
Leveraging the Partial Reconfiguration
Capability of FPGAs for Processor-Based

Fail-Operational Systems

Tobias Dörr, Timo Sandmann, Florian Schade,
Falco K. Bapp, and Jürgen Becker

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{tobias.doerr,sandmann,florian.schade,becker}@kit.edu

Abstract. Processor-based digital systems are increasingly being used
in safety-critical environments. To meet the associated safety require-
ments, these systems are usually characterized by a certain degree of
redundancy. This paper proposes a concept to introduce a redundant
processor on demand by using the partial reconfiguration capability of
modern FPGAs. We describe a possible implementation of this concept
and evaluate it experimentally. The evaluation focuses on the fault han-
dling latency and the resource utilization of the design. It shows that
an implementation with 32KiB of local processor memory handles faults
within 0.82ms and, when no fault is present, consumes less than 46% of
the resources that a comparable static design occupies.

Keywords: Fail-operational system · Graceful degradation · Partial re-
configuration · Dynamic redundancy · Simplex architecture · Fallback
processor · Multiprocessor system-on-chip · Soft-core processor.

1 Introduction

Digital systems perform a large variety of tasks in a steadily increasing num-
ber of applications. Their advance into certain safety-critical realms, such as
autonomous driving, imposes stringent dependability requirements on them. In
order to meet these requirements, designers need to pay attention to the chal-
lenges that current state-of-the-art hardware brings along. At the same time,
they often need to achieve their goals with as little redundancy as possible.

A dependable system has the property that reliance on its correct functioning
is justified [1]. A system is safe if it does not endanger humans or the environ-
ment [18]. In practice, all electronic systems are at risk of experiencing faults.
These anomalies or physical defects can lead to situations in which a system is
unable to fulfill its desired function [12]. Such a condition is called a failure and
might, in particular, impair the safety of the considered system.

Certain systems have a so-called safe state. It describes a state that can be
entered in response to faults and ensures that the system continues to satisfy
its safety requirements. At the same time, the actual function of the system
becomes unavailable. Such systems are referred to as fail-safe systems [18].



2 T. Dörr et al.

A fail-operational system needs to maintain a certain minimum level of func-
tionality, even when it is subject to a certain number of faults. Depending on the
exact requirements, however, a degraded functionality might be sufficient [10].

Considerable research has been conducted in the field of fault tolerance. Fault
tolerance techniques try to mitigate faults in a way that the emergence of failures
is prevented [1]. They are usually based on some kind of redundancy [12] and
play an important role in the design of fail-operational systems.

A known fault tolerance technique that aims at safety-critical systems with
fail-operational requirements is the simplex architecture [16,2]. Its general idea is
to deal with the complexity of today’s control systems by providing an additional
controller. This controller is considerably simpler than the main one, able to
deliver a functionality that meets all safety requirements of the system, and is
disabled during normal operation. As soon as the main controller fails, however,
the simple controller is activated and ensures safe but degraded operation.

Motivated by the need for efficient fail-operational systems in the automotive
context, [4] builds upon the described concept and adapts it for use on modern
and heterogeneous multiprocessor system-on-chips (MPSoCs).

Both the original and the adapted concept assume that some kind of fall-
back unit, i.e., a plant controller or a processor, is physically available during
normal operation of the system. No attempts have yet been made to develop
a processor-based simplex architecture in which the fallback processor is intro-
duced on demand, i.e., in response to faults of the main controller.

In this work, we review the concept from [4], derive a motivation for the
dynamic provision of the fallback processor, and extend the existing concept
accordingly. In addition, we present an implementation of the concept on a
commercially-available device, the Zynq UltraScale+ MPSoC from Xilinx. To
introduce the processor on demand, our implementation employs partial recon-
figuration of the MPSoC’s programmable logic. We optimize the design system-
atically and compare certain figures of merit to those of an equivalent design in
which the fallback processor is present at all times.

2 Related Work

Extensive research has been conducted on the partial reconfiguration (PR) of
field-programmable gate arrays (FPGAs). A survey that focuses on the perfor-
mance of a PR process is given by Papadimitriou et al. in [13]. In a more recent
work, Vipin and Fahmy [20] present the state of the art in this field and compare
the PR performance values of several commercially-available architectures.

A survey of fault tolerance mechanisms for FPGAs is given in [6]. Some of the
considered approaches, such as [9], make use of PR to tolerate faults at runtime.
These mechanisms have in common that they deal with low-level details of the
FPGA architecture to provide fine-grained fault tolerance. The fault tolerance
approach described in [5] makes use of partial reconfiguration as well, but acts
on coarse-grained logic blocks of an FPGA. All these techniques handle faults of



The Dynamic Simplex Architecture 3

the programmable logic itself. The approach that we present makes use of the
programmable logic to increase the dependability of the overall system.

