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Chapter 1

Introduction

In solid state physics the Fermi-liquid theory is one of the most important concepts to
describe the nature of correlated many-body fermion systems. It not only explains the
behavior of simple metals, like copper or gold, at low temperatures correctly, but also
more complicated systems as CePd2Si2 [1] or CeCu5Au [2]. In the latter, the interplay
between the local Kondo effect [3] and the intersite Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction [4, 5, 6] leads to the development of a so-called heavy-fermion
liquid formed by strongly correlated quasiparticles with an extremely enhanced effec-
tive mass. As different scenarios can lead to deviations from the predictions of the
Fermi-liquid theory and create exotic new states of matter, e.g., the high-temperature
superconductivity in cuprates [7] and iron-based [8] superconductors or multiple quan-
tum phase transitions in CeCu6−xAux [9], they have become of great interest in the
field of strongly correlated electron systems.
In many of these materials competing interactions lead to magnetic ground states that
can be tuned through continuous zero-temperature phase transitions by non-thermal
control parameters like pressure or magnetic field. Close to these so-called quantum
phase transitions quantum fluctuations dominate the system on all length and time
scales leading to an accumulation of entropy and deviations from the Fermi-liquid the-
ory in the critical regime above the so-called quantum critical point (QCP) at T = 0,
the point in phase space, where the transition actually occurs.
Another possibility to achieve deviations from the Fermi-liquid behavior is to introduce
frustration to magnetic systems. If the constraints acting on the magnetic system by
competing interactions cannot be simultaneously satisfied, magnetic order is prevented
by strongly fluctuating correlated moments with an extremely enhanced ground state
entropy [10]. This situation of highly correlated moments leads to exotic new states of
matter as fluid-like spin liquids [11, 10], spin glasses [12], or spin ice [13].
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CePdAl is one of the scarce examples combining the physics of a magnetic heavy-
fermion metal with the properties of a geometrically frustrated spin system [14, 15, 16].
In this compound, the Ising-like nearly localized cerium 4f moments occupy the cor-
ners of equilateral triangles arranged in a distorted kagome lattice, rendering them
frustrated. Though this hinders one third of them to participate in the antiferromag-
netic order below TN = 2.7 K, thermodynamic measurements have found no clue of an
enhanced ground state entropy at lowest temperatures indicative of a classical spin liq-
uid [17, 18]. Hence, this makes CePdAl a promising candidate for a so-called quantum
spin liquid, a heavily entangled phase in which the ground-state degeneracy is lifted by
quantum fluctuations. As the thermal expansion of a solid is related to the pressure
derivative of its entropy, it is an ideal probe to track the evolution of phase transitions
at very low temperatures. Together with the magnetostriction, related to the pressure
dependence of the magnetization, high-precision dilatometry is a powerful tool to study
the thermodynamic properties of any magnetic system.

In this thesis single crystals of CePd1−xNixAl with x = 0, 0.05, 0.10, 0.12 and 0.14
are investigated with thermal-expansion, magnetostriction and specific-heat measure-
ments between temperatures T = 20 mK and T = 10 K, and in magnetic fields up to
µ0H = 14 T. We will study in detail the evolution of the interplay between antifer-
romagnetism, Kondo effect and geometric frustration under chemical, hydrostatic and
uniaxial pressure.
In chapter 2 a short introduction to quantum criticality and the interplay between
Kondo effect and Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction is given, to-
gether with the basic concepts of (geometric) frustration. Moreover the current state
of research on CePdAl is summarized.
Chapter 3 gives an overview about thermodynamics of stress and strain and their rela-
tion to high-precision dilatometry as thermodynamical probe of different energy scales
in CePd1−xNixAl. Furthermore, the experimental setup of the dilatometer in a 3He-
4He-dilution refrigerator for the data acquisition is explained.
Chapter 4 presents previous results for pure CePdAl together with those of the com-
prehensive investigations of the present thesis. Besides the evolution of the different
antiferromagnetic phases their uniaxial and hydrostatic stress and strain dependences
are taken into consideration.
In chapter 5 the evolution and suppression of the magnetic order by increasing Ni sub-
stitution is investigated.
Chapter 6 compares the results of all investigated samples and discusses the effect of
magnetic field, chemical pressure and disorder induced by Ni substitution as well as
the uniaxial pressure behavior on the criticality at zero field and close to the respective
critical fields.
Chapter 7 will give a conclusion of the results together with a short summary.
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Chapter 2

Background

2.1 Quantum Criticality

Phase transitions separate different macroscopic states of matter in the phase space
from each other. In condensed matter, they generally appear in dependence of external
control parameters as temperature T , pressure p, magnetic field H, or chemical com-
position. They are classified by the lowest derivative of the thermodynamic potential
that is discontinuous at the transition. At second order or continuous phase transitions
thermodynamic quantities as the entropy S, volume V or magnetization M exhibit a
continuous change. If they occur at finite temperatures, the macroscopic order is de-
stroyed by thermal fluctuations, which show – due to the diverging coherence length –
classical critical behavior. In addition to temperature, the macroscopic order can also
be suppressed by non-thermal control parameters (see figure 2.1). At the point where
the transition temperature Tc reaches zero, the transition is driven by quantum fluctu-
ations, having their origin in the Heisenberg uncertainty principle. At a second-order
transition the correlation length ξ and correlation time τ are infinite and fluctuations
dominate on all length and time scales. At any finite Tc, the quantum energy of a
fluctuation, Eq = ~/τ becomes negligible compared to the thermal energy E = kB · Tc
because of critical slowing down. When the system is tuned to Tc = 0, however,
Eq > kB · Tc is obeyed for longer and longer times as T is reduced towards zero. The
system becomes scale-invariant in both space and time [19]. Although quantum-critical
points (QCPs) strictly occur at zero temperature, outside any possible experimental
observation, the impact of these fluctuations fundamentally change the behavior at
finite temperatures. In this quantum critical regime, metals exhibit strong deviations
from the usually expected Fermi-liquid (FL) behavior. In discontinuous or first-order
transitions the evolution of critical fluctuations is disrupted due to the sudden onset of
long-range order.
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Figure 2.1: Phase diagram close to a quantum critical point (QCP) as a function of temper-
ature T and a non-thermal control parameter ρ. The phase boundary separates
a long-range ordered state for ρ < ρc from a thermally disordered phase. At
finite temperatures the boundary is accompanied by classical critical fluctua-
tions (orange region). With decreasing transition temperature Tc, the ordered
phase disappears at ρ = ρc. As at Tc → 0, the phase transition is mainly driven
by quantum fluctuations, the onset of the phase boundary is called quantum-
critical point (QCP). At higher temperatures above the QCP a wide phase space
is characterized by an unconventional critical behavior. This quantum critical
regime gives rise to unusual physical properties which are the topic of this work
(reproduced from [20]).

From a thermodynamic point of view, QCPs are characterized by degenerate ground
states giving rise to an accumulation of entropy at very low but finite temperatures
[21, 22]. The resulting high instability renders these systems particularly sensitive to
small changes of the control parameters, disorder, or the formation of new ordered
states. In fact, the strongly increased number of degrees of freedom combined with
the appearance of quantum-critical fluctuations are believed to be the origin of many
unusual phases. The unconventional superconductors found in the vicinity of magnet-
ically ordered states are prominent examples (see figure 2.2).
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Figure 2.2: Schematic phase diagram of the unconventional superconductor
Ba(Fe1−xCox)2As2. By substitution of Fe by Co as non-thermal control
parameter the antiferromagnetic order can be suppressed. The presumed QCP
is shielded by a dome-shaped superconducting phase with an usually high
transition temperature. As its maximum is located close to the extrapolated
endpoint of the antiferromagnetic phase it is generally assumed that the related
quantum-critical fluctuations and the accumulated entropy are the source of
the unconventional superconductivity (reproduced from [23]).
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2.1.1 Kondo Effect and RKKY Interaction

Prominent examples for quantum criticality can be found among heavy-fermion sys-
tems. These systems consist of 4f or 5f elements which form a periodic lattice im-
mersed into a metallic matrix. Here, the local Kondo interaction between the f elec-
trons and the conduction band leads to a screening of the magnetic moments of the
f electrons while the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between
the f moments favors long-range magnetic order. As the f electron clouds behave
as periodic scattering centers for the conduction electrons, a Fermi liquid develops at
low temperature with strongly correlated, heavy quasiparticles. The balance between
Kondo and RKKY interaction determines the ground state of these systems. A first
qualitative understanding of this behavior was given by Doniach [24] in his famous
diagram of the Kondo and RKKY energy scales TK and TRKKY (see figure 2.3). Kondo
and RKKY interactions depend on the strength of the exchange interaction J between
local moments and conduction electrons and the (unrenormalized) density of states at
the Fermi level N(EF):

TK ∝ e
− 1

J·N(EF) and TRKKY ∝ J2 ·N(EF) (2.1)

Figure 2.3: Doniach’s diagram of heavy-fermion systems. The exchange interaction J and
N(EF) strongly depend on the unit-cell volume. At small J ·N(EF) the RKKY
interaction dominates and the system adopts a magnetic ground state. Due to
the exponential increase of the Kondo temperature with increasing J ·N(EF),
TK exceeds TRKKY and the screening of the magnetic moments suppresses the
long-range magnetic order. At the quantum critical point, both ground states
are of the same energy and the entropy of the system is strongly enhanced at
finite but low temperatures.
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As the energy scale of the Kondo effect, the Kondo temperature TK, exhibits an ex-
ponential dependence, the RKKY interaction dominates at small J · N(EF) and a
long-range magnetic order develops. With increasing J ·N(EF), however, TK becomes
larger than TRKKY and the system forms a paramagnetic heavy-Fermi liquid (Kondo-
lattice state). Both energy scales can easily be controlled by tiny changes of the unit-
cell volume by applying moderate pressures. To avoid the experimental constraints
of pressure cells or to apply negative pressure the crystal volume is often changed by
replacing atoms of the metallic matrix with smaller or larger isoelectronic elements.
The application of this chemical pressure introduces, however, site disorder and might
therefore change the physical properties. As in the heavy-fermion compounds different
phases occur in a narrow pressure and temperature range, these systems have become
a showcase for the investigation of quantum-critical behavior.

2.1.2 Geometric Frustration

A physical system is called frustrated if not all constraints imposed by different kinds
of interactions can be equally satisfied and hence their contributions to the potential
energy cannot be simultaneously minimized. As a consequence it can adopt a manifold
of different degenerate ground states leading to a strongly enhanced entropy [25]. The
frustration hinders the system to undergo a transition to a long-range ordered state
[20]. In this sense, such systems can be regarded as being located at a quantum-critical
point. If the magnetic moments in these systems are large and not Ising-like, classical
thermal fluctuations dominate and their high entropy is frozen in at low temperatures.
In Ising-like systems, on the other hand, the quantum fluctuations at low temperatures
allow these systems to avoid the instability by the emergence of a new highly entangled
phase, the so-called quantum-spin liquid [10]. Here, the quantum fluctuations lift the
ground-state degeneracy by developing unusual ground states. [20].

There exist different routes that lead to frustration, the best known is the geomet-
ric frustration. A simplified model for such a system is the equilateral triangle of three
antiferromagnetically (AF) coupled Ising spins (see fig. 2.4). The AF coupling between
the spins leads to a sixfold degenerate ground state, as not all of the three spins can
be simultaneously aligned antiparallelly to each other.
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Figure 2.4: Frustration on an equilateral triangular lattice in an antiferromagnetically cou-
pled Ising system. The AF coupling between the spins leads to a sixfold de-
generate ground state as not all of the three spins can be antiparallel to each
other.

Experimentally, the degree of frustration is usually quantified by the so-called frus-
tration parameter, the ratio between the Curie-Weiss temperature ΘCW and the Néel
temperature TN, f = |ΘCW|/TN, as it relates the strength of the exchange interaction
(∝ ΘCW) to the magnetic ordering temperature TN. Conventionally, a system is called
frustrated, if f > 5. A system without any long-range order down to T = 0 leads
to a divergence of f . The frustration in geometric frustrated materials can be con-
trolled by breaking their crystal symmetry, by polarizing or screening their magnetic
moments. Thus pressure or magnetic fields can be used as control parameters to tune
these systems away from the QCP.

2.2 CePdAl - a Frustrated Heavy-Fermion Metal

CePdAl is one of the rare examples of a magnetic heavy-fermion (HF) metal with geo-
metric frustration. Usually, the itinerant magnetic order of metals lifts any geometric
frustration. In CePdAl, however, the magnetic moments are formed by the nearly
localized 4f electrons of the Ce ions. Therefore, in addition to the geometric frustra-
tion, CePdAl is in close proximity to a magnetic QCP due to the interplay between
the Kondo effect and RKKY interaction. CePdAl crystallizes in the ZrNiAl struc-
ture (space group P 6̄2m) with the cerium atoms occupying the Zr sites in a distorted
kagome lattice in the hexagonal ab plane (see figure 2.5) [14, 15, 16]. While the Ce
and Al sites are crystallographically equivalent, Pd occupies two different sites forming
alternating Ce-Pd and Al-Pd layers.



2.2: CePdAl - a Frustrated Heavy-Fermion Metal 9

Figure 2.5: Schematic view of the ab plane of the ZrNiAl structure in CePdAl. The big
spheres indicate the positions of the cerium atoms in a distorted kagome lattice
(bold green lines). There exist two crystallographically inequivalent Pd sites
(medium-sized spheres) with the yellow Pd atoms in the Ce plane at z = 0 and
the orange Pd atoms in z direction between the Ce planes at z = 1/2. The small
black spheres represent the Al sites at z = 1/2. In the partial magnetic order the
magnetic Cerium atoms (red spheres for spin up, blue spheres for spin down)
form corrugated chains in the ab plane that are separated by geometrically
frustrated cerium atoms (grey spheres).

