
Zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften (Dr.-Ing.)
von der KIT-Fakultät für Wirtschaftswissenschaften
des Karlsruher Instituts für Technologie (KIT)
genehmigte Dissertation von
Patrick Raoul Philipp, M.Sc.

Decision-Making with Multi-Step Expert Advice on the Web

Patrick Raoul Philipp

Tag der mündlichen Prüfung: 13.04.2018
Referent: PD Dr. Achim Rettinger

Korreferent: Prof. Dr. Kristian Kersting

Karlsruhe, 2018

0

Abstract

This thesis deals with solving multi-step tasks by using advice from experts, which are algo-
rithms to solve individual steps of such tasks. We contribute with methods for maximizing
the number of correct task solutions by selecting and combining experts for individual task
instances and methods for automating the process of solving tasks on the Web, where experts
are available as Web services.

Multi-step tasks frequently occur in Natural Language Processing (NLP) or Computer Vi-
sion, and as research progresses an increasing amount of exchangeable experts for the same
steps are available on the Web. Service provider platforms such as Algorithmia monetize ex-
pert access by making expert services available via their platform and having customers pay
for single executions. Such experts can be used to solve diverse tasks, which often consist of
multiple steps and thus require pipelines of experts to generate hypotheses.

We perceive two distinct problems for solving multi-step tasks with expert services: (1)
Given that the task is sufficiently complex, no single pipeline generates correct solutions for
all possible task instances. One thus must learn how to construct individual expert pipelines
for individual task instances in order to maximize the number of correct solutions, while also
taking into account the costs adhered to executing an expert. (2) To automatically solve multi-
step tasks with expert services, we need to discover, execute and compose expert pipelines.
With mostly textual descriptions of complex functionalities and input parameters, Web au-
tomation entails to integrate available expert services and data, interpreting user-specified task
goals or efficiently finding correct service configurations.

In this thesis, we present solutions to both problems: (1) We enable to learn well-performing
expert pipelines assuming available reference data sets (comprising a number of task instances
and solutions), where we distinguish between centralized and decentralized decision-making.
We formalize the problem as specialization of a Markov Decision Process (MDP), which we
refer to as Expert Process (EP) and integrate techniques from Statistical Relational Learning
(SRL) or Multiagent coordination. (2) We develop a framework for automatically discovering,
executing and composing expert pipelines by exploiting methods developed for the Semantic
Web. We lift the representations of experts with structured vocabularies modeled with the
Resource Description Framework (RDF) and extend EPs to Semantic Expert Processes (SEPs)
to enable the data-driven execution of experts in Web-based architectures.

We evaluate our methods in different domains, namely Medical Assistance with tasks in
Image Processing and Surgical Phase Recognition, and NLP for textual data on the Web,
where we deal with the task of Named Entity Recognition and Disambiguation (NERD).

v

0

Publications

Text as well as figures in this thesis have partly been published in the following papers:

Philipp Gemmeke, Maria Maleshkova, Patrick Philipp, Michael Götz, Christian We-
ber, Benedikt Kämpgen, Sascha Zelzer, Klaus Maier-Hein, and Achim Rettinger. Us-
ing linked data and web apis for automating the pre-processing of medical images. In
Proceedings of the 5th International Workshop on Consuming Linked Data (COLD'14)
co-located with the 13th International Semantic Web Conference (ISWC'14), Riva del
Garda, Italy, pages 25–36, 2014. [51]

Patrick Philipp, Maria Maleshkova, Achim Rettinger, and Darko Katic. A semantic
framework for sequential decision making. In Engineering the Web in the Big Data Era
- 15th International Conference, ICWE'15, Rotterdam, The Netherlands, pages 392–
409, 2015. doi:10.1007/978-3-319-19890-3_25. [101]

Patrick Philipp, Maria Maleshkova, Darko Katic, Christian Weber, Michael Götz,
Achim Rettinger, Stefanie Speidel, Benedikt Kämpgen, Marco Nolden, Anna-Laura
Wekerle, Rüdiger Dillmann, Hannes Kenngott, Beat P. Müller-Stich, and Rudi Studer.
Toward cognitive pipelines of medical assistance algorithms. Int. J. Computer As-
sisted Radiology and Surgery, 11(9):1743–1753, 2016. doi: 10.1007/s11548-015-1322-
y. [102]

Nicolai Schoch, Patrick Philipp, Tobias Weller, Sandy Engelhardt, Mykola Volovyk,
Andreas Fetzer, Marco Nolden, Raffaele De Simone, Ivo Wolf, Maria Maleshkova,
Achim Rettinger, Rudi Studer, and Vincent Heuveline. Cognitive tools pipeline for
assistance of mitral valve surgery. In Proceedings of SPIE, Medical Imaging'16:
Image-Guided Procedures, Robotic Interventions and Modeling, pages 9786–9794,
2016. [114]

Patrick Philipp and Achim Rettinger. Reinforcement learning for multi-step expert ad-
vice. In Proceedings of the 16th Conference on Autonomous Agents and Multiagent
Systems, AAMAS'17, São Paulo, Brazil, pages 962–971, 2017. [100]

vii

Patrick Philipp, Achim Rettinger, and Maria Maleshkova. On automating de-
centralized multi-step service combination. In IEEE International Conference
on Web Services, ICWS'17, Honolulu, HI, USA, pages 736–743, 2017. doi:
10.1109/ICWS.2017.89. [104]

Patrick Philipp, Maria Maleshkova, Achim Rettinger, and Darko Katic. A semantic
framework for sequential decision making. J. Web Eng., 16(5&6):471–504, 2017. [103]

viii

0

Contents

I Foundations 1

1 Introduction & Overview 3
1.1 Introduction . 3
1.2 Challenges . 7

1.2.1 Learning . 7
1.2.2 Automation . 9

1.3 Research Questions & Hypotheses . 10
1.4 Contributions . 12
1.5 Scope of the Thesis . 13
1.6 Outline . 15

2 Scenarios 17
2.1 Named Entity Recognition & Disambiguation 17

2.1.1 Description . 17
2.1.2 Challenges . 18

2.2 Surgical Phase Recognition . 18
2.2.1 Description . 18
2.2.2 Challenges . 19

2.3 Tumor Progression Mapping . 19
2.3.1 Description . 19
2.3.2 Challenges . 20

3 Preliminaries 23
3.1 Multi-Step Tasks . 23
3.2 Supervised Machine Learning . 27

3.2.1 Model-specific Assumptions . 28
3.2.2 Learning Protocols . 29
3.2.3 Prediction Settings . 30
3.2.4 Selected Learning Scenarios . 30
3.2.5 Evaluating Learned Models . 33
3.2.6 Learning Combination Functions over Models 34

3.3 Decision-Making . 34
3.3.1 Prediction with Expert Advice . 35
3.3.2 Markov Decision Processes . 38
3.3.3 Multiagent Decision Processes . 42

3.4 Semantic Web . 44
3.4.1 Resource Description Framework 45

ix

Contents

3.4.2 RDF Vocabularies . 45
3.4.3 Notation3 . 46
3.4.4 SPARQL . 46
3.4.5 Linked Data . 47
3.4.6 Services in the Semantic Web . 48

4 Related Work 51
4.1 Multi-Step Tasks in Single-Agent Systems 51

4.1.1 Learning- & Decision-Theoretic Approaches 51
4.1.2 Service Approaches . 53

4.2 Multi-Step Tasks in Multiagent Systems . 53
4.2.1 Multiagent Systems for Single-Agent Tasks 53
4.2.2 Multiagent Systems for Multiagent Tasks 54

4.3 Multi-Step Tasks on the Web . 55
4.3.1 Semantic Web Service Description Languages 55
4.3.2 Decision-Making Frameworks & Applications 55
4.3.3 Workflow Systems . 56

II Learning 59

5 Learning with Expert Processes 61
5.1 Introduction . 61

5.1.1 Challenges . 63
5.1.2 Contributions . 64

5.2 Problem Formalization . 64
5.3 Meta Dependencies . 68

5.3.1 Single Experts . 70
5.3.2 Pairwise Intra-Step Experts . 71
5.3.3 Pairwise Inter-Step Experts . 71

5.4 Online Reinforcement Learning . 74
5.4.1 EWH with Meta Dependencies . 74
5.4.2 EWH with Incomplete Information 75

5.5 Batch Reinforcement Learning . 77
5.5.1 Probabilistic Soft Logic and Hinge-Loss Markov Random Fields . . . 78
5.5.2 Meta Dependencies with PSL . 79

5.6 Discussion . 81
5.7 Summary . 81

6 Learning with Multiagent Expert Processes 83
6.1 Introduction . 83

6.1.1 Challenges . 85
6.1.2 Contributions . 85

6.2 Problem Formalization . 86
6.3 Expert Weight Learning for MEPs . 92

x

0

Contents

6.4 Passive Coordination with MEPs . 93
6.5 Active Coordination with Heuristic Update Rules 94
6.6 Active Coordination with Reinforcement Learning 96

6.6.1 Agent Meta Dependencies . 97
6.6.2 Policy Search RL for the ECP . 98
6.6.3 Robust Agent Decisions . 99

6.7 Discussion . 101
6.8 Summary . 101

7 Evaluation of Learning with EPs & MEPs 103
7.1 Introduction . 103
7.2 Setup . 104

7.2.1 Data . 104
7.2.2 Meta Dependencies . 104
7.2.3 Experts . 105
7.2.4 Evaluation measures . 106

7.3 Results . 109
7.3.1 Summary of Results for Accuracy Estimation 109
7.3.2 Summary of Results for Outcome Optimization 111

7.4 Discussion . 112
7.4.1 (EP-)OnGD . 112
7.4.2 (EP-)OnEWH-All . 113
7.4.3 (EP-)BatchPSL-All . 113
7.4.4 Qualitative Results of Meta Dependencies 113
7.4.5 PCoord . 114
7.4.6 ACoordH . 114
7.4.7 ACoordL . 114
7.4.8 Design Choices . 115

7.5 Summary . 116

III Web Automation 117

8 Automating Semantic Expert Processes 119
8.1 Introduction . 119

8.1.1 Challenges . 120
8.1.2 Contributions . 121

8.2 Problem Formalization . 121
8.3 Web Components for Automation . 126

8.3.1 Structured Knowledge Base . 127
8.3.2 Semantic Experts . 127
8.3.3 Semantic Meta Components . 129
8.3.4 Semantic Expert Advice Agent . 130

8.4 Solving Semantic Tasks with Semantic Meta Components 132
8.4.1 Abstract Semantic Planners . 133

xi

Contents

8.4.2 Grounded Semantic Learners . 134
8.4.3 Grounded Semantic Planners . 134

8.5 Discussion . 134
8.5.1 On the Added Value of SEPs . 134
8.5.2 On The Goal of an Self-Adaptive System 135

8.6 Summary . 135

9 Applications & Evaluations of Semantic Expert Processes 137
9.1 Introduction . 137
9.2 Medical Assistance Scenarios . 138

9.2.1 Web Automation for Medical Assistance Tasks 138
9.2.2 Semantic Tumor Progression Mapping 139
9.2.3 Semantic Surgical Phase Recognition 156

9.3 The Named Entity Recognition & -Disambiguation Scenario 160
9.3.1 Semantic Descriptions for Semantic NER & NED Experts 160
9.3.2 A Grounded Semantic Planner for NERD 163
9.3.3 Evaluation . 168
9.3.4 Setup . 168
9.3.5 Results . 168

9.4 Discussion . 169
9.4.1 On the Generalizability of Semantic Meta Components 169
9.4.2 On Domain-dependent Impacts of Rewards 170

9.5 Summary . 170

IV Conclusion 173

10 Summary 175

11 Future Work 177

Bibliography 181

List of Figures 195

List of Tables 197

List of Abbreviations 199

A Appendix: Semantics 203
A.1 Semantic Experts . 203

A.1.1 Brain Mask Generation . 203
A.1.2 Standard Normalization . 204
A.1.3 Robust Normalization . 205
A.1.4 Registration . 206
A.1.5 Tumor Segmentation . 207

xii

0

Contents

A.1.6 Map Generation . 208
A.1.7 Surgical Phase Recognition . 209
A.1.8 Named Entity Recognition . 211
A.1.9 Named Entity Disambiguation . 212

A.2 Semantic Agent . 213
A.2.1 Semantic Expert Execution . 214
A.2.2 Semantic Planning . 215

xiii

Part I

Foundations

This part consists of the foundations of the thesis. We first introduce the topic of multi-
step tasks with expert advice (Chapter 1) by motivating the latter and defining our research
questions, hypotheses and contributions. After presenting the application scenarios used in
this thesis in Chapter 2, we explain and define the preliminaries needed for the subsequent
content (Chapter 3). We finally discuss related works with respect to the contributions of this
thesis (Chapter 4).

1

Chapter 1

Introduction & Overview

In this chapter, we introduce the problem of solving multi-step tasks with expert advice by
first motivating the setting in Section 1.1. We then highlight the involved challenges in Sec-
tion 1.2 with respect to learning and automation. Section 1.3 introduces our research questions
and hypotheses, after which we summarize the respective contributions (Section 1.4). Based
on the latter, we define the scope of the thesis (Section 1.5) by specifically pointing out which
aspects we focus on and which we neglect. We finally give an outline of all parts and chapters
in Section 1.6.

1.1 Introduction

An increasing amount of algorithms is made available on the Web - exemplary fields are
Computer Vision or Natural Language Processing (NLP). Here, researchers publish their pro-
totypes as code to adhere to the goal of reproducible research or wrap them as Web services
to enable direct access. To this end, service provider platforms such as Algorithmia 1), which
has several advantages for end users:

• End users can reuse State-of-the-Art algorithms instead of being forced to develop so-
lutions from scratch. This enables end users to focus on unsolved problems rather than
spending an abundance of time in reengineering the State of the Art.

• A side effect of service platforms is an increasing modularity of algorithms, which
enables compositions and combinations for heterogeneous applications. Services with
higher degrees of modularity as well as higher numbers of exposed hyperparameters
can be better adapted and integrated into applications. As a consequence, researchers
and developers are incentivized to foster such properties.

• New algorithms are being developed for existing tasks, if there is sufficient room for
improvement. This results in sets of exchangeable algorithms, where algorithms com-

1https://algorithmia.com/ enable to monetize such algorithms by making them easily accessible
via diverse interfaces and having customers pay for single executions. This trend is picked up by influential IT
companies, such as Google (by funding Algorithmia 2 (accessed on 05/01/2018)

3

https://algorithmia.com/

Chapter 1 Introduction & Overview

pletely or partially dominate others for instances of the task. This drives the develop-
ment of better approaches, as dominant algorithms are used more frequently and yield
higher revenues.

• Hosting algorithms as Web services is a reliable access mechanism for end users, lead-
ing the latter to directly integrate respective services into their applications. By mone-
tizing algorithm access, fast and dependable executions of the respective services have
to be ensured. As this is especially challenging for algorithms with high computational
complexity (i.e. the execution requires large amounts of computational resources), end
users profit from outsourcing their executions.

• In addition to reliability, service platforms often provide a wide-range of well-known
interfaces to available algorithms, e.g. directly via HTTP methods or via wrappers
for common programming languages such as Java, Python and many more. Providing
heterogeneous interfaces is a central requirement, as end users are inhibited to use such
platforms if efforts for algorithm access and integration are too high.

Real-world applications often approach to solve multi-step tasks, i.e. tasks which require to
solve a number of steps and where end users need to compose (or pipeline) different algorithms
to generate hypotheses for task instances.

Example 1.1 (A Multi-Step NLP Task). Take, for example, the task of structuring text on
the Web as available on social media or in news articles. Given piece of text (i.e. a task
instance), one needs algorithms to find named entities (step Named Entity Recognition (NER)),
algorithms to find relations among the latter (step Relation Extraction) and algorithms to link
named entities and relations to knowledge bases (KBs) such as Wikipedia 3, DBpedia [85],
Yago [125] or Wikidata [138] (step Named Entity Disambiguation (NED) and step Relation
Disambiguation). The sequence of algorithms generates structured pieces of texts (i.e. task
solutions).

Figure 1.1 illustrates such tasks, comprising a number of steps (variable H) which need to
be sequentially solved for a task instance to generate a task solution. A number of algorithms
(variable N) available in an arbitrary Web repository have to be used to solve the respective
steps. Each algorithm needs a set of inputs in a specified format to generate a solution for a
task instance.

When trying to find well-performing algorithms for a multi-step task, multiple options (i.e.
exchangeable algorithms) are often available for a single step. As a result, numerous algorithm
pipelines might be possible to configure, where pipelines solve the same steps but potentially
produce different results for task instances. For a sufficiently challenging task, there is a high
probability that the set of all possible pipelines produce conflicting hypotheses for at least
a subset of task instances. In addition to disagreements among pipelines, it is probable that

3https://en.wikipedia.org/wiki/Main_Page (accessed on 05/01/2018)

4

https://en.wikipedia.org/wiki/Main_Page

1

1.1 Introduction

Figure 1.1: General schema for using algorithms to solve multi-step tasks.

there is not a single correct pipeline for all task instances, i.e. a pipeline works well for some
task instances but produces wrong solutions for others. Assuming that pipelines produce good
hypotheses for different task instances, it is sensible to choose different pipelines for different
task instances to maximize the number of correct solutions for the task.

Choosing among exchangeable algorithms can be generally approached by supervised ma-
chine learning (short supervised learning). One exploits training sets to generalize the cor-
rectness of an algorithm to new task instances. Training sets contain <task instance, label>
tuples (also referred to as samples), where the label is the correct solution. The general pro-
cedure entails to execute algorithms on task instances in the training set and to compare their
outputs to the respective label. While, for single-step tasks, there are advances for learning
to assess and combine algorithms (e.g. [3, 27, 149], there is a gap in research for multi-step
tasks, especially with additional constraints (e.g. only being able to execute a subset of avail-
able algorithms for a step). We refer to the latter as learning problem.

Figure 1.2 illustrates the learning problem, where steps and available algorithms are as-
sumed to be known. The correctness of an algorithm for a task instance is, however, unknown
and has to be assessed. Arrows from steps to algorithms are labeled with weights (i.e. confi-
dence estimate) for the proposed solutions, which are have to be estimated.

Given that algorithms are available as Web services, automatically solving diverse multi-
step tasks becomes possible. This, however, requires a Web architecture able to find the set
of possible steps to solve a multi-step task, discover the set of algorithms for these steps and
correctly execute the chosen algorithms. The needed steps to solve a multi-step task usually
have to be found based on textual descriptions and taxonomies. Here, different compositions
of steps might solve the task, as services for algorithms wrap overlapping functionalities. The
mentioned step NER could, for example, be divided into two smaller steps, where text is
tokenized in a dedicated step and then further processed. To this end, textual descriptions for

5

Chapter 1 Introduction & Overview

Figure 1.2: Learning problem of multi-step tasks using algorithms to solve steps.

algorithm services significantly complicate their execution, as required inputs and available
parameters have to be correctly interpreted. While there is a large body of works with respect
to service discovery, -selection, -composition and orchestration, the literature lacks the needed
decision-theoretic focus to work towards Web automation for multi-step tasks using algorithm
services. More specifically, it is essential to automate solving the learning problem in Web
environments, while keeping the architecture flexible for novel algorithms and tasks. We refer
to the latter as automation problem.

Figure 1.3 illustrates the automation problem, where the needed steps of the task are un-
known, and algorithm inputs and outputs need to be interpreted.

Throughout this thesis, we refer to such algorithms as experts, as the latter generate spe-
cialized hypotheses for a class of task instances. We thereby align our terminology with the
seminal work on prediction with expert advice [27], where a decision-maker has to learn how
to use the advice (i.e. the hypotheses for task instances) of experts for a task with a single
step.

Figure 1.4 summarizes our general approach to the learning and the automation problem
in terms of a feedback loop of an agent, having to choose experts to solve a multi-step task.
The figure illustrates the loop for a single step (variable h, where h ∈ 1 . . . ,H). As we argue
and show throughout this thesis, Markov Decision Processes (MDPs) [109] are an adequate
framework for both problems. MDPs enable to model sequential decision-making problems,
where a state (variable sh) requires to take a single action (variable ah), which yields a novel
state (variable sh+1) and a numerical reward (variable rh). Reinforcement Learning (RL) is a
paradigm for learning to act in MDPs, which we use to solve the learning problem. For the
automation problem, we additionally exploit Semantic Web Technologies to flexibly describe,
discover and execute expert services. By Planning in a MDP, which returns the best action
for a state after the learning problem is solved, we can automatically compose experts to solve

6

1

1.2 Challenges

Figure 1.3: Automation problem for solving multi-step tasks using algorithms.

multi-step tasks.
We now describe the respective challenges in detail.

1.2 Challenges

We first discuss challenges for assessing the correctness of expert hypotheses for individual
task instances (i.e. the learning problem) and then deal with how to find and correctly execute
expert services for a task (i.e. the automation problem).

1.2.1 Learning

To choose the best expert pipeline for a task instance, the following observations and chal-
lenges for a learning system are central:

1. Querying multiple exchangeable experts is advantageous, as taking the average of their
hypotheses (referred to majority vote) often results in correct solutions for a large num-
ber of task instances (with respect to the available experts). More specifically, the promi-
nent fields of prediction with expert advice [27] and ensemble learning [149] both deal
with learning to assess single or sets of experts to optimize their majority vote by as-
signing different weights to different experts. However, as service platforms use cost
models for expert access, it is sensible (e.g. from a monetary perspective) not to execute
all available experts for a step. By limiting the executions of experts for individual task
instances, one loses information about their outputs and needs to deal with resulting
missing information.

7

Chapter 1 Introduction & Overview

Figure 1.4: General approach for solving multi-step tasks with experts.

2. A possible approach for choosing experts and combining their outputs is to ignore
that the task has multiple steps. This, however, does not favor the solution for
the task, as future experts might perform better for inexact (i.e. semi-correct) in-
puts. For the mentioned task of structuring Web text, for example, an expert for the
NED step might correctly link Michael Jordan plays to resource http://
dbpedia.org/page/Michael_Jordan but wrongly link Michael Jordan
to http://dbpedia.org/page/Michael_I._Jordan, as it confuses the bas-
ketball player with the computer science researcher – where Michael Jordan
plays is not a named entity but Michael Jordan is. Expert pipelines constructed
based on local optimization (i.e. only for individual steps) thus often fail to find global
optima for multi-step tasks.

3. Supervised learning often assumes training sets to be available in a batch, where all task
instances and labels are available prior to learning. For multi-step tasks with experts, we
have to generate novel, expert-specific training sets by executing experts and comparing
their hypotheses with the labeled task instances of task training sets. To use batch
learning for expert-specific training sets, one has to either (i) randomly execute experts
and randomly choose step solutions, where wrong solutions propagate to later steps or
(ii) try to execute experts of all steps with correct inputs and artificially create labels for
all steps. Both options introduce a learning bias, as generated expert-specific training
sets are not representative of the joint performance of all experts involved in the task
(i.e. how often their eventually generated solutions are correct).

8

http://dbpedia.org/page/Michael_Jordan
http://dbpedia.org/page/Michael_Jordan
http://dbpedia.org/page/Michael_I._Jordan

1

1.2 Challenges

4. Available training sets for tasks often comprise relatively few task instances. The re-
sulting challenge for using supervised learning is that the learning process needs to
converge sufficiently fast (i.e. for multi-step tasks, the resulting expert weights have
to work well for choosing and combining experts). For learning to generalize across
task instances, supervised learning entails to define a feature representation, e.g. a vec-
tor which summarizes characteristics of a task instance. When training sets are small,
feature representations for task instances must not be high-dimensional.

5. When combining proposed solutions of multiple exchangeable experts, one has to ad-
ditionally deal with expert correlation. Two experts might propose wrong solutions for
a large number of shared task instances, which causes the weighted majority vote (i.e.
the majority vote with learned expert weights as influence factor for solutions) to over-
estimate their solutions for new task instances. If two experts only correlate in terms
of proposing correct solutions for shared task instances, the weighted majority vote is
improved.

1.2.2 Automation

In addition to learning to assess expert hypotheses, Web automation involves to find, execute
and compose expert services for a multi-step task. We now discuss the involved challenges in
detail.

6. Expert services usually provide descriptions, such that end users or application systems
can discover and execute them. A description often consists of textual information about
the available functionality as well as explanations about the needed inputs and parame-
ters. Executing expert services thus presupposes that end users or application systems
sufficiently understand the description, which is usually difficult, as required formats
need to be interpreted and converted. The latter often requires to consult domain ex-
perts, especially when task domains are specialized (e.g. tasks for medical assistance).

7. After having discovered experts and ensured their correct execution, there often is the
need to develop additional glue code (i.e. conversion mechanisms from data to service
inputs) in order to transform generated expert outputs of a step to correct formats for ex-
perts of a subsequent step. As a consequence, one often cannot automatically integrate
newly discovered experts and has to manually write glue code.

8. Even if inputs and outputs of expert services are aligned and sufficiently integrated,
automatically executing expert services remains challenging. The latter is due to the
fact that steps often need various inputs, where mapping available data of the task in-
stance to input descriptions of expert services has to be task-oriented. When executing a
NED expert service, for example, one needs to select an undefined number of annotated
named entities, while ensuring that selected named entities do not overlap. In addition,

9

Chapter 1 Introduction & Overview

one has to take into account that NED experts might make mistakes for correct named
entities.

9. There might be an expert class to integrate the expert into a taxonomy. While the latter
could be helpful to map experts to steps of the current task, exclusively using it often
results in missing possible expert pipelines. This is due to the fact that steps can often
be further partitioned, which is hard to automatically (or even manually) discover.

10. As there often exist a number of exchangeable experts for a single step, assessing and
weighting them is important to find correct solutions for a multi-step task (as stated for
the learning problem). One thus has to integrate adequate learning approaches into a
Web architecture. Learning approaches might, however, be tailored to a specific step or
outperformed by newer learning algorithms. Fixed procedural workflows thus do not
suffice to sustainably solve multi-step tasks, as they lack flexibility.

Based on the challenges for learning and automation with respect to multi-step tasks, we
now stipulate our research questions and hypotheses for the contributions of this thesis.

1.3 Research Questions & Hypotheses

We first describe our hypotheses and respective research questions for learning about the per-
formance of experts in a supervised setting. All hypotheses and research questions assume
a multi-step task with sets of experts for each step, where for at least one step the respective
expert set comprises more than one expert. We begin by dealing with learning challenges 1-3
in Hypothesis 1.

Hypothesis 1. By learning expert weights for individual task instances which express an ex-
pert’s ability to support generating the correct task solution, and by choosing experts with
respect to the exploration-exploitation problem, we can maximize the number of correct solu-
tions for multi-step tasks.

The hypothesis tackles Research Question 1:

Research Question 1. How can we formalize and model the problem of solving multi-step
tasks assuming the prevalence of experts for predefined steps and expert execution budgets,
where we have access to feedback in terms of training sets for the respective task?

Hypothesis 1 thus proposes the basic properties of a general framework for weighting experts
for multi-step tasks. To this end, it is central to study when to exploit experts with high weight
estimates (i.e. when to choose a promising expert) and when to explore experts with low or
unknown expert weights (i.e. when to choose an expert with low or unknown expectations).
The framework is the baseline for all residual learning- and automation challenges.
By additionally tackling challenge 4, we make Hypothesis 2:

10

1

1.3 Research Questions & Hypotheses

Hypothesis 2. RL using relational features for individual task instances enables to deal with
expert budgets in order to maximize the number of correct solutions for multi-step tasks with
expert advice.

Hypothesis 2 corresponds to Research Question 2:

Research Question 2. How can we learn which experts to choose in which steps given an
expert execution budget to correctly solve multi-step tasks?

Hypothesis 2 describes how we approach to learn expert weights for multi-step tasks. Expert
weights need to be computed for each task instance, while expressing the expert’s global po-
tential to support solving the task. As several experts are not executed for a respective task
instance, one does not receive their labels and has to take into account that their hypotheses
might have been correct. RL is deemed to be especially suited for this problem, as it specif-
ically studies how to estimate future impacts of actions and how to balance their exploration
and exploitation. Relational features enable to compactly integrate diverse feature representa-
tions of task instances and experts.
Finally, tackling challenge 5, we make Hypothesis 3:

Hypothesis 3. Framing expert assessment for multi-step tasks as Multiagent coordination
problem and solving the latter can improve the number of correct solutions for multi-step
tasks, while keeping the resulting system flexible.

Hypothesis 3 is connected to Research Question 3:

Research Question 3. How can we take into account the correlation of experts in order to
maximize the number of correct solutions for multi-step tasks?

The goal of Hypothesis 3 is to extend the learning framework to a Multiagent System (MAS),
where coordination approaches can be studied. The resulting coordination process helps to
decorrelate expert hypotheses resulting from learned expert weights, while also increasing the
flexibility of the system.
We now deal with research questions and hypotheses for the problem of automatically solving
multi-step tasks with experts on the Web. Hypothesis 4 approaches challenges 6 and 7.

Hypothesis 4. Given a multi-step task with available experts, structuring experts and task in-
stances with lightweight annotations modeled with the Resource Description Language (RDF)
as well as exploiting HTTP methods to execute the services is sufficient to find and execute
expert services.

The hypothesis is associated with Research Question 4:

Research Question 4. How can we account for heterogeneous expert functionalities, -
implementations and -interfaces for solving multi-step tasks on the Web?

11

Chapter 1 Introduction & Overview

Hypothesis 4 deals with the problem of structuring textual service descriptions, as the latter
are both cumbersome and difficult to understand for end users and machines. Semantically
enriched expert services are a first step towards automating their execution.
Hypothesis 5 tackles challenges 8-10.

Hypothesis 5. Expert services lifted with concepts of the Semantic Web can be executed on a
data-driven basis, where decision-theoretic models enable planning their execution as well as
integrating expert weight learning approaches to solve multi-step tasks.

The hypothesis is associated with Research Question 5:

Research Question 5. How can the needed set of expert services for a multi-step task be
discovered, executed, composed and weighted to solve multi-step tasks with expert advice?

Hypothesis 5 deals with generating task-oriented solutions using expert weight learning tech-
niques for multi-step tasks. By using adequate decision-theoretic models to integrate learning
and planning techniques and by using a data-driven approach for expert execution, we can
achieve automatic compositions of experts.

1.4 Contributions

We now summarize the contributions for the respective hypotheses.

Contribution 1. A decision-theoretic model merging MDPs and prediction with expert advice
– referred to as Expert Processes (EPs) – to enable the reuse and further development of RL
algorithms.

The contribution to Hypothesis 1 comprises EPs, which are a general purpose framework for
multi-step decision making with expert advice. As EPs are a specialization of MDPs, one can
easily reuse RL algorithms and only has to find adequate feature spaces for the expert weight
learning problem. EPs are introduced and explained in Chapter 5.

Contribution 2. RL algorithms using relational pairwise expert feature spaces, which enable
to learn expert weights to maximize the number of correct task solutions.

We contribute to Hypothesis 2 by presenting two RL solutions for the expert weight learning
problem. The feature spaces comprise diverse relational pairwise expert measures (referred to
as meta dependencies), which are calculated for experts of same- as well as subsequent steps.
Meta dependencies for experts of subsequent steps account for an expert’s ability to support
solving the task. We present meta dependencies as well as RL algorithms in Chapter 5 after
having defined EPs.

Contribution 3. Multiagent coordination protocols for Multiagent Expert Processes (MEPs)
(i.e. EPs framed as MAS) with appropriate agent coordination techniques and feature spaces,
which enable to decorrelate expert weights while keeping the resulting system flexible.

12

1

1.5 Scope of the Thesis

Our contribution for Hypothesis 3 comprises the formalization of MEPs with novel Multia-
gent coordination protocols, which enable to study decentralized multi-step decision-making
for multi-step tasks. We present methods for adapting expert weights by coordinating them
with other cooperative agents in order to reduce their correlation. Chapter 6 comprises the for-
malization of MEPs as well as three coordination approaches for two coordination protocols.
To this end, we evaluate contributions 1, 2 and 3 in Chapter 7 for the NLP task of Named
Entity Recognition and -Disambiguation (NERD) with steps NER and NED.

Contribution 4. A lifting mechanism from experts to semantic experts, using Linked APIs
(LAPIs) and lightweight service descriptions, which is sufficiently time-efficient and flexible to
solve selected NLP- as well as medical assistance tasks.

We contribute to Hypothesis 4 by lifting expert services (i.e. adding structure to their descrip-
tions and execution mechanisms) to semantic experts, which are lightweight Web services
annotated with structured vocabularies. We formally define semantic experts and describe
their needed components in Chapter 8. We apply the concept of semantic experts to NERD-
and medical assistance experts in Chapter 9 and also evaluate their time-efficiency.

Contribution 5. The integration of semantics into the EP framework – yielding Semantic
Expert Processes (SEPs) – and methods reusing and extending MDP planners and EP learn-
ers to discover, execute, compose and weight adequate semantic experts for individual task
instances. The methods are applicable to NLP as well as medical assistance tasks.

Our contribution for Hypothesis 5 comprises SEPs, which are semantic liftings of EPs. SEPs
are the baseline to develop semantic meta components, which are learning and planning algo-
rithms to weight- and find adequate experts for a given semantic multi-step task. We introduce
SEPs as well as the concept of semantic meta components in Chapter 8 and present specific
applications of the latter to the NERD task as well as two medical assistance tasks in Chap-
ter 9.

1.5 Scope of the Thesis

We define the scope of the thesis by revisiting the main problems we approach and by high-
lighting as well as confining our goals.

The first main problem we deal with is learning about expert performances for multi-step
tasks under possible budget constraints, i.e. one can only execute a subset of experts for a task
instance. We approach the problem by supervised learning and thus assume the availability
of training sets for tasks. To this end, we exclude unsupervised machine learning (short un-
supervised learning) methods from our scope, as the latter make strong assumptions on the
general performance of experts (e.g. their minimal- or average correctness on a series of task
instances). As expert performances often significantly vary across different data distributions
and experts often correlate in generating wrong solutions, such assumptions do not hold.

13

Chapter 1 Introduction & Overview

In addition to unsupervised learning, we also exclude the theoretical or empirical study
of convergence (also referred to as sample complexity) of our learning approaches, which
is prominent for evaluating RL algorithms. RL algorithms are used in this thesis, as they
can be applied to the problem of weighting and choosing experts under budget constraints.
Our overall goal for the learning problem is to maximize the number of correct solutions for
multi-step tasks and we thus assume that, if the respective learning approaches have converged
sufficiently fast given the available training sets, the number of correct solutions is maximized.

Our last limitation for the scope of the learning problem deals with the sub-problem of re-
ducing expert correlation. We cast the problem as MAS and develop techniques to coordinate
available hypotheses. However, central problems of interest in MAS coordination deal with
investigating constrained communication cases, where agents cannot retrieve the global state.
In this thesis, we do not deal with constrained communication MAS, as such a constraint
only makes sense if the respective learning system is distributed (and thus decentralized). The
essential difference of our goal is that we are only interested in exploiting the coordination
process among experts, which introduces novel perspectives on their weights and resulting
hypotheses. To this end, we again do not investigate the convergence behavior of our expert
coordination techniques, where our argumentation remains the same as before, i.e. if our
methods converged, the number of correct solutions for the respective multi-step task with
expert advice is maximized.

The second main problem approached in this thesis is automatically solving multi-step tasks
on the Web, where experts are available as Web services. Our goals are to automatically find
adequate expert services for steps, derive plans which only comprise expert services needed
for the overall multi-step task, enable automatic querying of the resulting expert services and,
finally, integrate expert weight learning methods (as developed for the learning problem of
this thesis). Our methods rely on advances in Semantic Web technologies for both structuring
data as well as services, but we exclude methods around the topic of reasoning. While rea-
soning is a central means to derive novel information, we aim to express (and explore dealing
with) uncertainty about the predictive performance (i.e. estimated correctness) of an expert
by means of supervised learning. More specifically, we argue that manually created structured
annotations cannot compete with learned expert weight approximations based on supervised
learning methods. We thus aim to integrate the latter into the automation approach.

We also do not deal with reasoning with respect to non-matching semantic annotations
for task instances and expert services, which could be successfully used to align them by
ontology matching. We assume that a single centralized vocabulary is used for all experts and
task instances.

Finally, when lifting expert service descriptions to semantic representations and enabling to
automatically execute expert services, we exclude problems with respect to security from our
scope. The latter are certainly domain-dependent (in medicine, for example, security is highly
important) and adequate authorization, encryption or even data anonymization approaches
have to be used or developed. Such approaches might be highly complex and have to be used
in addition to our developed methods.

14

1

1.6 Outline

1.6 Outline

We now outline the contents of the thesis, consisting of four parts – Foundations, Learning,
Automation and Conclusion.
Proceeding with Part I - Foundations, we introduce the following chapters to set the baseline
for the novel methods proposed in the thesis.

Chapter 2 - Scenarios
We describe the application scenarios used throughout the thesis for instantiating and
evaluation our proposed approaches and highlight the respective domain challenges.

Chapter 3 - Preliminaries
The chapter defines and introduces the baseline concepts and technologies needed for
the contributions of this thesis.

Chapter 4 - Related Work
The chapter deals with the related works for the contributions of this thesis with regards
to the learning- and automation problem.

In Part II - Learning, we propose two frameworks for assessing experts in multi-step tasks,
propose appropriate learning methods for them and evaluate the latter.

Chapter 5 - Learning with Expert Processes
The chapter comprises the formalization of EPs, which is a general purpose framework
for multi-step decision-making with expert advice. We then propose a general way to
derive feature representations for expert weight approximation and introduce two RL
approaches for EPs.

Chapter 6 - Learning with Multiagent Expert Processes
We extend the EP formalism for MAS – resulting in MEPs - to enable the study of
flexibly reducing expert correlation. Based on the MEPs definition, we develop and
present methods for a passive- and a active coordination protocol, where the latter entail
solving a novel decision process.

Chapter 7 - Evaluation of Learning with EPs & MEPs
In this chapter, we evaluate the proposed expert weight learning methods for EPs and
MEPs for the task NERD. Here, we distinguish between the ability to estimate the
performance of experts for individual steps and the ability to maximize the number of
correct task solutions for multi-step tasks.

Part III - Automation follows by taking a Web perspective on EPs to work towards automati-
cally using expert services on available on the Web to solve EPs.

15

Chapter 1 Introduction & Overview

Chapter 8 - Automating Semantic Expert Processes
We first extend the EP framework to SEPs, where state, action and expert spaces are
lifted to semantic representations. We then propose a general Web architecture to solve
SEPs, which we describe in detail.

Chapter 9 - Applications & Evaluations of Semantic Expert Processes
The chapter comprises applications of SEPs with instantiations of the Web architecture
for NERD and two medical assistance scenarios. We evaluate the respective applica-
tions scenarios in terms of time-efficiency and automation capabilities for SEPs.

Finally, Part IV - Conclusion provides a retrospective overview of the content of the thesis and
an outlook on future works.

Chapter 10 - Summary
We summarize the thesis with respect to the stipulated challenges, research questions,
hypotheses and contributions.

Chapter 11 - Outlook
The final chapter gives an outlook on future research directions which result from our
work on EPs, MEPs and SEPs for multi-step tasks with expert advice.

Throughout the thesis, we will mention the published research papers which correspond to
the contributions of the respective chapters.

16

2

Chapter 2

Scenarios

In this chapter, we present the scenarios used to apply and evaluate our proposed methods
for both the learning- and the automation problem of multi-step tasks with expert advice.
We deal with two different scenarios within the field of medical assistance, namely Surgical
Phase Recognition and Tumor Progression Mapping (TPM), and one scenario in NLP, namely
NERD. We first describe the respective tasks and then discuss their challenges with regards to
multi-step tasks with expert advice.

2.1 Named Entity Recognition & Disambiguation

2.1.1 Description

NERD deals with the problem of resolving ambiguity in unstructured text, as available on the
Web. Named entities are real-world objects which can be textually represented in a number of
ways. A distinct instantiation of a named entity in a piece of text is then referred to as mention
(e.g. #MichaelJackson for named entity Michael Jackson). As a mention of an
entity in text can be ambiguous, it often remains unclear which real-world entity is actually
being referred to. It is thus important to find links between such mentions and unique entities
available in KBs, such as Wikipedia, DBpedia, Yago or Wikidata.

More specifically, NERD consists of the steps NER and NED. In NER, one has to decide if
textual tokens have to be annotated as distinct type of named entity (e.g. a person, a location
or an organization) or as not being a named entity (i.e. tagged as NIL). However, other than in
traditional NER, we only need a binary decision for solving NERD, i.e. NER can be reduced
to mapping tokens (or token sequences) to {0,1} with 1 referring to the presence of a named
entity and 0 to the absence. In this context, NER is often referred to as mention detection.

NED, in turn, receives text annotated with named entities as input and has to link the latter
to a modeled resource in a KB, which eventually disambiguates the mention in a text. NERD
can be evaluated and tested on publicly available training sets and experts, which have been
integrated by State of the Art NERD benchmark GERBIL [131].

17

Chapter 2 Scenarios

2.1.2 Challenges

• We approach learning to assess the performance of experts with supervised learning and
thus need an appropriate feature representation. Feature generation for text is challeng-
ing since available training sets are small in size. Deep learning approaches [84], for
example, need large numbers of samples to converge and are not directly applicable. To
this end, one could reuse learned vector embeddings for words (e.g. [92, 98]), which
are feature representations learned on large textual corpora in an unsupervised manner.
While a vector embedding might generalize well, its availability for a specific word is
strongly dependent on used corpus and its dimensionality might be high.

• The NERD task consists of two steps, where the overall performance is strongly depen-
dent on NER. If a named entity is wrongly excluded by NER experts, the result cannot
be correctly processed by any NED expert. Also, if tokens are wrongly annotated as
named entity, the respective NERD task can only be correctly solved if NED experts
do not link the tokens to a resource. The latter requires sufficient robustness of NED
experts. Lastly, NED experts might better work with inexact inputs, where available
named entities are not perfectly annotated.

• For different text distributions, such as tweets or news articles, NED and NER experts
often significantly vary in their performance. As a consequence, not a single NER or
NED expert usually dominates the rest for each available task instance.

• It is essential to interpret larger amounts of text (e.g. sentences or paragraphs) at once,
as the latter contain contextual information needed for NER and NED. Numerous deci-
sions for each token or token sequence then influence each other, which makes learning
expert weights for NERD more difficult, as different experts often generate correct hy-
potheses for different tokens in a single piece of text.

2.2 Surgical Phase Recognition

2.2.1 Description

Surgical Phase Recognition (short Phase Recognition) is focus of active research for medical
assistance systems [76]. Surgeons today are faced with a variety of intraoperative information
sources. Vital signs, scans generated by Computed Tomography (CT) or Magnetic Resonance
Imaging (MRI), or various device states are available at any point during the surgery. The
problem is that only a small fraction of the available information is actually relevant in a given
situation. Showing all information at once is thus distracting and potentially harmful, as the
data will surpass human ability to process it [60]. In order to make full use of computerized
surgery, we need methods to infer the current phase of the surgery to only present relevant
information to the surgeon.

18

2

2.3 Tumor Progression Mapping

Phase recognition is a one-step task which can be approached by only analyzing situation
features (also referred to as activities) [79, 95]. Here, activities are represented as triples
consisting of the used instrument, the performed action and the corresponding anatomical
structure, e.g. <Scalpel, cut, Gallbladder>. Surgical phases are defined over sequences of
activities and are labeled based on standardized medical terminology (e.g. monitoring phase
where organs are inspected or resection phase where parts of organs are removed). Intraoper-
ativey, these activities are recognized using sensor analysis techniques [120]. For evaluation
and testing, we use manually annotated videos of surgeries, where clinical experts provide the
training sets. The annotations were created using the SWAN-Suite software [96].

2.2.2 Challenges

• Surgical Phase Recognition can be approached by diverse methods. Available experts,
for example, exploit predefined heuristic rules for sequences of activities or build on
supervised learning approaches to generalize from the current activity by exploiting ad-
ditional training sets. The resulting inputs for such experts differ, as rule-based experts
do not need training sets. This is challenging for automating the execution of expert
services, as their interface complexity is different.

• Available training sets for Phase Recognition are small, as only domain experts are able
to confidently label recorded surgeries. In addition to labelling, surgeons significantly
differ in the way they perform surgeries. They generally use different instruments and
perform activities in different order. This makes using labeled surgeries from different
surgeons challenging for learning expert weights.

2.3 Tumor Progression Mapping

2.3.1 Description

Radiologists have to monitor the development of glioblastoma (i.e. brain tumors) during the
treatment of a patient, which requires several tedious and complex, usually manually per-
formed steps. This is due to the fact that glioblastoma grow irregularly and monitoring is
generally conducted by visually comparing headscans taken by different physicians. As these
headscans are not spatially registered (i.e. aligned), monitoring becomes cumbersome.

TPM is an approach to visualize the timely progression of brain tumors for radiologists. A
TPM consists of processed, spatially registered headscans (i.e. CTs or MRIs) of a single pa-
tient, which are ordered with respect to the time the scan was taken (the horizontal dimension)
and the used concentration (the vertical dimension). Figure 2.1 and 2.2 present an exemplary
headscan and a TPM. The images were displayed and processed with the Medical Imaging
Interaction Toolkit (MITK) [142].

19

Chapter 2 Scenarios

Figure 2.1: An example of a MRI headscan. Figure 2.2: An example of a TPM.

The workflow for creating TPMs is illustrated in Figure 2.3. Available headscans are stored
in a Picture Archiving and Communication System (PACS) and converted into a common for-
mat, either Nearly Raw Raster Data (NRRD) 1 or MetaImage (MHA) 2. A brain mask for
the brain region is created (step Brain Mask Generation), ensuring that subsequent steps are
not negatively influenced by bones or other structures in the headscan. Step Standard Nor-
malization adapts the intensities of MRI scans to ensure that similar tissue types have similar
values. If brain masks with additional details have been manually created by radiologists, a
more robust normalization can be achieved (step Robust Normalization). All normalized brain
masks of a single patient now have to get spatially registered such that the same perspective
is used for the eventual TPM (step Registration). Based on registered brain masks, the TPM
can finally be created (step Map Generation). An optional step before generating the TPM is
to segment tumors to further ease interpretation for radiologists (step Tumor Segmentation).
For evaluating and testing TPM experts, we use MRI scans taken within different time steps
of the treatment process of a patient.

2.3.2 Challenges

• Given that a large number of MRI or CT scans are available for a single patient, correctly
composing and executing TPM experts becomes difficult. This is due to the fact that
numerous possible mappings result from all available headscans to input parameters
of TPM experts. The Map Generation step, for example, requires all processed brain
masks (which are needed for the final TPM) as input. If not all headscans should be part
of the tpm (based on a constraint given by a radiologist), one has to test all brain mask
combinations of lengths 1, . . . , |n| (with n the number of available headscans). Such
brute force approaches are not tractable.

1http://teem.sourceforge.net/nrrd/format.html (accessed on 05/01/2018)
2https://itk.org/Wiki/MetaIO/Documentation (accessed on 05/01/2018)

20

http://teem.sourceforge.net/nrrd/format.html
https://itk.org/Wiki/MetaIO/Documentation

2

2.3 Tumor Progression Mapping

Figure 2.3: Steps for TPM experts.

• The TPM task consists of at least four steps (without optional segmentation step), which
requires to efficiently find (i.e. discover) appropriate experts. Brute force approaches,
again, are not tractable for tasks with large numbers of steps, as one has to repeatedly
perform pairwise comparisons of experts to test for correct sequences.

21

3Chapter 3

Preliminaries

This chapter defines basic concepts needed for the contributions of this thesis. We approach
to solve multi-step tasks with available experts in terms of two specific goals, i.e. learning to
choose experts for task instances and combine their hypotheses, and automating the process
of finding and executing experts to solve multi-step tasks on the Web. To clarify the scope of
our proposed methods, we start by defining our constrained notion of multi-step tasks in Sec-
tion 3.1. While the definitions related to multi-step tasks are novel and not reused from other
works, the residual sections focus on pointing out as well as explaining existing concepts and
methods, which are required to present the contributions of this thesis. We first deal with the
goal of learning. The methods we present throughout the thesis aim to generalize the expected
correctness of an expert’s output based on characteristics of task instances (e.g. the tokens of
a sentence). A central means to enable generalization is supervised learning, which we selec-
tively introduce in Section 3.2. However, to deal with budget constraints for experts and to
account for having multiple sequential steps, we discuss selected aspects of decision-making
theory in Section 3.3. To prepare the presentation of our proposed methods for automation, we
turn to Web technologies in Section 3.4, especially ones enabling machine-readability within
the Semantic Web. For that matter, we deal with central methods for creating and querying
structured vocabularies as well as using the latter to enrich Web services.

3.1 Multi-Step Tasks

We first define our notion of tasks with respect to the problems and challenges approached in
this thesis.

Definition 3.1 (Tasks). We define a task as 3-tuple Task = (X ,B,Y), i.e. in terms of a mapping
of an arbitrary input space X and background knowledge space B to an arbitrary output (or
hypothesis-) space Y . The solution to a task is a function Solution : X ×B→ Y . Hence, for
a given input instance x ∈ X and subset of the background knowledge B̂ ⊂ B, Solution(x, B̂)
returns the solution as instance y ∈Y . We, thus, assume that solving a task exclusively entails
to derive or generalize information from X and B to Y .

If tasks are complex, it is sensible to divide them into smaller, more manageable steps
which can be optimized more efficiently and transparently. With this intuition, we introduce

23

Chapter 3 Preliminaries

multi-step tasks (and from now perceive tasks and multi-step tasks as being equal). As the step
structure might get complex, we distinguish between two general types of multi-step tasks,
namely layered- and non-layered multi-step tasks.

A layered multi-step task assumes the simplest step structure in that – except for start-
ing and ending steps – a step has exactly one predecessor and one successor. Although this
property significantly reduces the possible structural complexity of tasks, it is often taken for
optimization problems (e.g. [77]).

Definition 3.2 (Layered Multi-Step Tasks). A layered multi-step task is a task where sequen-
tial steps can be identified such that the task can be divided and a step has one exact prede-
cessor and/or successor. Given input space X, we assume that i = 1, . . . ,H with H ∈ N+

steps have to be performed to solve the task, where a step is considered to be a task it-
self, i.e. a step is a 3-tuple Stepi = (X i× B̂i → Y i) with X1 = X, Y H = Y , and X i = Y i−1

for i > 1. The solution of a layered multi-step task for an input instance x is thus de-
fined as Solution(x,B) = SolutionH(SolutionH−1(. . .(Solution1(x, B̂1) . . .), B̂H−1), B̂H), where
Solutioni : X i× B̂i→ Y i solves the i-th step.

Non-layered multi-step tasks can be defined in a similar fashion, where now multiple pre-
decessors as well as successors are possible.

Definition 3.3 (Non-Layered Multi-Step Tasks). A non-layered multi-step task is a task where
appropriate steps can be identified such that the task can be divided, but a step might
have more than one predecessor and/or successor. Given input space X, we again assume
i = 1, . . . ,H steps to be performed to solve the task, where a step is defined as before with
X1 = X, Y H = Y , and X i =

⋃
Step j∈PRE(Step j)

Y j if |PRE(Stepi)| > 0 and X i = X otherwise,

where PRE(Stepi) := {Step j|Y j ∩X i 6= /0}, i.e. PRE returns all directly preceding steps of
a step. The solution of the task for an input instance x is thus defined as Solution(x,B) =⋃
Stepi∈LAST(Task)

Stepi(xi) where LAST(Task) := {Stepi|∀Stepi ∈ Task : Stepi(xi)∈ yH} and xi ∈X i

is recursively estimated. LAST returns all final steps of the multi-step tasks, i.e. all steps which
are part of the solution.

A crucial property of multi-step tasks is the number of steps H. We distinguish between
two conditions for multi-step tasks: (i) It can be solved in exactly H or within [1,H+] steps
where H+ ∈N+ is a predefined upper bound 1 and (ii) neither H or H+ can be set in advance
with full confidence.

Given that H or upper bound H+ can be confidently estimated, we assume that each step
of a task solution is of different nature such that a unique, finite solution can be found. In
other words, all possible step sequences to solve the task are countable and finish in at most
N+ steps. Hence, if a step has to be repeated on the resulting output space, one cannot ensure

1H+ could, for example, be set according to the longest possible sequence of steps to solve the task.

24

3

3.1 Multi-Step Tasks

that a correct solution is generated in a finite number of steps, where only constraining or
probabilistic upper bounds can be set.

We first define finite multi-step tasks, where condition (i) holds – i.e. we at least know
an upper bound N+ for the number of steps of a task. We additionally require all steps to be
mutually different with regards to the respective input instances, as otherwise no upper bounds
can be set. As a consequence, a step could still be repeated for a different input instance.

Definition 3.4 (Finite Multi-Step Tasks). A finite multi-step task is a multi-step task where
the number of steps H or the upper bound of steps H+ is known and fixed, and all steps are
different, i.e. ∀i, j with i 6= j Stepi 6= Step j ∨ xi 6= x j.

If condition (ii) holds, we cannot set H and/or H+ confidently and deal with infinite multi-
step tasks.

Definition 3.5 (Infinite Multi-Step Tasks). An infinite multi-step task is a multi-step task where
H and H+ are unknown, as they cannot be confidently estimated, and steps might have to be
repeated for input instances.

To illustrate the differences in finite- and infinite as well as layered and non-layered multi-
step tasks, we discuss example tasks for each case in Example 3.1.

Example 3.1 (Multi-step tasks with different properties). Given our definition of multi-step
tasks, four cases are possible. Each case has different real-world applications.

• Finite Layered Multi-Step Tasks: In NLP, numerous challenges involve to solve tasks
with multiple, conceptually different steps in a processing pipeline. One such example is
NERD, as introduced in Section 2.1. Each of the NERD steps has to be solved once for a
task instance and all steps are conceptually different, as they tackle different problems.

• Infinite Layered Multi-Step Tasks: In Image Processing, one often has to solve tasks
where steps have to be solved multiple times. One prominent example of such a step is
applying image filters, where it is unknown (in advance) when the image was sufficiently
processed. Here, the respective input instances (i.e. the processed images) usually differ
for all steps.

• Finite Non-Layered Multi-Step Tasks: A simulation of, for example, a human organ
such as the heart, requires a large and complex set of definitions with respect to ma-
terials or physical behavior, and additional patient-specific inputs such as segmented
images or demographic information. The segmented images, for example, can either
be manually created by domain experts, derived by an expert algorithm or a series of
expert algorithms in a finite sequence. As a consequence, the overall multi-step tasks is
not layered, but requires a more complex structure of steps.

25

Chapter 3 Preliminaries

• Infinite Non-Layered Multi-Step Tasks: We can directly extend the finite non-layered
multi-step task example for simulation to the infinite case. For the latter, we might de-
fine an infinite layered multi-step task for image segmentation, where a more elaborate
sequence of steps enables to apply respective filters multiple times to also normalize the
image. Since now a subset of the former finite multi-step task is infinite, the complete
overall multi-step task becomes infinite.

Note that task properties (i.e. finite, infinite, layered or non-layered) are often dependent
on design choices for steps and/or their solution functions.

An important observation is the following: Our task definitions are recursive, as a task is
dependent on its direct predecessors. In case of the non-layered property, there are thus no ex-
haustive assumptions on the absolute order of solving steps (e.g. they might occur in parallel).
When trying to determine the absolute order (or plan) of solving the task, there is a critical
distinction to make. In workflow systems, one would derive plans where parallel executions
are specifically modeled or retrieved (e.g. via a graph). In a decision-theoretic perception,
where actions need to be actively taken to reach a goal state (see MDPs in Section 3.3.2), a
single action needs to be taken per time step. Depending on how the environment is modeled,
one can represent multiple step combinations as single actions, but the underlying assumption
is different. A combined task action (which would simulate parallel steps in a workflow) is
only chosen if there is positive feedback from the environment, i.e. if there is sufficient added
value (e.g. due to time savings). On a final note, the two perceptions are complementary
(thus not conflicting), as one could derive optimized workflow plans after having optimized
the decision-theoretic value of available actions.

To this end, central properties of a number of solutions for task instances are optimality
and near-optimality. Optimality with respect to a task solution function and a set of input
instances of the task entails that the respective solution function must not make any mistakes.
Near-optimality, on the other hand, assumes a predefined threshold which defines the number
of allowed mistakes for a solution function. Note that we define optimality and near-optimality
for the solution of the complete multi-step task. The concepts could, in principle, be similarly
defined for step solution functions, but would overly restrict task solutions, as only the overall
hypothesis has to be correct.

Definition 3.6 (Optimality and Near-Optimality for Task Solutions). Given a task (X ,B,Y)
with set of input instances x1, . . . ,xn ∈ X, let y∗1, . . . ,y

∗
n ∈Y be the correct solutions with respect

to the task. A solution function Solution∗ is optimal with respect to x1, . . . ,xn if it outputs
y∗1, . . . ,y

∗
n as set of solutions, i.e. ∀xi with i ∈ 1, . . . ,n : Solution∗(xi,B) = y∗i . A solution

function Solution is near-optimal with respect to x1, . . . ,xn if it outputs the correct solution for
k≤ n input instances (with k ∈N+) and n−k < ε with ε ∈N≥0 a predefined error threshold,
i.e. |{x j|x j ∈ x1 . . .xn∧Solution(x j,B) = y∗j}|= k.