The techniques described in [14] and [19] employ PR to achieve fault tol-
erance of soft-core processors in FPGAs. As part of [15], the authors present
a similar approach that does not require an external controller to handle the
partial reconfiguration. This process is instead performed by a hardened part of
the soft-core processor itself. Di Carlo et al. [7] propose a partial reconfiguration
controller to perform the partial reconfiguration process in a safe way.

Shreejith et al. [17] react to faults of an electronic control unit’s primary func-
tion, which is implemented on an FPGA, by performing a switch to a backup
function. While the backup function is active and ensures that the safety require-
ments are met, the primary function is restored using partial reconfiguration.

Ellis [8] considers a network of processors and deals with the dynamic migra-
tion of software in response to failing nodes. [3] and [11] focus on processor-based
systems and discuss certain aspects of fault-tolerant and fail-operational archi-
tectures in the automotive domain. However, neither of the three references deals
with the utilization of FPGAs to achieve dependability or fault tolerance.

3 Background and Motivation

The problem that [4] considers can be described as follows: Assume that a given
fail-operational system in a safety-critical environment has to perform a certain
functionality. It is connected to its surroundings via dedicated interfacing com-
ponents, such as sensors, actuators, or I/O controllers. Not all aspects of the
normally delivered functionality are necessary from a safety perspective. The
system comprises the interfacing components, an interconnection network, and
a so-called complex system. The complex system consists of components that
fulfill the actual system functionality. While both the interfacing components
and the interconnect are assumed to be dependable, the complex system might
be subject to faults that it cannot tolerate. As a result of the aforementioned
fail-operational requirements, it must be ensured that such a fault does not lead
to a failure of the overall system. Since at least a degraded functionality has to
be maintained, suitable fault tolerance techniques must be applied.

To accomplish this in an efficient way, the authors propose a concept we
will refer to as the static simplex architecture. Figure 1 shows a simplified block
schematic of this concept from a logical perspective. A so-called transaction
represents a communication channel from a transmission initiator (master) to a
receiver or responder (slave). It is assumed that the complex system is able to
detect all internal faults that the architecture needs to protect against. It could,
for instance, comprise a lockstep processor (to protect against single faults of
the CPU) or make use of a watchdog timer. The static simplex architecture
defines the mechanism that is triggered after such a fault is detected. In this
case, the control entity disables the complex system and enables the fallback
system. The latter is considerably simpler than the complex system. However, it
focuses on and is able to meet the overall system’s safety requirements. A set of



4 T. Dörr et al.

Access
Protection

Control
Entity

State Transfer Entity

Complex
System

Fallback
System

s`

. . .

s1

Transaction Scope of Protection

Fig. 1. Logical view of the static simplex architecture

application-specific slave modules, S � ts1, . . . , s`u, is used to model slaves that
both the complex and the fallback system need to interact with. One example
of such an s P S is a dependable CAN controller that both the complex and the
fallback system share. The overall system is always in one of two possible modes,
which are given by C � tccomplex, cfallbacku and referred to as contexts.

Depending on the active context, an access protection mechanism ensures
that the disabled system is logically isolated from the slaves. During context
switches, the state transfer entity can be used to transfer consistent snapshots
of state variables (such as CPU register values) between the two systems.

It is important to understand that this concept makes use of dynamic re-
dundancy to mitigate faults: If necessary, the essential functions of the complex
system are dynamically moved to the fallback system. The reason we refer to
this approach as the static simplex architecture is as follows: The fallback system
needs to be present at all times, even when the complex system fulfills the func-
tionality of the overall system. This implies a static resource overhead, which
could be reduced by providing the fallback system on demand. It is the aim of
this work to research and evaluate such an approach.

4 Extension of the Concept

We propose the concept of the dynamic simplex architecture. It addresses the
same problem as the static simplex architecture and adopts the same general idea
to achieve fail-operational behavior. The proposed concept, however, constitutes
two distinguishing characteristics: First, it is assumed that the functionality of
the fallback system can be implemented on a processor. Second, this processor
must be partially reconfigurable on an FPGA that is part of the overall system.
By partially reconfigurable we mean that a part of the FPGA can be reconfigured
during runtime while the remaining logic continues to operate.

At any point in time, the overall system is in one of two contexts: either
in ccomplex or in cfallback. In the first case, the complex system is enabled and the
fallback system is disabled. In the second case, it is vice versa. At any time, the



The Dynamic Simplex Architecture 5

currently enabled system has access to the application-specific slave modules and
the state transfer entity. The disabled system is isolated from these components.