CePdAl orders antiferromagnetically at the Néel temperature TN ≈ 2.7 K. The mag-
netic structure was determined in detail by neutron diffraction measurements on single
and polycrystals [16, 26, 27]. Below TN, two-thirds of the Cerium moments form sine-
like modulated antiferromagnetic chains along the c axis that are ferromagnetically
coupled to the next nearest chains along the a axis. The resulting corrugated ac planes
are separated from each other by planes of the remaining magnetic moments that do not
participate in the long-range magnetic order. Neutron diffraction as well as 27Al NMR
measurements show that these one-third of the magnetic moments are frustrated down
to at least 30 mK [16, 28]. The antiferromagnetic order is incommensurate along the
c axis with an ordering vector of QAF ≈ (0.5 0 τ) and τ ≈ 0.354 at TN. Presumably
due to the frustration, τ is slightly temperature dependent. Below TN, it decreases
with decreasing temperature and locks in at T ≈ 1.9 K to τ ≈ 0.351 [16, 29, 26].
Magnetic-susceptibility measurements show a strong magnetic anisotropy of χc/χa ≈ 15
at T = 5 K that is attributed to crystal-electric-field effects [30]. Thus, CePdAl can
be regarded as an effective spin 1/2 Ising system with the easy axis aligned along the c
direction (see figure 2.6 for the magnetic structure).
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Figure 2.6: Magnetic structure of CePdAl of the ab plane and along the c direction. Blue
spheres and arrows indicate magnetic moments with spin down (parallel to the
c direction), red spheres and arrows moments with spin up. Grey spheres do
not participate in the magnetic order. The sine wave along the c direction
represents the modulation τ of the magnetic ordering vector. For simplicity in
this schematic representation its value was set to τ = 1/3 though the magnetic
order is incommensurate along the c axis.

Núñez-Regueiro et al. have derived a theoretical model to explain the magnetic struc-
ture in CePdAl that includes the competition between Kondo screening and short-range
exchange interaction [31]. In their work, they consider nearest-neighbor interaction J1

and next-nearest neighbor interaction J2 between the cerium magnetic moments in the
ab plane. The Hamiltonian then yields

H =
∑
i

∆i(T )|µi|2 −
1

2

∑
i 6=j

Jij~µi~µj (2.2)

with the energy difference ∆i(T ) between the Ce Kondo state with µi = 0 and the
magnetic state with µi 6= 0. Figure 2.7 shows the assumed interactions and the resulting
phase diagram. For a certain configuration set of exchange interaction strengths J1 and
J2 they were able to derive the experimentally observed magnetic structure of CePdAl
[31].
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Figure 2.7: Theoretical model (a) and phase diagram (b) for the magnetic structure of
CePdAl by Núñez-Regueiro et al. [31].
(a) The exchange interactions J1 between nearest-neighbor Ce ions are ferro-
magentic and those between the next-nearest-neighbor Ce ions J2 are antifer-
romagnetic. The equally strong interactions lead to frustration of one third of
the Ce moments (grey). Red spheres represent spin up, blue spheres spin down.
(b) Phase diagram for the magnetic structure as a function of J1/∆ and J2/∆.
The grey area indicates a paramagnetic Kondo state. The observed magnetic
structure is derived for the parameter set in the lower right panel. Reproduced
from [31].

Apart from the unusual magnetic order, CePdAl exhibits the typical properties of HF
systems. Measurements of the electronic specific heat reveal an enhanced Sommerfeld
coefficient of γ ≈ 270 mJ/mol K2 which is typical for moderate HF compounds [14].
Resistivity measurements show a logarithmic increase of the resistivity towards lower
temperatures and an extremum of the thermopower which are both hallmarks for a
pronounced Kondo effect. The Kondo temperature obtained from the temperature de-
pendence of the entropy amounts to TK ≈ 6 K [14, 15].

As in other HF compounds, the antiferromagnetic order can be suppressed by mag-
netic fields and pressure. By applying a magnetic field parallel to the easy axis, CePdAl
exhibits several metamagnetic phase transitions before at µ0H ≈ 4 T the long-range
magnetic order vanishes and the system enters the paramagnetic field-polarized Fermi-
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liquid state [17, 32, 18, 33]. While the magnetic field weakens both the AF order as
well as the Kondo effect, pressure can be used to change the balance between Kondo
and RKKY interaction. Measurements under quasi-hydrostatic pressure indicate that
CePdAl can be tuned to the magnetic QCP at a critical pressure of roughly pc ≈ 1 GPa
[34, 35, 36]. In a similar way, chemical pressure was used to reach this QCP by replacing
Pd by isovalent but smaller Ni ions. In CePd1−xNixAl, the magnetic ordering temper-
ature TN decreases linearly with the Ni concentration x up to a concentration of about
x ≈ 0.14 where the magnetic order vanishes and non-Fermi-liquid (nFL) behavior was
observed [17, 37]. Along the substitution series the crystal structure of CePd1−xNixAl
does not change and the lattice constants decrease linearly with increasing Ni content
for 0 ≤ x ≤ 0.16 [38].

CePdAl offers the unique possibility to study in detail the interplay between geometric
frustration and the competition between Kondo and RKKY interaction. These two
approaches give two fundamental different routes towards quantum criticality. The ge-
ometric frustration is based on frustrated magnetic interactions between well-localized
moments in a specific crystal symmetry, whereas the Kondo effect is a local interaction
that tends to delocalize and ”switch off” the magnetic moments.

Recently, it was suggested that the abundance of quantum fluctuations caused, e. g., by
magnetic frustration, has to be considered to drive strongly correlated HF systems such
as CeCu6−xAux and YbRh2Si2 towards a QCP. This has led to an extended Doniach di-
agram in which the frustration appears as a second tuning parameter [20, 39, 40, 41, 42].
Although different theoretical versions of this global phase diagram of HF systems have
been published there are only very few systems which allow to address this topic from
an experimental side. In fact, CePdAl is the only example of a HF system where a ge-
ometric frustration could unambiguously be identified. The methods discussed in this
work will include structural control parameters as hydrostatic and uniaxial pressure as
well as chemical pressure and chemical site disorder. In addition magnetic fields have
been used to lift the frustration and to suppress the magnetic order and the Kondo
effect.
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Chapter 3

Methods

3.1 Dilatometry

3.1.1 On Stress and Strain

The stress on a surface element δA of a body generated by an external force ~p δA can
be described in terms of a second-rank tensor, the so called stress tensor σ. If ~l is the
unit vector perpendicular to the surface element at a certain point, then, as δA → 0,
σ gives the stress at that point with the components

pi = σijli (i, j = 1, 2, 3). (3.1)

Considering a cube with edges along the axes of a Cartesian coordinate system, the
components of σ with i = j correspond to the normal forces acting on the cube’s
faces and are called uniaxial pressures. The components with i 6= j are the shear
components and are called simple shear stresses [43]. Generally, stresses are classified
in uniaxial and biaxial stresses, and hydrostatic pressure. A specific subset of the biaxial
stresses are the pure shear stresses. In contrast to the simple shear stresses, they are
only produced by a combination of normal stress components. Pure shear stresses
are linearly independent of the hydrostatic pressure. For a homogenous material the
application of a pure shear stress leads to a deformation without a change of the volume
provided that the compressibility is isotropic. For a continuum they are, apart from a
rotation, equivalent to simple shear stresses. In the following, examples of the different
stress are given in terms of the stress tensor σ and illustrated in figure 3.1.
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Figure 3.1: (a)-(c): Visual representations of different stresses. (a) shows uniaxial pressure
along the z-direction of a Cartesian coordinate system. Due to the Poisson effect
the body is deformed in all directions. (b) illustrates the effect of hydrostatic
pressure, where the absolute values along all directions are the same, the result-
ing distortion can be different. (c) shows a particular case of pure shear stress.
Despite the distortion, the volume of the hexagon is approximately conserved.
This is an important difference to uniaxial pressure shown in (a).

• Uniaxial stress:

σ =

σ11 0 0
0 0 0
0 0 0

 or σ =

0 0 0
0 σ22 0
0 0 0

 or σ =

0 0 0
0 0 0
0 0 σ33

 (3.2)

• Biaxial stress:

σ =

σ11 0 0
0 σ22 0
0 0 0

 or σ =

0 0 0
0 σ22 0
0 0 σ33

 or σ =

σ11 0 0
0 0 0
0 0 σ33


(3.3)
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• hydrostatic pressure:

σ =

−σ 0 0
0 −σ 0
0 0 −σ

 (3.4)

• pure shear stress:

σ =

−σ 0 0
0 σ 0
0 0 0

 or σ =

0 0 0
0 −σ 0
0 0 σ

 or σ =

σ 0 0
0 0 0
0 0 −σ

 (3.5)

As stress acts as an external force on the crystal, for a physical interpretation the
reaction of the crystal to that force, i. e., the resultant deformation has to be considered.
The resulting deformation is usually discussed in terms of the related strain tensor. If
a point xj in a deformed body is displaced by ui, then one can define the strain as a
second-rank tensor e with the components

eij =
∂ui
∂xj

(i, j = 1, 2, 3) (3.6)

as a representation of the displacement. The components of e define different kinds of
spatial changes:

• eii represents an expansion per unit length parallel to the i-axis

• eij represents a rotation about the k-axis towards the i-axis of a line element
parallel to the j-axis

The strain tensor ε can then be constructed using the elements of e.

ε =

ε11 ε12 ε31

ε12 ε22 ε23

ε31 ε23 ε33

 =

 e11
1
2
(e12 + e21) 1

2
(e13 + e31)

1
2
(e12 + e21) e22

1
2
(e23 + e32)

1
2
(e13 + e31) 1

2
(e23 + e32) e33

 (3.7)

The εij connect the position vector of a point xj to its displacement ui induced by strain.
The elements on the main axis are called tensile strains (when ε > 0) or compressive
strains (when ε > 0), the other ones shear strains [43]. Special cases, as uniaxial
pressure, hydrostatic pressure, etc., shown for the stress tensor can equivalently be
applied to the strain tensor. Both stress and strain tensors are not crystal properties
themselves, therefore they do not have to be conform to the crystal symmetry as long
as they are generated by external forces.
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3.1.2 Dilatometry as Thermodynamic Probe

As temperature changes, any solid undergoes a characteristic volume change whose
determination is a powerful tool to gain insight into the pressure dependence of ther-
modynamic properties. The volume thermal expansion coefficient αV is defined as the
relative change of the system’s volume V with temperature T at constant pressure p

αV =
1

V

(
dV

dT

)
p

. (3.8)

In anisotropic systems, the thermal expansion differs along the different crystallo-
graphic directions, wherefore αV is usually replaced by the linear thermal-expansion
coefficients

αij =
∂εij
∂T

(3.9)

as derivatives of the strain tensor ε with respect to temperature. As ε is the afore-
mentioned symmetrical second-rank tensor, this also holds for α. Notably, since the
temperature T is a scalar, the thermal expansion cannot break the crystal-lattice sym-
metry. In contrast to the strain generated by external pressure, the strain produced
by thermal excitations has to be conform with the crystal symmetry (Neumann’s Prin-
ciple) [43]. As a result the number of independent αij is limited. In the case of a
hexagonal crystal symmetry, that underlies all samples covered in this work, only two
of the coefficients are independent. α then changes to

αhex =

αa 0 0
0 αa 0
0 0 αc

 (3.10)

with a and c denoting the hexagonal lattice parameters. As the infinitesimal volume
strain, produced by thermal expansion, is equal to the trace of the strain tensor (εV =
dV/V = Tr(εij) = εa + εa + εc = 2εa + εc), the volume-thermal expansion coefficient for
a hexagonal crystal symmetry becomes

αV =
∂εV
∂T

= Tr(αij) . (3.11)

Length changes of a crystal are related to their thermodynamic potential by the elastic
energy. As they tend to minimize the Gibbs free energyG(p, T ) = U+pV−TS−µ0HM ,
any physical property originating, e.g., from lattice vibrations, itinerant electrons, mag-
netic ions, etc., can be probed by measuring the related volume or length changes. At
constant pressure, an infinitesimal change of G is given by

dG = −SdT + V
∑
λ

ελσλ withλ = i, j (3.12)
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with the external stress σij conjugated to the internal strain εij. The second term
describes changes of the elastic energy. By using the Maxwell relation for pressure and
temperature

∂2G

∂T∂p
= −

(
∂S

∂p

)
T

=

(
∂V

∂T

)
p

(3.13)

on the Gibbs free energy, one can relate the thermal expansion coefficients αij to the
stress dependence of the entropy S in their direction:

αij =
1

V

∂2G

∂T∂σij
= − 1

V

∂S

∂σij
. (3.14)

Hence, this allows to probe any change in any physical quantity that contributes to
a system’s entropy and is sensitive to uniaxial pressure. The uniaxial pressures span
a Cartesian coordinate system. Therefore, the total entropy can be calculated by
summing over all contributions:

dS =
∑
λ

∂S

∂σi
dσi . (3.15)

By considering this sum as the scalar product between d~σ and the entropy’s gradient
~∇ = (∂S/∂σ1, ∂S/∂σ2, ∂S/∂σ3) one can determine the entropy’s stress dependence
along a unit vector û:

∂S

∂~σu
= ~∇Sû =

3∑
i=1

∂S

∂σi
ûi = −V

3∑
i=1

αiûi . (3.16)

On the one hand, this provides the possibility to determine the change in the entropy
∂S/∂~σu for arbitrary combinations of uniaxial pressures. On the other hand, it yields
the combination of uniaxial pressures leading to the steepest increase of the entropy
at a given configuration. As the entropy at finite, albeit arbitrarily low temperatures
becomes maximal at a QCP this can be used to find the optimal stress combination to
tune the system towards the QCP.

