KIT | KIT-Bibliothek | Impressum | Datenschutz

In-situ Measurement of Self-Atom Diffusion in Solids Using Amorphous Germanium as a Model System

Hüger, Erwin; Strauß, Florian; Stahn, Jochen; Deubener, Joachim; Bruns, Michael 1; Schmidt, Harald
1 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)

Abstract:

We present in-situ self-diffusion experiments in solids, which were carried out by Focussing Neutron Reflectometry on isotope multilayers. This new approach offers the following advantages in comparison to classical ex-situ measurements: (1) Identification and continuous measurement of a time dependence of diffusivities, (2) significant reduction of error limits of diffusivities, and (3) substantial reduction of the necessary experimental time. In the framework of a case study, yet unknown self-diffusivities in amorphous germanium are measured at various temperatures quasi-continuously, each during isothermal annealing. A significant decrease of diffusivities as a function of annealing time by one order of magnitude is detected that is attributed to structural relaxation accompanied by defect annihilation. In metastable equilibrium the diffusivities follow the Arrhenius law between 375 and 412 °C with an activation energy of Q = (2.11 ± 0.12) eV. The diffusivities are five orders of magnitude higher than in germanium single crystals at 400 °C, mainly due to the lower activation energy.


Verlagsausgabe §
DOI: 10.5445/IR/1000093553
Veröffentlicht am 12.04.2019
Originalveröffentlichung
DOI: 10.1038/s41598-018-35915-1
Scopus
Zitationen: 16
Dimensions
Zitationen: 18
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Energiespeichersysteme (IAM-ESS)
Karlsruhe Nano Micro Facility (KNMF)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2018
Sprache Englisch
Identifikator ISSN: 2045-2322
KITopen-ID: 1000093553
Erschienen in Scientific reports
Verlag Nature Research
Band 8
Heft 1
Seiten Article: 17607
Vorab online veröffentlicht am 04.12.2018
Schlagwörter 2017-018-019069 XPS
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page