Static Portion

Dynamic PortionReconfig.

Access
Protection

Control
Entity

State Transfer Entity

Complex
System

Fallback
System

s`

. . .

s1

Transaction Scope of Protection

Fig. 2. Logical view of the dynamic simplex architecture

Figure 2 shows a block schematic of this concept from a logical perspective.
The depicted dynamic portion represents a partially reconfigurable region of
the FPGA. The complex system encapsulates a set of arbitrary components
that deliver the full functionality of the overall system. It must be able to detect
all relevant internal faults and notify the control entity about their occurrence.
The fallback system consists of a soft-core processor and occupies the dynamic
portion of the FPGA if and only if cfallback is active. If this is not the case,
the dynamic portion can be utilized for other purposes. It could, for instance, be
used to implement hardware accelerators that perform non-safety-relevant tasks.

ccomplex is the initially active system context. If faults of the complex system
endanger safety, cfallback becomes active. A switch back to ccomplex is possible if
the faults are no longer present. Context switches are orchestrated by the control
entity. If a switch is pending, the entity initiates the partial reconfiguration of
the FPGA and sets the access permissions in such a way that the disabled system
is isolated from the slaves. Adherence to the access permissions is enforced by
the visualized access protection mechanism. The state transfer entity provides
a certain amount of buffered memory. Application developers can utilize this
memory to transfer consistent snapshots of internal state variables.

It is important to note that the dynamic simplex architecture is a generic
concept that focuses on the dynamic context switching mechanism. A valid im-
plementation of the dynamic simplex architecture must behave according to the
concept, but is nothing more than a framework that protects the overall system
from faults of the complex system. An application developer who makes use of
it needs to build upon the provided platform and supplement both the complex
and the fallback system with their functions.



6 T. Dörr et al.

5 Implementation

As part of the previous work described in [4], the static simplex architecture
was implemented on a Zynq UltraScale+ MPSoC from Xilinx. This device
combines a block of hard-wired components, such as a dual-core Cortex-R5 from
Arm, and an FPGA on a single chip. These portions are commonly referred to
as the processing system (PS) and the programmable logic (PL), respectively.
For brevity, we will abbreviate the Zynq UltraScale+ MPSoC as ZynqMP.

To allow for a quantitative comparison with the above-mentioned imple-
mentation, we will retain its structure wherever possible, but extend it by the
fault-triggered partial reconfiguration of the fallback system. Our implementa-
tion aims at processor-based fail-operational systems on the ZynqMP and can
be described as follows: The complex system is realized by the real-time process-
ing unit (RPU), its generic interrupt controller (GIC), and its tightly-coupled
memory (TCM). In fact, the TCM contains software to fulfill the overall system’s
complex functionality. This software is executed by the RPU’s pair of Cortex-R5
cores operating in lockstep mode. As a proof of concept, we trigger a context
switch to cfallback whenever the RPU detects a lockstep error and assume that
no other faults can occur. Doing so allows us to focus on the context switching
mechanism, which is the focus of this work. If required by a particular use case,
more sophisticated fault detection techniques may be applied.

Processing System Programmable Logic

GIC TCM

RPU

OCM

Switch

X
M
P
U

IOP

PMU

LPDUDDR

X
M
P
U

X
P
P
U MicroBlaze

MEM

INTC

MDM

STMGR

Fig. 3. ZynqMP-based implementation of the dynamic simplex architecture

Figure 3 shows the physical implementation of the system with the dynamic
portion highlighted in gray. The fallback system consists of a MicroBlaze proces-
sor, its local memory (MEM), and an interrupt controller (INTC). To simplify
the debug access to the MicroBlaze, we also include a MicroBlaze debug mod-
ule (MDM). For technical reasons, the MDM cannot be partially reconfigured
and therefore needs to be moved outside of the dynamic portion. Strictly speak-
ing, this means that it is not part of the fallback system.



The Dynamic Simplex Architecture 7

The platform management unit (PMU) contains a triple-redundant processor
for various platform management tasks. We run a custom PMU firmware that
implements the control entity. In response to lockstep error notifications from
the RPU, it performs a context switch from ccomplex to cfallback. Following this,
the control entity resets the RPU and, in case of a transient fault, performs a
controlled context switch back to ccomplex, i.e., the initial context.

The access protection described in the concept is performed by the Xilinx
peripheral protection unit (XPPU). This module is part of the PS and pro-
vides detailed control over accesses to the I/O peripherals (IOP), the low-power
domain units (LPDU), and the PMU. In applications, IOPs and LPDUs are fre-
quently used as application-specific slave modules. Developers who employ them
in their designs have to define access permissions for each such module and con-
text. During a context switch, the control entity uses the permission definitions
to reconfigure the XPPU. Here, only the context-dependent part of the XPPU
configuration (context-sensitive apertures) is written to save time. The state
manager (STMGR) implements the state transfer entity from the concept.