Similar to the thermal expansion, a change of the applied magnetic field can lead
to a dilatation of a crystal. As all main interactions between the atomic magnetic
moments (e.g., exchange, or dipole-dipole interactions) depend strongly on atomic dis-
tances, the expansion of a magnetic system is strongly affected by its magnetic state
[44]. In compounds with magnetically ordered moments the magnetic interaction en-
ergy adds to the total free energy of the system and causes magnetic stress. This stress
can be considered similarly to the one created by thermal excitations, with the differ-
ence that it additionally depends on the magnetic-field direction. In contrast to the
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temperature, the magnetic field is able to break the crystal symmetry. Therefore, the
magnetostriction coefficient is not a second-rank but a third-rank tensor connecting
the absolute value and direction of the applied magnetic field to the dilatation of the
crystal:

λijk =

(
∂σij

∂(µ0Hk)

)
p,T

. (3.17)

Analogously to the thermal expansion, the magnetostriction is a second order deriva-
tive of the Gibbs free energy G. Again using the Maxwell relations, one can relate
the magnetostriction coefficient λijk at constant pressure p and temperature T to the
pressure dependence of the magnetization at constant temperature T and magnetic
field H:

∂2G

∂(µ0H)∂p
= −

(
∂M

∂p

)
(T,H)

=

(
∂V

∂(µ0H)

)
(T,p)

(3.18)

λijk =
1

V

(
∂2G

∂σij∂(µ0Hk)

)
T

= − 1

V

(
∂M

∂σij

)
(T,Hk)

(3.19)

In order to obtain a more convenient expression of the thermal expansion and magne-
tostriction, the strain tensors are simplified by a principal-axis transformation and the
subscripts i = j are abbreviated with i (Voigt notation). The direction of the magnetic
field is omitted and stated in the accompanying text. In conclusion, one obtains the
following expressions:

thermal expansion : αi =
1

Li

(
∂Li
∂T

)
(σ,H)

= − 1

V

(
∂S

∂σi

)
(T,H)

(3.20)

magnetostriction : λi =
1

Li

(
∂Li

∂(µ0H)

)
(σ,T )

= − 1

V

(
∂M

∂σi

)
(T,H)

(3.21)

If the temperature is decreased towards zero, the thermal expansion vanishes because
the entropy has to approach zero due to the third law of thermodynamics. Likewise,
the magnetostriction becomes constant because:

∂λi
∂T
∝ ∂2S

∂(µ0H)∂σi
. (3.22)

In addition, the magnetostriction disappears at zero magnetic field if the magnetiza-
tion vanishes at H → 0. Consequently, the measurement of the thermal expansion
and magnetostriction at very low temperatures and small magnetic fields requires an
extremely high resolution.
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Figure 3.2: Schematic sketch and photograph of the used dilatometer. A change of the
sample length moves the right side and lower capacitor plate of the dilatometer
up or down. The two annular springs ensure a parallel translation of the capac-
itor plates. The dilatation is in this way directly transferred to the distance d
between the two plates and the capacitance changes as C ∝ 1

d ∝
1

∆L .

The state-of-the-art technique to monitor such tiny length changes is the high-precision
capacitance dilatometry where the expansion or contraction ∆L of a sample is directly
transferred to the distance d between two capacitor plates and therefore directly related
to the capacitance C. To realize this experimentally, the sample is clamped between
a fixed piston and a movable capacitor plate, which is mounted to a parallel-spring
suspension. This parallel-spring guide is needed to keep the capacitor plates parallel
to each other and enable hereby small distances between the plates without touching.
In addition, the springs ensure a nearly frictionless movement of the plate. At low
temperatures the thermal expansion of the dilatometer itself is very small and the
measurements can easily be calibrated by it. The length change ∆L of the sample then
is given by

∆L = −∆d = −ε0εr
A

∆C
(3.23)

with ε0 being the vacuum permittivity, εr the medium’s permittivity, and A the size
of the capacitor’s plates. Since C is proportional to d−1, the resolution increases with
decreasing d. As in our temperature range the relative length changes ∆L/L are far
below 10−3 we normalize the absolute length change by a fixed sample length L(0,i),
usually taken at room temperature. The dilatometer and springs used for this work
[see fig. 3.2] are made from a gilded 98 %-copper 2 %−beryllium alloy (Cu:Be), which
results in a good compromise between elasticity and stability and is nonmagnetic down
to lowest temperatures. Due to its compact design it can be tilted with respect to the
magnetic-field direction which allows measurements of the thermal expansion or magne-
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tostriction parallel or perpendicular to the applied field. As mentioned previously, the
resolution increases by choosing a small distance between the capacitor plates, where-
fore the plates have to be evenly polished and aligned as parallel as possible. With a
gap of d ≈ 20µm we typically achieve a resolution of ∆L ≈ 10−13 m or ∆L/L ≈ 10−10

for sample sizes of about 1 mm. The sample is aligned in the dilatometer with respect
to the field direction and is clamped by a small piston, which can be moved to adjust
the capacitance at room temperature. It can be fixed by a small screw. By using pis-
tons of different lengths, samples in the range of ≈ 10µm up to 10 mm can be measured.

The dilatometer is mounted in an Oxford Instruments MX400 3He-4He-dilution re-
frigerator with a superconducting Nb3Sn magnet, that allows measurements between
T = 10 mK and T = 10 K in magnetic fields up to µ0H = 14 T (µ0H = 16 T with
lambda-stage). The dilatometer is connected to the mixing chamber by copper-covered
glass-fiber plates and positioned in the middle of the magnet. These glass-fiber plates
have been dimensioned in such a way that the temperature of the sample can be con-
tinuously changed between 20 mK and 3 K without evaporating the 3He-4He mixture.
Measurements for T ≥ 3 K are performed by removing a part of the mixture from the
system to avoid overpressure and to obtain an optimal thermal contact to the 1−−K pot
which then provides the necessary cooling power for the experiment. The temperature
is measured by a magnetic-field calibrated ruthenium-oxide thermometer chip using a
Lakeshore 370 AC resistance bridge in a four-terminal setup. A strain gauge driven
by a Keithley 2400 SourceMeter is used as a heater to control the temperature of the
experiment. The capacitance is measured in a three-terminal setup by an Andeen–
Hagerling AH 2550 capacitance bridge with an applied voltage of U = 1.5− 15 V with
a frequency of f = 1 kHz and an integration time of t = 9 s. The coaxial cables for
the capacitance measurements between the 4−−K stage and the mixing chamber are
made of a niobium core and a stainless steel shield to minimize the heat input, as
superconducting electrons do not transport heat and stainless steel is a bad thermal
conductor. Between the mixing chamber and the dilatometer gilded copper coaxial
cables are used. The connections for the temperature measurement and heater control
between the 4 K–stage and the top of the cryostat are made from twisted pairs of Cu:Be
to reduce the heat input and picking-up of electrical noise. They are lead out of the
cryostat by PI filters and a shielded outbreak box. Between the 4 − −K stage and
the mixing chamber superconducting niobium titanium twisted pairs are used. The
experiment itself is connected to the mixing chamber via twisted pairs made of copper.
As during this work big parts of the wiring were renewed but not changed, a more
detailed description is already given in [45].
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3.1.3 Grüneisen Ratio as a Hallmark for Quantum Criticality

The Grüneisen ratio Γ is named after Eduard Grüneisen who discovered that the ther-
mal expansion αi of a solid material divided by its specific heat C is approximately
constant [46, 47]. Originally, it was used to estimate the pressure (or volume) depen-
dence of phonon frequencies. More generally, it is defined as the normalized stress
dependence of the characteristic energy scale E∗, e.g. E∗(TK), of a system:

Γσi =
1

E∗
∂E∗

∂σi
. (3.24)

Γ is often also related to the strain dependence and then called Grüneisen parameter:

Γεi = − 1

E∗
∂E∗

∂εi
. (3.25)

If a system is dominated by a single pressure (or strain) dependent characteristic en-
ergy scale E∗(σi), the Grüneisen ratio can be obtained from thermal expansion and
specific-heat measurements. In this case, the entropy is given by S = f [kBT/E

∗(p)].
According to the Maxwell relations, αi and C/T are partial derivatives of S to stress
and temperature, respectively, and Γ is defined by their ratio:

Γσi = Vm
αi
C

= − ∂S

∂σi

∣∣∣∣
T

(
T
∂S

∂T

∣∣∣∣
σi

)−1

=
1

E∗
∂E∗

∂σi
(3.26)

Γεi = Vm

3∑
j=1

cij
αj
C

(3.27)

with cij being the elastic constants and Vm the molar volume. Γ can also be related
to the hydrostatic pressure or volume dependence of E∗ by using the isothermal bulk
modulus BT .

Γp = Vm
αV
C

(3.28)

ΓV = VmBT ·
αV
C

(3.29)

Although the thermal expansion and specific heat are strongly temperature dependent
quantities, the Grüneisen ratio is usually constant if a single E∗ dominates. There is,
however, one important exception: At a QCP, the characteristic energy scale of the sys-
tem vanishes by definition and, consequently, Γ diverges when the QCP is approached.
In addition, Γ changes its sign if the system is tuned through the QCP by varying a
nonthermal control parameter like stress. This sign change and the divergence of Γ are
characteristic features of quantum-critical systems and therefore taken as hallmarks of
QCPs [48].
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If a system is controlled by several characteristic energy scales E∗n the entropy is the sum
over all their contributions S =

∑
Sn(kBT/E

∗
n). In this case, the ratio between thermal

expansion and specific heat is no longer constant and does not allow to simply determine
the individual Grüneisen ratios of the different E∗n. An exception are continuous phase
transition as here the noncritical background can be subtracted with the so-called
Ehrenfest relation.

3.1.4 Ehrenfest Relations and Clausius-Clapeyron Equations

The Ehrenfest relations and Clausius-Clapeyron equations allow to estimate the uni-
axial stress dependence of second-order and first-order phase transitions, respectively.
At second-order phase transitions the entropy and volume of a system continuously
change as function of pressure and temperature while their derivatives, e.g., the ther-
mal expansion and the specific heat, reveal abrupt changes. The entropy change can
then be written as:

∆ S|Tc = 0 = ∆
∂S

∂σi

∣∣∣∣
Tc

dσi + ∆
∂S

∂T

∣∣∣∣
Tc,σi

dT. (3.30)

∆ stands for the difference between the values just above and below the phase transition
temperature Tc. Using again the Maxwell relation, we obtain the Ehrenfest relation
[49]:

dTc
dσi

= VmTc
∆αi
∆C

∣∣∣∣
Tc

. (3.31)

This relation is closely related to the Grüneisen ratio. In fact, it can be understood as
the Grüneisen ratio of the upcoming low-temperature phase with Tc as characteristic
energy scale. Therefore, in a more general way, the Ehrenfest relation can be used to
determine the noncritical background even if the transition is characterized by strong,
critical fluctuations as shown by Pippard [50].

At a first-order transition the Gibbs free energy remains continuous, but S and V
are discontinuous. As a consequence the Ehrenfest relation is no longer applicable, but
a similar approach as above can be used to obtain the so-called Clausius-Clapeyron
equation of the stress dependence of Tc:

dTc
dσi

= Vm
∆Li/Li

∆S
. (3.32)

and if T is replaced by H, the stress dependence of the critical field Hc

dµ0Hc

dσi
= Vm

∆Li/Li
∆M

. (3.33)
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3.2 Samples

The partial antiferromagnetic order in CePdAl can either be suppressed by applying
hydrostatic pressure [34, 35, 36] or by substituting palladium by smaller, isovalent
nickel ions to introduce chemical pressure [17, 37, 38]. To get insight into the inter-
play between the geometric frustration and the Kondo effect and their influence on the
quantum-critical behavior we have measured the thermal expansion and magnetostric-
tion of CePd1−xNixAl single crystals with Ni content of 0 ≤ x ≤ 0.144. The single
crystals were grown by Veronika Fritsch using the Czochralski method [51]. The sam-
ples have been previously investigated with thermodynamic and neutron scattering
measurements [37, 27]. These measurements show that the magnetic order is sup-
pressed with increasing x. The sample with the highest Ni concentration is close to a
chemical-pressure-induced QCP at xc ≈ 0.15 [37]. Up to this Ni content, the magnetic
structure remains unchanged whereas the ordered moment decreases linearly with x
and is reduced for x = 0.135 to 1/10 of its value for x = 0 [27]. The nickel content of
the single crystals was determined by atomic absorption spectroscopy (AAS). The ho-
mogeneity of the samples was checked by energy dispersive X-ray spectroscopy (EDXS)
[see [37]].

Figure 3.3: Unit cell of CePdAl. The red spheres indicate the position of the cerium atoms,
the grey ones the position of the aluminum atoms. There exist two different
palladium sites, the Pd(1) (open cyan spheres) forming a-b AlPd layers and the
Pd(2) site (dark cyan spheres) of the CePd layers.
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In this work, additional, detailed single-crystal x-ray diffraction (SC XRD) measure-
ments have been performed by Michael Merz (IFP, KIT Karlsruhe) on a STOE Imag-
ing Plate Diffraction System (IPDS 2T) to determine the nickel distribution over the
nonequivalent Pd(1) and Pd(2) sites [see fig. 3.3]. As the measurements were done in
transmission, several small single-crystalline pieces with typical dimensions of about
d ≈ 50− 100µm have been cleaved from the samples measured in the dilatometer. For
x = 0.10 (sample B) and x < 0.14 two different pieces of crystals were investigated [see
tab. 3.1]. The x dependence of the lattice parameters, shown in fig. 3.4(a) and (b),
agrees with earlier studies [38]. The Ni occupation at both Pd sites grows linearly with
increasing x [see fig. 3.4(c)] as expected. However, the Pd(2) site of the Ce-Pd layer is
clearly favored with a Ni concentration four times higher than that of the Pd(1) site.
This appears reasonable because the Pd(2)-site coordination polyhedron is smaller than
that of the Pd(1) site. Although the cleaved pieces exhibit sharp Bragg peaks with a
very low mosaic spread, typical for high quality single crystals, the Ni concentrations
of the samples with x > 0.05 significantly deviate from the Ni content determined with
AAS and EDXS [see tab. 3.1]. This leads to the conclusion that at higher x, the Ni
ions are no longer homogeneously distributed in the bigger crystals measured in the
dilatometer. One of the x = 0.144 samples [sample x < 0.14 in tab. 3.1] showed in all
single-crystal x-ray diffraction measurements a clearly lower Ni content though both
samples are out of the same batch. Also our thermodynamic measurements presented
in chapter 6 clearly point to a (lower) Ni content between x = 0.10 and x = 0.14.
Therefore, in the following this sample will be referred to as x < 0.14, the other one as
x = 0.14. Table 3.1 gives an overview on the investigated samples.

The different thermal expansion and magnetostriction measurements of the
CePd1−xNixAl crystals and the discussion of the results will be presented in chap-
ter 5. The samples there will be named: x = 0.05, x = 0.10 A, x = 0.10 B, x < 0.14
and x = 0.14.

