34 %
smaller than the study area used in the real data set (Study Area 2). While eight GNSS sites are available in the
real data set, in the synthetic data set in this section, seven synthetic GNSS sites are defined at the positions at
which real GNSS sites are available in Study Area 1. The study area is discretized into 5 X 5 x 5 voxels, and in the
center of each of the 25 horizontal ground voxels, one synthetic InSAR site is defined. As in the real data set and as
illustrated in Figure 7.2, the ray directions of the synthetic GNSS sites are again given by the GPS orbit geometry,
whereas artificial ray directions simulating a possible satellite geometry with azimuth angles A € [0°,360°[ and
elevation angles € € [7°,90°] are used for the synthetic InSAR sites. The synthetic GNSS and the synthetic InSAR
SWDs are deduced from WREF as described in Section 6.3.2.

Table 7.3: Observing geometry characteristics as well as input data of the synthetic data set on which the results
of this section are based. In terms of observing geometry, the synthetic data set in this section is comparable to the
real data set of Section 7.1.

4 Synthetic data set comparable to real data set } \

Observing geometry and input data:

study area 95 x 99km? in the URG

voxel discretization 5X5X5

functional model accurate because y is results from WRF refractivities deduced within

y=®-x the same 5 x5 x 5 discrete voxels to which @ and «x refer
synthetic GNSS synthetic InSAR

number of sites 7 one per voxel, i.e. 25

site distribution as given by the SAPOS® network regular within voxel grid

ray directions as given by the GPS satellites around artificial ray directions simulating a
the SAR acquisition time possible satellite geometry:

A €[0°,360°[, € € [7°,90°]

side rays not included

input data synthetic GPS SWD estimates deduced absolute SWDs from synthetic InSAR,
from WRF deduced from WRF
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When compared to the synthetic data set used in Heublein et al. [2018], the main difference consists in the about
twice as thick height layers. Therefore, as stated in Section 7.1.3, the voxel discretization error is much larger
than in Heublein et al. [2018]. Yet, as the observations in the synthetic data set do not result from a continuous
integration of the slant wet delay along the whole ray path but are obtained along discrete ray path elements within
the 5x 5 x5 voxels, the functional model from Equation 4.5 is accurate, even though the voxels are comparably
thick. Therefore, the synthetic data set enables a clear focus on the reconstruction qualities of LSQ and CS,
independently of inaccuracies in the functional model and independently of noise that would be encountered in the
case of real SWD estimates.

For the different acquisition dates of Study Area 1, a total of 48 to 68 GNSS observations are available. Considering
one acquisition date in more detail, a total of 68 rays are available for the seven GNSS sites available within Study
Area 1 on 2005-01-03. The upper plot in Figure 7.6 shows how many GNSS rays cross the tomographic voxels on
that date. Due to the cone-shaped GNSS observing geometry, most of the voxels close to the surface are crossed
by much fewer rays than voxels in the higher tomographic layers. However, if a low voxel is crossed, the number
of rays passing through it is larger than in higher atmospheric layers. On 2005-01-03, the percentage of crossed
voxels increases from 36 % to 96 % from the lowest to the highest layer. If synthetic INSAR observations are added,
the number of crossed voxels increases, as shown in the lower plot of Figure 7.6.
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Figure 7.6: Number of rays crossing the tomographic voxels on 2005-01-03 within the synthetic data set. The
upper plot shows the number of rays in the synthetic GNSS only observing geometry. The lower plot shows
the number of additional rays from the synthetic InSAR observing geometry. The 5 x5 voxels per height layer
correspond to five voxels in latitude and to five voxels in longitude. Longitude increases along the abscissae,
latitude along the ordinate. Above the plots, the heights of the layers are given. The number of rays crossing a
voxel is represented by the color of the voxel. Dark voxels correspond to voxels that are crossed by many rays,
white voxels are not crossed by any ray. The higher a layer is situated within the tomographic grid in the upper
plot, the more voxels per layer are crossed. Many of the voxels in the lowest layers are not crossed by any ray.
However, if a low voxel is crossed, then the number of rays passing through it is larger than in higher atmospheric
layers. In this work, ten synthetic rays are defined for each of the 25 synthetic InSAR sites.

In order to give an idea of the horizontal and vertical refractivity variations and the capability to tomographically
reconstruct them using LSQ, a layer-wise comparison of the refractivities estimated by means of LSQ from both
synthetic GNSS and synthetic INSAR SWDs and from WREF is given for 2005-05-23 in Figure 7.7. The refractivity
differences between the tomographic reconstruction and the WRF data decrease with increasing height layers. This
can be explained both by the decrease of the absolute value of Ny with height and by the increase of rays per
voxel observed in most voxels when reaching higher atmospheric layers.

The accuracy of the estimated refractivities w.r.t. the number of rays crossing the respective voxels is presented in
Figure 7.8. As expected, for both synthetic GNSS only and synthetic GNSS and InSAR, the refractivities within
crossed voxels are more accurately and more precisely reconstructed than the refractivities within empty voxels.
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Figure 7.7: Plot of 2005-05-23 layer-wise WRF refractivities, estimated refractivities from LSQ, and the differ-
ences between the estimation and the WREF refractivities in ppm. The 5 X 5 square-size voxels per height layer
correspond to five voxels in latitude and to five voxels in longitude. Longitude increases along the abscissae, lati-
tude along the ordinate. Above the plots, the heights of the layers are given. The estimates are deduced from both
synthetic GNSS and synthetic INSAR SWDs.
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Figure 7.8: Comparison of the reconstruction accuracy within crossed voxels and voxels that are not crossed by
any GNSS rays. The absolute mean value and the standard deviation (std) of the differences between estimated
and WREF refractivities are shown for the different acquisition dates.
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When considering the differences between the tomographically reconstructed refractivities and those given by
WREF independently of the number of rays crossing the respective voxels, Figure 7.9 shows that

e on all acquisition dates, adding synthetic InNSAR SWDs to the synthetic GNSS SWDs slightly resp. clearly
improves the accuracy and the precision of the refractivities reconstructed using LSQ resp. CS (maximum
improvement over all dates in i) accuracy of 2.1 ppm resp. 3.0ppm and in ii) precision of 2.1 ppm resp.
5.2 ppm for LSQ resp. CS)

e when using both synthetic GNSS SWDs and synthetic InNSAR SWDs, the use of CS clearly improves the
reconstruction accuracy and precision on all analyzed acquisition dates (mean differences and standard de-
viations below 0.1 ppm), yet

e when using synthetic GNSS SWDs only, using CS instead of LSQ only slightly improves the accuracy resp.
the precision of the refractivity estimates by up to 1.4ppm resp. 1.5 ppm on about half the dates.
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Figure 7.9: Mean and std of the differences between estimated refractivities and WRF refractivities over all voxels.
The upper plot shows the mean of the absolute difference between estimated refractivities and WRF refractivities
over all voxels, the lower plot shows the std of that difference. The dashed lines serve for better following the
variation of the mean resp. of the std on the analyzed acquisition dates, but only the discrete values indicated by
the markers at the acquisition dates should be evaluated.

When interpreting Figure 7.9, the seasonal variability of water vapor has to be taken into account. In the case
of increasing humidity in the summer time, i.e. in the case of larger absolute values of Ny, the reconstruction
quality decreases. Consequently, larger values are obtained for the mean difference and the standard deviation of
the difference between the WRF refractivities and the reconstructed refractivities. In addition, when evaluating the
CS results, the coherences between the design matrix ¢ and the sparsifying basis ¥, defined in Section 5.4, should
be analyzed for the different settings. Figure 7.10 shows that the coherence u(®,¥) remains equal or gets smaller
when adding synthetic InNSAR SWDs in addition to the GNSS SWDs.

The smaller the coherence, the better the L;-norm reconstruction is expected to perform. However, adding synthetic
InSAR SWDs does not systematically decrease the coherence. On 2005-04-18, the coherence is not effected by
the inclusion of synthetic INSAR SWDs. Thus, in the analyzed setting, the very accurate results obtained when
adding synthetic InNSAR SWDs to the synthetic data set are not correlated with the coherence between the design
matrix and the sparsifying basis. As the same dictionary is used at all acquisition dates, the coherence values at
the investigated dates vary hardly. The coherence variations observed on the different acquisition dates only result
from the variations in @, i.e. from the changing ray geometry. Table 7.4 summarizes the results obtained based on
the synthetic data set analyzed in this section.
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Figure 7.10: Coherence u(®,¥) between the design matrix @ and the sparsifying basis ¥, and percentage of
voxels crossed by rays in a synthetic GNSS only solution. The dash-dotted lines serve for better following the
variation of the mean resp. of the std on the analyzed acquisition dates, but only the discrete values indicated by
the markers at the acquisition dates should be evaluated.

7.2.2 Effect of the observing geometry on the tomographic results within a general study
area

The work in [Bi et al., 2006] points out that the geometric configuration of the network has a significant impact
on the accuracy of tomographic water vapor reconstructions using GNSS SWD estimates. Therefore, this section
analyzes the general effect of the observing geometry on the accuracy and on the precision of the tomographic
results. Table 7.5 summarizes the observing geometry characteristics as well as the input data of the synthetic data
set used for this analysis of the effect of the observing geometry on the tomographic results.

7.2.2.1 Observing geometry settings

For Bi et al. [2006], the geometric configuration of the network mainly includes the voxels’ size and a uniform dis-
tribution of the sites within the voxels. However, in a generalizing way, not only the components of the geometric
configuration of the network mentioned by Bi et al. [2006], but the whole observing geometry has an effect on the
tomographic solution. In this context, the observing geometry described in this section may be composed of e.g.

o the prevailing topography within the study area,

o the current GNSS satellite orbits,

o the horizontal extension of the study area,

o the upper boundary of the study area,

o the cutoff elevation angle used,

o the decision for rays entering the study area on its top only resp. for rays entering the study area both on its
top and on its side,

o the horizontal and vertical resolution of the voxel grid, i.e. the voxel sizes in longitude, latitude, and height,

o the orientation of the voxels with respect to the North-South or the East-West directions,

o the number of sites situated within the study area,

e and the distribution of these sites within the study area.

Concentrating on selected items of the above components of the observing geometry, this section analyzes the
importance of the number of synthetic GNSS sites and the effect of the horizontal distribution of these sites within
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Table 7.4: Research questions answered using a synthetic data set which is, in terms of observing geometry,
comparable to the real data set.

,{ Synthetic data set comparable to real data set } \

Research questions: Answers based on the analyzed synthetic data set:

e In how far does the inclusion of e In the analyzed synthetic data set, the inclusion of synthetic

synthetic InSAR SWDs in addi- InSAR SWDs slightly resp. clearly improves the tomographic
tion to synthetic GNSS SWDs reconstruction of the 3D water vapor distribution when using
improve the tomographic re- LSQ resp. CS. In the case of LSQ, including synthetic InSAR
construction of the 3D neutro- SWDs decreases the mean difference by 0.0 ppm to 1.3 ppm and
spheric water vapor field? the standard deviation by 0.1 ppm to 2.1ppm. In the case of

CS, including synthetic InNSAR SWDs decreases the mean dif-
ference by 2.5 ppm to 2.9 ppm to absolute values below 0.1 ppm
and the standard deviation by 1.5ppm to 5.3 ppm to absolute
values below 0.2 ppm.

e Which of the two solution e In the analyzed synthetic data set, when using both synthetic
strategies LSQ and CS yields GNSS and synthetic InNSAR SWDs, CS yields more accurate
more accurate and more precise and more precise results, attaining mean differences and stan-
results? dard deviations of the difference between estimated refractivi-

ties and WREF refractivities below 0.2ppm. If synthetic GNSS
SWDs only are introduced into the tomographic system, both
solution strategies yield comparable results with mean accura-
cies over all voxels between 0.6 ppm to 4.2 ppm and with mean
precisions over all voxels between 0.8 ppm and 5.8 ppm.

e Which solution strategy is more e In the analyzed setting, CS is more flexible. For a 5x5x5
flexible, i.e. less constraint- voxel discretization and based on the available synthetic GNSS
driven? and synthetic InNSAR SWDs, the dictionary composed of iDCT,

Euler, and Dirac atoms is able to accurately represent the WRF
refractivity field.

Based on both synthetic GNSS and synthetic InNSAR SWDs, very accurate results are obtained for all
investigated acquisition dates. Thus, these results should be transferable to any other acquisition date, if the
tomographic settings (accurate functional model, total number of sites, voxel discretization, and variety of
ray directions) are comparable.

the considered study area w.r.t. the quality of the refractivity reconstruction by means of LSQ resp. CS. The section
aims at answering the questions to what extent the horizontal site distribution should differ at different latitudes,
and in how far the site positions should be drawn at random from a uniform distribution or rather be situated along
a regular grid. Furthermore, the section investigates to what extent a higher number of satellites than in the case
of GPS improves the accuracy and the precision of the results obtained using the CS and LSQ solution strategies
and in how far the LSQ resp. the CS solution depend on the current position of the satellites within a certain orbit
constellation.