MicroBlaze
AXI

MEM
LMB

INTC
INT

MDM
DEBUG

IRQ DCPL

CTRL

wake
decouple

select

S_AXI STMGR

M_AXI

Fig. 4. Block schematic of the PL implementation

At design time, the developer creates two partial bitstreams for the dynamic
portion: one containing the fallback system, including the software in MEM, and
another one, for ccomplex, describing its replacement logic. At runtime, both are
stored in DDR memory and need to be accessible from the PMU. The partial
reconfiguration of the dynamic portion is managed by the control entity. During
a switch to cfallback, it reads the partial bitstream from memory and configures
the fallback system into the dynamic portion of the PL via the processor con-
figuration access port (PCAP). During a switch to ccomplex, it configures the
custom replacement logic, such as a hardware accelerators, to this portion.

Figure 4 shows a more detailed block schematic of the PL implementa-
tion. The dynamic portion is again shown in gray, while the external ports
connect to the PS. CTRL represents a control signal vector from the PMU.
S_AXI refers to an AXI slave port from the low-power domain of the PS. IRQ rep-
resents an application-specific vector of PS-PL interrupt signals. M_AXI refers



8 T. Dörr et al.

to an AXI master port to the low-power domain of the PS. The decoupling
block (DCPL) is necessary to protect the outgoing AXI signals during the par-
tial reconfiguration process. After this process, both the fallback system and its
replacement may access the AXI connections. In particular, the MicroBlaze can
use the M_AXI interface to communicate with application-specific slave modules.
Note that the replacement block needs to have the same interface as the fallback
system. The select, decouple, and wake lines are control signals that originate
from the PMU. They are operated by the custom PMU firmware.

Partial
Project

(Vivado+SDK)

Fallback
Software

(.elf)

Full
Project

(Vivado+SDK)

Partial
Fallback

(.bin)

Implemented
Designs
(.dcp)

Partial
Complex

(.bin)

Full
Complex

(.bit)

Complex
Software

(.elf)

Control
Software

(.elf)

Fallback
Functionality

Complex
Functionality

Fig. 5. Proposed development process

Figure 5 visualizes the development process through which application de-
velopers can make use of this implementation. Black arrows indicate precedence
relations, while final items are shown in bold. The process is based on the Vivado
Design Suite 2018.2 and employs the Xilinx SDK for the software portions. We
developed a Tcl script that generates a partial Vivado project for the fallback
system. The corresponding SDK workspace can be used to develop and build
the fallback software. The partial project is then used by another script to gen-
erate a full Vivado project for the overall system. This project allows users to
develop the logic that replaces the fallback system in ccomplex. Its synthesis and
implementation generates a full bitstream for ccomplex and partial bitstreams for
both contexts. In the partial bitstream for cfallback, the fallback system’s local
memory (MEM) is automatically initialized with the fallback software. Using
the SDK workspace of the full project, the complex software for the RPU can
be implemented. The control software for the PMU is automatically generated
by our scripts. The shown final items are suitable for use on the ZynqMP.

6 Evaluation and Results

The proposed implementation of the dynamic simplex architecture is a generic
framework that aims to protect a ZynqMP-based system from faults of its RPU.



The Dynamic Simplex Architecture 9

As described in Section 4, we see it as a platform that can be used by applica-
tion developers when being faced with certain safety requirements. To compare
it against an implementation of the static simplex architecture, we will now
evaluate two particularly important characteristics of our implementation:

Fault handling latency. In comparison to the static simplex architecture, every
context switch now comprises a partial reconfiguration of the PL. To evaluate
how this affects the duration that the framework needs to react to faults, we
will experimentally determine typical durations of context switches.

Utilization of PL resources. The primary motivation for the dynamic provision
of the fallback system is to save PL resources during fault-free operation.
To quantify the achieved resource savings, we will consider the PL resource
utilization reports that Vivado creates after implementing a design.

6.1 Evaluation Procedure and the Reference Design

The implementation is characterized by many degrees of freedom. Designs can
differ, for instance, by the configuration of the MicroBlaze, the size of its local
memory, the capacity of the state transfer entity, the number of context-sensitive
apertures, the PL clock frequency, and the region of the PL that the dynamic por-
tion is constrained to. We therefore performed a semi-automated design space
exploration by considering a fixed MicroBlaze configuration and a fixed state
transfer capacity, while varying the other parameters. The automation was re-
alized by a Tcl script that received the parameters, generated the final items
from Figure 5, and transferred them to the ZynqMP via JTAG. A dedicated
PMU firmware module made it possible to inject a lockstep error into the RPU,
measure the latencies of the initiated process, and output the results via UART.