Table 3.1: Overview of investigated samples.

x content AAS x content SC XRD x at Pd(1) x at Pd(2) la (mm) lc (mm)

0 0 0 0 3.908 4.166

0.05 0.053 0.008 0.143 2.331 2.686

0.10 (sample A) 0.094 0.043 0.196 3.017 0.840

0.10 (sample B) 0.093 0.045 0.189 - 0.446

0.131 0.072 0.25 - 0.446

0.144 (x < 0.14) 0.078 0.067 0.10 2.546 1.903

0.11 0.032 0.266 2.546 1.903

0.144 (x = 0.14) 0.134 0.053 0.295 1.056 0.675
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Figure 3.4: (a) a-axis and (b) c-axis lattice parameter of CePd1−xNixAl as a function of
the Ni content x.
(c) The Ni concentration of the Pd(1) and Pd(2) site as a function of the overall
Ni content x.
Lines are linear fits to the data.
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Chapter 4

CePdAl

4.1 Previous Thermodynamic Measurements

The magnetic-phase diagram of CePdAl has been investigated in detail by specific
heat, magnetization, and magnetostriction measurements [18]. Figure 4.1(a) shows the
temperature dependence of the 4f contribution to the specific heat C4f/T in applied
magnetic fields parallel to the c axis of up to µ0H = 14 T. At H = 0, the transition
to long-range antiferromagnetic order is clearly visible as a sharp λ-like anomaly at
TN = 2.7 K. Above TN, C4f/T exhibits a pronounced tail, typical for critical fluctua-
tions. Its wide temperature range of more than 2 · TN indicates that these fluctuations
are strongly enhanced by geometric frustration. With increasing magnetic field, the
transition broadens and shifts to lower temperatures. Between µ0Hc1 ≈ 3.2 T and
µ0Hc2 ≈ 3.35 T, the anomaly vanishes and reappears at H ≥ Hc2 as a sharp feature
until the critical field is reached at µ0Hc3 ≈ 4.1 T. By further increase of the magnetic
field a Schottky-anomaly arises due to the field-splitting of the Ce3+ ground-state dou-
blet, and shifts to higher temperatures [see the inset of fig. 4.1(a)]. In this field range
the magnetic 4f moments are ferromagnetically polarized along the field direction.

Figure 4.1(b) shows the T dependence of the magnetization M divided by µ0H for
different magnetic fields. The strongly enhanced critical fluctuations responsible for
the extended tail of C4f/T produce in M pronounced maxima. The data show that
up to µ0H = 4 T these maxima appear at temperatures TS clearly above the transition
temperatures TN derived from the specific heat measurements [see the arrows in fig.
4.1(b)]. According to the Maxwell relations, a maximum of M(T ) is equivalent to a
maximum of the entropy S as a function of the magnetic field. As mentioned in chapter
2.1, such an entropy accumulation arises usually while crossing a phase boundary in
dependence of a non-thermal control parameter.
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Figure 4.1: (a) 4f contribution to the specific heat C4f/T vs temperature for magnetic fields
µ0H between 0 and 14 T parallel to the c axis. The inset shows the Schottky
anomaly at higher fields.
(b) Magnetization per Ce atom and field M/µ0H for different magnetic fields
µ0H between 0 and 5 T likewise parallel to the c axis. The open symbols indicate
the temperature TS of the entropy maximum S(B) while the arrows indicate
the transition temperature TN derived from the specific-heat measurements.
Figure taken from [18].

The temperature of the entropy maxima TS, thus, roughly represents the temperature
where the system would order without frustration. The significant difference of TN and
TS is a clear sign for the frustration of the system and can be taken as measure to
quantify the degree of frustration [18]:

fS =
TS
TN

(4.1)

The advantage of this definition of the frustration parameter over the one presented in
2.1.2 is that it can be used to characterize the frustration in magnetic fields as long as
M does not saturate at high H. In CePdAl, fS compares, however, the temperature of
the entropy maximum that is produced by all moments with the ordering temperature
of the moments that are not frustrated. The values of fS are, hence, comparatively
small to the one presented in 2.1.2. If only the frustrated moments would be considered,
fS would amount to more than 90.



4.1: Previous Thermodynamic Measurements 29

Figure 4.2: Field dependent magnetostriction coefficient λa of the a axis for magnetic fields
along the c-axis for temperatures T < TN. The µ0H-T phase diagram is shown
as dashed lines below the data. Figure taken from [18].

To characterize the metamagnetic transitions found in C4f/T andM , the low-temperature
part of the phase diagram was studied with magnetostriction measurements. Figure
4.2 shows the magnetostriction coefficient of the a axis λa for magnetic fields along c
at different constant temperatures. At T < 0.8 K, there are three sharp peaks visible
that are indicative for first-order transitions. The positions of the phase transitions
found in the different measurements have been summarized in the phase diagram de-
picted in 4.3(a). Starting at small fields, three different antiferromagnetic phases could
be identified: at µ0H < 3.25 T, the most extended AF1 phase, in the field range
µ0Hc1 ≤ µ0H ≤ µ0Hc2 = 3.4 T the narrow AF2 phase, and, finally, the dome-like
shaped AF3 phase at µ0Hc2 ≤ µ0H ≤ µ0Hc3 = 4.1 T. The phase boundaries between
the AF1 and AF2 phases and those of the AF3 phase are first-order transitions. Be-
cause of the high magnetic anisotropy, the Ising character of the magnetic moments is
preserved in the entire field range and spin-flop transitions are not possible.

The field-dependent entropy is displayed in fig. 4.3(b) at different constant temper-
atures. In the entire field range, S approaches zero as the temperature is lowered,
ruling out any frozen-in entropy of a classical spin liquid. For T < 3.7 K a pronounced
maximum develops that follows roughly the outer phase boundary of the AF1 phase.
Below T < 2 K the position of the maximum remains nearly unchanged approximately
at the TN maximum of the dome-shaped AF3 phase, giving rise to the assumption that
the system escapes from the instability by adopting this long-range ordered state.
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Figure 4.3: (a) Magnetic phase diagram of CePdAl for fields along the c direction derived
from various measurement methods as indicated in the legend. The subscripts
i for αi and λi indicate the different measurement directions (||a or ||c). The
open circles represent the shoulder visible in C4f/T [see fig. 4.1(a)], the gray
squares are the maxima of the Schottky anomalies, and the red open diamonds
indicate the maxima of C4f . The inset shows an enlarged view of the AF2 and
AF3 phases.
(b) Entropy vs. µ0H at different fixed temperatures. The vertical dashed lines
indicate the positions of the magnetic phase boundaries.
(c) Frustration parameter fS = TS/TN vs µ0H. For H > Hc3, C4f/T at
T = 0.5 K is plotted against µ0H.
Figure taken from [18].
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The critical field of the Kondo effect HK was estimated from the field-dependent shift
of the Schottky-anomaly observed in the specific heat [see the inset of fig. 4.1(b)].
It is with µ0HK ≈ 2.5 T close to the transition between AF1 and AF2 phase where
the entropy maximum starts to evolve. In addition, the magnetization reaches at Hc1

one third of its saturated moment Msat ≈ 1.6µB/Ce [18]. This has given rise to the
assumption that at small fields the frustrated moments are shielded by the Kondo effect.
By approaching HK , this selective Kondo screening is removed and the frustrated
moments begin to destabilize the magnetic order. This leads to the metamagnetic
transition at Hc1 and the evolution of the AF2 phase. Interestingly, this phase is
characterized by strongly broadened transition anomalies, typical for systems with
inherent disorder and short coherence lengths. This assumption seems to be supported
by the frustration parameter fS, which is plotted in fig. 4.3(c). By approaching Hc1, fS
increases slowly, shoots up in the AF2 phase and, finally, drops to 1 in the AF3 phase.
Beyond Hc3, no clear signs of a frustration could be observed.

4.2 Thermal expansion and magnetostriction of

CePdAl

To study the uniaxial-stress dependence of the characteristic energy scales of CePdAl,
additional thermal expansion and magnetostriction measurements have been carried
out in this work. Those results will be discussed in the following. The CePdAl single
crystal that has been investigated in this work is identical to that studied in [18]. The
sample was grown by the Czochralski method by V. Fritsch [51].

In fig. 4.4(a) the linear-thermal expansion coefficient of the a axis divided by T is
compared with the specific heat C4f/T at zero magnetic field. αa/T is positive in the
whole temperature range and rises slowly as the transition temperature is approached.
As already pointed out by Grüneisen, both quantities exhibit a similar T dependence
with a clearly visible transition anomaly at TN and an extended tail at higher T due
to the critical fluctuations enhanced by the frustration. The ratio between αa/T and
C4f/T is essentially the aforementioned Grüneisen ratio Γσi = Vm

αi

C
which is expected

to be constant if a single E∗ dominates. As directly visible in fig. 4.4(a), Γσa cannot
have the same value on both sides of the transition, as for lower T , αa/T lies above
and for higher T beneath C4f/T . The calculated Γσa is plotted in fig. 4.4(b). It clearly
is not constant, but monotonically increases towards lower temperatures. Surprisingly,
the well-defined transition anomaly, visible in αa/T and C4f/T , nearly disappears in
Γσa , apart from a negligibly small slope change at TN. The slope change occurs ap-
proximately in the temperature range where αa/T and C4f/T exhibit a shoulder below
TN.
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Figure 4.4: (a) Comparison of the AF-transition anomaly in the specific heat C4f/T (black
dots) and thermal expansion along the a axis αa/T (purple dots) in zero field
to demonstrate the calculation of the Grüneisen ratio Γσa .
(b) The corresponding Grüneisen ratio Γσa as function of temperature. The
transition is hardly visible.
Full symbols indicate measurements during heating, open symbols during cool-
ing the sample. The specific-heat data are taken from [37]

The increase of Γσa towards lower temperatures can have two different origins: It is
either the onset of a divergence of Γσa for T → 0 and would then indicate the proximity
to a QCP with a vanishing E∗, or it is caused by a crossover from one to an other
dominant energy scale. To clarify this, one can use the anisotropic stress dependence
of E∗. This anisotropy is specific for the underlying interactions. For a single E∗ the
quotient of the Grüneisen ratios along different axes should be constant:

Γσi
Γσj

=
αi
αj

=
∂E∗

∂pi

(
∂E∗

∂pj

)−1

= const. (4.2)

Figure 4.5(a) shows the linear thermal-expansion coefficients αa/T (purple) and αc/T
(blue) for both crystallographic directions at H = 0. At T < 0.6 K, αa/T and αc/T
scale on top of each other by a constant factor of αc/αa ≈ −6.1 which indicates that
at low temperatures a single E∗ starts to dominate the system. In this respect, the
increase of |Γa,c| might reflect first signs of quantum-critical behavior.



4.2: Thermal Expansion and Magnetostriction of CePdAl 33

Figure 4.5: (a) Temperature dependence of the thermal expansion parameters αa/T (pur-
ple dots) and αc/T (blue dots) for both crystallographic directions in zero field.
(b) The corresponding Grüneisen ratios Γσa (purple dots) and Γσc (blue dots)
vs. temperature. In both cases the transition anomaly is hardly visible any-
more. Full symbols indicate measurements during heating, open symbols during
cooling the sample. The specific-heat data are taken from [37]

The thermal-expansion data plotted in fig. 4.5(a) clearly exhibit a change of the
anisotropy when the partial antiferromagnetic order of the AF1 phase sets in. With
decreasing T , αc/T is in the beginning positive and changes its sign at T ≈ 4.5 K. This
change indicates the different stress dependencies of the underlying E∗s: at higher T ,
the system is controlled by the Kondo effect E∗ ∝ TK which has, as a local interaction, a
more isotropic, positive pressure dependence along both axes. In the antiferromagnetic
phase, on the other hand, E∗ ∝ TN increases for stress along the a and decreases for
stress along the c axis. While such sign changes are frequently observed at phase transi-
tions, they usually appear exactly at the transition temperature. In CePdAl, however,
αc changes its sign far above TN. As αc ∝ − ∂S

∂σc
, this again points to a maximum of

S as function of a nonthermal control parameter, here given by σc, that develops far
above TN and corresponds to the S maximum as a function of the magnetic field.

Together with the absence of a clear transition signature in Γσa and Γσc [see fig. 4.5(b)],
this conveys the impression that the transition extends over a wide temperature range.
The critical fluctuations start at high temperature leading to a smooth crossover in
the anisotropy of ∂S/∂σi from a Kondo dominated to an antiferromagnetically ordered
state. The continuous change of Γσi down to the lowest measured temperature of
T = 20 mK indicates that even here the evolution towards the ordered state is still in
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progress. To our knowledge, this is the first time that such a retarded evolution of a
phase transition could be observed. In view of the geometric frustration of CePdAl,
this seems to be a particular feature of partial order in frustrated materials.

4.3 CePdAl in Magnetic Field

In the following, we will discus the field dependence of the thermal expansion in CeP-
dAl. For clarity, the discussion will in the beginning focus on measurements along the
a axis that have been measured during cooling the sample at constant magnetic fields
along the c axis.

Figure 4.6: Thermal expansion along the a axis αa/T vs. T at different magnetic fields
between H = 0 and µ0H = 3.375 T applied along the c direction. The small,
colored arrows indicate the transition temperatures. At increasing H, a second
anomaly appears, marked by big colored arrows. At µ0H = 3.375 T, in the AF2

phase, this anomaly gets replaced by a large peak. Lines are guides to the eye.
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Figure 4.7: (a) Thermal expansion along the a axis αa/T vs. T in different magnetic fields
between µ0H = 3.5 T and µ0H = 3.68 T applied along the c direction. The
small, colored arrows indicate the phase transition to the AF3 phase.
Comparison of αa/T with C4f/T at (b) µ0H = 3.35 T and (c) µ0H = 3.68 T.
Lines are guides to the eye. The specific-heat data are taken from [18].

Figure 4.6 shows the temperature dependence αa/T along the a axis between H = 0
and µ0H = 3.375 T. With increasing H the transition shifts to lower temperatures
and gets broadened. Simultaneously, a second anomaly appears just below TN which is
likewise shifted to lower T , but gets more pronounced at higher H, until it finally dom-
inates the thermal expansion at µ0H = 3.2 T. This anomaly corresponds to a shoulder
of the specif-heat coefficient C4f/T shown in fig. 4.1(a). Its larger size in αi/T points
to a strongly enhanced sensitivity to pressure. At the phase boundary µ0Hc2 ≈ 3.25 T,
this anomaly is replaced by an even larger peak which stays roughly at T ≈ 0.5 K. At
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higher fields 3.5 T < µ0H < 3.7 T, a sharp dip appears that moves to lower T with
increasing H [see fig. 4.7(a)]. This dip represents the discontinuous phase boundary
to the AF3 phase which has in this field range a negative stress dependence along the
a axis. Figures 4.7(b) and (c) show a comparison of αa/T with C4f/T . The transition
to the AF3 phase is clearly visible in both thermodynamic probes.