In order to answer the stated research questions, two 100 x 100km? large study areas in high and mid latitudes
(latitudes ¢ = 70°, corresponding to the northern border of Norway, and ¢ = 49°, e.g. in the URG region) are
defined. Within these study areas, a large number of observing geometry settings is analyzed. As shown in
the decision tree in Figure 7.12, the observing geometry settings result from the combination of i) four different
discretizations of each of the ii) two study areas into voxels of constant refractivity, iii) uniform or non-uniform
height layer thicknesses, iv) three different numbers of sites, v) two synthetic GNSS orbit geometries and vi)
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Table 7.5: Observing geometry characteristics as well as input data of the synthetic data set used for the analysis
of the effect of the observing geometry on the tomographic results in this section.

,{ Synthetic data set: observing geometry } \

Observing geometry and input data:

study area 95x99km? in the URG at mid-latitudes (¢ = 49°) and equal-size study area
at high latitudes (¢ = 70°) corresponding to northern Norway
voxel discretization 3X3X5,4Xx4X5,6X6X5,0or9x9x5
functional model both accurate and inaccurate functional model tested, i.e. both based on observations
y=%-x computed within fine and within coarse voxel discretization

synthetic GNSS for observing geometry analysis

number of sites 9, 16, or 25
site distribution eight different site distributions as shown in Figure 7.11, all sites situated in a plane
ray directions as given by GPS-like orbit geometries containing six resp. nine orbital planes
with five resp. nine satellites each
side rays included
input data synthetic GPS SWD estimates deduced from WRF

eight different distributions of the considered number of sites within the respective study area. For each of the
defined tomographic settings, a synthetic SWD data set is deduced from a synthetic 3D refractivity field from
WREF referring vii) to one of the coarse voxel discretizations defined above resp. to a fine 36 X 36 x 20 voxel
discretization, and the refractivity parameters are estimated by means of viii) LSQ and CS.

In the following, further details are given on the observing geometry parameters itemized at the beginning of the
section and to some extent included within the defined tomographic settings. Firstly, the topography is reduced
to zero in this theoretical study even though this is known to degrade the accuracy of the tomographic solution.
This reduction to zero height is performed for the sake of transferability to any possible study area. The GNSS
satellite orbits are approximated by two synthetic GPS-like orbit geometries composed of six resp. nine orbital
planes inclined by 55° with respect to the equator as in the case of GPS. Per plane, a total number of five resp. nine
satellites, uniformly distributed over the plane, is defined. That is, one of the two orbit constellations is quite similar
to a real GPS orbit constellation with about 30 satellites distributed over six orbital planes (in the case of GPS, there
would be four to six satellites per plane), whereas in the other orbit constellation, a total of 81 satellites, comparable
to a combination of GPS, Global’naya Navigatsionnaya Sputnikova Sistema (GLONASS), and Galileo is defined.
There are two main motivations for considering also the second orbit constellation disposing of more satellites.
Firstly, the work aims at giving general rules for future GNSS tomographies, including both GPS and other GNSS,
i.e. using the rays originating from more satellites on more planes than in the case of GPS. In addition, the analysis
of the effect of the horizontal site distributions and of the voxel discretization shall be carried out devoid of any
unwanted signal caused by the orbit geometry. Here, such unwanted signals are assumed to be reduced if many
satellites are regularly distributed over the elevation and azimuth angles visible from the site.

The upper boundary of the study area was determined based on the synthetic input wet refractivity data set. As
low elevations enable the rays to cross different voxels already in small heights, the cutoff elevation angle is set
to €y = 7°, even though real SWD data would, at such a low elevation, suffer more from site specific effects
like multipath. Both rays entering the study area on its top and on its side are included in order to compensate
the missing topography and in order to better resolve the vertical water vapor distribution. Independently of the
selected number of sites, the horizontal resolution of the voxel grid was set to about 33km (3 X3 X5 voxels),
25km (4 x4 x5 voxels), 17km (6 x6 x5 voxels), and 11km (9 X9 x5 voxels). The thicknesses of the vertical

88



layers are set to five times 2000 m in the case of uniform height layer thicknesses resp. to 1000m, 1500 m, 2000 m,
2500m, and 3000m in the case of non-uniform height layer thicknesses, increasing with increasing height above
the surface. Finally, the rectangular voxels are oriented along the North-South resp. East-West direction. The inner
voxel refractivity within each voxel is assumed to be constant. A total of nine, 16, or 25 sites are defined. In the
case of the 25 x 25 km?2 voxel size, the rule of thumb of Champollion et al. [2004] recommending, for the case of
LSQ, mean inter-site distances equal to the horizontal resolution, holds, if 16 sites are introduced into the system.
Yet, in most of the other settings (fewer sites at the same number of voxels resp. the same numbers of sites but more
voxels), the rule of thumb is not respected anymore. The maximum number of 25 sites is selected in order to obtain
a similar site density as within the dense Japanese GPS Earth Observation Network (GEONET), see Nishimura
etal. [2011].

As shown in Figure 7.11, besides a regular distribution, two site distributions with regular spacing between the
sites in the East-West direction and decreasing resp. increasing spacing of the sites in the North-South direction
are defined. These two distributions are generated in order to investigate in how far a closer spacing of the sites in
the northern part of the study area improves the tomography accuracy in the respective study areas in mid and high
latitudes. Furthermore, four site distributions drawn at random from a uniform distribution and spreading the sites
within the whole study area, are defined. Finally, one site distribution drawn at random from a uniform distribution,
but spreading the sites only within a small part at the center of the whole study area, is defined. Initially, the
described site distributions shown in Figure 7.11 are defined in a local East North Up (ENU) coordinate system.
Thereafter, they are transformed into global geodetic coordinates (longitude, latitude, height). This procedure
ensures that similar site distributions are compared in the different latitude study areas.
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Figure 7.11: Site distributions of 25 sites in a local ENU coordinate system. The abscissae and the ordinate show
the sites’ distances in km from the center of the considered study area. Besides a regular distribution, two site
distributions with regular spacing between the sites in the East-West direction and decreasing resp. increasing
spacing of the sites in the North-South direction are defined. These two distributions are generated in order to
investigate in how far a closer spacing of the sites in the northern part of the study area improves the tomography
accuracy in the respective study areas in mid and high latitudes. Furthermore, four site distributions drawn at
random from a uniform distribution and spreading the sites within the whole study area are defined. Finally, one
site distribution drawn at random from a uniform distribution, but spreading the sites only within a small part at
the center of the whole study area, is defined.
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Schematic representation of a decision tree for the tomographic approach options within the site

Figure 7.12

distribution analysis. Within this schematic representation of the decision tree, children are only included at the

first node of each level, even though at each level, each node could be continued in the same way as that shown for

the first node.

90



The synthetic data sets for the described observing geometry settings are generated as follows. The design matrix
@ is deduced by direct raytracing along the azimuth and elevation angles of the described synthetic orbits. As
indicated by the first level of the decision tree from Figure 7.12, the design matrix is derived from a coarse p X g Xk
voxel discretization with p = g € {3,4,6,9} and k = 5 from above. In contrast, the SWD observations y of rays
entering the study area from both the top and the side are computed either at a coarse p X g X k voxel discretization
or at a fine 36 x 36 X 20 voxel discretization. According to Section 4.3, the functional model building the basis
for the tomographic reconstruction is only exact if the parameters are estimated at the voxel discretization that
has been used for deducing the observations and the design matrix. This could suggest to only deduce both the
design matrix and the observations from the coarse voxel discretizations at which the refractivity estimation shall
be carried out. However, if the observations used for the four defined voxel discretizations are derived from the
four corresponding discretizations, then, the observations for each discretization differ, and the accuracy and the
precision of the derived refractivity parameters cannot be compared within the different discretizations. As a
consequence, the observations are also deduced from a fine 36 X 36 X 20 discretization, even though Section 4.3
warns that the functional model from Equation 4.3 will not be exact anymore, if the observations refer to another
discretization than the design matrix and the estimated parameters.

Deducing the observations from the synthetic refractivity data set enables a direct comparison of the later estimated
3D water vapor field with the reference data available from WRF. When comparing the estimation quality of
different voxel discretizations, all refractivity estimates are, independently of the voxel discretization used for the
estimation, assigned to the fine 36 X 36 % 20 voxel level. The reference data from WREF are, for both the ¢ =70° and
the ¢ = 49° study area, derived from simulations of the WRF model for the ¢ = 49° study area. L.e. the synthetic
data sets do not represent the latitude dependent meteorological conditions of the two study areas. Instead, they
only serve as a means for geometrically analyzing the performance of the different site distributions at different
latitudes, independently of the prevailing weather. The study areas’ topography is reduced to zero by means of
setting the WRF DEM to a constant value. The mid-latitude WRF simulation can be transferred to the high latitude
study area by setting the latitude of the WRF data to the respective study area’s latitude and by stretching resp.
compressing the longitudes associated with the WRF simulation as a function of the latitude of the considered
study area.

7.2.2.2 Evaluation of the refractivity estimates

In order to evaluate the performance of the different observing geometry settings described in Section 7.2.2.1, the
mean of the absolute difference and the standard deviation of the difference between the estimated refractivities
and the input WREF refractivities are analyzed w.r.t. the parameters distinguishing the observing geometry settings.
Figure 7.13 and Figure 7.14 show the mean of the absolute difference and the standard deviation of the difference
between estimated refractivities and WRF input refractivities, obtained at a 3 X3 X 5 resp. at a 9x9 x5 voxel
discretization. As both the observations y and the design matrix @ refer to the same voxel discretization at which
the wet refractivity field is estimated, the functional model is accurate. Figure 7.13 and Figure 7.14 distinguish
the LSQ resp. CS results obtained within the two analyzed study areas in high and mid latitudes, with uniform
and non-uniform height layer thicknesses, based on nine, 16, and 25 sites, and using six resp. nine orbital planes.
As Figure 7.13 and Figure 7.14 refer to observations deduced based on different voxel discretizations (3 X3 x5
resp. 9x9x5), the figures should not be compared with each other. Comparisons should only be drawn within the
subplots of each figure.

When comparing the LSQ resp. CS solution strategies, CS shows a larger variability than LSQ in the accuracy
and the precision of the results obtained within the different tomographic settings. In the case of CS, in some
tomographic settings, much larger mean values and standard deviations of the differences between the estimated
refractivities and the WRF refractivities occur than in the case of LSQ. Namely, when considering the 9 X9 x5
voxel discretization, maximum absolute mean differences of up to 9.8 ppm and standard deviations of up to 9.6 ppm
are observed for CS, whereas the maximum absolute mean differences resp. standard deviations in the case of LSQ
attain values of 3.7 ppm resp. of 4.3 ppm. In the 3 X3 x5 voxel discretization, maximum absolute mean differences
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of up to 9.3ppm and standard deviations of up to 16.3 ppm are observed for CS, whereas the maximum absolute
mean differences resp. standard deviations in the case of LSQ attain values of 4.6 ppm resp. of 4.2 ppm. In many of
the analyzed settings, the lowest accuracies and the lowest standard deviations are obtained for Site distribution 8,
but there are also settings in which Site distribution 8 performs better than other site distributions, e.g. in the case
of 3x3 x5 voxels at a latitude of ¢ = 49°, uniform height layer thicknesses, and six orbital planes. Independently
of the voxel discretization, the wet refractivity estimates in the ¢ = 49° study area do not show a higher accuracy
or a higher precision than the estimates deduced from the ¢ = 70° study area. No clear effect of using uniform or
non-uniform height layer thicknesses is detected. While introducing the observations of more than nine GNSS sites
improves the quality of the reconstructed refractivity field in some of the analyzed settings, there are also settings
in which a higher number of GNSS sites does not yield a more accurate or more precise solution, e.g. in the case
of 3x 3 x5 voxels, a latitude of ¢ = 49°, uniform height layer thicknesses, and six orbital planes. Analogously,
defining nine orbital planes with a total of 81 satellites instead of six orbital planes with a total of 30 satellites often
increases the accuracy and the precision of the estimated wet refractivity field, even though the increased number
of satellites does not improve the quality of the solution e.g. in the case of the Site Distributions 3 resp. 4 for LSQ
resp. CS in the 9 x 9 x 5 voxel discretization at a latitude of ¢ = 49°, a total of 16 sites, and non-uniform height
layer thicknesses.