To perform these experiments, we employed a ZCU102 evaluation board
from Xilinx. This board is based on the XCZU9EG variant of the ZynqMP.
In all our designs, Vivado’s routing expansion option was enabled.

As the reference design, we consider a design with a PL clock frequency of
100MHz, a dynamic portion in the X2Y1 region, 32KiB of local memory, 2KiB
of state manager capacity and NCS � 1 context-sensitive apertures. Using this as
our starting point, we varied certain parameters while keeping the others fixed.

6.2 Fault Handling Latency

We will now consider measurements of subsequent context switching intervals.
Di corresponds to the i-th interval of the fault handling process. The intervals
that belong to a context switch to cfallback can be described as follows:

– D1 starts with the lockstep error injection and ends with the point in time
at which the control entity is notified about the occurrence of the fault.

– At the end of D2, the XPPU and STMGR reconfiguration is complete.
– During the third interval, D3, the partial bitstream that describes the fall-

back system is read form the DDR and written to the PL.



10 T. Dörr et al.

– At the end of D4, the fallback software that is part of MEM starts to execute
on the MicroBlaze. This constitutes the end of a context switch to cfallback.

D5 and D6 correspond to the initiation of an RPU reset, the actual reset of
the RPU and the execution of its startup procedure. These intervals are not
considered here. The remaining intervals belong to a context switch to ccomplex:

– The following interval, D7, corresponds to the time that the MicroBlaze
needs to terminate the execution of the fallback software.

– D8 comprises the partial reconfiguration of the PL as well as the XPPU and
STMGR reconfigurations. It can be seen as the counterpart to D2 and D3.

– At the end of D9, the RPU begins to execute the complex software again.
This completes the context switch back to the initial context.

Table 1. Measured latencies for the reference design and a variation of NCS

Average interval duration and uncertainty (in µs)

NCS D1 D2 D3 D4 D7 D8 D9

1 2.340(4) 1.741(3) 1477.2(2) 19.76(5) 1.4(1) 1477.5(3) 5.8(2)
10 2.340(4) 4.82(1) 1477.2(2) 19.73(4) 1.4(1) 1480.5(4) 5.8(2)
100 2.340(5) 34.97(5) 1477.2(2) 19.74(4) 1.4(1) 1510.8(4) 5.8(1)

Table 1 shows the calculated means (µ̂i) and standard deviations for the ref-
erence design in its first row (NCS � 1). For this design, the average measured
duration of a fault-induced context switch from ccomplex to cfallback sums up to
τfallback �

°4
i�1 µ̂i � 1.5ms. This is the average time between the injection of

a fault and the point in time at which the fallback system begins to execute its
program. The subsequent context switch back takes τcomplex �

°9
i�7 µ̂i � 1.5ms.

Note that the overall latency of a context switch is heavily dominated by the
duration of the dynamic portion’s partial reconfiguration process (D3 and the
largest part of D8). The table also illustrates that a variation of NCS, the num-
ber of context-sensitive apertures, has an effect on the duration of intervals D2

and D8. Each row of the table is based on 100 independent measurements.

Table 2. Measured latencies for a variation of different parameters

Average interval duration and uncertainty (in µs)

Variation of. . . D1 D2 D3 D4 D7 D8 D9

(a) Memory size 2.340(4) 1.741(3) 1477.2(2) 19.75(4) 1.4(1) 1477.5(3) 5.8(2)
(b) Clock region 2.340(5) 1.741(3) (�) 19.8(1) 1.4(1) (�) 5.8(2)
(c) PL frequency 2.340(5) 1.741(3) 1477.6(8) (�) (�) 1478.0(8) 5.8(1)



The Dynamic Simplex Architecture 11

Using the reference design as a starting point, we then performed a variation
of (a) the memory size, (b) the clock region of the dynamic portion, and (c) the
PL clock frequency to identify further parameters that have a significant influ-
ence on the latencies. Table 2 shows the average interval durations over these
variations. Scenarios that are marked with (�) or (�) exhibited a strong depen-
dence on the performed variation. A detailed analysis of these cases will be given
in the following. From the table, it can be seen that the interval durations are
largely independent of the size of the local memory (a). Note that the reference
design with 32KiB of it leaves many BRAMs of the X2Y1 region unutilized. In
our experiments, X2Y1 provided room for up to 128KiB of local memory.