At higher magnetic fields, beyond the upper critical field Hc3, the thermal expan-
sion exhibits, like the specific heat, a Schottky anomaly that is shifted linearly with H
to higher temperatures[see fig. 4.8]. This anomaly is caused by the Zeeman splitting
of the Ce3+ ground-state doublet, as mentioned previously. At temperatures below it,
the Kondo screening is suppressed and the magnetic moments are ferromagnetically
polarized along the field direction.

Figure 4.8: (a) The linear thermal-expansion coefficient along the c axis αc and (b) the
specific heat C/T vs. T in high magnetic fields up to µ0H = 14 T applied along
the c direction. Both quantities exhibit a field dependent Schottky anomaly
due to the Zeeman splitting of the Ce3+ ground-state doublet. The specific-
heat data are taken from [18].
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Figure 4.9: Summary of the thermal expansion along the a axis and the c axis in fields
between H = 0 and µ0H = 4.25 T applied along the c direction. Lines are
guides to the eye.

In fig. 4.9 the thermal-expansion measurements of CePdAl are summarized for both
crystallographic directions in the field range 0 ≤ µ0H ≤ 4.25 T. For clarity only data
obtained during heating the sample are shown. Up to µ0H = 3.38 T, the thermal ex-
pansion parallel to the a axis stays positive in the temperature range shown here. In
the field range of the AF3, however, it starts to change its sign above TN and for fields
above µ0H = 4 T, when the AF order is suppressed completely, it is negative up to
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4 K. On the first sight, the T dependence of αc/T seems to mirror that of αa/T . But
in contrast to the a direction, αc/T is positive for higher temperatures and negative at
low temperatures for all fields.

In conclusion, the stress anisotropy of CePdAl changes when the partial AF order
evolves with decreasing T at H = 0 and again when the ordered state and the frus-
tration is suppressed at H > Hc3. This again indicates that in the related field and
temperature ranges, CePdAl is controlled by different E∗s.

A similar, but not equivalent change in the system’s anisotropy can be observed in
the magnetostriction. Figure 4.10 shows the field dependence of λa and λc for fields in
c direction at a temperature of T = 0.1 K. The first-order metamagnetic transitions
between the AF1, AF2, and AF3 phases as well as the suppression of the magnetic
order for fields at µ0H & µ0Hc3 ≈ 4.1 T can be seen in the three pronounced peaks in
both directions. At higher H, λa and λc both asymptotically approach constant val-
ues. The change from the partially ordered to the field-polarized state leads again to a
significant change of the stress dependent anisotropy of M because λi = −Vm∂M/∂σi.
In the AF order, roughly ∂M/∂σc ≈ −∂M/∂σa. In contrast to that, the magnetization
of the field-polarized state depends only on uniaxial stress along the c direction. At
the metamagnetic transitions, small, but significant hystereses can be observed that
are typical for first-order transitions.

The thermal expansion data exhibit likewise differences between measurements taken
during heating and cooling the sample (see fig 4.11). These hystereses appear, however,
even in the temperature and field range where the phase transitions are apparently con-
tinuous. An example for this behavior is given at H = 0 in fig 4.11(a). For comparison
below that figure, the field-dependent component of the magnetic-ordering vector τ
along the reciprocal c axis is plotted in the same temperature range. As mentioned
above, CePdAl exhibits an unusual temperature dependence of its magnetic structure
below TN, within the AF ordered phase. The hysteresis around the phase transition
that can be clearly seen in αc/T terminates exactly at the temperature where the mag-
netic structure locks in and τ reaches a constant value. In addition, the hysteresis in
the thermal expansion along the c axis is much more pronounced than that along the
a axis [see 4.4(a)]. It seems, therefore, that these hystereses of αi are caused by the
temperature dependent variation of the magnetic structure along the c axis and that
they cannot serve as evidence against a second-order transition.
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Figure 4.10: Magnetic field dependence of the magnetostriction coefficients λa and λc along
the a and c axis, respectively, for field applied in c direction at constant tem-
perature of T = 0.1 K. Red data points are measured with increasing and blue
data points with decreasing magnetic field. Lines are guides to the eye.
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Figure 4.11: (a) The hysteresis of thermal expansion along the c direction αc/T vs. temper-
ature and the temperature dependence of τ , the component of the magnetic
ordering vector Q = (0.5 0 τ) in the reciprocal c axis direction. The data of τ
were taken from [26].
(b) The hysteresis in the thermal expansion along the a direction αa/T at
µ0H = 3.56 T and 4 T. The sharp peaks are the anomalies of the first-order
transition to the AF3 phase.
The red data points are measured during heating and the blue data points
during cooling the sample at constant magnetic field. Lines are guides to the
eye.
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Figure 4.12: (a) The linear and volume thermal-expansion coefficients αa/T (purple dots),
αc/T (blue dots) and 1/3 ·αV /T (black dots) as a function of the temperature
at zero magnetic field.
(b) The volume thermal-expansion coefficient αV /T vs. temperature at dif-
ferent magnetic fields up to µ0H = 14 T.
Lines are guides to the eye.

So far, we mainly addressed the uniaxial stress dependences of the entropy and magne-
tization. To study the hydrostatic pressure dependence of S, we calculate the volume
thermal expansion by αV = 2αa+αc = −Vm∂S/∂p. In fig. 4.12(a) the linear and volume
thermal-expansion coefficients at H = 0 (the latter divided by 3 ·T ) are plotted against
the temperature. As can be seen, αV /T and, hence, the hydrostatic pressure depen-
dence of S is in the AF phase significantly smaller than |∂S/∂σa| and |∂S/∂σc|. Such
a strong anisotropy is characteristic for antiferromagnetic interactions of nearly local-
ized moments. Figure 4.12(b) shows the temperature dependence of αV /T at different
magnetic fields up to µ0H = 14 T. ∂S/∂p is positive in the entire field and temper-
ature range of the AF order. As the Kondo effect should produce a large, negative
hydrostatic pressure dependence of S, it obviously hardly affects the partial magnetic
order. In high fields, when the magnetic order and the Kondo effect are suppressed, the
absolute value of αV /T gets very small and constant in the whole temperature range
shown here. The temperature independent small value of αV /T points in this field
range to a Fermi liquid of a weakly correlated metal with a typical diminutive pressure
dependence of the Sommerfeld coefficient ∂γ/∂p = −VmαV /T .
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4.4 CePdAl - Uniaxial Stress and Strain Depen-

dences of TN

The combination of thermal-expansion and specific-heat measurements allows to esti-
mate the uniaxial and hydrostatic pressure dependences of the magnetic phase-transition
temperature TN with Pippard’s extension to the Ehrenfest relation and the Clausius-
Clapeyron equation. The obtained values are plotted in fig. 4.13(a) against the mag-
netic field. From H = 0 up to the beginning of the AF2 phase at µ0H ≈ 3 T, the
pressure dependences remain for both directions nearly constant. Uniaxial pressure
along the a axis enhances TN and thus strengthens the magnetic order, whereas stress
along the c axis weakens the order. This effect is about twice as strong as that of
σa. The apparent divergences above 3 T are due to the pressure dependences of the
metamagnetic critical field Hc1. At the onset of the AF3 phase, both uniaxal stress de-
pendences are negative and nearly isotropic. With further increased field, however, the
difference between dTN/dσa and dTN/dσc grows again until at the upper critical field
Hc3, 2dTN/dσa = −dTN/dσc and the isotropic, hydrostatic component reaches zero.
In the entire field range of the magnetic order at H < Hc3, this hydrostatic pressure
dependence is negative and, like ∂S/∂p, comparatively small. In accordance to mea-
surements under finite hydrostatic pressure, TN decreases with increasing p [34, 35, 36].

Figure 4.13: (a) The uniaxial and hydrostatic pressure dependences of the Néel temperature
TN as a function of the magnetic field applied parallel to the c direction. The
dots represent the dependences of the AF1 and AF2 phases and the diamonds
those of the AF3 phase. Lines are guides to the eye.
(b) The uniaxial strain dependences of TN vs. the magnetic field.
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Figure 4.14: Schematic illustration of uniaxial pressure (a) and uniaxial strain (b) applied
to a hexagonal lattice. Due to the Poisson effect uniaxial pressure is always
accompanied by a dilatation perpendicular to the stress direction, whereas
uniaxial strain affects the lattice only along one direction.

The effect of uniaxial pressure on a crystal lattice depends on its specific elastic be-
havior. Additionally, any application of stress generates a dilatation perpendicular to
it, the so-called Poisson effect (see fig. 4.14). As a result, it is impossible to relate
uniaxial pressure dependences directly to changes of the crystal structure. In order to
do that, the stress dependences have to be converted into strain dependences. This
requires the determination of the elastic constants cij. The hexagonal crystal structure
of CePdAl is characterized by five independent constants [52]. As we consider only
symmetry-conserving stress combinations we focus in the following on the four longi-
tudinal constants c11, c12, c13, and c33.

So far, there exist only very few investigations of the elastic behavior of Ce-based heavy-
fermion systems with ZrNiAl-type crystal structure. The only publication of CePdAl
reports X-ray diffraction measurements under quasi-hydrostatic pressure up to 11 GPa
with a solid pressure transmitting medium (1:4 amorphous boron and epoxy resin) [34].
Using the Birch equation the authors obtained a bulk modulus of 47.8± 1.7 GPa. An
analysis of the pressure-dependent lattice parameters results in the linear compress-
ibilities ka = 7.24 · 10−3 GPa−1 and kc = 6.44 · 10−3 GPa−1 along the a and c axis,
respectively. The elastic constants c11, c33, c44 and c66 of the related, isostructural
compound CeRhSn have been determined by ultrasonic-sound velocity measurements
as a function of temperature [53, 54]. The temperature dependence of the cij clearly
reveals the Kondo effect and the presence of a crystal-electric field that splits the 4f
multiplet of the Ce3+ ions. Since for hexagonal crystal structures c66 is equivalent with
(c11 − c12)/2, the only missing elastic constant is c13. By assuming that the elastic
bahavior of CeRhSn roughly equals that of CePdAl, we can use the bulk modulus of
CePdAl to estimate the missing c13. In addition, at our request, the materials project
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calculated the elastic constants of CePdAl by using the density-functional theory [55].
As the calculations do not account for the hybridization the 4f electrons with the con-
duction band the obtained values exceed the measurements by a factor of ≈ 2. The
calculated and measured cij exhibit, however, the same elastic anisotropy and should,
hence, give the same qualitative behavior.

For the conversion we have used the following values which have been obtained from
the measurements on CeRhSn and CePdAl, and extrapolated to zero temperature (in
GPa):

cij =


79.9 19.9 43.0 0 0 0

79.9 45.6 0 0 0
58.5 0 0 0

49.0 0 0
49.0 0

30.0

 . (4.3)

The converted strain dependences of TN are displayed in 4.13(b). The data demonstrate
that the magnetic order of the AF1 and AF2 phase is mainly controlled by the length
of the c-lattice parameter. In the AF3 phase, dTN/dεc stays constant at a similar value
than of the AF1 phase. dTN/dεa, on the other hand, changes from a positive to a
negative strain dependence. Its sign change is close to the maximum of the dome-
shaped AF3 phase. Notably, TN increases when the c axis is elongated, i.e., the Ce-Pd
layers are pulled apart from each other. This clearly rules out a low dimensionality
of the magnetic order as source for the strong critical fluctuations seen in the specific
heat, magnetization and thermal expansion measurements and gives further evidence
that the frustration has an essential impact on the magnetic order in CePdAl.
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CePd1−xNixAl

5.1 CePd0.95Ni0.05Al

5.1.1 CePd0.95Ni0.05Al at Zero Magnetic Field

The specific heat and thermal expansion along the a axis of the CePd5.95Ni0.05Al sample
at H = 0 are plotted as a function of temperature in fig. 5.1(a). In both measurements,
the antiferromagnetic transition is clearly visible, though not as sharp as in the parent
compound CePdAl [see fig. 4.4]. As expected, the transition temperature is slightly
reduced to TN ≈ 1.9 K. At lower temperatures, αa/T shows a distinct difference between
cooling (open symbols) and heating (full symbols) the sample. As already indicated
by fig. 5.1(a), the Grüneisen ratio increases down to the lowest measured temperature,
even deep in the AF ordered phase, similar to x = 0 [see fig. 5.1(b)]. In contrast to
CePdAl, the transition anomaly now appears in Γσa as a slight kink, but is still much
smaller than the anomalies observed in αa/T and C4f/T .

Figure 5.1: (a) Specific heat C4f/T (black data points) and thermal expansion along the a
axis αa/T (purple data points) of CePd0.95Ni0.05Al as a function of temperature
in zero magnetic field.
(b) The corresponding Grüneisen ratio Γσa as a function of temperature calcu-
lated from the data of (a).
The specific heat data are taken from Ref. [37]. Full symbols represent mea-
surements during heating and open symbols during cooling the sample. Lines
are guides to the eye.
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The c-axis thermal expansion αc/T of CePd5.95Ni0.05Al approximately follows that of
the parent compound CePdAl with a reduced TN [see fig. 5.2(a)]. With decreasing T ,
αc/T reveals again a sign change well above TN and reaches large negative values at T ≤
TN. Starting just above TN, the data show for both directions a pronounced difference
between cooling and heating. This hysteresis is much larger than that observed in
CePdAl and covers a much more extended temperature range. The strongly enhanced
up- and downturns of αa/T and αc/T at T → 0 demonstrate that below TN the system
no longer reaches a thermal equilibrium. The calculated Grüneisen ratios are displayed
in fig. 5.2(b). As already seen in the parent compound, the absolute values of Γσa and
Γσc continuously increase below TN with decreasing T .