The property is often used for methods in supervised learning and decision theory, and thus
similarly holds for subsequent concepts. We do not attempt to prove any values or boundaries

26

3

3.2 Supervised Machine Learning

for ε (e.g. showing that a solution function always reaches a certain correctness). We rather
assume that absolute performances of solution functions (or relative improvements of solution
functions with respect to others) have to be shown and reasoned upon empirically, i.e. on
available input instances.

The thesis deals with solving multi-step tasks assuming available experts. The latter are – as
mentioned in Chapter 1 – algorithms which are able to solve steps for multi-step tasks. Expert
hypotheses are, however, not always correct for each input instance. Given exchangeable
experts for a given step, one thus needs to learn when to choose which proposed hypothesis
or how to combine the available hypotheses in order to solve the complete tasks, by making
as few mistakes as possible.

Learning about experts can be approached by using available training sets. Supervised
learning is a central branch of methods for using training sets to generalize to novel, unseen
input instances, which we deal with next. After having introduced basic concepts and ap-
proaches of supervised learning, we deal with selected decision-theoretic elements to deal
with sequential decisions as well as missing information (e.g. due to expert budget con-
straints). We specifically define experts in Section 3.3.1 after having introduced the necessary
concepts.

3.2 Supervised Machine Learning

In supervised learning, one assumes training sets (referred to as labeled data) for predicting
diverse outcomes, such as the assignment of classes or numerical values to an input instance
(referred to as data point). The general supervised learning paradigm can be defined as fol-
lows.

Definition 3.7 (General Supervised Learning Paradigm). Given data Ξ, which might be rep-
resented as graph, set or otherwise and given samples (xi,yi) ∈ Ξ, we wish to learn a function
(referred to as model) f : X → Y . Here, xi is referred to as data point or input instance, and
yi is referred to as dependent variable or label and defines the correct solution for xi for the
current task. Given random variables (referred to as features) x(1)i , . . . ,x(m)

i with x(j)
i ∈R, one

has to learn model parameters φ (j) for j = 1, . . . ,m with φ (j) ∈R where the prediction, f (xi),
is dependent on products of random variables and model parameters, i.e. x(j)

i φ (j). The loss of
a series of predictions of f for samples x1, . . . ,xn quantifies the correctness with respect to yi,
where the loss is zero if xi = yi. A loss function L : φ ×X ×Y →R maps predictions f (xi) to
a real number.

A function (or model) thus consists of random variables and respective model parameters,
where we observe values of random variables and have to learn their model parameters to
explain them (see Section 3.2.4 for learning regression models). The relationship among
model parameters might range from simple (e.g. linear) to complex (e.g. non-linear).

27

Chapter 3 Preliminaries

To this end, models might also have hyperparameters, which are essentially different from
model parameters, and might influence both how the model parameters are learned and what
the model predicts for a data point.

Definition 3.8 (Hyperparameter). A hyperparameter defines design choices for a model, e.g.
value thresholds for predictions or categories given multiple available learning or prediction
methods, and can thus be a real number, String or otherwise. A hyperparameter, in general,
has to be empirically assigned based on the current task and available input instances of Ξ.

As supervised learning is a very broad research field, we only highlight and introduce se-
lected concepts which are relevant to this thesis. We first discuss differences in assumptions
with regards to available data and then deal with the learning process itself – namely how
learners (i.e. the instance controlling the respective model) receive training data and what this
implies for the resulting models.

3.2.1 Model-specific Assumptions

Given data Ξ and a model f , there are two opposing assumptions. The most common assump-
tion is that the random variables of f based on Ξ are independent and identically distributed
(i.i.d.).

Definition 3.9 (Independent and identically distributed random variables). The i.i.d. assump-
tion stipulates that random variables used for a model and instantiated by data Ξ are (i)
independent, i.e. do not have any causal effects on each other, and (ii) identically distributed,
i.e. share the same distribution with the same model parameters (e.g. same mean value for a
normal distribution).

While the assumption is strong, it enables to (theoretically-) study the generalizability
of learned models to unseen data in terms of performance bounds (i.e. general statements
on near-optimality). However, the assumption might be inadequate if data distributions are
changing over time. To this end, adversarial learning takes the opposite stance and does not
take any assumptions on random variables.

Definition 3.10 (Adversarial Learning). The adversarial assumption stipulates that no as-
sumption can be made about the generating distribution of random variables.

Note that this has essential consequences on the ability to learn from data. We discuss a
central adversarial learning approach in Section 3.3.1 and now deal with possible learning
protocols, which are closely connected to model-specific assumptions and determine how
many training samples we are allowed to perceive before learning or updating a model.

28

3

3.2 Supervised Machine Learning

3.2.2 Learning Protocols

In general, one can distinguish between two learning protocols – batch and online. In the batch
learning setting, we assume all relevant training data points to be available before learning a
model, while in the online learning setting, we receive the labels gradually throughout time.
These differences occur for several reasons: (i) data sets might consist of a large number
of training samples which might eliminate the possibility to use them at once, (ii) training
samples might be available in streaming settings, where updates should happen as fast as
possible, and lastly (iii) training data might have to be generated by interaction (e.g. executing
learned models to observe their hypotheses), where actions have to be taken in sequential order
to reach a given goal.

To ease comparison between the settings, we assume that the set of data Ξ with data points
(xi,yi) is ordered by the timely occurrence of the latter, i.e. data points with smaller indexes
occur earlier. To highlight this property, we assume that data points occur in episodes z ∈
1, . . . ,Z with Z ∈ N+. We use episodes as subscript for data points, i.e. (xz,yz) is the data
point with label at episode z. Note that an episode is different from a step in a multi-step task
– the latter deals with a distinct problem with respective input, background knowledge and
output spaces and the former is merely the timely ordering of labeled data points.

In the batch learning setting, it is generally easier to learn models with high predictive
performance (i.e. low loss for unseen data points), if the i.i.d. assumption holds, as one is
allowed to observe the complete training set.

Definition 3.11 (Batch Learning). Given data points and labels observed until episode z, i.e.
(x1,y1), . . . ,(xz,yz), learn a model f using all labeled data points at once to minimize the loss
of f (x).

For online learning, one gradually updates models for individual data points (i.e. for each
sample one first makes a prediction and then receives the corresponding label). Here, both
i.i.d. as well as adversarial approaches exist.

Definition 3.12 (Online Learning). Given episode z, only use (xz,yz) to learn or update a
model f to minimize the loss of f (xz).

Finally, an intermediate scenario exists, where a model is gradually updated by a mini-
batch, i.e. a subset of all available samples is used at once. Mini-batch learning thus entails
to either wait for a predefined number of samples to update the model or to gradually receive
the mini-batches at once. Compared to online learning, exploiting samples in mini-batches
can improve the predictive performance of a model. Again, both i.i.d. as well as adversarial
approaches exist.

Definition 3.13 (Mini-batch Learning). Given episode z and batch size ZBATCH ∈ N+, use
samples (xz−ZBATCH ,yz−ZBATCH , . . . ,xz,yz) if z mod ZBATCH = 0 to learn or update a model f in
order to minimize the loss of f (x).

29

Chapter 3 Preliminaries

Similar to batch and online learning protocols, there are different prediction settings, which
we now discuss.

3.2.3 Prediction Settings

The standard prediction setting in supervised learning is that a single input instance xz is given
to the learner in every episode z (referred to as single label prediction). However, it might be
beneficial to exploit the knowledge of seeing multiple input instances at once. This setting is
referred to as pool-based prediction. The latter is especially useful when relations among data
points are available (see Link Prediction in Section 3.2.4).

We first deal with the single label prediction case, where a classic example is linear regres-
sion, which we deal with in Section 3.2.4.

Definition 3.14 (Single label prediction). In the single label prediction case, the learner re-
ceives data point xz at episode z and makes prediction f (xz).

For pool-based prediction, we receive a predefined number of input instances at once to
predict outcomes their outcomes.

Definition 3.15 (Pool-based prediction). Given pool interval number ZPOOL ∈ N+

and episode z, the learner receives data points xz, . . . ,xZPOOL , makes predictions
f (xz), . . . , f (xZPOOL) at once.

An important application of the pool-based prediction setting is collective inference in
Graphical Models, where links among graph entities are exploited to generate consistent hy-
potheses for multiple properties (see Definition 3.22).

We now revisit selected instantiations of mentioned learning scenarios, namely Regression
and Link Prediction.

3.2.4 Selected Learning Scenarios

We first deal with Regression and assume data points x∈ X to be represented as vectors, which
often consist of manually engineered features. We then turn to Link Prediction in graphs,
where we also deal with relational learning.

Regression

We first define the general regression setting, where an input instance represented as vector
has to be mapped to a numerical value.

Definition 3.16 (Regression, Squared loss). Regression entails to map an input instance
xi to a real valued number, i.e. to learn a function f : X → R. In the multivariate
case, we assume each data point to be represented as feature vector of length NFEAT, i.e.
x =< x(1), . . . ,x(N

FEAT) >, where x(i) are random variables. A standard loss function for re-
gression is the squared loss LSQUARED(φ ,x,y) = ‖φ T x− y‖2

30

3

3.2 Supervised Machine Learning

In the linear case, we search for a linear combination of model parameters based on avail-
able random variables.

Definition 3.17 (Linear Regression). Linear regression entails to find model parameter vector
φ ∗ = w(1), . . . ,w(NFEAT) such that

f (x) = φ
T x = w(1)x(1)+w(2)x(2)+ . . .+w(n)x(N

FEAT) = y (3.1)

We focus on standard linear regression and discuss gradient solutions for batch-, mini-batch
and online learning, more specifically gradient descent.

Definition 3.18 (Gradient Descent, Stochastic Gradient Descent, Batch Gradient Descent).
When given samples (xi,yi), we seek to minimize the gradient of an arbitrary loss function
L(φ ,xi,yi).

• Gradient descent (GD) refers to the online update, where the model is individually
updated with every sample based on a learning rate hyperparameter ηGD ∈R≥0, i.e.

φ = φ −η
GD

∇φL(φ ,xi,yi) (3.2)

• Stochastic gradient descent (SGD) extends the concept of GD by sampling a number of
labeled data points NIT ∈N+ for individual updates, where one update is referred to as
iteration. The advantage is that not all data points have to be used for learning.

• In batch gradient descent (BGD), a batch of samples (x1,y1), . . . ,(xZ,yZ) collected until
episode Z is used for a single update, i.e.

φ = φ −η
BGD

∇φ

1
Z

Z

∑
i=1

L(φ ,xi,yi) (3.3)

For BGD to converge, one usually repeats batch updates in epochs, where the number
of epochs is a hyperparameter and defined as NEPOCH ∈ N+. Note that for standard
GD, single updates might also be repeated in epochs.

To calculate the gradient updates, we assume available random variables to be i.i.d. and
need to take partial derivatives for each variable in the model, i.e. ∀φ j ∈ φ .

Complexity Analysis 3.1. GD and SGD are not dependent on the size of training data sets,
but on the dimensionality of the feature representation, and the number of epochs or iterations.
The computational complexity in Big O notation for GD is thus within O(|NFEAT||NEPOCH|)
and for SGD within O(|NFEAT||NIT|). Batch GD updates, on the other hand, are addi-
tionally dependent on the size of training data sets. The resulting complexity lies within
O(|NEPOCH||NFEAT||Ξ|).

31

Chapter 3 Preliminaries

Link prediction for graphs is related to regression, as one wants to estimate the probability
of an edge to be part of a graph. It can be approached by Relational Learning, for which we
now describe a simple approach.

Link Prediction

Link prediction is an important problem setting, where one aims to predict if two nodes in a
graph are connected via a specific relation. As graphs on the Web often comprise multiple
relations, we first define multi-relational graphs (MRG) as basic representation for Relational
Learning.

Definition 3.19 (Multi-Relational Graph). Let G = (V,R) be a MRG with set of nodes V and
family of typed edge sets R of length m, i.e. R = {R0, . . . ,Rm ⊆ (V ×V)} where r = 1, . . . ,m
denote the unique relations in the graph.

MRGs frequently occur on the Web (e.g. in social networks or the Linked Open Data Cloud
2) and are often used for analysis.

We can now define the linked prediction problem for MRGs.

Definition 3.20. Given MRG G = (V,R), the goal is to predict a fixed relation r ∈ Ri with
Ri ∈R for pairs of nodes (vi,v j)∈V×V with i 6= j, i.e. learn function f LP : V×V×R→ [0,1].

A straightforward Relational Learning approach to learn f LP is using supervised learning
approaches for vector-based representation (i.e. by reducing the graph structure).

Definition 3.21 (Relational Classifier for Link Prediction). For nodes (vi,v j), a transforma-
tion function f TRANS : V ×V → X has to be developed, where X is a fixed-length feature space.
Based on the derived vector-based representation X, any adequate approach can be used to
learn regression functions for Linked Prediction, i.e. f LP : X → [0,1].

Such approaches, however, lower the graph structure and thereby lose expressivity, as the
relation among nodes in the graph are not fully exploited. The class of Lifted Graphical Mod-
els (LGMs) [68] approaches this shortcoming by extending Probabilistic Graphical Models
(PGMs) [71] with a relational structure, yielding a Statistical Relational Learning (SRL) ap-
proach. LGMs thus exploit declarative representations of knowledge, where one manually
models relations among nodes before any learning takes place. Pool-based predictions then
enable to jointly predict new relations in the graph for a number of nodes, referred to as col-
lective inference. We use a LGM for collective inference to solve the learning problem in
Chapter 5.

Definition 3.22 (Collective Inference). Given a pool-based prediction setting and a MRG
G = (V,R), collective inference exploits the graph structure of G to generate joint predictions
for a pool of nodes v1, . . . ,vZPOOL ∈V of predefined size ZPOOL ∈N+.

2http://lod-cloud.net/ (accessed on 05/01/2018)

32

http://lod-cloud.net/

3

3.2 Supervised Machine Learning

Given that a model has been learned for learning scenario, it is important to evaluate it in
order to quantify its predictive performance. We now introduce different performance metrics
for evaluating models.

3.2.5 Evaluating Learned Models

Evaluating learned models can be approached theoretically or empirically. In this work, we
focus on empirical evaluations and use training sets to quantify the predictive performance of
models.

To generate representative results for empirical evaluations, one can either (i) bootstrap
samples of a predefined size or (ii) perform cross-validation. We use cross-validation for our
evaluations, as available training sets are sufficiently large in order to divide them into folds
(i.e. disjoint subsets of samples).

Definition 3.23 (Cross-Validation). Given training set Ξ, cross-validation entails to split Ξ

into K folds Ξk with k ∈ 1, . . . ,K of size |Ξ|K to eventually test a given model f on each of the
K folds by learning K sets of model parameters φk. One uses K−1 folds for learning model
parameters φk for f to validate the predictions on the left out fold. The process is repeated K
times to validate the performance of f on all available samples.

For the multi-step tasks used in our evaluations in Chapter 9, established metrics for the
learning problem are precision, recall and F1-measure.

Definition 3.24 (Precision, Recall, F1-measure). For the binary classification problem (with
0−1 loss function L0-1(φ ,x,y) = 1{x 6=y}) with possible outcomes Y = {True,False}, samples
(x,y) ∈ Ξ and learner prediction f (x), we define the followings sets:

• True positives T Ps: {x|x ∈ Ξ∧ f (x) = y∧ y = True}

• True negatives T Ns: {x|x ∈ Ξ∧ f (x) = y∧ y = False}

• False positives FPs: {x|x ∈ Ξ∧ f (x) 6= y∧ y = False}

• False negatives FNs: {x|x ∈ Ξ∧ f (x) 6= y∧ y = True}

The precision of f given Ξ is defined as Precision = |T Ps|
|T Ps+T Ns

The recall of f given Ξ is defined as Recall = |T Ps|
|T Ps|+|FNs|

The F1-measure of f given Ξ is defined as F1 = 2 Precision Recall
Precision+Recall

True positives as well as true negatives thus are correct predictions of a model, and false
positives and false negatives are the sets of its wrong predictions. The mappings from task
instances to positives or negatives is task dependent and will be pointed out in the evaluation
chapters.

We finally discuss a branch of approaches to combine available learned models for the same
step (i.e. same input and output spaces) to improve the overall performance.

33

Chapter 3 Preliminaries

3.2.6 Learning Combination Functions over Models

Given that a number of models for the same step exist, a combination of all models might
yield better results than the best single model in hindsight. The field of Ensemble Learning
studies how to learn combination functions over exchangeable models. Here, one usually
perceives individual models as black-box models or black-box functions, as the respective
learning approach is not taking into account. To learn combination functions, one usually
assumes individual models to be mutually independent, such that resulting feature spaces are
i.i.d. .

Definition 3.25 (Ensemble Learning). Given N black-box models f1, . . . , fN and data set Ξ

for a step, where fi : X → Y predicts a hypothesis for a step, the goal of ensemble learning is
to learn a joint function f̂ : f1× . . .× fN×X → Y .

Prominent approaches comprise boosting [17, 48] where additive joint functions are
learned, mixture of experts [58] where a softmax layer (i.e. models are weighted exponen-
tially to their estimated performance) switches among outputs of individual models or stack-
ing [143] where the joint function is learned with generated data sets based on cross-validated
black-box models.

With respect to the contributions of this thesis, we focus on stacking.

Definition 3.26 (Stacking / Stacked Generalization). Given N models f1, . . . , fN and data set
Ξ, as in the Ensemble Learning setting, the high-level protocol of stacking follows:

• For f1, . . . , fN , perform K-fold cross-validation on Ξ.

• Use the resulting model-dependent data set {((f1(x), . . . , fE(x)),y)|∀(x,y)∈Ξ} to learn
joint function f̂ .

Based on prior introduced topics in supervised learning, we now turn towards frameworks
for decision-making.

3.3 Decision-Making

Other than in the standard supervised learning setting, we now deal with learning settings
where (i) feedback is limited and only available for actively chosen hypotheses and/or (ii)
multiple decisions have to be taken in a sequence for a single task instance. Taking standard
supervised learning as baseline, an agent (i.e. the decision-maker) has to take a single action
(i.e. predict a hypothesis) for a state (i.e. a data point or input instance) and gets full feedback
(i.e. receives the label). We, from now on, use the notion of states and actions to refer to data
points and predictions. Using this terminology eases the integration of prominent works in
supervised learning, single-step decision-making and multi-step decision-making.

34

3

3.3 Decision-Making

Relevant frameworks can be categorized into one-step and multi-step decision-making as
well as full feedback and partial feedback. We begin by discussing single-step settings which
assume expert advice (i.e. several available models to generate hypotheses) and then turn
to multi-step decision-making, where we deal with general decision-making aspects, as no
prior work in multi-step expert advice exists. We finally deal with general Multiagent multi-
step decision-making, where the control of the decision process is distributed among several
independent, cooperating agents.

3.3.1 Prediction with Expert Advice

Prediction with expert advice [27] is a prominent problem setting, where multiple experts
suggest actions (i.e. their hypotheses) to an agent, which has to choose among the latter. We
first define experts based on concepts from supervised learning.

Definition 3.27 (Expert). An expert for a step in a multi-step task is the equivalent of a black-
box function fi (see Definition 3.25), which is not constrained to supervised learning tech-
niques – it might also, for example, be a heuristic or simple rule. Given a state space S and
an action space A, an expert is a function e : S→ A, which suggests an action a ∈ A for a state
s ∈ S.

We now present the general setting of prediction with expert advice, where we take into
account possible budget constraints with regards to feedback. Note that, while all subse-
quently presented settings within the general expert advice setting are extensively studied in
the literature, a formalization of the general framework is novel with respect to this thesis.

Definition 3.28 (General Expert Advice Setting). The general expert advice setting is a 6-
tuple (S,E,A,R,CEXP,CFEEDBACK).

• Let S be the set of states.

• Let Γ ∈ ∆(S) be the state distribution, which is strongly dependent on the underlying
assumptions of the data distribution (i.e. i.i.d. vs. adversarial).

• Let A be the set of actions.

• Let E be the set of experts, where an expert is a function e : S→ A, proposing an action
for a state.

• Let we : S→R be the weight function for an expert e ∈ E which returns an estimate of
its predictive performance for a state.

• Let CEXP ∈N+ be the expert budget, which determines how many experts the agent is
allowed to execute per state.

35

Chapter 3 Preliminaries

• Let CFEEDBACK : S×A→ {E} be a function which return the set of experts the agent
receives feedback for.

• Let R : S×A→ R be the reward function for an action given a state, which quantifies
its correctness (i.e. similar to the inverse of a loss function in supervised learning).

• Let π : S→ A be the policy which depicts the eventual action the agent chooses.

The protocol of the general expert advice setting proceeds in episodes z ∈ 1, . . . ,Z with Z
as defined before, where in each episode a single state sz is revealed to the agent.

• The agent perceives sz.

• The agent gets estimates we for all available experts.

• Given the expert budget CEXP, the agent executes a number of experts
e1(sz), . . . ,eCEXP(sz) and perceives their suggested actions.

• The agent chooses an action based on its expert weight estimates.

• The agent is revealed the reward of the chosen action, R(s,a), and, based on the current
feedback setting, of expert set CFEEDBACK(sz,az).

The goal is to maximize the expected cumulative reward RCUM with respect to the chosen
actions.

Definition 3.29 (Cumulative Reward for Prediction with Expert Advice).

RCUM = E[R(s,a)] (3.4)

We now describe different expert advice settings, where budget CEXP and feedback con-
straint function CFEEDBACK are varied.

Expert Advice with Full Information

We begin by discussing the full information setting, where the agent is allowed to query all
available experts and receives feedback about all available actions.

Definition 3.30 (Prediction with Expert Advice). Given the general expert advice setting, we
set CEXP = |E| and CFEEDBACK(s,a) = |E|.

A central algorithm which solves the setting is Exponential Weights/Hedge (EWH), which
is an adversarial learning approach. The algorithm sets the baseline for numerous extensions
(e.g. [3, 6, 15]). We now introduce EWH in its simplest form.

36

3

3.3 Decision-Making

Definition 3.31 (Exponential Weights/Hedge algorithm). To update the weight of an expert
we, EWH assumes a scaled reward function RSCALED : S×A→ [−1,1] where rewards in R are
mapped to [−1,1], a learning rate hyperparameter ηEWH ∈ N+ and initial weight we(s1) =
1.0. The update rule is then defined by:

we(sz+1) = we(sz) exp
(
RSCALED(sz,e(sz)) η

EWH) (3.5)

The algorithm thus updates weights of experts exponentially to the scaled reward observed
for their actions. The decision for a step is then based on probability distribution P : S×A→
[0,1] for all available actions:

P(sz,az) =
∑e∈E 1{e(sz)=az}we(sz)

∑e∈E we(sz)
(3.6)

Based on the probability distribution, the greedy policy π(sz) = max
az

P(sz,az) chooses the

action with the highest probability.

Complexity Analysis 3.2. As EWH is an algorithm for online learning, we measure its com-
plexity in terms of experts and not episodes. As all experts are executed for each episode, the
complexity in Big O notation is O(|E|).

Note that for decision-theoretic algorithms, one often deals with sample complexity and
thus aims to provide lower bounds for the predictive performance, which we do not deal with
in this thesis.

We now briefly discuss different constrained variations of prediction with expert advice.

Expert Advice with Constraints

A natural specialization of prediction with expert advice is constraining the number of experts
the agent is allowed to execute for a state. In this setting, the agent only receives rewards
for executed experts, as the residual expert hypotheses remain unknown. The problem can be
approached by an extension of the EWH algorithm [3], where all expert combinations of size
CEXP are weighted.

Definition 3.32 (Prediction with Budgeted Expert Advice). Given the general expert advice
setting, we set CEXP ≤ |E| and CFEEDBACK(s,a) = {e|∃a = e(s)} returns all experts which have
been executed for the state.

Another specialization for expert advice is related to contextual bandits [6], where an agent
only receives a reward for the action it chooses. A prominent solution to contextual bandits
with expert advice is the EXP4.P algorithm [15], which extends EWH with respect to the
exploration-exploitation problem. The latter is central for single- and multi-step partial label
problems (where partial labels result from constrained information). In the context of expert

37

Chapter 3 Preliminaries

advice, agents need to successfully balance exploiting experts with high weights and exploring
experts with low or unknown weights.

Definition 3.33 (Prediction with Expert Advice for Partial Feedback). Given the general ex-
pert advice setting, we set CEXP = |E| and CFEEDBACK(s,a) = {e|e(s) = π(s)}.

We now deal with multi-step decision-making problems, where sequential decisions have
to be taken in a single episode.

3.3.2 Markov Decision Processes

If an agent has to choose several sequential actions for a single episode, the problem can be
formalized as MDP [109], where the goal is to find an optimal policy for acting in the world.
We first define the general MDP setting.

Definition 3.34 (General Markov Decision Processes). A General MDP is a 6-tuple
(S,A,γ,Tr,R,H).

• Let S be the set of world states and A the set of actions, as defined for expert advice.

• Let Γ ∈ ∆(S) be the start state distribution, as defined for expert advice.

• Letγ ∈ [0,1] be the discount factor hyperparameter.

• Let Tr : S×A→ S be the transition function, which depicts the resulting state of the
agent after taking an action.

• Let R : S×A→R be the reward function, which returns the local feedback for the taken
action, as defined for expert advice.

• Let H be the horizon, which defines the number of actions to be taken in an episode and
is defined differently for respective instantiations of the General MDP setting.

• Let π : S→ A be the policy, which depicts the action the agent chooses, as in the expert
advice case.

The protocol of a general MDP proceeds in episodes z ∈ 1, . . . ,Z with Z as defined before,
where in each episode a single start state sz is revealed to the agent.

• For each time step h ∈ 1, . . . ,H, the agent acts based on the state of the current episode
and time step sh

z , where s1
z = sz.

– The agent perceives the current world state sh
z .

– The agent chooses action ah
z .

– Based on the transition function Tr, the agent moves to the next state sh+1
z .

38

3

3.3 Decision-Making

– The agent receives reward R(sh
z ,a

h
z) for its action.

Based on the definition of General MDPs, we now define two cases, namely infinite-horizon
MDPs and finite-horizon MDPs.

Definition 3.35 (Infinite-Horizon MDP). An infinite-horizon MDP is a General MDP with
γ = [0,1] and H = ∞. In this case, an agent might be taking an infinite amount of actions.

Definition 3.36 (Finite-Horizon MDP). A finite-horizon MDP is a General MDP with γ = 1
and H =N+. In this case, the number of decisions is constrained by H and the discount factor
hyperparameter is not required.

The essential properties of MDPs are as follows:

• Markovian states: Taking an action in a MDP only depends on the current state.

• Rewards: Rewards are numerical values which quantify the local value of an action in
a state.

• Stationary versus non-stationary policies: If the policy is dependent on the time step,
it is non-stationary. This might be the case for finite-horizon MDPs, as one knows
about the maximal number of actions, and can define reward- and transition functions
over time steps or directly learn time step-dependent policies.

• Full observability: We assume that we can observe all relevant features of a state to
take optimal actions.

The global quality of states and state-action pairs (i.e. an action taken in a state) are esti-
mated by value functions. Based on the latter, one can determine the policy based on an action
selection strategy, which aims to balance exploration and exploitation.

Definition 3.37 (Value functions). The state value function V : S→R quantifies the value of
a state, while the state-action value function or Q-function Q : S×A→R depicts the quality
of state-action pairs.

The Bellman equations [11] define optimal properties of value functions and constitute the
principles of dynamic programming.

Definition 3.38 (Bellman Equations). The value of a state is set according to the current
reward of the policy and the values of future state values, based on the transition probabilities.
Hence, given action a, where π(s) = a:

V (sh) = max
ah∈A

R(sh,ah)+ γ ∑
sh+1∈S

Tr(sh+1|sh,ah)V (sh+1) (3.7)

39

Chapter 3 Preliminaries

Similarly, state-action value function (also referred to as the Q-function) expresses the cur-
rent reward and the maximal future state-action value, based on the transition probabilities:

Q(sh,ah) = R(sh,ah)+ γ ∑
sh+1∈S

Tr(sh+1|sh,ah) max
ah+1∈A

Q(sh+1,ah+1) (3.8)

The goal of a MDP is to maximize the reward of the decision process. The latter is defined
as expected cumulative reward received over all actions taken (see Definition 3.39).

Definition 3.39 (Cumulative Reward for MDPs).

RCUM = E[
H

∑
h=1

Rh(sh,ah)] (3.9)

For an inexperienced agent to learn how to act, the environment needs to be explored.
Learning by interaction methods are referred to as RL, where the agent has to learn how to
deal with partial feedback for sequences of actions.

Reinforcement Learning

RL [126] studies how to learn to behave by interacting with the environment on a trial-and-
error basis (see Definition 3.40).

Definition 3.40 (Reinforcement Learning). Given a MDP, RL is the problem of an agent
having to learn a policy π by taking actions a ∈ A in states s ∈ S and receiving numerical
rewards R(s,a) in order to maximize the expected cumulative reward.

To this end, the most common way to classify RL approaches is distinguishing between
Policy Search RL, Value-based RL and Model-based RL. We now briefly discuss each type.

Policy Search RL In Policy Search RL (e.g. [141]; see [99] for an overview), one aims
to directly learn policy π and thus omits to learn a value function. This is achieved by
observing complete trajectories of a given policy (i.e. a predefined number of transitions
s1,a1,r1,s2, . . . ,sH ,aH ,rH ,sH+1) and then learning the model parameters of a policy. Simi-
lar to contextual bandit algorithms, action selection strategies are directly integrated into the
learning process. We present a Policy Search RL algorithm in Sec. 6.6.

Value-based RL Approaches in the class of Value-based RL (e.g. [140]) directly learn the
value function for states (V) or state-action pairs (Q). Other than in Policy Search RL, one
needs an explicit action selection strategy (i.e. how to use the learned value functions with
respect to the eventual policy) – e.g. the greedy policy, π(s) = max

a∈A
Q(s,a), where the action

with maximal state-action value is always selected. We present two Value-based RL algo-
rithms in Section 5.4 & 5.5.

40

3

3.3 Decision-Making

Note that there are hybrid methods using both Policy Search- and Value-based RL, referred
to as Actor-Critic RL algorithms (e.g. [94, 115]), which we do not deal with in this thesis.

Model-based RL Model-based RL methods (e.g. [21, 64, 87]) directly learn the reward
function R and transition function Tr from which one can derive V and Q with MDP Planning
techniques. Here, model refers to a MDP model, consisting of the available states as well as
approximations for the reward- and transition function, and is not to be confused with a model
in supervised learning. Exploration is usually approached by measuring the uncertainty or
estimated error in the current MDP model approximation. Model-based RL algorithms are
not covered in this thesis.

To this end, an important property of RL algorithms is whether they deal with discrete or
continuous MDP action spaces. In discrete action spaces, one can enumerate all actions and
use the Bellman equations (see Definition 3.38) to calculate the state- or state-action values.
For continuous action spaces, one could still discretize the available actions and follow the
same schema, but direct calculation of state values is not possible. Policy Search as well as
Actor-Critic RL algorithms can be directly adapted to continuous action spaces [133], while
Value-based RL algorithms are usually constrained to the discrete case. For Model-based
RL, works on continuous action spaces exist (e.g. [32]), which usually need more samples to
converge.

Finally, the last dimension for RL algorithms relevant to our work is the update frequency –
i.e. distinguishing between Online- and Batch RL approaches. The following definitions thus
align with Section 3.2.2. We begin by defining the Online RL setting.

Definition 3.41 (Online RL). Given transition (sh,ah,rh,sh+1) at time step h, use
(sh,ah,rh,sh+1) to update approximations R,Tr for Model-based RL, Q,V for Value-based
RL or π for Policy Search RL.

The Online RL setting thus requires agents to conduct immediate updates of the respective
functions. In Batch RL, function updates are deferred for a predefined number of time steps,
for which the agent follows the current policy.

Definition 3.42 (Batch RL). Given batch hyperparameter ZBATCH ∈ N+ and transitions
(sh−ZBATCH ,ah−ZBATCH ,rh−ZBATCH ,sh−ZBATCH+1, . . . ,sh,ah,rh,sh+1) at time step h, use ZBATCH tran-
sitions to update approximations R,Tr for Model-based RL, Q,V for Value-based RL or π for
Policy Search RL, given z mod ZBATCH = 0.

Another central problem in MDPs is the one of Planning, where a learned MDP model
exists but the policy has to be calculated.

Planning

Given that all possible states and actions have been explored or that we learned a MDP model
of the environment, a policy can be found by Planning in the MDP.

41

Chapter 3 Preliminaries

Definition 3.43 (Planning in MDPs). Given a model of MDP, M = 〈S,A,γ,Tr,R〉, planning is
the problem to find a policy π by only using the M, without interacting with the world.

Value iteration [11] is a straightforward technique to derive an exact solution for MDPs
with tabular state representations. The latter is inefficient for storing large state spaces (as
states are enumerated), but describes the baseline for Planning in MDPs. The basic scheme is
depicted in Algorithm 1, where the Bellman equation for state values is iteratively used for a
predefined number of time steps.

Algorithm 1 Value Iteration
Require: M = 〈S,A,γ,Tr,R〉

for all s ∈ S do
V (s)← 0

end for
for all h = 1,2, . . . ,H do

use Equation 3.38
end for

• Line 1-3: Set the state values of all possible states to zero, which requires to know all
possible world states.

• Line 4-6: Use Equation 3.38 to update the respective state value, i.e. update the latter
based on the current reward and the maximal future state value.

Complexity Analysis 3.3. A single iteration of value iteration (i.e. one time step h) ends
within O(|S|2|A|), as one has to calculate the current state value based on possible future
states. To this end, sparse transition functions considerably reduce the complexity, where
relatively few paths among states are possible. In general, value iteration needs more itera-
tions to converge the higher γ is set, as we have to account for future states occurring after
numerous transitions.

Important extensions of tabular representations are vector-based MDPs, where states are
represented as fixed-length feature vectors, and factored MDPs [53] which use PGMs to ab-
stract the state space.

Until now, we assumed that a single agent learns to choose experts or actions. We now
discuss the multiagent setting for sequential decision-making, where independent, cooperating
agents have to take actions.

3.3.3 Multiagent Decision Processes

In Multiagent Systems (MAS), multiple agents share control over the actions that are taken.
This generates several advantages, namely robustness of the system due to multiple potentially

42

3

3.3 Decision-Making

diverse agents, scalability due to the ability to distribute logic, or real-world suitability as
constraints from various parties can be modeled.

Learning in MAS settings is challenging because agents must learn to coordinate their ac-
tions and learn to communicate with each other if communication is budgeted. Based on prior
work in multiagent decision-making for multi-step problems [20, 46], we define a Multiagent
Markov Decision Process (MMDP), which studies both coordination and communication in
MAS. We restrict our definition to the finite-horizon case, but the infinite-horizon extension is
analogous to single-agent MDPs.

Definition 3.44 (Finite-Horizon Multiagent MDPs). Based on a finite-horizon MDP,
a finite-horizon Multiagent Markov Decision Process (MMDP) is defined as 8-tuple
({Sλ}λ∈Λ,Λ,{Aλ}λ∈Λ,{ACOMM

λ
}λ∈Λ,R,Tr,H,CCOMM).

• Let Λ be the agent space.

• Let Sλ be the state space of agent λ which determines what part of the global state
space λ can observe. It might be dependent on taken communication actions.

• Let Aλ be the environment action space of agent λ , where aλ ∈Aλ is similar to an action
in a MDP, where the aggregate of all environment actions yields the global action. The
choice aggregation function is dependent on the respective MMDP – an example would
be the majority vote.

• Let ACOMM
λ

be the communication action space of agent λ , where aλ ∈ ACOMM
λ

is the
equivalent of a query for another agent’s last environment action.

• Let reward function R, transition function Tr and horizon H be defined as for finite-
horizon MDPs.

• Let CCOMM ∈ N≥0 be the communication budget for each agent.

The protocol of a MMDP proceeds in episodes z ∈ 1, . . . ,Z with Z as defined for MDPs,
where in each episode a single start state sz is revealed.

• For each time step h ∈ 1, . . . ,H with H ∈N>0, the agents act based on the current state
sh

λ ,z, where s1
λ ,z = sλ ,z.

– All agents perceive their parts of the states sh
λ ,z

– All agents choose their environment action ah
λ ,z.

– All agents have the chance to choose communication actions aCOMM,h
λ ,z given bud-

get CCOMM.

– The joint action a∗ is chosen based on an arbitrary strategy (e.g. majority voting
after several communication actions).

43

Chapter 3 Preliminaries

– Based on the joint action, the agents moves to the next states Tr(sh+1
λ ,z |s

h
λ ,z,a

∗)

– All agents receive the reward of the joint action, i.e. R(sh
λ ,z,a

∗) for agent λ 3.

As all agents have to cooperatively find a single joint action, the global value functions for
a MMDP (i.e. based on the global state sz and joint action a∗) are defined equally to MDPs
(see Definition 3.37 & 3.38). Each agent still has individual state and action spaces, where
individual local MDPs could be instantiated to find a policy for the global MDP.

The MMDP is defined in general terms, where the communication protocol as well as the
reward conditions are left variable. To learn, for example, in MMDPs with perfect commu-
nication (i.e. all agents have global state information), RL extensions for MAS exist (e.g.
Q-learning for MAS [20]) which can be implemented for each agent, respectively. The sce-
nario is referred to as joint-action learner setting.

Definition 3.45 (Joint-action learner setting for MMDPs). The joint-action learner setting
studies MAS coordination with perfect communication. Given a MMDP, we set CCOMM = ∞.
Note that CCOMM = |Λ−1| might suffice to query all environment actions of all agents, given
that environment actions have to be fixed beforehand.

Definition 3.46 (Independent learner setting for MMDPs). The independent learner setting
studies MAS coordination with no communication. Given a MMDP, we set CCOMM = 0.

For budgeted communication with resulting imperfect state information, one has to attempt
to learn a communication protocol (e.g. [46]).

We, finally, turn towards methods developed for the Semantic Web to set the baseline for
situating prior decision-theoretic concepts into Web scenarios.

3.4 Semantic Web

The Semantic Web [14] describes the gradual goal of lifting the contents of the World Wide Web
(WWW) with semantic annotations to make it machine-readable, where each modeled ele-
ment is an uniquely identified resource. It consists of a set of standards and recommendations
on how to build a feasible and adequate machine-readable Web architecture. The Semantic
Web therefore reduces content ambiguity and enables rich queries to be issued against the
Web. Central driving factors for the Semantic Web are a shared model (or syntax) to struc-
ture data as well as vocabularies for generating annotations. We first deal with how data is
represented in the Semantic Web.

3Note that one could implement a different protocol where, for example, all agents receive the reward of their
environment action

44

3

3.4 Semantic Web

3.4.1 Resource Description Framework

The Resource Description Framework (RDF) 4 defines the basic elements of a graph represen-
tation to derive <subject, predicate, object> triples and is used as shared syntax to annotate
data, where all elements of the graph are represented as Uniform Resource Identifier (URI).

Definition 3.47 (Resource Description Framework, triples). Let U be the set of URIs, where
u ∈U might be either a subject (or object) or a predicate. Let B be the set of blank nodes,
where b ∈ B can be a subject or an object. Let L be the set of literals where l ∈ L can only be
an object. A RDF triple is thus defined as < s, p,o >∈U ∪B×U×U ∪B∪L. A RDF graph
then is a finite set of RDF triples G⊆U ∪B×U×U ∪B∪L.

To publish, persist and share the graph representation across the Web, different RDF seri-
alizations exist. In this work, we use the Terse RDF Triple Language (TURTLE) 5 which is
a natural and easily understandable language to model RDF graphs. Example 3.2 illustrates
TURTLE for a small RDF graph.

Example 3.2 (TURTLE syntax). We model two simple triples describing that a resource is of
class person and has an assigned name.

1 @prefix : <http://example.org/>.
2 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
3 @prefix foaf: <http://xmlns.com/foaf/0.1/>.
4
5 :Patrick_Philipp rdf:type foaf:Person;
6 foaf:name "Patrick Philipp".

Listing 3.1: TURTLE example.

Here, FOAF is the Friend of a Friend vocabulary.

Next to RDF and FOAF, we now discuss two vocabularies for modeling triples with higher
expressivity, namely RDFS and OWL.

3.4.2 RDF Vocabularies

RDF Schema (RDFS) 6 is a RDF vocabulary to construct simple ontologies. RDFS enables to
model general statements about predicates and classes, and their mutual relationships.

More expressive than RDFS is the Web Ontology Language (OWL) 7. OWL enables to ex-
tensively model classes and relationships, and assuring that individuals adhere to constraints.
In addition to modeling, OWL enables to reason about classes and relationships to derive new
knowledge.

4https://www.w3.org/RDF/ (accessed on 05/01/2018)
5https://www.w3.org/TR/turtle/ (accessed on 05/01/2018)
6https://www.w3.org/TR/rdf-schema/ (accessed on 05/01/2018)
7https://www.w3.org/TR/owl-features/ (accessed on 05/01/2018)

45

https://www.w3.org/RDF/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/owl-features/

Chapter 3 Preliminaries

We do not exploit any reasoning mechanisms in this thesis and solely perceive OWL and
RDFS as means to model RDF triples. We thus do not specifically require nor exclude their
usage, as models need to fit the respective domains and needs. Based on RDF and its TURTLE
serialization, we now shortly discuss the related Notation3 language.

3.4.3 Notation3

TURTLE is a subset of Notation3 (N3) 8 which extends RDF with logical constructs. The
log:implies predicate 9 is one such example, enabling to model implications of RDF
graphs. Example 3.3 illustrates N3 with respect to implications.

Example 3.3 (Implications in N3 syntax). We model a simple implication for the
foaf:Person example, where a FOAF predicate is mapped to its inverse predicate in the
example namespace.

1 @prefix : <http://example.org/>.
2 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
3 @prefix foaf: <http://xmlns.com/foaf/0.1/>.
4 @prefix log: <http://www.w3.org/2000/10/swap/log#>.
5
6 {
7 :Patrick_Philipp rdf:type foaf:Person;
8 foaf:made :Figure1.
9 :Figure1 rdf:type foaf:Image.

10 }
11 log:implies
12 {
13 :Figure1 :madeBy :Patrick_Philipp.
14 }

Listing 3.2: Example implication in N3 syntax.

Note that => can be used as synonym for log:implies .

We limit our discussion to implications, as we do not use other N3 constructs in this thesis.
We next discuss how to query RDF triples.

3.4.4 SPARQL

The SPARQL Protocol and RDF Query Language (SPARQL) 10 enables to query RDF triples.
Its syntax is similar to the Structured Query Language (SQL) to query relational data bases.
The basic concept to query RDF triples is a basic graph pattern (BGP), which extends RDF
with variables.

8https://www.w3.org/TeamSubmission/n3/ (accessed on 05/01/2018)
9http://www.w3.org/2000/10/swap/log (accessed on 05/01/2018)

10https://www.w3.org/TR/rdf-sparql-query/(accessed on 05/01/2018)

46

https://www.w3.org/TeamSubmission/n3/
http://www.w3.org/2000/10/swap/log
https://www.w3.org/TR/rdf-sparql-query/

3

3.4 Semantic Web

Definition 3.48 (Basic Graph Patterns). Let V be the set of all variables. A triple pattern is,
similar to a RDF triple, defined as ti :=< s, p,o >∈ V ∪U ∪B×V ∪U ×V ∪U ∪B∪L. A
BGP then is a set of triple patterns, i.e. BGP := {t1 . . . , tn}.

Example 3.4 (TURTLE syntax). Based on prior modeled RDF triples, we now illustrate a
simple SPARQL query to find the resource for a person named ’Patrick Philipp’.

1 frame=single]
2 PREFIX : <http://example.org/>
3 PREFIX rdf : <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
4 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
5
6 SELECT ?s
7 FORM <http://aifb-ls3-vm2.aifb.kit.edu:8080/test.ttl>
8 WHERE
9 { ?s rdf:type foaf:Person ;

10 foaf:name "Patrick Philipp" .
11 }

Listing 3.3: SPARQL example.

While the SELECT clause defines the variables which are to be returned, the respective
BGPs are used within the WHERE clause of the SPARQL query. The FROM clause finally
defines the RDF graph to which the query can be issued. The latter might be a simple file
containing RDF triples or a triple store, i.e. a graph-based data store. Throughout the thesis,
we generally refer to triple stores or RDF files as structured knowledge base (KB), where
the latter might consist of several independent RDF files or triple stores which have to be
integrated at run time.

We next discuss Linked Data, which describes a special class of structured data of the
Semantic Web.

3.4.5 Linked Data

As a subset of the Semantic Web, Linked Data deals with publishing and interlinking struc-
tured data. The Linked Data Principles [18] are as follows:

• Use URIs as names for things.

• Use URIs accessible via the Hypertext Transfer Protocol (HTTP) to enable people to
look up names.

• Provide useful information for URI lookups using standards, such as RDF and
SPARQL.

• Include links to other URIs to discover more things.

47

Chapter 3 Preliminaries

The principles essentially describe how to structure Web data, such that the latter becomes
useful for users as well as Web agents (e.g. automated Web services). This is achieved by
using URIs to describe individual resources, which can be easily accessed, return structured
data describing the resource and link to related resources.

Based on the introduced concepts for the Semantic Web, we now turn towards Web services
and how they can be lifted to structured representations.

3.4.6 Services in the Semantic Web

A Web Service encapsulates task-specific behavior, where an input of arbitrary complexity is
processed to generate an output. The service is then deployed on the Web such that it can be
universally accessed. We restrict our perception of Web Services to information services [121]
and subsequently define the latter (see Definition 3.49). Throughout this thesis, we perceive
an information service as the equivalent of a solution function for a step (i.e. an expert) in a
multi-step task, exposed as Web service.

Definition 3.49 (Information service). An information service is a black-box with set of input
parameters, which generates a hypothesis based on a given set of input parameter bindings.
Input parameters refer to the needed inputs for the information service which are defined
in an arbitrary service description. Information services thus return dynamically derived
hypotheses which are calculated during the service call. Executing (referred to as querying)
an information service must not change any state of any entity, i.e. no task instances or data
points are being modified. Information services thus do not have any side effects.

With the rise of the Semantic Web, the idea to enrich available description languages and
execution frameworks with semantic concepts came up naturally. Numerous approaches to
Semantic Service architectures and -description languages exist (see Section 4.3.1 for an
overview and a discussion). We focus on an instance of Semantic Web Services [121] called
Linked APIs (LAPIs) [121, 122], where API refers to Application Programming Interface,
corresponding to the access to a Web Service.

Definition 3.50 (Linked API). A LAPI is an information service for which the following con-
ditions must hold:

• SPARQL graph patterns (i.e. BGPs) are used to describe inputs and outputs of the
service.

• Use RDF as communication means by RESTful content negotiation.

• The output should explicitly provide links to the inputs.

LAPIs enable to encapsulate complex functionalities and make the latter easily accessible
by exposing preconditions and postconditions as Linked Data. Here, conditions are modeled
as BGPs, where the same variables should be used for preconditions and postconditions to

48

3

3.4 Semantic Web

express the relations between inputs and generated outputs. RDF communication is enabled
via Representational State Transfer (REST) [42], promoting the use of HTTP methods for
services on the Web. HTTP GET requests can then be directly used to retrieve structured
content provided by the respective LAPI or its description. Content negotiation, here, enables
to request and link to specific RDF serializations. If LAPIs require to send structured content
in order to correctly call them, HTTP POST or PUT requests are used, where RDF graphs can
be sent in a specified syntax.

49

4

Chapter 4

Related Work

In this chapter, we discuss the related work for the learning- as well as the automation prob-
lem for multi-step tasks with expert advice. We start by discussing related work for the learn-
ing problem and begin with multi-step tasks in Single-Agent Systems (SAS) in Section 4.1,
where we further distinguish between learning and service-related works. We then deal with
works for multi-step tasks in MAS (Section 4.2) and distinguish between MAS approaches
for SAS tasks and MAS approaches for MAS tasks. We finally discuss related works for the
automation problem (Section 4.3), where we align our work with regards to available service
descriptions, decision-theoretic frameworks and workflow systems.

4.1 Multi-Step Tasks in Single-Agent Systems

In Part II of this thesis, we deal with the learning problem and start by proposing the EP
framework as well as two RL algorithms to learn weights for experts (Chapter 5 & 7). We
thus first situate EPs into well-established decision-theoretic frameworks of SAS and compare
our approaches to related SAS techniques. We then focus on service selection and ranking
techniques which enable to learn expert service weights.

4.1.1 Learning- & Decision-Theoretic Approaches

Decision-Making with Multi-Step Expert Advice maps to a SAS, where one agent controls all
actions (i.e. experts), and is related to several decision-theoretic frameworks. (i) Prediction
with expert advice [27] studies one-step expert advice, where we are able to observe the re-
wards of all queried experts. However, since there is a budget for querying experts we need
to take decisions inbetween steps. There are overlaps with (ii) budgeted expert advice [3],
where not all experts can be queried and only a subset of expert hypotheses and rewards are
observed, and (iii) contextual bandits [6], where all experts are executed, but only the chosen
action is rewarded. In addition, as we deal with decision processes over multiple steps, (iv)
Contextual Decision Processes (CDPs) [77] are strongly related to EPs, as they approach the
multi-step contextual bandit problem. While a single action needs to be chosen in both EPs
and CDPs, one receives rewards for all available actions in EPs. EPs still deal with a partial
label problem, as not all experts can be executed for each step.

51

Chapter 4 Related Work

Knowledge-based trust [35] extends knowledge fusion approaches [34], which combine the
outputs of multiple triple extractors and is thus an instance of (i), where a combination func-
tion over experts is learned based on heterogeneous data. While we do not deal with problem
settings where input data might be flawed, our approach could be integrated into knowledge-
based trust by providing accurate confidence measures for available triple extractors.

To determine the accuracy of experts in an i.i.d. setting, [105, 106] use pairwise error
independence measures between binary classifiers without requiring labeled data (i.e. they
use unsupervised learning) and also fall under (i). We do not solely rely on unlabeled data,
but leverage collective inference to integrate labeled and unlabeled data. In addition, experts
are allowed to perform worse than average in EPs, which is not possible for the unsupervised
case.

The algorithm selection problem has widely been studied for combinatorial search prob-
lems [75] or within automatic machine learning (AutoML) [41, 128], and was originally stated
by [111]. It deals with weighting a set of available algorithms (similar to experts) based on
available training sets, where to goal is not to execute all available algorithm configurations
while learning. The algorithm selection problem thus is a special case of (ii) and (iii), as high-
dimensional state spaces are dealt with and a budget is imposed during the learning phase.
AutoML entails automating feature selection, algorithm selection and hyperparameter opti-
mization and thus falls under (iv), as (in addition to algorithm selection) one has to deal with
multiple steps. While, for example, used Bayesian optimization techniques share numerous
overlaps with strategies to balance exploitation and exploration needed for EPs, we focus on
guiding the decision process for single states, where a single state often entails to take a num-
ber of decisions (referred to as decision candidates) – in NLP, for example, a single state or
data point is a piece of text, where individual decisions might have to taken for each token.
More specifically, the set of available hyperparameters in AutoML is assumed to be known in
advance, which is not the case for decision candidates in EPs.

While ensemble learning deals with learning functions over individual models, meta-
learning [22] aims to optimize the application of experts to new data sets based on perfor-
mance histories and meta-features describing the data sets. Both types of approaches can be
seen as batch versions of (i). Our work, however, focuses on selecting experts for specific data
points, which requires finer-grained expert weight functions and novel feature representations.

We finally distinguish our work with respect to state representations used for modeling
the decision process. Tabular representations are the most basic, quickly yielding large state
spaces. To this end, Relational Markov Decision Processes (RMDPs) [38, 65] enable to fac-
torize state and action spaces by allowing relational structures. The resulting representations
are compact and can be used with relational extensions of prominent RL algorithms – broadly
referred to as Relational Reinforcement Learning (RRL) (e.g. [37, 38, 65]) – or Planning al-
gorithms, such as a relational lifting of value iteration [66]. In EPs, we also exploit relational
state- and action spaces in terms of meta dependencies, which are pairwise expert features
for single decision candidates, but our goals for the learning problem significantly differ from
RRL. We exploit relational measures between experts and data points, where the goal state

52

4

4.2 Multi-Step Tasks in Multiagent Systems

is not explicitly known a priori, i.e. it is not clear which expert or combination of experts
suggests the correct action for a given state (and its decision candidates).

4.1.2 Service Approaches

To select and rank appropriate services, different approaches exist which all fall under (i)
of decision-theoretic frameworks. A straightforward way to use Quality-of-Service (QoS)
parameters for service ranking is by Simple Additive Weighting [5, 145], where the preference-
weighted combination of QoS parameters is used. To alleviate sparse representations of users,
link prediction based on user similarity matrices is an effective way to select appropriate
services [129]. In a similar vein, pairwise service measures can be used to retrieve rankings
of services [147, 148], which is also studied for limited information settings [57]. To rank
services without pairwise measures, clustering techniques such as k-Means can be applied to
QoS parameters [88]. The latter also enable the use of decision trees, where historic logs are
modeled as rules [26]. To select and combine analytics services based on available data sets,
a simple approach is to simplify multi-step problems to service bundles and weight the latter
by a static accuracy estimate calculated via cross-validation [113].

All prior methods share similarities to our approach, where services are individually as-
sessed by – among others – pairwise service measures. The latter are, in our case, dependent
on neighborhoods of specific data points, as we only optimize for QoS parameter accuracy.
All prior methods, however, do not learn weights for individual decision candidates and do
not deal with multi-step learning problems.

4.2 Multi-Step Tasks in Multiagent Systems

In Chapter 6 & 7, we argue that the single-agent assumption does not specifically deal with
resolving expert correlation and might not be adequate for numerous real-world systems. We
now additionally deal with advances in MAS which are related to multi-step expert advice.
We first compare our approach to MAS for single-agent tasks and subsequently turn to MAS
for Multiagent tasks .

4.2.1 Multiagent Systems for Single-Agent Tasks

For multi-step problems, centralized multiagent learning has recently been proposed [82, 134]
within the Separations of Concerns (SoC) framework. By having specialized agents learn dif-
ferent parts of a complex reward function, the goal is to speed up the learning process. The
predictions of the individual specialized agents depend on the RL scenario (i.e. model-based,
value-based or policy search) and are eventually integrated by a combination function of a
centralized meta agent. The framework generalizes – among others – Hierarchical Reinforce-
ment Learning (HRL) [9, 33], where agents are organized in hierarchical structures such that

53

Chapter 4 Related Work

agents higher in the hierarchy select agents beneath them. In MEPs, we do not assume a cen-
tralized meta agent to coordinate all agents, which requires agents to actively coordinate their
actions. We additionally approach multiagent coordination in a designated decision process,
where available agents can adapt their actions several times until the joint action is fixed.

4.2.2 Multiagent Systems for Multiagent Tasks

A central aspect for cooperative MAS is the degree of information available to individual
agents. In the independent learner setting (see Definition 3.46), agents attempt to coordinate
without the knowledge of other actions and are not allowed to communicate [61, 62, 90]. In
the joint-action learner setting ((see Definition 3.45)), actions have perfect knowledge about
all taken actions [25, 29]. Here, the joint action is rewarded for all agents, but penalization
might occur if no consensus was reached. For the joint-action learner setting, managing agent
communication is a central problem, where communication can be modeled as separate ac-
tion space (e.g. [46]). In this work, we assume the joint-action learner setting and assume
communication is either assumed to be perfect (e.g. due to a centralized controller who only
distributes information) or has already taken place in an optimized manner to yield perfect
information.

Approaches to decentralized Multiagent multi-step coordination problems [20, 83] par-
tially extend MDPs by partitioning the action space according to available agents, resulting in
MMDPs (see Definition 3.44). Distributed variants of Q-Learning are often used to learn both
independent as well as joint-action policies [25, 83]. In general, MAS involving autonomous
coordination among cooperating agents have been studied for different domains and tasks,
such as work load allocation [74] or goal searching robots [146]. In a similar vein, Multiagent
Relational Reinforcement Learning [30, 107] extends RRL to the multiagent case and thus
enables speeding up the learning process by compact relational state and action spaces. An
essential difference in MEPs is the possibility of active coordination, which is an additional
decision process to enable agents to react to the current weighted majority vote. In order not
to lose expressiveness, active coordination assumes continuous action spaces which enable
agents to adapt the weights for their experts. Here, policy-based RL techniques often work
better than value- or model-based ones, as convergence is usually faster.

Swarm intelligence approaches for decentralized Multiagent coordination [146] focus on
aligning single-agent strategies with the current weighted majority vote. The goal is to exploit
high local agent weights to influence non-informed cooperating agents (i.e. agents with low
local weights). Active coordination, as pursued in MEPs, is directly inspired by swarm in-
telligence, as agents either persist on their experts’ strategies or follow the weighted majority
vote, thus aligning their actions. We, however, extend techniques proposed in [146] to take
into account the current context (i.e. available state information and pairwise agent behavior)
as well as to learn policies in a RL setting.

From a Web service perspective, MAS involving autonomous coordination among coop-
erating services [1, 54, 116] work towards self-organization, where Web architectures, agent

54

4

4.3 Multi-Step Tasks on the Web

types and communication protocols are developed. The focus, however, is put on system-
and composition aspects. The central idea of our work for the learning problem is to develop
supervised methods for expert weight estimation, which enable agents to self-organize.