In order to investigate the differences between different voxel discretizations, the refractivity estimates of the
respective coarse voxel discretizations could be compared at the fine 36 X 36 X 20 voxel discretization level. As
a total of 36-36-20 = 25920 values is difficult to visualize, Figure 7.15, shows, averaged over all fine voxels,
the absolute mean difference and the standard deviation of the mean difference between the refractivity estimates
obtained at the coarse voxel discretizations and the WRF refractivities at a fine 36 x 36 x 20 voxel discretization.
This is possible because the fine 36 X 36 x 20 voxel discretization represents a subdivision of the considered coarse
voxel discretizations. The figure shows that the accuracy resp. the precision of the estimated refractivities at the
different coarse voxel discretizations w.r.t. the 36 X 36 X 20 WREF refractivities is not systematically related to the
roughness of the voxel discretization. While the 9 X9 x5 voxel discretization yields the smallest absolute mean
differences (3.5ppm resp. 3.4ppm in the case of CS resp. LSQ) in the case of nine synthetic GNSS sites, six
orbital planes, and Orbit Sample 1, its refractivity estimates are less accurate than those from the 3 X 3 X 5 voxel
discretization e.g. in the case of nine synthetic GNSS sites, nine orbital planes, and any of the two orbit samples.
In addition, Figure 7.15 illustrates that the accuracy and the precision of the refractivity estimates varies with the
considered orbit sample. The figure shows that the observations of 25 synthetic GNSS sites do not necessarily yield
more accurate and more precise refractivity estimates than the observations of nine synthetic GNSS sites. When
considering the results obtained from six orbital planes, Orbit Sample 2, the CS resp. LSQ solution based on 25
synthetic GNSS sites is 2.9 ppm resp. 0.2 ppm less accurate than the solution based on nine synthetic GNSS sites.
Finally, a benefit of using 81 satellites distributed over nine orbital planes instead of 30 satellites distributed over
six planes is only visible in some of the analyzed settings. E.g. in the case of nine synthetic GNSS sites, a 4 x4 x5
voxel discretization, and Orbit Sample 2, the CS reconstruction accuracy decreases by 0.5 ppm when using nine
orbital planes instead of six orbital planes. In addition, Figure 7.15 illustrates that the accuracy and the precision
of the refractivity estimates varies with the considered orbit sample. The figure shows that the observations of
25 synthetic GNSS sites do not necessarily yield more accurate and more precise refractivity estimates than the
observations of nine synthetic GNSS sites. When considering the results obtained from six orbital planes, Orbit
Sample 2, the CS resp. LSQ solution based on 25 synthetic GNSS sites is 2.9 ppm resp. 0.2 ppm less accurate than
the solution based on nine synthetic GNSS sites. Finally, a benefit of using 81 satellites distributed over nine orbital
planes instead of 30 satellites distributed over six planes is only visible in some of the analyzed settings. E.g. in
the case of nine synthetic GNSS sites, a 4 x4 x5 voxel discretization, and Orbit Sample 2, the CS reconstruction
accuracy decreases by 0.5 ppm when using nine orbital planes instead of six orbital planes.

In order to further investigate the effect of the orbit geometry, independently of the voxel discretizations, a second
sample of each of the two orbit geometries (GPS-like with six orbital planes and six satellites per planes resp.
GPS-like with nine orbital planes and nine satellites per plane) is considered. For Site Distribution 1 and Site
Distribution 8, Figure 7.16 resp. 7.17 exemplary visualize voxel-wise differences between the estimated refractiv-
ities and the WREF refractivities at different tomographic settings disposing of nine resp. 25 synthetic GNSS sites.

92



3Ix3%5 uniform height layer thicknesses non-uniform height layer thicknesses
6 orbital planes 9 orbital planes 6 orbital planes 9 orbital planes
( 15\ T T T T T
§
B
0\.\.\.[\.\..-. N N N IR . |
S——77 111 [ T s B B o | I e B B
§
§
04__J__J._J._J._1._J__-_4_J_L_A_J__;J_L NI Ay | NI e |
15\\\\\\\\ | I A N R N B | | I A N R N B | T T T T T T
8
§
&S oLl—t - . Wl . I 1 I |
=
g_ 15
§
0
ST 1T/ T T T T T T T T T T T T T [T T T T T T T I
§
0
15\\\\\\\\ 1 T T T T T T 1 1T 1 1T T T T 1 T T T T T T
8
|
o J_A_J._L_A_A_A_l J_LA._A__A_A._LJ;J_I_A._A_A_L_A_l
\ 0 — |
¢ 15 —
§
I IR 1
0 e o w1 . W
S——7 11 1 [ T s B B o | I e B B
:QJ‘-é
0 [ R R N S | lllr.J.r.lJ
S——71 111 [ T s B B o | I e B B
§
‘;I‘;
N
N Om_LLLLL [ R R N R | I I I | Lmm oo .
X
g 15
§
T T T T T T T [T T T T T T T I
:QJ‘_S‘
°
lllJ-.thJ h.h;-lli
T T T T T T T [T T T T T T T I
§
l;/‘{
o J_l_l_J._J._J._J._lg._LLx._J._x._A_l
\ OI-LIIIILM
123456738 123456738 12345678 123456738

H Mean of the difference in ppm for CS

I STD of the difference in ppm for CS

I Mean of the difference in ppm for LSQ I STD of the difference in ppm for LSQ

Figure 7.13: Mean of the absolute difference and std of the difference between estimated refractivities and WRF
input refractivities. The observations, the validation data set from WRF, and the estimated parameters all refer to
a 3 x 3 x5 voxel discretization.
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Figure 7.14: Mean of the absolute difference and std of the difference between estimated refractivities and WRF
input refractivities. The observations, the validation data set from WRF, and the estimated parameters all refer to
a 9 x9 x5 voxel discretization.
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Figure 7.15: Absolute mean differences in ppm and standard deviations in ppm of the differences between es-
timated refractivities per coarse voxel discretization and the WREF refractivities at the fine 36 X 36 x 20 voxel
discretization level for Site Distribution 1. The xticklabels indicate the number of orbital planes determining the
ray directions as well as the index of the considered orbit sample.

The input SWDs are deduced from the two indicated coarse voxel discretizations (3 X3 x5 and 9x9x5). The
refractivity estimation is carried out at the same coarse voxel discretizations.

When considering the results in Figure 7.16 referring to nine synthetic GNSS sites, CS accurately estimates the
refractivity of many voxels at the 3 X3 x5 voxel discretization level, but for some voxels, the estimates deviate by
up to 40ppm from the WRF refractivities. In the case of LSQ, the maximum differences between the estimated
and the WREF refractivities are much smaller and attain only about 15 ppm. If ray directions originating from nine
orbital planes and nine satellites per plane are used, the refractivity of less voxels is inaccurately estimated by CS
than in the case of only six orbital planes with five satellites per plane. Yet, in the analyzed orbit samples, the
maximum absolute differences do not significantly decrease by means of adding orbital planes and satellites. In
the case of Site Distribution 8, the voxel refractivities can be more accurately estimated than in the case of Site
Distribution 8. However, also in the case of Site Distribution 1, the estimates of some voxels’ refractivities are
completely thrown off in the case of CS. When applying a LSQ solution, the results show a smoother behavior and
smaller maximum absolute differences w.r.t. the WREF refractivities.

If the results obtained at the 3 X3 x5 voxel discretization are compared with those of the 9 X9 x5 voxel discretiza-
tion, the CS estimates obtained based on Site Distribution 8 scatter widely, while the maximum differences in the
case of Site Distribution 1 approximately range in the interval [-10ppm, 10ppm]. The LSQ estimates again show
a much smoother behavior than the CS estimates. The LSQ absolute differences attain similar maximum values as
those obtained by CS. A similar difference pattern is visible for all site distributions. This suggests that the LSQ
solution at the 9 X 9 X 5 voxel discretization is dominated by the horizontal smoothing constraints.

At a first glance, a comparison of Figure 7.16 and Figure 7.17, representing the results deduced from nine synthetic
GNSS sites and from 25 synthetic GNSS sites, shows a similar behavior of the reconstruction accuracies for both
numbers of sites. However, at a closer look, the CS refractivity estimates at the 3 X3 x5 voxel discretization become
accurate (maximum absolute differences below 0.1 ppm) for Site Distribution 1 resp. at least less inaccurate for Site
Distribution 8 when introducing 25 sites instead of nine sites and when using, at a time, ray directions towards a
total of 81 satellites placed on nine orbital planes instead of only 30 satellites on six orbital planes. In the case
of the 9 X9 x5 voxel discretization and Site Distribution 1, the absolute differences between the CS refractivity
estimates and the WREF refractivities decrease in most voxels when using a higher variety of ray directions. Yet, in
some voxels, CS does not seem to be able to accurately estimate the water vapor content.
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As the voxels with inaccurate refractivity estimates vary from Orbit Sample 1 to Orbit Sample 2 even in the case
of nine orbital planes, the CS solution strategy shows a high sensibility to the introduced ray directions. Le.
the assumption that unwanted orbit effects are reduced by introducing observations of many regularly distributed
satellites can only be partly confirmed by the investigated settings. In many of the analyzed settings, a higher
number of satellites improves the reconstruction quality. Yet, even in the case of an orbit geometry with many
orbital planes and many satellites per plane, the refractivity estimates of different samples of that orbit geometry
differ significantly. Table 7.6 summarizes the answers to the research questions investigated in this section.

Table 7.6: Research questions answered using a synthetic data set which is, in terms of observing geometry,
comparable to the real data set.

,{ Synthetic data set: observing geometry } \

e In how far do the number of e The horizontal distribution of the synthetic GNSS sites only

synthetic GNSS sites and their
horizontal distribution within a
general study area have an ef-
fect on the accuracy and on the
precision of the refractivity re-
construction by means of LSQ
resp. CS?

To what extent does a higher
number of satellites than in the
case of GPS improve the accu-
racy and the precision of the re-
sults obtained using the two so-
lution strategies?

In how far does the LSQ resp.
the CS solution depend on the
current position of the satellites
within a certain orbit constella-
tion?

shows an effect on the accuracy and on the precision of the
refractivity reconstruction if the total number of synthetic
GNSS sites within a general study area is clustered in a small
part of that study area. In some of the analyzed tomographic
settings, depending on the voxel discretization and the number
of synthetic GNSS sites introduced into the tomographic
model, such a clustered site distribution does not even perform
worse than other site distributions. The presented research
does not suggest to use different site distributions at different
latitudes. The presented analyses suggest that site distributions
drawn at random from a uniform distribution and regularly
distributed sites perform equally well.

The accuracy improvement and the increase in precision ob-
tained by means of an increased number of satellites on more
orbital planes depends, for both LSQ and CS, on the voxel dis-
cretization and on the number of introduced synthetic GNSS
sites. In coarse voxels, the improvement attained by introduc-
ing rays of more satellites is larger than in fine voxels.

The orbit geometry and the voxel discretization significantly in-
fluence the accuracy and the precision of the estimated refrac-
tivity field. This may be partly due to the fact that the synthetic
GNSS sites introduced into the presented analysis are all sit-
uated in a horizontal plane. Therefore, future research should
not focus on a general analysis of the horizontal site distribu-
tion’s effect but rather concentrate on determining an ideal site
distribution for a specific study area with given topography.

The presented results are obtained for two flat study areas in mid and high latitudes and should be
transferable to any other study area with comparable tomographic settings (comparable site density, voxel
sizes, and variety of ray directions). The conclusion that the orbit geometry and the voxel discretization
significantly influence the accuracy and the precision of the estimated refractivity field should be valid for
any study area.
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7.2.3 Effect of the orbits and of the voxel discretization in a specific study area

Section 7.2 applied LSQ and CS to both a synthetic GNSS only and a synthetic GNSS and InSAR data set. When
compared to Heublein et al. [2018], due to the coarser voxel discretization chosen in the height direction, CS
showed to be capable of yielding very accurate results if synthetic INSAR SWDs at artificial ray directions were
included into the tomographic system. Yet, in the case of the data set using synthetic GNSS SWDs only, neither
LSQ nor CS were capable to accurately reconstruct the 3D refractivity field. Therefore, and as Section 7.2.2
demonstrated the effect of the voxel discretization on the quality of the tomographic results, the current section
aims at determining a voxel discretization at which the refractivity field can be accurately reconstructed even in
case of the small GNSS site density considered in Section 7.2.

Moreover, based on a small number of orbit geometry settings, Section 7.2.2 revealed the significant effect of the
orbit geometry on the accuracy and on the precision of the tomographic results. The current section investigates
a much larger number of orbit samples in order to analyze the information content of changing orbit geometries.
The section aims at answering the questions

e to what extent the inclusion of observations of more GNSS than GPS (e.g. GNSS-like orbits with nine orbital
planes and nine satellites per plane instead of GPS-like orbit constellations with six orbital planes with about
five satellites per plane) improves the repeatability of the results and

e how coarse the voxels have to be discretized, if the tomographic estimates shall be repeatable within a
changing orbit geometry.

In this context, the term repeatable shall denote that when repeating the estimation in changing orbit geometries,
constant refractivity values shall be estimated for the different voxels. Similarly to the information boxes in the
previous sections, Table 7.7 summarizes the characteristics of the synthetic data sets used in this section. Two
different data sets are used in order to investigate the two stated research questions. In both data sets, the synthetic
GNSS sites are distributed at the position of the real GNSS sites within Study Area 1 as in Section 7.2.

The smaller the voxels, the larger the uncertainty of the estimation is expected to be, because then, more parameters
need to be determined based on a constant number of observations. In turn, as discussed in Section 4.3, the larger
the voxels, the larger is the averaging caused by assuming constant inner voxel refractivities. I.e. the section aims
at finding a trade-off between the roughness in spatial resolution and the solution’s uncertainty. From a different
point of view, this trade-off could also be considered as a compromise between the risk of over-smoothing the
inner-voxel refractivities due to too large voxels and the risk of the over-smoothing that the horizontal constraint
in the LSQ adjustment may generate in case of too small voxels.