Table 3. Measured latencies for varying locations of the reconfigurable partition

Average duration and uncertainty of D3 (in µs)

Col. Y0 Y1 Y2 Y3 Y4 Y5 Y6

X0 – – – 1861.46(7) 1861.4(2) – 1861.4(2)
X1 3520.6(6) 3520.6(5) 3524.4(2) – 1717.3(2) 1717.3(3) 1717.3(2)
X2 1477.2(1) 1477.2(2) 1477.2(2) 1477.23(8) 1477.2(2) 1477.2(1) 1477.2(1)
X3 1378.9(1) – 1378.9(1) 1378.9(2) 1370.23(5) 1370.25(8) 1370.2(1)

Average duration and uncertainty of D8 (in µs)

Col. Y0 Y1 Y2 Y3 Y4 Y5 Y6

X0 – – – 1861.6(5) 1861.6(5) – 1861.7(4)
X1 3520.6(10) 3520.4(12) 3524.9(2) – 1717.4(5) 1717.4(6) 1717.5(4)
X2 1477.5(3) 1477.5(3) 1477.5(4) 1477.4(4) 1477.4(4) 1477.5(3) 1477.5(4)
X3 1379.2(3) – 1379.2(3) 1379.2(4) 1370.4(4) 1370.4(4) 1370.5(3)

Table 4. Size of the partial bitstream as a function of the clock region

Size in KiB

Column Y0 Y1 Y2 Y3 Y4 Y5 Y6

X0 – – – 1292.73 1292.73 – 1292.73
X1 2441.41 2441.41 2441.41 – 1192.91 1192.91 1192.91
X2 1026.78 1026.78 1026.78 1026.78 1026.78 1026.78 1026.78
X3 958.63 – 958.63 958.63 952.63 952.63 952.63

As indicated by the (�) symbols in Table 2, varying clock region constraints
for the dynamic portion (b) lead to significant changes in D3 and D8. More
detailed measurement results for this variation are shown in Table 3. No imple-
mentation was possible for the cases with omitted values. It is important to note
that the clock regions differ not only in their location, but also in their size and



12 T. Dörr et al.

resource composition. Table 4 gives the size of a partial bitstream for a design in
which the dynamic portion is constrained to the specified clock region. Compar-
ing the values from the two tables shows a strong correlation between the size
of a partial bitstream and the average durations of D3 and D8. However, note
that this observation alone does not prove a causal relation between minimizing
the bitstream size and achieving a minimum fault handling latency.

The (�) symbols in Table 2 indicate that a variation of fPL (c) has a significant
influence on D4 and D7. More detailed results for this variation are shown in
Table 5. The achievable savings, however, are small compared to the overall fault
handling latency. Since the latter is dominated by D3 and D8, we focused on the
location constraint of the dynamic portion for further improvement.

Table 5. Measured latencies for varying frequencies of the PL clock (fPL)

fPL in MHz D4 in µs D7 in µs

100 19.76(5) 1.4(1)
150 13.6(1) 1.24(1)
215 9.77(2) 1.24(1)
300 7.41(1) 1.24(1)

A more detailed analysis showed that within a certain clock region, lower
reconfiguration times can be achieved by reducing the width of the reserved
reconfigurable region. We did not consider reconfigurable regions spanning mul-
tiple clock regions or the influence of an enabled bitstream compression. Starting
off with the reference design again, we reduced the width of the reconfigurable
region as much as possible, ending up with what we refer to as the optimized de-
sign. 100 measurements of it resulted in µ̂3 � 800.85p9qµs and µ̂8 � 801.2p2q µs.
Taking the region-independent durations from the reference design into account
leads to overall latencies of τfallback � 0.82ms and τcomplex � 0.81ms.

To perform a quantitative comparison with a design in which the fallback sys-
tem is always present, we created an implementation of the static simplex archi-
tecture that is—apart from the missing PR aspect—equivalent to the optimized
design. Measurements of this version yielded overall latencies of τ̃fallback � 5.31 µs
and τ̃complex � 7.5 µs. This means that with respect to the static case, a dynamic
provision of the fallback system leads to a significant time overhead.

6.3 Resource Utilization

We now compare the resource utilization of the optimized design to that of its
static equivalent. In particular, we focus on the following two aspects:

– The number of resources that can be saved during fault-free operation when
employing the dynamic instead of the static simplex architecture.

– The resource overhead that goes along with the dynamic simplex architecture
while the fallback system is active, i.e., while cfallback is active.