4.3 Multi-Step Tasks on the Web

Part III of this thesis deals with the Web automation problem for multi-step expert advice.
We divide related works into (i) description languages for Web services, (ii) frameworks for
decision-making and (iii) workflow systems.

4.3.1 Semantic Web Service Description Languages

While there is a large body of works covering non-semantic Web service descriptions (e.g. the
Web Service Description Language (WSDL) [28]; see [110] for an overview), we restrict the
comparison to semantic descriptions, as the latter depict an important step towards machine-
readability and are the closest to our work (see [135] for a complete overview).

Semantic Annotations for Web Service Description Language (SAWSDL) [72] is a seman-
tic extension to WSDL (based on WSDL-S 1, an early semantic extension for WSDL), which
however neglects to describe functional relationships between inputs and outputs. To this end,
the Web Service Modeling Ontology (WSMO) [112] and OWL-S [89] are based on OWL,
enabling to model more expressive descriptions. However, both require complex models even
for simpler services and – similar to WSMO-Lite [137] which extends SAWSDL with con-
ditions and effects – suffer from inexact input/output mappings as pointed out by [123]. We
thus rely on LAPIs, where preconditions and postconditions are modeled as BGPs, and on the
Minimal Service Model (MSM) description language [73] 2, a lightweight ontology with base
elements for structured service descriptions.

Closely connected to service languages is the Open Provenance Model for Workflows
(OPMW) [50] ontology, which is based on the Open Provenance Model (OPM) 3 and provides
essential elements to describe workflow-related provenance metadata. As OPMW might be
used to document the outcomes of LAPI executions, it does not compete with our work but
potentially extends our generated provenance metadata.

4.3.2 Decision-Making Frameworks & Applications

The Stanford Research Institute Problem Solver (STRIPS) [43] comprises all functionalities
for problem solving, i.e. a formal language to describe actions and a planner to choose actions
given states. STRIPS requires actions to consist of an add list, a delete list and a precondition.

1https://www.w3.org/Submission/WSDL-S/ (accessed on 05/01/2018)
2http://iserve.kmi.open.ac.uk/ns/msm/msm-2014-09-03.html (accessed on

05/01/2018)
3http://open-biomed.sourceforge.net/opmv/ns.html (accessed on 05/01/2018)

55

https://www.w3.org/Submission/WSDL-S/
http://iserve.kmi.open.ac.uk/ns/msm/msm-2014-09-03.html
http://open-biomed.sourceforge.net/opmv/ns.html

Chapter 4 Related Work

By adding or deleting state conditions, one can express impacts of actions. STRIPS is the
baseline for multiple decision-making methods, such as Problem-Solving Methods (PSMs) or
MDPs, which we now integrate into our work.

PSMs [12, 108] are closely connected to STRIPS as well as to our work. PSMs describe
highly parameterized algorithms which, in conjunction with expert knowledge, are able to
solve real-world tasks. Similar to our work, PSMs are described in terms of functional spec-
ifications, requirements and operational specifications (i.e. the preconditions and postcondi-
tions). To this end, the Unified Problem-solving Method Language (UPML) [40] enables to
graphically model and semantically describe PSMs, which supports both reusing and adapt-
ing available PSMs. While several PSMs can be easily composed and combined to solve
multi-step tasks, the resulting learning problems are not dealt with.

Usually, Planning (see [55] for an overview) involves finding a policy which suggests the
optimal action for each possible world state. For tasks involving uncertainties with respect
to action outcomes, stochastic STRIPS enables to assign probabilities to actions. To this
end, MDPs deal with learning the parameters of stochastic STRIPS tasks, which we use as
decision-theoretic baseline for our work.

Planning techniques have been applied to Semantic Web services before (see [70] for an
extensive overview). Approaches to enable dynamic orchestration of Semantic Web services
comprise – among others – Hierarchical Task Networks (HTN) [69, 118] or OWL reasoning
[117]. MDPs have been applied to compose non-semantic Web services [36], but the reward
function was solely dependent on static Service Level Agreements (SLAs). There are, to the
best of our knowledge, no works for Semantic Web services and MDPs to deal with dynamic
rewards based on task instances, as is the case for multi-step expert advice. We thus introduce
SEPs which extend EPs with semantic annotations and allow to further distinguish among
abstract and grounded tasks.

To this end, it is important to point out that SEPs share several similarities to an extension
of RMDPs to multi-step expert advice on the Semantic Web. Here, Logical Markov Decision
Programs (LOMDPs) [65] assume manually modeled state- and action spaces, which might
consist of numerous abstract or grounded relations. Logical rules are then used to define
(stochastic-) transitions and assigned rewards. In SEPs, semantic experts can be interpreted
as to providing similar STRIPS-like rules, consisting of RDF triples. We show that, equal
to LOMDPs, SEPs can be reduced to discrete MDPs but do not exploit relations to speed up
Learning or Planning. Using relational MDPs, such as LOMDPs, could thus improve planning
in SEPs if one can guarantee a direct mapping to the former. We discuss this challenge in detail
in terms of future works of the thesis (see Chapter 11).

4.3.3 Workflow Systems

There is ongoing research in workflow systems which enable to describe and execute experts
(and expert services) of different kinds. Pegasus [31] is a workflow management system able
to map abstract pipelines for simulation data analysis to distributed computing environments.

56

4

4.3 Multi-Step Tasks on the Web

In a similar vein, FireWorks [59] focuses on enabling workflows to be executed on super-
computers. AKSALON [39] enables to define grid workflow applications via a graphical user
interface or directly via XML, thereby easing the use of grids. dispel4py [44] is a Python-
based framework to enable workflows for data streams, especially for distributed computing.
Makeflow [2] enables to define workflows based on Unix Make, which are suitable for data-
intensive distributed computing applications. Finally, Web service workflows are approached
by the LanguageGrid project 4, where diverse NLP experts are integrated from various insti-
tutions. All mentioned workflow systems are sophisticated approaches to compose services,
but do not focus on decision-making for single data points (i.e. decision candidates) or exploit
semantic annotations.

Taverna [97], on the other hand, is a scientific workflow system supporting process pro-
totyping by creating generic service interfaces and thus easing the integration of new com-
ponents. Lightweight semantic descriptions modeled in RDF are used to better capture the
view of the scientists. Taverna is also able to integrate data from distributed sources and auto-
mate the workflow creation process for users. Taverna was successfully used in the PANACEA
project 5 for NLP tasks. Our work is strongly related to Taverna in terms of using RDF to
describe (NLP-) services. Service selection then equals constructing SPARQL queries, where
our architecture diverges from Taverna with regards to using supervised learning to optimize
the selection for single data points. Similarly, Galaxy [19] enables to conduct sustainable
and reproducible workflow experiments based on well-defined services and been successfully
used for the LAPPS Grid project 6, where numerous NLP services have been implemented,
semantically described using JSON-LD 7 and published on the Web. Our work shares many
overlaps with both Taverna and Galaxy, but differs in the use of semantic meta components
to combine and plan under uncertainty. Our architecture could greatly benefit from reusing
semantically annotated NLP services of prior projects.

The work centered around semantic workflows [52] aims to enable the automatic compo-
sition of components in large-scale distributed environments. Generic semantic descriptions
support combining experts by Ensemble Learning, but require to specifiy conditions and con-
straints. The framework also automatically matches components and data sources based on
user requests and uses prior mentioned OPMW ontology for provenance generation. We also
employ Planning techniques but build our work on MDPs, which are based on environmental
feedback and enable to approach our learning and automation problems. To this end, we also
deal with optimization for multi step tasks, which is not covered by semantic workflows. We
rely on training sets to execute and test experts, which might be annotated by OPMW.

In [144], abstract workflows are created as domain models, formalized using OWL, to
enable dynamic instantiation of real processes. The components can be reused in another
context or process, and their abstract representations can be shared across the Web through

4http://langrid.org/ (accessed on 05/01/2018)
5http://www.panacea-lr.eu/ (accessed on 05/01/2018)
6http://www.lappsgrid.org/ (accessed on 05/01/2018)
7http://json-ld.org/ (accessed on 05/01/2018)

57

http://langrid.org/
http://www.panacea-lr.eu/
http://www.lappsgrid.org/
http://json-ld.org/

Chapter 4 Related Work

OWL classes. The authors rely on triple patterns to select appropriate annotated components
for steps, but only exploit owl:subClassOf relationships to enable generalization. The
approach thus does not deal with uncertainties. With SEPs, we are able to use lightweight se-
mantic annotations (in contrast to OWL), while also generalizing the performance of experts
using RL, assuming available training sets.

Finally, automatic composition of analytical workflows is studied in [16]. The system es-
sentially uses a planner, a leaner and a large KB to solve tasks. A large amount of potential
workflows are taken into account to answer a user specified query with the optimal choice.
The decision process comprises complex Learning and Planning approaches, and entails ex-
ploring large feature spaces. Lastly, atomic actions are lifted with semantic annotations to
better adapt to user queries. The proposed system, similar to our work, assesses experts in
terms of labeled data and uses a planning engine to compose experts given a user query. The
system, however, does not enable flexibility with respect to available learners and planners. In
addition, weights for experts are not adapted for individual decision candidates, as the system
relies on global ensemble functions. Finally, central properties for optimizing multi-step tasks
are ignored, such as the impact of current hypotheses on future steps.

58

Part II

Learning

This part of the thesis deals with the learning problem, where we deal with research ques-
tions about choosing and combining experts for multi-step tasks in order to maximize the
number of correct solutions. We begin by defining the central framework of this thesis – EPs
– and subsequently present two RL approaches for learning expert weights (Chapter 5). We
then present an extension of EPs to the Multiagent setting – i.e. MEPs – where we present
methods to coordinate expert weights in order to reduce expert correlation (Chapter 6). We
evaluate our approaches for both EPs and MEPs in Chapter 7 based on the NERD scenario.

5

Chapter 5

Learning with Expert Processes

This chapter proposes the EP framework as solution to Research Question 1, dealing with
an appropriate decision-theoretic model to capture challenges for multi-step tasks with expert
advice. We respectively state in Hypothesis 1 that we need to enable learning global expert
weights for individual data points such that combined and weighted expert hypotheses maxi-
mize the overall performance and that the exploration-exploitation problem is central. To this
end, we also approach Research Question 2 by introducing two methods for learning expert
weights in EPs. In Hypothesis 2, we target relational feature spaces for expert weights, which
can be used for RL algorithms. To confirm Hypothesis 1 & 2, we empirically evaluate the
learning methods (and thereby the EP framework) in Chapter 7.
Our reference for this chapter is [100].

5.1 Introduction

An increasing amount of experts become available via service provider platforms such as
Algorithmia, enabling to reuse and compose them for complex real-world applications, such
as multi-step tasks. The availability of exchangeable experts for a single step of a multi-
step task highlights its difficulty, as individual experts often generate wrong hypotheses for
at least a small subset of all available data points. Here, the average number of mistakes
often significantly differs for different data distributions. To this end, one needs to weight
exchangeable experts for individual data points in order to (i) choose a subset of available
experts to deal with expert budgets and to (ii) find the correct hypothesis of the queried experts
which supports to solve the multi-step task.

In addition to dealing with exchangeable experts, we also have to take into account how
experts perform in a sequence, as slight changes in inputs often have significant influence
on the correctness of an expert’s output. Even more so, experts in each but the last step are
allowed to make small errors as long as the eventual solution is correct, which needs to be
taken into account when learning their weights.

Well-established decision-theoretic frameworks partially deal with these problems, includ-
ing prediction with expert advice, budgeted expert advice, contextual bandits and CDPs (see
Section 4.1.1 for a detailed discussion). Still, none of the frameworks cover the problem of
Decision-Making with Multi-Step Expert Advice at once.

61

Chapter 5 Learning with Expert Processes

Figure 5.1: Multi-Step Expert Advice in an Expert Process with a) the formal process and b)
a NLP example for NERD.

In this chapter, we define the EP to bridge this gap. EPs enable to learn fine-grained expert
weights by considering the impact of current decisions on future experts, while not being
overly restrictive in rewarding outcomes. Figure 5.1 a) illustrates EPs in terms of their schema.
EPs extend MDPs (see Definition 3.34), which model the general sequential decision-making
setting. In an EP, world states (variable sh) belong to a single step and are partitioned into
decision candidates (variable dsh), which are distinct parts of the world state the agent has to
interpret. Actions (variable dah) for decision candidates can only be generated by available
experts. The agent has to query a subset of experts (variable eh

i) and then choose among
the hypotheses of experts, after which it receives a reward and perceives the resulting state
(variable sh+1).

Based on the schema of an EP, we now discuss the illustrated NLP application to step NER
(see Figure 5.1 b)).

62

5

5.1 Introduction

Example 5.1 (EP example for step NER). Step 1 for multi-step task NERD is NER, where
an agent perceives states comprising text and has to find available named entities – an exem-
plary state might be s1 = "Michael Jordan plays basketball.". To find possible
action to choose from, an agent needs to query available NER experts for (parts of) the state.

Let us assume two generic NER experts e1,e2 which are both queried (ignoring
a possibly predefined budget which limits the query to a single expert) and produce
e1(s1) = "<e>Michael Jordan</e> plays basketball.", i.e. e1 suggests
action a1 = {("Michael Jordan", <e>Michael Jordan</e>)}, and e2(s1) =
"<e>Michael Jordan</e> plays <e>basketball</e>.", i.e. e2 suggests ac-
tion a2 = {("Michael Jordan", <e>Michael Jordan</e>),("basketball",
<e>basketball</e>)}.

As NER is not the last step of NERD and the agent still needs to query NED experts to
find possible mappings from named entities to resources in a given KB, the agent has to keep
a probability distribution over all actions and resulting states, and needs to choose a single
action for which it gets a reward. Given the budget for experts, the agent then queries NED
experts based on all possible (weighted) states, as the agent has to learn how to best query
experts.

To this end, we construct relational feature spaces, referred to as meta dependencies, which
quantify the predictive performance of experts for decision candidates. Relational measures
are promising to overcome generalization problems for heterogeneous data distributions, for
example available for text or images. These problems partially stem from assuming models for
data to be i.i.d., limiting generalization for individual data points. We use meta dependencies
as state representation for an Online- and a Batch RL approach, where we extend the EWH
algorithm for efficient expert weight updates as well as use Probabilistic Soft Logic (PSL)
[24, 67] for collective inference. Combining relational features and supervised learning is
related to stacked generalization (see Definition 3.26), where the central difference is using
relations among learners other than using their outputs directly. This is important, as the set
of possible decision candidates is intractable to use as feature representation for certain steps,
e.g. NED.

5.1.1 Challenges

The central challenges approached in this chapter are summarized subsequently and refer to
the challenges defined in Sec 1.2.

• As querying experts often entails costs, one usually does not want to execute a large
number of exchangeable experts. However, choosing only a single expert might result
in wrong or unusable hypotheses for the current as well as later steps. Even more so,
when learning to assess experts with supervised learning, querying a single expert (or a
small subset of available experts) might result in missing feedback (Challenge 1).

63

Chapter 5 Learning with Expert Processes

• Local optimization for individual steps often fails when experts perform better with
inexact inputs (Challenge 2).

• Generating training samples for learning expert weights requires experts to be executed
on training sets. For multi-step tasks, random execution of experts is potentially harm-
ful, as experts of later steps are executed in an uncontrolled manner (Challenge 3).

• When labeled data sets are small, it is difficult to engineer or learn well-working feature
representations for unstructured data (such as text or images). (Challenge 4).

5.1.2 Contributions

Based on these challenges, we now summarize our contributions.

• We provide a formalization for EPs, aligning them with prominent decision-theoretic
frameworks which allow to deal with multi-step problems, where feedback is only par-
tially available. EPs enable to solve multi-step tasks with expert advice with RL algo-
rithms (Contribution 1).

• We define and use meta dependencies as feature representation for learning, which en-
able to integrate other, potentially high-dimensional feature representation as well as
exploiting pairwise expert behaviors (Contribution 2.1).

• We present two RL approaches, namely Online RL based on the EWH algorithm and
Batch RL using PSL. The EWH algorithm scales well, even when a large number of
experts are available. PSL, on the other hand, is able to exploit meta dependencies with
respect to pool-based prediction as well as collective inference (Contribution 2.2).

• We instantiate our approaches for task NERD and empirically evaluate it against mono-
lithic real-world systems as well as available expert combination approaches in Chap-
ter 7.

The chapter proceeds as follows: We first formalize EPs (Section 5.2) and introduce meta
dependencies for experts and data points (Section 5.3). We then present an Online RL and a
Batch RL approach to solve EPs in Section 5.4 & 5.5. We finally summarize this chapter in
Section 5.7.

5.2 Problem Formalization

Given a finite layered multi-step task (see Definition 3.2 & 3.4), we now define a decision
process given the introduced challenges for multi-step expert advice. More specifically, we
now introduce EPs which extend MDPs with the availability of decision candidates, experts
as well as less restrictive budgets.

64

5

5.2 Problem Formalization

Definition 5.1 (Expert Processes). An EP extends a MDP and is a 8-tuple
(S,E,A,γ,Tr,R,H,CEXP).

• Let S be the set of all states, where S = S1∪ S2∪ . . .∪ SH+1 consists of H + 1 disjoint,
heterogeneous state spaces. A state sh is thus uniquely assigned to a step and can be
represented in any form, e.g. as a set, sequence, vector, graph or otherwise. Each state
sh has a set of Dh decision candidates 1sh, . . . ,Dh

sh, i.e. Dh decisions need to be taken
for sh.

• Let Γ is the tart state distribution, i.e. Γ ∈ ∆(S1).

• Let A be the set of all possible actions.

• Let E be the set of all experts, where an expert e ∈ Eh is a function eh : Sh→ AR with
AR ⊆ Sh× Sh+1 an action relation for mapping decision candidates between two state
spaces. Possible actions dah

j ∈ dAh for dsh are defined as follows

dAh := {dsh+1|∃eh ∈ E : (sh,sh+1) ∈ eh(sh)} (5.1)

With slight abuse of notation, we use the expert function to return the suggested action
of expert eh for state sh, i.e. eh : Sh → A, as it eases demonstration of our proposed
methods as well as alignment with works in other fields, such as prediction with expert
advice, contextual bandits or MDPs.

• Let we : S→R the expert weight function, which quantifies the expected quality of the
expert’s action for a state.

• Let γ ∈ [0,1] be the discount factor hyperparameter.

• Let Tr : Sh×Ah → Sh+1 be the deterministic transition function. As EPs are acyclic
(based on the definition of a layered finite multi-step task), Tr(sh,ah) will always result
in sh+1.

• Let R : Sh×Ah → [0,1]D
h

be the reward function. The reward in an episode, rh
z , is a

vector of local feedback received after choosing action ah in state sh, i.e. the vector
contains feedback for each decision candidate.

• Let H ∈N+ be the number of steps.

• Let Ch
EXP ∈ N+ be the budget per step. It confines the number of state-expert pairs

(eh,sh) one is allowed to query in step h.

• Let π : S→ A be the policy, which maps states to actions.

65

Chapter 5 Learning with Expert Processes

Figure 5.2: Schema of EPs in the MDP framework.

Figure 5.2 illustrates EPs in the RL framework, extending Figure 5.1 with a feedback loop.
It illustrates a single step of an EP, where the agent observes the current state sh, has to choose
among experts eh

1, . . . ,e
h
N in order to find action ah, and finally observes the new state sh+1 and

receives reward rh+1. Note that respective states consist of decision candidates dsh, which are
omitted in the figure.

The EP protocol of an EP proceeds in episodes z ∈ Z, where for each episode z the process
goes through all steps. In each step h for h = 1, . . . ,H:

• We are given Ŝh (dependent on episode z).

• Build state-expert pair distribution PEXPERT(sh,eh).

• Choose and query Ch
EXP state-expert pairs (sh,eh) and retrieve ah

1, . . . ,a
h
M.

• Build state-action distribution PACTION(sh,ah) based on Ŝh and Âh, with Âh = {ah|dah ∈
dAh}, containing all possible actions based on ah

1, . . . ,a
h
M.

• Choose (sh,ah) and receive R(sh,ah), but observe all residual rewards, i.e ∀(ŝh, âh) :
R(ŝh, âh) 1.

• If h < H then set Ŝh+1 = {sh+1|sh+1 ∈ Âh}.

We now define the value functions for EPs, which express optimal characteristics of states
and actions. The state-action value function for a MDP (see Definition 3.38) expresses the ex-
pected value of a state and action by considering possible future states and actions. We express
this condition via expert weights, such that the state-value function is defined as weighted ma-
jority vote of experts.

1Feedback might be available in retrospect at h = H+1.

66

5

5.2 Problem Formalization

Definition 5.2 (State-action value function in EPs). The state-value-function, Q : S×A→R,
for taking an action ah in sh is defined as aggregation of expert weights, which suggest action
ah.

Q(sh,ah) = ∑
ds∈sh

∑
e∈Eh

we(
ds)∗1{e(ds)=dah} (5.2)

The state value function is analogously defined. Here, we only aggregate the respective
expert weights for the respective state. The intuition is that a state has high value if numerous
experts are estimated to perform well.

Definition 5.3 (State value function-, State-value distribution in EPs). The state value function
V : S→R is defined as follows:

V (sh) = ∑
dsh∈sh

∑
eh∈E

wdeh(dsh) (5.3)

As an expert weight should ideally express the current reward current state and for value
for future states and actions. This is essential for a multi-step task, as we need to find global
optima with respect to task solutions.

Definition 5.4 (Expert weights in EPs). An expert weight is defined via the local reward of
the suggested action and the sum of maximal Q-values of actions for the resulting states.

weh(dsh) = R(dsh,eh((dsh))+ γ ∑
ah∈Ah

d sh

Tr(sh+1|sh,ah) max
ah+1∈Ah+1

Q(sh+1,ah+1) (5.4)

where Ah
dsh = {ah|ah ∈ Ah : eh(dsh) ∈ ah} is the set of all possible actions and, as we deal

with finite multi-step tasks for the learning problem, the discount factor is fixed, i.e. γ = 1.

Given the state-action value function, we define the state-action distribution
PACTION(sh,ah), which expresses the probability for an action a to be chosen in state s, based
on the state-action value. The state value distribution is analogously defined.

Definition 5.5 (Probability distributions in EPs). The state-action distribution PACTION : S×
A→ [0,1] is defined as the normalized state-action value function estimate.

PACTION(sh,ah) =
Q(sh,ah)

∑s′∈Ŝh ∑a′∈Ah Q(s′,a′)
(5.5)

where Ŝh is the set of possible states.

The state value function PSTATE : S→ [0,1] is defined as the normalized state value function
estimate.

67

Chapter 5 Learning with Expert Processes

PSTATE(sh) =
V (sh)

∑s′∈Ŝh V (s′)
(5.6)

Finally, the distribution over (state,expert) pairs PEXPERT(sh,eh) is constructed based on
normalized expert weights for a single decision candidate.

Definition 5.6 (State-expert distribution in EPs). The state value function PEXPERT : S×E →
[0,1] is defined as the normalized expert weight for a state.

PEXPERT(sh,eh) =
∑ds∈sh weh(ds)

∑s′∈Ŝh ∑ds′∈s′ ∑e′∈Eh we′(ds′)
(5.7)

The reward of the decision process RCUM expresses the expected cumulative reward, similar
to finite-horizon MDPs (see Sec 3.39) extended with decision candidates.

Definition 5.7 (Cumulative reward for EPs). The overall reward of an EP RCUM : S×A→R

is defined as:

RCUM = E[
H

∑
h=1

Dh

∑
d=1

Rh(dsh, dah)] (5.8)

The goal in an EP is to learn how to act in the given decision process, i.e. finding the
optimal policy π∗ which maximizes RCUM and, therefore, the number of correct solutions for
the respective multi-step task. Learning to balance exploration and exploitation, appears in
EPs in terms of learning which experts to query for which states, which can be approached
with RL.

It is important to note that we do not assume an EP to be realizable. As a consequence, it is
possible that none of the available experts returns the correct action for any state configuration.
This makes learning more difficult, as one searches for unavailable positive rewards for the
available actions.

In this chapter, we are interested in learning weights weh for experts, constrained by a bud-
get Ch

EXP. This entails continuously or periodically improving policy π while collecting sam-
ples (sh,eh), as the sample collection process directly influences the quality of the learned
weights and vice versa. For learning weh , we exploit available state spaces by calculating meta
dependencies for experts and decision candidates. We now introduce the concept of meta
dependencies, which is our feature representation for learning expert weights.

5.3 Meta Dependencies

To generalize reward signals for expert hypotheses across states, we need to find an appro-
priate feature representation for the latter. Before introducing meta dependencies, we discuss
straightforward feature representations for NLP tasks.

68

5

5.3 Meta Dependencies

Example 5.2 (Exemplary feature spaces for NLP). For tasks in NLP, such as NER, a pos-
sible representation for paragraphs or sentences would be bag-of-words (BOW), n-grams or
k-shingles. The resulting features are represented as high-dimensional vectors, where all ex-
pected words, grams or shingles need to be enumerated. While BOW entails to use single
words, n-grams retrieve all sequential words on length n and k-shingles follow the same ap-
proach on a word character level. Considering that most available training sets are rather
small, most words, grams or shingles do not appear often. To this end, it might be suitable to
exploit learned vector embeddings for texts, where generalization might be significantly bet-
ter and vector sizes significantly smaller. However, not all possible tokens or token sequences
might be within the dictionary of the respective trained embedding vectors, which yields no
available features for some decisions.

As training sets are usually limited in size and domain experts are costly to hire, large
feature spaces are problematic, as the learning process might not converge. We thus intro-
duce meta dependencies, which are relational features based on relational classification (see
Sec 3.21). With meta dependencies, we can model low-dimensional feature spaces based on
diverse available feature representations (such as vector embeddings), while also modeling
pairwise behaviors of experts for single decision candidates.

A meta dependency averages a number of expert-dependent performance metrics in a
kernel-induced neighborhood. Kernels are similarity measures, which are based on avail-
able feature representations. Using a variety of such kernels is robust against unavailability
of individual feature values (e.g. due to a missing dictionary entry for word embeddings) and
reduces the dimensionality.

With meta dependencies, we can define relations among candidate dsh and either (i) two
experts eh

i ,e
h
j of the same step, (ii) two experts eh

i ,e
h+1
j of subsequent steps or (iii) a single

expert eh. While (iii) ignores the presence of other experts, (i) and (ii) are pairwise measures
to quantify which experts cooperate well.

More specifically, a meta dependency MDκ,l : E×S→ [0,1] averages how single- or pairs
of experts behave for a decision candidate dsh

i by visiting similar decision candidates csh
j in its

sorted neighborhood, which is defined as follows.

Nκ,δ (dsh
i) = {csh

j |csh
j ∈ Sh : κ(dsh

i ,
csh

j)≥ δκ ∧ i 6= j} (5.9)

with minimal similarity δκ ∈ [0,1]. The sorted neighborhood is construed based on a do-
main dependent kernel κ ∈ K with κ : Sh×Sh→ [0,1].

The expert behavior is defined by behavioral measures for single experts β l
SINGLE : Sh×

Eh → [0,1] or pairs of experts β l
PAIR : Sh×Eh×E → [0,1]. The resulting meta dependen-

cies are transformed into probabilities by conditioning the decision candidates in the sorted
neighborhood for a given behavioral measures. We thus define conditions for single experts
ψSINGLE : Sh×Eh→ [0,1] and pairs of experts ψPAIR : Sh×Eh×E→ [0,1].

Before further defining meta dependencies for cases (i)-(iii), we describe properties of
neighborhood Nκ,δ (dsh

i). The latter is constructed for individual decision candidates and con-

69

Chapter 5 Learning with Expert Processes

sists of sufficiently similar decision candidates for which the agent already received rewards.
Such neighborhoods vary in size with respect to decision candidates and kernels. To not over-
estimate the resulting probabilities, we additionally quantify the density of a neighborhood,
which we now define in detail.

Definition 5.8 (Relative density, absolute density). The relative density of the neighborhood
is defined as:

θ
κ,δ
REL(

dsh
i) =

∑csh
j∈Nκ,δ (dsh

i)
κ(dsh

i ,
csh

j)

|Nκ,δ (dsh
i)|

(5.10)

The absolute density is defined as:

θ
κ,δ (dsh

i) = max{Nκ,θ (dsh
i)

Mκ

,1} θ
κ,δ
REL(

dsh
i) (5.11)

where threshold Mκ ∈N+ defines the expected number of decision candidates in Nκ,θ (dsh
i),

i.e. |Nκ,θ (dsh
i)| ≥Mκ .

The relative density weights a neighborhood in terms of kernel values and normalizes its
estimate by the size of the neighborhood. It, however, overestimates small neighborhoods
with highly similar decisions. As a consequence, we need to define a minimal threshold Mκ

for the neighborhood size such that small neighborhoods are penalized.
We now present meta dependencies for single- as well as pairwise experts and will assume

that received rewards are in interval [0,1].

5.3.1 Single Experts

Single expert meta dependencies for (eh, dsh) quantify the behavior of eh for dsh based
on similar decision candidates csh. Given neighborhood parameters κ,δ ,M, we define
MDl

SINGLE(e
h
i ,

dsh) with behavior β l
SINGLE and condition cl

SINGLE as:

MDκ,l
SINGLE(e

h
i ,

dsh) =
∑csh

j∈Nκ,δ (dsh) β l
SINGLE(

dsh,eh
i)ψ

l
SINGLE(

dsh,eh
i)κ(

dsh, csh
j)

∑csh
j∈Nκ,δ (dsh) ψ l

SINGLE(
dsh,eh

i)κ(
dsh, csh

j)
(5.12)

We define one instantiation of single expert meta dependencies, which is summarized in
Table 5.1. The precision of a single expert (l = 1) is the averaged received reward over all
decision candidates available in the neighborhood. The respective condition states that only
decision candidates are used for calculation for which the expert was queried.

Due to the available expert budget, we need to further constrain the neighborhoods based
on the number of existing executions of an expert. We therefore define the condition-specific
absolute density of a single expert meta dependency as

70

5

5.3 Meta Dependencies

l Name Behavior β l Condition ψ l

1 Precision β 1
SINGLE(

ds,ei) = R(ds,ei(
ds)) 1{∃ei(ds)}

Table 5.1: Single-step expert meta dependencies.

θ
κ,δ
l (dsh) = θ

κ,δ (dsh)
∑csh∈Nκ,δ (dsh) ψ l

SINGLE(
dsh,eh

i)

|Nκ,δ (dsh)|
(5.13)

5.3.2 Pairwise Intra-Step Experts

Pairwise intra-step meta dependencies for (eh
i ,e

h
j ,

dsh) with i 6= j quantify the relative behavior
between two experts of the same step given a decision candidate, exploiting its neighborhood.
Given neighborhood parameters κ,δ ,M, we define MDINTRA(eh

i ,e
h
j ,

dsh) with behavior β l
PAIR

and condition cl
PAIR as:

MDκ,l
INTRA(e

h
i ,e

h
j ,

dsh) =
∑csh

j∈Nκ,δ (dsh) β l
PAIR(

dsh,eh
i ,e

h
j)ψ

l
PAIR(

dsh,eh
i ,e

h
j)κ(

dsh, csh
j)

∑csh
j∈Nκ,δ (dsh) ψ l

PAIR(
dsh,eh

i ,e
h
j)κ(

dsh, csh
j)

(5.14)

We define four instantiations of pairwise intra-step expert meta dependencies, which are
summarized in Table 5.2. The first meta dependency depicts the independent error of two
experts (l = 2), which measures the difference in received reward conditioned on at least one
expert being wrong. We then define the joint performance meta dependency (l = 3) which
averages the received rewards of two experts on the same decision candidate, assuming both
experts have been queried for the latter and agree on their action prediction. Meta dependen-
cies for dominant performance (l = 4) as well as additive performance (l = 5) both deal with
the case that respective experts disagree (and both have been queried) for a decision candidate,
where either the reward of the current expert or the one in comparison is assessed.

Similar to the single expert case, we need to constrain the neighborhoods based on missing
expert executions. We define the condition-specific absolute density of an intra-step experts
meta dependency as:

θ
κ,δ
l (eh

i ,
dsh) = θ

κ,δ (dsh)
∑csh∈Nκ,δ (dsh) ψ l

PAIR(
dsh,eh

i ,e
h
j)

|Nκ,δ (dsh)|
(5.15)

5.3.3 Pairwise Inter-Step Experts

Pairwise inter-step meta dependencies for (eh
i ,e

h+1
j , dsh) with i 6= j quantify the im-

pact of eh
i on the subsequent step. Given neighborhood parameters κ,δ ,M, we define

MDl
INTER(e

h
i ,e

h+1
j , dsh), with behavior β l

PAIR and condition cl
PAIR as:

71

Chapter 5 Learning with Expert Processes

l Name Behavior β l Condition ψ l

2 Error
β

2
PAIR(

ds,ei,e j) =

|R(ds,ei(
ds))−R(ds,e j(

ds))|
ψ

2
PAIR(

ds,ei,e j) =

1{R(ds,ei(ds))+R(ds,e j(ds))≤1}

3 Joint
β

3
PAIR(

ds,ei,e j) =

R(ds,ei(
ds))+R(ds,e j(

ds))
2

ψ3
PAIR(

ds,ei,e j) = 1{ei(ds)=e j(ds)}

4 Dominance β 4
PAIR(

ds,ei,e j) = R(ds,ei(
ds)) ψ4

PAIR(
ds,ei,e j) = 1{ei(ds)6=e j(ds)}

5 Additive β 5
PAIR(

ds,ei,e j) = R(ds,e j(
ds)) ψ5

PAIR(
ds,ei,e j) = 1{ei(ds)6=e j(ds)}

Table 5.2: Intra-step expert meta dependencies.

l Name Behavior β l Condition ψ l

6 Future
β

6
PAIR(

dsh,eh
i ,e

h+1
j) =

R(dsh,eh+1
j (dsh+1))

ψ6
PAIR(

dsh,eh
i ,e

h+1
j) = 1{eh

i (
dsh)=dsh+1}

7 Past
β

7
PAIR(

dsh,eh
i ,e

h−1
j) =

R(dsh,eh
i (

dsh))
ψ7

PAIR(
dsh,eh

i ,e
h−1
j) = 1{eh−1

j (dsh−1)=dsh}

Table 5.3: Inter-step expert meta dependencies.

MDκ,l
INTER(e

h
i ,e j,

dsh) =
∑csh

j∈Nκ,δ (dsh) β l
PAIR(

dsh,eh
i ,e

h
j)ψ

l
PAIR(

dsh,eh
i ,e j)κ(

dsh, csh
j)

∑csh
j∈Nκ,δ (dsh) ψ l

PAIR(
dsh,eh

i ,e j)κ(dsh, csh
j)

(5.16)

Note that we removed the horizon assignments from the expert in comparison, as both h+1
and h− 1 would be possible. We define two instantiations of pairwise inter-step expert meta
dependencies which are summarized in Table 5.3. The future impact meta dependency (l = 6)
measures how experts of the subsequent horizon are rewarded if the decision candidate of
the current expert is chosen. Similarly, the past impact meta dependency (l = 7) quantifies
how well the current expert is rewarded if the current decision candidate was suggested by the
expert in comparison.

Finally, we again account for missing expert executions by defining the condition-specific
absolute density of an inter-step experts meta dependency as:

θ
κ,δ
l (eh

i ,
dsh) = θ

κ,δ (dsh)
∑csh∈Nκ,δ (dsh) ψ l

PAIR(
dsh,eh

i ,e j)

|Nκ,δ (dsh)|
(5.17)

Given meta dependencies for classes (i) - (iii), we define the complete feature set for an ex-
pert and a decision candidate consisting of all meta dependencies for all experts and pairwise

72

5

5.3 Meta Dependencies

expert combinations. For expert eh, the set of meta dependencies of expert eh for decision
candidate dsh is construed as union over all kernels, i.e.:

MD(eh, dsh) = ∪∀κ∈KMDκ,l(eh, dsh) (5.18)

The kernel-dependent set of meta dependency MDκ(eh, dsh) then consists of all single-
and pairwise meta dependencies for κ and the respective behavioral measures β l as well as
conditions ψ l , instantiated for all residual experts.

MDκ(eh
i ,

dsh) = 〈MDκ,1
SINGLE(e

h
i ,

dsh),

∪∀eh
j∈Eh\eh

i ∀l∈{2,3,4,5}
MDκ,l

INTRA(e
h
i ,e

h
j ,

dsh),

∪∀eh+1
j ∈Eh+1 MDκ,6

INTER(e
h
i ,e

h+1
j , dsh),

∪∀eh+1
j ∈Eh+1 MDκ,7

INTER(e
h
i ,e

h−1
j , dsh)〉

(5.19)

To learn expert weight functions weh , single expert meta dependencies measure the likeli-
hood of an expert’s success, while pairwise intra-step expert meta dependencies use correla-
tions between two experts. As pairwise inter-step expert meta dependencies take into account
future rewards based on experts of the subsequent step, they support learning state-action
values in EPs.

Complexity Analysis 5.1. Calculating a meta dependency is dependent on (i) deriving the
neighborhood of the decision candidate, (ii) the number of available kernels and (iii) its type
(i.e. single, intra pairwise or inter pairwise). Building the neighborhood for a kernel is a
Nearest Neighbors (NN) problem – more specifically fixed-radius NN – where approximate
methods have been sufficiently studied. Still, exact fixed-radius NN potentially results in
quadratic performance – i.e. O(|S|2) – because of extensive pairwise comparisons of deci-
sion candidates. To this end, the specific computational complexity of approximate methods
is dependent on the similarity metric of the respective kernel. If the Euclidean similarity
is used, one might, for example, exploit k-d trees [13] to yield quasilinear complexity – i.e.
O(|S|log|S|) for neighborhood construction and sublinear complexity for lookups (O(log|S|)).
For the Cosine- or Jaccard similarity – where vectors are compared – techniques coined Lo-
cality Sensitive Hashing (LSH) can be used to achieve linear lookups and quasilinear neigh-
borhood construction times. As a result, the computational complexity for single expert meta
dependencies for a single expert and decision candidate is O(|K||S|log|S|) as we have to con-
duct calculations for each expert of a step and for each kernel. Similarly, complexities for
pairwise meta dependencies can be bound by O(|K||Eh||S|log|S|) for the intra-step case and
O(|K||Eh+1||S|log|S|) (or O(|K||Eh−1||S|log|S|)) for the inter-step case, as the behavior of
an expert has to be compared to others. The time needed for lookups can be neglected as it
merely linearly influences the complexity.

73

Chapter 5 Learning with Expert Processes

We now present two Online model-free RL approaches to learn expert weights with meta
dependencies as feature representation.

5.4 Online Reinforcement Learning

In the Online RL setting (see Definition 3.41), one aims to continuously improve predictions
with every observed reward. We take a model-free RL approach, thus not learning R and
Tr (where Tr is known in our special case) but directly approximating expert weights. Note
that generalization across high-dimensional states in RL is a hard problem [77] – numerous
approaches deal with function approximation, where linear function approximation suffices
[86, 124, 139]). For EPs, where feedback is usually inferred from relatively small training
sets, the problem becomes even more difficult.

To this end, we use meta dependencies as direct estimators for expert performances. Over
multiple episodes, we keep and update meta-weights for meta dependencies to gradually get
more accurate predictions. We first apply the EWH algorithm to EPs and meta dependencies.
Based on the latter, different measures related to budgeted expert advice, contextual bandits
and MDPs are integrated to account for imperfect information due to the expert budget as well
as the influence of the current decision on future experts.

5.4.1 EWH with Meta Dependencies

Based on the prior defined EWH update rule (see Definition 3.31), the mapping to EPs is
straightforward in that we need to extend it with decision candidates. For an EP, the essential
EWH update rule for weh(sz) can be defined as:

weh(sz+1) = weh(sz) exp
(

∑dsh∈sz
RSCALED(dsh,eh((dsh))

∑dsh∈sz
1{q(eh,sh)=1}

η
EWH

)
(5.20)

where q : E×S→ {0,1} denotes if expert e was queried for s, ηEWH is the EWH influence
parameter of the update and RSCALED returns the rewards rescaled to [−1,1].

The update rule iterates through all decision candidates of a state and keeps a global weight
for each expert, as it does not incorporate any available contextual information. To be able
to exploit contextual information, we apply EWH directly to meta dependencies and refer to
them as meta-experts. The set of meta dependencies ME is defined as follows:

∀MDi(eh
i ,

dsh) ∈MD(eh, dsh)∃mei : mei(
dsh) = MDi(dsh) θ

κ,δ
l (dsh) (5.21)

A meta-expert thus predicts the value of meta dependency MDi(dsh) 2 for candidate dsh

weighted by θ κ,δ (dsh).

2For simplicity MDi(dsh) refers to either MDκ,l(eh
j ,e

h
k ,

dsh), MDκ,l(eh
j ,e

h+1
k ,dsh) or MDκ,l(eh,dsh)

74

5

5.4 Online Reinforcement Learning

To this end, let χ : ME → E be the assignment function from meta-experts to experts, and
let the inferred reward function for meta-experts be defined as follows:

Rmeta(dsh,me) = me(dsh) RSCALED(dsh,χ(me)(dsh)) (5.22)

The prediction of the meta expert thus weights the received reward of the assigned expert.
Similar to experts, each meta-expert gets assigned a weight function wme : S→R. The result-
ing update rule for meta-weights is:

wme(sz+1) = wme(sz) exp
(

RAVG(sz,me) η
EWH

)
(5.23)

where RAVG(sz,me) =
∑d s∈sz

Rmeta(dsh,me)

∑d s∈sz
1{q(χ(me),sz)=1}

is the average reward for all decision candidates,

which we define to ease illustration. Note that the meta-expert weight update rule is defined
over complete states and not single decision candidates. A meta-weight stays constant for all
decision candidates of a single state in an episode and a horizon.

An expert weight is then is defined as:

weh(dsh) =
∑me1{χ(me)=eh} me(dsh) wme(sz)

∑me wme(sz)
(5.24)

However, EWH does not deal with incomplete information resulting from budget Ch
EXP.

We thus reuse techniques from budgeted expert advice and adversarial contextual bandits to
account for state-expert pairs we did not query.

5.4.2 EWH with Incomplete Information

As an EP allows to query Ch
EXP different state-expert pairs, we extend the weight updates with

importance weighting, which was proposed for budgeted expert advice. This is achieved by
normalizing the reward by the probability of all queried experts in an episode and horizon,
where the importance weight function is defined as:

iw(z,h) = ∑
s∈Ŝh

z

∑
e∈Eh

1{q(e,s)=1}PEXPERT(s,e) (5.25)

We thus iterate through all possible states Ŝh
z and use the expert probability distribution to

get an estimate for the respective state-expert pair. The resulting importance weight function
is then used as regularizer for average rewards, as it either reinforces the update if the query
probability was relatively low or weakens it otherwise (see Definition 5.26).

75

Chapter 5 Learning with Expert Processes

wme(sz+1) = wme(sz) exp
(

RAVG(Ŝh,me)
iw(z,h)

η
EWH

)
(5.26)

To this end, it is essential to deal with the exploration-exploitation problem with respect to
non-queried experts. The EXP family of adversarial contextual bandits (e.g. [6]) are based
on EWH, but extend the approach to update expert weights for non-taken actions. While in
contextual bandits all experts are queried to suggest an action, in EPs all meta-experts are
queried to suggest a weight for their assigned expert. We therefore directly reuse methods
from the EXP4.P [15] algorithm, an adversarial bandit approach with high expected reward.
Here, the probability of choosing an action is equivalent with an expert weight in EPs, which
we adapt with respect to the minimal probability to choose any expert, namely ph

min = [0, 1
Nh].

weh(dsh) = (1−Nh ph
min)

∑me1{χ(me)=eh} me(dsh) wme(sz)

∑me wme(sz)
+ ph

min (5.27)

To update the weights of meta-experts, we build on the expert update of EXP4.P, which
uses minimal probability ph

min to align the weight update and exploits prior defined importance
weight function iw with respect to confidence bounds to express the variance of the reward. It
can be directly used for EPs:

wme(sz+1) = wme(sz) exp
(

ph
min
2

(
1{χ(me)=e}

RAVG(Ŝh,me)
iw(z,h)

+
1

iw(z,h)
η

EWH
))

(5.28)

We finally align meta-expert weights with respect to the actions taken in the EP. We thus
reinforce the meta reward if the meta-expert was correct but its expert’ action was not chosen
or if the meta-expert was wrong but its expert’s action was chosen, i.e.:

wrong(me,sz) =1{q(χ(me),sz)=1}(
1{(e(sz))=a∗)∧(Rmeta(sz,e(s))>0))}

+1{(e(sz))6=a∗)∧(Rmeta(sz,e(s))<0)}

) (5.29)

The resulting boosting factor then consists of hyperparameter β ∈R+ which is either active
or inactive, i.e. boost(me,sz) = β wrong(me,sz). The final meta-expert weight update rule is:

76

5

5.5 Batch Reinforcement Learning

wme(sz+1) = wme(sz) exp
(

ph
min
2

boost(me,sz)

(
1{χ(me)=e}

RAVG(Ŝh,me)
iw(z,h)

+
1

iw(z,h)
η

EWH
))

(5.30)
Both meta-expert weight update rule and expert probability do not specifically incorporate

Value-based or Policy Search RL techniques, i.e. future rewards are not explicitly optimized
(see Equation 5.4 for explicit optimization). We incorporate future rewards via meta depen-
dencies, where meta-experts for pairwise inter-step experts take into account how an expert’s
suggestion influences future results.

Complexity Analysis 5.2. As the proposed Online RL approach is based on the EWH al-
gorithm with computational complexity O(|Eh|), one only has to additionally take into ac-
count the complexity of calculating all meta dependencies – i.e. O((|Eh|2 + |Eh||Eh+1|+
|Eh||Eh−1|)(|K||S|log|S|)).

While Online RL directly uses the received feedback, Batch RL [80] entails to conduct
less frequent updates, which might enable more efficient use of rewards. We now present
a Batch RL approach for learning expert weights in EPs, where we use SRL for function
approximation.

5.5 Batch Reinforcement Learning

Other than in Online RL, we now conduct updates after a fixed number of episodes for Batch
RL. The central idea is to use a scalable SRL approach – i.e. PSL – for meta dependencies to
learn a collective model (see Definition 3.22) for experts. SRL is especially useful due to the
relational nature of meta dependencies as well as the availability of kernel functions, which
enable to create links (i.e. relations) among decision candidates. We defer the learning process
for expert weights to exploit PSL for a number of states, expert weights and rewards, as it is
a batch learning approach (see Definition 3.11). By modeling relations between decision
candidates, we also align predictions for expert weights in a pool-based prediction setting
(see Definition 3.15).

We define an adapted version of an EP, where we enable Batch RL and pool-based pre-
diction. The resulting Batch EP is defined to deal with ZPOOL samples within a single step h
before continuing to h+ 1. With respect to batch updates, one waits ZBATCH episodes. The
assumption is realistic for problems where decisions can be deferred for a certain amount of
time (which is dependent on how fast new task instances are available).

Definition 5.9 (Finite-horizon Batch Expert Process). A finite-horizon Batch EP is a 9-tuple
(S,E,A,R,T,H,CEXP,ZBATCH,ZPOOL) which extends a finite-horizon EP (see Definition 5.1)
with batch size hyperparameter ZBATCH ∈ N+ and pool size hyperparameter ZPOOL ∈ N+.
While ZBATCH corresponds to the number of episodes the agent defers updating expert weights,

77

Chapter 5 Learning with Expert Processes

ZPOOL defines the number of episodes the agent is allowed to defer acting. Given that the agent
went through the process for episode z−1, it can observe states sz, . . . ,sz+ZPOOL before acting
(see Definition 3.15). Similarly, the agent collects trajectories for episodes sz, . . . ,sz+ZPOOL

before updating (Definition 3.42).

To use all available information for the Batch EP, we train two models for each step –
an a priori model before querying any expert and an a posteriori model after having queried
all state-expert pairs 3. To this end, PSL enables directly integrating kernels into the model,
thereby transferring inferred weights to other decision candidates by collective inference.

The section proceeds as follows: we first describe PSL, a template language for generating
Hinge-Loss Markov Random Fields (HLMRFs). We, then, elaborate on how to model weights
weh to approximate Q.

5.5.1 Probabilistic Soft Logic and Hinge-Loss Markov Random Fields

A HLMRF [8] is a conditional probabilistic model over continuous random variables. HLM-
RFs are defined as probability densities:

P(Y |X) ∝
1

Znorm exp[−
M

∑
j=1

λ jφ j(Y,X)]

with Znorm the respective normalization constant, weights λ j, φ j(Y,X) = [max{l j(Y,X),0}]p j

the hinge-loss potential functions, linear function l j and p j ∈ {1,2}.
PSL [24, 67] is a modeling language for HLMRFs. A model in PSL comprises weighted,

first-order logic rules (templates for φ j) with features defining a Markov network. Here, PSL
relaxes conjunctions, disjunctions and negations as:

A∧B = max{A+B−1,0}

A∨B = min{A+B,1}

¬A = 1−A

with A→ [0,1] and B→ [0,1].
The use of hinge-loss feature functions makes inference tractable, as it is a convex op-

timization problem and thus potentially scales to large datasets. We now present our PSL
model based on meta dependencies for EPs.

3Note that we gradually increase our training set with each batch, where densities provide a natural way to
passively forget older samples. An alternative would be to actively forget all old batches but reuse old weights as
priors.

78

5

5.5 Batch Reinforcement Learning

5.5.2 Meta Dependencies with PSL

We learn expert weights weh by using PSL to construct different potential functions φ j(X ,Y)
and learn their weights λ j. We therefore construct a single PSL model per step and, other than
in our online approach, learn one expert weight function for all experts Eh, as our intuition is
that meta dependencies enable to generalize across different experts of the same step. Labels
for expert weights are manually constructed based on Equation 5.4 and normalized after all
samples are gathered for a batch episode.

All n-ary relations we define map their variables to a real number between zero and one,
e.g. Relation : Vari×Var j → [0,1] for n = 2. An expert weight weh is represented as relation
W(eh, dsh). Meta dependency relations for pairwise intra-step experts MDκ,l

INTRA(e
h
i ,e

h
j ,

dsh),

pairwise inter-step experts MDκ,l
INTER(e

h
i ,e

h+1
j , dsh) and single experts MDκ,l

SINGLE(e
h, dsh)

are pre-computed meta dependencies with respective densities MDINTRA−Dκ,l(eh
i ,e

h
j ,

dsh),
MDINTER−Dκ,l(eh

i ,e
h+1
j , dsh) and MDSINGLE−Dκ,l(eh, dsh). Densities are calculated based on

θ
κ,δ
l (dsh), as defined for single- as well as pairwise meta dependencies. Tr(eh, dsh, csh+1), the

transition relation, denotes that an expert suggests decision candidate csh+1 for dsh.

We first model rules for single expert meta dependencies, where we directly use the latter
as positive influence on expert weight relation Weh . The negation of the rule holds as well and
has to be explicitly modeled. A priori and a posteriori models consist of the same rules, as
querying the respective expert does not give us more information in the single expert case.

MDκ,l
SINGLE(e

h, dsh)∧MDSINGLE−Dκ,l(eh, dsh) =⇒ W(eh, dsh)

¬MDκ,l
SINGLE(e

h, dsh)∧MDSINGLE−Dκ,l(eh, dsh) =⇒ ¬W(eh, dsh)

Pairwise intra-step expert rules express that the weight of an expert increases if respective
meta dependencies are sufficiently high. To account for the current expert predictions, we
additionally model agreement and disagreement relations and extend the rules with them. We
first, model rules for the a priori setting where experts have not been queried yet. Here, we
define relation Agree(eh

i ,e
h
j ,

dsh)l , which is evaluated for the complete neighborhood in order
to return a probability of agreement or disagreement based on the modeled conditions ψ l .

MDκ,l
INTRA(e

h
i ,e

h
j ,

dsh)∧MDINTRA−Dκ,l(eh
i ,e

h
j ,

dsh)

∧Agree(eh
i ,e

h
j ,

dsh)l =⇒ W(eh
i ,

dsh)

¬MDκ,l
INTRA(e

h
i ,e

h
j ,

dsh)∧MDINTRA−Dκ,l(eh
i ,e

h
j ,

dsh)

∧Agree(eh
i ,e

h
j ,

dsh)l =⇒ ¬W(eh
i ,

dsh)

After having queried Ch
EXP state-expert pairs, we can exploit new information by only in-

creasing expert weights if there is agreement.

79

Chapter 5 Learning with Expert Processes

MDκ,l
INTRA(e

h
i ,e

h
j ,

dsh)∧MDINTRA−Dκ,l(eh
i ,e

h
j ,

dsh)

∧Tr(eh
i ,

dsh, csh+1)∧Tr(eh
j ,

dsh, csh+1) =⇒ W(eh
i ,

dsh)

¬MDκ,l
INTRA(e

h
i ,e

h
j ,

dsh)∧MDINTRA−Dκ,l(eh
i ,e

h
j ,

dsh)

∧Tr(eh
i ,

dsh, csh+1)∧Tr(eh
j ,

dsh, csh+1) =⇒ ¬W(eh
i ,

dsh)

Rules for pairwise inter-step expert meta dependencies express that current expert weights
have to be high if respective experts are either estimated to perform well or if they generated
good states. Here, we use the same rules for both the a priori and the a posteriori setting.

MDκ,l
INTER(e

h
i ,e

h+1
j , dsh)∧MDINTER−Dκ,l(eh

i ,e
h+1
j , dsh)

=⇒ W(eh
i ,

dsh)

¬MDκ,l
INTER(e

h
i ,e

h+1
j , dsh)∧MDINTER−Dκ,l(eh

i ,e
h+1
j , dsh)

=⇒ ¬W(eh
i ,

dsh)

We propagate inferred weights by relation Similarκ(
dsh

i ,
csh

j), thus using kernels to exploit
similarities among decision candidates. It becomes clear that pool-based predictions might
potentially increase the performance of the approach by clustering similar decision candidates
through kernels.

Similarκ(
dsh

i ,
csh

j)∧W(eh, dsh
i) =⇒ W(eh, csh

j)

Similarκ(
dsh

i ,
csh

j)∧¬W(eh, dsh
i) =⇒ ¬W(eh, csh

j)

We finally align experts with similar outputs by driving their weights to be the similar. For
the a priori setting, we define rules based on the agreement probability.

W(eh
i ,

dsh)∧Agree(eh
i ,e

h
j ,

dsh) =⇒ W(eh
j ,

dsh)

¬W(eh
i ,

dsh)∧Agree(eh
i ,e

h
j ,

dsh) =⇒ ¬W(eh
j ,

dsh)

Based on the observed expert action candidates, rules for the a posteriori case are modeled
as:

W(eh
i ,

dsh)∧Tr(eh
i ,

dsh, csh+1)∧Tr(eh
j ,

dsh, csh+1)

=⇒ W(eh
j ,

dsh)

¬W(eh
i ,

dsh)∧Tr(eh
i ,

dsh, csh+1)∧Tr(eh
j ,

dsh, csh+1)

=⇒ ¬W(eh
j ,

dsh)

For learning weights of the PSL model and inferring weh , we use an approximate maximum
likelihood weight learning algorithm and most probable explanation (MPE) for probabilistic
inference [7]. More specifically, we reuse a voted perceptron, where an iteration of weight

80

5

5.6 Discussion

learning entails to run inference and condition on the available training data (in our case the
expert weights we calculated) to generate target values, and then to update the PSL model
weights in terms of maximizing the agreement with prior set targets without using training
data. The inference method (which is also used for training), MPE, exploits the fact that soft
truth values (other than binary truth values as used, for example, in Markov Logic Networks
(MLNs)) are used and that inference can be cast to a convex optimization problem (other than
combinatorial problems as available in MLNs).

Complexity Analysis 5.3. Quantifying the complexity of learning weights of an instantiated
HLMRF can be approached by dealing with the time needed for individual steps, respec-
tively comprising grounding, inference and learning. The general time needed for ground-
ing is dependent on (i) the number of available potential functions (i.e. PSL rules), (ii)
the complexity of individual potential functions and (iii) the length of the batch episodes.
The complexity of potential functions (point (ii)) is not absolutely quantifiable, as it de-
pends on the arity of relations, number of relations, involved variables and the availabil-
ity of latent variables. The complexity of grounding thus exceeds the complete Online RL
approach, as we additionally incorporate PSL rules (i.e. potential functions) for kernels
(resulting in groundings of all pairwise decision candidates of the batch) and end up with
O((|Eh|2 + |Eh||Eh+1|+ |Eh||Eh−1|)(|K||S|log|S||ZBATCH|2)). The time needed for inference
and adapting the inferred weights based on training data is dependent on the chosen learner.

5.6 Discussion

The EP framework builds on MDPs and (budgeted-) expert advice, and enables the use of RL
techniques to deal with (i) partial information resulting from budget constraints, (ii) future
impacts of expert outputs and (iii) unknown expert behavior for states. While we showed how
to redefine value functions in terms of expert weights to enable optimization, our approaches
additionally exploit meta dependencies to learn pairwise expert behavior.

While our Online RL approach cannot exploit batch learning and pool-based predictions,
it is still favorable when computational resources are scarce. The EWH updates are efficient,
where calculating meta dependencies is costing the most. There are, however, efficient ap-
proximations for the corresponding Nearest Neighbor problem.