While the term uncertainty often mainly refers to mean differences or standard deviations with respect to some
validation data set, it shall, here, also include information theoretic uncertainty measures. The information theoretic
view on the uncertainty of the tomographic results can be motivated by the fact that in the case of CS, depending on
the tomographic settings, large outliers were observed in some voxels in Section 7.2.2. While outliers have a strong
effect on the standard deviation and the mean difference analyzed in the previous sections, the information content
resp. the entropy, that are in this section included into the uncertainty considerations, are not distorted by outliers.
Le. an information theoretic approach to the tomographic reconstruction of the 3D water vapor field is presented
that analyzes the information contained in varying orbit geometries. After introducing information theoretic basics
in Section 7.2.3.1, Section 7.2.3.2 designs three different settings for analyzing the information theoretic effect of
varying orbit geometries on the uncertainty of the tomographic results at different voxel discretizations. Finally,
Section 7.2.3.3 presents the results.

99



Table 7.7: Observing geometry characteristics as well as input data of the synthetic data set used for the information
theoretic analysis of the effect of the orbits and the voxel discretization on the tomographic results.

,{ Synthetic data set: orbits and voxel size } \

Observing geometry and input data:

study area 95x99km? in the URG at mid-latitudes (¢ = 49°)

voxel discretization selected discretizations out of 2 to 8 voxels in longitude and latitude,
and out of 2 to 16 voxels in height

functional model inaccurate because y is summed up within 16X 16 X 16 voxels,

y=9%-x whereas @ and « refer to coarser voxel discretizations

synthetic GNSS for information theoretic approach

number of sites 7

site distribution as given by the SAPOS® network

input data synthetic GPS SWD estimates deduced from WRF

side rays included

ray directions case a) of Figure 7.18 case c) of Figure 7.18
as given by many samples of a GPS- as given by the GPS satellites
like orbit geometry containing nine around the SAR acquisition time

orbital planes with nine satellites each

7.2.3.1 Information theoretical basics

According to Nearing et al. [2016], information is “the property of a signal that effects a change in our state of
belief about some hypothesis.” Consequently, information can be considered as a measure of surprise. If an event
is expected to happen, there is no surprise once it occurs. However, if an improbable event occurs, this is a big
surprise, i.e. the data revealing this surprise contain a lot of information. In general, the information () of some
random variable y is inversely related to the probability of occurrence P(y) of an event y:

~ 1
=50

The probability of occurrence P(y) of a certain event is obtained by means of subdividing the data space, i.e. the

(7.2)

range of possible values of the random variable, into a certain number i, of bins.

In order to avoid very large values of I(y) in case of low probabilities of occurrence P(y) in Equation 7.2, the
information content I(y) is generally defined considering a logarithmic function of I(y). As the information content
is usually expressed in bits, the base of the logarithm is set to 2 and the information content is

I(x) =log, (PL()()) bits = —log, P(y) bits. (7.3)

This also means that /(y) corresponds to the number of binary questions that had to be asked in a single random
experiment to guess the outcome from randomly drawing from a known distribution. If the same experiment is
repeated many times with random variables v drawn from a distribution X, then the entropy E(y) is the average
value of information:

E(y) = - Z P(v)- log, P(v)bits (7.4)

veX

As the standard deviation or the variance, the entropy can be considered as a measure of uncertainty of a random
variable. However, in contrast to the standard deviation taking into account the values of the data, the entropy only
depends on the probability distribution of the data.
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The entropy is minimum resp. maximum, if either only one single value is attained or if all values have the same
probability. If only one single value is attained, then the probabilities for each bin except one are zero, and one
single bin within the data space has the probability

Pirac = 1. (7.5)
Consequently, the resulting minimum possible entropy corresponds to
Emin(x) = Obits. (7.6)

In contrast, if all values have the same probability, then the probability for each value is

1

Nbins

(7.7)

Puniform =
The resulting maximum possible entropy is

Emax(x) = log, npins bits. (7.8)

As a consequence, the maximum entropy is a function of the data binning.

7.2.3.2 Information theory in tomographic water vapor reconstruction — Methodology

In a tomographic reconstruction of water vapor, an information theoretic uncertainty analysis can only be carried
out if probability distributions of the estimated parameters are available. Such probability distributions would be
automatically obtained if e.g. probability distributions for the SWD estimates were introduced into the tomographic
system. However, the noise-free synthetic SWD estimates from WREF introduced within this analysis are single
values without any probability distribution. Therefore, some kind of randomness has to be generated in this section
in order to obtain probability distributions. Figure 7.18 proposes three different ways to create randomness in this
work.

Figure 7.18 a) poses the question in how far the uncertainty of the estimated refractivities depends on the amount of
data (i.e. rays) introduced into the adjustment. A total of nine GPS-like orbital planes with nine evenly distributed
satellites per plane are defined, out of which one or two thirds are selected at random for reconstructing the
atmospheric water vapor distribution. When selecting one third of the overall available rays, the rays of about
27 satellites remain, which may be a setting comparable to GPS only. In contrast, when selecting two thirds of the
overall rays, a total of about 54 rays is used for the adjustment. This could be compared e.g. with a multi GNSS
or a GPS and InSAR solution to tomography. Figure 7.18 b) is designed in order to investigate to what extent
the uncertainty of the estimated refractivities varies in case of a varying atmosphere. This means that the question
should be answered in how far the reconstruction algorithm yields more repeatable results for some atmospheric
states than for others. Figure 7.18 c) illustrates the generation of randomness by means of varying the orbits. This
setting analyzes to what extent the refractivity estimates depend on the orbits. The goal of this setting consists in
discretizing the voxels in a way that the estimated parameters preferably do not depend on the orbits.

In this work, the questions posed in the cases a) and c) of Figure 7.18 are answered for the site distribution given
by the real GNSS sites available within the URG study area. The dependency of the reconstruction quality on the
prevailing atmospheric state from Figure 7.18 b) cannot be answered in an information theoretic way because too
few WRF acquisitions are available for creating randomness in the atmospheric states. For the two other cases,
a total of 48 samples are defined. In case a), 48 randomly selected sets of one third resp. two thirds of a fixed
orbit’s rays are defined. In case c), 48 orbit samples of the same orbit constellation are defined. The number of
48 samples originates from the idea to use half-hourly orbit samples in case c), i.e. to well cover all possible GPS
orbit constellations. In this work, the questions posed in the cases a) and c) of Figure 7.18 are answered for the site
distribution given by the real GNSS sites available within the URG study area. The study area is discretized into p
voxels in longitude, g voxels in latitude, and k voxels in height, with p, ¢, and k from {2,4,8, 16}.
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a) Constant atmosphere, one single orbit out of which a certain amount of rays is randomly selected

b) Varying atmosphere, one single orbit, all rays of that orbit

¢) Constant atmosphere, varying orbits, all rays of those orbits

Figure 7.18: Three possible ways of creating randomness enabling an information theoretic approach to water
vapor tomography are presented. In case a), a single atmospheric state is observed by a single orbit constellation
out of which a certain amount of rays is randomly selected. Case b) uses the variation of the atmosphere as a means
for randomness, while only a single orbit is considered and all rays originating of that orbit and the available GNSS
site distribution are used. In case c), randomness is generated by varying the orbits within a single atmospheric
state.

For all selected orbit samples and the given site distribution, synthetic observations ¥i6x16x16 and a design matrix
D 6x16x16 are deduced from WREF using a raytracing in a 16 X 16 X 16 voxel discretization. Design matrices for
coarser voxel discretizations can be easily deduced from the @ 6x16x16 design matrix by summing up the distances
passed within all those 16 X 16 X 16 voxels situated within one larger p X g X k voxel. However, as indicated
in Section 4.3, the functional model building the basis for the tomographic reconstruction is only exact if the
parameters are estimated at the voxel discretization that has been used for deducing the observations and the
design matrix. The voxel discretization at which the parameters are estimated clearly determines the entries of the
design matrix, but both the discretization used for computing the observation vector and the discretization applied
for deducing the validation data set from WREF Nyet, pxgxk T€SP. Nuet, 16x16x16 have to be carefully selected. Based
on a fixed design matrix @ x,xk, none of the following options is really good:
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1. Use y1exi6x16 and validate using Nyer, pxgxk-

2. Use Ypxgxk and validate using Nyer, pxgsxk-

3. Use yie6x16x16 and validate using Nyet, 16x16x16-
4. Use ypxgxk and validate using Nyet, 16x16x16-

If the tomographic results at a specific voxel discretization p X g X k were validated using Nyepxgxk, the results
obtained at varying voxel discretizations would be compared with varying validation data sets. Therefore, the first
and the second option are discarded. When comparing the third and the fourth option, either the observation vector
or the design matrix matches well with the validation data set. For this information theoretic analysis, Option 3
is selected instead of Option 4, because it corresponds better to the case of real data, in which the observations
correspond to the integrated wet delay along the ray path from the satellite to the receiver, and are not obtained
from a discretized atmosphere. lLe. the refractivity values & pxgxx are estimated based on @, xx and Yiex16x16-
The quality of these estimates is, on the one hand, determined by means of considering the difference

ANyet = Nyet, 16x16x16 — T16x16x16 from pxgxk (7.9)

and computing its standard deviation as well as the mean of its absolute value. The variable @16x16x16 from pxgxk
contains the estimated parameters, reshaped to 16 x 16 x 16 voxels by means of determining all 16X 16 x 16 voxels
situated in the respective p X g X k voxels and assuming all those 16 X 16 X 16 voxels to contain the refractivity
estimated for the larger p x g X k voxel. On the other hand, the uncertainty of the refractivity estimates is described,
for each voxel of each discretization, by the entropy of the refractivity estimates within the considered voxel. L.e.
a comparison of the entropy in different parts of the study area is possible. For each voxel discretization, the
voxel-wise entropy values are computed in the following steps:

1. For each discretization and each of the 48 samples, estimate the refractivity parameters using the LSQ resp.
CS adjustments described in Section 5.3.

2. Using a certain, pre-defined bin width, deduce a probability density function for each voxel’s refractivity.

3. Based on the probability density function, compute an entropy value for each voxel’s refractivity.

As proposed as precision for the parameter estimation in the LSQ adjustment in Section 5.3, the bin-width was set
to 3.5 ppm. Taking into account a possible data space for the generation of the Probability Density Function (PDF)
extending from Oppm to 80.5 ppm, a total of 16 bins is distinguished. Therefore, based on the Equations 7.6 and
7.8, the possible entropy values range from Epin = 0 to Enax = log,(23) = 4.5. However, as the range between
zero and one is more easy to imagine, the entropy values are normalized to the interval [0, 1] in the following.
No smoothing filter or continuous smoothing function was applied to the probability density values, because both
a smoothing filter and a smoothing function might over-estimate the probability density values of the histogram
maximum, which could then result in entropy values larger than Eyyx.

In order to avoid binning errors as illustrated in Figure 7.19, the bin centers are set, for each voxel, to the WRF
refractivity value in that voxel. Le. in the case of very precise refractivity estimates, and independently of the bin
width, the refractivity values should not fall into two neighboring bins.

7.2.3.3 Information theory in tomographic water vapor reconstruction — Results

An information theoretic interpretation of the results is only possible, if the goodness of a certain voxel discretiza-
tion can be expressed in terms of the entropy of that discretization. The following discusses the term goodness
in the context of a tomographic reconstruction of water vapor based on synthetic GNSS SWDs. One goal could
consist in estimating similar refractivities, independently of the ray samples selected from a fixed orbit in case a)
resp. independently of the selected orbit in case c). At the same time, the discretization should not be trivial and
should be computationally acceptable at a time, i.e. it should consist of, e.g. at least 2 X2 X 2 voxels and a maximum
of, e.g. 16 X 16 x 16 voxels. In case of very few, quite large voxels, the entropy within each voxel is expected to be
small.
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a) Expected value only attained by about half of b) Expected value attained by all estimates, even
the estimates, even though the estimates are precise though the estimates are not precise

Figure 7.19: Challenge in binning: As shown in a), independently of the bin width, even very precise parameter
estimates may be situated within different, neighboring bins, whereas less precise parameter estimates as those in
b) may be situated within one single bin. The gray rectangles in the two figures shall indicate the bin in which the
expected value is situated. The expected value is represented by a red rectangle. The black points correspond to
the parameter estimates. For better visibility, the parameter estimates are arranged in the 2D surrounding of the
expected value and not only on a 1D line.

In the case of large voxels, no big surprise is expected when selecting different rays from the same orbit resp. when
varying the orbits. In the case of a high number of very small voxels, the entropy is either expected to be large
(because the voxels’ refractivities may be hard to estimate) or small (because the geometric constraints in LSQ
may, independently of the orbit, over-smooth the solution).