The Dynamic Simplex Architecture 13

Table 6. PL resource utilization of the optimized design and its static equivalent

Dynamic design

Type Static design cfallback ccomplex

LUT (in CLB) 2932 2888 1209
Register (in CLB) 3171 3182 1459
Multiplexer (F7) 117 149 38
BRAM (36Kb) 10 10 2

0% 20% 40% 60% 80% 100% 120% 140%

Multiplexers

Registers

LUTs

127.35%

100.35%

98.50%

32.48%

46.01%

41.23%

Utilization of Resources
(with respect to the static design)

ccomplex
cfallback

�67.52%

�53.99%

�58.77%

Static

Fig. 6. Relative resource utilization of the optimized design in its two contexts

Table 6 shows that the relative utilization of PL resources in ccomplex de-
creases considerably when employing our implementation of the dynamic sim-
plex architecture instead of an equivalent static simplex architecture. This is also
visualized in Figure 6. From the figure, it can be seen that the optimized design
in ccomplex saves 59% of the LUTs, 54% of the registers, and 68% of the multi-
plexers that its static equivalent consumes. In cfallback, its resource overhead is
negligible for LUTs and registers, and amounts to 27% for multiplexers.

7 Discussion

From a qualitative perspective, the evaluation results show that the choice be-
tween a static and a dynamic simplex architecture involves a specific trade-
off. The dynamic version exhibits prolonged context switching latencies and a
slightly increased utilization of FPGA resources in cfallback. At the same time, it
consumes considerably fewer FPGA resources during fault-free operation of the
system. The saved resources can, for instance, be used to implement hardware
accelerators that are required for non-safety-relevant tasks in ccomplex only.

It should be noted that context switching latencies are critical in the sense
that during these intervals, no processor fulfills the desired functionality of the
system. In general, we consider the dynamic simplex architecture a feasible
solution for cases in which the context switching latencies are tolerable and
the PL resources in ccomplex are too scarce to have the fallback system available



14 T. Dörr et al.

at all times. We believe that the semi-automated design space exploration that
we performed is a helpful procedure to map an implementation of the dynamic
simplex architecture to arbitrary ZynqMP devices in an efficient manner.

The fault handling latencies that we achieved for our exemplary implementa-
tion with 32KiB of MEM are lower than 1ms. The results indicate that designs
with up to 128KiB of MEM have fault handling latencies of about 1.5ms. In
cases where these latencies are tolerable, we consider the implementation to be
a suitable choice for systems that are subject to certain safety requirements.

8 Conclusion

Our goal was to develop a more resource efficient version of the static simplex
architecture, a concept that aims at particular fail-operational systems.

The dynamic simplex architecture utilizes the partial reconfiguration capa-
bility of an FPGA to protect the overall system from hazardous failures. It
does so by partially reconfiguring a fallback system to the FPGA in response
to certain faults. We proposed an implementation of this concept and system-
atically optimized its fault handling latency. An exemplary design with 32KiB
of local MicroBlaze memory handles faults within 0.82ms and, considering the
non-faulty case, consumes less than 46% of the resources that an equivalent
design in which the fallback system is present at all times occupies.

Our future work will focus on an even more comprehensive design space
exploration and an application to practical use cases. The latter will especially
include an extensive analysis of the overall safety in such use cases.

Acknowledgements. This work was funded by the German Federal Ministry of
Education and Research (BMBF) under grant number 01IS16025 (ARAMiS II).
The responsibility for the content of this publication rests with the authors.

References

1. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing 1(1), 11–33 (Jan 2004). https://doi.org/10.1109/TDSC.2004.2

2. Bak, S., Chivukula, D.K., Adekunle, O., Sun, M., Caccamo, M., Sha, L.: The
system-level simplex architecture for improved real-time embedded system safety.
In: 2009 15th IEEE Real-Time and Embedded Technology and Applications Sym-
posium. pp. 99–107 (April 2009). https://doi.org/10.1109/RTAS.2009.20

3. Baleani, M., Ferrari, A., Mangeruca, L., Sangiovanni-Vincentelli, A., Peri, M.,
Pezzini, S.: Fault-tolerant platforms for automotive safety-critical applications. In:
Proceedings of the 2003 International Conference on Compilers, Architecture and
Synthesis for Embedded Systems. pp. 170–177. CASES ’03, ACM, New York, NY,
USA (2003). https://doi.org/10.1145/951710.951734

4. Bapp, F.K., Dörr, T., Sandmann, T., Schade, F., Becker, J.: Towards fail-
operational systems on controller level using heterogeneous multicore SoC archi-
tectures and hardware support. In: WCX World Congress Experience. SAE Inter-
national (Apr 2018). https://doi.org/10.4271/2018-01-1072

https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/RTAS.2009.20
https://doi.org/10.1145/951710.951734
https://doi.org/10.4271/2018-01-1072


The Dynamic Simplex Architecture 15

5. Bolchini, C., Miele, A., Santambrogio, M.D.: TMR and partial dynamic reconfigu-
ration to mitigate SEU faults in FPGAs. In: 22nd IEEE International Symposium
on Defect and Fault-Tolerance in VLSI Systems (DFT 2007). pp. 87–95 (Sep 2007)