Although RL algorithms have to be adapted to be used for EPs (especially to deal with a
large amount of possible state-expert pairs based on uncertainty in the state spaces), their basic
functionality can be directly reused.

5.7 Summary

In this chapter, we formalized EPs for multi-step expert advice by specializing MDPs with
available experts as well as execution budgets. EPs are suitable to maximize the number of

81

Chapter 5 Learning with Expert Processes

correct task solutions, as they define essential properties of expert weight functions. The latter
express the expected performance of an expert for an individual decision candidate, but also
take into account the impact on experts of future steps. Our work on EPs addressed Research
Question 1, where the corresponding Hypothesis 1 can be partially confirmed and will be
revisited after empirically evaluating EPs in Chapter 9.

For learning fine-grained expert weights for decision candidates of states, we introduced
meta dependencies as features which calculate performance-related relations among single-
or pairs of experts. We showed that meta dependencies can be best exploited by Online RL
based on the EWH algorithm and Batch RL with PSL as function approximator, both enabling
to learn expert weights for EPs. We therefore addressed Research Question 2 with our RL
algorithms for EPs and, similar to Hypothesis 1, can partially confirm Hypothesis 2, but have
to revisit the latter after the empirical evaluation in Chapter 9.

82

6

Chapter 6

Learning with Multiagent Expert Processes

This chapter proposes the MEP framework as solution to Research Question 3 which deals
with the expert correlation problem. Hypothesis 3 proposed a Multiagent perception of the
problem, where coordination approaches for cooperating agents have to be developed. To
fully confirm Hypothesis 3, we empirically evaluate three Multiagent coordination approaches
for MEPs in Chapter 7.
Our reference for this chapter is [104].

6.1 Introduction

The prevalent SAS perception in RL entails that a single decision-maker learns a global esti-
mate of the model, value-function or policy, depending on the learning scenario. With respect
to EPs (see Definition 5.1), experts are merely queried and do not learn any adaptive behavior
themselves, which might cause learned policies to misperform when experts correlate in their
joint errors. Expert correlation might occur globally (i.e. for almost all data points) which can
be easily detected, or locally (i.e. only for data with specific characteristics) which is hard to
disclose and manage. It is thus sensible to investigate expert correlation for each individual
data point and to only combine the prediction of two experts if their errors are sufficiently
independent for data points with similar characteristics.

To this end, recent advances in Separation of Concerns (SoC) [82, 134] promote distribut-
ing complex single-agent tasks, such as learning to play games based on observable frames,
to multiple agents. The authors show that decomposing such tasks into conceptually different
steps with different reward functions enables to train separate agents in a MAS in order to
minimize convergence time or improve predictive performance. As a consequence, distribut-
ing the control of experts within multi-step expert advice to multiple agents might result in
similar improvements.

In addition to dealing with local expert correlation, a MAS setup has several advantages,
namely (i) enabling to model novel, real-world problem settings with multiple stakeholders
where experts are not publicly available but cooperation in a MAS provides mutual benefits,
(ii) adding redundancy to centralized architectures, where experts can be shared among agents
to coordinate missed updates and (iii) speeding up learning by first training multiple agents
independently and eventually have them coordinate their learned policies [94].

83

Chapter 6 Learning with Multiagent Expert Processes

In this chapter, we investigate these findings for the problem of multi-step expert advice,
where we frame the setup as cooperative MAS, more specifically as MEP, where each expert
is weighted and controlled by an individual agent. The resulting problem then is to learn
how to coordinate expert weights and actions to optimize the decentralized weighted majority
voting among agents. The central intuition is that the coordination process might enable to
reduce the available bias when experts strongly correlate.

Figure 6.1 denotes the general schema of multi-step expert advice in a MAS. In the bottom
layer, the conceptual steps of the respective multi-step task are shown, e.g. NER and NED for
NERD. For all available steps, agents need to take joint decisions (i.e. choose joint actions)
which can, for example, be the result of the weighted majority voting of all agents of the step.
In the top layer, all available agents are shown, where an agent controls one or more experts
and has to primarily coordinate its available actions (i.e. the action it receives via its experts)
with residual agents of the same step. To account for future impacts of its decisions, an agent
can also coordinate with agents of the subsequent step. The opposite communication direction
is also possible, as agents might want to learn which agents of prior steps produce good or bad
actions.

For better illustration, consider the following example for conceptual steps NER and NED
of NERD.

Example 6.1 (The NERD task in a MAS). Agents for step NER need to sequentially decide
for pieces of texts, such as Michael Jackson plays basketball., which token se-
quences constitute named entities. Given black-box experts solving NER, agents coordinate
prevalent actions, e.g. if Michael Jordan is a named entity or not. After a number of co-
ordination rounds, the weighted majority estimate – i.e. the joint action – is passed to agents
of step NED. To this end, NER agents also need to communicate with NED agents to find out
who exploits their individually proposed actions.

By distributing the control to multiple agents, we extend EPs to the MAS setting by spe-
cializing MMDPs with the availability of experts and budgets. We then present an adequate
feature representation based on meta dependencies for individual agents, which expresses var-
ious relationships among experts and agents with respect to the coordination problem.

We first approach passive coordination in MEPs (i.e. the independent learner setting, see
Definition 3.46), where agents only know about their own experts’ predictions and the result
of the weighted majority voting, but still have to align each other. Our passive coordination
approach builds on the EWH algorithm to adapt agent weights with respect to the weighted
majority vote of all agents.

For agents to actively coordinate their experts, we define a decision protocol inspired by
swarm intelligence. Here, agents receive information about all residual actions to reconstruct
the global state (i.e. joint-action learner setting (see Definition 3.45)). Other than in one-step
coordination settings as available in SoC or most hierarchical RL approaches, we model a
designated decision process for coordination. The latter – which we refer to as expert co-
ordination process (ECP) – yields local finite-horizon MDPs with continuous action spaces

84

6

6.1 Introduction

Figure 6.1: Schema of Multi-Step Expert Advice in a MAS.

for each participating agent, where non-stationary coordination policies have to be learned.
Within the ECP, an agent learns a relative weight function which quantifies its confidence in
its experts’ actions with respect to residual agents. We first develop a heuristic based on meta
dependencies which adapts agent weights for their experts on a rule basis. We then propose a
Policy Search RL approach to learn robust non-stationary agent policies, where each learned
model reflects a single decision in the fixed-length coordination process.

6.1.1 Challenges

In addition to challenges 1-4, this chapter deals with the following challenge, as initially
defined in Section 1.2:

• When learning models based on prediction with expert advice or ensemble learning, one
often suffers from expert correlation, which results in overestimating potentially wrong
expert hypotheses (Challenge 5).

6.1.2 Contributions

This chapter contributes in the following ways:

• We extend our EP formalization to MAS and define MEPs with a passive- and an active
coordination protocol. Passive coordination enables to develop lightweight solutions to
decorrelate expert weights. For active coordination, we define a novel decision process

85

Chapter 6 Learning with Multiagent Expert Processes

(referred to as ECP), which extends one-step coordination in MAS to a multi-step de-
cision process. The ECP enables to develop complex coordination approaches, as more
information are available about other agents (Contribution 3.1).

• We extend meta dependencies to relational agent features, which are used as feature
representation for active coordination (Contribution 3.2).

• We propose a lightweight coordination approach for MEPs with passive coordination,
where agents cannot communicate their actions (Contribution 3.3).

• We develop two coordination approaches for MEPs with active coordination, where
agents are allowed to communicate to learn better coordination strategies (Contribution
3.4).

• We empirically evaluate our approach for the multi-step NERD task with respect to
maximizing the overall expected reward in Chapter 7.

The chapter proceeds as follows: We first formalize our novel problem setting and introduce
MEPs in Section 6.2. We then present our approach to passive coordination (Section 6.4,
where respective agents receive limited information about their environment. In our active
coordination approaches (Section 6.5 and 6.6), we assume full information for all agents,
which enables more efficient coordination. We finally conclude with a summary of this chapter
in Section 6.8.

6.2 Problem Formalization

We now define MEPs, where cooperative agents share the control over available experts and
have to choose joint actions which maximize the number of correct task solutions. Fig-
ure 6.2 illustrates a MEP, where the joint action is chosen based on an arbitrary function
(e.g. weighted majority voting).

Definition 6.1 (Multiagent Expert Processes). A finite-horizon MEP extends a finite-
horizon MMDP (see Definition 3.44) with the availability of experts and is a 11-tuple
({Sλ}λ∈Λ,Λ,{Eλ}λ∈Λ,{Aλ}λ∈Λ,{ACOMM

λ
}λ∈Λ,R,Tr,T,H,CEXP,CCOMM).

• Let {Sλ}λ∈Λ be the set of states, Aλ∈Λ be the set of environment actions and ACOMM
λ∈Λ

be
the set of communication actions, as defined for MMDPs.

• Let CCOMM the communication budgets as defined for MMDPs. It confines the interac-
tion among agents (λ h

i ,λ
h
j), (λ

h
i ,λ

h+1
j) and (λ h+1

i ,λ h
j) through communication actions

in ACOMM
λ∈Λ

, where each agent gets to query respective agents CCOMM times 1.

1Without loss of generality, we assume unidirectional communication, where an agent has to actively use its
budget.

86

6

6.2 Problem Formalization

Figure 6.2: Schema of Multi-Step Expert Advice in the MDP framework with an arbitrary
mechanism to choose joint actions.

• Let Tr be the transition function, R the reward function, H the horizon and CEXP the
state-expert budget, as defined for EPs.

• Let Λ be the set of agents, where an agent λ ∈ Λ is a function over decision candidates
and coordination steps to actions, i.e. λ h

i : T ×Sh→ Ah

• Let Eλ be the set of experts for agent λ ∈ Λ, where an expert e ∈ Eλ is a function from
states to actions, i.e. e : S→ A, as defined for EPs.

• Let T ∈N≥0 be the number of coordination steps.

The protocol of a MEP proceeds in episodes z = 1, . . . ,Z:

• For steps h = 1, . . . ,H:

– Each λi receives state sh
z of episode z.

– Each agent chooses and queries CEXP state-expert pairs (sh
z ,e

h) and retrieves ac-
tions ah

1, . . . ,a
h
CEXP

.

– Each agent chooses an action and sets its initial weights, pi(1, ds), based on its
highest weighted expert.

– A coordination protocol finds joint action a∗

– The agent committee predicts action a∗t and each agent observes rewards
R(sh

z ,a
h)∀ah ∈ Ah.

The MEP protocol is defined analogously to EPs, where all agents have to choose and
query experts, and calculate weights. The challenge for agents is to find a joint action (i.e. a∗t)

87

Chapter 6 Learning with Multiagent Expert Processes

for every step h. The MEP protocol was kept variable with respect to the used coordination
protocol, as we distinguish among passive coordination and active coordination. Coordination
steps t ∈ 1, . . . ,T are only used for the active coordination setting, and will be kept static (i.e.
t = 1 throughout the MEP) for passive coordination.

Before introducing properties of value functions, we define the relationship between agents
and their experts, as well as available weight functions.

Definition 6.2 (Agent-expert relationship, agent- and expert weights, agent prediction). An
agent λ h

i manages expert set ei1, . . . ,eiM ∈ Eh
i with M ∈N+. Let wi : Eh

i × Sh→ R≥0 be the
expert weight function of λi to score its experts. Let now eh

i denote the expert with the highest
estimated weight for a decision candidate:

eh
i : wi(eh

i ,
dsh) = max

eh∈Eh
i

wi(eh, dsh) (6.1)

The agent weight ph
i : T × Sh→ R≥0 expresses the confidence in the action of expert eh

i , the
expert with the highest estimated weight. To this end, an agent predicts the action of expert eh

i
for t = 1, i.e. λ h

i (1,
dsh) = eh

i (
dsh)

The MEP extensions for individual agent weights pi and value function Qh with regards
to EPs are straightforward. Individual agents are now in in control of their weights and predic-
tions, and the same global properties hold as for EPs. An agent weight for a decision candidate
dsh has to express its local reward and the maximal Q-value of the next step, reached via any
action which includes choosing dsh:

Definition 6.3 (Agent weights in MEPs). An agent weight in a MEP is defined analogously
to expert weights in EPs:

pi(t, dsh) = R(dsh,λi(t, dsh))+ ∑
ah∈Ah

d sh

Tr(sh+1|sh,ah) max
ah+1∈Ah+1

Qh(sh+1,ah+1)
(6.2)

with Ah
dsh = {ah|ah ∈ Ah : ∆eh(dsh) ∈ ah} as defined for EPs (i.e. the set of all actions, where

dsh is chosen 2).

The corresponding state-action value estimate for state sh and action ah is based on all
involved agents, their weights for all decision candidates and their proposed actions.

Definition 6.4 (State-action value function in MEPs).

Qh(sh,ah) =
∑λi∈Λh ∑dsh∈sh pi(t, dsh)1{λi(t,sh)=ah}

∑λi∈Λh ∑dsh∈sh pi(t,dsh)
. (6.3)

2Note that this set might be incomplete if perfect communication is not possible

88

6

6.2 Problem Formalization

After all agents chose their actions and weights, the joint action of all agents has to be
determined. We define the joint action to be the maximal action with respect to state-action
values.

Definition 6.5 (Joint action of a MEP). The joint action a∗t of all agents of the current step
λ ∈ Λh at coordination step t is defined as:

a∗t : Qh(sh,a∗t) = max
a∈Ah

Qh(sh,a) (6.4)

The overall goal of a MEP is to maximize the expected cumulative reward RCUM, as defined
for EPs:

Definition 6.6 (Cumulative reward for MEPs). The overall reward of a MEP, RCUM : S×A→
R, is defined as:

RCUM = E[
H

∑
h=1

Dh

∑
d=1

Rh(dsh, dah)] (6.5)

Until now, the prediction of agent λ h
i with static coordination step t = 1 is equal to a local

policy πi : Sh→ Ah in a single-agent EP. Here, each agent tries to find a non-stationary policy,
dependent on the respective step h in order to maximize RCUM. We refer to this setting as
passive coordination. Passive coordination is equal to the general MEP schema in Figure 6.2.

Definition 6.7 (Passive Coordination in MEPs). For a single coordination step, i.e. T = 1,
agent λ h

i chooses the action proposed by its expert, i.e. λi(1, ds) = ei(
ds), and only adapts its

weight pi(1, ds) based on the reward of the weighted majority voting of the committee. Hence,
we set CCOMM = 0 and forbid communication. The setting refers to the independent learner
setting (see Definition 3.46).

We now define a novel type of non-stationary MEP policies, which depend on coordination
step = 1, . . .T and thus require to act in the ECP. We refer to this setting as active coordination.

Active coordination enables agents to negotiate their actions in a designated decision pro-
cess. Here, agents can communicate with other agents to observe their actions and use this
knowledge to better adapt their own weights and actions. Active coordination is illustrated in
Figure 6.3, where the novel decision process corresponds to the ECP.

Definition 6.8 (Active Coordination in MEPs). For T > 1 coordination steps, agent λi can
change its weight pi(t, ds) as well as its chosen action λi(t, ds) Here, we set CCOMM = |Λ| and
hence do not constrain communication, i.e. each agent observes all residual action predictions
for an episode. We thus follow the joint-action learner setting (e.g. [29]).

We first explain how predictions of agents are adapted for the MEP and then define the ECP.
We extend the agent prediction function in terms of ideas from swarm intelligence [146], by
enabling an agent to abandon its experts’ predictions to follow the action with highest weight.

89

Chapter 6 Learning with Multiagent Expert Processes

Figure 6.3: Schema of Multi-Step Expert Advice in the MDP framework with active coordi-
nation protocol.

Within a coordination step, an agent either chooses the action proposed by its highest weighted
expert or follows the committee average a∗t , resulting in the following agent prediction func-
tion at coordination step t.

Definition 6.9 (Agent prediction function for a coordination step). An agent λi predicts the
action of its expert ei for t = 1 (as defined before) and adapts the weight based on the following
update rule:

λi(t +1, dsh) = max
(
ei(

dsh), da∗t)
)

(6.6)

where ei(
dsh) is scored by pi(t +1, dsh) and da∗t by Qh(dsh, da∗t)

Definition 6.10. An ECP extends a MMDP and is a 8-tuple
(SECP,Λ,AECP,{Eλ}λ∈Λ,RECP,TrECP,H,T).

• Let SECP be the coordination step dependent state space. A state sECP
t ∈ SECP consists

of state information of the respective MEP as well as current action predictions and
weight estimates of all agents of the coordination step t, i.e.

sECP
t = sh∪∀λ h

i ∈Λh∀dsh∈sh {(λ h
i ,

dah,w)|dah = λ
h(t, dsh)∧w = ph

i (t,
dsh)} (6.7)

• Let Λ be the set of agents, as defined for MEPs.

• Let AECP be the continuous action space.

• Let {Eλ}λ∈Λ be the agent-dependent expert space, as defined for MEPs.

90

6

6.2 Problem Formalization

• Let RECP : T ×SECP
t ×AECP

t →R≥0 be the coordination step dependent reward function.

• Let TrECP : SECP
t ×AECP

t → SECP
t+1 the transition function.

• Let H the step of the current MEP.

• Let T be the coordination step, as defined for MEPs.

The ECP protocol proceeds for coordination steps t = 1, . . . ,T :

• Each agent takes local action ai,ECP
t by adapting its MEP weight function pi(t +1, dsh).

• Each agent decides on MEP action λi(t +1,sh).

• The joint action of the MEP a∗t is determined as weighted majority vote.

• Each agent receives reward rECP
t , calculated based on the reward of a∗t in the MEP (i.e.

R(dsh,a∗t)) and action ai,ECP
t .

Actions in the ECP are continuous values, which have effect on the MEP weight functions
of an agent, pi(t +1, dsh).

Definition 6.11 (Agent actions in the ECP). By taking action ai,ECP
t ∈ AECP in coordination

step t, agent λi also adapts its weight function of the corresponding MEP:

pi(t +1, dsh)← pi(t, dsh)+ai,ECP
t (6.8)

Figure 6.4 summarizes the ECP.

Figure 6.4: The ECP within a MEP.

The state-action value function of an ECP (i.e. Qt) is defined with respect to the value
function of the corresponding MEP (i.e. Qh) in that local rewards of the ECP are added to
future state-action values of the MEP. The only difference to the definition of agent weights in

91

Chapter 6 Learning with Multiagent Expert Processes

MEPs is the coordination step dependent reward estimate. It is dependent on the joint action
a∗t of the MEP, i.e. the adapted agent weight pi(t, dsh) is evaluated with regards to the positive
or negative impact agent λi has for joint action a∗t .

Definition 6.12 (State-action value function in ECPs).

Qt(st
ECP,ai,ECP

t) = RECP(t,sECP
t ,ai,ECP

t)+ ∑
sh+1∈Sh+1

TrECP(sh+1|sh,ah) max
ah+1∈Ah+1

Qh(sh+1,ah+1)

(6.9)

Learning to act in a MEP with ECP entails learning a non-stationary agent-dependent policy
πi : T ×SECP→ AECP for the ECP. The policy is non-stationary since it depends on the current
coordination step. As an agent is only rewarded if the correct final joint action a∗T has been
chosen, the reward function is dependent on the coordination step as well.

In this work, budget CEXP
i is agent-dependent and set to CEXP

i = 1 ∀λi ∈ Λ, i.e. an agent is
allowed to query its expert exactly once 3.

We start by introducing a novel approach to learning local expert weights for decentralized
agents by exploiting the assumption that all experts have to be executed for the same decision
candidate.

6.3 Expert Weight Learning for MEPs

In MEPs with CEXP
i = 1 and perfect communication, we can exploit fixed-length feature

spaces, as each expert is queried for the same decision candidates. As a consequence, any
online supervised learning technique is applicable (such as GD, see Definition 3.18) to learn
weights for our feature representation.

To this end, we use the set of all meta dependencies (see Section 5.3) as feature represen-
tation and assume a linear relationship among them. We thus deal with linear regression (see
Definition 3.17) and standard squared loss LSQUARED, using GD to perform weight updates.
For the MEP, we need to learn the agent-dependent model parameter vector φi for agent λi:

pGD
i (1, ds) = MD(ei,

dsh)T
φi (6.10)

To this end, multiple options for using labels exist. A straightforward way is using rewards
R(ds,ei(

ds)) for a decision candidate and the expert of the agent, where future impacts of the
action are only taken into account via inter-step meta dependencies. An alternative would be to
use an estimate of the state-action value, which is approached by the well-known Q−Learning
algorithm (extend with function approximation) [140].

With expert rewards as labels, we derive tuples (MD(ei,
dsh),R(ds,ei(

ds))) to learn the
model parameters, where deriving the gradients for LSQUARED is straightforward. The result-

3Otherwise, agents are enabled to manipulate states to learn about their expert, which opens different research
questions.

92

6

6.4 Passive Coordination with MEPs

ing expert weight updates are situated between GD and SGD (see Definition 3.18) by using
every available sample individually as done in GD, by not aiming to retrieve all possible sam-
ples (which would entail to execute all possible combinations of decision candidates for each
expert) as approached by SGD. We thus do not incorporate iteration or epoch parameters, as
available for GD and SGD, since we use each sample exactly once and the choice wit respect
to state-expert pairs is controlled by the MEP.

Complexity Analysis 6.1. Similar to our Online RL approach based on EWH (see Sec-
tion 5.4), the complete set of defined meta dependencies is used as feature space for GD
and the resulting computational complexity for a model update of a single agent is O(|MD|),
where O(|MD|) = (|Eh|2+ |Eh||Eh+1|+ |Eh||Eh−1|)(|K||S|log|S|) as defined for the complex-
ity of meta dependencies (see Section 5.3). Note that we assume perfect communication, where
retrieving the predictions of all residual experts is not taken into account. If the latter is not
optimized, an agent has to communicate with all agents of the prior, the current and the sub-
sequent step, yielding a significant increase in complexity (querying the needed agents is in
O(|Λ|+ |Λh|+ |Λh−1|) for a single agent). The same holds for reusing expert weight learners
proposed in Chapter 5 for MEPs.

While this method presumes all experts to be executed for the same decision candidates, we
will discuss a possible extension for regression models to the budgeted case in Section 6.8.
Note that our SAS methods proposed in Chapter 5 already deal with this case, but using
standard supervised learning techniques for multi-step expert advice is not yet fully covered.

We now present approaches to coordinate conflicting expert hypotheses, which also work
without having learned expert weights as initial values. We start with passive coordination,
where communication among agents is not allowed.

6.4 Passive Coordination with MEPs

Passive coordination requires agents to adapt their weights based on the taken joint action
as well as the received reward. We therefore ignore coordination steps (i.e. T = 1), which
improves scalability, but makes coordination difficult.

We aim to adapt agent weights for passive coordination, instantiated as pPASSIV E
i : T ×S→

R, by using the EWH algorithm (see Definition 3.31) in order to align current agent weights i.
More specifically, we define an additional passive coordination weight wPASSIVE

i : S→R for
each agent, which is updated similar to EWH. The resulting agent weight is defined as:

pPASSIV E
i (1, dsh

z) = pi(1, dsh
z) wPASSIVE

i (sz) (6.11)

For passive coordination in a MEP, each agent λi can only predict λi(
ds) = ei(

ds), i.e. the
action proposed by its expert. We use the standard EWH update rule for wPASSIVE, but only
use the reward of the joint action as reward, i.e.:

93

Chapter 6 Learning with Multiagent Expert Processes

wPASSIVE
i (sz +1) = wPASSIVE

i (sz) exp
(
RSCALED(λi(

dsz)) η
EWH) (6.12)

To have agents passively converge to a consensus, we only update the weights if an agent’s
hypothesis was incorrectly chosen or incorrectly eliminated by the weighted majority voting
4, i.e.:

wPASSIVE
i (sh

z+1) =


Equation 6.12, if R(ds,ei(

ds)) = 1∧a∗ 6= ei(
ds)

Equation 6.12, if R(ds,ei(
ds)) = 0∧a∗ = ei(

ds)
wPASSIVE

i (sh
z) otherwise

(6.13)

Complexity Analysis 6.2. As passive coordination does not entail to learn models with re-
spect to individual actions of agents, significant costs might result from retrieving the weighted
majority voting (to update the passive coordination weights). Besides, we only keep and up-
date an additional set of weights for CEXP experts (in our special case only a single), resulting
in a total complexity of O(CEXP) for passive coordination only. The total cost of the resulting
MEP is then also dependent on the calculation of agent weights pi, which are not necessarily
required.

As adversarial learning approach, EWH enables robustness with respect to changing data
distributions when paired with agent weight learning techniques (e.g. gradient descent on
meta dependencies). Still, by taking into account the individual actions of other agents as well
as allowing agents to respond to the latter, the expected cumulative reward of the MEP can be
further improved.

6.5 Active Coordination with Heuristic Update Rules

For the active coordination protocol we allow multiple coordination steps (i.e. T > 1) and
learn agent weight function pACT IV E

i : T × S→ R, defined analogously to pi. If there is any
disagreement for a decision candidate, all agents can alter their weights to have the committee
converge to a consensus. Agents can thus either abandon their prediction or reinforce it.

Our first active coordination approach is a heuristic (which we name ACTIVEH), which
exploits novel properties for meta dependencies and actions of agents dependent on coordi-
nation steps. The central intuition for the heuristic is that a coordination weight update for
an agent λi should be be based on the decisions of other agents of the same step which are
confident (i.e. dominant) for the current decision candidate. Here, a confident agent is taking
the action its expert suggests (i.e. λi(

ds) = ei(
ds) holds), as the agent’s weight is sufficiently

high (i.e. pACTIVE
i (t, dsh)> Qt(

dsh,a∗t) holds) or other confident agents’ experts are predicting
the action, such that the agent involuntarily predicts its expert’s action. If not a single agent

4We assume binary rewards, but the strategy can easily be extended to continuous rewards settings by intro-
ducing a threshold.

94

6

6.5 Active Coordination with Heuristic Update Rules

is confident, the weighted majority based on the initial agent weights is chosen. The heuristic
thus implements the basic idea of swarm intelligence, where agents both try to fight for their
expert’s hypothesis or propagate actions of other confident agents.

We use all meta dependency instantiations as introduced in Section 5.3 & Table 5.1,5.2,5.3.
For ease of demonstration, we well use intuitive labels for their identifier l. Algorithm 2 de-
fines our weight update strategy, where we omit expert-state parameters for meta dependencies
as well as densities to increase readability, as the latter are constantly (ei,e j,

dsh). The algo-
rithm takes an additional parameter θ IMPACT ∈R≥0 which balances the impact of the weight
updates.

Algorithm 2 Active Coordination with Heuristics

Require: λi, d, a∗t , θ IMPACT

Ensure: pACTIVEH
i (t +1, ds)

1: ∆← 0
2: for all κ ∈ K do
3: for all λ j ∈ Λ\λi do
4: if HORIZON(ei) = HORIZON(e j) then
5: if ei(

ds) = e j(
ds)∧λ j(t, ds) = e j(

ds) then
6: ∆← ∆+θ

κ,δ
ERRORMDκ,ERROR

PAIR θ
κ,δ
JOINT MDκ,JOINT

PAIR
7: end if
8: if ei(

ds) 6= e j(
ds)∧λ j(t, ds) = e j(

ds) then
9: ∆← ∆+θ

κ,δ
CONFLICT MDκ,CONFLICT

PAIR −θ
κ,δ
ADDIT IV EMDκ,ADDITIVE

PAIR
10: end if
11: end if
12: if e j(

ds′) = d∧λ j(
ds′)t = e j(

ds′) then
13: ∆← ∆+θ

κ,δ
PAST MDκ,PAST

PAIR
14: end if
15: if HORIZON(ei) = (HORIZON(e j)−1) then
16: ∆← ∆+θ

κ,δ
FUTUREMDκ,FUTURE

PAIR
17: end if
18: end for
19: end for
20: pACTIVEH

i (t +1, ds)← pACTIVEH
i (t, ds)+θ IMPACT ∆

21: return pACTIVEH
i (t +1, ds)

As apparent in the algorithm, we only use pairwise meta dependencies to update the initial
agent weight estimate since we only want to align and coordinate the latter. We will now
explain important parts of the algorithm.

• Line 2-3: We iterate over all available kernels and agents.

95

Chapter 6 Learning with Multiagent Expert Processes

• Line 4-13: All updates require the respective pairwise agent to be sufficiently confident
in its expert hypothesis.

• Line 4-6: The joint performance of two experts of the same horizon is weighted by the
independent error of the latter.

• Line 8-9: The weighted conflicting performances of two experts are subtracted to re-
trieve the relative performance of agent λi

• Line 12-13: If the current decision candidate was generated from the expert of the
respective agent, we update the weight by the respective density-weighted meta depen-
dency

• Line 15-16: For experts of the next horizon, the respective density-weighted meta de-
pendencies are directly used.

• Line 20: The agent weight is updated by the manually weighted aggregate of all updates
for all kernels.

Complexity Analysis 6.3. Other than in passive coordination, we need to include complex-
ities resulting from the novel decision process of length T . In the proposed heuristic, one
recalculates agent weights in every coordination step t ∈ 1, . . . ,T by comparing their pair-
wise predictions. While calculations concerning agents of prior steps practically only need
to be made once, pairwise comparisons for all agents of the same step have to be conducted
for every coordination step. As a result, the complexity for all updates for a single decision
candidate and single step (but all coordination steps) is within O(|Λh−1|λ h|+ |Λh|2T). The
total cost of the resulting MEP for a given episode additionally consists of the calculation of
all meta dependencies and expert weights for all steps and respective decision candidates, i.e.
O(DH|Λh|(|Λh−1|+ |Λh+1|+ |Λh|T + |MD|)) with D again the number of decision candidates
for the state.

Although our heuristic provides an intuitive way to update agent weights, it might suffer
from changing data distributions as well as high variance in expert performances, as hand-
crafted, non-weighted rules are used. We thus continue with a learning-based approach for
active coordination, which learns and update model parameters for agent-dependent meta de-
pendencies.

6.6 Active Coordination with Reinforcement Learning

Until now, we ignored essential properties of the ECP for active coordination, as we did not
account for future actions of agents and did not use knowledge about coordination step limit
T . We now approach learning policies for MEPs by explicitly solving the ECP.

96

6

6.6 Active Coordination with Reinforcement Learning

The central problem of solving the ECP is dealing with continuous action spaces. One
solution would be to discretize the continuous actions by predefining possible agent weight
increments, which lacks flexibility and yields highly correlated actions. We thus learn separate
expert coordination policies for each agent with a Policy Search RL approach by parameter-
izing the policy and directly learning the action, i.e. by learning to adapt an agent’s weight
pi(t, dsh). To generalize learned policies, we use extend meta dependencies to compactly in-
tegrate multiple representations of the given decision candidate and actions predicted by other
agents (similar to the heuristic). Finally, as the ECP does not require agents to find an ex-
plicit consensus (i.e. a correct joint action is maximally rewarded), we propose an additional
heuristic to choose dominant actions.

Our approach for learning expert coordination policies comprises (i) defining coordination
step dependent relational agent features (based on meta dependencies) as state representation,
(ii) learning relative agent error residuals in the ECP with a Policy Search RL approach and
(iii) choosing robust actions for the corresponding MEP after T coordination steps. We term
the respective approach ACTIVEL.

6.6.1 Agent Meta Dependencies

We need novel state representations for agents to learn how to act in the ECP. We thus de-
fine agent meta dependencies AMD(t,λi,

ds) for coordination step t, agent λi and decision
candidate dsh, where corresponding meta dependencies MD(ei,

ds) are extended based on the
state of the ECP. Similar to our active coordination heuristic, an agent meta dependency only
consists of the value of the respective meta dependency if the respective agent is confident.

Single expert meta dependencies are directly used as agent meta dependencies, as they
independently approximate the performance of λi:

AMDκ,SINGLE
SINGLE (t,λi,

ds) = MDκ,1
SINGLE(ei,

ds) (6.14)

The future impact of an agent is not conditioned any pairwise behavior, as inexact:

AMDκ,FUTURE
PAIR (t,λ h

i ,λ
h+1
j , dsh) = MDκ,FUTURE

PAIR (eh
i ,e

h+1
j , dsh) (6.15)

All residual pairwise measures require that λ j, i.e. the respective paired agent, does not
abandon its expert’s prediction. For independent error no further condition is needed:

AMDκ,ERROR
PAIR (t,λi,λ j,

ds) = MDκ,ERROR
PAIR (ei,e j,

ds)1{λ j(t,ds)=e j(ds)} (6.16)

The past performance of eh
i and eh−1

j is conditioned on eh−1
j agreeing with its expert and dsh

being its hypothesis.

AMDκ,PAST
PAIR (t,λi,λ j,

ds) = MDκ,PAST
PAIR (ei,e j,

ds)1{λ j(t,dh−1)=e j(dsh−1)}1{e j(t,dh−1)=dsh} (6.17)

97

Chapter 6 Learning with Multiagent Expert Processes

The joint performance of two experts λi,λ j is additionally conditioned on two experts agree-
ing:

AMDκ,JOINT
PAIR (t,λi,λ j,

ds) = MDκ,JOINT
PAIR (ei,e j,

ds)1{λ j(t,ds)=e j(ds)}1{ei(ds)=e j(ds)} (6.18)

Similarly, pairwise expert measures with regards to additive impact are only used if λi,λ j

disagree:

∀l ∈ {ADVANTAGE,ADDITIVE} :

AMDl,κ
PAIR(t,λi,λ j,

ds) = MDκ,l
PAIR(ei,e j,

ds)1{λ j(t,dsh)=e j(dsh)}1{ei(dsh)6=e j(dsh)}
(6.19)

We now define AMDκ(t,λi,
ds), the kernel-dependent agent meta dependency feature vec-

tor, for agent λ h
i and decision candidate dsh in coordination step t :

AMDκ(t,λ h
i ,

ds) = 〈AMD1,κ
SINGLE(t,λ

h
i ,

ds),

∪∀l∈{2,3,4,5}∀λ h
j ∈Λh\λ h

i
AMDl,κ

PAIR(t,λ
h
i ,λ

h
j ,

dsh),

∪∀λ j∈Λh+1 AMD6,κ
PAIR(t,λ

h
i ,λ

h+1
j , ds),

∪∀λ j∈Λh−1 AMD7,κ
PAIR(t,λ

h
i ,λ

h−1
j , ds) 〉

(6.20)

The agent meta dependency feature vector is finally defined as union over all available
kernels, i.e.:

AMD(t,λ h
i ,

ds) = ∪∀κ∈KAMDκ(t,λ h
i ,

ds) (6.21)

Note that the agent meta dependency feature vector AMD(t,λ h
i ,

ds) potentially changes after
each coordination step, while MD(ei,

dsh) is constant for dsh. We no, present our strategy to
act in the ECP by adapting agent weight functions pACTIVEL

i (t, dsh).

6.6.2 Policy Search RL for the ECP

As the ECP has a finite-horizon (i.e. T), we can learn T separate policy functions, which
directly estimate the continuous action. More specifically, we learn T linear models based
on agent features AMD(t,λ h

i ,
ds), which are additively combined and driven towards error

residuals with respect to the actions an agent takes. We therefore keep T copies of model
parameters φ ACTIVEL

i,1 , . . . ,φ ACTIVEL
i,T such that an agent weight at coordination step t is defined

as:

98

6

6.6 Active Coordination with Reinforcement Learning

pACTIVEL
i (t, ds) = pACTIVEL

i (1, ds)+ ∑
t ′∈2,...,t

γ AMD(t,λi,
ds)T

φ
t ′
i (6.22)

where γ ∈ [0,1] is the discount factor hyperparameter, which we set to γ = 1, as the learned
policy is non-stationary. Learning the resulting policy πACTIVEL

i (t, ds) thus reduces to gradient
boosting [49] if all residual agents would not change their weights.

To cope with decision dynamics, we use the squared loss function
LSQUARED(φ

ACTIVEL
i,t ;AMD(t,λ h

i ,
ds),yt,dsh

i), as for linear regression. An agent-dependent

label yt,dsh

i is then calculated as:

yt,dsh

i =


min(DISTt,dsh

i ,φ ACTIVEL T
i,t φ t

i) ifQt(s
i,ECP
t ,ai,ECP

t)< Qh(dsh,a∗t)

max(|DISTt,dsh

i |,φ ACTIVEL T
i,t φ t

i) ifQt(s
i,ECP
t ,ai,ECP

t)> Qh(dsh,a∗t)
0 otherwise

(6.23)

where DISTt,dsh

i = Qh(s,a∗t)− pi(t, dsh)−α with α ∈ R the minimal distance to win or
abandonment. Note that, to decide in which direction to update the agent policy, we use
the value function of the ECP, Qt , to assess the action of an agent and the value function
of the MEP, Qh, for the resulting joint action. When calculating the minimal distance value
DISTt,dsh

i of the update, we only use the value function of the MEP, as the latter depicts the
current average weight for the joint action. The label for the loss function states that we need
to update φ t

i in terms of the distance to choosing the correct action, if rewards for λi(t, dsh)
or ei(

dsh) with respect to a∗t are not reflected in pi(t, dsh) or Qh(s,a∗t), as it implies that λi

should pursue its expert’s action. Otherwise, no update occurs, as λi cannot actively improve
the committee action.

To this end, we need to conduct GD updates for model parameters φ ACTIVEL
i,t , i.e.:

φ
ACTIVEL
i,t+1 ← φ

ACTIVEL
i,t − γ ∇

φ ACTIVEL
i,t

LSQUARED(φ
ACTIVEL
i,t ;AMD(t,λ h

i ,
ds),yt,dsh

i) (6.24)

We will now discuss how agents derive their final decisions after T coordination steps.

6.6.3 Robust Agent Decisions

As agents have to generalize across decision candidates of different episodes, their predictions
might be erroneous for unexplored regions, such that the ECP is prone not to converge within
coordination steps 1, . . . ,T . The problem is exacerbated for high-dimensional modalities, such
as text or images, where generalization is difficult for small training sets. To make agent
predictions more robust, we thus have agents choose the action which they most frequently
voted for throughout T . We extend this heuristic with a measure of dominance with regards
to the actions an agent chooses.

99

Chapter 6 Learning with Multiagent Expert Processes

Definition 6.13 (Agent-specific dominance of an action). Given agent decisions in T coor-
dination steps λi(1, dsh), . . . ,λi(t, dsh), let σi(

dsh, dah) = |{t|∃t ∈ 1, . . . ,T : λi(t, dsh) = dah}|
be the number of times λi chose a and A

dsh

i = {dah|∃t ∈ 1, . . . ,T : λi(t, dsh) = dah} the set of
actions λi has chosen throughout 1, . . . ,T .

The agent-specific dominance of action dah for λi is defined as:

∆
DOM
i (dsh, dah) = max

(
∆i(

dsh, dah),0
)

(6.25)

where

∆i(sh, dah) = min
(
{∆|∀cah ∈ Ai

dsh \ dah : σi(sh, dah)−σi(sh, cah)−∆ = 0}
)

(6.26)

holds.

∆i(
dsh, dah) returns the minimal occurrence difference of action dah compared to the resid-

ual actions taken by λi. ∆DOM
i (dsh, dah) only returns 0 if the minimal difference is negative,

i.e. action dah is not dominating the residual actions. The resulting dominance measure for
agents and action thus expresses the absolute dominance of an action based on all relative
dominance values of an action compared to the residual ones.

Based on the dominance estimates, we now define a state action value function for each
agent – qi : Sh×Ah→R≥0 – which combines the average frequency of an action with its dom-
inance. The agent-dependent state action value consists of the normalized choice frequency
of a potentially penalized by minimal dominance ∆MIN ∈ N≥0 and impact factor µ ∈ R≥0:

qi(sh,a) = max
(

σi(sh,a)
|Ai

sh |
−µ

∆MIN−∆DOM
i (sh,a)

∆MIN ,0
)

(6.27)

The minimal dominance parameter is thus to be set according to the necessity of conver-
gence or availability of a dominant action. A critical observation is that convergence might
depend on the number of coordination steps T which – when set to low – might bias the
dominance of an action.

Finally, the decision of an agent after T coordination steps λi : Sh→ Ah is defined as action
with maximal value:

λi(
dsh) = max

a∈Ad sh
i

qi(
dsh,a) (6.28)

Complexity Analysis 6.4. As we approach active coordination in MEPs, the respective cal-
culations are dependent on T coordination steps. Both, the complexity for conducting T active
coordination updates for all agents as well as the overall complexity for the resulting MEP
are the same as for the active coordination heuristic. More specifically, the set of agent meta

100

6

6.7 Discussion

dependencies requires the same pairwise agent comparisons as the active coordination heuris-
tic. The GD updates do not add significant complexity for our lower bound, although gradi-
ent computations are becoming more complex with increasing number of agents or generally
richer meta dependencies (i.e. higher numbers of available kernels or behavioral measures).
Finally, the cost for the final agent decision with respect to dominance is based on pairwise
agent comparisons of the current step. As a result, the total cost of the resulting MEP for a
given episode, again, is within O(DH|Λh|(|Λh−1|+ |Λh+1|+ |Λh|T + |MD|)) with D the num-
ber of decision candidates for the state. The coordination step dependent costs are the most
significant and are directly reduced when communication among agents is optimized.

6.7 Discussion

Given our simplifying assumption that each agent only uses the highest weighted action of
its local decision, one might lose reciprocal effects. Our methods can be extended to full co-
ordination, where an agent does not limit the available actions before coordination, but only
weights them. The action space for the ECP would then comprise vectors with continuous
weight adaptions for each available action. Calculating relational agent features then requires
a larger number of expert comparisons, which is trivial to implement. One can apply our
Policy Search RL approach as well as the robust action heuristic to all available actions indi-
vidually, but there is open potential to exploit conflicting weight updates.

Our approaches assume that all experts are executed at all times, which might not be pos-
sible when large amounts of experts are available. This could be remedied by having a single
meta-agent preselect experts (and agents) or by distributing budgets among agents, which re-
quires novel approaches. In addition, we require an available bound T for coordination steps
(i.e. the horizon for the coordination process is known). Other domains might require infinite-
horizon approaches.

Finally note that we make the simplifying assumption that ei represents the action choice of
agent λi, whereas the chosen action might be proposed by various experts in Eh

i . Even more
so, one could keep the complete set of expert predictions Eh

i for the coordination process and
define agent function λi as well as agent weight function pi to output a vector of all expert
actions.

6.8 Summary

In this chapter, we formalized MEPs to study expert coordination for multi-step expert ad-
vice. A MEP has unique properties compared to prevalent decision-making frameworks and
approaches crucial challenges, such as reducing biases due to expert correlation with the ECP.

To enable agents to assess their experts in the budget-free MEP setting, we explored online
supervised learning, where we reuse meta dependencies as feature space for linear regression.

101

Chapter 6 Learning with Multiagent Expert Processes

We approached the coordination problem in MEPs with three different approaches, assum-
ing different degrees of available information. In the passive coordination setting, we reused
the EWH algorithm to learn additional weights to adjust available expert confidences. When
assuming perfect information for each agent, coordination for ECP can be learned, which we
dealt with in two further approaches. The first active coordination method we introduced is
based on a heuristic, which leverages pairwise meta dependencies as well as coordination step
dependent agent predictions. For our learning-based active coordination approach, we defined
agent meta dependencies by taking into account pairwise coordination step dependent agent
decisions, which enable the application of function approximation to agent coordination for
MEPs. Our expert coordination approach was based on gradient boosting and a robust action
selection heuristic, which enabled to learn policies for the ECP as well as corresponding MEP.

Our work on MEPs and diverse coordination approaches addressed Research Question 3,
where the corresponding Hypothesis 3 is partially confirmed and will be revisited after the
empirical evaluation in Chapter 7.

102

7

Chapter 7

Evaluation of Learning with EPs & MEPs

This chapter deals with Research Question 1,2 and 3, which are concerned with developing
a framework for multi-step tasks with expert advice as well as methods to solve the latter.
These research questions have been partially approached by Chapter 5 and 6 by introducing
the respective approaches based on Hypothesis 1, 2 and 3. The goal of this chapter is validating
the respective contributions based on an empirical evaluation.
Our references for this chapter are [100, 104].

7.1 Introduction

We evaluate all introduced learning methods for finite multi-step tasks modeled as EP or MEP
for task NERD, as introduced in Section 2.1. We thus refer to the challenges and contributions
described in Chapter 5 & 6.

The resulting multi-step tasks as well as modeled decision processes have finite-horizon
H= 2 with S1 a state space over words, S2 a state space over named entities and S3 a state space
over disambiguated named entities, i.e. resources available in a (semi-) structured knowledge
base. For NER (h = 1), decision candidates are n-grams which we now define in general.

Definition 7.1 (n-grams). Given a piece of text of state s – T EXTs – defined as ordered set
of tokens T EXT i

s where i denotes the position of the token, we define the set of n-grams for
T EXTs as all possible sequences T EXT i

s , . . . ,T EXT i+n
s .

For a piece of text T EXTs, all possible n-grams with n = 1, . . . , |Texts|make up the possible
decision candidates for which the state-expert distribution is construed. After having queried
NER experts of set E1, we know the actual number of possible decision candidates, as de-
termined by their hypotheses. For NED (h = 2), the set of decision candidates consists of
all named entities proposed in h = 1 and the set of all states is constructed based on all valid
combinations of decision candidates. Finally, decision candidates resulting from the NED step
(h = 3) are disambiguated named entities proposed by queried NED experts of set E2.

The chapter proceeds as follows: We first describe the setup of our evaluation (Section 7.2),
where we explain all parameters, instantiations of our methods as well as baseline implemen-
tations. We then present and discuss the evaluation results (Section 7.3) and finally summarize
the chapter in Section 7.5.

103

Chapter 7 Evaluation of Learning with EPs & MEPs

Kernel Implementation
Candidate Lingual Type POS tag
Candidate Word embeddings Pretrained on articles
Candidate MinHash Jaccard similarity
State Length Number of characters
State Extra Characters Count #, @
State Lingual Type Average POS tag

Table 7.1: Used kernels for evaluation.

7.2 Setup

Our experimental setup description is divided into data sets, meta dependencies as well as
their configurations, Web services used as experts and, finally, the evaluation measures with
respective baseline- and weight learning approaches.

7.2.1 Data

The data sets we use are (i) Microposts 2014 corpus [10] which consists of a collection of
tweets (Z = 2034) of no specific topic and (ii) Spotlight corpus [91] which consists of news
articles of no specific topic, each consisting of several sentences (Z = 59), where Z corre-
sponds to the number of resulting episodes for EPs or MEPs (i.e. the number of tweets or sen-
tences, respectively). While Microposts 2014 comprises an average of 1.84 entities per tweet,
Spotlight is denser with an average of 5.69 entities per sentence. Also, the tweets available in
Microposts 2014 contain significantly more grammatical errors, abbreviations and extra char-
acters such as hashes, symbols or hyperlinks than news articles in the Spotlight corpus. For
modeling EPs and MEPs, we treat each tweet and each sentence within an article as single
state sample, i.e. as piece of text T EXTs as defined for n-grams. Decision candidates thus
comprise tokens or token sequences.

7.2.2 Meta Dependencies

The central variables for meta dependencies are the used kernels to calculate similarities
among states and/or decision candidates. After presenting the kernels we use, we list the
chosen values for density parameters Mκ and δκ .
Kernels: We summarize the kernel set K we used in Table 7.1, where state or candidate
indicates whether the kernel is calculated for the complete sentence (or tweet), or for the
decision candidate, respectively.

The decision candidate kernels assess a token or token sequence in terms of different
perspectives. The lingual kernel is based on part-of-speech (POS) tags, where each possible

104

7

7.2 Setup

tag depicts a category and the kernel function simply compares the respective categories in
a binary fashion. To directly compare tokens or token sequences we employ two different
kernels. The word embedding kernel is used to generalize the comparison of texts of decision
candidates based on the contexts the latter often occur. The embeddings were trained on large
amounts of news articles on the Web 1 and are directly reused for our evaluation. In contrast,
the MinHash kernel 2 compares the respective pieces of texts based on character overlap.
Using the latter, we can better scale the computation of the kernel.

The state-dependent kernels are relatively general and represent the context of a decision
candidate. The length of a state is defined as total amount of characters within a tweet or
sentence in a news article and thus models the length of available context for a decision
candidate. Both extra characters as well as lingual types then refine the assessment of the
context, which might heavily influence the respective experts in its ability to choose among
candidate hypotheses.

Densities: For calculating the densities, we need to set parameter Mκ which expresses the
expected amount of decision candidates in the kernel-induced neighborhood. The latter is de-
pendent on parameter δκ , defining the similarity threshold for a decision candidate to become
part of a neighborhood. We vary Mκ and δκ for the kernels as follows, where Z corresponds
to the number of episodes in a fold (see Definition 3.23).

• Mlength = Mextra = Mstate lingual =
Z
4

• δlength = δextra = δstate lingual = 0.7

• Membeddings = Mminhash = Mcandidate lingual =
Z
10

• δembeddings = δminhash = δcandidate lingual = 0.5

Kernels for states get updated more often, as they either are relatively general or consist of
the average of all occurring candidates, and thus get assigned higher thresholds with regards to
the required similarity value as well as the number of states in the neighborhood. In contrast,
the kernels for decision candidates are more specific and thus might never return any valuable
neighborhoods if high thresholds are used, as the used training sets are relatively small. We
thus choose lower thresholds for both parameters.

7.2.3 Experts

We exclusively use experts available as Web services and do not tune any of their respective
parameters. The selection process was based on NERD benchmark GERBIL, where we chose
pure NER approaches and pure NED approaches, i.e. we did not use Web services which

1https://code.google.com/archive/p/word2vec/ (accessed on 05/01/2018)
2https://github.com/ekzhu/datasketch/ (accessed on 05/01/2018)

105

https://code.google.com/archive/p/word2vec/
https://github.com/ekzhu/datasketch/

Chapter 7 Evaluation of Learning with EPs & MEPs

NER Expert NED Expert
Stanford Tagger (ST) [45] AIDA (AIDT) [56]
Spotlight Spotter (SPS) [91] Spotlight Tagger (SPT) [91]
FOX [119] AGDISTIS (AGDT) [130]

Table 7.2: Experts for NER & NED.

Microposts ’14 Spotlight
Appr. F1 Prec Rec F1 Prec Rec

ST 0.49 0.89 0.34 0.22 0.86 0.13
FOX 0.49 0.91 0.33 0.22 0.84 0.13
SPS 0.56 0.4 0.89 0.64 0.53 0.81
AGDT 0.45 0.6 0.36 0.35 0.7 0.24
AIDAT 0.32 0.45 0.25 0.24 0.29 0.2
SPT 0.65 0.74 0.58 0.76 0.79 0.72

Table 7.3: Baseline performances of experts.

solve the complete NERD task without allowing to input texts annotated with named entities
for NED. Table 7.2 summarizes the experts we used for NER and NED, where the horizontal
alignment expresses how the experts are actually used in combination in the real-world.

Table 7.3 shows the baseline precision, recall and F1-measure outcomes for the chosen
data sets, which are the proposed evaluation metrics by GERBIL and defined in Section 3.2.5.
Experts SPS for NER and SPT for NED provide the highest recall for tweets and news arti-
cles. SPS does, however, yield relatively low precision scores, resulting in numerous wrongly
identified named entities. Note that FOX and ST strongly correlate, as FOX is an ensemble
learning approach using ST. Central learning challenges thus are to detect correlations of FOX
and ST as well as learning for which data characteristics SPS is correct.

7.2.4 Evaluation measures

We evaluate our approach in terms of two target measures: a) accuracy estimation of experts
and b) outcome optimization of the EP or MEP. For each target measure, we perform 10-
fold cross-validation and use precision, recall and F1-measure (as proposed by GERBIL) as
metrics.
a) Accuracy Estimation:
The goal is to accurately estimate weights (i.e. weh) for all experts and thus to predict if the
suggested action of an expert is correct or not. Here, we are not in the full EP or MEP setting

106

7

7.2 Setup

and thus do not deal with budget constraints, i.e. we execute all experts once for a single state.
We define the following properties for all performance metrics:A true positive is correctly

predicting that an expert’s hypothesis is correct, a true negative is correctly predicting that
an expert’s hypothesis is wrong, a false positive is a wrongly predicting that an expert’s hy-
pothesis is correct and a false negative is wrongly predicting that an expert’s hypothesis is
wrong.

We now describe all baselines as well as instantiations of our approaches. Note that we
do not use MEP coordination approaches, as they adapt the expert weights to optimize the
weighted majority vote.

Gl-Avg: The first baseline is the straightforward global performance weighting for experts
on left-out training data, similarly to [113]. The expert weight is calculated as precision of an
expert on the left-out training data of the respective fold.

Single-Avg: The second baseline is based on single-expert meta dependencies as defined
in Section 5.3.1. Based on all single-expert meta dependencies for a decision candidate ds for
expert e, i.e. MDκ,l

SINGLE(e,
ds) (with κ the kernel, l the instantiation for behavioral measure and

condition and θ the density), we compute the weighted average with densities as weighting
factor:

we =
∑MDκ,PRECISION

SINGLE (e,ds)∈MDSINGLE(e,ds) θ
κ,δ
PRECISION(

dsh)MDκ,PRECISION
SINGLE

∑MDκ,PRECISION
SINGLE (e,ds)∈MDSINGLE(e,ds) θ

κ,δ
PRECISION(

dsh)
(7.1)

OnGD-Single: An instantiation of our online learning approach (see Section 6.3), tagged
OnGD-Single, where we use GD with all meta dependencies to learn expert weights. Here,
we use the online learning framework Vowpal Wabbit 3 [81] with standard GD configuration
as learner. The parameters are set as follows: η = 0.2.

OnGD-All: An instantiation of our online learning approach (see Section 6.3), tagged
OnGD-All, where we use the same GD configuration as for OnGD-Single with all meta de-
pendencies to learn expert weights. The parameters are set as follows: η = 0.2.

OnEWH-All: An instantiation of our online model-free RL approach (see Section 5.4),
tagged OnEWH-All, where we extend the EWH algorithm to deal with expert budgets with
all meta dependencies to learn expert weights. Note that we only train on tweet states, even
when predicting for news article states. The parameters are set as follows: pmin = 0.05,η =
0.8,β = 1.5.

BatchPSL-All: An instantiation of our batch model-free RL approach (see Section 5.5),
tagged BatchPSL, where we rely on an existing implementation of PSL 4 to integrate our
model. Note that, again, we only train on tweet states, even when predicting for news article
states. The parameters are set as follows: ZPOOL = ZBATCH = Z

10 .
b) Outcome optimization:

3https://github.com/JohnLangford/vowpal_wabbit/ (accessed on 05/01/2018)
4https://github.com/linqs/psl (accessed on 05/01/2018)

107

https://github.com/JohnLangford/vowpal_wabbit/
https://github.com/linqs/psl

Chapter 7 Evaluation of Learning with EPs & MEPs

Our second goal is to optimize the overall outcome of the EP or MEP, i.e. to maximize the
expected cumulative reward.

We define the following properties for all performance metrics: A true positive is a correctly
found (disambiguated-) named entity, a true negative is the correctly predicted abstinence of
a (disambiguated-) named entity, a false positive is a wrongly found (disambiguated-) named
entity and a false negative is the wrongly predicted abstinence of a named entity.

We again describe all baselines as well as instantiations of our approaches. The general
budget parameters – if not defined otherwise – are B0

QUERY = |E0| and B1
QUERY = |E1|.

AIDA: The NERD approach as deployed in the real-world with e1 = ST, e2 = AIDAT.
DBS: The NERD approach as deployed in the real-world with e1 = SPS, e2 = SPT.
AGD: The NERD approach as deployed in the real-world with e1 = FOX, e2 = AGDT.
EP-Gl-Avg: The first EP baseline, where we use Gl-Avg as described before, now inte-

grated into an EP.
EP-Loc-Avg: The second EP baseline, where we use Loc-Avg as described bfore, now

integrated into an EP.
EP-OnGD-All: Our online learning approach OnGD-All now integrated into an EP.
EP-OnEWH-All: Our online model-free RL approach OnEWH-All now integrated into an

EP. The additional parameters for expert execution budgets are B0
QUERY = 2 and B1

QUERY = 4,
i.e. two (state,expert) pairs can be queried for NER and four (state,expert) pairs for NED.

EP-BatchPSL-All Our batch model-free RL approach BatchPSL-All now integrated into
an EP. The additional parameters for expert execution budgets are B0

QUERY = 2 and B1
QUERY =

4, i.e. two (state,expert) pairs can be queried for NER and four (state,expert) pairs for NED.
MEP-PCoord-Free: Our passive coordination approach integrated into a MEP with no

expert weight estimation technique. The parameters are set as follows: ηEWH = 1.0
MEP-PCoord-OnGD-All: Our passive coordination approach integrated into a MEP with

OnGD-All as expert weight estimation technique. The parameters are set as follows: ηEWH =
1.0

MEP-ACoordH-Free: Our active coordination approach integrated into a MEP with no
expert weight estimation technique. The parameters are set as follows: θ IMPACT = 1.0, T = 10

MEP-ACoordH-OnGD-All: Our active coordination approach integrated into a MEP
with OnGD-All as expert weight estimation technique. The parameters are set as follows:
θ IMPACT = 0.1, T = 10

MEP-ACoordL-Single-Free-All: Our active coordination approach without gradient
boosting and no initial confidence. Here, one single learner is invoked and updated T times.
The parameters are set as follows: T = 7,α = 0.5,µ = 0.3,∆MIN = 3,ηGD = 0.4.