If available, a discretization disposing of a local minimum in its voxels’ entropy values could be considered as a
good discretization. The term local minimum shall signify that the minimum is neither reached at the coarsest nor
at the finest tested discretization level of the horizontal or the vertical direction. Alternatively, if no local minimum
exists in the entropy values, the goal could consist in deciding for a precision that should be achieved, i.e. for some
discretization interval resp. binning of the possible values in the data space. Then, if the information content were
—in an ideal case — equal to zero for a certain discretization, only parameters within one bin would be estimated,
which would mean that the estimation would be as precise as the bin width. However, in case of a very small
but non-zero information content, this approach does not enable to answer the question by how much how many
voxels vary from the value taken at most rays resp. at most orbits. An information theoretic analysis cannot detect
the deviation of outliers from the expected value. Therefore, it is crucial to not only consider the entropy of a
certain voxel discretization, but to analyze, if possible, at the same time, the standard deviation and the mean of the
difference between the estimated refractivities and some refractivity validation data set. Finally, a third approach
could consist in deciding on an entropy value or an entropy interval that should be reached. This would correspond
to selecting a degree of repeatability that has to be reached, independently of the orbits. Yet, for larger bin numbers
than nyis = 2, the entropy values are difficult to interpret.

In an exemplary probability distribution in which the estimated refractivities within a voxel can be attributed to
only three of the 3.5ppm large bins, e.g. with probabilities [1/6;2/3;1/3], the entropy would attain a value of
about 0.28 bit, when normalized to the interval [0, 1]. If the three bins with non-zero probability are assumed to be
neighboring bins, and if the middle bin is assumed to contain the WRF refractivity value for that voxel, then this
entropy would signify that in two thirds of the cases (i.e. in two thirds of the analyzed orbit samples), the voxel’s
refractivity would be estimated with an accuracy of 3.5ppm. Moreover, the entropy value would signify that in
all analyzed samples, the voxel’s refractivity would be determined with an accuracy of 10.5 ppm, corresponding to
three neighboring bins. However, as both assumptions made above are not generally fulfilled, the entropy values
are difficult to interpret.

Analysis of ¢) Constant atmosphere, varying orbits, all rays of those orbits:

Therefore, when analyzing case c) of Figure 7.18, different criteria are considered at a time in order to evaluate
the orbits’ influence on the tomographic results at a considered voxel discretization. The mean entropy values
per discretization are, on the one hand, compared within the different voxel discretizations in order to analyze
in how far it is worth dividing in half an existing voxel. One point of view could be that, when aiming at an
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accurate and precise solution, a voxel subdivision is only profitable if it does not yield an increase in the voxels’
entropy values. However, as such a point of view may risk to always vote for the coarsest tested discretization
level, on the other hand, a maximum accepted mean entropy value per discretization is set to 0.28bit, as obtained
in the above example, and maximum values for the absolute mean and for the standard deviation of the differences
between estimated and WRF refractivities of 3.5ppm are taken into account in order to decide for a good voxel
discretization.

Figure 7.20 shows, for both LSQ and CS, the mean entropy per voxel discretization and the absolute mean and
the standard deviation per discretization of the difference between estimated refractivities and WREF refractivities.
The refractivities estimated by means of CS differ, on average over all voxels per discretization, more from the
WREF refractivities than the refractivities estimated by means of LSQ. Similarly, the mean standard deviation per
discretization is larger in the case of the refractivities estimated by means of CS than in the case of the refractivities
obtained from LSQ. This can be explained by the higher sensitivity of the CS solution to the orbit geometry revealed
in Section 7.2.2. Besides, CS may be more sensitive to inaccuracies in the functional model than LSQ.

c) Constant atmosphere, varying orbits, all rays of those orbits
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Figure 7.20: For both LSQ and CS, the figure shows uncertainty measures for the refractivity estimates obtained
based on 48 half-hourly orbit samples of a real GPS orbit geometry, namely the mean entropy per voxel discretiza-

tion in bits, the mean per voxel discretization of the absolute difference between estimated refractivities and WRF
refractivities in ppm, and the standard deviation of the difference between estimated refractivities and WRF re-
fractivities in ppm. The number of voxels of the respective discretizations are given on the axis of abscissae and
first increase in the horizontal plane and than in the vertical direction. If no marker is visible for some voxel
discretization in the case of CS, then the value is out of the plotted range.

The absolute mean difference resp. the standard deviation of the difference between estimated refractivities and
WREF refractivities attains values below 3.5 ppm for all analyzed voxel discretizations except 2 X 2 X 4 resp. for the
voxel discretizations 2X2x2,2X2x16,4x4x 16, and 8 x 8§ x4. Le. from the point of view of the 3.5 ppm threshold
for the standard deviation and the mean difference, these voxel discretizations 2 X2 X2, 2xX2x 16, 4 x4 % 16,
and 8 X 8 x4 would be considered as good. Based on the entropy threshold, the same voxel discretizations and
the additional voxel discretization 4 X 4 X 2, would be judged as good. Yet, when taking into account that the
entropy should not increase if a voxel is horizontally or vertically subdivided, no subdivision of the 2x2 x 2
voxel discretization could be accepted, because both the 4 x4 x 2 and the 2 X 2 x4 voxel discretization dispose
of larger entropy values than the 2 X2 X 2 voxel discretization. Considering further finer subdivisions, the LSQ
mean entropy values per discretization decrease below the value of the 2 X 2 X 2 voxel discretization. However,
this decrease may be attributed to a larger smoothing of the geometric constraints. Consequently, the analyzed
goodness criteria do not clearly recommend one of the tested voxel discretizations for the investigated setting
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composed of only seven synthetic GNSS sites and an inaccurate functional model deducing the synthetic SWD
observations, independently of the voxel discretization at which the refractivity field is reconstructed, from a fine
16 X 16 x 16 voxel discretization.

Analysis of a) Constant atmosphere, randomly selected rays of one single orbit:

For case a) of Figure 7.18, Figure 7.21 shows the same uncertainty measures as Figure 7.20. Yet, while Figure 7.20
compares the uncertainties of the LSQ and CS refractivity estimates obtained at varying orbits, Figure 7.21 com-
pares the uncertainties of the LSQ and CS refractivity estimates deduced from one third resp. two thirds of the rays
of a GPS-like orbit geometry with nine orbital planes with nine satellites per plane. Adding a higher number of
rays (i.e. two thirds of the rays instead of one third of the rays) of the same orbit constellation into the tomographic
system decreases the mean entropy per discretization by up to 0.11bits resp. 0.10bits in CS resp. LSQ. This maxi-
mum decrease is observed at voxel discretization 2 X 2 X 4, at which the absolute mean difference and the standard
deviation decrease by 0.1 ppm resp. 0.3 ppm and by 1.9ppm resp. 1.2ppm when introducing twice the number of
rays into the CS resp. LSQ solution.

a) Constant atmosphere, one third resp. two thirds of a single orbit constellation selected
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Figure 7.21: For both LSQ and CS, the figure shows uncertainty measures for the refractivity estimates obtained
based on 48 samples of one third resp. two thirds of the rays of one single GPS-like orbit constellation with nine
orbital planes and nine satellites per plane, namely the mean entropy per voxel discretization in bits, the mean
per voxel discretization of the absolute difference between estimated refractivities and WREF refractivities in ppm,
and the standard deviation of the difference between estimated refractivities and WRF refractivities in ppm. The
number of voxels of the respective discretizations are given on the axis of abscissae and first increase in the hori-

zontal plane and than in the vertical direction. If no marker is visible for some voxel discretization in the case of
CS, then the value is out of the plotted range.

Discussion of the results of a) and c):

The results shown for the cases a) and c) of Figure 7.18 both refer to mean uncertainty measures per discretization.
Le. they do not investigate in how far the analyzed uncertainty measures depend on e.g. the number of rays per
voxel. The entropy values per voxel and the absolute mean and the standard deviation of the difference between
estimated refractivities and WREF refractivities are compared at the 16 x 16 x 16 voxel level for all analyzed dis-
cretizations. Yet, no correlation between the refractivity estimates and the number of rays per voxel is determined
in this section. Le. the refractivity estimates at coarse voxels that are derived from observations referring to a fine
16 X 16 x 16 voxel discretization do not show systematically worse results in those parts of the study area in which,
e.g. no synthetic GNSS site is available. Table 7.8 summarizes the answers to the research questions investigated
in this section.
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Table 7.8: Research questions answered using a synthetic data set which is designed for analyzing the effect of the
orbits and of the voxel discretization.

,{ Synthetic data set: orbits and voxel size } \

e In how far does the inclusion of the e Based on 48 samples of one single orbit constellation
rays of more satellites than in the with nine orbital planes and nine satellites per plane,
case of GPS improve the repeatabil- the inclusion of two thirds of the rays instead of one
ity of the results? third of the rays does not show a systematic improve-

ment.

e How large should the tomographic o The three investigated goodness criteria do not clearly
voxels be in order to yield repeat- recommend one of the tested voxel discretizations for
able results within a changing orbit the analyzed setting composed of only seven syn-
geometry, when dealing with a tomo- thetic GNSS sites and an inaccurate functional model.

graphic setting containing seven syn-
thetic GNSS sites in the 95 x 99 km?
large Study Area 1 and when de-
ducing the synthetic SWD estimates
from a fine 16 X 16 X 16 voxel dis-
cretization?

7.2.4 Summary

Section 7.2.1 showed for two orbit samples that artificial ray directions drawn at random from € € [7°,90°] and
from A € [0°,360°[ enable an accurate reconstruction of the 3D refractivity field, if 25 synthetic InSAR sites are
available in addition to the seven GNSS sites situated with Study Area 1. Also in the case of Section 7.2.2, when
considering GPS-like ray directions resulting from 25 synthetic GNSS sites, all situated within a horizontal plane,
and nine orbital planes with nine satellites per plane, very accurate results were obtained for some site distributions,
if the voxel discretization was coarse enough. Yet, when introducing only the seven synthetic GNSS sites already
used in Section 7.2, independently of the selected voxel discretization, Section 7.2.3 did not succeed in accurately
estimating the 3D refractivity field with GPS-like ray directions resulting from either six or nine orbital planes
with five resp. nine satellites per plane. The inaccurate estimates in Section 7.2.3 result from a small number of
synthetic GNSS sites and from an inaccurate functional model using another voxel discretization for the generation
of the synthetic observations than for the estimation of the refractivity parameters. Based on many orbit samples
and an accurate functional model, this summarizing section aims at analyzing how many synthetic GNSS sites are
necessary in addition to the seven sites given by the SAPOS® network in order to accurately reconstruct the 3D
refractivity field.

Figure 7.22 shows the accuracy and the precision of CS resp. LSQ refractivity estimates obtained based on seven,
12, 17, 22, 27, or 32 synthetic GNSS sites at a 5 x5 X 5 voxel discretization of the 99 x 95 km?2 large URG Study
Area 1. Per site, ten GPS-like resp. GNSS-like rays have been introduced at a time. I.e. the number of rays is
equal, independently of selecting the ray direction from a GPS-like orbit geometry with six orbital planes and
five satellites per plane or from a realistic GNSS-like orbit geometry. A GNSS-like orbit geometry is simulated
according to the real GPS-Galileo-GLONASS orbit constellations, i.e. with i) six orbital planes inclined by 55°
w.r.t. the equator and about five satellites per plane for GPS, plus ii) three orbital planes inclined by 56° w.r.t. the
equator with nine satellites per plane for Galileo, plus iii) three orbital planes inclined by 64.8° w.r.t. the equator
with seven satellites per plane for GLONASS. On the one hand, the mean and the maximum values of the absolute
differences between estimated refractivities and WRF refractivities, averaged over all voxels and over all 48 tested
orbit samples, are given. On the other hand, the mean and the maximum values of the standard deviation of the
refractivity estimates within the 48 samples, encountered within any of the 125 voxels, is shown.
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Figure 7.22: Comparison of the accuracy and the precision in ppm of the estimated refractivity field obtained at a
5% 5 x5 voxel discretization by means of LSQ resp. CS based on different numbers of synthetic GNSS sites and
based on synthetic GPS resp. GNSS orbits. The first and second line show the mean value of the absolute difference
resp. the standard deviation of the difference between estimated refractivities and WRF refractivities, averaged over
all voxels and over all 48 tested orbit samples. In contrast, the third and fourth line show the maximum value of
the mean difference resp. of the standard deviation encountered within any of the 48 samples and within any of the
125 voxels. The dashed and dotted lines serve for better following the variation of the mean resp. of the std at the
different site numbers, but only the discrete values indicated by the markers should be evaluated.