Figure 5.2: (a) Temperature dependence of the linear thermal expansion coefficients of
CePd0.95Ni0.05Al divided by T for both crystallographic directions in zero mag-
netic field.
(b) The corresponding Grüneisen ratios Γσa (purple) and Γσc (blue) as function
of temperature at H = 0.
Full symbols represent measurements during heating and open symbols during
cooling the sample.
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5.1.2 CePd0.95Ni0.05Al in Magnetic Field

As shown in fig. 5.3(a) with increasing magnetic field, the magnetic order in
CePd0.95Ni0.05Al is suppressed. At the critical field µ0Hc ≈ 3.3 T (corresponds to
the upper critical field of the AF3 phase in pure CePdAl), αa/T and αc/T change their
sign. The different anisotropy of ∂S/∂σi below and above Hc signals the change from
a partially ordered to a field-polarized ground state. In contrast to the parent com-
pound CePdAl, shown in fig. 4.9, the transition anomalies remain strongly broadened
up to Hc and the sharp peaks of the AF3 phase cannot be observed anymore. Similar
to the zero-field data, the measurements in magnetic fields show extended hystereses
with strong up- and downturns at low temperatures. These hystereses together with
the broadening of the transition make it impossible to analyze the data near Hc with
regard to a field-induced QCP.

Figure 5.3(b) shows a comparison of the linear to the volume thermal-expansion coeffi-
cients in zero field. As in CePdAl, the isotropic, hydrostatic pressure dependence of the
entropy is significantly smaller than its uniaxial stress dependences. As for CePdAl,
αV /T is negative below TN indicating that again hydrostatic pressure suppresses the
magnetic order. At fields much larger than Hc [see fig. 5.3(c)], αV /T finally approaches
a small nearly constant value that is typical of a Fermi liquid.

To study the hysteretic behavior of CePd0.95Ni0.05Al in more detail field-heated and
field-cooled measurements at H = 0 and µ0H = 3 T, near the critical field Hc, are
shown in fig. 5.4. At H = 0 the hysteretic behavior seems to be more pronounced
along the c axis than at H = Hc where the data look like mirror images of each other.
Although the hystereses appear at temperatures clearly beyond TN, they might be re-
lated to the magnetic order. The hysteresis above TN might be due to the pronounced
short-range order probably associated with the frustration [18]. Furthermore, at fields
higher than Hc the hysteretic behavior vanishes [see fig. 5.5(a)]. To illustrate this in
5.5(b) αc/T measured at T = 0.1 K during heating and cooling is plotted against the
magnetic field. The difference between the field-cooled and field-heated measurements
reaches its maximum just below the critical field where αc/T changes its sign. Above
≈ 4 T the difference disappears nearly completely.
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Figure 5.3: (a) Temperature dependence of the linear thermal-expansion coefficients of
CePd0.95Ni0.05Al divided by T , αa/T and αc/T , at different constant magnetic
fields up to µ0H = 4 T applied along the c direction.
(b) Comparison of αi/T with the volume thermal-expansion coefficient αV di-
vided by 3 · T at H = 0.
(c) The volume thermal expansion αV /T at different magnetic fields between
H = 0 and µ0H = 14 T parallel to the c axis.
Full symbols represent measurements during heating and open symbols during
cooling the sample. Lines are guides to the eye.
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Figure 5.4: Comparison of the hysteresis of the thermal expansion coefficients αa,c/T of
CePd0.95Ni0.05Al between cooling (blue data) and heating (red data) in zero
field (a) and µ0H = 3 T (b).
Lines are guides to the eye.

A characteristic dependence of αi typically develops when a pressure-dependent phase
transition is crossed by varying a tuning parameter at low temperatures [22]. It is
caused by the sign change of ∂S/∂p at the maximum of the accumulated entropy
which arises at the phase transition. In our case Hc depends on pressure and thus
the phase transition occurs at the field where αc changes its sign if frustration effects
are neglected. The latter can be assumed because at this field the magnetic order is
suppressed by the field polarization of the magnetic moments just as in CePdAl.
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Figure 5.5: (a) Hysteresis in the thermal expansion coefficient αa/T of CePd0.95Ni0.05Al
in different magnetic fields µ0H = 3 T, 5.5 T and 6 T. Full symbols indicate
that the temperature was raised during the measurement, open symbol that it
was lowered. (b) Field dependence of the thermal expansion coefficient αc/T
at T = 0.1 K. Red data indicates that the temperature was raised during the
measurement, blue data that it was lowered. Lines are guides to the eye.

To look for additional phase transitions within the field range of the AF order as
found in CePdAl [see chapter 4.1], magnetostriction measurements have been performed
at low temperature [see fig. 5.6]. The data for increasing fields (red) were taken at
T = 100 mK, the data for decreasing field (blue) was taken at T = 30 mK. Like
the thermal expansion, the measurements show hystereses at µ0H < 4 T [see λc in
fig. 5.6(a)] between measurements for increasing and decreasing magnetic field. Though
the data shown here has been taken at different temperatures, this behavior has also
been observed at different, but constant temperatures (not shown here) and therefore
is not due to the temperature difference between 0.3 K and 0.3 K. For T ≤ 0.1 K, as a
function of H, two shallow peaks can be identified [see fig. 5.6(a) and (b)]. The peak
at higher fields is close to Hc and is presumably related to the upper critical field of
the AF order. The second peak at µ0H ≈ 2.5 T might correspond to the transition
between the AF2 and AF3 phase of CePdAl. Taking this resemblance to the parent
compound seriously, these two peaks are generated by first-order transitions which have
been smeared out due to the intrinsic Pd/Ni site disorder.
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Figure 5.6: (a) The field dependent magnetostriction of CePd0.95Ni0.05Al λa and λc, be-
tween H = 0 and µ0H = 7 T parallel to the c axis at T = 0.1 K (red data)
and T = 0.03 K (blue data). The red lines also represent measurements during
increasing the magnetic field, the blue lines during decreasing it.
(b) The magnetostriction along the c axis at different constant temperatures in
the same field range. For clarity only the data for increasing fields are shown.
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Figure 5.7: Magnetic phase diagram of CePd0.95Ni0.05Al for fields along the c direction up
to µ0H = 4 T. Grey open circles (TS) are derived from the maximum in the
magnetization, green open circles (TN) from the specific-heat transition anomaly
(data taken from [37, 56]). The red and orange diamonds represent the shoulder
and peak of λc, respectively. The purple squares are the steepest increase of
αa/T . The hysteretic behavior is illustrated by the shaded background: in the
red shaded area the value of αa/T is larger for heating the sample, in the blue
shaded area for cooling. In areas with more intense colors the hysteresis is
larger.

The thermal expansion and magnetostriction data of CePd0.95Ni0.05Al can be summa-
rized in a magnetic phase diagram depicted in fig. 5.7. As particularly at high fields the
transitions are hardly distinguishable, the data points can only give a rough estimate
of the phase boundaries. The position of the transition temperature was determined by
the steepest increase of the slope of αa/T , verified by differentiation, and is consistent
with the peak position of the specific-heat data [37, 56]. The phase diagram resembles
to some extent that of the stoichiometric parent compound. Clearly above TN, the
entropy exhibits likewise a maximum as a function of the magnetic field. The temper-
ature of this maximum TS seems to merge into the TN line close to Hc. The position
of the shallow peaks in λa(H) and λc(H) are marked by red and orange diamonds,
respectively. The peak at higher fields closely reproduces the field dependence of TN.
The extended hysteresis is illustrated by the colored background.
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The maximum of the hysteresis (red line) is observed close to TN . Above µ0H ≈ 4 T,
the magnetic order breaks down and the field-polarized ground state sets in.

To search for quantum-critical behavior the Grüneisen ratio has been calculated by
using the specific-heat data from [37, 56]. The resulting values are plotted in fig. 5.8
as a function of T . The up- and downturns at the lowest temperatures due to the
hystereses have been discussed above. At magnetic fields above µ0H = 2 T no transi-
tion signatures can be observed. The divergent temperature dependence and the sign
change of Γσa and Γσc suggest the proximity to a field-induced QCP. In contrast, how-
ever, the divergences are apparently suppressed if the magnetic field is increased above
≈ 2 T. This might be the result of a broadened high-field phase with first-order tran-
sitions, similar to CePdAl. Such discontinuous transitions would reduce the critical
fluctuations even if chemical disorder lead to a slight broadening of the transitions.

Figure 5.8: The Grüneisen ratios Γσa and Γσc of CePd0.95Ni0.05Al as a function of temper-
ature at various constant magnetic fields applied parallel to the c axis.
Full symbols represent measurements during heating and open symbols during
cooling the sample. Lines are guides to the eye.
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5.2 CePd0.90Ni0.10Al

5.2.1 CePd0.90Ni0.10Al at Zero Magnetic Field

Two different samples with a nominal Pd content of x = 10 % were investigated. In
the following they are named sample A or x = 0.10 A and sample B or x = 0.10 B.
Sample A was a bigger crystal than Sample B. Sample B was very brittle and broke
during the measurement along the a axis, wherefore an exact determination of the
sample length was not possible anymore. Hence, the absolute values of the thermal
expansion of Sample B cannot directly be compared to those of Sample A. Moreover,
as the remaining pieces of Sample B were to small after it broke, the c direction could
not be measured. In the following most of the discussion will focus on sample A, with
short comparisons to sample B when useful.

Figure 5.9: (a) Temperature dependence of the linear thermal expansion coefficients of
CePd0.90Ni0.10Al sample A divided by T for both crystallographic directions
in zero magnetic field.
(b) The corresponding Grüneisen ratios Γσa (purple) and Γσc (blue) as function
of temperature at H = 0.
Full symbols represent measurements during heating and open symbols during
cooling the sample. The specific heat data to calculate the Grüneisen ratios are
taken from Ref. [37].
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The thermal-expansion coefficients along both axes, αa/T and αc/T , of CePd0.90Ni0.10Al
sample A at H = 0 are plotted in fig. 5.9(a). In neither case is a clear transition to
the antiferromagnetic order visible, but the specific-heat coefficient C4f/T [not shown
here, see [37]] has a clear kink at T ≈ 0.6 K (comparable to the temperature of the
steepest slope in αC/T ): At this temperatures αa/T tends to a T -independent behavior
and αc/T shows a slight change in slope. At lower temperatures both αa and αc show
again a distinct difference between cooling (open symbols) and heating (full symbols)
the sample, though not as pronounced as in CePd0.95Ni0.05Al. The Grüneisen ratios at
zero field Γσa,c are plotted in fig. 5.9(b). In both cases the data is nearly constant at
higher temperatures. Γσa increases only slightly towards low temperatures whereas Γσc
exhibits a sign change and a steep decrease, similar to CePd0.95Ni0.05Al.

5.2.2 CePd0.90Ni0.10Al in Magnetic Field

In CePd0.90Ni0.10Al the magnetic order is suppressed with increasing magnetic field,
as both linear thermal-expansion coefficients, αa/T and αc/T , exhibit a sign change
at Hc between µ0H = 1.5 T and µ0H = 2 T at low temperatures as can be clearly
seen in fig. 5.13. As for CePd0.95Ni0.05Al the different anisotropies of ∂S/∂σi for low
and high fields indicate the change from the partially ordered state to the field polar-
ized state. The evolution of the hysteresis with increasing field is comparable to that
in CePd0.95Ni0.05Al, rendering it impossible to identify a possible field-induced QCP.
Fig. 5.10(a) shows the complete data set of the temperature dependence of αa/T and
αc/T for different fixed magnetic fields up to 4 T, i.e. well above Hc.

Figure 5.10(b) shows a comparison of the volume and linear thermal-expansion co-
efficients in zero field. CePd0.90Ni0.10Al continues the trend started at CePd0.95Ni0.05Al
as (1/3) · |αV /T | now exceeds |αa/T | because of the large absolute value of αc/T .
Again, as αV /T is negative, hydrostatic pressure suppresses the magnetic order and
for H > Hc, αV /T becomes constant at very small absolute values, typical of a Fermi-
liquid [see fig. 5.10(c)].

Figure 5.11 shows αc/T of sample B in magnetic fields between H = 0 and µ0H = 6 T.
The data is comparable to sample A with small differences in the magnetic-field be-
havior. The sign change in αc/T due to the suppression of magnetic order is shifted
to somewhat higher fields (µ0Hc ≈ 2.1 T) and at µ0H = 4 T, αc/T is not constant yet.
Therefore we assume that sample B has a slightly lower Ni content than sample A.
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Figure 5.10: (a) Temperature dependence of the linear thermal-expansion coefficients of
CePd0.90Ni0.10Al sample A divided by T , αa/T and αc/T , at different constant
magnetic fields up to µ0H = 4 T applied along the c direction.
(b) Comparison of αi/T with the volume thermal-expansion coefficient αV
divided by 3 · T at H = 0.
(c) The volume thermal expansion αV /T at different magnetic fields between
H = 0 and µ0H = 14 T parallel to the c axis.
Full symbols represent measurements during heating and open symbols during
cooling the sample. Lines are guides to the eye.
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Figure 5.11: Temperature dependence of the linear thermal-expansion coefficient αc/T of
CePd0.90Ni0.10Al sample B at different constant magnetic fields up to µ0H =
6 T applied along the c direction.
Full symbols represent measurements during heating and open symbols during
cooling the sample. Lines are guides to the eye.

To compare the hysteretic behavior of CePd0.90Ni0.10Al with CePd0.95Ni0.05Al, field-
heated and field-cooled measurements at H = 0 and µ0H = 3.0 or 2.5 T are shown in
fig. 5.12. For sample A at zero field the hysteresis is more pronounced for αa/T than
for αc/T [see fig. 5.12(a)]. Above the critical field Hc, i.e., at µ0H = 3 T, the hysteresis
is significantly smaller than at H = 0 [see fig. 5.12(b)]. The same behavior has been
observed for CePd0.95Ni0.05Al. Suprisingly, sample B [see fig. 5.12(c) and (d)] does not
show any sign of a hysteresis between heating and cooling. This results presumably
from a different Ni distribution [Pd(1) and Pd(2) sites] in this specific sample, as it
was a lot smaller than the other crystals and very brittle at room temperature.
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Figure 5.12: Comparison of the hysteresis of the thermal expansion coefficients αa,c/T of
CePd0.90Ni0.10Al sample A ((a) and (b)) and B ((c) and (d)) between cooling
(blue data) and heating (red data) in zero field ((a) and (c)) and µ0H = 3 T
and µ0H = 2.5 T ((b) and (d)), respectively.
Lines are guides to the eye.
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Figure 5.13: Field dependence of the thermal expansion coefficient αc/T at T = 0.1 K for
CePd0.90Ni0.10Al sample A and B. Red data indicates that the temperature
was raised during the measurement, blue data that it was lowered.
Lines are guides to the eye.