MEP-ACoordL-Single-Conf-All: Our active coordination approach without gradient
boosting and expert confidence based on the provided Web service. Here again, one sin-
gle learner is invoked and updated T times. The parameters are set as follows: T = 7,α =
0.5,µ = 0.3,∆MIN = 3,ηGD = 0.4.

108

7

7.3 Results

Microposts ’14 Spotlight
Appr. F1 Prec Rec F1 Prec Rec

Gl-Avg 0.71 0.75 0.67 0.7 0.69 0.72
Loc-Avg 0.76 0.65 0.93 0.78 0.66 0.94
OnGD-Local 0.84 0.82 0.86 0.79 0.95 0.69
OnGD-All 0.85 0.78 0.93 0.86 0.96 0.78
OnEWH-All 0.85 0.84 0.87 0.82 0.84 0.8
BatchPSL-All 0.82 0.8 0.85 0.79 0.78 0.81

Table 7.4: Evaluation results for a) accuracy estimation with h = 1.

MEP-ACoordL-Grad-Free-All-1: Our active coordination approach with gradient boost-
ing. The parameters are set as follows: T = 7,α = 0.5,µ = 0.3,∆MIN = 3,ηGD = 0.4.

MEP-ACoordL-Grad-Free-All-2: Our active coordination approach with gradient boost-
ing. The parameters are set as follows: T = 14,α = 0.5,µ = 0.3,∆MIN = 6,ηGD = 0.4.

MEP-ACoordL-Grad-Free-All-3: Our active coordination approach with gradient boost-
ing. The parameters are set as follows: T = 14,α = 1.0,µ = 0.05,∆MIN = 6,ηGD = 0.4.

MEP-ACoordL-Grad-Conf-All-1: Version of MEP-ACoordL-Grad-Free-All-1 with ex-
pert confidence based on the provided Web service.

MEP-ACoordL-Grad-Conf-All-2: Version of MEP-ACoordL-Grad-Free-All-2 with ex-
pert confidence based on the provided Web service.

MEP-ACoordL-Grad-Conf-All-3: Version of MEP-ACoordL-Grad-Free-All-3 with ex-
pert confidence based on the provided Web service.

Based on our evaluation setup, we now present and discuss the respective results.

7.3 Results

We first summarize the evaluation results for a) accuracy estimation for h = 1 and h = 2 (see
Table 7.4 & 7.5) and b) outcome optimization (see Table 7.6).

7.3.1 Summary of Results for Accuracy Estimation

NER: For tweets, our methods based on the EWH algorithm (OnEWH-All) and pure GD
(OnGD-All) with all meta dependencies reach the best overall results in terms of F1-measure
as well as precision and recall. For news articles, OnGD-All is dominating for all performance
metrics. To this end, it is noticeable that using all meta dependencies for OnGD-All improves
the results with respect to GD-Local (using only single-expert meta dependencies) for both
data sets. Our SRL approach (BatchPSL-All) provides stable results close to prior methods
and improves the results with respect to the pure majority voting (Gl-Avg) as well as the

109

Chapter 7 Evaluation of Learning with EPs & MEPs

Microposts ’14 Spotlight
Appr. F1 Prec Rec F1 Prec Rec

Gl-Avg 0.56 0.63 0.51 0.42 0.39 0.46
Loc-Avg 0.71 0.6 0.87 0.56 0.44 0.78
OnGD-Local 0.64 0.74 0.57 0.44 0.64 0.33
OnGD-All 0.85 0.8 0.92 0.78 0.74 0.83
OnEWH-All 0.73 0.67 0.81 0.67 0.62 0.72
BatchPSL-All 0.8 0.73 0.88 0.74 0.72 0.77

Table 7.5: Evaluation results for a) accuracy estimation with h = 2.

Microposts ’14 Spotlight
Appr. F1 Prec Rec F1 Prec Rec

DBS 0.33 0.24 0.51 0.45 0.38 0.57
AGD 0.28 0.59 0.19 0.13 0.56 0.07
AIDA 0.33 0.69 0.21 0.24 0.69 0.15
EP-Gl-Avg 0.41 0.51 0.34 0.36 0.48 0.29
EP-Loc-Avg 0.47 0.59 0.38 0.42 0.49 0.37
EP-OnGD-All 0.44 0.71 0.33 0.35 0.58 0.25
EP-OnEWH-All 0.54 0.6 0.5 0.43 0.44 0.42
EP-BatchPSL-All 0.56 0.72 0.46 0.48 0.64 0.39
MEP-PCoord-Free 0.35 0.69 0.24 0.25 0.88 0.15
MEP-PCoord-OnGD-All 0.46 0.67 0.34 0.48 0.69 0.36
MEP-ACoordH-Free 0.41 0.72 0.29 0.44 0.48 0.41
MEP-ACoordH-OnGD-All 0.5 0.79 0.37 0.63 0.7 0.57
MEP-ACoordL-Single-Free-All 0.37 0.52 0.29 0.44 0.49 0.39
MEP-ACoordL-Single-Conf-All 0.32 0.49 0.24 0.39 0.56 0.31
MEP-ACoordL-Grad-Free-All-1 0.48 0.61 0.41 0.58 0.6 0.57
MEP-ACoordL-Grad-Conf-All-1 0.42 0.53 0.34 0.54 0.56 0.52
MEP-ACoordL-Grad-Free-All-2 0.51 0.65 0.42 0.51 0.59 0.47
MEP-ACoordL-Grad-Conf-All-2 0.43 0.55 0.34 0.6 0.61 0.59
MEP-ACoordL-Grad-Free-All-3 0.41 0.6 0.31 0.52 0.56 0.48
MEP-ACoordL-Grad-Conf-All-3 0.45 0.59 0.37 0.51 0.54 0.48

Table 7.6: Evaluation results for b) outcome optimization

110

7

7.3 Results

weighted majority voting with single expert meta dependencies (Loc-Avg) with no further
weightings of the respective kernels.

NED: For both tweets and news articles, our method based on pure GD (OnGD-All) with all
meta dependencies reaches the best overall results with regards to all measures. However, the
relational learner BatchPSL-All now supersedes the residual approaches for both data sets and
all measures. OnEWH-All (i.e. our EWH extension) still dominates the baseline methods Gl-
Avg and Loc-Avg. Notice, however, that GD-Loc performs worse than the latter – especially
compared to OnGD-All.

7.3.2 Summary of Results for Outcome Optimization

The monolithic baselines DBS, AGD and AIDA reach close results for tweets in terms of F1-
measure, but significantly differ in precision and recall, as was observable for the single expert
performances shown in Table 7.3. Here, AGD and AIDA reach relatively high precision but
low recall and the results of DBS show low precision and relatively high recall. For news
articles, the results for precision are closer, but DBS still performs worse. For recall, DBS
outperforms AGD and AIDA even clearer than before.

While the non-weighted majority voting (EP-Gl-Avg) can already improve the F1-measure
for tweets compared to prior baselines, it does only reach an average recall with respect to
DBS. For news articles, DBS still provides superior results. The same conditions hold for
the weighted majority voting based on single-expert meta dependencies (EP-Loc-Avg), where
further small improvements are observed, but recalls stay average and DBS wins for news
articles. To this end, our approach based on GD and all meta dependencies (EP-OnGD-All)
cannot improve the results and – while yielding higher precision values for both tweets and
news articles than prior non-monolithic baselines – reaches lower recall values and, in turn,
F1-measures.

Our learning methods for EPs – EP-OnEWH-All and EP-BatchPSL-All – further improve
the results for all performance metrics on tweets as well as news articles. Especially for
tweets, precision values are considerably improved by EP-BatchPSL-All (and similarly for
EP-OnEWH-All while remaining behind the latter). The same holds for recall, where EP-
OnEWH-All provides the best overall results for non-monolithic recall, while only performing
slightly worse than DBS. For news articles, where EP-BatchPSL-All and EP-OnEWH-All
were only trained on tweets, the results are less expressive but the same trends as for tweets
can be observed. EP-BatchPSL-All can further improve precision (in contrast to EP-OnEWH-
All which only yields average precision improvements compared to DBS) but recall values
for the latter and EP-OnEWH-All are only average improvements over prior non-monolithic
methods.

Starting with coordination approaches, passive coordination as introduced in Section 6.4
was not able to improve the F1-measure of the non-weighted majority vote for tweets (MEP-
PCoord-Free), as only precision was raised but recall decreased. Similar conditions are
prevalent for MEP-PCoord-OnGD-All where, however, small improvements in F1-measure

111

Chapter 7 Evaluation of Learning with EPs & MEPs

are observable, as recall was improved, while precision remained stable. While for MEP-
PCoord-Free the results are the same for news articles, MEP-PCoord-OnGD-All considerably
improves the results of MEP-OnGD-All for all performance metrics.

The results for our active coordination heuristic (see Section 6.5) show the same tendencies
as for passive coordination, while the individual outcomes for each performance metric are
better. For both tweets and news articles without available expert weights (MEP-ACoordH-
Free), the results stay stable with respect to MEP-Gl-Avg, where precision increases but recall
slightly drops. With GD and all meta dependencies as expert weights (MEP-ACoord-OnGD-
All), we can significantly increase F1-measure and precision for both tweets and news articles.
Here, the highest overall precision is reached for both data sets and respective recall values
increase with respect to MEP-OnGD-All.

Finally, observing the outcomes of our learning-based active coordination approach (see
Section 6.6), we first discuss results of the single learner (i.e. not taking advantage of having
a finite-horizon). Here, for MEP-ACoordL-Single-Free-All without expert weights as well as
for MEP-ACoordL-Single-Conf-All with using Web service confidences only below-average
outcomes for all performance metrics and both data sets are achieved. The results signifi-
cantly improve by exploiting gradient boosting with individual models for individual coordi-
nation steps for all instantiated approaches (MEP-ACoordL-Grad-Free-All-x, MEP-ACoordL-
Grad-Conf-All-x with x = 1,2,3) and both data sets. The performance of MEP-ACoordL-
Grad-Free-All-2 is most notable, as the F1-measure for tweets improves on the results of
MEP-ACoordH-OnGD-All by yielding significantly higher recall without using initial expert
weights. For news articles, the results for using initial expert weights (e.g. MEP-ACoordL-
Grad-Conf-All-2) are competitive by yielding the highest overall recall of all methods, while
achieving adequate results for precision.

7.4 Discussion

We first deal with our EP approaches and then interpret the general behavior of meta depen-
dencies, as observable throughout all learning methods. We subsequently discuss the perfor-
mances of our MEP techniques, which include coordination.

7.4.1 (EP-)OnGD

For our online learning approach based on GD, we distinguished among OnGD-Local with
single-expert meta dependencies and OnGD-All with all meta dependencies. OnGD-All did
yield superior performances for expert accuracy estimation on both data sets. The latter can be
explained by the ability to learn a joint model over all experts while not having to account for
missing features caused by expert budgets. The superior performance of OnGD-All for accu-
racy estimation is partially based on the performances of the individual experts. Both ST and
FOX are relatively precise, but leave out several true positives (see Table 7.3), which makes

112

7

7.4 Discussion

them easier to assess. As SPS is imprecise, it is significantly harder to find true positives. For
outcome optimization, the performance of EP-WM-GD-All is only average with respect to
F1-measure and recall, with relatively high precision.

7.4.2 (EP-)OnEWH-All

Other than OnGD, our online learner OnEWH-All is based on the EWH algorithm extended
with measures to deal with partial information. Its accuracy estimation results did show stable
improvements for all cases, where it especially performed well for NER and tweets. Even
more so, did reach better results for OnEWH-All for most cases. While OnGD-All still
dominated OnEWH-All for NER, the results for outcome optimization were different. EP-
OnEWH-All did yield considerable improvements over the non-weighted- as well as weighted
majority votes (EP-Gl-Avg and EP-Loc-Avg). Still, compared to the relational learner (EP-
BatchPSL-All), EP-OnEWH-All performed slightly worse although the individual expert ac-
curacies were dominant on average. The combined expert weights thus incorporated a bias,
which might be due to expert correlation.

7.4.3 (EP-)BatchPSL-All

Our SRL approach (BatchPSL-All) exploits the relational nature of meta dependencies and is
sufficiently flexible to deal with non-queried experts. The resulting performances for accu-
racy estimation did yield improvements over all baselines and remained competitive for both
NER and NED as well as tweets and news articles. As became apparent for outcome opti-
mization, EP-BatchPSL-All – other than online learners EP-OnGD-All and EP-OnEWH-All
– also learned to disclose true positives by achieving good results for precision and recall.
EP-BatchPSL-All thus yields the best overall F1-measure, thereby dominating all residual
approaches on average. As the SRL approach exploits mini-batches of states for training as
well as pools for prediction, it eventually better generalizes the performances of experts for
available states.

7.4.4 Qualitative Results of Meta Dependencies

The learned meta-weights show that single- as well as pairwise intra-step expert meta de-
pendencies both drive weights towards one (i.e. positive rules received high weights), while
pairwise inter-step expert meta dependencies have the opposite effect (i.e. positive rules either
received low weights or negative rules received high weights). The meta dependencies thus
complement each other to provide well-balanced estimates. Although kernels for state text
length and -extra characters are heuristics, they improve the predictive power. As both the
PSL model as well as the online learners are easily extensible and scale well, adaptation to
new tasks or domains is straightforward. As the used textual kernels were most influential,
additional textual kernels, covering more decision candidates, might substantially improve

113

Chapter 7 Evaluation of Learning with EPs & MEPs

the predictions. Our approaches thus also enable to exploit numerous embedded text repre-
sentations at once. Finally, our results suggest that meta dependencies learned on tweets also
improve learning expert weights for news articles, making knowledge transfer possible.

Until now, we only dealt with EP results based on expert weight learning methods for SAS.
Based on the latter, we now discuss the results of our passive- as well as active coordination
techniques.

7.4.5 PCoord

In passive coordination, we used the EWH algorithm to adapt expert weights according to
the joint performance of respective agents, without using information about the action taken
by other agents. Only MEP-PCoord-OnGD-All, our approach using GD with all meta de-
pendencies, was able to generate considerable improvements with respect to EP-OnGD-All.
The technique is thus not sufficiently expressive to deal with the non-weighted case (MEP-
PCoord-Free). However, when initial expert weights are available, the method can stabilize
the dececentralized majority voting of agents.

7.4.6 ACoordH

Other than in passive coordination, our active learning heuristic used agent meta dependencies
to gradually align agent weights throughout the ECP. Our results suggested that active coor-
dination can significantly improve both non-weighted as well as weighted majority votings,
where in the weighted case (MEP-ACoordH-OnGD-All) the best precision- and F1-measure
scores are reached for tweets and news articles. As using active coordination with respec-
tively adapted meta dependencies dominates passive coordination, our results suggest that the
latter are adequate for the coordination task. The outcomes for recall were successfully op-
timized for news articles, but our method was not able to achieve the same goal for tweets.
As the approach is a heuristic, it cannot dynamically adapt its weight updates for states with
heterogeneous characteristics, which is potentially more important for tweets, as the latter are
generally shorter and contain larger degrees of colloquial languages. Finally, the choice of
coordination step limit T did not significantly impact our results if T > 5 was chosen. In most
cases, if no consensus was found after 5 coordination steps, the results remained the same.

7.4.7 ACoordL

In our learning approach for active coordination, we use a Policy-based RL approach to coor-
dinate expert weights in the ECP. Available initial expert weights are constrained to uniform
weights (as used in MEP-ACoordH-Free) as well as using available expert service confidences
(not available for several experts, namely AGDT, AIDT, ST and FOX). The evaluation thus
emphasizes the performances of non-weighted or partially weighted coordination techniques

114

7

7.4 Discussion

(in contrast to MEP-ACoordH-OnGD-All). As the single learning instantiation without gra-
dient boosting is only used as baseline (MEP-ACoordL-Single-x-All) with x = {Free,Conf})
and provides average performance, we do not deal with it here.

The centralized approach EP-BatchPSL-All still outperforms all configuration for tweets
in terms of all performance metrics, but the coordination approach (MEP-ACoordL-Grad-
Conf-All-2) dominates the latter for news articles and competes with the active coordination
heuristic with GD expert weights (MEP-ACoordH-OnGD-All). Note that, while the approach
deals with decentralized coordination, it was able to achieve the highest recall for all available
approaches throughout the evaluation. The active coordination learner is thus better able to
adapt uniform initial weights and can also exploit slightly adapted initial weights to derive
adequate agent weights for the weighted majority voting.

On average, the best results were reached by MEP-ACoordL-Grad-x-All-2 (with x =
{Free,Conf}) where the central difference to MEP-ACoordL-Grad-x-All-1 is having more
coordination steps (T = 14 versus T = 7) and the central difference to MEP-ACoordL-Grad-
x-All-3 is a lower distance to the majority voting (α = 0.5 versus α = 1.0) as well as higher
non-dominance penalization (µ = 0.3 versus µ = 0.05). While running our experiments we
also made the empirical observation that reaching stable joint actions over all coordination
steps decreased for early episodes if initial expert confidences were available and increased af-
ter the models started to generalize. If no expert confidences were given, reaching stable joint
actions converged faster. With respect to parameter tuning, we suggest to (i) test larger values
for T (ii) keep distance α between agent weights low, (iii) try out stronger non-dominance
penalization and (iv) potentially test other initial expert weights. Those findings might help to
reproduce the results and open up questions for more empirical and theoretical research.

7.4.8 Design Choices

Our central design choice (other than parameters) for our experiments are the used kernels.
As we chose straightforward measures (e.g. raw text- or embedded vector similarities), the
approaches are transferable to other NLP tasks. For other tasks, e.g. in image processing, one
needs to use or develop other kernel functions. Further design choices for our experiments
include the available experts for NER and NED steps as well as the number of agents. The
selected experts exhibit central problems for multi-step tasks, namely expert correlation as
well as yielding high precision with low recall or vice versa. While the choice of one-to-one
mappings from agents to experts results in all experts being queried, the practical complexity
is constrained by expert budget CEXP = 1, where only a single expert-state configuration can
be chosen.

115

Chapter 7 Evaluation of Learning with EPs & MEPs

7.5 Summary

In this chapter, we evaluated the suitability of EPs and MEP, and their respective RL- and
coordination approaches for NERD. The results for our proposed learning methods for EPs
and MEPs showed promising performances in terms of accuracy estimation and outcome op-
timization for NERD on news articles and tweets. While our SRL approach based on PSL
(EP-BatchPSL-All) reached the best F1-measure for NERD outcome optimization on tweets,
our coordination approach for MEPs (MEP-ACoordH-OnGD-All) did outperform all others
with regards to F1-measure on news articles. Similar conditions hold for precision and recall
for both data sets, where different proposed learning approaches dominate. The differences
with regards to the performances are balanced with differences in terms of computational
complexity. We presented lightweight approaches based on the EWH algorithm (e.g. MEP-
ACoordH-OnGD-All) with low complexity and – on average – adequate performance, but
also developed richer models (e.g. EP-BatchPSL-All) with higher complexities and superior
performance. As a consequence, all methods have certain advantages and have to be chosen
based on the individual task, available data and potentially available end user preferences (e.g.
precision versus recall or available resources for computation).

Our NERD evaluations for Online RL and Batch RL for corresponding EPs answered Re-
search Question 1 & Research Question 2, where the corresponding Hypothesis 1 & 2 can be
confirmed.

Our NERD evaluations for a passive coordination approach as well as two active coordina-
tion approaches for MEPs answered Research Question 3, where the corresponding Hypothe-
sis 3 can be confirmed.

116

Part III

Web Automation

This part deals with the problem of Web automation for multi-step tasks with expert ad-
vice. We first extend EPs with semantic representation, yielding SEPs, to approach resolving
heterogeneity of experts and data, and subsequently introduce suitable Web components and
their interactions for Web automation (Chapter 8). To evaluate the proposed Web components,
we apply the latter to two medical assistance- as well as one NLP scenario in Chapter 9.

8

Chapter 8

Automating Semantic Expert Processes

This chapter proposes the SEP framework as well as a Web architecture to automatically
solve multi-step tasks on the Web. It deals with Research Question 4 & 5, where we ap-
proach heterogeneity of expert functionalities, -implementations and -interfaces, and then
deal with the problem of Web automation. We approach heterogeneity by lifting experts with
lightweight semantics in terms of LAPIs (Hypothesis 4), and with respect to Hypothesis 5,
use a decision-theoretic and data-driven approach to find, query and combine them. This
chapter introduces the conceptual approaches to prior research questions and hypotheses, and
Chapter 9 will deal with instantiating as well as evaluating them for the scenarios presented in
Chapter 2.
Our references for this chapter are [51, 101–103].

8.1 Introduction

Service enabling platforms such as Algorithmia increase the motivation for developers to pub-
lish their experts in order to make them universally and reliably accessible as well as to earn
money. These platforms expose experts via RESTful APIs which can be directly accessed
via HTTP or a wide range of programming languages, and have end users pay for single
expert calls. This trend is also perceivable in sensitive fields such as medicine, where mon-
etary aspects are not of primary focus but component reuse and -composition are becoming
increasingly relevant. Resulting Web components offer great potential to support physicians
with their daily work by automating the processing of patient-related data with State-of-the-
Art experts. Examples include image processing, where prominent toolkits such as MITK
offer a high variety of component-based image processors with exposed hyperparameters, or
organ simulation, where the medical markup simulation language (MSML) [127] eases the
configuration of HiFlow3 [4] simulations in a XML-based format.

To solve multi-step tasks with such APIs, several problems emerge. Exposed interfaces of
individual experts usually in terms of names and functionalities of input parameters, which
renders automatic expert discovery difficult. In addition to interfaces, expert functionalities
might vary in granularity, where some expert services offer the bundled functionality of sev-
eral steps at once. Integrating and aligning experts with overlapping functionality is thus

119

Chapter 8 Automating Semantic Expert Processes

necessary and difficult. Finally, composed expert pipelines potentially generate faulty solu-
tions for several problem instances, as they usually are static (i.e. the same experts are always
used) even though feedback (e.g. training sets) about the respective mistakes is available.

By tackling these challenges, we work towards autonomous Web architectures which are
able to find, query and weight eligible experts for multi-step tasks, and improve their perfor-
mance (in terms of correct solutions) over time by exploiting feedback. We build on prior
work in the Semantic Web and propose the SEP framework, which extends EPs with semantic
representations for states, actions and experts. By making experts available as LAPIs (i.e.
semantically enriched Web services; see Definition 3.50) and enabling their data-driven exe-
cution with Linked Data-Fu (LD-Fu) [123], they can be easily discovered and used for com-
position. The resulting set of semantic experts is weighted and composed by semantic meta
components, which are semantically lifted Planning and Learning approaches for sequential
decision problems.

We evaluate our work on problem settings in medical assistance- as well as NLP (Chap-
ter 9), where data sources, such as patient-related information or text, are heterogeneous as
they often consist of diverse data distributions. We introduce semantic meta components for
both scenarios, which make use of available structured knowledge and training sets to auto-
matically select, weight and execute experts.

8.1.1 Challenges

The main challenges (see Section 1.2) for automating the selection, execution and composition
of experts are as follows.

• If descriptions for experts are available to end users, the process of understanding the
latter is often tedious and difficult, as they often are unstructured and short (Challenge
6).

• Interfaces of implemented experts are diverse, which might cause competing experts for
the same step to require different input formats, or experts for two subsequent steps to
require glue code to be written (Challenge 7).

• Given that an expert has been selected for a step, its automatic executing is difficult, as
mappings from data to input parameters might be complex and should not be hard-coded
(Challenge 8).

• To enable flexible use of expert services, descriptions about their functionality (e.g.
the service class summarizing the functionality) must not be tailored to a single step.
However, if general or no functional descriptions are available, one needs to actively
find expert compositions from available input data to a predefined goal (Challenge 9).

120

8

8.2 Problem Formalization

• When there are multiple experts available for a single step, one needs to deal with con-
flicting hypotheses, as approached in Part II of this thesis, in a flexible Web architecture
(Challenge 10).

8.1.2 Contributions

We now summarize our contributions with respect to the challenges, as introduced in Sec 1.4.

(i) We exploit Semantic Web technologies to lift expert descriptions with semantic an-
notations and publish them as LAPIs. The resulting set of semantic experts is easily
discoverable and dynamically executable, while using lightweight semantic annotations
(Contribution 4).

(ii) We formalize SEPs and disclose central goals for automatically solving multi-step tasks
on the Web (Contribution 5.1).

(iii) We present semantic experts and semantic meta components for decision-making in
medical scenarios (see Section 9.2). For the TPM scenario, we present an abstract
semantic planner and a grounded semantic planner, which enable to automatically solve
the semantic TPM task. For Surgical Phase Recognition, develop a grounded semantic
learner, which is able to combine the predictions of semantic experts (Contribution 5.2).

(iv) We disclose novel challenges for SEPs for NLP in Web domains by lifting NED as well
as NER experts and extending medical semantic meta components. More specifically,
we develop a novel grounded semantic planner to deal with the availability of numerous
decision candidates for NERD (Contribution 5.3).

(v) We evaluate semantic experts as well as semantic meta components with respect to
time-efficiency as well as the ability to correctly solve semantic tasks (Contribution
5.4).

The remainder of this chapter is structured as follows. We formalize semantic tasks and
introduce SEPs in Section 8.2, and describe the automation components of our Web archi-
tecture in Section 8.3. Section 8.4 defines necessary concepts for the individual automation
components and explains how we they are used solve multi-step tasks on the Web. We discuss
our proposed architecture with respect to SEPs in Section 8.5 and conclude the chapter in
Section 8.6.

8.2 Problem Formalization

We now introduce the concept of semantic tasks, which extend our definition of tasks (see
Definition 3.1) with concepts of the Semantic Web. A semantic task consists of structured

121

Chapter 8 Automating Semantic Expert Processes

state-, action- and expert spaces, where a structured space can either be abstract or grounded.
A abstract structured space is modeled as BGP (see Definition 3.48), i.e. a RDF graph with
variables. BGPs express various degrees of knowledge about the respective spaces and are
used to model generalizable patterns. A grounded structured space, on the other hand, is
modeled as RDF graph (i.e. no variables are allowed).

Definition 8.1 (Semantic Tasks). A (grounded) semantic task extends a task with structured
spaces, i.e. is a 3-tuple (XRDF,BRDF,YBGP).

• Let XRDF be the grounded structured input space with x ∈ XRDF a RDF graph.

• Let BRDF be the grounded structured background knowledge space, i.e. a RDF graph.

• Let YBGP be the abstract structured output space with y ∈ YBGP a BGP.

The structure of multi-step tasks remains equal, but input, background knowledge and out-
put spaces are assumed to be structured. We extend the formalization of tasks with grounded
and abstract elements to account for domain knowledge available before a task is solved. The
textual information of NLP tasks is, for example, still available for grounded states and might
be transformed to features used for learning expert weights. While input- and background
knowledge spaces are grounded, the goal space is considered abstract. The intuition is that no
resource exists for the given task, unless it was successfully solved or expert hypotheses are
available. Multi-step semantic tasks follow Definition 3.1, where solution functions are lifted
analogously to semantic tasks.

To this end, we are interested in three related outcomes: (i) Finding possible sequences of
experts to solve a given task, (ii) querying experts based on the current state and (iii) integrat-
ing expert weight learners to choose better expert hypotheses based on training sets. We argue
that semantic tasks can be implemented and solved as semantic liftings of EPs, namely SEPs.
For outcome (i) we define Abstract SEPs, where experts are not queried and, thus, grounded
states are not derived, but an abstract plan has to be found, comprising expert sequences which
solve the semantic task. For outcomes (ii) and (iii), we define Grounded SEPs, where experts
have to be chosen, queried and weighted.

With Abstract SEPs, our goal is to develop and integrate appropriate Planning techniques to
discover and compose experts for a semantic task. Abstract SEPs are defined on BGP spaces,
as experts are not executed but comprise generalizable structured descriptions.

Definition 8.2 (Abstract Semantic Expert Processes). An Abstract SEP extends an EP and is
a 8-tuple (SBGP,ABGP,γ,EBGP,RBGP,TBGP,H,CEXP).

• Let SBGP be the abstract structured state space, where s ∈ SBGP is a BGP.

• Let ΓBGP is the abstract structured starting state distribution, i.e. ΓBGP ∈ ∆(S1
BGP).

• Let ABGP be the abstract structured action space, where a ∈ ABGP is a BGP.

122

8

8.2 Problem Formalization

• Letγ ∈ [0,1] be the discount factor, as defined for EPs.

• Let EBGP be the abstract structured expert space, where e ∈ EBGP is a function e :
SBGP→ ABGP, referred to as expert function, which returns an abstract structured ac-
tion based on an abstract structured state. Each expert is assigned a weight function
weBGP : SBGP→R.

• Let transition function TBGP : SBGP×ABGP→ SBGP and reward function RBGP : SBGP×
ABGP→R be defined for abstract structured state- and action spaces.

• Let horizon H ∈N+ and expert budget CEXP ∈N+ be defined as for EPs.

We extend the EP formalization (see Chapter 5) as it captures central problems and chal-
lenges of learning to optimize expert advice for multi-step tasks. All spaces are lifted to
structured representations, similar to semantic tasks, and reward and transition functions are
defined accordingly.

As a SEP extends an EP with semantic representations, we assume the same protocol and
properties with respect to value functions, expert weights and resulting distributions for ab-
stract structured spaces and functions, and do not explicitly redefine the latter in this chapter.
The state-value functions VBGP : SBGP → R and QBGP : SBGP×ABGP → R are thus defined
based on EPs (see Definition 5.2 & 5.3) and assume the same properties with respect to expert
weights weBGP , i.e. they have to be optimized in terms of the current reward and maximal future
actions in future abstract structured states (see Definition 5.4). Note that for abstract states,
experts weights are less expressive, as they represent a class of grounded states. The overall
goal for an Abstract SEP is finding abstract policy πBGP : SBGP→ ABGP which maximizes the
expected cumulative reward of the decision process, RCUM

BGP (see Definition 5.7).
As for non-semantic multi-step tasks, we map elements from semantic multi-step tasks

(XRDF,BRDF,YBGP) directly to Abstract SEPs. Here, the state space for the first horizon, S1
BGP,

is defined as joint space over BGPs based on RDF spaces XRDF and subset of background
knowledge B̂RDF, where the resulting BGP space contains all necessary information (and only
the latter) to describe the abstract semantic task for a generalized number of instances, i.e.
S1

BGP = XBGP ∪ B̂RDF ∪V , where space V contains the used variables (see Definition 3.48).
State space SH+1

BGP then comprises the output space of the semantic multi-step task, i.e. SH+1
BGP =

YBGP.
We now give an example for the transition from the semantic NERD task to an Abstract

NERD SEP.

Example 8.1 (Semantic Multi-Step Task to Abstract Semantic Expert Process). We first deal
with translating the semantic NERD task to an Abstract NERD SEP.

• The semantic NERD task has the following elements: XRDF is the input space over texts
(on the Web), where we might model the respective author, the venue or platform, or

123

Chapter 8 Automating Semantic Expert Processes

the time of posting. YRDF is the output space over mappings from texts to named enti-
ties as well as knowledge graph resources, where one might include annotations about
the available texts (as for XRDF) or resources. Finally, B̂RDF defines the background
knowledge space, containing structured training samples of (XRDF,YRDF).

• The translation to Abstract NERD SEP is straightforward as available background
knowledge is not required. The structured state space thus only comprises informa-
tion about the texts. Here, the resulting BGP state spaces might enforce the availability
of of a text or the author. As a consequence, we translate S1

BGP from XRDF by using nec-
essary predicates and objects (such as classes) to model the abstract structure in terms
of BGPs. We follow the same procedure for SH+1

RDF based on YRDF.

Based on the semantic NERD task transition, we shortly discuss the difference to the se-
mantic TPM task.

• The elements of the semantic TPM task can be directly mapped from NLP to image pro-
cessing. Only B̂RDF, the background knowledge space, might comprise (besides samples
as for NERD) learned mask models for image segmentation, which can be directly used
for inference.

• The translation from the semantic TPM task to the respective Abstract TPM SEP gen-
erally only differs in using background knowledge for state spaces. The abstract state
space for the first horizon, S1

BGP, needs to comprise necessary mask models such that
available experts can exploit the latter.

Given a semantic task and an Abstract SEP, the problem of Abstract Semantic Planning
entails only using available structured information of experts to find policy πBGP (see Def-
inition 3.43). Other than in RL, we do not need to learn or interact with the world, as the
structured spaces allow us to enumerate all possible paths and rewards can be modeled to be
exclusively positive for reaching the respective output spaces.

Definition 8.3 (Abstract Semantic Planning). Assuming a learned Abstract SEP model, i.e.
learned or given RBGP and TBGP, or learned or given expert weight functions weBGP , we need
to find policy πBGP to generate a semantic plan with start state s1

BGP, which is a sequence
s1

BGP,a
1
BGP,s

2
BGP,a

2
BGP, . . . ,a

H+1
BGP .

Given that an abstract plan has been generated and environmental feedback for expert
queries is available, we can approach defining and solving Grounded SEPs. Other than in
the abstract case, we need to query experts based on grounded RDF spaces and use expert
weighting methods for selection.

Definition 8.4 (Grounded Semantic Expert Processes). A Grounded SEP extends an EP and
is a 8-tuple (SRDF,ARDF,γ,ERDF,RRDF,TRDF,H,CEXP).

124

8

8.2 Problem Formalization

• Let SRDF be the grounded structured state space, where s ∈ SRDF is a RDF graph.

• Let ΓRDF is the grounded structured starting state distribution, i.e. ΓRDF ∈ ∆(S1
RDF).

• Let ARDF be the grounded structured action space, where a ∈ ARDF is a RDF graph.

• Let γ ∈ [0,1] be the discount factor, as defined for EPs.

• Let ERDF be the grounded structured expert space, where e ∈ ERDF is a function e :
SRDF→ARDF, referred to as expert function, which returns a grounded structured action
based on a grounded structured state. Each expert is assigned a weight function weRDF :
S→R.

• Let transition function TRDF : SRDF×ARDF→ SRDF and reward function RRDF : SRDF×
ARDF→R be defined for grounded structured state- and action spaces.

• Let horizon H ∈N+ and expert budget CEXP ∈N+ be defined as for EPs.

The formalization of Grounded SEPs extends EPs with grounded structured state spaces.
We again assume the same protocol and properties with respect to value functions, expert
weights and resulting distributions for abstract structured spaces and functions, and do not
explicitly redefine the latter in this chapter. The state-value functions VRDF : SRDF → R and
QBGP : SBGP×ABGP→R are extended based on EPs (see Definition 5.2 & 5.3) and assume the
same properties with respect to expert weights weRDF , i.e. they have to be optimized in terms
of the current reward and maximal value for future grounded structured states (see Defini-
tion 5.4). The overall goal for a Grounded SEP is finding grounded policy πRDF : SRDF→ARDF
which maximizes the expected cumulative reward of the decision process, RCUM

RDF (see Defini-
tion 5.7).

Mapping elements from semantic multi-step tasks (XRDF,BRDF,YBGP) to Grounded SEPs is
analogous to Abstract SEPs. The state space for the first horizon, S1

RDF, is defined based on
RDF space XRDF and subset of background knowledge B̂RDF, where the resulting RDF space
contains all modeled information to describe the grounded semantic task for an instance, i.e.
S1

RDF = XRDF∪ B̂RDF. State space SH+1
RDF is based on the output space of the semantic multi-step

task, i.e. SH+1
RDF = YRDF.

The problem of Grounded Semantic Learning is the analogy to expert weight leaning in
EPs, which we now define.

Definition 8.5 (Grounded Semantic Learning). Given a Grounded SEP, grounded semantic
learning entails estimating expert weight functions weRDF for all semantic experts eRDF ∈ ERDF

in order to maximize the expected cumulative reward RCUM
RDF .

We can use RL techniques proposed in Chapter 5 & 6 to learn a policy based on the un-
structured elements of states in SEPs. The remaining challenge is thus to integrate appropriate
RL techniques into Grounded SEPs.

125

Chapter 8 Automating Semantic Expert Processes

Figure 8.1: Schematic overview of automation components.

For a given Grounded SEP, the problem of finding a grounded plan (i.e. policy πRDF) is
referred to as Grounded Semantic Planning and entails to enable correct expert queries for a
given state.

Definition 8.6 (Grounded Semantic Planning). Given a Grounded SEP, a grounded semantic
plan with start state s1

RDF is a sequence s1
RDF,a

1
RDF,s

2
RDF,a

2
RDF, . . . ,s

H+1
RDF , where we have to find

a respective state ŝh
RDF for expert eh

RDF such that a1
RDF = eRDF(ŝ1

RDF).

We now introduce the different components we disclosed to tackle prior defined learning
and planning problems in both Abstract- and Grounded SEPs within a Web-based architecture.

8.3 Web Components for Automation

Our Web architecture comprises four core automation component types (see Figure 8.4). We
will now explain their respective functionality.

1. A Structured Knowledge Base

2. Semantic Experts

3. Semantic Meta Components

4. A Data-Driven Execution Engine (Semantic Expert Advice Agent)

126

8

8.3 Web Components for Automation

Non-functional requirements Functional requirements
Domain Experts Inputs
Service Endpoint Preconditions
Example request & response Outputs
Expert class Postconditions

Table 8.1: Minimal description for semantic experts.

8.3.1 Structured Knowledge Base

A KB, such as a triple store or a virtually integrated collection of triples, stores both metadata
and data, and provides a common and controlled vocabulary, modeled with RDF. As the
Linked Data principles suggest (see Section 3.4.5), persistent URIs to resources have to be
available and provide sufficient information for lookups. Appropriate concepts for experts
and data have to be available to enable the integration of novel components.

The KB thus essentially comprises modeled or reused ontologies, which are used to anno-
tate experts, data and semantic-meta components or to generate provenance metadata for the
execution of semantic experts. Hence, all triples of grounded and abstract state-, action- and
expert spaces are either in the KB or can be reached via link traversal.

8.3.2 Semantic Experts

In our Web architecture, experts are deployed as Web services to make them easily accessible.
We follow the concept of LAPIs (see Definition 3.50) and refer to the resulting experts as
semantic experts.

A semantic expert provides a standardized description with respect to its functionality,
usage and origin by reusing concepts of the KB. The description defines how to communicate
with the semantic expert and how to execute its methods. A minimal set of information of the
description is summarized in Table 8.1.

Here, non-functional requirements define metadata which are not needed for using the
semantic expert. The service endpoint denotes an exception to this rule, as it constitutes the
service resource used for issuing HTTP requests. Other non-functional requirements comprise
domain experts (i.e. developers of the expert functionality), example requests and -responses
(i.e. exemplary groundings of preconditions and postconditions to support end users in their
usage) or the expert class, which is situated in a taxonomy for general semantic expert discov-
ery. Functional requirements deal with required conditions for using the semantic expert.
We exclusively require structured annotations about inputs and preconditions as well as out-
puts and postconditions. Preconditions and postconditions, here, define strict rules about the
states before- and after executing the semantic expert. As a consequence, we do use the ex-
pert class (or generate further structured annotations about the available functionality) to solve

127

Chapter 8 Automating Semantic Expert Processes

SEPs, but plan and learn to infer the adequacy of a semantic expert.
We now generally define semantic experts (see Definition 8.7).

Definition 8.7 (Semantic Expert). A semantic expert is a 5-tuple
(Preconditionse,Postconditionse,Descriptione,eBGP,eRDF).

• Let Preconditionse ∈ SBGP be the precondition BGP.

• Let Postconditionse ∈ SBGP be the postcondition BGP.

• Let Descriptione be the RDF graph with all functional and non-functional require-
ments.

• Let eBGP the abstract expert function which evaluates Preconditionse on a grounded
state and generates an abstract resulting state without querying the expert.

• Let eRDF the grounded expert function which evaluates Preconditionse on a grounded
state and generates a grounded action by querying the expert.

An intuitive example of an arbitrary image processor is given in Figure 8.2. The semantic
expert converts images in PNG format to JPEG. It requires (via its preconditions) that in-
puts have to be typed with kbont:Image with format kbont:PNG, while outputs need to
have format kbont:JPEG. We use the rdf:type predicate to model the expert class and
model predicates kbont:contributor and kbont:exampleRequest for annotating
domain experts and example requests. Note that we use kb and kbont as generic names-
paces to describe instances and conceptual elements (i.e. properties or classes) available in
the knowledge base 1. The MSM namespace 2 corresponds to the minimal service model [73]
which advocates and enables lightweight semantics for Web services. Listing 8.1 summarizes
the used namespaces for this chapter.

1 @prefix kbont: <http://example.org/kb/concepts#>.
2 @prefix kb: <http://example.org/instances/id/>.
3 @prefix msm: <http://cms-wg.sti2.org/minimal-service-model#>.
4 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
5 @prefix dc: <http://purl.org/dc/elements/1.1/>.

Listing 8.1: (Generic-) namespaces used for KB concepts and instances.

Further note that the degree of detail for preconditions and postconditions is often dependent
on the wrapping process of the respective expert, as hyperparameters or generated metadata
might be hidden (and thus not exposed). The latter is usually dependent on the intended range
of applications for the semantic expert. Larger numbers of hyperparameters and metadata
might foster reusability of the semantic expert, but also complicate its usage. The same holds

1We will point out which exact ontologies we used in the respective scenarios.
2http://iserve.kmi.open.ac.uk/ns/msm/msm-2014-09-03.html (accessed on

05/01/2018)

128

http://iserve.kmi.open.ac.uk/ns/msm/msm-2014-09-03.html

8

8.3 Web Components for Automation

Figure 8.2: An exemplary semantic image conversion expert.

for the used or modeled properties and classes for inputs, preconditions, outputs and postcon-
ditions, where higher degrees of complexity increase applicability, but require more efforts for
integration.

We now deal with semantic meta components, which integrate Learning (see Part II) and
Planning methods into the Web automation architecture.

8.3.3 Semantic Meta Components

Semantic meta components for SEPs are solutions to abstract semantic planning, grounded se-
mantic planning or grounded semantic learning. Our Web architecture enables flexible using,
testing and exchanging of semantic meta components by requiring structured annotations for
their usage and, if reasonable, their availability as LAPIs.

Definition 8.8 (Semantic Meta Components). A semantic meta component is a seman-
tic expert, i.e. 5-tuple (Preconditionse,Postconditionse,Descriptione,eBGP,eRDF),
which implements a strategy for abstract semantic planning, grounded semantic planning or
grounded semantic learning.

Similar to a semantic expert, a semantic meta component specifies the amount of informa-
tion it requires by its preconditions and is only called if the agent can provide all information.
Examples for such preconditions are performance tables containing a history of validated re-
sults on training sets, or a list of applicable states for the usage of a semantic meta component.

129

Chapter 8 Automating Semantic Expert Processes

8.3.4 Semantic Expert Advice Agent

Until now, we described required representations and implementations of semantic experts,
semantic meta components, as well as the KB. To this end, we need a flexible mechanism for
discovering and executing respective LAPIs.

Our goal for Web automation is to compose semantic experts in order to automatically
solve semantic tasks. Resulting compositions have to be sufficiently dynamic with respect to
available inputs for the semantic task such that the best set of experts is correctly queried. We
take a data-driven perspective and have preconditions of semantic experts or semantic meta
components determine when the respective LAPI has to be executed. To this end, we exploit
LD-Fu, a data-driven execution engine which is used as baseline for composing semantic
experts.

Linked Data-Fu

LD-Fu [123] is a rule-based execution engine, describing and implementing a formalism to
virtually integrate data from different sources in real-time. Rules are defined in N3 syntax (see
Section 3.4.3) and consist of a general IF-THEN structure, where a set of rules is referred to
as linked program.

The IF condition of a rule (also referred to as head) has to comprise a BGP or be empty,
expressing the starting point of a linked program. The THEN clause then defines the action to
be conducted given the head is fulfilled. Our focus, here, lies on the ability of LD-Fu to use
HTTP methods which enables us to dynamically execute available LAPIs.

LD-Fu fosters scalability of Web applications by enabling parallel queries of LAPIs. It re-
lies on polling data sources to query LAPIs by a linked program, which is a contrary approach
to event-based methods where triggers originate from the environment.

Linked Data-Fu for Semantic Experts

In our Web automation architecture, LD-Fu first searches eligible semantic experts for
grounded states. By exploiting semantic meta components, we can then learn about semantic
experts and plan correct semantic expert executions to solve semantic tasks. Each semantic
expert is represented as single rule, which we automatically generate based on its description
and current grounded state. The execution of a semantic expert is documented by publishing
provenance as Linked Data. See Listing 8.2 for the exemplary generated provenance of the
semantic image conversion expert.

130

8

8.3 Web Components for Automation

1 @prefix kbont: <http://example.org/kb/concepts#>.
2 @prefix kb: <http://example.org/kb/instances/id/>.
3 @prefix msm: <http://cms-wg.sti2.org/minimal-service-model#>.
4 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
5 @prefix dc: <http://purl.org/dc/elements/1.1/>.
6 @prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
7 @prefix sparql: <http://www.w3.org/TR/rdf-sparql-query/#>.
8
9 kb:execution1 rdf:type kbont:SemanticExpertExecution;

10 kbont:expert
11 kb:SemanticImageConversionExpert1;
12 dc:date "2017-11-29T22:18:00"^^xsd:dateTime;
13 kbont:input _:i;
14 kbont:output _:o.
15
16 _:i rdf:type kbont:GroundedPrecondition;
17 rdf:value """{
18
19 kb:image1 rdf:type kbont:Image;
20 dc:format kbont:PNG.
21
22 }"""^^sparql:GraphPattern.
23
24 _:o rdf:type kbont:GroundedPostcondition;
25 rdf:value """{
26
27 kb:image2 rdf:type kbont:Image;
28 dc:format kbont:JPEG;
29 kbont:convertedFrom
30 kb:image1.
31
32 }"""^^sparql:GraphPattern.

Listing 8.2: Exemplary provenance for semantic image conversion expert.

Figure 8.3 summarizes this general process for a simple semantic expert. When a grounded
state fulfills the preconditions of the semantic expert, a HTTP POST request with grounded
preconditions is issued to its service URI. While this enables automatically executing seman-
tic experts for numerous use cases, there are complex preconditions which we deal with in
Section 9.3.2.

The automatic matching between semantic experts and structured data is highly advanta-
geous. If semantic experts have to be trained with training sets, the agent automatically uses
all annotated training data for execution. This is generally possible by simply defining rules
for LD-Fu. Even more important, with a growing number of diverse semantic experts, we
could automatically solve new semantic tasks without additional manual effort, if semantic
descriptions match.

We refer to the LD-Fu engine instantiated in our Web architecture as Semantic Expert Ad-
vice Agent (in short semantic agent). The semantic agent exploits semantic meta components
for Learning and Planning to take decisions for solving multi-step tasks with semantic experts.

131

Chapter 8 Automating Semantic Expert Processes

Figure 8.3: A LD-Fu rule for the semantic image conversion expert.

Definition 8.9 (Semantic Expert Advice Agent). A semantic expert advice agent solves multi-
step tasks with available semantic experts by solving Abstract- and Grounded SEPs with ab-
stract semantic planners, grounded semantic planners and grounded semantic learners, avail-
able as semantic meta components.

Semantic experts and semantic meta components can be discovered by their type as well
as preconditions and postconditions. However, a good selection of the latter is based on two
aspects, namely finding conceptually eligible components or experts and finding a well per-
forming components or experts, given the current state. We now deal with the respective
problem settings in detail.

8.4 Solving Semantic Tasks with Semantic Meta Components

We now explain the required interplay between semantic meta components to solve abstract-
as well as grounded semantic tasks with Abstract SEPs and Grounded SEPs, respectively. We
first address abstract semantic planning, where we ignore state- and action groundings, and
exclusively exploit descriptions of semantic experts and states. The second case deals with
grounded semantic learning and builds on selected semantic experts via abstract semantic
planning. As dealt with in Part II of this thesis, we need to learn weights for experts to find the
optimal hypothesis. In the grounded semantic planning setting, we need to automatically find
expert configurations to solve a multi-step task for a given grounded starting state and abstract
goal.

In Figure 8.4 we give a generic overview of interactions between the semantic agent and
semantic meta components, semantic experts and the KB. The semantic agent first queries
the knowledge base to get all available semantic experts and then calls an abstract semantic
planner. It executes the resulting set of semantic experts and subsequently calls a grounded
semantic learner, capable of assessing and combining the generated candidate outputs. The

132

8

8.4 Solving Semantic Tasks with Semantic Meta Components

Figure 8.4: Interactions of semantic meta components.

grounded semantic planner is needed to execute selected grounded experts and might be im-
plemented within a semantic agent service.

8.4.1 Abstract Semantic Planners

For a semantic task and corresponding Abstract SEP, one first evaluates a stating state s1
BGP

in terms precondition matching of semantic experts. The semantic agent therefore generates a
set of rules which can be evaluated against s1

BGP. We cannot assume, however, that rules only
trigger semantic experts which help reaching the goal state, as there might be a large amount
of conceptually eligible semantic experts for a state. An abstract semantic planner is able to
reduce the set of semantic experts we query by checking if the latter support reaching the goal
state.

Figure 8.4 illustrates the agent rule to call the abstract semantic planner depending on
its preconditions. We describe one implementation of an abstract semantic planner in Sec-

133

Chapter 8 Automating Semantic Expert Processes

tion 9.2.2 for the TPM scenario.

8.4.2 Grounded Semantic Learners

In the grounded semantic learning setting, we want to solve a Grounded SEP by having ac-
cess to several exchangeable semantic experts which solve the same step (i.e. we solve the
Learning problem; see Part II). Eligible semantic expert candidates are known (e.g. due to an
abstract semantic planner), but one has to deal with uncertainty about their expected perfor-
mances given a grounded state sRDF. A grounded semantic learner selects semantic experts
before their execution by estimating their performance, which is crucial when large numbers
of semantic experts are eligible for a Grounded SEP.

Figure 8.4 describes the generic rule to execute any available grounded semantic learner.
Section 9.2.3 introduces a semantic learner for medical phase recognition which can be reused
for other tasks, such as NERD.

8.4.3 Grounded Semantic Planners

Other than in abstract semantic planning, grounded semantic planning requires information
about the grounded state sRDF of the respective Grounded SEP. Grounded semantic planners
are needed when preconditions and postconditions of a LAPI do not suffice to solve a task,
as state representation or semantic expert descriptions are too complex. A grounded semantic
planner is thus executed to find correct configurations for available input parameters of the
chosen semantic experts. However, we might need to repeatedly plan for solving a Grounded
SEP, namely potentially after each step is processed. We thus assume that the grounded
semantic planner is part of the implementation of the semantic agent.

We present a grounded semantic planner for the semantic NERD task in Section 9.3.

8.5 Discussion

We first discuss the added value of the SEP framework and then deal with the more general
goal of developing self-adaptive systems.

8.5.1 On the Added Value of SEPs

Modeling fine-grained semantic annotations, and developing and integrating meta components
adds manual work for domain- and machine learning experts. Still, resulting semantic meta
components enable to gradually learn which semantic experts to select given state character-
istics and how to automatically compose them. Pipelines are thus dynamically changed for
each state (and decision candidate) to maximize the correctness of task solutions, which usu-
ally remain static unless manually changed (e.g. or via fine-grained manual preconditions).

134

8

8.6 Summary

This also holds for automatically taking into account novel semantic experts with adequate
semantic interfaces.

8.5.2 On The Goal of an Self-Adaptive System

Since we enable to choose among different semantic meta components for planning as well as
learning, one could have them compete as well. This, however, is what Vilalta & Drissi [136]
depict as curse of infinite bias. We want the Web architecture to be self-adaptive and improve
with experience, which it partially achieved by automatically considering novel data sources
(e.g. training sets) or semantic experts. However, each semantic meta component has a certain
bias with respect to its used methodology or training process. Hence, while it is interesting
to have semantic meta components compete with each other, the problem of how to deal with
their respective bias is important on its own.

8.6 Summary

In this chapter, we lifted EPs and tasks to semantic representations in order to work towards
Web automation, where available semantic experts are discovered, weighted and queried with-
out human intervention. We first defined semantic tasks, where input-, background knowledge
and output spaces are considered to be RDF graphs. To solve semantic tasks, we defined
Abstract- as well as Grounded SEPs, extending EPs with BGP and RDF representations. A
suitable Web architecture to solve resulting abstract semantic planning, grounded semantic
planning and grounded semantic learning problems then consists of a KB, semantic experts,
semantic meta components and a data-driven execution engine, which we refer to as semantic
agent.

Semantic experts were defined as LAPIs, where lightweight semantic annotations were
proposed for modeling preconditions and postconditions. Our work on semantic experts ad-
dressed Research Question 4, where the corresponding Hypothesis 4 is partially confirmed
and will be revisited after our applications and evaluations of semantic experts to the medical
assistance scenarios as well as the NERD use case.

Based on semantic meta components, we can flexibly discover suitable experts for a SEP via
abstract semantic planners, configure executions with grounded semantic planners and weight
them with grounded semantic learners. By using LD-Fu as rule-based execution engine for
the semantic agent, we can query semantic meta components and eventually execute semantic
experts.

Our work on the Web architecture for the automation problem addressed Research Ques-
tion 5, where the corresponding Hypothesis 5 is partially confirmed and will be revisited after
our applications and evaluations of the Web architecture with diverse semantic meta compo-
nents to the medical assistance scenarios as well as the NERD use case.

135

9

Chapter 9

Applications & Evaluations of Semantic Expert
Processes

This chapter deals with Research Question 4 & 5, where the heterogeneity of functionalities,
implementations and interfaces with respect to the goal of Web automation is approached. It
extends Chapter 8 in terms of providing applications and evaluations of the proposed SEP
framework to fully confirm Hypothesis 4 & 5, where semantic liftings for LAPIs as well as a
decision-theoretic and data-driven automation framework are proposed.
Our references for this chapter are [51, 101–103], where we additionally note the application
of the proposed methods in [114].

9.1 Introduction

SEPs lift EPs to richer state-, action and expert representations to solve semantic tasks. They
constitute an important step towards the automation of multi-step tasks in Web-based envi-
ronments, where such tasks are very common (e.g. in NLP or image processing). To solve
SEPs, we require semantic meta components, namely grounded semantic learners, which are
semantic extensions to learning methods proposed in Part II, and abstract semantic planners as
well as grounded semantic planners to discover and correctly execute semantic experts. The
semantic agent manages the communication among semantic meta components and flexibly
executes resulting semantic experts on a data-driven basis.

In this chapter, we apply the Web automation framework to two different fields, namely
medical assistance and NLP. For medical assistance, we deal with two scenarios, each re-
quiring different semantic meta components. Surgical phase recognition is an intra-surgical,
single-step task where sensor information has to be mapped to surgical phases. Based on
available training sets, we deal with grounded semantic learning. The second scenario deals
with medical image processing, more specifically TPM, where a number of headscans of a
single brain tumor patient are automatically processed. Here, we deal with abstract seman-
tic planning as well as grounded semantic planning to select and compose adequate semantic
experts. Finally, the NLP scenario entails to solve NERD, where named entities have to be
extracted from text and linked to KBs. We will deal with the joint task of abstract semantic
planning, grounded semantic planning and grounded semantic learning.

137

Chapter 9 Applications & Evaluations of Semantic Expert Processes

Both fields pose distinct challenges for semantic tasks and serve as proof-of-concepts for
SEPs. We provide additional evaluations for properties of semantic experts (e.g. time per-
formance) and developed semantic meta components (e.g. precision or recall for grounded
semantic learners). We summarized the challenges and contributions in Chapter 8.

9.2 Medical Assistance Scenarios

We introduce applications of our Web automation framework to two medical assistance sce-
narios, namely Surgical Phase Recognition and TPM. Before introducing the respective se-
mantic experts and semantic meta components, we present the shared Web automation archi-
tecture for medical assistance.

9.2.1 Web Automation for Medical Assistance Tasks

Our Web architecture for medical assistance tasks was developed within the Cognition-Guided
Surgery project 1. Every expert considered in the scenarios was lifted and published as seman-
tic expert. We modeled all semantic descriptions with domain experts and developers of the
experts, and integrated them in a shared instance of a Semantic MediaWiki (SMW) [78], re-
ferred to as Surgipedia.

SMWs extend MediaWikis 2 with structured representations, where a single page corre-
sponds to a unique resource. The MediaWiki syntax is extended to deal with RDF, such that
triples can be directly edited, added or deleted. The latter is facilitated by using templates
and forms, which are intuitive means to enable end users to quickly model and publish RDF
triples. A SMW also allows to integrate available ontologies and maps them to locally mod-
eled concepts or predicates, which eases reuse for end users. Finally, as SMW pages can be
looked up using RESTful content negotiation to return RDF via HTTP GET requests, one can
easily fulfill all recommended Linked Data Principles (see Section 3.4.5) by using SMWs to
structure data.

Figure 9.1 illustrates the developed SMW form for end users to generate semantic descrip-
tion for their semantic experts (see Section 8.3.2). Preconditions and postconditions have to
be modeled with additional forms, as the latter often corresponds to complex BGPs.