While the LSQ estimates attain maximum absolute differences resp. the maximum standard deviations of 9.0 ppm
resp. 1.6ppm in the case of seven sites and GPS orbits only, the maximum absolute differences resp. the maximum
standard deviations of the CS estimates w.r.t. the WRF refractivities attain values of 68.8 ppm resp. of 13.7 ppm.
If the ray directions are selected from a GNSS-like orbit geometry instead of from a GPS-like orbit geometry,
the maximum absolute differences resp. the maximum standard deviations of the CS estimates w.r.t. the WRF
refractivities decrease by 37.7ppm resp. by 1.7ppm. When focusing on the absolute mean difference resp. on
the mean standard deviation obtained based on seven sites over all samples and all voxels, LSQ also yields more
accurate and more precise results than CS, even though the absolute mean difference for LSQ is only 0.3 ppm
resp. 0.4 ppm smaller than for CS, and the mean standard deviation for LSQ is only 1.8 ppm resp. 1.5 ppm smaller
than for CS, when using GPS only resp. GNSS ray directions. Yet, already as of a total of twelve synthetic GNSS
sites, the CS absolute mean difference resp. the CS mean standard deviation attains values below the corresponding
measure deduced from LSQ refractivity estimates. In the case of 22 resp. 25 synthetic GNSS sites, the maximum
difference between the CS refractivity estimates and the WREF refractivities over all samples and all voxels is equal
to 6.7 ppm resp. to 1.7 ppm, at absolute mean differences resp. mean standard deviations over all samples and all
voxels lower or equal than 0.1 ppm. At the same number of sites and the same GNSS-like orbit geometry, the
maximum difference between the CS refractivity estimates and the WRF refractivities over all samples and all
voxels is equal to 3.8 ppm resp. to 4.0, ppm, at absolute mean differences resp. mean standard deviations over all
samples and all voxels of about 0.6 ppm.
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To sum up, and as shown in Figure 7.23, the 3D refractivity field can be reconstructed at high accuracies by
means of CS if enough synthetic GNSS sites and a variety of ray directions are available. According to the results
of the previous sections, the term enough shall correspond to the rule of thumb of Champollion et al. [2004]
recommending a horizontal voxel size similar to the mean inter-site distance.

a) Real GNSS sites only, GPS orbits only e) Real GNSS sites and additional sites, GPS orbits only
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Figure 7.23: The figure shows different orbit geometries as well as a varying number of GNSS sites. For both LSQ
and CS, the observing geometries highlighted by the green frame are advantageous. lL.e. the presented research
suggests to obey the rule of thumb of Champollion et al. [2004] recommending the horizontal voxel size similar
to the mean inter-site distance. If a large variety of ray directions is available, CS showed to be able to yield very
accurate results in synthetic data sets in which the functional model y = @ - x is accurate.

A variety of ray directions shall not necessarily denote a high number of rays per site, but a variety of different
directions of the considered rays. Based on ten rays per site taken out of a GPS orbit geometry, the reconstruction
of the 3D refractivity field is less accurate than based on ten rays per site drawn e.g. from a GNSS orbit geometry.
If less synthetic GNSS sites are available than recommended by the rule of thumb of Champollion et al. [2004],
if the functional model is inaccurate, or if only GPS SWDs are available, this research recommends the use of a
LSQ solution regularized with geometrical smoothing constraints. However, in case of mean inter-site distances

corresponding to the horizontal voxel size, the availability of the rays of multiple GNSS, and an accurate functional
model, the CS solution strategy is recommended.
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8 Discussion and Outlook

This last section discusses the methodology applied resp. the results presented in this thesis and gives an outlook
on future research.

Compressive Sensing vs. Least Squares:

o Comparison of the reconstruction accuracy and precision
The presented research has shown that CS is a valuable method for tomographic water vapor reconstructions
based on SWD estimates. In case of appropriate tomographic settings, CS can yield very precise and ac-
curate results. This thesis shows that the quality of the tomographic reconstruction by means of CS mainly
depends on i) the accuracy of the functional model, ii) the number of available GNSS sites, iii) the voxel
discretization, and iv) the variety of ray directions introduced into the tomographic system. Therefore, the

very accurate results obtained within synthetic data sets with an accurate functional model and e.g. artificial
ray directions cannot readily be transferred to real data sets. Instead of mapping real InNSAR SWDs into
artificial directions, the large variety of ray directions required in the CS reconstruction could be, in the case
of the real data set, obtained by means of introducing SWD estimates of multiple GNSS. Yet, as long as
discrete refractivity parameters per voxel are estimated based on integrated SWD estimates, the functional
model will never be accurate. As a consequence, future research first needs to focus on how to make the CS
solution strategy less sensitive to inaccuracies in the functional model. Thereafter, noise should be added
to the observations in order to analyze the robustness of the LSQ resp. CS solution strategies. A Monte-
Carlo simulation could be applied in order to investigate in how far the LSQ resp. CS solution strategies are
sensitive to e.g. Gaussian white noise.

e Risk of over-smoothing and suitability of the iDCT Euler Dirac dictionary

When comparing the LSQ and the CS solutions, on the one hand, LSQ risks to over-smooth the solution
by applying geometric constraints that might not be able to represent the true atmospheric behavior. Yet,
on the other hand, the geometric smoothing constraints prevent the LSQ solution from producing outliers as
encountered in some tomographic settings in the case of CS. As many different Euler letters with varying
steepness are introduced in the height direction and as a high number of linear combinations of the resulting
iDCT Euler Dirac atoms can be built, the CS solution should be more adaptive and thus less constraint-driven
than the LSQ solution. However, depending on the dictionary, there might be atmospheric behaviors that
cannot be well represented by the proposed atoms. Although the iDCT Euler Dirac dictionary showed to
yield, in appropriate tomographic settings, very accurate results at all dates analyzed within the synthetic data
sets, this does not necessarily imply that this dictionary is also suitable for the tomographic reconstruction of
the wet refractivity field based on real SWD estimates. In addition, the capability of the proposed dictionary
to reconstruct local refractivity disturbances may be poor. If the refractivity is much higher in a small area of
e.g. one or two voxels, the iDCT letters in longitude and latitude would be required to cancel out each other
in the atmospheric sections around the disturbance. However, canceling out some atoms in some parts of
the study area, but not in others, would require a large number of non-zero coefficients, which is not favored
at all by the CS solution algorithm. While a larger variety of atoms may induce an accuracy improvement,
the cost of these additional atoms in terms of sparsity of the solution and in terms of computing time should
always be kept in mind. The CS solution aims at a sparse representation of the parameters in the transform
domain. Therefore, selecting a high number of atoms is not possible. Consequently, similarly to LSQ, CS
may risk to over-constrain the solution. In order to accurately represent local atmospheric disturbances while
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keeping the solution sparse, compactly supported letters as wavelets should be added in future research to
the iDCT letters in longitude and latitude.

While the dictionary composed of iDCT, Euler, and Dirac atoms is able to accurately represent the WRF
refractivity field e.g. for a 5 x5 x5 voxel discretization, the dictionary may not be suitable for sparsely repre-
senting real atmospheric refractivity distributions. Therefore, future research should check the transferability
of the iDCT Euler Dirac dictionary on CS solutions that are based on real SWD estimates. In addition, in
order to better evaluate the capacity of CS resp. LSQ to reconstruct the 3D refractivity field, future research
should aim at separating the effect of the dictionary e.g. from effects of the functional model’s accuracy,
from the density of the available sites within the chosen voxel discretization, and from the variety of ray
directions introduced into the tomographic system.

In addition, a two-step Li-Lr-norm solution strategy should be investigated in the future. Section 7.2.4
showed e.g. in the case of twelve synthetic GNSS sites and GNSS-like ray directions, that the maximum
differences between estimated refractivities and WRF refractivities may attain 8.1 ppm larger values in the
case of CS than in the case of LSQ, even if the absolute mean difference between the estimated refractivities
and the WREF refractivities over 48 orbit samples and over all 5 x5 x5 analyzed voxels is 0.7 ppm smaller.
While CS accurately estimates the refractivity of many voxels, the refractivity of some voxels cannot be
determined. Consequently, future research should investigate in how far the CS solution strategy can provide
a quality measure for each voxel’s refractivity estimate. Such a quality measure would enable a two-step L1-
Ly-norm refractivity estimate using the CS refractivity estimates of all those voxels that could be accurately
modeled as a priori information for an L;-norm solution. For all those voxels that could not be accurately
resolved by CS, this Ly-norm solution could then include a geometric smoothing constraint as described for
the LSQ solution in Section 5.3.

Voxel discretization vs. spatial resolution of the refractivity reconstruction

Both the horizontal and the vertical voxel discretization showed significant effects on the quality of the
refractivity estimates. While the effect of the horizontal voxel discretization is analyzed in the Sections 7.2.2
to 7.2.4, the effect of the vertical voxel thicknesses becomes visible when comparing the results of Section 7.2
with the results presented in Heublein et al. [2018]. While Heublein et al. [2018] use comparable voxel sizes
in longitude and latitude as Section 7.2 of this work, they define approximately twice the number of voxels
in the height direction. As a consequence, Heublein et al. [2018] do not obtain as accurate and as precise
refractivity estimates as presented in Section 7.2. Besides the rule of thumb of Champollion et al. [2004],
GNSS tomography still lacks in concrete and transferable advice on how to discretize the considered study
area based on the horizontal density of available GNSS sites. As the voxel discretization and the site density
were proved to be essential for an accurate reconstruction of the 3D water vapor field, future research should
further analyze the effect of both the horizontal and the vertical voxel discretization on the quality of the
tomographic results.

Moreover, when considering the information theoretic analysis in Section 7.2.3, the capacity of CS to provide
a solution within very coarse voxel discretizations like 2 X 2 x 2 should be questioned. The CS approach
presented in Section 5.4 uses the sparsity of the coefficients in the iDCT Euler Dirac transform domain as a
prior for regularization and requires the solution to be composed of about 5% to 15 % of the total number
of coefficients in that transform domain. When further requiring these 5% to 15 % of the coefficients to
correspond to e.g. at least three coefficients, then a total of at least 20 (15%) to 60 (5 %) coeflicients is
necessary in the transform domain. If K = 2 is the number of height layers, L = - Q- K = 8 is the number
of voxels in the spatial domain in the P X @ X K = 2 X2 X 2 voxel discretization, and M is the number of
parameters in the transform domain, then the iDCT Euler Dirac dictionary of size L X M, with M being the
number of parameters in the transform domain, is composed of one Lx L = 8 x 8 Euler iDCT dictionary
per introduced Euler steepness parameter acs and one LXK = 8 X2 iDCT Dirac dictionary. Thus at least
three different steepness parameters need to be introduced in order to enable the CS approach described in
Section 5.4 within a 2 X2 X 2 voxel discretization.



The other way round, this discussion should analyze the maximum number of steepness parameters acs for
which 5% to 15 % of the parameters s in the transform domain are fewer than the total number of voxels in a
particular voxel discretization. One of the motivations for the CS approach was the possibility to reconstruct
the 3D refractivity signal based on the determination of a smaller number of coefficients than in the case
of LSQ, where one parameter per voxel needs to be determined. The proposed CS requires 5% to 15 %
of the coefficients in the transform domain to contain 99 % of the signal power. If only these 5% to 15%
non-zero coefficients are used to reconstruct the refractivity signal by means of CS, the number of steepness
parameters 7gieepness Would need to satisfy

0.15 (ntcepness - P+ Q- K +K) < P-Q-K (8.1)

in order to enable CS to do with less parameters than LSQ. This can be simplified to

< P-Q+0.15
Nsteepness 015-P-Q

Thus, for £-Q =1 a maximum of five steepness parameters should be used, and if the voxel number in
longitude and latitude approached infinity, a maximum of six steepness parameters should be introduced

(8.2)

within the dictionary, if the number 5% to 15 % of the parameters in the transform domain shall be fewer
than the number of parameters that an LSQ approach would estimate.

Defining only two voxels in the longitude and latitude direction in a 95 x 99km? large study area as that
in Section 7.2.3 might, on the one hand, seem very few. However, on the other hand, when comparing
the tomographic setting of Section 7.2.3 to previous research as in Table 3.1, the total number of seven
synthetic GNSS sites in the 95 x 99km? large study area is very low. Many previous approaches to water
vapor tomography disposed of more GNSS sites within even smaller study areas. Moreover, a lot of previous
research applied horizontal smoothing constraints as the LSQ solution in this work. Yet, the horizontal voxel
discretization should not be set equal to the spatial resolution refractivity estimates. As soon as a constraint
tries to set a voxel’s refractivity to the mean of the refractivities of the horizontally neighboring voxels, the
horizontal resolution of the refractivity estimates risks to decrease. No reference to this mismatch between a
refractivity estimate at a certain spatial resolution corresponding to the voxel discretization and the averaging
nature of the horizontal smoothing constraints could be found in the literature.

Tuning of trade-off parameters
This work points out that both LSQ and CS require a good tuning of the trade-off parameters. Both solution

strategies make use of a two-step trade-off parameter selection ensuring both the stability of the solution
and small observation residuals. In case of inappropriately selected trade-off parameters, both LSQ and CS
are incapable to produce an accurate solution. Similarly, as stated in Heublein et al. [2018], the selection
of appropriate values for the scale height Hycye resp. for the parameter acs defining the steepness of the
Euler letters is essential in the LSQ resp. CS solution. As the tuning of the trade-off parameters is crucial,
the quality of the solution depends on the variety of trade-off parameters and on the variety of options for
the Hgcate and for acg introduced within the LSQ and CS solution approaches. The above stated maximum
number of six steepness parameters enabling CS to do with fewer parameters than LSQ may be considered
as a limitation of the proposed CS approach with a iDCT Euler Dirac dictionary.