6. Cheatham, J.A., Emmert, J.M., Baumgart, S.: A survey of fault tolerant method-
ologies for FPGAs. ACM Trans. Des. Autom. Electron. Syst. 11(2), 501–533 (Apr
2006). https://doi.org/10.1145/1142155.1142167

7. Di Carlo, S., Prinetto, S., Trotta, P., Andersson, P.: A portable open-source con-
troller for safe dynamic partial reconfiguration on Xilinx FPGAs. In: 2015 25th
International Conference on Field Programmable Logic and Applications (FPL).
pp. 1–4 (Sept 2015). https://doi.org/10.1109/FPL.2015.7294002

8. Ellis, S.M.: Dynamic software reconfiguration for fault-tolerant real-time avionic
systems. Microprocessors and Microsystems 21(1), 29 – 39 (1997)

9. Emmert, J., Stroud, C., Skaggs, B., Abramovici, M.: Dynamic fault tolerance in
FPGAs via partial reconfiguration. In: Proceedings 2000 IEEE Symposium on
Field-Programmable Custom Computing Machines (Cat. No.PR00871). pp. 165–
174 (Apr 2000). https://doi.org/10.1109/FPGA.2000.903403

10. Isermann, R., Schwarz, R., Stölzl, S.: Fault-tolerant drive-by-wire systems. IEEE
Control Systems 22(5), 64–81 (Oct 2002)

11. Kohn, A., Käßmeyer, M., Schneider, R., Roger, A., Stellwag, C., Herkersdorf, A.:
Fail-operational in safety-related automotive multi-core systems. In: 10th IEEE
International Symposium on Industrial Embedded Systems (SIES). pp. 1–4 (Jun
2015). https://doi.org/10.1109/SIES.2015.7185051

12. Nelson, V.P.: Fault-tolerant computing: Fundamental concepts. Computer 23(7),
19–25 (Jul 1990). https://doi.org/10.1109/2.56849

13. Papadimitriou, K., Dollas, A., Hauck, S.: Performance of partial reconfiguration in
FPGA systems: A survey and a cost model. ACM Trans. Reconfigurable Technol.
Syst. 4(4), 36:1–36:24 (Dec 2011). https://doi.org/10.1145/2068716.2068722

14. Pham, H.M., Pillement, S., Piestrak, S.J.: Low-overhead fault-tolerance technique
for a dynamically reconfigurable softcore processor. IEEE Transactions on Com-
puters 62(6), 1179–1192 (Jun 2013). https://doi.org/10.1109/TC.2012.55

15. Psarakis, M., Vavousis, A., Bolchini, C., Miele, A.: Design and implementation
of a self-healing processor on SRAM-based FPGAs. In: 2014 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT). pp. 165–170 (Oct 2014). https://doi.org/10.1109/DFT.2014.6962076

16. Sha, L.: Using simplicity to control complexity. IEEE Softw. 18(4), 20–28 (Jul
2001). https://doi.org/10.1109/MS.2001.936213

17. Shreejith, S., Vipin, K., Fahmy, S.A., Lukasiewycz, M.: An approach for redun-
dancy in FlexRay networks using FPGA partial reconfiguration. In: 2013 Design,
Automation Test in Europe Conference Exhibition (DATE). pp. 721–724 (Mar
2013). https://doi.org/10.7873/DATE.2013.155

18. Storey, N.R.: Safety-Critical Computer Systems. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA (1996)

19. Vavousis, A., Apostolakis, A., Psarakis, M.: A fault tolerant approach for FPGA
embedded processors based on runtime partial reconfiguration. Journal of Elec-
tronic Testing 29(6), 805–823 (Dec 2013)

20. Vipin, K., Fahmy, S.A.: FPGA dynamic and partial reconfiguration: A survey of
architectures, methods, and applications. ACM Comput. Surv. 51(4), 72:1–72:39
(Jul 2018). https://doi.org/10.1145/3193827

https://doi.org/10.1145/1142155.1142167
https://doi.org/10.1109/FPL.2015.7294002
https://doi.org/10.1109/FPGA.2000.903403
https://doi.org/10.1109/SIES.2015.7185051
https://doi.org/10.1109/2.56849
https://doi.org/10.1145/2068716.2068722
https://doi.org/10.1109/TC.2012.55
https://doi.org/10.1109/DFT.2014.6962076
https://doi.org/10.1109/MS.2001.936213
https://doi.org/10.7873/DATE.2013.155
https://doi.org/10.1145/3193827

	 Leveraging the Partial Reconfiguration Capability of FPGAs for Processor-Based Fail-Operational Systems 