To this end, all semantic annotations are based on Medical Subject Headings (MeSH) 3,
Radiology Lexicon (RadLex) 4, SNOWMED-CT 5 and the Foundational Model of Anatomy
(FMA) 6. We use an instance of XNAT 7 to store patient-relevant data and provide a RDF

1http://www.cognitionguidedsurgery.de/ (accessed on 05/01/2018)
2https://www.mediawiki.org/wiki/MediaWiki (accessed on 05/01/2018)
3https://meshb.nlm.nih.gov (accessed on 05/01/2018)
4https://www.rsna.org/RadLex.aspx (accessed on 05/01/2018)
5http://www.snomed.org/snomed-ct (accessed on 05/01/2018)
6http://si.washington.edu/projects/fma (accessed on 05/01/2018)
7http://www.xnat.org/ (accessed on 05/01/2018)

138

http://www.cognitionguidedsurgery.de/
https://www.mediawiki.org/wiki/MediaWiki
https://meshb.nlm.nih.gov
https://www.rsna.org/RadLex.aspx
http://www.snomed.org/snomed-ct
http://si.washington.edu/projects/fma
http://www.xnat.org/

9

9.2 Medical Assistance Scenarios

Figure 9.1: The SMW form to annotate experts for medical assistance.

wrapper which lifts XNAT with semantic concepts. The KB can be considered as union be-
tween Surgipedia (where all ontologies have been integrated) and its links to other resources,
such as XNAT. The complete architecture with two semantic meta components is illustrated in
Figure 9.2.

9.2.2 Semantic Tumor Progression Mapping

The TPM scenario consists of five image processing steps (as introduced in Section 2.3),
where several headscans of a single patient are processed to generate a spatially aligned, intu-
itive overview of the tumor progression in order to support radiologists in their daily diagnostic
and treatment workload. For our application, we use six experts of the MITK library which are
summarized in Table 9.1 together with needed inputs and produced outputs. If not indicated
otherwise, the experts expect and produce files in the NRRD format.

For step Brain Normalization, one available expert (Standard Brain Normalization) requires
a brain image and a brain mask generated by a Brain Mask Generation expert, but a second
expert (Robust Brain Normalization) requires additional (finer-grained) manual brain mask an-
notations. As a consequence, the Standard Brain Normalization expert can always be queried
within the pipeline, but manually created image annotations are needed for the Robust Nor-
malization Expert. Also, Map Generation does not require the Tumor Segmentation expert to

139

Chapter 9 Applications & Evaluations of Semantic Expert Processes

Figure 9.2: The automation architecture for medical assistance.

Expert Input Output
Brain Mask Generation Headscan (NRRD or MHA) Brain image

Atlas image Brain mask
Atlas mask

Standard Brain Normalization Brain image Normalized brain image
Brain mask

Robust Brain Normalization Brain image Normalized brain image
Minimum brain mask
Maximum brain mask
Exclude brain mask

Batched Folder Registration Normalized brain image Registered brain image

Tumor Segmentation Registered brain image Brain segmentation

Map Generation Registered brain image Map (PNG)
Brain segmentation

Table 9.1: Needed inputs and generated outputs for TPM.

140

9

9.2 Medical Assistance Scenarios

generate respective segmentations and can create a TPM without the latter. The TPM aggre-
gates multiple (possibly tumor-segmented) brain masks of the same patient into a single PNG
file. All residual input and output files are available in the NRRD format.

We first illustrate how we lifted TPM experts with semantics and then present our abstract
semantic planner, which finds eligible semantic experts for the semantic TPM task.

Semantic TPM Experts

We developed and published semantic experts for every step in the TPM generation process.
As an illustration, we shortly discuss the modeled preconditions and postconditions for se-
mantic experts of the step Brain Mask Generation, which are depicted in Listing 9.1 & 9.2.
Note that all semantic descriptions for TPM experts are presented in Appendix A and that
individually presented pre- and postconditions are typed as sparql:GraphPattern.

A semantic Brain Mask Generation expert requires a typed patient-specific headscan re-
source in format spc:NRRD or spc:MHA, and a generic, patient-unrelated brain atlas image
and brain atlas mask. After a respective semantic expert has been queried, the postcondi-
tions specify that a patient-specific output brain image with format spc:NRRD and a patient-
specific output brain mask of the same format have to be available. Both generated images
have to link to the input headscan, as recommended by the LAPI definition.

1 @prefix spc: <http://surgipedia.sfb125.de/wiki/Special:URIResolver/Category-3A>.
2 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
3 @prefix dc: <http://purl.org/dc/elements/1.1/>.
4
5 ?headscan rdf:type spc:Headscan;
6 dc:format ?format.
7 FILTER (?format = spc:NRRD || ?format = spc:MHA)
8
9 ?brainAtlasImg rdf:type spc:BrainAtlasImage;

10 dc:format spc:NRRD.
11
12 ?brainAtlasMask rdf:type spc:BrainAtlasMask;
13 dc:format spc:NRRD.

Listing 9.1: Preconditions of the semantic Brain Mask Generation expert.

1 @prefix spp: <http://surgipedia.sfb125.de/wiki/Special:URIResolver/Property-3A>.
2 @prefix spc: <http://surgipedia.sfb125.de/wiki/Special:URIResolver/Category-3A>.
3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
4 @prefix dc: <http://purl.org/dc/elements/1.1/>.
5
6 ?headscan rdf:type spc:Headscan;
7 dc:format ?format.
8 FILTER (?format = spc:NRRD || ?format = spc:MHA)
9

10 ?brainImage rdf:type spc:BrainImage;
11 dc:format spc:NRRD;
12 spp:headscan ?headscan.
13

141

Chapter 9 Applications & Evaluations of Semantic Expert Processes

14 ?brainMask rdf:type spc:BrainMask;
15 dc:format spc:NRRD;
16 spp:headscan ?headscan.

Listing 9.2: Postconditions of the semantic Brain Mask Generation expert.

To this end, it is important to discuss a central property of preconditions and postconditions
we refer to as multiplicity. The needed inputs and outputs for the Brain Mask Generation ex-
pert are unambiguous with respect to the used ontologies, as – for the stipulated preconditions
– a single headscan, single atlas image and single atlas mask is needed. However, experts
might be required to process an a priori unknown number of inputs. The resulting multiplic-
ity problem is available for the Brain Registration expert, which spatially aligns all available
normalized brain masks of a single patient.

To express this property in preconditions and postconditions, we propose to use the avail-
able rdf:Bag class for collections 8, where included resources are unordered. Listing 9.3
shows the resulting preconditions of the step, where a number of normalized brain masks are
required as input, which are part of a rdf:Bag.

1 @prefix spp: <http://surgipedia.sfb125.de/wiki/Special:URIResolver/Property-3A>.
2 @prefix spc: <http://surgipedia.sfb125.de/wiki/Special:URIResolver/Category-3A>.
3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
4 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
5 @prefix dc: <http://purl.org/dc/elements/1.1/>.
6
7 ?norm_bag rdf:type rdf:Bag.
8
9 ?normMask rdf:type ?norm;

10 rdfs:member ?norm_bag;
11 dc:format spc:NRRD;
12 spp:headscan ?headscan;
13 spp:brainMask ?brainMask.
14 FILTER (?norm = spc:NormalizedBrainMask ||
15 ?norm = spc:RobustNormalizedBrainMask).
16
17 ?brainMask rdf:type spc:BrainMask;
18 dc:format spc:NRRD;
19 spp:headscan ?headscan.
20
21 ?headscan rdf:type spc:Headscan;
22 dc:format ?format.
23 FILTER (?format = spc:NRRD || ?format = spc:MHA)

Listing 9.3: Preconditions of the semantic Brain Registration expert.

To characterize and define the respective bags, we model a single representative re-
source of it in preconditions or postconditions. For the semantic Brain Registration ex-
pert, we define that the bag requires resources of type spc:NormalizedBrainMask or
spc:RobustNormalizedBrainMask, for which property rdfs:member is used to

8https://www.w3.org/TR/rdf-schema/#ch_bag (accessed on 05/01/2018)

142

https://www.w3.org/TR/rdf-schema/#ch_bag

9

9.2 Medical Assistance Scenarios

define the membership of a resource. Note that one can alternatively use property rdf:li to
model the reciprocal triple, where a bag consists of resources.

Based on available semantic TPM experts, we now deal with their execution by the semantic
agent. We generate a set of rules (i.e. a linked program), which states that respective semantic
experts are only executed if their preconditions hold, as generally described in Section 8.3.4.
For the semantic Brain Mask Generation expert, the resulting rule is depicted in Listing 9.4.

1 {
2 @prefix spc: <http://surgipedia.sfb125.de/wiki/Special:URIResolver/Category-3A>.
3 @prefix exp: <http://aifb-ls3-vm2.aifb.kit.edu:8080/experts/id/>.
4 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
5 @prefix dc: <http://purl.org/dc/elements/1.1/>.
6 @prefix httpm: <http://www.w3.org/2011/http-methods#>.
7 @prefix http: <http://www.w3.org/2011/http#>.
8
9 ?headscan rdf:type spc:Headscan;

10 dc:format ?format.
11 FILTER (?format = spc:NRRD || ?format = spc:MHA)
12
13 ?brainAtlasImg rdf:type spc:BrainAtlasImage;
14 dc:format spc:NRRD.
15
16 ?brainAtlasMask rdf:type spc:BrainAtlasMask;
17 dc:format spc:NRRD.
18 } => {
19 _:a http:mthd httpm:POST;
20 http:requestURI exp:BMG;
21 http:body
22 {
23 ?headscan rdf:type spc:Headscan;
24 dc:format ?format.
25 FILTER (?format = spc:NRRD || ?format = spc:MHA)
26
27 ?brainAtlasImg rdf:type spc:BrainAtlasImage;
28 dc:format spc:NRRD.
29
30 ?brainAtlasMask rdf:type spc:BrainAtlasMask;
31 dc:format spc:NRRD.
32 }.
33 }.

Listing 9.4: Rule for the semantic Brain Mask Generation expert.

In addition to rules for semantic experts, we need rules to query and aggregate the needed
input data from the KB. In the medical assistance scenario, we assume a starting resource
which points to department resources in a clinic. The latter point to individual patient re-
sources which finally link to available structured information as well as raw files. The struc-
ture was reused from the REST interface of XNAT and extended according to the Linked Data
Principles. Listing 9.5 depicts the set of rules for gathering patient-related information. The
process of aggregating structured data at runtime (other than querying a single, global triple
store) is referred to as virtual data integration.

143

Chapter 9 Applications & Evaluations of Semantic Expert Processes

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
2 @prefix vocxnat: <http://aifb-ls3-vm2.aifb.kit.edu:8080/xnatwrapper/xnat#>.
3 @prefix xnat: <http://aifb-ls3-vm2.aifb.kit.edu:8080/xnatwrapper/id/>.
4 @prefix httpm: <http://www.w3.org/2011/http-methods#>.
5 @prefix http: <http://www.w3.org/2011/http#>.
6
7 {
8 _:a http:mthd httpm:GET;
9 http:requestURI xnat:xnatlist.

10 }
11
12 {
13 ?list vocxnat:hasProject ?project.
14 } => {
15 _:a http:mthd httpm:GET;
16 http:requestURI ?project.
17 }.
18
19 {
20 ?project vocxnat:hasSubject ?subject.
21 } => {
22 _:a http:mthd httpm:GET;
23 http:requestURI ?subject.
24 }.
25
26 {
27 ?subject vocxnat:hasFile ?file.
28 } => {
29 _:a http:mthd httpm:GET;
30 http:requestURI ?file.
31 }.

Listing 9.5: Linked program for gathering patient-related resources.

Having gathered and integrated the needed set of triples to query all semantic experts, goal-
oriented plans are needed to (i) find semantic experts which solve respective steps of an Ab-
stract TPM SEP and (ii) query the latter with correct inputs to solve a Grounded TPM SEP.
We now show that we can reduce respective SEPs to MDPs in order to directly use available
Planning techniques for the abstract and the grounded case.

An Abstract Semantic Planner for TPM

By assuming a controlled vocabulary for all semantic experts, we can reduce both Abstract
TPM SEPs as well as Grounded TPM SEPs to MDPs. We first discuss task properties of
Abstract- and Grounded TPM SEPs, and then deal with their reduction.

TPMs are finite multi-step tasks, where we can confidently set an upper bound to the number
of steps needed to generate solutions. They are, however, not always layered, as several steps
need to be repeated if multiple headscans of a single patient are available. An Abstract TPM
SEP is finite and layered, as we are only interested in finding abstract plans to reach an abstract
goal state. A Grounded TPM SEP is finite and non-layered to account for multiplicity. We

144

9

9.2 Medical Assistance Scenarios

now reduce SEPs to infinite MDPs for Abstract SEPs and deal with Grounded SEPs in the
subsequent section.

Definition 9.1 (Reduction of SEPs to Infinite-horizon MDPs). We reduce a SEP to an infinite-
horizon MDP (see Definition 3.34), MSEP = (SSEP,ASEP,γ,TrSEP,RSEP).

• Let SSEP the state space.

• Let ASEP the action space.

• Let γ the discount factor hyperparameter, as defined for MDPs.

• Let TrSEP : SSEP×ASEP→ S the transition function.

• Let RSEP : SSEP×ASEP→R the reward function.

We distinguish between the abstract case (MABSTR
SEP) with exclusively abstract spaces (as for

Abstract SEPs) and the grounded case (MGRND
SEP) with RDF spaces (as for Grounded SEPs).

For Abstract SEPs, we explicitly reduce the complexity of given start- and goal states in
order to find a preselection of semantic experts for the respective semantic task. We thus do
not deal with the multiplicity property.

Definition 9.2 (Reduction of Abstract SEPs to Infinite-horizon MDPs). Given infinite-horizon
MDP MABSTR

SEP (see Definition 9.1), we define the following properties for its spaces and func-
tions.

• SABSTR
SEP is defined as enumeration of all unique preconditions and postconditions of

all available semantic experts, where a state s′ resulting from a transition – i.e.
s′ = TrABSTR

SEP (s,a) – theoretically contains the union of pre- and preconditions of the
semantic expert which generates action a, i.e. s′ = Preconditionse∪ eBGP(s).

• Action space AABSTR
SEP , as in EPs, is state-dependent and consists of queries of abstract

expert functions eBGP for the respective state, i.e. AABSTR
SEP = {a|eBGP(s) = a}.

• To define the goal of the semantic TPM task, we add a dummy action to AABSTR
SEP which,

when the preconditions of the semantic TPM expert are reached, generates a loop, i.e.
s = TrABSTR

SEP (s,a).

• The definition of TrSEP is straightforward, as it is deterministic. Choosing an action a
(i.e. semantic expert) in state s (i.e. union of preconditions with potentially prior visited
pre- and postconditions) thus always results in s′ (i.e. union of s with preconditions of
a).

145

Chapter 9 Applications & Evaluations of Semantic Expert Processes

• The reward function RABSTR
SEP is a SABSTR

SEP ×AABSTR
SEP matrix with |AABSTR

SEP | = |E|+ 1 (see
Equation 9.1).

RABSTR
SEP (s,a) =

{
1 if a equals dummy expert and s equals goal
0 otherwise

(9.1)

By using any strategy to plan in the MDP (e.g value iteration), we efficiently find eligible
semantic experts to solve the task.

The resulting abstract semantic planner takes as input semantic experts, respective patient-
or background information and a goal state, and returns a set of eligible semantic experts. The
corresponding semantic agent rule for the abstract semantic planner is depicted in Listing 9.6.
Here, the preconditions for the semantic Brain Mask Generation expert (see Listing 9.1) would
replace the state.

1 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
2 @prefix sep: <http://aifb-ls3-vm2.aifb.kit.edu:8080/experts/sep#>.
3 @prefix exp: <http://aifb-ls3-vm2.aifb.kit.edu:8080/experts/id/>.
4 @prefix httpm: <http://www.w3.org/2011/http-methods#>.
5 @prefix http: <http://www.w3.org/2011/http#>.
6
7 {
8 ?col rdf:type rdf:Bag;
9 rdf:li ?exp.

10 ?exp rdf:type sep:SemanticExpert.
11 ?goal rdf:type sep:GoalState,
12 sep:GroundedState.
13 ?start rdf:type sep:StartState,
14 sep:AbstractState.
15 } => {
16 _:a http:mthd httpm:POST;
17 http:requestURI exp:abstractplanner;
18 http:body
19 {
20 ?col rdf:type rdf:Bag;
21 rdf:li ?exp.
22 ?exp rdf:type sep:SemanticExpert.
23 ?goal rdf:type sep AbstractState, sep:GoalState.
24 ?start rdf:type sep:GroundedState, sep:StartState.
25 }.
26 }.

Listing 9.6: LD-Fu rule for executing the abstract semantic planner.

A Grounded Semantic Planner for TPM

An abstract semantic planner discovers suitable semantic experts for a task, but cannot deal
with challenges resulting from grounding preconditions for available states in RDF. We al-
ready discussed the problem of multiplicity, where semantic experts might require an un-
known number of inputs for their input parameters. To illustrate further challenges, consider

146

9

9.2 Medical Assistance Scenarios

the abstract goal of a semantic TPM task in Listing 9.7. As a generated TPM consists of
timely-ordered processed brain masks, an unordered rdf:Bag is not suitable. We thus ex-
ploit a different class for collections, namely rdf:Seq 9, which are ordered sequences of
resources.

1 @prefix spp: <http://surgipedia.sfb125.de/wiki/Special:URIResolver/Property-3A>.
2 @prefix spc: <http://surgipedia.sfb125.de/wiki/Special:URIResolver/Category-3A>.
3 @prefix sawsdl: <http://www.w3.org/ns/sawsdl#>.
4 @prefix xnat: <http://aifb-ls3-vm2.aifb.kit.edu:8080/xnatwrapper/id/>.
5 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
6 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
7 @prefix dc: <http://purl.org/dc/elements/1.1/>.
8 @prefix sparql: <http://www.w3.org/TR/rdf-sparql-query/#>.
9 @prefix sep: <http://aifb-ls3-vm2.aifb.kit.edu:8080/experts/sep#>.

10
11 xnat:goal1 rdf:type sep:AbstractState, sep:GoalState;
12 sawsdl:modelReference
13 [a sep:AbstractCondition;
14 rdf:value """{
15 ?tpm1 rdf:type spc:TumorProgressionMap;
16 spp:mapContent ?tpm_seq.
17 ?reg_bag rdf:type rdf:Bag.
18 ?tpm_seq rdf:type rdf:Seq;
19 rdf:_1 ?reg_mask1;
20 rdf:_2 ?reg_mask2.
21 ?reg_mask1 rdf:type spc:RegisteredBrainMask;
22 dc:format spc:NRRD;
23 spp:headscan xnat:headscan1;
24 rdfs:member ?reg_bag;
25 spp:normalizedMask
26 ?brainMask1.
27 ?reg_mask2 rdf:type spc:RegisteredBrainMask;
28 dc:format spc:NRRD;
29 spp:headscan xnat:headscan2;
30 rdfs:member ?reg_bag;
31 spp:normalizedMask
32 ?brainMask2.
33 ?normMask1 rdf:type ?norm;
34 dc:format spc:NRRD;
35 spp:headscan xnat:headscan1.
36 ?normMask2 rdf:type ?norm;
37 dc:format spc:NRRD;
38 spp:headscan xnat:headscan2.
39 FILTER (?norm = spc:NormalizedBrainMask ||
40 ?norm = spc:RobustNormalizedBrainMask).
41 OPTIONAL {
42 ?normMask1 spp:manualSegmentation
43 xnat:seg1.
44 ?normMask2 spp:manualSegmentation
45 xnat:seg2.
46 }}"""^^sparql:GraphPattern].

Listing 9.7: Exemplary goal of a semantic TPM task.

9https://www.w3.org/TR/rdf-schema/#ch_seq (accessed on 05/01/2018)

147

https://www.w3.org/TR/rdf-schema/#ch_seq

Chapter 9 Applications & Evaluations of Semantic Expert Processes

The goal BGP defines that three headscans have to be used to generate the TPM, consisting
of two registered brain masks. The semantic agent has to correctly query a semantic Brain
Mask Generation expert and a semantic Brain Normalization expert for each headscan (and
resulting brain mask) individually to then register all normalized brain masks and create the
final TPM once. Given a large amount of headscans for a patient, where only two headscans
should be chosen for the resulting TPM, we need to first ground all possible states with respect
to available preconditions of semantic experts and then plan with respect to the goal.

In addition to grounding all possible expert configurations for a start state, we need to
specifically deal with multiplicity, i.e. the availability of containers where multiple inputs of
the same type are possible state spaces. An example for such containers was presented for the
preconditions of semantic Brain Registration experts (see Listing 9.3), where a bag of brain
masks with different headscans of a single patient is required for execution. We thus have
to instantiate all possible bag configurations (i.e. bags of different sizes with different brain
masks) to be able to correctly plan.

We can now define the elements of MGRND
SEP , the infinite-horizon MDP for Grounded SEPs

(Definition 9.3).

Definition 9.3 (Reduction of Grounded SEPs to infinite-horizon MDPs). Given infinite-
horizon MDP MGRND

SEP (see Definition 9.1), we define the following properties for its spaces
and functions.

MGRND
SEP is a reduction of a Grounded SEP, where (i) grounded expert functions eRDF gener-

ate grounded action hypotheses aRDF ∈ ARDF as well as grounded states sRDF ∈ SRDF or (ii)
abstract expert functions eBGP are queried to generate abstract action hypotheses aBGP ∈ABGP

as well as abstract states aBGP ∈ ABGP.
MGRND

SEP is instantiated by calling initializeGroundedPlanning(s1
RDF,πABST R,E,sH+1

BGP)
(Algorithm 4) with the available start state s1

RDF, learned abstract policy πABST R, expert set E
and available goal sH+1

BGP .

We first describe an algorithm for retrieving all valid groundings based on a semantic ex-
pert, which is needed to tackle the problem of multiplicity (see Algorithm 3), before presenting
the general procedure to retrieve the model for MGRND

SEP (see Algorithm 4), as used in Defini-
tion 9.3.

The details of the algorithm are as follows:

• line 1: The collector set is initialized. It will eventually consist of all possible variable
bindings for an expert’s preconditions and a state.

• line 2-5: For all bags available in the precondition, we must find all possible configu-
rations. We therefore assume that preconditions exactly define resources of the bag in
order to query the state for all possible resources.

• line 6-10: For all available candidate resources with respect to the bag, we construct
possible configurations and add them to the collector set.

148

9

9.2 Medical Assistance Scenarios

Algorithm 3 getValidGroundings(e,s)

1: collector← /0
2: for all bag ∈ Preconditionse do
3: tempCollector← /0
4: q← getQuery(bag)
5: candidates← queryState(q,s)
6: for all n ∈ { 1, . . . , |candidates| do
7: tempCollector← tempCollector∪subsets(n,candidates)
8: end for
9: collector← collector∪tempCollector

10: end for
11: S,A,Tr← getGroundings(collector,e,s)
12: return S,A,Tr

• line 11-12: Based on all residual variables in the preconditions (which are not within
bags) and the additional configurations based on all bags, we can now derive all
possible groundings for the preconditions and the state. More specifically, method
getGroundings queries the given state based on the preconditions of the cur-
rent expert (i.e. Preconditionse) potentially grounded by bag configurations (in
collector). The results of the query then comprise all adequate input configura-
tions for the expert. The returned state space S consists of the resulting states after the
expert is executed for the respective input configuration, retrieved via its postconditions
(i.e. Postconditionse) – the abstract function of the expert eBGP is thus executed.
A resulting state s′ from executing the expert is defined as s′ = s∪ eBGP(sCONF), where
sCONF is a possible input configuration. The action space A comprises the respective
input configurations for the expert. The transition function Tr simply captures tuples
(s,a,s′) based on the semantic expert, where the semantic expert can be executed mul-
tiple times for different input configurations within a single step.

We now have a strategy to find all possible configuration for a state and expert. The general
procedure to instantiate MGRND

SEP is summarized in Algorithm 4.
The details of the algorithm are as follows:

• line 1-4: Spaces S and A as well as functions Tr and R are initialized, where the latter
are represented as tables.

• line 5-8: abstractPlan corresponds to a learned abstract policy (i.e. abstract
plan) and thus comprises eligible experts for solving the respective TPM task, where
abstractPlanh returns the expert for step h. Based on the abstract plan, we loop over
all eligible experts (in order of the steps). For each expert, we initialize tables of tem-
porary states, actions and transitions which result from executing the expert (grounded

149

Chapter 9 Applications & Evaluations of Semantic Expert Processes

Algorithm 4 initializeGroundedPlanning(s,abstractPlan,E,goal)

1: S←{s}
2: A← /0
3: Tr← /0
4: R← /0
5: for all h ∈ 1, . . . ,abstractPlan do
6: tempStates← /0
7: tempActions← /0
8: tempTransitions← /0
9: for all s ∈ S do

10: STEMP,ATEMP,TrTEMP← getValidGroundings(abstractPlanh,s)
11: tempStates← tempStates∪STEMP
12: tempActions← tempActions∪ATEMP
13: tempTransitions← tempTransitions∪TrTEMP
14: end for
15: S← S∪tempStates
16: A← A∪tempActions
17: Tr← Tr∪tempTransitions
18: S,A,Tr,R← setGoalBasedRewards(S,A,T,goal)
19: end for
20: return S,A,Tr,R

150

9

9.2 Medical Assistance Scenarios

or abstract).

• line 9-14: Given an expert within the abstract plan, we have to take into account all
prior generated states as inputs. Method getValidGroundings, as introduced before,
is called to get all correctly grounded states and actions for an expert and a state. The
outcomes are added to respective temporary state and action sets, as they should only
be added to the eventual state and actions after we finished step h.

• line 15-20: The enriched state and action spaces as well as the transition and reward
functions are finally returned and can be used for planning. The reward function, anal-
ogous to the abstract case (see Equation 9.1), is defined based on the goal state (i.e.
goal) where a dummy action is added from goal state to goal state with reward of one.

Complexity Analysis 9.1. The algorithm has to be executed for all experts per state, which
is repeated H times at maximum, with H a bound for the number of steps. Although several
semantic experts might have to be executed more than once – e.g. the Brain Mask Generator
expert – one can confidently set a bound on the number of steps of the semantic task. As
a result, the complexity is within O(|E||S|H). The number of steps |S| is dependent on the
algorithm, which – when unconstrained – produces 2|D| states with D the set of decision
candidates (e.g. headscan resources in a state). That is, in the worst case a single bag results
in all combinations of lengths 1, . . . , |D|. The overall complexity is thus within O(|E||S|2|D|H).

Note that the algorithm and its complexity depict the most general case where we do not
have any knowledge about the resources of respective bags. As LAPIs have to make the
relationship from inputs to outputs explicit, we can easily reduce (and in most cases exactly
determine) the involved resources, thus eliminating factor 2|D|.

Time Performance Evaluation

We now evaluate the suitability of the semantic expert concept in terms of the execution time
of the resulting LAPIs.

Setup: All experts were accessed through the MITK library (as summarized in Table 9.1).
MITK offers access to experts via standard command line calls, where short textual descrip-
tions for available parameters exist. For the lifting process, we worked closely with domain
experts (i.e. developers) of MITK to correctly wrap the respective experts and only expose
parameters which are needed for eventually generating TPMs. For the implementation of the
semantic experts, we used JavaEE with JAX-RS as well as Apache Jena 10. The resulting
semantic image processing experts have been deployed in a virtual machine with the follow-
ing specifications: QEMU Virtual CPU Version 0.9.1, 2266,796 MHz, 4 GB RAM, Ubuntu
12.04.4 LTS.

10https://jena.apache.org/ (accessed on 05/01/2018)

151

https://jena.apache.org/

Chapter 9 Applications & Evaluations of Semantic Expert Processes

Experiment Execution time (in seconds) Valid result
Local 592.48 Yes
Semantic 803.26 Yes

Table 9.2: Evaluation results for local versus semantic expert executions.

To compare the runtimes, we first manually executed the experts as available prior to the
lifting process, i.e. on a local machine via command line tools of MITK. We then ran each
semantic expert with respective RDF graph inputs as gathered by the semantic agent. The
inputs where gathered via the XNAT RDF wrapper within the presented Web architecture (see
Figure 9.2) and fed back into the platform after each step.

We used two test patient samples with two headscans (in NRRD format), where available
background information consisted of an atlas image (in NRRD format) as well as an atlas
mask (in NRRD format). We averaged the time needed for processing both headscans.

Results: Table 9.2 shows the resulting time needed to run each (semantic-) expert in sec-
onds (s).

The TPM generation process was successful for using the descriptions of the individual
semantic image processing experts and an initial implementation of LD-Fu without an abstract
semantic planner. The semantic (i.e. automatic) execution of the semantic experts by the
proposed semantic agent produced the same (and thus correct) results as the manual local
execution. While the resulting overhead for the semantic TPM task is about 210 seconds,
this does not impede the diagnostic process of radiologists as the TPM can be generated in
advance. The overhead is mainly produced by downloading and uploading the required and
produced files from and to XNAT.

We continue to evaluate the outputs of the proposed abstract semantic planner.

Semantic Planning Evaluation

We first evaluate our abstract semantic planner in terms of its ability to exclusively find se-
mantic experts needed for the abstract semantic TPM task. We then generalize the results to
grounded semantic planning for grounded semantic TPM tasks.

Semantic Abstract Planning Setup: The abstract semantic planner instantiates an infinite-
horizon MDP MABSTR

SEP and automatically constructs TrABSTR
SEP and RABSTR

SEP based on available
semantic experts, the TPM goal and given patient- as well as background information. Con-
sider a grounding for the semantic Brain Mask Generation expert and an abstract goal describ-
ing a TPM (see Listing 9.7) with all paths to the TPM being possible. Besides the 6 semantic
experts involved in the TPM process, the action space consists of 2 semantic phase recogniz-
ers of the phase recognition scenario we present in Section 9.2.3. For the proof-of-concept,
we use discount factor of λ = 0.9 and perform value iteration (see Algorithm 1) for a given
patient with two headscans (in NRRD format), additional segmentation for Robust Brain Nor-

152

9

9.2 Medical Assistance Scenarios

malization (in NRRD format) and background information consisting of an atlas image (in
NRRD format) as well as an atlas mask (in NRRD format). Listing 9.8 summarizes the start
state.

1 @prefix spp: <http://surgipedia.sfb125.de/wiki/Special:URIResolver/Property-3A>.
2 @prefix spc: <http://surgipedia.sfb125.de/wiki/Special:URIResolver/Category-3A>.
3 @prefix sawsdl: <http://www.w3.org/ns/sawsdl#>.
4 @prefix xnat: <http://aifb-ls3-vm2.aifb.kit.edu:8080/xnatwrapper/id/>.
5 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
6 @prefix dc: <http://purl.org/dc/elements/1.1/>.
7 @prefix sparql: <http://www.w3.org/TR/rdf-sparql-query/#>.
8 @prefix sep: <http://aifb-ls3-vm2.aifb.kit.edu:8080/experts/sep#>.
9

10 xnat:start1 rdf:type sep:GroundedState, sep:StartState;
11 sawsdl:modelReference
12 [a sep:GoundedCondition;
13 rdf:value """{
14 xnat:headscan1 rdf:type spc:Headscan;
15 dc:format spc:NRRD;
16 spp:manualSegmentation
17 xnat:seg1;
18 spp:patient xnat:patient1.
19 xnat:headscan2 rdf:type spc:Headscan;
20 dc:format spc:NRRD;
21 spp:manualSegmentation
22 xnat:seg2;
23 spp:patient xnat:patient1.
24 xnat:patient1 rdf:type spc:Patient.
25 xnat:brainAtlasImg rdf:type spc:BrainAtlasImage;
26 dc:format spc:NRRD.
27 xnat:brainAtlasMsk rdf:type spc:BrainAtlasMask;
28 dc:format spc:NRRD.
29 xnat:seg1 rdf:type spc:ManualSegmentation;
30 dc:format spc:NRRD;
31 spp:patient xnat:patient1.
32 xnat:seg2 rdf:type spc:ManualSegmentation;
33 dc:format spc:NRRD;
34 spp:patient xnat:patient2.
35 }"""^^sparql:GraphPattern].

Listing 9.8: Start state of a semantic TPM task.

Semantic Abstract Planning Results: When running value iteration on MTPM
SEP , we derive

converged state values after 6 iterations, which are summarized in Table 9.3.

States with values greater than zero depict preconditions of semantic experts which have to
be executed to reach the goal (except for the dummy action). As a result, value iteration only
discloses state values greater than zero if the latter potentially enable to reach the goal state,
where the semantic phase recognition experts are assigned state values of zero. The respective
output of the semantic abstract planner is depicted in Listing 9.9.

153

Chapter 9 Applications & Evaluations of Semantic Expert Processes

State number State description State value
1 Brain Mask Generation 0.32805
2 Standard Normalization 0.3645
3 Robust Normalization 0.3645
4 Batched Folder Registration 0.405
5 Tumor Segmentation 0.45
6 Map Generation 0.45
7 Dummy 1.0
8 Rule-based Phase Recognition 0.0
9 ML-based Phase Recognition 0.0

Table 9.3: Evaluation results for abstract semantic planning.

1 @prefix spc: <http://surgipedia.sfb125.de/wiki/Special:URIResolver/Category-3A>.
2 @prefix xnat: <http://aifb-ls3-vm2.aifb.kit.edu:8080/xnatwrapper/id/>.
3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
4 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
5 @prefix exp: <http://aifb-ls3-vm2.aifb.kit.edu:8080/experts/>.
6 @prefix sep: <http://aifb-ls3-vm2.aifb.kit.edu:8080/experts/sep#>.
7
8 _:pbag rdf:type rdf:Bag, sep:PolicyBag.
9

10 _:pol1 rdf:type rdf:Seq;
11 rdfs:member _:pbag;
12 rdf:_1 exp:BMG;
13 rdf:_2 exp:BN;
14 rdf:_3 exp:BR;
15 rdf:_4 exp:TS;
16 rdf:_5 exp:MG.
17
18 _:pol2 rdf:type rdf:Seq;
19 rdfs:member _:pbag;
20 rdf:_1 exp:BMG;
21 rdf:_2 exp:RBN;
22 rdf:_3 exp:BR;
23 rdf:_4 exp:TS;
24 rdf:_5 exp:MG.
25
26 exp:BMG rdf:type sep:SemanticExpert, spc:BrainMaskGeneration.
27 exp:BN rdf:type sep:SemanticExpert, spc:BrainNormalization.
28 exp:RBN rdf:type sep:SemanticExpert, spc:RobustBrainNormalization.
29 exp:BR rdf:type sep:SemanticExpert, spc:BrainRegistration.
30 exp:TS rdf:type sep:SemanticExpert, spc:TumorSegmentation.
31 exp:TPM rdf:type sep:SemanticExpert, spc:MapGeneration.
32
33 xnat:goal1 rdf:type sep:State, sep:GoalState, sep:AbstractState.
34 xnat:start1 rdf:type sep:State, sep:StartState, sep:GroundedState.

Listing 9.9: Abstract semantic TPM plan.

154

9

9.2 Medical Assistance Scenarios

Grounded Semantic Planning Setup: For grounded semantic planning, we reuse an ab-
stract semantic plan to gradually ground the preconditions of semantic experts of each step.
Assuming the goal in Listing 9.7 and respective start state (see Listing 9.8) as well as the
abstract plan, the grounded semantic planner starts by generating semantic expert executions
for h = 1, i.e. Brain Mask Generation. Given the start- and goal state, a number of semantic
Brain Mask Generation expert executions are possible, namely executing the semantic expert
once by using xnat:headscan1, once by using xnat:headscan2, or twice by using
xnat:headscan1 and xnat:headscan2 individually. By running Algorithm 4 on the
TPM start state, abstract plan, available experts and goal state, we instantiate MGRND

SEP for TPM
with discount factor λ = 0.9. The MDP consists of all possible (abstract) semantic expert
executions for all steps, where for each step each expert might be executed multiple times. We
run value iteration on MGRND

SEP to find an appropriate plan.
Grounded Semantic Planning Results: By running value iteration on MGRND

SEP , all states
with positive values support to reach the goal. The actions to reach these states are state
configurations for experts which need to be executed. For our TPM evaluation case in step
h = 1, we need to take two actions, namely executing the semantic Brain Mask Generation
expert for both headscans individually. Listing 9.10 comprises the output of the grounded
semantic planner for step h = 1.

1 @prefix spp: <http://surgipedia.sfb125.de/wiki/Special:URIResolver/Property-3A>.
2 @prefix spc: <http://surgipedia.sfb125.de/wiki/Special:URIResolver/Category-3A>.
3 @prefix sawsdl: <http://www.w3.org/ns/sawsdl#>.
4 @prefix xnat: <http://aifb-ls3-vm2.aifb.kit.edu:8080/xnatwrapper/id/>.
5 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
6 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
7 @prefix sparql: <http://www.w3.org/TR/rdf-sparql-query/#>.
8 @prefix dc: <http://purl.org/dc/elements/1.1/>.
9 @prefix exp: <http://aifb-ls3-vm2.aifb.kit.edu:8080/experts/>.

10 @prefix sep: <http://aifb-ls3-vm2.aifb.kit.edu:8080/experts/sep#>.
11
12 _:ebag rdf:type rdf:Bag.
13 exp:BMG rdf:type sep:SemanticExpert, spc:BrainMaskGeneration;
14 rdfs:member _:ebag.
15 xnat:grounding1
16 rdf:type spc:ExpertExecution;
17 sep:expert exp:BMG;
18 sawsdl:modelReference
19 [a sep:GoundedCondition;
20 rdf:value """{
21 xnat:headscan1 rdf:type spc:Headscan;
22 dc:format spc:NRRD.
23 spp:patient xnat:patient1.
24 xnat:patient1 rdf:type spc:Patient.
25 xnat:brainAtlasImg rdf:type spc:BrainAtlasImage;
26 dc:format spc:NRRD.
27 xnat:brainAtlasMsk rdf:type spc:BrainAtlasMask;
28 dc:format spc:NRRD.
29 }"""^^sparql:GraphPattern].
30 xnat:grounding2

155

Chapter 9 Applications & Evaluations of Semantic Expert Processes

31 rdf:type spc:ExpertExecution;
32 sep:expert exp:BMG;
33 sawsdl:modelReference
34 [a sep:GoundedCondition;
35 rdf:value """{
36 xnat:headscan2 rdf:type spc:Headscan;
37 dc:format spc:NRRD.
38 spp:patient xnat:patient1.
39 xnat:patient1 rdf:type spc:Patient.
40 xnat:brainAtlasImg rdf:type spc:BrainAtlasImage;
41 dc:format spc:NRRD.
42 xnat:brainAtlasMsk rdf:type spc:BrainAtlasMask;
43 dc:format spc:NRRD.
44 }"""^^sparql:GraphPattern].
45
46 xnat:goal1 rdf:type sep:State, sep:GoalState, sep:AbstractState.
47 xnat:start1 rdf:type sep:State, sep:StartState, sep:GroundedState.

Listing 9.10: Output of the grounded semantic planner for the step h = 1.

In general, the process needs to be repeated for each step h ∈ 1 . . . ,H as we need to learn
expert weights based on the respective state groundings. For TPM without learning, we could
find an appropriate grounded plan by planning once on the grounded start state and use the
BGP state configurations for later steps. We will deal with a different case in Section 9.3 for
NERD.

9.2.3 Semantic Surgical Phase Recognition

In surgical phase recognition (see Section 2.2), one aims to predict the current surgical phase
by various sensory information – in our scenario the latter are restricted to activity triples
consisting of the used surgical instrument, the performed action and the treated human or-
gan. We base our application and evaluation of phase recognition on two experts, i.e. (i) An
expert based on manually defined rules in the Semantic Web Rule Language (SWRL) for a
domain ontology [63] and (ii) a supervised learning-based expert (referred to as ML-based
phase recognition expert), fitting a random forest model [23] for multiclass classification with
annotated surgeries as training data (i.e. surgical activities labeled with the correct surgical
phase). We first present the lifting process for semantic phase recognition experts and then
proceed with our grounded semantic learner.

Semantic Surgical Phase Recognition

We lifted both phase recognition experts to semantic experts, and defined their inputs and
outputs in terms of semantic pre- and postconditions. See Listing 9.11 for the preconditions
of the semantic ML-based phase recognition expert and note that all semantic descriptions for
Surgical Phase Recognition experts are presented in Appendix A.

The semantic phase recognition experts need to be initialized with a separate laparoscopic
ontology with concepts for the surgical setting. This is due to the implementation of the expert

156

9

9.2 Medical Assistance Scenarios

as well as the lifting to the semantic expert. The ML-based phase recognizer, in addition, has
to be trained with samples.

1 @prefix spp: <http://surgipedia.sfb125.de/wiki/Special:URIResolver/Property-3A>.
2 @prefix spc: <http://surgipedia.sfb125.de/wiki/Special:URIResolver/Category-3A>.
3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
4
5 ?col rdf:type rdf:Bag;
6 rdf:li ?trainingSample.
7
8 ?trainingSample rdf:type spc:Surgery.
9

10 ?ontology rdf:type spc:Ontology.
11
12 ?event rdf:type spc:SurgicalEvent;
13 spp:instrument ?instrument;
14 spp:action ?action;
15 spp:structure ?structure.
16
17 ?instrument rdf:type spc:Instrument.
18 ?action rdf:type spc:Action.
19 ?structure rdf:type spc:TreatedStructure.

Listing 9.11: Preconditions of the semantic ML-based expert.

The postconditions (see Listing 9.12) state that results have to be typed as spc:Phase,
which ensures that only modeled phases occur and recognized phases belong to the event of
the preconditions.

1 @prefix spp: <http://surgipedia.sfb125.de/wiki/Special:URIResolver/Property-3A>.
2 @prefix spc: <http://surgipedia.sfb125.de/wiki/Special:URIResolver/Category-3A>.
3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
4 @prefix dc: <http://purl.org/dc/elements/1.1/>.
5
6 ?phase rdf:type spc:Phase;
7 spp:value ?value.
8
9 ?event rdf:type spc:SurgicalEvent;

10 spp:instrument ?instrument;
11 spp:action ?action;
12 spp:structure ?structure.
13 spp:phase ?phase.

Listing 9.12: Postconditions of the semantic ML-based expert.

A Grounded Semantic Learner for Surgical Phase Recognition.

Our grounded semantic learner is based on methods proposed in Part II and is able to weight
the competing semantic phase recognition experts to eventually choose the best result. As it
only works for semantic phase recognition experts, we define less general preconditions. List-
ing 9.13 depicts the resulting rule for executing the grounded semantic learner. It only assumes
available semantic experts chosen by an abstract semantic planner and further triples about the

157

Chapter 9 Applications & Evaluations of Semantic Expert Processes

activities. Note that we can elegantly define the generality of the grounded semantic learner
based on the concept types we use. If it was able to optimally choose among two or more
image processors as well, we could easily express that via preconditions and postconditions.

1 @prefix sep: <http://aifb-ls3-vm2.aifb.kit.edu:8080/experts/sep#>.
2 @prefix spc: <http://surgipedia.sfb125.de/wiki/Special:URIResolver/Category-3A>.
3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
4 @prefix httpm: <http://www.w3.org/2011/http-methods#>.
5 @prefix exp: <http://aifb-ls3-vm2.aifb.kit.edu:8080/experts/>.
6
7 {
8 ?col rdf:type rdf:Bag;
9 rdf:li ?exp.

10 ?exp rdf:type spc:PhaseRecognitionExpert.
11 ?grounding rdf:type sep:State.
12 } => {
13 _:a http:mthd httpm:POST;
14 http:requestURI exp:groundedlearner;
15 http:body
16 {
17 ?col rdf:type rdf:Bag;
18 rdf:li ?exp.
19 ?exp rdf:type spc:PhaseRecognitionExpert.
20 ?grounding rdf:type sep:State.
21 }.
22 }.

Listing 9.13: LD-Fu rule for executing the grounded semantic learner.

The grounded semantic learning component assesses the performance of a given semantic
phase recognizer based on training samples close to the state (i.e. decision candidate for the
phase recognition scenario). Our initial approach is a batch learning variant of Single-Avg as
introduced for evaluation in Chapter 7 using single-expert meta dependencies (as introduced
in Sec 5.3) without further weightings of the latter. To get batch training samples, one trains
the ML-based phase recognizer on parts of the training sets (i.e. all surgeries but one) and
predicts on the remaining surgery. The process is repeated until we have predictions for all
surgeries. For the rule-based phase recognizer, one simply has to execute the latter on all left
out surgeries, as no training takes place. Finally, the optimal hypothesis is generated based on
the weighted combination of available semantic experts.

Grounded Semantic Learner Evaluation

We evaluate the performance of the grounded semantic learner for surgical phase recognition
by running the automation architecture and quantifying the outcome optimization performance
of the resulting grounded phase recognition SEP.
Setup:
Kernels: We define and exclusively use a straightforward kernel for surgical activities based
on the exact pairwise match of structure, instrument and/or action. If for two activities the
current triples plus their three predecessors match, the activities get assigned a similarity of

158

9

9.2 Medical Assistance Scenarios

Expert Surgery 1 Surgery 2 Surgery 3 Surgery 4 Surgery 5

SWRL 0.9315 0.7753 0.89 0.8137 0.7241
ML-based 0.9062 0.6635 0.9032 0.4484 0.6383

Table 9.4: Baseline performances of phase recognition experts.

Expert Surgery 1 Surgery 2 Surgery 3 Surgery 4 Surgery 5

Batch-Local 0.9332 0.7786 0.9180 0.7782 0.7238

Table 9.5: Evaluation results for the grounded semantic learner.

1. The similarity linearly decreases to 0.25 if only the current activity triples match and has
value 0 otherwise. The kernel value of two states s1 and s2 is thus high if the respective current
and past activity triples of the states are identical (i.e. instrument, action and structure of s1
at time t (written as st

1) are identical to instrument, action and structure of s2 at time t, with t
decreasing one by one). The kernel is defined in Equation 9.2.

κ(s1,s2) =



1 x = 0,1,2,3 : st−x
1 = st−x

2

0.75 x = 0,1,2 : st−x
1 = st−x

2 ∧ st−3
1 6= st−3

2

0.5 x = 0,1 : st−x
1 = st−x

2 ∧ st−2
1 6= st−2

2

0.25 st
1 = st

2∧ st−1
1 6= st−1

2

0 st
1 6= st

2

(9.2)

Experts: The baseline performances of the two available experts for phase recognition are
summarized in Table 9.4
Evaluation measures: We performed five-fold cross validation, where we trained on four surg-
eries and predicted on the residual one. The evaluation metric we used was precision, which
is defined as average of correct predictions for the test set. Our exemplary batch expert weight
learning approach for the evaluation is denoted Batch-Local.
Results: The results are summarized in Table 9.5.

The resulting precision of the grounded semantic learner either outperformed the best phase
recognizer or was able to compete. More importantly, the grounded phase recognition SEP
was successfully automated, as the grounded semantic learner and the respective semantic
phase recognition experts were correctly executed.

Based on grounded semantic learning for surgical phase recognition and abstract plan-
ning for TPM, we can automate the respective semantic tasks. Until now, we only explored
grounded semantic learning for a single-step semantic task, where the problem of considering

159

Chapter 9 Applications & Evaluations of Semantic Expert Processes

future impacts when taking decisions is not prevalent. As a consequence, a central challenge
for grounded semantic planning did not occur, namely dealing with a large amount of con-
flicting groundings, due to exchangeable semantic experts.

To this end, we present semantic meta components for a NLP scenario, where prior men-
tioned complexities are available. Here, the grounded semantic learning technique can be
completely reused, but the semantic description for the respective grounded semantic learn-
ers has to be adapted. However, a novel semantic meta component for grounded semantic
planning has to be developed, which deals with conflicting state configurations.

9.3 The Named Entity Recognition & -Disambiguation Scenario

In NERD, one deals with ambiguity in unstructured text, mostly available on the Web. As tex-
tual mentions of entities often are ambiguous, it often remains unclear which real-world entity
is referred to. It is thus important to find links between such mentions and entity resources, as
available in KBs.

For the semantic NERD task, we reuse all experts of Chapter 7. We first present the se-
mantic descriptions for NER and NED experts. Based on the latter, we then discuss how to
integrate semantic meta components for grounded semantic learning in order to weight se-
mantic NER- and NED experts. We finally discuss grounded semantic planning, where we
extend our TPM approach to deal with conflicting hypotheses of available NER experts.

9.3.1 Semantic Descriptions for Semantic NER & NED Experts

Numerous NER, NED and NERD experts are available as Web services and provide rich
descriptions of inputs and outputs. While inputs for NER are confined to text, outputs usually
consist of mappings of tokens or token sequences to named entities. These mappings consist
of start- and end positions of tokens as well as the predicted named entity type (which we do
not need for solving NERD). Depending on the implementation of the expert and the Web
service, the output might also provide a confidence measure for each mapping. NED Web
services usually require an annotated version of the text, where a specific syntax needs to
be used. The produced output consists of mappings from a token or token sequences to KB
resources, the position of the token or token sequence and, if available, a confidence measure
for each prediction. NER and NED Web services might provide further parameters about their
functionality.

For modeling the preconditions and postconditions, we reuse the NLP Interchange Format
(NIF) 11, a RDF vocabulary for describing both Web services and datasets for several NLP
tasks. The preconditions for semantic NER experts are depicted in Listing 9.14. They confine
text inputs to be sentences or complete paragraphs with adequate NIF annotations. Parameters
specific to the respective expert can be set as well, but remain optional. For predicates and

11http://persistence.uni-leipzig.org/nlp2rdf/ (accessed on 05/01/2018)

160

http://persistence.uni-leipzig.org/nlp2rdf/

9

9.3 The Named Entity Recognition & -Disambiguation Scenario

concepts not provided by NIF, we use namespace sepnlp: to refer to a novel, extending
ontology.

1 @prefix nif: <http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core#>.
2 @prefix sepnlp: <http://aifb-ls3-vm2.aifb.kit.edu:8080/experts/sepnlp#>.
3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
4
5 ?text rdf:type ?type.
6
7 FILTER (?type = nif:Sentence || ?textType = nif:Paragraph).
8
9 OPTIONAL {

10 ?parameterConfig rdf:type sep:ParameterConfig;
11 sepnlp:parameter ?parameter;
12 sepnlp:parameterValue ?parameterValue.
13 }

Listing 9.14: Preconditions of semantic NER experts.

The preconditions of semantic NED experts are depicted in Listing 9.15. Inputs are NER
annotations with information about start- and end indexes of a named entity candidate (i.e. a
token or a token sequence). Annotations are collected in a rdf:Bag, where two annotations
must not overlap with respect to their tokens. We model this fact by requiring triples with
predicate sepnlp:disjunct which can be directly inferred by a respective LD-Fu rule 12.

1 @prefix nif: <http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core#>.
2 @prefix sepnlp: <http://aifb-ls3-vm2.aifb.kit.edu:8080/experts/sepnlp#>.
3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
4 @prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
5
6 ?col rdf:type rdf:Bag;
7 rdf:li ?annotation1, ?annotation2.
8
9 ?annotation1 sepnlp:disjunct ?annotation2.

10
11 ?annotation1 rdf:type sepnlp:Annotation;
12 nif:isString ?text1;
13 sepnlp:token ?token1;
14 sepnlp:isEntity "true"^^xsd:boolean.
15
16 ?token1 rdf:type sepnlp:Token;
17 nif:anchorOf ?mention1;
18 nif:beginindex ?start1;
19 nif:endIndex ?end1;
20 nif:referenceContext ?sentence.
21
22 ?annotation2 rdf:type sepnlp:Annotation;
23 nif:isString ?text2;
24 sepnlp:token ?token2;
25 sepnlp:isEntity "true"^^xsd:boolean.
26
27 ?token2 rdf:type sepnlp:Token;

12Note that one could also model SPARQL filters to directly check for disjunction.

161

Chapter 9 Applications & Evaluations of Semantic Expert Processes

28 nif:anchorOf ?mention2;
29 nif:beginindex ?start2;
30 nif:endIndex ?end2;
31 nif:referenceContext ?sentence.
32 OPTIONAL {
33 ?parameterConfig rdf:type sepnlp:ParameterConfig;
34 sepnlp:parameter ?parameter;
35 sepnlp:parameterValue
36 ?parameterValue.
37 }

Listing 9.15: Preconditions of semantic NED experts.

Finally, the postconditions of NED experts are stipulated in Listing 9.16. It stipulates that
the annotation used as NED expert input is required to be enriched with a disambiguated
resource.

1 @prefix nif: <http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core#>.
2 @prefix sepnlp: <http://aifb-ls3-vm2.aifb.kit.edu:8080/experts/sepnlp#>.
3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
4 @prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
5
6 ?col rdf:type rdf:Bag;
7 rdf:li ?annotation1.
8
9 ?annotation1 rdf:type sepnlp:Annotation;

10 nif:isString ?text;
11 sepnlp:token ?token1.
12 sepnlp:isEntity "true"^^xsd:boolean;
13 sepnlp:resource ?resource.
14
15 ?token1 rdf:type sepnlp:Token
16 nif:anchorOf ?mention;
17 nif:beginindex ?start;
18 nif:endIndex ?end;
19 nif:referenceContext ?text.
20 OPTIONAL {
21 ?parameterConfig rdf:type sepnlp:ParameterConfig;
22 sepnlp:parameter ?parameter;
23 sepnlp:parameterValue
24 ?parameterValue.
25 }

Listing 9.16: Postconditions of semantic NED experts.

Every NER and NED expert considered in the scenarios was wrapped as semantic expert.
We modeled the descriptions with NLP domain experts and developers of NER and NED
experts, and made them available via the respectively developed LAPIs. Note that all semantic
descriptions for NER and NED experts are presented in Appendix A. The KB comprises texts,
semantic NER- and NED experts and resulting annotations by executing the latter.

162

9

9.3 The Named Entity Recognition & -Disambiguation Scenario

9.3.2 A Grounded Semantic Planner for NERD

Similar to the TPM scenario, precondition groundings of semantic NED experts might pro-
duce multiple state configurations, as multiple token-/named entity mappings have been cho-
sen. To give an example, consider the following tweet:

Michael Jordan is a famous basketball player.

There is no ambiguity for NER and, thus, all available semantic experts take the full text
as input. Given the annotation candidates Michael, Jordan, Michael Jordan and
basketball player one now has to construe valid annotations for NED which causes
two challenges.

(i) We have to express that Michael Jordan and Michael must not be used for one
text annotation due to their overlap.

(ii) It quickly becomes intractable to try out (i.e. query experts with) all valid annotations
for NED and thus budgets are imposed.

We partially approached problem (i) by modeling the preconditions of NED experts.
Given a bag of annotations, the tokens of two annotations must not overlap (i.e. predicate
sepnlp:disjunct relates them) with regards to their start and end indexes. By now, we
only dealt with simple bag constructs where a single bag element needs to be modeled in the
respective pre- and postconditions of semantic experts. We thus extend Algorithm 4 to al-
low for modeling more complex collections, where relations among elements are taken into
account. The algorithm is summarized subsequently (Algorithm 5).

Algorithm 5 getValidGroundingsExtended(e,s)

1: collector← /0
2: for all bag ∈ Preconditionse do
3: configurations← /0
4: condition← getCondition(bag)
5: q← getQueryExtended(bag)
6: candidates← queryState(q,s)
7: for all n ∈ { 2, . . . , |candidates| do
8: unfiltered← subsets(n,candidates)
9: configurations← configurations∪filter(unfiltered,condition)

10: end for
11: collector← collector∪configurations
12: end for
13: S,A← getGroundings(configurations,Preconditionse,s)
14: return S,A

163

Chapter 9 Applications & Evaluations of Semantic Expert Processes

The altered details of the algorithm are as follows 13:

• Line 4: The condition for the bag is retrieved, which filters the modeled relations among
all pairwise triples of the bag.

• Line 5: Other than in the standard case with a single element in the bag, we now need
to actively select the element to retrieve all unfiltered resources.

• Line 8: Similar to the original algorithm, we first retrieve all possible configurations (in
set unfiltered) regardless of the condition.

• Line 9: The configurations are filtered according to the condition (in method filter,
which has to be tested for all pairs of resources. The rest of the algorithm is equivalent
to Algorithm 3.

Example 9.1 illustrates the procedure for a piece of text with two available annotations. For
grounded states in the KB, we use namespace sepkb:.

Example 9.1 (Grounding for NED). Given state s with text Michael Jordan is a
famous basketball player and decision candidates 1s =Michael Jordan and
2s =basketball and NED expert e with preconditions as shown in Listing 9.15, we need
call Algorithm 4 with Algorithm 5 to ground the available bag of annotations with respect to
finding configuration decision candidates 1s and 2s. Listing 9.17 shows the resulting condition
of a LD-Fu rule, where resource sepkb:token1 denotes 1s and resource sepkb:token2
denotes 2s.

1 @prefix nif: <http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core#>.
2 @prefix sepnlp: <http://aifb-ls3-vm2.aifb.kit.edu:8080/experts/sepnlp#>.
3 @prefix sepkb: <http://aifb-ls3-vm2.aifb.kit.edu:8080/experts/sepkb/id/>.
4 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
5 @prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
6
7 ?col rdf:type rdf:Bag;
8 rdf:li ?annotation1,
9 ?annotation2.