Need for a variety of ray directions in CS:

Section 7.2.4 emphasized that CS requires a variety of ray directions in order to very accurately reconstruct the 3D
refractivity field. Yet, as the measurement matrices in water vapor tomography usually cannot be flexibly designed,
taking the advice of e.g. Candes et al. [2006] and Rauhut [2010] to involve randomness in the acquisition step is

challenging. Therefore, this work suggests to introduce at least the rays of multiple GNSS instead of GPS rays

only into the tomographic system. In addition, future research should investigate in how far the inclusion of GNSS

RO observations improves the reconstruction of the 3D refractivity field by means of CS.

Inclusion of InNSAR SWDs in addition to the GNSS SWDs:
While the inclusion of InSAR SWDs significantly improves the CS solution in the synthetic data set, no preference
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can be given to any of the two analyzed solution strategies in the case of real data. The LSQ and the CS approaches
to water vapor tomography are widely consistent for both GNSS only and for GNSS and InSAR. Yet, this may be
due to the way of integrating the synthetic absolute GNSS and InSAR SWD estimates into the tomographic system.
As discussed in Heublein et al. [2018], to which this whole paragraph refers, the GNSS and InSAR observing
geometries differ, and therefore, the two measurement techniques observe different sections of the atmosphere.
The horizontal resolution of InSAR atmospheric phase maps is much higher than the point-wise GNSS ZWD
resolution. Reversely, each of the atmospheric phases at a persistent scatterer contains information on a much
smaller atmospheric section than a GNSS ZWD averaging the atmospheric behavior within a large cone above the
respective GNSS site. The mapping of such GNSS ZWDs into different ray directions as well as the mapping of
InSAR ZWDs into different azimuth and elevation angles has to be further investigated. In this context, particular
focus should be set on the choice of the mapping function and on a mapping of the INSAR ZWDs into appropriate
slant directions. The mapping into uniformly distributed directions with azimuth angles A € [0°,360°[ and with
elevation angles € € [7°,90°] may cause unrealistic INSAR SWDs corrupting the tomographic solution, especially
in the case of significant horizontal variations in the wet refractivity. Moreover, simple sin e mapping functions
should be avoided, especially in the case of low elevation rays within the voxels limited by elliptical upper and
lower boundaries. Therefore, in future studies, more complex mapping functions will be used that depend e.g. on
the day of year, on meteorological parameters, and on the height of the considered site.

As an alternative to the proposed approach, InNSAR and GNSS could also be introduced as independent inputs into
the tomographic system. However, the tomographic system would then have to be solved for more unknowns and
the differences between the GNSS and the InSAR observing geometries would have to be understood exactly. As
the complete SWD product resulting from the GNSS and InSAR combination is used in this work, the observing
geometries of the two systems are combined. This proceeding does not necessarily imply a loss of information.
Instead, as discussed in Heublein et al. [2018], this synergy highly densified the available ZWD network. The ZWD
resp. PW product generated by combining InSAR and GNSS was validated and proved to show strong correlation
with other data sets. Alshawaf et al. [2015¢] compared the derived PW maps with PW maps measured by the
optical sensor MERIS. The results of Alshawaf et al. [2015¢] show strong spatial correlation between the two data
sets, with values of uncertainty of less than 1.5 mm.

In future work, the potential of including observations of two SAR satellites with different viewing angles e.g.
in descending and in ascending mode, shall be analyzed. As this work showed that a variety of ray directions is
crucial for an accurate CS reconstruction of the 3D refractivity field, future research should also investigate the
inclusion of InSAR observations acquired from different orbits as water vapor information into the tomographic
system without applying any PS processing. PS is only possible if all SAR acquisitions have been acquired along
the same orbit, which implies both a limitation in the ray directions into which the SAR delays can be mapped and
a bad temporal resolution even with the additional SAR satellites launched in the previous years.

Validation possibilities in the real data set:

As stated in Section 7.1.3, the validation of the tomographic solution in the real data set is challenging because
only a single radiosonde site is situated within the analyzed study area. Thus, no 3D validation is possible, but just
a validation along a single profile. As discussed in Heublein et al. [2018], there might be solutions matching well
along this profile, but having a bad reconstruction accuracy in the remaining parts of the study area. Furthermore,
there are only radiosonde profiles available around OUTC and 12UTC. As the temporal resolution of twelve hours
is low and as the atmospheric water vapor is highly variable in time, no interpolation of the radiosonde data at
9h48 UTC is performed. Finally, although the radiosonde moves horizontally during its ascent, the whole profile
is supposed to be situated vertically above the radiosonde site, which might cause inaccuracies in the validation.

If available, a 3D validation w.r.t. a numerical weather model could be a good alternative to the radiosonde val-
idation. Yet, as shown in Figure 6.4, the WRF data and the radiosonde ascents available for this work do not
necessarily describe similar water vapor distributions. Alternatively, as proposed in Heublein et al. [2018], if the
tomographic model would take into account temporal variations in the refractivity, the GNSS and InSAR solution
could be temporally propagated until the radiosonde ascent time. Thus, the radiosonde observations could be used
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in order to validate the inclusion of InSAR data into the tomographic system even though the acquisition times of
InSAR and of the radiosonde differ.

Comparing the refractivity estimates with independent GNSS SWD estimates only enables a validation of the
integrated water vapor content through the whole atmosphere. GNSS SWD estimates could be compared to SWD
values obtained based on the tomographically reconstructed 3D refractivity distribution. If these reconstructed
SWDs are compared to the GNSS SWD estimates in many different ray directions, the 3D reconstruction quality
could be validated. However, an independent set of GNSS SWD estimates usually is not available. In particular,
once absolute SWDs from InSAR are included into the tomographic system as in the real data set in Section 7.1,
GNSS SWDs of all available GNSS sites are automatically introduced within the tomographic system.

Besides validations via radiosondes, numerical weather models, or independent GNSS SWD estimates, radiome-
ters could be used for validation, e.g. the Television Infra-Red Observing Satellite-N (TIROS-N) Operational Ver-
tical Sounder (ATOVS) instruments as part of the payload of the NOAA and Meteorological Operational Satellite
(MetOp) polar orbiting satellites, both containing a spaceborne microwave radiometer and high resolution infrared
radiation sounders, which yield global water vapor products. ATOVS water vapor retrievals before March 2013 use
first guess information from the German Meteorological Office (Deutscher Wetterdienst) (DWD) global numerical
weather prediction model GME by means of solving the radiative transfer equation. This already indicates a limi-
tation of the ATOVS water vapor profiles: They are not fully independent from the first guess input model, which,
itself, is not independent of ATOVS because Advanced Microwave Sounding Unit (AMSU)-A data is assimilated
in the GME model. Moreover, the low altitude water vapor distribution over land surfaces is affected by the quite
variable surface radiation over land, and the horizontal resolution of 90km X 90km of the ATOVS water vapor
profiles is very poor. Hence, ATOVS only yields rough information on the vertical distribution of neutrospheric
water vapor but cannot be applied for validation or as prior knowledge on the horizontal water vapor distribution.

As none of the presented alternatives to the radiosonde validation is a good option, future research should try to use
at least three spatially well distributed radiosonde sites for the validation of the tomographic refractivity estimates
in the real data set and focus on a validation at the radiosonde ascent time. In a first step, such a validation at the
radiosonde acquisition time can be performed based on a GNSS only solution including ray directions of multiple
GNSS. In a second step, INSAR SWDs can be added. Yet, as discussed above, the fixed InNSAR acquisition time
represents a challenge when aiming at a radiosonde validation, and the mapping of the InNSAR SWDs into artificial
directions is only possible within an azimuthally symmetric atmosphere.

Summary:

This thesis presents CS as a powerful tool for accurately reconstructing the 3D water vapor field based on SWDs
acquired along a variety of different signal directions. The developed tomography approach is based on geometrical
and physical models that allow to combining and evaluating very different observation types and measurement
techniques at a time. Therefore, the tomography approach represents a very flexible tool, especially under the light
of new and heterogeneous satellite missions.
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A Appendices

A.1 Niell mapping function

Niell [1996] define the Niell mapping functions as

a,
1+ _ 9mf
14 2t
I+emf

Amf

mf(e) =
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sine +

. f
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with parameters dpf, bnf, and cpr depending, in the case of the hydrostatic Niell mapping function, on the site
latitude and height as well as on the Day Of Year (DOY), and in the case of the wet Niell mapping function, on
the site latitude only. According to Niell [1996], the parameter ays for the hydrostatic mapping function at tabular
latitude ¢; at time t from January 0.0 (in UT days) is calculated as

I'mf — Imf,0 )

A2
365.25 (A-2)

Amf(Pis tmf) = Amfavg(Pi) — Amfamp(p;) - COS (2 FE

where tiyr0 is the adopted phase, DOY 28 and fyr is the time from fmf, corresponding to January 0.0, in days.
The value of ame(p, tmf) is obtained by interpolating linearly between the nearest ame(¢;, fms) from Table A.1. The
parameters by and cpr are determined in a similar way.

In case of the wet mapping function, the parameters are obtained from Table A.2 by linear interpolation in latitude.

A.2 PPP processing in Bernese GPS Software 5.2

Table A.3 gives an overview over the main processing steps for Precise Point Positioning applied within the Bernese
GPS Software 5.2.

Table A.3: Main processing steps for Precise Point Positioning in the Bernese GPS Software 5.2, according to

Dach et al. [2007], Fuhrmann [2010], and Knopfler [2015].

Copy required files

GS01_COP Copy and unpack GNSS observation files, orbits, satellite clock information, Earth rota-

files, approximate coordinate file, and ocean tide loading into active campaign

tion parameters (ERP), differential code biases, ionosphere information, station information

Prepare the pole files, the orbits, and the satellite clock data

POLUPDH Extract ERP information from an IERS formatted pole file (*.IEP) into a Bernese formatted
pole file (*.ERP)

ORBMRGH

PRETAB Convert the orbit information available in the IGS SP3c format (Earth fixed frame, *.PRE)
into tabularx positions in the inertial frame (*.TAB) for subsequent numerical integration
by ORBGEN

Continued on next page
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Table A.3 — Continued from previous page

ORBGENH

CCRNXCH

RNXCLK

Integrate the equations of motion using the positions given in the tabularx orbit file to pro-
duce a Bernese standard orbit file (*.STD) used in all processing programs needing orbit
information. The orbit is represented by six osculating elements and nine dynamical param-
eters associated with radiation pressure. A summary file (PPPyysssss.PRC) is generated,
providing an overview of the orbit fit quality. It is contained in the processing summary.
When relying on IGS products, the fit rms should be around 1 cm.

Converts clock RINEX files into a Bernese satellite clock file (extension CLK). The result-
ing file has the same name as the RINEX file, but resides in the campaign’s ORB directory.
Extracts satellite clock information from combined RINEX clock file

Preprocess, convert, and synchronize observation data

RNXGRA

RNXSMTAP

RNXSMT_H

RXOBV3AP
RXOBV3_H
CRDMRDAT
CODSPPAP
CODSPP_P

CODXTR

Produce a summary of the available RINEX observation data, giving a complete overview
of observed satellites, involved stations and their performance. This file appears in the
processing summary and may help to identify possible data tracking problems of observing
sites.

This script and the following form a unit. The purpose is to clean data on the RINEX level.
It makes sense to parallelize this step. This first script prepares the parallelization, the actual
processing is done in the next PID. The script deletes files that may be present from previous
runs, and prepares a list of RINEX files for parallel processing.

RNXSMT is called to clean the RINEX data and identify cycle slips. Processing is done in
parallel, i.e., the program receives a list of RINEX files to be cleaned in one run. The output
consists of smoothed RINEX files (*.SMT) containing smoothed instead of original code
observations. Cycle slips and outliers are marked.

Prepare parallel run of RXOBV3

Run RXOBV3, which converts RINEX observation files into Bernese internal format

Prepare the parallel run of CODSPP

Run CODSPP. The receiver clock synchronization is the main task of CODSPP. The pro-
gram also determines approximate station coordinates by a straightforward point positioning
approach, using only smoothed code observations. This is useful in case the a priori coor-
dinates (e.g., from the RINEX header) are of doubtful quality. Outliers in the observations
can be detected in this step, also.

This script runs the output extraction program for CODSPP. There are several such extrac-
tion programs available for Bernese processing programs, and they allow an efficient, quick
overview of the results for quality control. In this case, CODXTR produces a summary file
informing on detected outliers, missing orbits, excluded satellites due to satellite problems,
and missing clocks. The file is listed in the processing summary. A high rms error and/or a
lot of outliers indicate a site with bad code tracking performance.

Compute PPP solutions

station by station (including data screening)

MAUPRPAP
MAUPRP_P

PPPEDTAP

Prepare the parallel run for program MAUPRP.

Run MAUPRP, which automatically preprocesses phase observations (cycle slip detection
and correction, outlier detection, update of the ambiguity list)

Prepare the parallel run of GPSEST
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Table A.3 — Continued from previous page

PPPEDT_P

GPSXTR

PPPRESAP
PPPRES_P
RESFMT
RES_SUM
CRDMERGE
ADDNEQ2

PPP_HLM

ADDNEQ2

The following processing programs are called to perform a station by station data cleaning
process, and to compute the precise point positioning solution. Iteration over

GPSEST to generate a residual file for data screening, based on the ionosphere-free lin-
ear combination (L3). Normalized residuals are written, as elevation dependent weighting
of observations is applied. RESRMS to screen the residual file, SATMRK to mark identi-
fied outliers in the observation files. The actual observation data remains in the files, the
corresponding records are flagged as bad.