In figure 5.13 the field dependence of αc/T of CePd0.90Ni0.10Al A and B is plotted at
T = 0.2 K for heating and cooling. The same hysteretic behavior as above can be
observed. More importantly the data resembles the S-shaped pressure dependence of
CePd0.95Ni0.05Al [see fig 5.5] albeit broadened and shifted to lower fields. It similarly
indicates that Hc depends on pressure and that the phase transition occurs at the field
where αc/T changes its sign when the frustration effects are suppressed because of the
field polarization.

To study the evolution of the metamagnetic phase transitions within the AF order
with increasing Ni content, additional magnetostriction measurements have been per-
formed for CePd0.90Ni0.10Al A and B. Figure 5.14 shows λa and λc at T = 0.1 K for
sample A and sample B, respectively. The heating data (red line) for sample B was
taken at T = 0.2 K. In contrast to CePd0.95Ni0.05Al, here only one peak can be iden-
tified in both directions, presumably related to the critical field of the AF order. The
data show no signs of the metamagnetic transitions below Hc.

Due to the lack of clear signatures of transitions in the linear thermal-expansion co-
efficients αa,c/T as well as in the magnetostriction coefficients λa,c we refrain from
constructing a magnetic phase diagram for CePd0.90Ni0.10Al.
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Figure 5.14: Field dependent magnetostriction λa,c of CePd0.90Ni0.10Al along the a axis for
sample A and the c axis for sample B between H = 0 and µ0H = 7 T parallel
to the c axis at T = 0.1 K and T = 0.2 K for the increasing field of sample
B. The red lines represent measurements during increasing magnetic field, the
blue lines during decreasing.

Figure 5.15 shows the Grüneisen ratios for CePd0.90Ni0.10Al sample A as a function of
T calculated by using the specific-heat data from [37, 56]. The effects of the hystereses
have been discussed above. Similar to the linear thermal-expansion data, no transition
signatures can be observed. Comparable to CePd0.95Ni0.05Al the temperature depen-
dence and the sign change of Γσa and Γσc suggest the proximity to a field-induced QCP.
However, the divergences are suppressed when the magnetic field is increased to above
≈ 1 T.
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Figure 5.15: The Grüneisen ratios Γσa and Γσc of CePd0.90Ni0.10Al sample A as a function
of temperature at various constant magnetic fields applied parallel to the c
axis.
Full symbols represent measurements during heating and open symbols during
cooling the sample. Lines are guides to the eye.
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5.3 CePd0.86Ni0.14Al

5.3.1 CePd0.86Ni0.14Al at Zero Magnetic Field

The thermal-expansion coefficients along the a and c axes of CePd0.86Ni0.14Al are plot-
ted in fig. 5.16(a). In both cases no transition to the antiferromagnetic order is visible
and also the specific heat coefficient C4f/T [fig. 5.16(c)] does not show a transition
anomaly. αa/T as well as C4f/T exhibit a strong increase to low temperatures, sim-
ilar to the divergence expected for the approach to a QCP by temperature. On the
other hand, αc/T also increases strongly but still has a downturn with a (possible) sign
change to lowest temperatures, right at the lower limit of our experimental tempera-
ture range. This can also be seen in the logarithmic representation of the specific heat
coefficient [see inset of fig. 5.16(c)] by its deviation from linear behavior (dashed line)
to lowest temperatures. Hence, we cannot rule out the possible onset of magnetic order
at lowest temperatures.

In fig. 5.16(b) the Grüneisen ratios Γσa,c at zero field for both directions are plot-
ted. In both cases the data is mostly constant at higher temperatures, with a huge
difference in the absolute values. Below T = 1 K, Γσa increases slightly whereas Γσc
strongly decreases with the same possible sign change to lowest temperatures as αc/T .
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Figure 5.16: (a) Temperature dependence of the linear thermal expansion coefficients of
CePd0.86Ni0.14Al divided by T for both crystallographic directions in zero mag-
netic field.
(b) The corresponding Grüneisen ratios Γσa (purple) and Γσc (blue) as func-
tion of temperature at H = 0.
(c) The corresponding specific-heat coefficient C4f/T as function of tempera-
ture at H = 0 (taken from Ref. [37]). The inset shows the same data plotted
on a logarithmic scale. The dashed line represents the linear extension of the
data to lowest temperatures.
Full symbols represent measurements during heating and open symbols during
cooling the sample.
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5.3.2 CePd0.86Ni0.14Al in Magnetic Field

Figure 5.17(a) shows the linear thermal-expansion coefficients αa/T and αc/T in mag-
netic fields up to µ0H = 4 T. While αa/T exhibits a sign change just above µ0H = 1 T
no such behavior can be observed in αc/T . A possible explanation for this is that
CePd0.86Ni0.14Al is located just at the edge, but still in the AF ordered phase. More-
over, no hysteresis between cooling (open symbols) and heating (full symbols) is visible
as observed in the behavior of CePdAl with smaller Ni content.

Figure 5.17(b) shows a comparison of the volume and linear thermal-expansion co-
efficients in zero field. (1/3) · |αV /T | now is by far larger than |αa/T | as the latter has
become close to zero for higher temperatures. Still αc/T dominates the linear as well as
the volume thermal expansion. With increasing magnetic field [see fig. 5.17(c)] αV /T
at first diverges to low temperatures and then falls down to constant, low absolute
values in the Fermi-Liquid state at high fields.

Figure 5.18 shows the magnetostriction data for CePd0.86Ni0.14Al at T = 0.1 K for
increasing field (red line) and at T = 0.2 K for decreasing field (blue line). In contrast
to CePd0.90Ni0.10Al, λc is positive in the whole field range and has no minimum. The
behavior of λa, though, is comparable to CePd0.90Ni0.10Al albeit shifted to lower fields
and absolute values. Therefore, the difference in the critical behavior of αa/T and αc/T
is also reflected in λa and λc.
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Figure 5.17: (a) Temperature dependence of the linear thermal-expansion coefficients of
CePd0.86Ni0.14Al divided by T , αa/T and αc/T , at different constant magnetic
fields up to µ0H = 4 T applied along the c direction.
(b) Comparison of αi/T with the volume thermal-expansion coefficient αV
divided by 3 · T at H = 0.
(c) The volume thermal expansion αV /T at different magnetic fields between
H = 0 and µ0H = 7 T parallel to the c axis.
Full symbols represent measurements during heating and open symbols during
cooling the sample. Lines are guides to the eye.
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Figure 5.18: Field dependent magnetostriction of CePd0.86Ni0.14Al along both crystallo-
graphic axes, λa and λc, between H = 0 and µ0H = 7 T parallel to the c
axis at T = 0.1 K (red data) and T = 0.2 K (blue data). The red lines also
represent measurements during increasing the magnetic field, the blue lines
during decreasing.

Figure 5.19 shows the Grüneisen ratios for CePd0.86Ni0.14Al as a function of T calculated
by using the specific heat data from [37, 56]. Though no clear AF phase could be
observed in CePd0.86Ni0.14Al, the divergence of Γσa and Γσc as well as the sign change
of Γσc are typical signs for the proximity to a field-induced QCP. Again, a possible
explanation for this behavior could be given by the chemical site disorder introduced
by the Ni substitution leading to inhomogeneities in the sample.
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Figure 5.19: The Grüneisen ratios Γσa and Γσc of CePd0.86Ni0.14Al as a function of tem-
perature at various constant magnetic fields applied parallel to the c axis.
Full symbols represent measurements during heating and open symbols during
cooling the sample. Lines are guides to the eye.
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Chapter 6

Discussion of the Results

The geometric frustration and partial magnetic order of CePdAl sensitively depend on
the nonthermal control parameters pressure, disorder and magnetic field. Pressure can
be either generated by applying an external, uniaxial or hydrostatic finite stress or by
an isovalent substitution. As we have seen in CePd1−xNixAl, the latter can give rise
to chemical site disorder that considerably affects the material properties in a wide
temperature and field range where the frustrated antiferromagnetic correlations are
present. This disorder hinders the system to reach a thermal equilibrium and should
lead to the freezing of magnetic entropy at T → 0. Even if a QCP could be reached
in this case, the genuine quantum critical behavior would be compromised by strongly
history-dependent effects. The constraints of geometric frustration, on the other hand,
can be removed by applying a magnetic field. This is, however, inevitably accompanied
by the simultaneous destruction of the magnetic order. In fact, the quantum phase
transitions that can be reached in a partial frustrated system by pressure and field are
conceptually different. Three principally different scenarios are conceivable:

1. The application of stress breaks the crystal symmetry and thereby lifts the frus-
tration between the competing AF interactions. In this case the QCP would
separate a magnetically ordered from a frustrated ground state.

2. If, during the application of pressure, the crystal symmetry is preserved, the
pressure will mainly alter the balance between Kondo and RKKY interaction.
The QCP would be located between a partially ordered and a paramagnetic
ground state in which the magnetic moments have been ”switched off” by the
Kondo screening.

3. Finally, if a magnetic field is applied, the Kondo effect, AF order and frustration
would ultimately be suppressed by forcing the moments to align parallel to the
field direction. The QCP would then be between a magnetically ordered and a
field-polarized ground state. This scenario can only happen if Kondo effect and
frustration prevail in the field range where AF order is being suppressed.

In order to distinguish between these three possible scenarios we want to study the im-
pact of the different control parameters on the low-temperature properties of CePdAl.
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Figure 6.1: (a) and (b) show the evolution of the frustration parameter fS = TS/TN in
dependence of chemical (a) and hydrostatic (b) pressure. The pressure data in
(b) are taken from Goto et. al [35] (grey circles) and Tang et. al [34] (orange
circles).
(c) and (d) show the evolution of the normalized ratio between the a and the c
lattice parameter (data taken from [37, 38]).
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6.1 Hydrostatic and Chemical Pressure Dependence

of the Frustration

To clarify to which extent the partial geometric frustration is controlled by hydrostatic
or chemical pressure we estimated the frustration parameter fS = TS/TN introduced
above. For this we used former magnetization, specific heat and resistivity measure-
ments on samples substituted with Ni [37] and under hydrostatic pressure [34, 35]. To
complement the data additional magnetization measurements have been carried out
under hydrostatic pressure by C.-L. Huang (Rice University, Houston) [57] and under
ambient pressure on a x = 0.05 sample. In fig. 6.1(a) and (b), fS is displayed as a
function of the Ni concentration x and hydrostatic pressure p, respectively. Up to at
least x ≈ 0.08 and p = 0.6 GPa, fS remains unchanged within the experimental error.
This, indeed, might have been expected because neither hydrostatic pressure nor the
substitution with Ni do change the crystal structure of CePdAl [see chapter 5 and [34]]
and even the ratios between the c and a axes remain roughly constant [see fig. 6.1(c)
and (d)]. As neither hydrostatic nor chemical pressure do lift the geometric frustration
in CePdAl, the unconventional type of partial magnetic order in CePd1−xNixAl persists
up to x = 0.14 [27]. Consequently, the pressure-induced QCP that we might access
in our experiments at zero magnetic field is that of the second scenario in which the
Kondo screening suppresses the magnetic order. In fact, the presence of an increasingly
strong Kondo effect in CePd1−xNixAl was demonstrated by the diminishing size of the
ordered moments for x→ 0.14 [27] and was suggested earlier by measurements on poly
crystalline CePd1−xNixAl [17]

6.2 The Pressure Dependent Accumulation of En-

tropy at x = 0.14

By tuning a system through a QCP with pressure, the p dependence of S should first
increase and then change its sign when the entropy maximum at the QCP is passed.
To look for such a behavior the linear thermal-expansion coefficients at zero-magnetic
field of all investigated samples are plotted against the temperature in fig. 6.2. With
increasing Ni concentration, the Néel temperature clearly moves to lower temperature
and at low, constant T , the absolute values of αa/T and αc/T increase up to x ≈
0.10. At further increased x, αc/T and consequently ∂S/∂σc change their sign between
x = 0.1 and 0.14, as expected for a pressure-induced QCP. For the stress along the a
direction, however, no such indication for a QCP can be found, αa/T remains positive
in the entire studied x range. A possible explanation for this behavior is that with
x = 0.14 the QCP has not yet been reached and the low-temperature anomalies of
αa/T and αc/T are due to the phase transition to the AF phase.
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Independent of the exact position of the QCP, all measurements on Ni substituted
samples reveal strongly broadened transitions. This broadening affects the entropy at
constant T as a function of x. Usually, the maximum of S at a QCP should become
sharper with decreasing T and the maxima and minima of αi/T (∝ −∂S/∂σi with
i = a, c) as a function of x should therefore approach the critical xc of the QCP at
low T . In CePd1−xNixAl, however, αa/T (αc/T ) exhibits a maximum(minimum) at
x ≈ 0.10 and T = 0.1 K clearly displaced from the QCP at xc ≥ 0.14. An obvious
origin of the broadening might be found in the chemical site disorder and the sample
inhomogeneities.

Figure 6.2: Comparison of the temperature dependence of αa/T (upper panel) and αc/T
(lower panel) for all investigated samples in zero magnetic field.
Full symbols indicate that the temperature was raised during the measurement,
open symbol that it was lowered. Lines are guides to the eye.
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The volume thermal-expansion coefficients are shown in fig. 6.3. The isotropic, more
Kondo-like contribution to the thermal expansion grows with increasing x. The highest
values are yielded for the x = 0.14 sample. At this Ni concentration, αV /T apparently
diverges with decreasing T which might be interpreted as quantum-critical behavior.
Such divergences typical appear when a QCP is approached by temperature. Together
with the high, volume-dependent thermal-expansion values this would be inline with
the scenario of a Kondo-driven QCP. The downturn below T ≈ 0.5 K observed for
x = 0.14 is then a clear sign of the transition into the magnetically ordered state.