10
11 ?annotation1 rdf:type sepnlp:Annotation;
12 nif:isString ?text;
13 sepnlp:token sepkb:token1;
14 sepnlp:isEntity "true"^^xsd:boolean.
15
16 ?annotation2 rdf:type sepnlp:Annotation;
17 nif:isString ?text;
18 sepnlp:token sepkb:token2;
19 sepnlp:isEntity "true"^^xsd:boolean.
20
21 sepnlp:token1 rdf:type sepnlp:Token.

13For the general description see the details of Algorithm 3

164

9

9.3 The Named Entity Recognition & -Disambiguation Scenario

22 sepnlp:token2 rdf:type sepnlp:Token.
23
24 sepkb:token1 sepnlp:disjunct sepkb:token2.
25
26 OPTIONAL {
27 ?parameterConfig rdf:type sepnlp:ParameterConfig;
28 sepnlp:parameter ?parameter;
29 sepnlp:parameterValue
30 ?parameterValue.

Listing 9.17: LD-Fu rule for NED expert and exemplary state configuration.

In addition to restrictions, we cannot simply find a single trajectory to the goal state, as
a number of NER or NED experts often disagree and propose conflicting decision candi-
dates. The problem becomes more severe with an increasing number of steps. The resulting
upper bound for the number of NED executions corresponds to all possible n-grams (with
n = 1, . . . , |tokens(s)|) of a state text. After several semantic NER experts haven been exe-
cuted and a grounded semantic learner has weighted their outputs, we thus have to restrict the
number of configurations (SCONF) we want the grounded semantic planner to build.

We propose a sampling approach which generates probability distributions based on expert
weights we(

ds) of the grounded semantic learner and draws a predefined number of samples
(i.e. expert budget CEXP of SEPs). We iteratively cluster all named entity candidates ds ∈ s
until we derive valid named entity assignments for a configured state. More specifically, we
first create clusters for each named entity candidate ds to decide if we consider it for a sampling
round. As there might be several conflicting named entity assignments, we use the retrieved
samples to create new clusters for each sampled candidate ds plus its dependent named entity
candidates (i.e. the candidates which overlap ds in s). The sampling process continues until a
valid annotation is reached, i.e. we have a mapping from tokens to named entities which do
not overlap.

Before presenting the sampling algorithm, we define the resulting Grounded SEP for
NERD, which extends Definition 9.3.

Definition 9.4 (Extended Reduction of Grounded SEPs to Infinite-horizon
MDPs). Given infinite-horizon MDP MGRND

SEP (see Definition 9.1) and the gen-
eral properties of the latter (see Definition 9.4), MGRND

SEP is instantiated by calling
initializeGroundedPlanning(s1

RDF,πABST R,E,sH+1
BGP) (Algorithm 4) with the avail-

able start state s1
RDF, learned abstract policy πABST R, expert set E and available goal

sH+1
BGP .

For initializeGroundedPlanning, we use getValidGroundingsExtended instead of
getValidGroundings, where the resulting state space is sampled with sample(Sh).

The procedure is formalized and summarized in algorithm 6, having the set of candidate
named entities sCAND as input.

We now explain the algorithm in detail:

165

Chapter 9 Applications & Evaluations of Semantic Expert Processes

Algorithm 6 sample(sCAND)

1: clusters← /0
2: for all ds ∈ sCAND do
3: clusters← clusters∪ (ds,¬ds)
4: end for
5: merge← true
6: while merge do
7: for all cluster ∈ clusters do
8: PCLUSTER← getProbabilityDistribution(cluster)
9: cluster← draw(PCLUSTER)

10: end for
11: merge← checkValidity(clusters) // false if assignment is valid
12: if merge then
13: sDEP = invalidOverlaps(clusters) // increasingly ordered by size
14: clusters← /0
15: for all ds ∈ sDEP do
16: if ¬inCluster(ds,clusters)∧∀cs∈ ds.DEPS :¬inCluster(cs,clusters)

then
17: clusters = clusters∪ (ds∪ ds.DEPS)
18: else
19: if ¬inCluster(ds,clusters) then
20: cluster = getCluster(ds,clusters)
21: cluster = cluster∪ ds
22: end if
23: end if
24: end for
25: end if
26: end while
27: s← transformToState(clusters)
28: return s

166

9

9.3 The Named Entity Recognition & -Disambiguation Scenario

• Line 1: The set of clusters is initialized, where the latter will constitute the eventual
sampled state. That is, each cluster within the set of clusters should contain a single
decision candidate which must not overlap with another cluster’s decision candidate.

• Line 2-3: A cluster is created for each decision candidate, also containing its negation.
Each cluster thus initially depicts the choice for choosing the decision candidate or not.

• Line 5: The merge variable is initialized as true. It depicts if the available cluster has
to be merged, as their decision candidates constitute conflicts.

• Line 6-9: Until no valid set of clusters could be found, we need to draw a decision can-
didate from each cluster. PCLUSTER : S→ [0,1] maps decision candidates to probability
values and constitutes a probability distribution, where ∑s PCLUSTER(S = s) = 1.

• Line 11: The validity of clusters is checked in terms of textual overlap of decision
candidates of two clusters as well as cluster size (as the goal of the algorithm is to end
up with clusters of length one). The method returns false if all clusters are valid and no
merging has to follow.

• Line 12-13: If merging needs to happen, we need to gather all invalid overlaps (i.e. con-
flicts) of clusters. sDEP is the resulting set with all decision candidates of the available
clusters, where ds ∈ sDEP store links to all conflicting decision candidates cs ∈ ds.DEPS
in set decision candidate-dependent set DEPS. The latter is ordered by the length of de-
pendencies, as otherwise n-grams might cause to neglect numerous decision candidates
made of subsets of the n-gram (see Complexity Analysis 9.2 for an example).

• Line 14-24: After re-initializing the clusters set, we iterate through all currently chosen
decision candidates and use conflict link sets to build novel clusters. More specifically,
if a decision candidate and all its conflicts (i.e. (ds∪ ds.DEPS)) are not yet in a cluster,
they constitute a novel cluster. Otherwise, we add the current decision candidate to
an available cluster, if the former was not already assigned as dependency in a prior
iteration. The dependent decision candidates will then be added to or form novel clusters
in subsequent rounds if they are not assigned yet.

• Line 27-28: Finally, we have to transform the clusters into the configured state by
simply gathering all decision candidates from all available clusters. The configured
state is then returned.

The algorithm takes into account all possible state configurations, as one biases the sam-
pling process when not resolving overlaps of decision candidates, e.g. when 1s↔ 2s↔ 3s↔
. . .↔ d−1s↔ ds holds, it yields sampling a single decision candidate of a single cluster (with
all decision candidates in it). We now discuss the complexity of the algorithm.

167

Chapter 9 Applications & Evaluations of Semantic Expert Processes

Complexity Analysis 9.2. The worst case happens due to decision candidate dependencies
such that 1s↔ ds, 2s↔ ds, . . . , d−1s↔ ds (caused, for example, by n-grams for textual de-
cision candidates), as this might cause the while loop (lines 6-26) to sequentially conduct
|D−1| draws due to the ordering of the dependency sets (which can be done in O(|D|log|D|)
with sorting algorithms such as merge- or heap sort). The increasing ordering, as mentioned
before, is essential to take into account decision candidates with smaller amounts of tokens if
n-grams are available. The merge loop additionally iterates through all decision candidates,
pointing to their dependencies (lines 15-24), causing quadratic complexity. The computa-
tional complexity of the algorithm is thus within O(|D|+ |D|2) = O(|D|2).

9.3.3 Evaluation

We evaluate the grounded semantic planner by running the complete NERD SEP with abstract
semantic planner as introduced in Section 9.2.2, grounded semantic learner as introduced in
Section 9.2.3 and novel grounded semantic planner as introduced for the semantic NERD task
in Section 9.3.2.

9.3.4 Setup

Kernels: We use the same setup in terms of kernels, densities and (semantic-) experts as
described in our learning evaluation in Chapter 7. The only restrictions are the execution
budgets M1 = M2 = |E|, where a single state is to be generated after each step.

Experts: We use the same experts as in our learning evaluation in Chapter 7.

Evaluation measures: We focus on outcome optimization of SEPs and, as lifted for surgical
phase recognition (see Section 9.2.3), use the grounded semantic learner (see Section 9.2.2)
we lifted based on Single-Avg (see Chapter 7), which uses single-expert meta dependencies to
calculate expert weights. Other than for the MEP and EP evaluation, we are now in the batch
learning setting, where we either re-train the grounded semantic learner at each query. While
this significantly increases computational complexity, the results might be improved compared
to the pure online learning case. The approach is, again, referred to as Batch-Single-Avg.

9.3.5 Results

The results are summarized in Table 9.6.
While the results for the batch learner are better than in the online case (see Table 7.6),

the significant result of the evaluation is that the grounded semantic planner created grounded
plans to correctly query the respective semantic experts.

168

9

9.4 Discussion

Microposts ’14 Spotlight
Approach F1 Prec Rec F1 Prec Rec

Batch-Single-Avg 0.51 0.74 0.4 0.4 0.5 0.37

Table 9.6: Evaluation results for the NERD SEP.

9.4 Discussion

We first discuss the generalizability of semantic meta components and semantic experts to
new domains or tasks and then deal with the problem of different reward impacts for different
semantic tasks.

9.4.1 On the Generalizability of Semantic Meta Components

The ability to generalize and reuse the semantic meta components we developed throughout
this work is dependent on (i) the flexibility of the underlying meta component and (ii) its
semantic description. (i) Our grounded semantic learner is built on a generic expert weight
learning approach based on meta dependencies and not bound to NLP tasks. In addition,
our abstract semantic planner is based on MDP planning and completely generalizable. (ii)
The semantic descriptions we modeled are domain-dependent for both grounded semantic
learning and abstract semantic planning, as they need to capture respective constraints for
execution and correct functioning. The semantic descriptions for grounded semantic learners
can, however, be automatically inferred from semantic experts, while semantic meta planners
need to capture goal-dependent task parameters, such as the constraint of having one decision
per token or token sequence for NERD.

To this end, one could relax the impact of the pre- and postconditions and shift the decision
to grounded semantic learning components, i.e. model generic pre- and postconditions and
learn their eligibility for a datapoint via feedback. This might be useful for generalizing
the applicability of a semantic expert or for dealing with situations where few semantics are
available.

Also, using the framework for novel tasks is dependent on the goal of the respective task, as
semantic meta components as well as semantic experts have to be modeled accordingly. More
specifically, if a novel task could theoretically be solved by available semantic experts in terms
of their functionality, their semantic description might not capture all needed information of
the task’s goal. To this end, the respective LAPI might have to be adjusted, as extended
semantic annotations might influence the underlying expert.

169

Chapter 9 Applications & Evaluations of Semantic Expert Processes

9.4.2 On Domain-dependent Impacts of Rewards

Grounded semantic learning entails to either learn R directly or approximate expert weights.
We neglected the aspect that R might have different interpretations and impacts for differ-
ent domains. While for NLP techniques applied to Web-based tasks choosing the highest
estimated reward measured on past executions might not cause problems, it might have crit-
ical and ethical consequences for medical scenarios. Provenance metadata might have to be
extended with more specific criteria for decision-making, where manually defined decision
policies potentially need to be followed based on strict medical guidelines. Hence, a static
semantic expert pipeline might be preferred for all data points, as it is trusted by physicians.

A related challenge is that institutions might differ in their perceptions of what conceptual
provenance metadata is needed to ensure trustworthiness or that different guidelines are fol-
lowed. Hence, reusing task outcomes published as Linked Data requires developing strategies
to deal with uncertainties coming from missing information.

9.5 Summary

In this chapter, we presented applications and evaluations of SEPs in medical assistance as
well as NLP. Based on our general Web automation architecture for medical assistance, we
first dealt with the TPM use case, where we presented semantic experts as well as a abstract
semantic planner and a grounded semantic planner to automatically discover them. Both
semantic planners were developed as reduction of Abstract- or Grounded SEPs to infinite-
horizon MDPs, which can be solved via standard MDP Planning algorithms. We evaluated
the semantic experts in terms of time-efficiency with respect to the local execution of their
wrapped functionality and were able to show that semantic expert concept is suitable for med-
ical assistance experts. Our evaluations for semantic meta components additionally validated
that we can automatically discover as well as compose expert pipelines for medical assistance.

We presented further semantic experts for Surgical Phase Recognition and developed a
grounded semantic learner, which encapsulates a batch version of methods presented in Part II
of this thesis. It exploited similarity measures defined on activity triples as well as single
expert meta dependencies. The evaluation of the latter verified that respective semantic Phase
Recognition experts were correctly executed and that the grounded semantic learners achieved
robust and partially superior results.

We finally dealt with our NERD application, where we first presented semantic experts for
NER and NED. While we could reuse the abstract semantic planner of the TPM scenario, we
extended the grounded semantic planner with a state sampling technique as well as the ability
to define pairwise bag constraints. The grounded semantic learner for NERD, similarly to
Phase Recognition, wrapped a batch version of techniques proposed in Part II of this thesis.
Our evaluation showed that the resulting Web architecture correctly executed all semantic
experts and semantic meta components, and achieved good outcomes for the Grounded NERD
SEP.

170

9

9.5 Summary

Our work on applying semantic experts to TPM, Surgical Phase Recognition and NERD as
well as evaluating their time-efficiency answered Research Question 4, where the correspond-
ing Hypothesis 4 can be confirmed.

Similarly, our work on the resulting Web architectures for medical assistance and NERD,
as well as the developed semantic meta components and their evaluations in terms of abstract
semantic planning, grounded semantic planning and grounded semantic learning answered
Research Question 5, where the corresponding Hypothesis 5 can be confirmed.

171

Part IV

Conclusion

This part concludes the thesis by first summarizing the presented contents in terms of
research questions, hypotheses and contributions (Chapter 10). We finally point out future
research directions for each of the stipulated hypotheses in Chapter 11.

10

Chapter 10

Summary

In this chapter, we summarize the contents of this thesis by revisiting all stipulated hypothe-
ses and corresponding research questions, and highlighting our respective contributions. We
start with our hypotheses with respect to the learning problem.
Hypothesis 1. By learning expert weights for individual task instances, which express an
expert’s ability to support generating the correct task solution, and by choosing experts with
respect to the exploration-exploitation problem, we can maximize the number of correct solu-
tions for multi-step tasks (Chapter 5).

Research Question 1 dealt with finding an adequate formalization for solving multi-step
tasks with budgeted expert advice. We introduced EPs, a decision theoretic framework extend-
ing MDPs with expert advice and budget constraints. The target property of expert weights in
EPs can be analogously defined to the well-known Bellman equations for MDPs, stipulating
that an expert weight for a decision candidate has to have a positive impact on future steps. By
learning a policy which maximizes the expected cumulative reward over steps (and adequate
engineered rewards), we model all relevant learning challenges. Hypothesis 1 can only be
partially confirmed without adequate learning methods, which we target in Hypothesis 2.
Hypothesis 2. RL using relational features for individual task instances enables to deal with
expert budgets in order to maximize the number of correct solutions for multi-step tasks with
expert advice (Chapter 5 & 7).

In Research Question 2, we targeted learning methods for EPs to maximize the expected
cumulative reward. Our contributions comprise two model-free RL approaches, where we
directly approximated expert weights for decision candidates in the online and the (mini-)
batch setting, respectively. While our Online RL method is lightweight and easily scalable,
our (mini-) Batch RL approach relies on a complex LGM. We exploit a novel feature rep-
resentation (referred to as meta dependencies), which consists of relational expert measures
to quantify the relative performance of an expert in diverse neighborhoods of the current de-
cision candidate. We describe our evaluations for all learning approaches to fully confirm
Hypothesis 2 after introducing Hypothesis 3.
Hypothesis 3. Framing expert selection and -combination for multi-step tasks as Multiagent
coordination problem and solving the latter can improve the number of correct solutions for
multi-step tasks while keeping the resulting system flexible (Chapter 6 & 7).

Research Question 3 deals with the central problem of expert correlation in multi-step tasks,

175

Chapter 10 Summary

which potentially introduces biases to learning methods for EPs. We extended EPs with mul-
tiple agents, where each agent manages exactly one expert in MEPs. The latter enable to treat
the correlation problem as expert coordination. To this end, we explored both the lightweight
independent learner- as well as rich joint-action learner protocol and developed respective
methods.
We evaluated our learning methods for EPs as well as MEPs for the NERD task and showed
that, for both tweets and news articles, our methods were able to alternately dominate all base-
lines, which consisted of – among others – the monolithic systems as deployed on the Web.
We were thus able to confirm Hypothesis 2 & 3, and in retrospect also confirm Hypothesis 1
concerning our general-purpose framework.
We now deal with our hypotheses, research questions and resulting contributions for the prob-
lem of Web automation of multi-step tasks.
Hypothesis 4. Given a multi-step task with available experts, structuring experts and task in-
stances with lightweight annotations modeled with the Resource Description Language (RDF)
as well as exploiting HTTP methods to execute the services is sufficient to find and execute
expert services (Chapter 8 & Chapter 9).

Associated Research Question 4 focused on the problem of heterogeneity in expert func-
tionalities, implementations and interfaces available on the Web. We proposed lifting experts
to semantic experts, which are LAPIs able to provide access via HTTP methods, introspection
via machine-readable descriptions and provenance via execution-specific groundings of the
latter. We applied the concept of semantic experts to NERD- as well as medical assistance
experts and showed that no significant time overhead is generated. The latter are thus eligible
for automating multi-step tasks on the Web, which confirms Hypothesis 4.
Hypothesis 5. Expert services lifted with concepts of the Semantic Web can be executed
on a data-driven basis, where decision-theoretic models enable planning their execution as
well as integrating expert weight learning approaches to solve multi-step tasks (Chapter 8 &
Chapter 9).

Research Question 5 deals with enabling to efficiently find suitable experts for a step and
automatically execute the latter without human intervention. Our contribution did comprise a
data-driven approach for semantic expert execution based on a declarative rule-based engine
LD-Fu. We extended EPs with semantic concepts – yielding SEPs – to enable the reuse of
MDP planning techniques for semantic expert discovery and the integration of expert weight
learning methods as proposed throughout this thesis. SEPs with respective semantic meta
components have been applied to both the NERD- and the two medical assistance tasks and
evaluated in terms of running exemplary SEPs. Hypothesis 5 was thus confirmed.

176

11

Chapter 11

Future Work

This chapter points out future work with respect to the proposed frameworks and methods of
this thesis.

We begin by discussing future work with respect to the framework of EPs (Hypothesis 1),
which enable to reuse, extend and develop RL algorithms to learn how to choose and combine
experts and their hypotheses. An important direction with regards to real-world applicability
is making budget constraints more flexible. The underlying assumption is that one could save
expert executions for decision candidates (or data points) and steps, where one is confident
about the performance of the respective experts. The saved budget can either lead to overall
cost savings or be distributed to decision candidates (or data points) and steps where one
is unsure. This extension is far from trivial, as EPs have to be extended with finer-grained
decisions which entails to re-model state and action spaces. Reward functions for such an EP
extension have to be carefully engineered and empirically evaluated, as it is not clear how to
achieve convergent behavior.

To this end, working towards using Inverse Reinforcement Learning (IRL) might be the
most innovative and fruitful direction, where one tries to recover the reward function and
thus elegantly avoids to manually engineer the latter. By showing the agent optimal expert
executions and hypothesis combinations, the former could learn to extract the important subset
of decisions to take in order to maximize the expected cumulative reward for the EP extension.
IRL methods significantly differ from RL methods and thus open an extending line of research.

A possible line of future work for learning methods for EPs (Hypothesis 2) comprises to
evaluate pure RL algorithms such as Value-based Q-Learning or Actor-Critic algorithms (e.g.
[133]) for EPs. The methods we proposed dealt with unstructured data (such as text) where,
on the one hand, pure Deep RL (such as Value-based Deep Q-Learning [93] or Actor-Critic
TRPO [115]) might not converge for relatively small hand-labeled reference data sets and, on
the other hand, elaborate feature representations (e.g. the proposed meta dependencies) are
needed to enable generalization. As a consequence, using pure RL algorithms with adequate
feature representations is promising.

To this end, it is crucial to study convergence behaviors of methods proposed in this thesis,
as convergence is the central means to quantify the performance of RL algorithms. While our
empirical evaluation of the latter is important and a first step, theoretical frameworks such as
Probably Approximately Correct (PAC) [77, 132] and Knows What It Knows (KWIK) [87]

177

Chapter 11 Future Work

fundamentally approach the study of convergence by proving respective guarantees.
Future works concerning the reduction of expert correlation for multi-step tasks by Multia-

gent coordination (Hypothesis 3) might lead towards the study of distributed systems, where
responsible agents cannot be centralized because respective experts are owned by indepen-
dent parties, or the system needs to scale to very large amounts of experts. The former reason
is of interest on its own, as real-world scenarios often comprise independent stakeholders
with mostly cooperative intentions but individual power. A prominent example is medical
assistance, where experts might represent models trained from data of different institutions or
physicians themselves. Here, such coordination protocols and rewards paired with adequate
incentives might enable to apply MEPs in medical settings.

To achieve complete decentralization, one has to optimize communication among agents.
The resulting constrained communication problem entails to deal with communication actions,
as we already defined for MEPs. Recent advances in costly feature selection [47] based on
bandit algorithms can be reused and extended, where one would model all agent combinations
of the given communication budget length as possible communication actions. An alternative
direction is using deep neural networks, which have been successfully applied to learning how
to communicate [46].

Taking the opposite perspective for future works, a promising line of research deals with
using Multiagent coordination for centralized decision-making [82, 134] which has lead to
good results for game playing (which currently is the main proof-of-concept for novel RL
algorithms). By adding a superior meta-agent, collecting the decisions of the coordination
agents and taking global decisions, one could improve the overall performance for MEPs to
solve multi-step tasks.

We next discuss future works for lifting experts to semantic experts (Hypothesis 4), leading
to knowledge integration for multi-step tasks. A core assumption of the lifting process was the
manual annotation and -wrapping process of expert services (or respective local implementa-
tions) to semantic experts. Here, building on advances in the automatic deployment of Docker
containers for semantic experts is an essential next step, as this leads to better scalability as
well as availability. Besides easing and automating the wrapping process of experts, the de-
velopment of suggestion mechanisms with regards to manually creating semantic descriptions
(and most importantly pre- and postconditions) based on supervised learning is important.
Such methods can only be developed by extending prominent service provider platforms, such
as Algorithmia, with semantic annotations for experts and providing real-world incentives for
end users to build the manually annotated ground truth.

To this end, we also require semantic annotations to match perfectly, i.e. the same vocab-
ularies have to be used for all semantic experts to enable exchangeability as well as pre- and
postconditions matchings. There are future directions one might take to add flexibility. A first
step towards learning semantic matchings would be to assume simple typed annotations with
given upper classes, e.g. spc:Image, to restrict the search space. One might then approach
to learn supervised models based on the eventual positive or negative outcomes of a task when
using a specific expert with uncertainty in its annotations.

178

11

An additional future work direction we want to mention deals with enabling focused, goal-
oriented developments and liftings of semantic experts by means of IRL. By studying end
user behavior on service provide platforms, one can model a MDP and learn the intrinsic
reward function of the class of end users on a specific platform. This enables better understand
where Web automation is needed and where the best starting points for manually developing
semantic experts are.

Finally, while we already generate provenance metadata based on semantic expert as well
as semantic meta component executions, reusing established sophisticated ontologies (such as
OPMW) is beneficial and might open further opportunities and research challenges. One ex-
ample might be discovering and selecting semantic experts when no training data is available,
which requires to examine generated metadata from other institutions (published as Linked
Data). To this end, guaranteeing reproducibility of results and determining if sufficient con-
textual information is available to trust these outcomes are essential.

Future works for SEPs and proposed semantic meta components for diverse planning and
learning problems (Hypothesis 5) might be concerned with extending SEPs to distributed
systems, which are essential for Web- and Internet of Things (IoT) applications. The de-
velopment of self-governed components, which autonomously aggregate their needed inputs
and coordinate as well as communicate with others to serve end users is a novel and fruitful
line of research. By working towards Multiagent SEPs, one has to fundamentally re-design
semantic meta components as well as the data-driven execution by the semantic agent. The
idea behind the latter (embodied by concepts underlying the tool LD-Fu) is still central, but
needs to be enriched with communication and coordination capabilities. Numerous problems
arise, as communication cannot be exhaustive and coordination must yield fair and sustainable
consensuses.

Besides distributing SEPs, future works concerning further real-world constraints (as, for
example, available in medical decision-making) are important. The latter might comprise se-
curity of accessing and storing semantic experts and their sensitive hypotheses or combination
and choice of hypotheses when the involved decisions have detrimental impacts.

Besides, in case of abstract planning we only leveraged semantics to a small degree, namely
in terms of pre- and postcondition matchings. To better exploit semantic liftings of experts,
one could study potential advantages of relational MDPs, where abstract as well as grounded
state- and action spaces of SEPs do not have to be lowered to tabular representations. As
a consequence, one could exploit more efficient planning and learning algorithms for SEPs
which are especially useful when the number of variables in semantic expert conditions or
start state groundings increase in size. To this end, defining stochastic transition function with
logical rules (as practiced in LOMDPs) also enables to model uncertainties with regards to
imperfect matchings of semantic expert conditions or availability of the latter.

With regards to learning in SEPs we also only dealt with lifting batch learning approaches
to semantic grounded learners. As an extensive part of our proposed expert weight learning
techniques (see Chapter 5) supports online learning which yields higher degrees of flexibility,
enabling such liftings is beneficial. However, this either requires to keep a state or store

179

Chapter 11 Future Work

learned expert weights to gradually update the latter.
Finally, as we mentioned critical reward impacts for sensitive domains such as medicine,

further qualitative and quantitative evaluations are needed to work towards richer provenance
models and thus higher end user acceptance of automatically pipelined workflows, e.g. end
user questionnaires to quantify trust thresholds for suggested task solution

To summarize, while this thesis contributes to decision-making for multi-step tasks with
expert advice, it also sets the ground for diverse, fruitful research directions.

180

12

Bibliography

[1] Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello, Marco Mon-
tali, and Paolo Torroni. Policy-based reasoning for smart web service interaction. In SWAP
2006 - Semantic Web Applications and Perspectives, Proceedings of the 3rd Italian Semantic
Web Workshop, Scuola Normale Superiore, Pisa, Italy, 2006.

[2] Michael Albrecht, Patrick Donnelly, Peter Bui, and Douglas Thain. Makeflow: A portable
abstraction for data intensive computing on clusters, clouds, and grids. In Proceedings of
the 1st ACM SIGMOD Workshop on Scalable Workflow Execution Engines and Technologies,
SWEET@SIGMOD, Scottsdale, AZ, USA, SWEET '12, pages 1:1–1:13. ACM, 2012.

[3] Kareem Amin, Satyen Kale, Gerald Tesauro, and Deepak S. Turaga. Budgeted prediction with
expert advice. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
Austin, Texas, USA, pages 2490–2496, 2015.

[4] Hartwig Anzt, Werner Augustin, Martin Baumann, Thomas Gengenbach, Tobias Hahn, Andreas
Helfrich-Schkarbanenko, Vincent Heuveline, Eva Ketelaer, Dimitar Lukarski, Andreas Nestler,
Sebastian Ritterbusch, Staffan Ronnas, Michael Schick, Mareike Schmidtobreick, Chan-
dramowli Subramanian, Jan-Philipp Weiss, Florian Wilhelm, and Martin Wlotzka. Hiflow3:
A hardware-aware parallel finite element package. In Tools for High Performance Comput-
ing 2011 - Proceedings of the 5th International Workshop on Parallel Tools for High Per-
formance Computing, ZIH, Dresden, September 2011, pages 139–151, 2011. doi: 10.1007/
978-3-642-31476-6_12.

[5] Danilo Ardagna and Barbara Pernici. Adaptive service composition in flexible processes. IEEE
Trans. Software Eng., 33(6):369–384, 2007. doi: 10.1109/TSE.2007.1011.

[6] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochas-
tic multiarmed bandit problem. SIAM J. Comput., 32(1):48–77, 2002. doi: 10.1137/
S0097539701398375.

[7] Stephen H. Bach, Matthias Broecheler, Lise Getoor, and Dianne P. O’Leary. Scaling MPE
inference for constrained continuous markov random fields with consensus optimization. In
Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural
Information Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake
Tahoe, Nevada, USA, pages 2663–2671, 2012.

[8] Stephen H. Bach, Bert Huang, Ben London, and Lise Getoor. Hinge-loss markov random fields:
Convex inference for structured prediction. In Proceedings of the Twenty-Ninth Conference on
Uncertainty in Artificial Intelligence, UAI 2013, Bellevue, WA, USA, 2013.

[9] Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learn-
ing. Discrete Event Dynamic Systems, 13(1-2):41–77, 2003. doi: 10.1023/A:1022140919877.

181

Bibliography

[10] Amparo Elizabeth Cano Basave, Giuseppe Rizzo, Andrea Varga, Matthew Rowe, Milan
Stankovic, and Aba-Sah Dadzie. Making sense of microposts (#microposts2014) named entity
extraction & linking challenge. In Proceedings of the 4th Workshop on Making Sense of Mi-
croposts co-located with the 23rd International World Wide Web Conference (WWW'14), Seoul,
Korea, pages 54–60, 2014.

[11] Richard Bellman. Dynamic programming. Princeton University Press, 1957.

[12] V. Richard Benjamins and Christine Pierret-Golbreich. Assumptions of problem-solving meth-
ods. In Advances in Knowledge Acquisition, 9th European Knowledge Acquisition Workshop,
co-located with the International Conference on Knowledge Engineering and Knowledge Man-
agement, EKAW'96, Nottingham, UK, pages 1–16, 1996.

[13] Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Com-
mun. ACM, 18(9):509–517, 1975. doi: 10.1145/361002.361007.

[14] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific American, 284
(5):34–43, 2001.

[15] Alina Beygelzimer, John Langford, Lihong Li, Lev Reyzin, and Robert E. Schapire. Contextual
bandit algorithms with supervised learning guarantees. In Proceedings of the Fourteenth Inter-
national Conference on Artificial Intelligence and Statistics, AISTATS 2011, Fort Lauderdale,
USA, pages 19–26, 2011.

[16] Alina Beygelzimer, Anton Riabov, Daby Sow, Deepak S. Turaga, and Octavian Udrea. Big data
exploration via automated orchestration of analytic workflows. In 10th International Conference
on Autonomic Computing, ICAC'13, San Jose, CA, USA, pages 153–158, San Jose, CA, 2013.
ISBN 978-1-931971-02-7.

[17] Alina Beygelzimer, Satyen Kale, and Haipeng Luo. Optimal and adaptive algorithms for online
boosting. In IJCAI, pages 4120–4124, 2016.

[18] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the story so far. Int. J. Semantic
Web Inf. Syst., 5(3):1–22, 2009. doi: 10.4018/jswis.2009081901.

[19] Daniel Blankenberg, Gregory Von Kuster, Nathaniel Coraor, Guruprasad Ananda, Ross Lazarus,
Mary Mangan, Anton Nekrutenko, and James Taylor. Galaxy: a web-based genome analysis tool
for experimentalists. Current protocols in molecular biology, 2010. doi: 10.1002/0471142727.
mb1910s89.

[20] Craig Boutilier. Sequential optimality and coordination in multiagent systems. In Proceedings
of the Sixteenth International Joint Conference on Artificial Intelligence, IJCAI 99, Stockholm,
Sweden, pages 478–485, 1999.

[21] Ronen I. Brafman and Moshe Tennenholtz. R-MAX - A general polynomial time algorithm for
near-optimal reinforcement learning. Journal of Machine Learning Research, 3:213–231, 2002.
doi: 10.1162/153244303765208377.

[22] Pavel Brazdil, Christophe Giraud-Carrier, Carlos Soares, and Ricardo Vilalta. Metalearning:
Applications to Data Mining. Springer, 1 edition, 2008. ISBN 3540732624, 9783540732624.

182

12

Bibliography

[23] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. doi: 10.1023/A:
1010933404324.

[24] Matthias Bröcheler, Lilyana Mihalkova, and Lise Getoor. Probabilistic similarity logic. In
UAI 2010, Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence,
Catalina Island, CA, USA, pages 73–82, 2010.

[25] Martin Carpenter and Daniel Kudenko. Baselines for joint-action reinforcement learning of co-
ordination in cooperative multi-agent systems. In Adaptive Agents and Multi-Agent Systems II:
Adaptation and Multi-Agent Learning, pages 55–72, 2005. doi: 10.1007/978-3-540-32274-0_4.

[26] Fabio Casati, Malú Castellanos, Umeshwar Dayal, and Ming-Chien Shan. Probabilistic, context-
sensitive, and goal-oriented service selection. In Service-Oriented Computing - ICSOC 2004,
Second International Conference, New York, NY, USA, pages 316–321, 2004. doi: 10.1145/
1035167.1035213.

[27] Nicolò Cesa-Bianchi, Yoav Freund, David Haussler, David P. Helmbold, Robert E. Schapire,
and Manfred K. Warmuth. How to use expert advice. J. ACM, 44(3):427–485, 1997. doi:
10.1145/258128.258179.

[28] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web services
description language (WSDL) 1.1. W3C recommendation, W3C, 2001. URL http://www.
w3.org/TR/wsdl. accessed April 14, 2015.

[29] Caroline Claus and Craig Boutilier. The dynamics of reinforcement learning in cooperative
multiagent systems. In Proceedings of the Fifteenth National Conference on Artificial Intelli-
gence and Tenth Innovative Applications of Artificial Intelligence Conference, AAAI 98, IAAI
98, Madison, Wisconsin, USA, pages 746–752, 1998.

[30] Tom Croonenborghs, Karl Tuyls, Jan Ramon, and Maurice Bruynooghe. Multi-agent relational
reinforcement learning. In Learning and Adaption in Multi-Agent Systems, First International
Workshop, LAMAS, Utrecht, The Netherlands, Revised Selected Papers, pages 192–206, 2005.

[31] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip Maechling, Rajiv
Mayani, Weiwei Chen, Rafael Ferreira da Silva, Miron Livny, and R. Kent Wenger. Pegasus,
a workflow management system for science automation. Future Generation Comp. Syst., 46:
17–35, 2015. doi: 10.1016/j.future.2014.10.008.

[32] Marc Peter Deisenroth and Carl Edward Rasmussen. PILCO: A model-based and data-efficient
approach to policy search. In Proceedings of the 28th International Conference on Machine
Learning, ICML 2011, Bellevue, Washington, USA, pages 465–472. Omnipress, 2011.

[33] Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function
decomposition. J. Artif. Intell. Res., 13:227–303, 2000. doi: 10.1613/jair.639.

[34] Xin Luna Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Kevin Murphy, Shaohua
Sun, and Wei Zhang. From data fusion to knowledge fusion. PVLDB, 7(10):881–892, 2014.
doi: 10.14778/2732951.2732962.

183

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl

Bibliography

[35] Xin Luna Dong, Evgeniy Gabrilovich, Kevin Murphy, Van Dang, Wilko Horn, Camillo Lu-
garesi, Shaohua Sun, and Wei Zhang. Knowledge-based trust: Estimating the trustworthiness of
web sources. PVLDB, 8(9):938–949, 2015. doi: 10.14778/2777598.2777603.

[36] Prashant Doshi, Richard Goodwin, Rama Akkiraju, and Kunal Verma. Dynamic workflow com-
position: Using markov decision processes. Int. J. Web Service Res., 2(1):1–17, 2005. doi:
10.4018/jwsr.2005010101.

[37] Kurt Driessens and Jan Ramon. Relational instance based regression for relational reinforcement
learning. In Proceedings of the Twentieth International Conference (ICML 2003), August 21-24,
2003, Washington, DC, USA, pages 123–130, 2003.

[38] Saso Dzeroski, Luc De Raedt, and Kurt Driessens. Relational reinforcement learning. Machine
Learning, 43(1/2):7–52, 2001. doi: 10.1023/A:1007694015589.

[39] Thomas Fahringer, Radu Prodan, Rubing Duan, Jüurgen Hofer, Farrukh Nadeem, Francesco
Nerieri, Stefan Podlipnig, Jun Qin, Mumtaz Siddiqui, Hong-Linh Truong, Alex Villazon, and
Marek Wieczorek. ASKALON: A Development and Grid Computing Environment for Scientific
Workflows, pages 450–471. Springer London, 2007.

[40] Dieter Fensel, Enrico Motta, Frank van Harmelen, V. Richard Benjamins, Monica Crubézy,
Stefan Decker, Mauro Gaspari, Rix Groenboom, William E. Grosso, Mark A. Musen, En-
ric Plaza, Guus Schreiber, Rudi Studer, and Bob J. Wielinga. The unified problem-solving
method development language UPML. Knowl. Inf. Syst., 5(1):83–131, 2003. doi: 10.1007/
s10115-002-0074-5.

[41] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springenberg, Manuel
Blum, and Frank Hutter. Efficient and robust automated machine learning. In Advances in Neu-
ral Information Processing Systems 28: Annual Conference on Neural Information Processing
Systems 2015, Montreal, Quebec, Canada, pages 2962–2970, 2015.

[42] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software Archi-
tectures. University of California, Irvine, 2000.

[43] Richard Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of theorem
proving to problem solving. Artif. Intell., 2(3/4):189–208, 1971. doi: 10.1016/0004-3702(71)
90010-5.

[44] Rosa Filguiera, Iraklis Klampanos, Amrey Krause, Mario David, Alexander Moreno, and Mal-
colm Atkinson. dispel4py: A python framework for data-intensive scientific computing. In
Proceedings of the 2014 International Workshop on Data Intensive Scalable Computing Sys-
tems, DISCS '14, pages 9–16. IEEE Press, 2014.

[45] Jenny Rose Finkel, Trond Grenager, and Christopher D. Manning. Incorporating non-local in-
formation into information extraction systems by gibbs sampling. In ACL 2005, 43rd Annual
Meeting of the Association for Computational Linguistics, Proceedings of the Conference, Uni-
versity of Michigan, USA, 2005.

184

12

Bibliography

[46] Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, and Shimon Whiteson. Learning to
communicate with deep multi-agent reinforcement learning. In Advances in Neural Information
Processing Systems 29: Annual Conference on Neural Information Processing Systems '16,
Barcelona, Spain, pages 2137–2145, 2016.

[47] Dean P. Foster, Satyen Kale, and Howard J. Karloff. Online sparse linear regression. In Proceed-
ings of the 29th Conference on Learning Theory, COLT 2016, New York, USA, pages 960–970,
2016.

[48] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and System Sciences, 55(1):119 – 139, 1997.
ISSN 0022-0000.

[49] Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of
Statistics, 29:1189–1232, 2000.

[50] Daniel Garijo and Yolanda Gil. A new approach for publishing workflows: abstractions, stan-
dards, and linked data. In WORKS'11, Proceedings of the 6th Workshop on Workflows in Support
of Large-Scale Science, co-located with , SC11, Seattle, WA, USA, pages 47–56, 2011.

[51] Philipp Gemmeke, Maria Maleshkova, Patrick Philipp, Michael Götz, Christian Weber,
Benedikt Kämpgen, Marco Nolden, Klaus Maier-Hein, and Achim Rettinger. Using linked
data and web apis for automating the pre-processing of medical images. In Proceedings of the
5th International Workshop on Consuming Linked Data (COLD 2014) co-located with the 13th
International Semantic Web Conference (ISWC 2014), Riva del Garda, Italy, pages 25–36, 2014.

[52] Yolanda Gil, Pedro A. Gonzalez-Calero, Jihie Kim, Joshua Moody, and Varun Ratnakar. A
semantic framework for automatic generation of computational workflows using distributed data
and component catalogues. Journal of Experimental & Theoretical Artificial Intelligence, 23(4):
389–467, 2011. doi: 10.1080/0952813X.2010.490962.

[53] Carlos Guestrin, Daphne Koller, Ronald Parr, and Shobha Venkataraman. Efficient solution
algorithms for factored MDPs. J. Artif. Intell. Res., 19:399–468, 2003. doi: 10.1613/jair.1000.

[54] J. Octavio Gutiérrez-García and Kwang Mong Sim. Agent-based cloud service composition.
Appl. Intell., 38(3):436–464, 2013. doi: 10.1007/s10489-012-0380-x.

[55] James A. Hendler, Austin Tate, and Mark Drummond. AI planning: Systems and techniques.
AI Magazine, 11(2):61–77, 1990.

[56] Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino, Hagen Fürstenau, Manfred Pinkal,
Marc Spaniol, Bilyana Taneva, Stefan Thater, and Gerhard Weikum. Robust disambiguation of
named entities in text. In Proceedings of the 2011 Conference on Empirical Methods in Natural
Language Processing, EMNLP, Edinburgh, UK, A meeting of SIGDAT, a Special Interest Group
of the ACL, pages 782–792, 2011.

[57] Jiwei Huang, Ying Chen, Chuang Lin, and Junliang Chen. Ranking web services with limited
and noisy information. In 2014 IEEE International Conference on Web Services, ICWS, 2014,
Anchorage, AK, USA, pages 638–645, 2014. doi: 10.1109/ICWS.2014.94.

185

Bibliography

[58] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures
of local experts. Neural computation, 3(1):79–87, 1991. doi: 10.1162/neco.1991.3.1.79.

[59] Anubhav Jain, Shyue Ping Ong, Wei Chen, Bharat Medasani, Xiaohui Qu, Michael Kocher,
Miriam Brafman, Guido Petretto, Gian-Marco Rignanese, Geoffroy Hautier, Daniel K. Gunter,
and Kristin A. Persson. Fireworks: a dynamic workflow system designed for high-throughput
applications. Concurrency and Computation: Practice and Experience, 27(17):5037–5059,
2015. doi: 10.1002/cpe.3505.

[60] Joseph P. Joyce and George W. Lapinsky. A history and overview of the safety parameter display
system concept. Nuclear Science, IEEE Transactions on, 30(1):744–749, Feb 1983. ISSN 0018-
9499.

[61] Spiros Kapetanakis and Daniel Kudenko. Reinforcement learning of coordination in coopera-
tive multi-agent systems. In Proceedings of the Eighteenth National Conference on Artificial
Intelligence and Fourteenth Conference on Innovative Applications of Artificial Intelligence,
Edmonton, Alberta, Canada, pages 326–331, 2002.

[62] Spiros Kapetanakis, Daniel Kudenko, and Malcolm J. A. Strens. Learning to coordinate
using commitment sequences in cooperative multiagent systems. In Adaptive Agents and
Multi-Agent Systems II: Adaptation and Multi-Agent Learning, pages 106–118, 2005. doi:
10.1007/978-3-540-32274-0_7.

[63] D. Katic, A. L. Wekerle, F. Gärtner, H. G. Kenngott, B. P. Müller-Stich, R. Dillmann, and
S. Speidel. Knowledge-driven formalization of laparoscopic surgeries for rule-based intraoper-
ative context-aware assistance. In Information Processing in Computer-Assisted Interventions -
5th International Conference, IPCAI'14, Fukuoka, Japan, pages 158–167, 2014.

[64] Michael J. Kearns and Satinder P. Singh. Near-optimal reinforcement learning in polyno-
mial time. Journal of Machine Learning Research, 49(2-3):209–232, 2002. doi: 10.1023/A:
1017984413808.

[65] Kristian Kersting and Luc De Raedt. Logical markov decision programs. In Working Notes
of the International Joint Conference on Artificial Intelligence, IJCAI, Workshop on Learning
Statistical Models from Relational Data (SRL'03), pages 63–70, 2003.

[66] Kristian Kersting, Martijn van Otterlo, and Luc De Raedt. Bellman goes relational. In Machine
Learning, Proceedings of the Twenty-first International Conference (ICML'04), Banff, Alberta,
Canada, 2004. doi: 10.1145/1015330.1015401.

[67] Angelika Kimmig, Stephen Bach, Matthias Broecheler, Bert Huang, and Lise Getoor. A short
introduction to probabilistic soft logic. In Workshop on Probabilistic Programming: Founda-
tions and Applications, co-located with Conference on Neural Information Processing Systems,
pages 1–4, 2012.

[68] Angelika Kimmig, Lilyana Mihalkova, and Lise Getoor. Lifted graphical models: a survey.
Machine Learning, 99(1):1–45, 2015. ISSN 1573-0565.

186

12

Bibliography

[69] Matthias Klusch, Andreas Gerber, and Marcus Schmidt. Semantic web service composition
planning with owls-xplan. In International Fall Symposium of the Association for the Advance-
ment of Artificial Intelligence (AAAI) on Agents and the Semantic Web, pages 55–62, 2005.

[70] Matthine Klusch. Semantic web service coordination. CASCOM: Intelligent service coordina-
tion in the semantic web, pages 59–104, 2008. doi: 10.1007/978-3-7643-8575-0_3.

[71] Daphne Koller and Nir Friedman. Probabilistic Graphical Models - Principles and Techniques.
MIT Press, 2009. ISBN 978-0-262-01319-2.

[72] Jacek Kopecký, Tomas Vitvar, Carine Bournez, and Joel Farrell. SAWSDL: semantic anno-
tations for WSDL and XML schema. IEEE Internet Computing, 11(6):60–67, 2007. doi:
10.1109/MIC.2007.134.

[73] Jacek Kopecky, Karthik Gomadam, and Tomas Vitvar. hrests: An HTML microformat for
describing restful web services. In IEEE / WIC / ACM International Conference on Web Intelli-
gence, WI'08, Sydney, NSW, Australia, volume 1, pages 619–625. IEEE, 2008.

[74] Ramachandra Kota, Nicholas Gibbins, and Nicholas R. Jennings. Self-organising agent organ-
isations. In 8th International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS'09), Budapest, Hungary, Volume 2, pages 797–804, 2009. doi: 10.1145/1558109.
1558122.

[75] Lars Kotthoff. Algorithm selection for combinatorial search problems: A survey. AI Magazine,
35(3):48–60, 2014.

[76] Michael Kranzfelder, Christoph Staub, Adam Fiolka, Armin Schneider, Sonja Gillen, Dirk Wil-
helm, Helmut Friess, Alois Knoll, and Hubertus Feussner. Toward increased autonomy in the
surgical OR: needs, requests, and expectations. Surg. Endoscopy, 27(5):1681–1688, 2013. ISSN
0930-2794.

[77] Akshay Krishnamurthy, Alekh Agarwal, and John Langford. PAC reinforcement learning with
rich observations. In Advances in Neural Information Processing Systems 29: Annual Confer-
ence on Neural Information Processing Systems '16, Barcelona, Spain, pages 1840–1848, 2016.

[78] Markus Krötzsch, Denny Vrandecic, and Max Völkel. Semantic mediawiki. In The Semantic
Web - ISWC'06, 5th International Semantic Web Conference, ISWC'06, Athens, GA, USA, pages
935–942, 2006. doi: 10.1007/11926078_68.

[79] Florent Lalys, David Bouget, Laurent Riffaud, and Pierre Jannin. Automatic knowledge-based
recognition of low-level tasks in ophthalmological procedures. International Journal of Com-
puter Assisted Radiology and Surgery, 8(1):39–49, 2013. ISSN 1861-6410.

[80] Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch Reinforcement Learning, pages
45–73. Springer, 2012. ISBN 978-3-642-27645-3. doi: 10.1007/978-3-642-27645-3_2.

[81] John Langford, Lihong Li, and Tong Zhang. Sparse online learning via truncated gradient.
Journal of Machine Learning Research, 10:777–801, 2009. doi: 10.1145/1577069.1577097.

187

Bibliography

[82] Romain Laroche, Mehdi Fatemi, Joshua Romoff, and Harm van Seijen. Multi-advisor rein-
forcement learning. CoRR, abs/1704.00756, 2017. URL http://arxiv.org/abs/1704.
00756.

[83] Martin Lauer and Martin A. Riedmiller. An algorithm for distributed reinforcement learning
in cooperative multi-agent systems. In An algorithm for distributed reinforcement learning in
cooperative multi-agent systems, pages 535–542, 2000.

[84] Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep learning. Nature, 521(7553):
436–444, 2015. doi: 10.1038/nature14539.

[85] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo N.
Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören Auer, and Chris-
tian Bizer. Dbpedia - A large-scale, multilingual knowledge base extracted from wikipedia.
Semantic Web, 6(2):167–195, 2015.

[86] Lihong Li, Michael L. Littman, and Christopher R. Mansley. Online exploration in least-squares
policy iteration. In 8th International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2009), Budapest, Hungary, Volume 2, pages 733–739, 2009. doi: 10.1145/
1558109.1558113.

[87] Lihong Li, Michael L. Littman, Thomas J. Walsh, and Alexander L. Strehl. Knows what it
knows: a framework for self-aware learning. Machine Learning, 82(3):399–443, 2011. doi:
10.1007/s10994-010-5225-4.

[88] Nebil Ben Mabrouk, Nikolaos Georgantas, and Valérie Issarny. Set-based bi-level opti-
misation for qos-aware service composition in ubiquitous environments. In IEEE Interna-
tional Conference on Web Services, ICWS'15, New York, NY, USA, pages 25–32, 2015. doi:
10.1109/ICWS.2015.14.

[89] David L. Martin, Mark H. Burstein, Drew V. McDermott, Sheila A. McIlraith, Massimo
Paolucci, Katia P. Sycara, Deborah L. McGuinness, Evren Sirin, and Naveen Srinivasan. Bring-
ing semantics to web services with OWL-S. World Wide Web, 10(3):243–277, 2007. doi:
10.1007/s11280-007-0033-x.

[90] Francisco S. Melo and Manuela M. Veloso. Learning of coordination: exploiting sparse inter-
actions in multiagent systems. In 8th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS'09), Budapest, Hungary, Volume 2, pages 773–780, 2009. doi:
10.1145/1558109.1558118.

[91] Pablo N. Mendes, Max Jakob, Andrés García-Silva, and Christian Bizer. DBpedia spotlight:
shedding light on the web of documents. In Proceedings the 7th International Conference on
Semantic Systems, I-SEMANTICS'11, Graz, Austria, pages 1–8, 2011.

[92] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their compositionality. In Advances in Neural In-
formation Processing Systems 26: 27th Annual Conference on Neural Information Processing
Systems '13, Lake Tahoe, Nevada, USA, pages 3111–3119, 2013.

188

http://arxiv.org/abs/1704.00756
http://arxiv.org/abs/1704.00756

12

Bibliography

[93] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015. doi: 10.1038/nature14236.

[94] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In Proceedings of the 33nd International Conference on Machine Learning,
ICML'16, New York City, NY, USA, pages 1928–1937, 2016.

[95] Thomas Neumuth, Gero Strauß, Jürgen Meixensberger, HeinzU Lemke, and Oliver Burgert.
Acquisition of process descriptions from surgical interventions. In Database and expert systems
applications, volume 4080 of Lec. Not. in Comp. Sc., pages 602–611. Springer, 2006.

[96] Thomas Neumuth, Pierre Jannin, Gero Strauss, Juergen Meixensberger, and Oliver Burgert. Val-
idation of knowledge acquisition for surgical process models. Journal of the American Medical
Informatics Association, 16(1):72 – 80, 2009. ISSN 1067-5027.

[97] Tom Oinn, Mark Greenwood, Matthew Addis, M. Nedim Alpdemir, Justin Ferris, Kevin Glover,
Carole Goble, Antoon Goderis, Duncan Hull, Darren Marvin, Peter Li, Phillip Lord, Matthew R.
Pocock, Martin Senger, Robert Stevens, Anil Wipat, and Chris Wroe. Taverna: Lessons in
creating a workflow environment for the life sciences: Research articles. Concurr. Comput. :
Pract. Exper., 18(10):1067–1100, August 2006. ISSN 1532-0626.

[98] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for
word representation. In Proceedings of the Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP'14, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of
the ACL, pages 1532–1543, 2014.

[99] Jan Peters and Stefan Schaal. Policy gradient methods for robotics. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS 2006, Beijing, China, pages 2219–2225,
2006. doi: 10.1109/IROS.2006.282564.

[100] Patrick Philipp and Achim Rettinger. Reinforcement learning for multi-step expert advice. In
Proceedings of the 16th Conference on Autonomous Agents and Multiagent Systems, AAMAS'17,
São Paulo, Brazil, pages 962–971, 2017.

[101] Patrick Philipp, Maria Maleshkova, Achim Rettinger, and Darko Katic. A semantic frame-
work for sequential decision making. In Engineering the Web in the Big Data Era - 15th In-
ternational Conference, ICWE'15, Rotterdam, The Netherlands, pages 392–409, 2015. doi:
10.1007/978-3-319-19890-3_25.

[102] Patrick Philipp, Maria Maleshkova, Darko Katic, Christian Weber, Michael Götz, Achim Ret-
tinger, Stefanie Speidel, Benedikt Kämpgen, Marco Nolden, Anna-Laura Wekerle, Rüdiger Dill-
mann, Hannes Kenngott, Beat P. Müller-Stich, and Rudi Studer. Toward cognitive pipelines of
medical assistance algorithms. Int. J. Computer Assisted Radiology and Surgery, 11(9):1743–
1753, 2016. doi: 10.1007/s11548-015-1322-y.

189

Bibliography

[103] Patrick Philipp, Maria Maleshkova, Achim Rettinger, and Darko Katic. A semantic framework
for sequential decision making. J. Web Eng., 16(5&6):471–504, 2017.

[104] Patrick Philipp, Achim Rettinger, and Maria Maleshkova. On automating decentralized multi-
step service combination. In IEEE International Conference on Web Services, ICWS'17, Hon-
olulu, HI, USA, pages 736–743, 2017. doi: 10.1109/ICWS.2017.89.

[105] A Platanios, Avrim Blum, and Tom M Mitchell. Estimating accuracy from unlabeled data. In
Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence, UAI 2014,
Quebec City, Quebec, Canada, pages 682–691, 2014.

[106] Emmanouil Antonios Platanios, Avinava Dubey, and Tom M. Mitchell. Estimating accuracy
from unlabeled data: A bayesian approach. In Proceedings of the 33nd International Conference
on Machine Learning, ICML'16, New York City, NY, USA,, pages 1416–1425, 2016.

[107] Marc J. V. Ponsen, Tom Croonenborghs, Karl Tuyls, Jan Ramon, and Kurt Driessens. Learning
with whom to communicate using relational reinforcement learning. In 8th International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2009), Budapest, Hungary,
Volume 2, pages 1221–1222, 2009. doi: 10.1145/1558109.1558222.

[108] Frank Puppe. Systematic introduction to expert systems - knowledge representations and
problem-solving methods. Springer, 1993. ISBN 978-3-540-56255-9.

[109] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley-Interscience, New York, USA, 1st edition, 1994. ISBN 0-471-61977-9.

[110] Jinghai Rao and Xiaomeng Su. A survey of automated web service composition meth-
ods. In Semantic Web Services and Web Process Composition, First International Work-
shop, SWSWPC'04, San Diego, CA, USA, Revised Selected Papers, pages 43–54, 2004. doi:
10.1007/978-3-540-30581-1_5.

[111] John R. Rice. The algorithm selection problem. Advances in Computers, 15:65–118, 1976. doi:
10.1016/S0065-2458(08)60520-3.

[112] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén Lara, Michael Stollberg,
Axel Polleres, Cristina Feier, Christoph Bussler, and Dieter Fensel. Web service modeling
ontology. Applied Ontology, 1(1):77–106, 2005.

[113] Pablo Ruiz and Thierry Poibeau. Combining open source annotators for entity linking through
weighted voting. In Proceedings of the Fourth Joint Conference on Lexical and Computational
Semantics, *SEM'15, Denver, Colorado, USA, 2015.

[114] Nicolai Schoch, Patrick Philipp, Tobias Weller, Sandy Engelhardt, Mykola Volovyk, Andreas
Fetzer, Marco Nolden, Raffaele De Simone, Ivo Wolf, Maria Maleshkova, Achim Rettinger,
Rudi Studer, and Vincent Heuveline. Cognitive tools pipeline for assistance of mitral valve
surgery. In Proceedings of SPIE, Medical Imaging'16: Image-Guided Procedures, Robotic
Interventions and Modeling, pages 9786 – 9794, 2016. doi: 10.1117/12.2216059.

190

12

Bibliography

[115] John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust
region policy optimization. In Proceedings of the 32nd International Conference on Machine
Learning, ICML'15, Lille, France, pages 1889–1897, 2015.

[116] Kwang Mong Sim. Agent-based cloud computing. IEEE Trans. Services Computing, 5(4):
564–577, 2012. doi: 10.1109/TSC.2011.52.

[117] Evren Sirin, James A. Hendler, and Bijan Parsia. Semi-automatic composition of web ser-
vices using semantic descriptions. In Web Services: Modeling, Architecture and Infrastructure,
Proceedings of the 1st Workshop on Web Services: Modeling, Architecture and Infrastructure
(WSMAI'03), In conjunction with ICEIS'03, Angers, France, pages 17–24, 2003.

[118] Evren Sirin, Bijan Parsia, Dan Wu, James A. Hendler, and Dana S. Nau. HTN planning for web
service composition using SHOP2. J. Web Sem., 1(4):377–396, 2004. doi: 10.1016/j.websem.
2004.06.005.

[119] René Speck and Axel-Cyrille Ngonga Ngomo. Ensemble learning for named entity recognition.
In The Semantic Web - ISWC'14 - 13th International Semantic Web Conference, Riva del Garda,
Italy, Proceedings, Part I, pages 519–534, 2014. doi: 10.1007/978-3-319-11964-9_33.