Thereafter

GPSEST: basically the same run as above, this time based on the cleaned observations.
ADDNEQ?2 to generate PPP result files for each station in Bernese and external formats
Output extractor for program GPSEST, producing an overview of the PPP solution for the
processing summary, and the data cleaning.

Prepare the parallel run of PPPRES

Run PPPRES: additional run of GPSEST saving real residuals

Conversion of residuals from binary to ASCII format

Generates summary

Combination of the single coordinate files

Combination of the single normal equation files; ADDNEQ?2 is used to write a single SINEX
and a combined normal equation file containing all stations based on the normal equation
files generated in PID 302. The troposphere parameters are pre-eliminated in this step. The
SINEX sections related to station information and the estimated coordinates are listed in the
processing summary.

CCRNXC The station specific clock RINEX files are combined to obtain one RINEX clock
file. The processing summary contains the resulting CCRNXC output providing information
on the selected reference clock and the performance of a polynomial fit of the estimated
clock corrections.

ADDNEQ?2 is used to write a single SINEX and a combined normal equation file containing
all stations based on the normal equation files generated in PID 302. The troposphere pa-
rameters are pre-eliminated in this step. The SINEX sections related to station information
and the estimated coordinates are listed in the processing summary.

Create summary files and delete files

GS01_SUM
GSO01_SAV

GS01_DEL

BPE_CLN

Creates processing summary

Saves result files in archive directory

Deletes contents of the sub directories within the campaign directory
Deletes log files
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Table A.1: Parameters for the Niell hydrostatic mapping from Niell [1996]

coefficient latitude
15° 30° 45° 60° 75°
average
a 1.2769934e-3  1.2683230e-3  1.2465397e-3  1.2196049¢-3  1.2045996e-3
b 2.9153695e-3  2.9152299¢-3  2.9288445e-3  2.9022565e-3  2.9024912e-3
c 62.610505e-3  62.837393e-3  63.721774e-3  63.824265e-3  64.258455¢-3
amplitude
a 0.0 1.2709626e-5 2.6523662e-5 3.4000452e-5 4.1202191e-5
b 0.0 2.1414979%-5 3.0160779e-5 7.2562722e-5 11.723375e-5
C 0.0 9.0128400e-5 4.3497037e-5 84.795348e-5 170.37206e-5
height correction
ant 2.53e-5
bht 5.49¢-3
Cht 1.14e-3
Table A.2: Parameters for the Niell wet mapping from Niell [1996]
coefficient latitude
15° 30° 45° 60° 75°
a 5.8021897e-4 5.6794847e-4 5.8118019e-4 5.9727542e-4 6.1641693e-4
b 1.4275268e-3  1.5138625e-3  1.4572752e-3  1.5007428e-3  1.7599082¢-3

4.3472961e-2  4.6729510e-2  4.3908931e-2  4.4626982¢-2

5.4736038e-2
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Acronyms

1D
2D
3D

AMSU
ART
ATOVS

Bernese
COSMIC
CS

iDCT

DEM
DOY
DWD

ECEF
EGG97
EGM96
ENU
EOP
Envisat

GEONET
GLONASS
GNSS
GNSS RO
GPS
GRS80

IERS
IGS
IR
InSAR

LiDAR
LSQ
LUBW

one dimensional.
two dimensional.
three dimensional.

Advanced Microwave Sounding Unit.
Algebraic Reconstruction Techniques.
TIROS-N Operational Vertical Sounder.

Berner GPS Software.

Constellation Observing System for Meteorology, Ionosphere, and Cli-
mate.
Compressive Sensing.

inverse Discrete Cosine Transform.

Digital Elevation Models.
Day Of Year.
German Meteorological Office (Deutscher Wetterdienst).

Earth Centered Earth Fixed.
European Gravity Geoid 1997.
Earth Gravitational Model 1996.
East North Up.

Earth Orientation Parameters.
Environmental Satellite.

GPS Earth Observation Network.

Global’naya Navigatsionnaya Sputnikova Sistema.
Global Navigation Satellite Systems.

GNSS radio occultation.

Global Positioning System.

Geodetic Reference System 1980.

International Earth Rotation and Reference Systems Service.
International GNSS Service.

infrared.

Interferometric SAR.

Light Detection And Ranging.

Least Squares.

Landesanstalt fiir Umwelt, Messungen und Naturschutz Baden-
Wiirttemberg.
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MERIS
MetOp
MODIS

NOAA
NP
NWP
NWM

PDF
pPPP
PS
PSI

RADAR
RINEX
RIP

SAPOS®
SAR
SLAR
SLC

TEC
TIROS-N

URG

VLBI
voxels

WGS84
WRF
WVR

MEdium Resolution Imaging Spectrometer.
Meteorological Operational Satellite.
MODerate Resolution Imaging Spectrometer.

American National Oceanic and Atmospheric Administration.
Non-deterministic Polynomial-time.

Numerical Weather Prediction.

Numerical Weather Models.

Probability Density Function.
Precise Point Positioning.
Persistent Scatterer.

Persistent Scatterer Interferometry.

RAdio Detection And Ranging.
Receiver Independent Exchange Format.
Restricted Isometry Property.

German satellite positioning service.
Synthetic Aperture Radar.
Side-Looking Airborne Radar.
Single Look Complex.

Total Electron Content.
Television Infra-Red Observing Satellite-N.

Upper Rhine Graben.

Very Long Baseline Interferometry.
volumetric pixels.

World Geodetic System 1984.
Weather Research and Forecasting Model.
Water Vapor Radiometers.



List of symbols

Symbol Unit Description

a - Raytracing: coefficient for computing intersection with constant lati-
tudes

a Kronecker multiplication: row of matrix A

acs - Parameter describing the steepness of the Euler base functions

B - Raytracing: coefficient for computing intersection with constant lati-
tudes

B Kronecker multiplication: row of matrix B

y - Raytracing: coefficient for computing intersection with constant lati-
tudes

9 - Compressive Sensing: restricted isometry constant

€ Elevation angle

€cut Cutoff elevation angle

Epseudo Measurement noise in pseudo-range

€p Measurement noise in carrier-phase

0 Compressive Sensing: sensing matrix

Oinc Radar: incidence angle

K - Degree of sparsity of a signal

A Longitude

Ao m Carrier-phase wavelength

Aradar m Radar: wavelength

U - Compressive Sensing: mutual coherence between @ and ¥

% m Leveling segment

v Compressive Sensing: any p-sparse vector

¢ Latitude

Prg m Row of design matrix

Pgeom m Geometric range between the GNSS satellite and the receiver

Ppseudo m Pseudo range observations

o Singular value

v Random variable drawn from distribution

X Random variable

Yy Compressive Sensing: Column of sparsifying basis

w - Index of the dimension of a signal

r - Parameter weighing different terms of a cost function

AE m Horizontal gradient in Easting

AN m Horizontal gradient in Northing

At S Receiver clock offset

AZWD m Short-scale ZWD difference between two SAR acquisition times

Vi - Conversion factor between IWV and ZWD

() Carrier phase observations

P m Design matrix

D m Single entry of the design matrix

0] InSAR phase difference

neu
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Symbol Unit Description

X Probability distribution

v Compressive Sensing: sparsifying basis

a - Voxel index in latitude

a Kronecker multiplication: column of matrix A

igjn Kronecker multiplication: entry of matrix A

dell m Semi-major axis of an ellipsoid

amf Parameter in Niell mapping function

b - Voxel index in longitude

b Kronecker multiplication: column of matrix B

bigin Kronecker multiplication: entry of matrix B

bt Parameter in Niell mapping function

c m/s Speed of light

Cmf Parameter in Niell mapping function

dl m Differential along slant path

e mb Partial pressure of water vapor

€ mb Partial pressure of water vapor at the surface

el - First eccentricity of an ellipsoid

N 1/s GPS frequency at wavelength 19.05cm

i) 1/s GPS frequency at wavelength 24.45cm

g m/s? Gravity

h m Height

hen m Ellipsoidal height

i - Ray index

ia - Row number of matrix A

iB - Row number of matrix B

j - Overall voxel index

ja - Column number of matrix A

jB - Column number of matrix B

k - Voxel index in height

4 - Parameter index

Lopseudo m Ionosphere-free linear combination of dual-frequency pseudo-range ob-
servations

lo m Ionosphere-free linear combination of dual-frequency carrier-phase ob-
servations

m - Voxel index in latitude

mf - Mapping function

Mdry air kg Mass of dry air

Miotal air kg Mass of total air

Mwatervapor K& Mass of water vapor

n - Refractive index

Nbins - Number of bins

ne - Number of row of design matrix

ng - Compressive Sensing: number of column of sparsifying basis

Tlseepness - Number of steepness parameters

p mb Pressure

p - Real number describing an Lnbp-norm

Do mb Pressure at the surface

q - Voxel index in longitude

qv g/kg Specific humidity

r - Raytracing: free parameter describing the ray path



Symbol

Unit

Description

r
r
Taverage

N

std

Imf

Imf,0

yrec

TOEmET OO m NN

geopotential

scale

~N TR

R
. <

g/kg

m?/s?

bits

m
m
bits

kg/m?

Parameter index in the definition of the base functions
Parameter index in the definition of the base functions
Radius of averaging cone

Raytracing: free parameter describing the plane limiting a voxel in lon-
gitude

Sparse parameters in transform domain

Standard deviation

Raytracing: free parameter describing the plane limiting a voxel in lon-
gitude

Time from January 0.0 for the computation of the coefficients for the
hydrostatic Niell mapping function

Adopted Phase (DOY 28) for the computation of the coefficients for the
hydrostatic Niell mapping function

Velocity

Compressive Sensing: basis vector 1

Compressive Sensing: basis vector 2

Least Squares: Cutoff eigenvalue

Li-norm vs. Lp-norm: second parameter vector

Water vapor mixing ratio

Component of parameter vector in spatial domain
Parameter vector in spatial domain

Receiver position in X direction

Observations

Observation of ray i

Receiver position in Y direction

Zenith angle

Receiver position in Z direction

Azimuth angle

Kronecker multiplication: matrix

Correction term for Saastamoinen model

Kronecker multiplication: matrix

Geopotential number

iDCT letters

Correction term for Saastamoinen model

Dirac letters

Entropy

Euler letters

Orthometric height

Geopotential height

Scale height

Information content

Identity matrix

Integrated Water Vapor

Number of voxels in height

Number of parameters

Lo-norm minimization

Lo 5-norm minimization

L{-norm minimization

L>-norm minimization

L4-norm minimization
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Symbol Unit Description

Lo Lo-norm minimization

Ly Ly-norm minimization

M - Number of parameters in the transform domain

N - Number of observations

N Ambiguity of the carrier-phase ionosphere-free linear combination

Nhydrostatic mm/km  Hydrostatic refractivity

Niotal mm/km  Total refractivity

Nyet mm/km  Wet refractivity

N, m Radius of curvature of a reference ellipsoid
P Point on the Earth’s surface

P - Weight matrix

P - Probability

P - Number of voxels in longitude

Py Point on the geoid

PH mb Perturbation geopotential

PHB mb Base state geopotential

PW mm Precipitable Water Vapor

0 - Conversion factor between IWV and ZWD
Q - Number of voxels in latitude

R - Number of voxels in a considered direction
Rcone m Raytracing: radius of the cone of constant latitudes
REarth m Radius of the Earth

RH % Relative humidity

S Solution space

STD m Slant Total Delay

SWD m Slant Wet Delay

T K Temperature

Ty K Temperature at the surface

Ty K Dew point temperature

Tn K Neutrospheric mean temperature

U m Geoid undulation

w m?/s? Geopotential

X m ECEEF coordinate in first direction

X m ECEF coordinates of a point (X, Y,Z)

Xo m Raytracing: ECEF coordinates of ray origin (Xo, Yo, Zo)
Xsv m Satellite position in Z direction

Y m ECEF coordinate in second direction

Ysv m Satellite position in Y direction

zZ m ECEF coordinate in third direction

Zsy m Satellite position in Z direction

7DD m Zenith Dry Delay

ZHD m Zenith Hydrostatic Delay

ZTD m Zenith Total Delay

ZWD m Zenith Wet Delay
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List of constants

Symbol Value Unit Description

€ 0.622 Ratio between gas constants of dry air and of water vapor
g 9.80665  m/s? Mean Earth gravity acceleration
ki 77.6 K/hPa Meteorological constant

ko 72 K/hPa Meteorological constant

K K/hPa Meteorological constant

k3 3.75-10° K2%/hPa Meteorological constant

Ly 6.5 °/km Temperature lapse rate
Myatervapor  18.0153 g/mol Molar mass of water vapor

My air 28.9647 g/mol Molar mass of dry air

R 8.31447 J/(mol K)  Universal gas constant
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