[120] Stefanie Speidel, Julia Benzko, Sebastian Krappe, Gunther Sudra, Pedram Azad, Beat Peter
Müller-Stich, Carsten Gutt, and Rüdiger Dillmann. Automatic classification of minimally in-
vasive instruments based on endoscopic image sequences. In Proceedings of SPIE, Medical
Imaging'09: Visualization, Image-Guided Procedures, and Modeling, volume 7261, 2009.

[121] Sebastian Speiser and Andreas Harth. Integrating linked data and services with linked data
services. In The Semantic Web: Research and Applications - 8th Extended Semantic Web Con-
ference, ESWC'11, Heraklion, Crete, Proceedings, Part I, pages 170–184. Springer, 2011. doi:
10.1007/978-3-642-21034-1_12.

[122] Steffen Stadtmüller and Barry Norton. Scalable discovery of linked apis. International Journal
of Metadata, Semantics and Ontologies (IJMSO), 8(2):95–105, 2013. doi: 10.1504/IJMSO.
2013.056603.

[123] Steffen Stadtmüller, Sebastian Speiser, Andreas Harth, and Rudi Studer. Data-fu: A language
and an interpreter for interaction with read/write linked data. In 22nd International World Wide
Web Conference, WWW '13, Rio de Janeiro, Brazil, pages 1225–1236, 2013.

[124] Alexander L. Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L. Littman. PAC
model-free reinforcement learning. In Machine Learning, Proceedings of the Twenty-Third
International Conference (ICML'06), Pittsburgh, Pennsylvania, USA, pages 881–888, 2006. doi:
10.1145/1143844.1143955.

[125] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic knowl-
edge. In WWW, pages 697–706, 2007.

[126] Richard S. Sutton and Andrew G. Barto. Reinforcement learning - an introduction. Adaptive
computation and machine learning. MIT Press, 1998. ISBN 0262193981.

191

Bibliography

[127] Stefan Suwelack, Markus Stoll, Sebastian Schalck, Nicolai Schoch, Rüdiger Dillmann, Rolf
Bendl, Vincent Heuveline, and Stefanie Speidel. The medical simulation markup language
- simplifying the biomechanical modeling workflow. In Medicine Meets Virtual Reality 21 -
NextMed, MMVR 2014, Manhattan Beach, California, pages 394–400, 2014. doi: 10.3233/
978-1-61499-375-9-394.

[128] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Auto-weka: com-
bined selection and hyperparameter optimization of classification algorithms. In The 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'13,
Chicago, IL, USA, pages 847–855, 2013. doi: 10.1145/2487575.2487629.

[129] J. Tong, E. Haihong, M. Song, J. Song, and Y. Li. Web service QoS prediction under
sparse data via local link prediction. In 10th IEEE International Conference on High Per-
formance Computing and Communications & IEEE International Conference on Embedded
and Ubiquitous Computing, HPCC/EUC'13, Zhangjiajie, China, pages 2285–2290, 2013. doi:
10.1109/HPCC.and.EUC.2013.328.

[130] Ricardo Usbeck, Axel-Cyrille Ngonga Ngomo, Michael Röder, Daniel Gerber, Sandro Athaide
Coelho, Sören Auer, and Andreas Both. AGDISTIS - graph-based disambiguation of named
entities using linked data. In The Semantic Web - ISWC'14 - 13th International Semantic Web
Conference, Riva del Garda, Italy, Proceedings, Part I, pages 457–471, 2014. doi: 10.1007/
978-3-319-11964-9_29.

[131] Ricardo Usbeck, Michael Röder, Axel-Cyrille Ngonga Ngomo, Ciro Baron, Andreas Both,
Martin Brümmer, Diego Ceccarelli, Marco Cornolti, Didier Cherix, Bernd Eickmann, Paolo
Ferragina, Christiane Lemke, Andrea Moro, Roberto Navigli, Francesco Piccinno, Giuseppe
Rizzo, Harald Sack, René Speck, Raphaël Troncy, Jörg Waitelonis, and Lars Wesemann. GER-
BIL: general entity annotator benchmarking framework. In Proceedings of the 24th Interna-
tional Conference on World Wide Web, WWW'15, Florence, Italy, pages 1133–1143, 2015. doi:
10.1145/2736277.2741626.

[132] Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984. doi:
10.1145/1968.1972.

[133] Hado Van Hasselt and Marco A Wiering. Reinforcement learning in continuous action spaces.
In (IEEE International Symposium on Approximate Dynamic Programming and Reinforcement
Learning, pages 272–279. IEEE, 2007.

[134] Harm van Seijen, Mehdi Fatemi, Joshua Romoff, and Romain Laroche. Improving scalability of
reinforcement learning by separation of concerns. CoRR, abs/1612.05159, 2016. URL http:
//arxiv.org/abs/1612.05159.

[135] Ruben Verborgh, Andreas Harth, Maria Maleshkova, Steffen Stadtmüller, Thomas Steiner,
Mohsen Taheriyan, and Rik Van de Walle. Survey of Semantic Description of REST APIs, pages
69–89. Springer New York, 2014. doi: 10.1007/978-1-4614-9299-3_5.

[136] Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Artificial
Intelligence Review, 18(2):77–95, 2002. doi: 10.1023/A:1019956318069.

192

http://arxiv.org/abs/1612.05159
http://arxiv.org/abs/1612.05159

12

Bibliography

[137] Tomas Vitvar, Jacek Kopecký, Jana Viskova, and Dieter Fensel. Wsmo-lite annotations for
web services. In The Semantic Web: Research and Applications, 5th European Semantic Web
Conference, ESWC'08, Tenerife, Canary Islands, Spain, pages 674–689, 2008. doi: 10.1007/
978-3-540-68234-9_49.

[138] Denny Vrandecic and Markus Krötzsch. Wikidata: a free collaborative knowledgebase. Com-
mun. ACM, 57(10):78–85, 2014. doi: 10.1145/2629489.

[139] Thomas J. Walsh, Istvan Szita, Carlos Diuk, and Michael L. Littman. Exploring compact
reinforcement-learning representations with linear regression. In UAI'09, Proceedings of the
Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, Montreal, QC, Canada, pages
591–598, 2009.

[140] Christopher J. C. H. Watkins and Peter Dayan. Technical note q-learning. Machine Learning,
8:279–292, 1992. doi: 10.1007/BF00992698.

[141] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8:229–256, 1992. doi: 10.1007/BF00992696.

[142] Ivo Wolf, Marcus Vetter, Ingmar Wegner, Thomas Böttger, Marco Nolden, Max Schöbinger,
Mark Hastenteufel, Tobias Kunert, and Hans-Peter Meinzer. The medical imaging interaction
toolkit. Medical Image Analysis, 9(6):594 – 604, 2005. ISSN 1361-8415.

[143] David H Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992. doi: 10.1016/
S0893-6080(05)80023-1.

[144] Ian Wood, Benjamin P. Vandervalk, E. Luke McCarthy, and Mark D. Wilkinson. OWL-
DL domain-models as abstract workflows. In Leveraging Applications of Formal Methods,
Verification and Validation. Applications and Case Studies - 5th International Symposium,
ISoLA'12, Heraklion, Crete, Greece, Proceedings, Part II, pages 56–66. Springer, 2012. doi:
10.1007/978-3-642-34032-1_6.

[145] S. S. Yau and Y. Yin. QoS-based service ranking and selection for service-based systems. In
IEEE International Conference on Services Computing, SCC'11, Washington, DC, USA, pages
56–63, 2011. doi: 10.1109/SCC.2011.114.

[146] Chih-Han Yu, Justin Werfel, and Radhika Nagpal. Collective decision-making in multi-agent
systems by implicit leadership. In 9th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS'10), Toronto, Canada, Volume 1-3, pages 1189–1196, 2010. doi:
10.1145/1838186.1838192.

[147] Zibin Zheng, Xinmiao Wu, Yilei Zhang, Michael R. Lyu, and Jianmin Wang. Qos ranking
prediction for cloud services. IEEE Trans. Parallel Distrib. Syst., 24(6):1213–1222, 2013. doi:
10.1109/TPDS.2012.285.

[148] Y. Zhou, L. Liu, C. S. Perng, A. Sailer, I. Silva-Lepe, and Z. Su. Ranking services by service net-
work structure and service attributes. In IEEE 20th International Conference on Web Services,
Santa Clara, CA, USA, pages 26–33, 2013.

[149] Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. Chapman & Hall/CRC, 1st
edition, 2012. ISBN 1439830037, 9781439830031.

193

12

List of Figures
1.1 General schema for using algorithms to solve multi-step tasks. 5
1.2 Learning problem of multi-step tasks using algorithms to solve steps. 6
1.3 Automation problem for solving multi-step tasks using algorithms. 7
1.4 General approach for solving multi-step tasks with experts. 8

2.1 An example of a MRI headscan. 20
2.2 An example of a TPM. 20
2.3 Steps for TPM experts. 21

5.1 Multi-Step Expert Advice in an Expert Process with a) the formal process and b) a
NLP example for NERD. 62

5.2 Schema of EPs in the MDP framework. 66

6.1 Schema of Multi-Step Expert Advice in a MAS. 85
6.2 Schema of Multi-Step Expert Advice in the MDP framework with an arbitrary mecha-

nism to choose joint actions. 87
6.3 Schema of Multi-Step Expert Advice in the MDP framework with active coordination

protocol. 90
6.4 The ECP within a MEP. 91

8.1 Schematic overview of automation components. 126
8.2 An exemplary semantic image conversion expert. 129
8.3 A LD-Fu rule for the semantic image conversion expert. 132
8.4 Interactions of semantic meta components. 133

9.1 The SMW form to annotate experts for medical assistance. 139
9.2 The automation architecture for medical assistance. 140

195

12

List of Tables
5.1 Single-step expert meta dependencies. 71
5.2 Intra-step expert meta dependencies. 72
5.3 Inter-step expert meta dependencies. 72

7.1 Used kernels for evaluation. 104
7.2 Experts for NER & NED. 106
7.3 Baseline performances of experts. 106
7.4 Evaluation results for a) accuracy estimation with h = 1. 109
7.5 Evaluation results for a) accuracy estimation with h = 2. 110
7.6 Evaluation results for b) outcome optimization . 110

8.1 Minimal description for semantic experts. 127

9.1 Needed inputs and generated outputs for TPM. 140
9.2 Evaluation results for local versus semantic expert executions. 152
9.3 Evaluation results for abstract semantic planning. 154
9.4 Baseline performances of phase recognition experts. 159
9.5 Evaluation results for the grounded semantic learner. 159
9.6 Evaluation results for the NERD SEP. 169

197

12

List of Abbreviations
AGDT AGDISTIS Tagger. 106, 114
AIDT AIDA Tagger. 106, 114
API Application Programming Interface. 48, 119
AutoML Automatic Machine Learning. 52

BGD Batch Gradient Descent. 31
BGP Basic Graph Pattern. 46, 47, 48, 55, 121, 122, 123, 124, 128, 130, 135, 138, 148, 156
BOW Bag-of-Words. 68

CDP Contextual Decision Process. 51, 61
CT Computed Tomography. 18, 19, 20

ECP Expert Coordination Process. 84, 85, 89, 90, 91, 92, 96, 97, 98, 99, 101, 114
EP Expert Process. 12, 13, 15, 16, 51, 52, 56, 59, 61, 62, 64, 65, 66, 65, 66, 67, 68, 73, 74, 75, 76, 77,

78, 81, 82, 83, 84, 85, 86, 87, 88, 89, 103, 104, 106, 107, 108, 111, 112, 114, 115, 116, 117,
120, 122, 123, 124, 125, 135, 137, 145, 168, 175, 176, 177, 195

EWH Exponential Weights / Hedge. 36, 37, 63, 64, 74, 75, 76, 77, 81, 82, 84, 93, 94, 101, 107, 109,
111, 113, 114, 115

FMA Foundational Model of Anatomy. 138
FOAF Friend-of-a-Friend. 45, 46

GD Gradient Descent. 31, 92, 93, 99, 100, 107, 109, 111, 112, 114, 115
GERBIL General Entity Annotation Benchmark Framework. 17, 105, 106

HLMRF Hinge-Loss Markov Random Field. 78, 81
HRL Hierarchical Reinforcement Learning. 53
HTN Hierarchical Task Network. 56
HTTP Hypertext Transfer Protocol. 4, 11, 47, 48, 119, 127, 130, 131, 138, 176

i.i.d. Independent and identically distributed. 28, 29, 31, 33, 35, 52, 63
IoT Internet of Things. 179
IRL Inverse Reinforcement Learning. 177, 178

JavaEE Java Enterprise Edition. 151
JAX-RS Java API for RESTful Web Services. 151
JSON-LD JavaScript Object Notation for Linked Data. 57

KB (Structured-) Knowledge Base. 4, 17, 47, 58, 63, 126, 127, 128, 129, 132, 135, 137, 138, 143, 160,
162, 164

KWIK Knows-What-It-Knows. 177

LAPI Linked Application Programming Interface. 13, 48, 55, 119, 120, 121, 127, 129, 130, 134, 135,
137, 141, 151, 162, 169, 176

LD-Fu Linked Data-Fu. 120, 130, 131, 135, 146, 152, 158, 161, 164, 165, 176, 179, 195

199

List of Abbreviations

LGM Lifted Graphical Model. 32, 175
LOMDP Logical Markov Decision Process. 56, 179
LSH Locality Sensitive Hashing. 73

MAS Multiagent System. 11, 12, 14, 15, 42, 44, 51, 53, 54, 83, 84, 85
MDP Markov Decision Process. 6, 12, 13, 26, 38, 39, 40, 41, 42, 43, 44, 54, 55, 56, 57, 61, 64, 65, 66,

68, 74, 81, 84, 86, 89, 144, 145, 146, 148, 152, 155, 165, 169, 170, 175, 176, 178, 179, 195
MEP Multiagent Expert Process. 12, 15, 16, 53, 54, 59, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94,

96, 97, 99, 100, 101, 102, 103, 104, 106, 107, 108, 112, 115, 116, 168, 175, 176, 178
MeSH Medical Subject Headings. 138
MHA MetaImage. 19, 139
MITK Medical Imaging Interaction Toolkit. 19, 119, 139, 151
ML Machine Learning. 153, 156, 157, 158, 159
MLN Markov Logic Network. 80
MMDP Multiagent Markov Decision Process. 42, 43, 44, 54, 84, 86, 90
MPE Most Probable Explanation. 80
MRG Multi-Relational Graph. 32
MRI Magnetic Resonance Imaging. 18, 19, 20, 195
MSM Minimal Service Model. 55, 128
MSML Medical Simulation Markup Language. 119

N3 Notation3. 46, 130
NED Named Entity Disambiguation. 4, 7, 9, 13, 17, 18, 63, 84, 103, 105, 106, 108, 113, 115, 121,

160, 161, 162, 163, 164, 165, 170
NER Named Entity Recognition. 4, 5, 13, 17, 18, 62, 63, 68, 84, 103, 105, 106, 108, 113, 115, 121,

160, 161, 162, 163, 165, 170
NERD Named Entity Recognition- and Disambiguation. 13, 15, 16, 17, 18, 25, 59, 62, 63, 64, 84, 86,

103, 105, 108, 115, 116, 121, 123, 124, 134, 135, 137, 156, 160, 165, 168, 170, 171, 176,
195

NIF Natural Language Processing Interchange Format. 160
NLP Natural Language Processing. 3, 4, 13, 17, 25, 52, 56, 57, 62, 68, 115, 117, 120, 121, 122, 124,

137, 160, 162, 169, 170, 195
NN Nearest Neighbors. 73
NRRD Nearly Raw Raster Data. 19, 139, 152

OPM Open Provenance Model. 55
OPMW Open Provenance Model for Workflows. 55, 57, 179
OWL Web Ontology Language. 45, 55, 56, 57

PAC Probably Approximately Correct. 177
PACS Picture Archiving and Communication System. 19
PGM Probabilistic Graphical Model. 32, 42
PNG Portable Network Graphics. 128, 139
POS Part-of-Speech. 104
PSL Probabilistic Soft Logic. 63, 64, 77, 78, 80, 81, 82, 107, 113, 115
PSM Problem Solving Methods. 55, 56

QoS Quality-of-Service. 53

RadLex Radiology Lexicon. 138
RDF Resource Description Framework. 11, 44, 45, 46, 47, 48, 56, 57, 121, 122, 123, 124, 125, 126,

128, 135, 138, 145, 146, 151, 160, 176

200

12

List of Abbreviations

RDFS Resource Description Framework Schema. 45
REST Representational State Transfer. 48, 143
RL Reinforcement Learning. 6, 10, 11, 12, 13, 15, 40, 41, 44, 51, 52, 53, 54, 57, 59, 61, 63, 64, 65,

68, 73, 74, 77, 81, 82, 83, 84, 93, 96, 97, 101, 107, 114, 115, 116, 124, 125, 175, 177, 178
RMDP Relational Markov Decision Process. 52, 56
RRL Relational Reinforcement Learning. 52, 54

SAS Single-Agent System. 51, 83, 93, 114
SAWSDL Semantic Annotations for Web Service Description Language. 55
SEP Semantic Expert Process. 13, 15, 16, 56, 57, 117, 119, 120, 121, 122, 123, 124, 125, 126, 127,

129, 131, 132, 133, 134, 135, 137, 144, 145, 148, 158, 159, 165, 168, 170, 176, 179
SGD Stochastic Gradient Descent. 31, 92
SLA Service Level Agreement. 56
SMW Semantic MediaWiki. 138
SoC Separation of Concerns. 53, 83, 84
SPARQL SPARQL Protocol and Resource Description Framework Query Language. 46, 47, 48, 57
SPS Spotlight Spotter. 106
SPT Spotlight Tagger. 106
SQL Structured Query Language for Relational Database Systems. 46
SRL Statistical Relational Learning. 32, 77, 109, 113, 115
ST Stanford Tagger. 106, 114
STRIPS Stanford Research Institute Problem Solver. 55, 56
SWRL Semantic Web Rule Language. 156, 159

TPM Tumor Progression Mapping. 17, 19, 20, 121, 124, 133, 137, 138, 139, 141, 143, 144, 145, 146,
148, 149, 151, 152, 155, 156, 159, 160, 162, 170, 195, 216

TRPO Trust Region Policy Optimization. 177
TURTLE Terse Resource Description Framework Triple Language. 45, 46

UPML Unified Problem Solving Method Language. 56
URI Uniform Resource Identifier. 44, 45, 47, 126, 131

WSDL Web Service Description Language. 55
WSMO Web Service Modeling Ontology. 55
WWW World Wide Web. 44

XML Extensible Markup Language. 56

201

A

Appendix A

Appendix: Semantics

Based on the contents present in the thesis, we now provide additional materials with regards
to (i) semantic description which lift experts to semantic experts and (ii) linked programs for
the semantic agent which is handling the execution of the Web-based infrastructure for SEPs.

A.1 Semantic Experts

We present the full semantic descriptions for all semantic experts of the TPM task. To better
present the descriptions, we first gather all used prefixes.

1 @prefix dc: <http://purl.org/dc/elements/1.1/>.
2 @prefix msm: <http://cms-wg.sti2.org/minimal-service-model#>.
3 @prefix owl: <http://www.w3.org/2002/07/owl#>.
4 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
5 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
6 @prefix sawsdl: <http://www.w3.org/ns/sawsdl#>.
7 @prefix sp: <http://surgipedia.sfb125.de/wiki/Special:URIResolver/>.
8 @prefix spc: <http://surgipedia.sfb125.de/wiki/Special:URIResolver/Category-3A>.
9 @prefix spp: <http://surgipedia.sfb125.de/wiki/Special:URIResolver/Property-3A>.

10 @prefix spimg: <http://surgipedia.sfb125.de/images/>.
11 @prefix nif: <http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core#>.
12 @prefix sep: <http://aifb-ls3-vm2.aifb.kit.edu:8080/experts/sep#>.
13 @prefix sepnlp: <http://aifb-ls3-vm2.aifb.kit.edu:8080/experts/sepnlp#>.
14 @prefix sepkb: <http://aifb-ls3-vm2.aifb.kit.edu:8080/experts/sepkb/id/>.
15 @prefix sparql: <http://www.w3.org/TR/rdf-sparql-query/#>.
16 @prefix exp: <http://aifb-ls3-vm2.aifb.kit.edu:8080/experts/>.
17 @prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

Listing A.1: Prefixes for semantic descriptions for semantic experts.

A.1.1 Brain Mask Generation

1 exp:BMG
2 rdf:type sep:SemanticExpert, spc:BrainMaskGeneration;
3 rdfs:label "Semantic Brain Mask Generation Expert";
4 spp:contributor sp:Patrick_Philipp,
5 sp:Philipp_Gemmeke;
6 spp:creator sp:Christian_Weber,
7 sp:Michael_Goetz;

203

Appendix A Appendix: Semantics

8 spp:exampleRequest spimg:BMG_example_request.ttl;
9 spp:exampleResponse spimg:BMG_example_response.ttl;

10 spp:sourceCode
11 <https://github.com/patrickraoulphilipp/cognitivepipelines>;
12 spp:description
13 "Segmentation of brain in a head scan."@en;
14 owl:sameAs sp:BMG_Description;
15 sawsdl:modelReference
16 [a msm:Postcondition;
17 rdf:value """{
18
19 ?headscan rdf:type spc:Headscan;
20 dc:format ?format.
21 FILTER (?format = spc:NRRD || ?format = spc:MHA)
22 ?brainImage rdf:type spc:BrainImage;
23 dc:format spc:NRRD;
24 spp:headscan ?headscan.
25 ?brainMask rdf:type spc:BrainMask;
26 dc:format spc:NRRD;
27 spp:headscan ?headscan.
28
29 }"""^^sparql:GraphPattern],
30 [a msm:Precondition;
31 rdf:value """{
32
33 ?headscan rdf:type spc:Headscan;
34 dc:format ?format.
35 FILTER (?format = spc:NRRD || ?format = spc:MHA)
36 ?brainAtlasImg rdf:type spc:BrainAtlasImage;
37 dc:format spc:NRRD.
38 ?brainAtlasMask rdf:type spc:BrainAtlasMask;
39 dc:format spc:NRRD.
40
41 }"""^^sparql:GraphPattern].

Listing A.2: Semantic description of semantic brain mask generation expert.

A.1.2 Standard Normalization

1 exp:BN
2 rdf:type sep:SemanticExpert, spc:BrainNormalization;
3 rdfs:label "Semantic Brain Mask Normalization Expert";
4 spp:contributor sp:Patrick_Philipp,
5 sp:Philipp_Gemmeke;
6 spp:creator sp:Christian_Weber,
7 sp:Michael_Goetz;
8 spp:exampleRequest spimg:BN_example_request.ttl;
9 spp:exampleResponse spimg:BN_example_response.ttl;

10 spp:sourceCode
11 <https://github.com/patrickraoulphilipp/cognitivepipelines>;
12 spp:description
13 "Normalization of brain mask in a head scan."@en;
14 owl:sameAs sp:BN_Description;
15 sawsdl:modelReference
16 [a msm:Postcondition;

204

A

A.1 Semantic Experts

17 rdf:value """{
18
19 ?headscan rdf:type spc:Headscan.
20 ?brainMask rdf:type spc:BrainMask;
21 dc:format spc:NRRD;
22 spp:headscan ?headscan.
23 ?normMask rdf:type spc:NormalizedBrainMask;
24 dc:format spc:NRRD;
25 spp:headscan ?headscan;
26 spp:brainMask ?brainMask.
27
28 }"""^^sparql:GraphPattern],
29 [a msm:Precondition;
30 rdf:value """{
31
32 ?headscan rdf:type spc:Headscan;
33 dc:format ?format.
34 FILTER (?format = spc:NRRD || ?format = spc:MHA)
35 ?brainMask rdf:type spc:BrainMask;
36 dc:format spc:NRRD;
37 spp:headscan ?headscan.
38
39 }"""^^sparql:GraphPattern].

Listing A.3: Semantic description of semantic brain normalization expert.

A.1.3 Robust Normalization

1 exp:RBN
2 rdf:type sep:SemanticExpert, spc:RobustBrainNormalization;
3 rdfs:label
4 "Semantic Robust Brain Mask Normalization Expert";
5 spp:contributor sp:Patrick_Philipp,
6 sp:Philipp_Gemmeke;
7 spp:creator sp:Christian_Weber,
8 sp:Michael_Goetz;
9 spp:exampleRequest spimg:RBN_example_request.ttl;

10 spp:exampleResponse spimg:RBN_example_response.ttl;
11 spp:sourceCode
12 <https://github.com/patrickraoulphilipp/cognitivepipelines>;
13 spp:description
14 "Robust Normalization of brain mask in a head scan."@en;
15 owl:sameAs sp:RBN_Description;
16 sawsdl:modelReference
17 [a msm:Postcondition;
18 rdf:value """{
19
20 ?headscan rdf:type spc:Headscan;
21 dc:format ?format.
22 FILTER (?format = spc:NRRD || ?format = spc:MHA)
23 ?brainMask rdf:type spc:BrainMask;
24 dc:format spc:NRRD;
25 spp:headscan ?headscan.
26 ?mSeg rdf:type spc:ManualSegmentation;
27 dc:format spc:NRRD;

205

Appendix A Appendix: Semantics

28 spp:headscan ?headscan.
29 ?normMask rdf:type spc:RobustNormalizedBrainMask;
30 dc:format spc:NRRD;
31 spp:headscan ?headscan;
32 spp:brainMask ?brainMask;
33 spp:manualSegmentation
34 ?mSeg.
35
36 }"""^^sparql:GraphPattern],
37 [a msm:Precondition;
38 rdf:value """{
39
40 ?headscan rdf:type spc:Headscan;
41 dc:format ?format.
42 FILTER (?format = spc:NRRD || ?format = spc:MHA)
43 ?brainMask rdf:type spc:BrainMask;
44 dc:format spc:NRRD;
45 spp:headscan ?headscan.
46 ?mSeg rdf:type spc:ManualSegmentation;
47 dc:format spc:NRRD;
48 spp:headscan ?headscan.
49
50 }"""^^sparql:GraphPattern].

Listing A.4: Semantic description of semantic robust brain normalization expert.

A.1.4 Registration

1 exp:BR
2 rdf:type sep:SemanticExpert, spc:BrainRegistration;
3 rdfs:label "Semantic Brain Mark Registration Expert";
4 spp:contributor sp:Patrick_Philipp,
5 sp:Philipp_Gemmeke;
6 spp:creator sp:Christian_Weber,
7 sp:Michael_Goetz;
8 spp:exampleRequest spimg:TS_example_request.ttl;
9 spp:exampleResponse spimg:TS_example_response.ttl;

10 spp:description
11 "Registration of normalized brain masks in head scans."@en;
12 owl:sameAs sp:BR_Description;
13 sawsdl:modelReference
14 [a msm:Postcondition;
15 rdf:value """{
16
17 ?norm_bag rdf:type rdf:Bag.
18 ?reg_bag rdf:type rdf:Bag.
19 ?headscan rdf:type spc:Headscan;
20 dc:format ?format.
21 FILTER (?format = spc:NRRD || ?format = spc:MHA)
22 ?brainMask rdf:type spc:BrainMask;
23 dc:format spc:NRRD;
24 spp:headscan ?headscan.
25 ?normMask rdf:type ?norm;
26 rdfs:member ?norm_bag;
27 dc:format spc:NRRD;

206

A

A.1 Semantic Experts

28 spp:headscan ?headscan;
29 spp:brainMask ?brainMask.
30 FILTER (?norm = spc:NormalizedBrainMask ||
31 ?norm = spc:RobustNormalizedBrainMask).
32 ?regMask rdf:type spc:RegisteredBrainMask;
33 rdfs:member ?reg_bag;
34 dc:format spc:NRRD;
35 spp:normalizedMask
36 ?normMask.
37
38 }"""^^sparql:GraphPattern],
39 [a msm:Precondition;
40 rdf:value """{
41
42 ?norm_bag rdf:type rdf:Bag;
43 ?headscan rdf:type spc:Headscan;
44 dc:format ?format.
45 FILTER (?format = spc:NRRD || ?format = spc:MHA)
46 ?brainMask rdf:type spc:BrainMask;
47 dc:format spc:NRRD;
48 spp:headscan ?headscan.
49 ?normMask rdf:type ?norm;
50 rdfs:member ?norm_bag;
51 dc:format spc:NRRD;
52 spp:headscan ?headscan;
53 spp:brainMask ?brainMask.
54 FILTER (?norm = spc:NormalizedBrainMask ||
55 ?norm = spc:RobustNormalizedBrainMask).
56
57 }"""^^sparql:GraphPattern].

Listing A.5: Semantic description of semantic brain registration expert.

A.1.5 Tumor Segmentation

1 exp:TS
2 rdf:type sep:SemanticExpert;
3 rdfs:label "Semantic Tumor Segmentation Expert";
4 spp:contributor sp:Patrick_Philipp,
5 sp:Philipp_Gemmeke;
6 spp:creator sp:Christian_Weber,
7 sp:Michael_Goetz;
8 spp:exampleRequest spimg:TS_example_request.ttl;
9 spp:exampleResponse spimg:TS_example_response.ttl;

10 spp:sourceCode
11 <https://github.com/patrickraoulphilipp/cognitivepipelines>;
12 spp:description
13 "Tumor segmentation of registered brain masks in head scans."@en;
14 owl:sameAs sp:TS_Description;
15 sawsdl:modelReference
16 [a msm:Postcondition;
17 rdf:value """{
18
19 ?headscan rdf:type spc:Headscan;
20 dc:format ?format.

207

Appendix A Appendix: Semantics

21 FILTER (?format = spc:NRRD || ?format = spc:MHA)
22 ?normMask rdf:type ?norm;
23 dc:format spc:NRRD;
24 spp:headscan ?headscan;
25 FILTER (?norm = spc:NormalizedBrainMask ||
26 ?norm = spc:RobustNormalizedBrainMask).
27 ?regMask rdf:type spc:RegisteredBrainMask;
28 dc:format spc:NRRD;
29 spp:normalizedMask
30 ?brainMask.
31 ?tumor rdf:type spc:SegmentedTumorMask;
32 dc:format spc:NRRD.
33 spp:registeredMask
34 ?regMask.
35
36 }"""^^sparql:GraphPattern],
37 [a msm:Precondition;
38 rdf:value """{
39
40 ?headscan rdf:type spc:Headscan;
41 dc:format ?format.
42 FILTER (?format = spc:NRRD || ?format = spc:MHA)
43 ?normMask rdf:type ?norm;
44 dc:format spc:NRRD;
45 spp:headscan ?headscan;
46 FILTER (?norm = spc:NormalizedBrainMask ||
47 ?norm = spc:RobustNormalizedBrainMask).
48 ?regMask rdf:type spc:RegisteredBrainMask;
49 dc:format spc:NRRD;
50 spp:normalizedMask
51 ?brainMask.
52
53 }"""^^sparql:GraphPattern].

Listing A.6: Semantic description of semantic tumor segmentation expert.

A.1.6 Map Generation

1 exp:MG
2 rdf:type sep:SemanticExpert;
3 rdfs:label "Semantic Map Generatio Expert";
4 spp:contributor sp:Patrick_Philipp,
5 sp:Philipp_Gemmeke;
6 spp:creator sp:Christian_Weber,
7 sp:Michael_Goetz;
8 spp:exampleRequest spimg:TPM_example_request.ttl;
9 spp:exampleResponse spimg:TPM_example_response.ttl;

10 spp:description
11 "Generates a the final tumour progression map of registered brain
12 masks in head scans."@en;
13 owl:sameAs sp:TPM_Description;
14 sawsdl:modelReference
15 [a msm:Postcondition;
16 rdf:value """{
17

208

A

A.1 Semantic Experts

18 ?tpm rdf:type spc:TumorProgressionMap.
19 spp:mapContent ?tpm_bag.
20 ?reg_bag rdf:type rdf:Bag.
21 ?tpm_bag rdf:type rdf:Bag;
22 rdf:_1 ?normMask.
23 ?headscan rdf:type spc:Headscan;
24 dc:format ?format.
25 FILTER (?format = spc:NRRD || ?format = spc:MHA)
26 ?normMask rdf:type ?norm;
27 dc:format spc:NRRD;
28 spp:headscan ?headscan.
29 FILTER (?norm = spc:NormalizedBrainMask ||
30 ?norm = spc:RobustNormalizedBrainMask).
31 ?regMask rdf:type spc:RegisteredBrainMask;
32 rdfs:member ?reg_bag;
33 dc:format spc:NRRD;
34 spp:normalizedMask
35 ?brainMask.
36
37 }"""^^sparql:GraphPattern],
38 [a msm:Precondition;
39 rdf:value """{
40
41 ?norm_bag rdf:type rdf:Bag.
42 ?headscan rdf:type spc:Headscan;
43 dc:format ?format.
44 FILTER (?format = spc:NRRD || ?format = spc:MHA)
45 ?normMask rdf:type ?norm;
46 rdfs:member ?norm_bag;
47 dc:format spc:NRRD;
48 spp:headscan ?headscan.
49 FILTER (?norm = spc:NormalizedBrainMask ||
50 ?norm = spc:RobustNormalizedBrainMask).
51 ?regMask rdf:type spc:RegisteredBrainMask;
52 rdfs:member ?reg_bag;
53 dc:format spc:NRRD;
54 spp:normalizedMask
55 ?brainMask.
56
57 }"""^^sparql:GraphPattern].

Listing A.7: Semantic description of semantic map generation expert.

A.1.7 Surgical Phase Recognition

1 exp:MLPR
2 rdf:type sep:SemanticExpert;
3 rdfs:label "Semantic ML-based Phase Recognition Expert";
4 spp:contributor sp:Patrick_Philipp;
5 spp:creator sp:Darko_Katic;
6 spp:exampleRequest spimg:MLPR_example_request.ttl;
7 spp:exampleResponse spimg:MLPR_example_response.ttl;
8 spp:sourceCode
9 <https://github.com/patrickraoulphilipp/cognitivepipelines>;

10 spp:description

209

Appendix A Appendix: Semantics

11 "Surgical phase recognition based on a ML-based algorithm.";
12 owl:sameAs sp:MLPR_Description;
13 sawsdl:modelReference
14 [a msm:Postcondition;
15 rdf:value """{
16
17 ?phase rdf:type spc:Phase;
18 spp:value ?value.
19 ?event rdf:type spc:SurgicalEvent;
20 spp:instrument ?instrument;
21 spp:action ?action;
22 spp:structure ?structure.
23 spp:phase ?phase.
24
25 }"""^^sparql:GraphPattern],
26 [a msm:Precondition;
27 rdf:value """{
28
29 ?col rdf:type rdf:Bag;
30 rdf:li ?trainingSample.
31 ?trainingSample rdf:type spc:Surgery.
32 ?ontology rdf:type spc:Ontology.
33 ?event rdf:type spc:SurgicalEvent;
34 spp:instrument ?instrument;
35 spp:action ?action;
36 spp:structure ?structure.
37 ?instrument rdf:type spc:Instrument.
38 ?action rdf:type spc:Action.
39 ?structure rdf:type spc:TreatedStructure.
40
41 }"""^^sparql:GraphPattern].

Listing A.8: Semantic description of ML-based phase recognition expert.

1 exp:RPR
2 rdf:type sep:SemanticExpert;
3 rdfs:label "Semantic rule-based Phase Recognition Expert";
4 spp:contributor sp:Patrick_Philipp;
5 spp:creator sp:Darko_Katic;
6 spp:exampleRequest spimg:RPR_example_request.ttl;
7 spp:exampleResponse spimg:RPR_example_response.ttl;
8 spp:sourceCode
9 <https://github.com/patrickraoulphilipp/cognitivepipelines>;

10 spp:description
11 "Surgical phase recognition based on a rule-based algorithm.";
12 owl:sameAs sp:RPR_Description;
13 sawsdl:modelReference
14 [a msm:Postcondition;
15 rdf:value """{
16
17 ?phase rdf:type spc:Phase;
18 spp:value ?value.
19 ?event rdf:type spc:SurgicalEvent;
20 spp:instrument ?instrument;
21 spp:action ?action;

210

A

A.1 Semantic Experts

22 spp:structure ?structure.
23 spp:phase ?phase.
24
25 }"""^^sparql:GraphPattern],
26 [a msm:Precondition;
27 rdf:value """{
28
29 ?ontology rdf:type spc:Ontology.
30 ?event rdf:type spc:SurgicalEvent;
31 spp:instrument ?instrument;
32 spp:action ?action;
33 spp:structure ?structure.
34 ?instrument rdf:type spc:Instrument.
35 ?action rdf:type spc:Action.
36 ?structure rdf:type spc:TreatedStructure.
37
38 }"""^^sparql:GraphPattern].

Listing A.9: Semantic description of rule-based phase recognition expert.

A.1.8 Named Entity Recognition

Note that parameter configurations have been removed from pre- and postconditions for better
presentation.

1 exp:GNER
2 rdf:type sep:SemanticExpert;
3 rdfs:label "Semantic Named Entity Recognition Expert";
4 sepnlp:contributor sepkb:Patrick_Philipp;
5 sepnlp:creator sepkb:Generic;
6 sepnlp:exampleRequest sepkb:GNER_example_request.ttl;
7 sepnlp:exampleResponse sepkb:GNER_example_response.ttl;
8 sepnlp:sourceCode
9 <https://github.com/patrickraoulphilipp/cognitivepipelines>;

10 sepnlp:description
11 "Named entity recognition algorithm for raw text.";
12 owl:sameAs sepkb:GNER_Description;
13 sawsdl:modelReference
14 [a msm:Postcondition;
15 rdf:value """{
16
17 ?col rdf:type rdf:Bag;
18 rdf:li ?annotation1, ?annotation2.
19 ?annotation1 sepnlp:disjunct ?annotation2.
20 ?annotation1 rdf:type sepnlp:Annotation;
21 nif:isString ?text1;
22 sepnlp:token ?token1;
23 sepnlp:isEntity "true"^^xsd:boolean.
24 ?token1 rdf:type sepnlp:Token
25 nif:anchorOf ?mention1;
26 nif:beginindex ?start1;
27 nif:endIndex ?end1;
28 nif:referenceContext ?text.
29 ?annotation2 rdf:type sepnlp:Annotation;
30 nif:isString ?text2;

211

Appendix A Appendix: Semantics

31 sepnlp:token ?token2;
32 sepnlp:isEntity "true"^^xsd:boolean.
33 ?token2 rdf:type sepnlp:Token
34 nif:anchorOf ?mention2;
35 nif:beginindex ?start2;
36 nif:endIndex ?end2;
37 nif:referenceContext ?text.
38 ?text rdf:type ?type.
39 FILTER (?type = nif:Sentence || ?textType = nif:Paragraph).
40
41 }"""^^sparql:GraphPattern],
42 [a msm:Precondition;
43 rdf:value """{
44
45 ?text rdf:type ?type.
46 FILTER (?type = nif:Sentence || ?textType = nif:Paragraph).
47
48 }"""^^sparql:GraphPattern].

Listing A.10: Generic semantic description of NER expert.

A.1.9 Named Entity Disambiguation

Note that parameter configurations have been removed from pre- and postconditions for better
presentation.

1 exp:GNED
2 rdf:type sep:SemanticExpert;
3 rdfs:label "Semantic Named Entity Disambiguation Expert";
4 sepnlp:contributor sepkb:Patrick_Philipp;
5 sepnlp:creator sepkb:Generic;
6 sepnlp:exampleRequest sepkb:GNED_example_request.ttl;
7 sepnlp:exampleResponse sepkb:GNED_example_response.ttl;
8 sepnlp:sourceCode
9 <https://github.com/patrickraoulphilipp/cognitivepipelines>;

10 sepnlp:description
11 "Named entity disambiguation algorithm for raw text.";
12 owl:sameAs sepkb:GNED_Description;
13 sawsdl:modelReference
14 [a msm:Postcondition;
15 rdf:value """{
16
17 ?col rdf:type rdf:Bag;
18 rdf:li ?annotation1.
19
20 ?annotation1 rdf:type sepnlp:Annotation;
21 nif:isString ?text;
22 sepnlp:token ?token1.
23 sepnlp:isEntity "true"^^xsd:boolean;
24 sepnlp:resource ?resource.
25
26 ?token1 rdf:type sepnlp:Token
27 nif:anchorOf ?mention;
28 nif:beginindex ?start;

212

A

A.2 Semantic Agent

29 nif:endIndex ?end;
30 nif:referenceContext ?text.
31
32 }"""^^sparql:GraphPattern],
33 [a msm:Precondition;
34 rdf:value """{
35
36 ?col rdf:type rdf:Bag;
37 rdf:li ?annotation1, ?annotation2.
38 ?annotation1 sepnlp:disjunct ?annotation2.
39 ?annotation1 rdf:type sepnlp:Annotation;
40 nif:isString ?text1;
41 sepnlp:token ?token1;
42 sepnlp:isEntity "true"^^xsd:boolean.
43 ?token1 rdf:type sepnlp:Token
44 nif:anchorOf ?mention1;
45 nif:beginindex ?start1;
46 nif:endIndex ?end1;
47 nif:referenceContext ?text.
48 ?annotation2 rdf:type sepnlp:Annotation;
49 nif:isString ?text2;
50 sepnlp:token ?token2;
51 sepnlp:isEntity "true"^^xsd:boolean.
52 ?token2 rdf:type sepnlp:Token
53 nif:anchorOf ?mention2;
54 nif:beginindex ?start2;
55 nif:endIndex ?end2;
56 nif:referenceContext ?text.
57 ?text rdf:type ?type.
58 FILTER (?type = nif:Sentence || ?textType = nif:Paragraph).
59
60 }"""^^sparql:GraphPattern].

Listing A.11: Generic semantic description of NED expert.

A.2 Semantic Agent

We first give a full example on how to execute semantic experts based on the step of brain
mask generation in TPMs. We then present a condition for an instantiated task and respective
exemplary outputs for abstract and grounded planners.

1 @prefix: <http://aifb-ls3-vm2.aifb.kit.edu:8080/experts/sepkb/id/>.
2 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
3 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
4 @prefix owl: <http://www.w3.org/2002/07/owl#>.
5 @prefix httpm: <http://www.w3.org/2011/http-methods#>.
6 @prefix http: <http://www.w3.org/2011/http#>.
7 @prefix sawsdl: <http://www.w3.org/ns/sawsdl#>.
8 @prefix sparql: <http://www.w3.org/TR/rdf-sparql-query/#>.
9 @prefix qrl: <http://www.aifb.kit.edu/project/ld-retriever/qrl#>.

10 @prefix vocxnat: <http://aifb-ls3-vm2.aifb.kit.edu:8080/xnatwrapper/xnat#>.
11 @prefix xnat: <http://aifb-ls3-vm2.aifb.kit.edu:8080/xnatwrapper/id/>.

213

Appendix A Appendix: Semantics

12 @prefix sp: <http://surgipedia.sfb125.de/wiki/Special:URIResolver/>.
13 @prefix spc: <http://surgipedia.sfb125.de/wiki/Special:URIResolver/Category-3A>.
14 @prefix spp: <http://surgipedia.sfb125.de/wiki/Special:URIResolver/Property-3A>.
15 @prefix sep: <http://aifb-ls3-vm2.aifb.kit.edu:8080/experts/sep#>.
16 @prefix exp: <http://aifb-ls3-vm2.aifb.kit.edu:8080/experts/id/>.
17 @prefix dc: <http://purl.org/dc/elements/1.1/>.

Listing A.12: Prefixes for linked programs.

A.2.1 Semantic Expert Execution

1 {
2 :hbag rdf:type rdf:Bag.
3 :headscan1 rdf:type spc:Headscan;
4 dc:format spc:NRRD.
5 :headscan2 rdf:type spc:Headscan;
6 dc:format spc:NRRD.
7 :brainMask1 rdf:type spc:BrainMask;
8 dc:format spc:NRRD;
9 spp:headscan xnat:headscan1.

10 :brainMask2 rdf:type spc:BrainMask;
11 dc:format spc:NRRD;
12 spp:headscan xnat:headscan2.
13 :normMask1 rdf:type spc:NormalizedBrainMask;
14 rdfs:member xnat:hbag;
15 dc:format spc:NRRD;
16 spp:headscan xnat:headscan1;
17 spp:brainMask xnat:brainMask1.
18 :normMask2 rdf:type spc:NormalizedBrainMask;
19 rdfs:member xnat:hbag;
20 dc:format spc:NRRD;
21 spp:headscan xnat:headscan2;
22 spp:brainMask xnat:brainMask2.
23 } => {
24 _:a http:mthd httpm:POST;
25 http:requestURI exp:BMG;
26 http:body
27 {
28 :hbag rdf:type rdf:Bag.
29 :headscan1 rdf:type spc:Headscan;
30 dc:format spc:NRRD.
31 :headscan2 rdf:type spc:Headscan;
32 dc:format spc:NRRD.
33 :brainMask1 rdf:type spc:BrainMask;
34 dc:format spc:NRRD;
35 spp:headscan xnat:headscan1.
36 :brainMask2 rdf:type spc:BrainMask;
37 dc:format spc:NRRD;
38 spp:headscan xnat:headscan2.
39 :normMask1 rdf:type spc:NormalizedBrainMask;
40 rdfs:member xnat:hbag;
41 dc:format spc:NRRD;
42 spp:headscan xnat:headscan1;

214

A

A.2 Semantic Agent

43 spp:brainMask xnat:brainMask1.
44 :normMask2 rdf:type spc:NormalizedBrainMask;
45 rdfs:member xnat:hbag;
46 dc:format spc:NRRD;
47 spp:headscan xnat:headscan2;
48 spp:brainMask xnat:brainMask2.
49 }.
50 }.

Listing A.13: Linked program for executing semantic brain registration expert for two pro-
cessed patient headscans.

A.2.2 Semantic Planning

1 :ebag rdf:type rdf:Bag.
2 exp:BMG rdf:type sep:SemanticExpert, spc:BrainMaskGeneration;
3 rdfs:member _:ebag.
4 exp:BN rdf:type sep:SemanticExpert, spc:BrainNormalization;
5 rdfs:member _:ebag.
6 exp:RBN rdf:type sep:SemanticExpert, spc:RobustBrainNormalization;
7 rdfs:member _:ebag.
8 exp:BR rdf:type sep:SemanticExpert, spc:BrainRegistration;
9 rdfs:member _:ebag.

10 exp:TS rdf:type sep:SemanticExpert, spc:TumorSegmentation;
11 rdfs:member _:ebag.
12 exp:MG rdf:type sep:SemanticExpert, spc:MapGeneration;
13 rdfs:member _:ebag.
14 exp:RPR rdf:type sep:SemanticExpert, spc:RuleBasedPhaseRecognition;
15 rdfs:member _:ebag.
16 exp:MLPR rdf:type sep:SemanticExpert, spc:MLBasedPhaseRecognition;
17 rdfs:member _:ebag.
18
19 xnat:start1 rdf:type sep:GroundedState, sep:StartState.
20 sawsdl:modelReference
21 [a sep:GoundedCondition;
22 rdf:value """{
23 xnat:headscan1 rdf:type spc:Headscan;
24 dc:format spc:NRRD;
25 spp:manualSegmentation
26 xnat:seg1.
27 spp:patient xnat:patient1.
28 xnat:headscan2 rdf:type spc:Headscan;
29 dc:format spc:NRRD;
30 spp:manualSegmentation
31 xnat:seg2.
32 spp:patient xnat:patient1.
33 xnat:patient1 rdf:type spc:Patient.
34 xnat:brainAtlasImg rdf:type spc:BrainAtlasImage;
35 dc:format spc:NRRD.
36 xnat:brainAtlasMsk rdf:type spc:BrainAtlasMask;
37 dc:format spc:NRRD.
38 xnat:seg1 rdf:type spc:ManualSegmentation;
39 dc:format spc:NRRD;
40 spp:patient xnat:patient1.
41 xnat:seg2 rdf:type spc:ManualSegmentation;

215

Appendix A Appendix: Semantics

42 dc:format spc:NRRD;
43 spp:patient xnat:patient2.
44 }"""^^sparql:GraphPattern].
45
46 xnat:goal1 rdf:type sep:AbstractState, sep:GoalState;
47 sawsdl:modelReference
48 [a sep:AbstractPostcondition;
49 rdf:value """{
50 ?tpm1 rdf:type spc:TumorProgressionMap;
51 spp:mapContent ?tpm_seq.
52 ?reg_bag rdf:type rdf:Bag.
53 ?tpm_seq rdf:type rdf:Seq;
54 rdf:_1 ?reg_mask1;
55 rdf:_2 ?reg_mask2.
56 ?reg_mask1 rdf:type spc:RegisteredBrainMask;
57 dc:format spc:NRRD;
58 spp:headscan xnat:headscan1;
59 rdfs:member ?reg_bag;
60 spp:normalizedMask
61 ?brainMask1.
62 ?reg_mask2 rdf:type spc:RegisteredBrainMask;
63 dc:format spc:NRRD;
64 spp:headscan xnat:headscan2;
65 rdfs:member ?reg_bag;
66 spp:normalizedMask
67 ?brainMask2.
68 ?normMask1 rdf:type ?norm;
69 dc:format spc:NRRD;
70 spp:headscan xnat:headscan1.
71 ?normMask2 rdf:type ?norm;
72 dc:format spc:NRRD;
73 spp:headscan xnat:headscan2.
74 FILTER (?norm = spc:NormalizedBrainMask ||
75 ?norm = spc:RobustNormalizedBrainMask).
76 }"""^^sparql:GraphPattern].
77 OPTIONAL {
78 ?normMask1 spp:manualSegmentation
79 xnat:seg1.
80 ?normMask2 spp:manualSegmentation
81 xnat:seg2.
82 }

Listing A.14: Grounded precondition for executing meta components for a TPM example.

Based on the condition, we now illustrate the generated outputs of the respective semantic
meta components.

1 _:pbag rdf:type rdf:Bag, sep:PolicyBag.
2
3 _:pol1 rdf:type rdf:Seq;
4 rdfs:member _:pbag;
5 rdf:_1 exp:BMG;
6 rdf:_2 exp:BN;
7 rdf:_3 exp:BR;
8 rdf:_4 exp:TS;

216

A

A.2 Semantic Agent

9 rdf:_5 exp:TPM.
10
11 _:pol2 rdf:type rdf:Seq;
12 rdfs:member _:pbag;
13 rdf:_1 exp:BMG;
14 rdf:_2 exp:RBN;
15 rdf:_3 exp:BR;
16 rdf:_4 exp:TS;
17 rdf:_5 exp:TPM.
18
19 exp:BMG rdf:type sep:SemanticExpert, spc:BrainMaskGeneration.
20 exp:BN rdf:type sep:SemanticExpert, spc:BrainNormalization.
21 exp:RBN rdf:type sep:SemanticExpert, spc:RobustBrainNormalization.
22 exp:BR rdf:type sep:SemanticExpert, spc:BrainRegistration.
23 exp:TS rdf:type sep:SemanticExpert, spc:TumorSegmentation.
24 exp:MG rdf:type sep:SemanticExpert, spc:MapGeneration.
25
26 xnat:goal1 rdf:type sep:State, sep:GoalState, sep:AbstractState.
27 xnat:start1 rdf:type sep:State, sep:StartState, sep:GroundedState.

Listing A.15: Example output of the semantic abstract planner for the example condition.

1 _:ebag rdf:type rdf:Bag.
2 exp:BMG rdf:type sep:SemanticExpert, spc:BrainMaskGeneration;
3 rdfs:member _:ebag.
4 xnat:grounding1
5 rdf:type spc:SemanticExpertExecution;
6 sep:expert exp:BMG;
7 sawsdl:modelReference
8 [a sep:GoundedCondition;
9 rdf:value """{

10 xnat:headscan1 rdf:type spc:Headscan;
11 dc:format spc:NRRD.
12 spp:patient xnat:patient1.
13 xnat:patient1 rdf:type spc:Patient.
14 xnat:brainAtlasImg rdf:type spc:BrainAtlasImage;
15 dc:format spc:NRRD.
16 xnat:brainAtlasMsk rdf:type spc:BrainAtlasMask;
17 dc:format spc:NRRD.
18 }"""^^sparql:GraphPattern].
19 xnat:grounding2
20 rdf:type spc:SemanticExpertExecution;
21 sep:expert exp:BMG;
22 sawsdl:modelReference
23 [a sep:GoundedCondition;
24 rdf:value """{
25 xnat:headscan2 rdf:type spc:Headscan;
26 dc:format spc:NRRD.
27 spp:patient xnat:patient1.
28 xnat:patient1 rdf:type spc:Patient.
29 xnat:brainAtlasImg rdf:type spc:BrainAtlasImage;
30 dc:format spc:NRRD.
31 xnat:brainAtlasMsk rdf:type spc:BrainAtlasMask;
32 dc:format spc:NRRD.
33 }"""^^sparql:GraphPattern].

217

Appendix A Appendix: Semantics

34
35 xnat:goal1 rdf:type sep:State, sep:GoalState, sep:AbstractState.
36 xnat:start1 rdf:type sep:State, sep:StartState, sep:GroundedState.

Listing A.16: Example output of the semantic grounded planner based on the abstract plan
for the example condition.

218

	Foundations
	Introduction & Overview
	Introduction
	Challenges
	Learning
	Automation

	Research Questions & Hypotheses
	Contributions
	Scope of the Thesis
	Outline

	Scenarios
	Named Entity Recognition & Disambiguation
	Description
	Challenges

	Surgical Phase Recognition
	Description
	Challenges

	Tumor Progression Mapping
	Description
	Challenges

	Preliminaries
	Multi-Step Tasks
	Supervised Machine Learning
	Model-specific Assumptions
	Learning Protocols
	Prediction Settings
	Selected Learning Scenarios
	Evaluating Learned Models
	Learning Combination Functions over Models

	Decision-Making
	Prediction with Expert Advice
	Markov Decision Processes
	Multiagent Decision Processes

	Semantic Web
	Resource Description Framework
	RDF Vocabularies
	Notation3
	SPARQL
	Linked Data
	Services in the Semantic Web

	Related Work
	Multi-Step Tasks in Single-Agent Systems
	Learning- & Decision-Theoretic Approaches
	Service Approaches

	Multi-Step Tasks in Multiagent Systems
	Multiagent Systems for Single-Agent Tasks
	Multiagent Systems for Multiagent Tasks

	Multi-Step Tasks on the Web
	Semantic Web Service Description Languages
	Decision-Making Frameworks & Applications
	Workflow Systems

	Learning
	Learning with Expert Processes
	Introduction
	Challenges
	Contributions

	Problem Formalization
	Meta Dependencies
	Single Experts
	Pairwise Intra-Step Experts
	Pairwise Inter-Step Experts

	Online Reinforcement Learning
	EWH with Meta Dependencies
	EWH with Incomplete Information

	Batch Reinforcement Learning
	Probabilistic Soft Logic and Hinge-Loss Markov Random Fields
	Meta Dependencies with PSL

	Discussion
	Summary

	Learning with Multiagent Expert Processes
	Introduction
	Challenges
	Contributions

	Problem Formalization
	Expert Weight Learning for MEPs
	Passive Coordination with MEPs
	Active Coordination with Heuristic Update Rules
	Active Coordination with Reinforcement Learning
	Agent Meta Dependencies
	Policy Search RL for the ECP
	Robust Agent Decisions

	Discussion
	Summary

	Evaluation of Learning with EPs & MEPs
	Introduction
	Setup
	Data
	Meta Dependencies
	Experts
	Evaluation measures

	Results
	Summary of Results for Accuracy Estimation
	Summary of Results for Outcome Optimization

	Discussion
	(EP-)OnGD
	(EP-)OnEWH-All
	(EP-)BatchPSL-All
	Qualitative Results of Meta Dependencies
	PCoord
	ACoordH
	ACoordL
	Design Choices

	Summary

	Web Automation
	Automating Semantic Expert Processes
	Introduction
	Challenges
	Contributions

	Problem Formalization
	Web Components for Automation
	Structured Knowledge Base
	Semantic Experts
	Semantic Meta Components
	Semantic Expert Advice Agent

	Solving Semantic Tasks with Semantic Meta Components
	Abstract Semantic Planners
	Grounded Semantic Learners
	Grounded Semantic Planners

	Discussion
	On the Added Value of SEPs
	On The Goal of an Self-Adaptive System

	Summary

	Applications & Evaluations of Semantic Expert Processes
	Introduction
	Medical Assistance Scenarios
	Web Automation for Medical Assistance Tasks
	Semantic Tumor Progression Mapping
	Semantic Surgical Phase Recognition

	The Named Entity Recognition & -Disambiguation Scenario
	Semantic Descriptions for Semantic NER & NED Experts
	A Grounded Semantic Planner for NERD
	Evaluation
	Setup
	Results

	Discussion
	On the Generalizability of Semantic Meta Components
	On Domain-dependent Impacts of Rewards

	Summary

	Conclusion
	Summary
	Future Work
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Appendix: Semantics
	Semantic Experts
	Brain Mask Generation
	Standard Normalization
	Robust Normalization
	Registration
	Tumor Segmentation
	Map Generation
	Surgical Phase Recognition
	Named Entity Recognition
	Named Entity Disambiguation

	Semantic Agent
	Semantic Expert Execution
	Semantic Planning