Figure 6.3: Comparison of the temperature dependence of αV /T for all investigated samples
(except x = 0.10 B) in zero magnetic field.
Full symbols indicate that the temperature was raised during the measurement,
open symbol that it was lowered. Lines are guides to the eye.
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6.3 Search for a Pressure-induced Quantum Criti-

cal Point

To verify our assumption of such a Kondo-related QCP we now want to compare the
Grüneisen ratios of the different samples. In fig. 6.4, Γσa and Γσc are shown as a func-
tion of T for 0 ≤ x ≤ 0.14, together with the used specific heat and thermal-expansion
data. Above TN, the specific heat exhibits the aforementioned, extended tail due to
the critical fluctuations [see fig. 6.4(a)]. Surprisingly, neither the absolute values of
C4f/T nor the temperature range where the critical fluctuations are observed exhibit a
considerable change with increasing x. The main difference between the measurements
is just the shift of TN to lower T with increasing x. While the thermal expansion is
mainly determined by the length changes along the c axis, αa/T becomes very small
with increasing. We therefore focus on αc/T .

The thermal expansion of CePd1−xNixAl at T > TN shows for small x a behavior
different from that of C4f/T [see fig. 6.4(b)]: With increasing x, the absolute values of
αc/T and its temperature dependence strongly increase. At x = 0.14, αc/T exhibits,
like C4f/T , an apparent divergence to T → 0, which again points to the strong pressure
dependence of a Kondo-driven QCP.

The critical behavior found in C4f/T and αc/T is in striking contrast to that of the
Grüneisen ratios depicted in fig. 6.4(c). As mentioned above, a temperature depen-
dence of the Grüneisen ratio only shows up if either another underlying interaction
with a different E∗ begins to dominate the system, or if the characteristic energy scale
itself is going to zero because the system enters the quantum-critical regime of a QCP.
Therefore, we would expect constant Γσa and Γσc values below TN, since here long-range
order is established, and strong divergences above TN, because here the T dependence
of C4f/T and αc/T point to a nearby QCP. In sharp contrast, we see, however, in the
ordered phase a strong temperature dependence of Γσa and Γσc , which has some resem-
blance to quantum-critical behavior, and outside the antiferromagnetic order, above
TN, nearly constant Grüneisen ratios, typical for a Fermi liquid far away from a QCP.
The contrasting behavior is especially well illustrated by the measurements close to
the assumed QCP at x = 0.14: C4f/T and αi/T (with i = a, b) reveal both strong
divergences while Γσi is temperature independent. In conclusion, both C4f/T and αi/T
indicate the proximity to a QCP but according to Γσi the underlying energy scale does
not vanish under pressure with T → 0. The resolution of this apparent dichotom needs
further investigation.
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Figure 6.4: Comparison of the change in the criticality for increasing Ni content from left
(x = 0) to right (x = 0.14) at zero field. Row (a) shows the evolution of the
specific-heat coefficient C4f/T , row (b) of the linear thermal-expansion coeffi-
cients αa,c/T and row (c) of the respective Grüneisen ratios Γσa,c .
Full symbols indicate measurements during heating, open symbols during cool-
ing the sample. Lines are guides to the eye.
The specific-heat data are taken from [37]
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6.4 The Critical Fields

By suppressing the partial antiferromagnetic order upon applying a magnetic field we
can reach the field-induced quantum phase transitions of the third scenario proposed
above. We have, however, to account for the nature of the related phase transitions.
In CePdAl, the discontinuous phase transition at the critical field Hc3 will cut off the
critical fluctuations. Consequently, hardly any quantum-critical behavior is to be ex-
pected. To identify the nature and position of the field-induced transitions at low
temperature, the magnetostriction and thermal expansion along both axes are plotted
against the magnetic field in fig. 6.5 and fig. 6.6, respectively. A first-order transition
should result in a sharp peak. It can, however, be broadened due to disorder or sample
inhomogeneities. The data show that low Ni concentrations of x = 0.10 are sufficient
to completely wash out the peaks. From this one might conclude that the onset of
magnetic order is continuous at Hc for x > 0.05.

If the frustration is neglected, the position of Hc can be extracted from the change
of the anisotropic stress dependences of the entropy and magnetization because they
are specific to the underlying characteristic energy scales. The magnetostriction of all
samples apart from x = 0.14 reveal field-dependent sign changes of λc while λa remains
positive. In the following we will take that feature as indication of a change of the
anisotropy of ∂M/∂σi (with i = a, c). For x = 0 and 0.05, the fields of the sign
changes of λc perfectly agree with those of αc/T [see fig. 6.6] and with the critical fields
found in magnetization and magnetoresistance measurements [18, 58]. At x = 0.10,
however, the sign change of λc occurs with ≈ 2.5 T at clearly higher fields than that
of αc/T at ≈ 1.5 T. At this low field, however, λa is still proportional to λc. This
mismatch might either point to several, different characteristic energy scales or again
to sample inhomogeneities. In the sample with x = 0.14 no sign change of λc shows up
and that of λa occurs at too high fields. The smooth anisotropy changes at µ0H < 3 T
can hardly be attributed to a phase transition, but a transition might occur below the
temperature of the depicted magnetostriction measurements.
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Figure 6.5: Evolution with increasing Ni content of the magnetic field dependence of the
magnetostriction coefficients λa and λc along the a and c axis, respectively,
for field applied in c direction at constant lowest temperatures. Red data are
measured with increasing and blue data with decreasing magnetic field.
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Figure 6.6: Field dependence of αc/T in fields along the c direction up to µ0H = 6 T. Data
for x = 0 (in (a)) was taken at T = 0.34 K, data for x = 0.05, x = 0.10 A and
x = 0.14 ((b), (c) and (d) respectively) at T = 0.2 K. The red dashed line gives
the approximate critical field Hc. Red symbols indicate measurements during
heating, blue symbols during cooling the sample. Lines are guides to the eye.
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6.5 The Pressure-dependent Accumulation of En-

tropy at the Critical Fields

Similar to the thermal expansion at different x, αa/T and αc/T as a function of the
magnetic field exhibit sign-changes due to the pressure dependence of the critical field
Hc. Examples for this have been discussed above and are additionally given for αc/T
in fig. 6.6. They point to a field- and pressure-dependent maximum of S at H ≈ Hc.
From all measurements shown in fig. 6.6, only the x = 0.05 and 0.10 A samples show
the S-shaped curves expected for quantum-critical behavior. In x = 0 the first-order
transition at Hc = Hc3 presumably cuts off the critical fluctuations and in x = 0.14
the sign-change is not visible, probably, because the Néel temperature is below the
temperature of the experiment. The measurements show that the critical fields de-
crease with growing x. The position of the minima at H− (< Hc) and maxima at H+

(> Hc) of αc/T with respect to the sign change at ≈ Hc are related to the width of
the field-dependent S accumulation [see also fig. 3 in reference [37]]. With increasing
x, |H+ −Hc| and the broadening of the S(H) peak grow considerably, most probably
due to the increasing chemical site disorder. In addition, the differences between field-
cooled and field-heated measurements are strongly enhanced at x = 0.05 but decline
and vanish at x → 0.14 [see fig. 6.6]. According to the X-ray structure investigation,
however, an inhomogeneous Ni distribution is also present at high Ni concentrations.
As the hystereses predominantly cover the temperature and field range of the AF phase,
these history-dependent effects have to be related to the frustration in the partially or-
dered state. The magnetic unit cell of CePdAl consists of six crystallographic unit cells
(neglecting the small deviation from commensurability of τ = 1/3 along the c-direction)
and contains 18 formula units. For the two extreme cases CePdAl and CeNiAl, with
just a single element species at the Pd or Ni site, no hysteresis is expected. Experimen-
tally we find the largest hysteresis effects in the x = 0.05 sample. For this x value the
probability to find at least one Ni ion in the magnetic unit cell is w ≈ 60 %. Indeed,
this value is close to the theoretical probability of w = 50 % of maximum disorder. As
x → 0.14 (w ≈ 93 %) nearly each magnetic unit cell contains at least one Ni ion and
large differences in the Ce environments will be averaged out. This explains the lack
of hysteresis effects in the quantum critical system.

In conclusion, the field-induced quantum criticality of the x = 0.05 and x = 0.10
samples has to be taken with caution as their low-temperature behavior might be
strongly affected by the hystereses.
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6.6 Field-induced Quantum Critical Points

Figure 6.7 shows the evolution of the field-induced criticality in CePd1−xNixAl with
increasing x at the fields H+ where αc/T (H) becomes maximal, slightly above the re-
spective critical Hc. Close to the critical field, the specific heat grows continuously with
decreasing T for all Ni concentrations shown in fig. 6.7(a). In fact, the three displayed
C4f/T measurements have an apparent resemblance to each other. The only differences
are a slight decrease of the absolute values with increasing x and a downturn of the
x = 0 data at T < 0.5 K.

The linear thermal-expansion coefficients divided by T exhibit likewise a divergent
increase to lower temperatures [see fig. 6.7(b)]. In contrast to C4f/T , however, the in-
crease is becoming more pronounced at higher Ni contents. Compared to the behavior
at zero magnetic field, αa/T has the opposite sign of αc/T and no traces of the mag-
netic phase transitions can be observed. The deviations at very low T are attributed
to the Schottky anomalies of the Zeeman-split ground-state doublet of the Ce ions [18].

At low T , the Grüneisen ratios of the a and c axis follow basically the evolution of
αa/T and αc/T with an increase to T → 0 [see fig. 6.7(c)]. Together with the divergent
behavior observed in C4f/T , αa/T and αc/T , this might be interpreted as quantum-
critical behavior although the covered temperature range is comparatively small and
Γσa and Γσc quickly reach the constant values observed at zero magnetic field. With
regard to the three QCP scenarios introduced above, these field-induced QCPs seem
to represent the third scenario where the partial order transits to field-polarized state.
There are, however, some significant deviations from this scenario: Apart from the
strong history-dependent effects, the critical behavior at Hc grows with x, although the
magnetic order gets suppressed and Hc decreases. Even more striking, the x = 0.14
sample does not show the divergence at Hc. This would be at much smaller fields if
the ordered state exists at all at this Ni content. At lower fields, on the other hand, no
signature of quantum criticality shows up in x = 0.14.
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Figure 6.7: Comparsion of the change in the criticality for increasing Ni content (x = 0,
x = 0.05 and x = 0.14) at the maximum of αc/T (µ0H) slightly above the
respective critical field (bright, open symbols for x = 0.14 at H = 0 for com-
parison). Row (a) shows the evolution of the specific-heat coefficient C4f/T ,
row (b) of the linear thermal-expansion coefficients αa,c/T and row (c) of the
respective Grüneisen ratios Γa,c.
Full symbols indicate measurements during heating, open symbols during cool-
ing the sample. Lines are guides to the eye. The specific-heat data are taken
from [37].
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Chapter 7

Conclusions

The main theme of this work was to shed light and resolve the apparent contradic-
tions between the critical behavior found in the thermal expansion, specific heat, and
Grüneisen ratios of CePd1−xNixAl. The main issues concern the behavior of these basic
thermodynamic properties at low temperatures and in magnetic fields, in particular the
regions where the critical behavior could be found. While the specific heat and ther-
mal expansion reveal critical fluctuations close to the onset of partial long-range order
at x = 0.14, the Grüneisen ratio displays a non-critical standard Fermi-liquid state.
On the other hand, within the magnetically ordered state, C4f/T and αi/T show an
unremarkable T dependence while the Grüneisen ratio uncovers some criticality. In
magnetic fields, finally, all quantities concomitantly exhibit quantum-critical behavior,
but for x = 0.14 they do so in a field range that is far beyond the expected critical field.

Thermal expansion and specific heat are derivatives of the entropy. At x = 0.14
they indicate the typical accumulation of S expected in the vicinity of a QCP which is
driven by pressure or magnetic field. The Grüneisen ratio, on the other hand, reveals
the stress dependence of the characteristic energy scale of the system. The fact that
it remains constant demonstrates that this energy scale cannot be altered by pressure
in our experiment. As mentioned above, the thermal expansion is unable to break
the crystal symmetry. It is therefore not surprising that in our experiment the frus-
tration remains unaffected and therefore its characteristic energy scale does not change.

Within the antiferromagnetic order, on the other hand, the situation is quite different
because, in contrast to the frustration, the AF order sensitively depends on pressure,
even if that pressure does not break the crystal symmetry. Is is for this reason that, the
Néel temperature can be suppressed by hydrostatic pressure or substitution with Ni.
In the partially ordered state the AF order competes with the geometric frustration.
The frustration is changed by the pressure dependent magnetic order and the critical
behavior of the characteristic energy becomes visible. This criticality cannot be ob-
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served in the specific heat and thermal expansion simply because the entropy vanishes
due to the evolution of the long-range magnetic order.

Finally, at the field-induced QCPs (at x ≥ 0.05), the thermal expansion and specific-
heat data indicate a field- and pressure-dependent accumulation of entropy. Here, the
frustration competes with the AF order, the Kondo effect, and the field polarization of
the magnetic moments. The Kondo effect is particularly sensitive to isotropic stresses
that does not break the crystal symmetry. As the Kondo effect and the field polariza-
tion suppress the partially frustrated AF order, the underlying characteristic energy
scale E∗ is tuned to zero in our experiment. Therefore, the quantum criticality ap-
pears not only in the specific heat and thermal expansion but also the corresponding
pressure-dependent Grüneisen ratio.

In summary CePd1−xNixAl is one of the rare examples of a heavy-fermion compound
with geometrical frustration. The system is characterized by a number of unusual
properties, in particular, a partially frustrated magnetic order with extended critical
fluctuations. Our measurements shed light on the interplay between geometric frus-
tration and the Kondo effect, two different routes to quantum criticality. The results
demonstrate that the geometric frustration can only be lifted by stress combinations
which break the crystal symmetry. As the thermal expansion does not affect the crys-
tal symmetry, the characteristic energy scale of the frustration is not changed in our
experiment. Therefore, the pressure dependence of this energy scale, the Grüneisen
ratio, appears to be noncritical, although other thermodynamic quantities indicate the
proximity to a quantum critical point. In the partially ordered state, on the other hand,
frustration and long-range order compete with each other and the Grüneisen ratio shows
the critical change of the frustration due to the pressure dependent antiferromagnetic
order. The presented measurements show that a combination of thermodynamic quan-
tities, such as specific heat and thermal expansion, can be used to distinguish between
different types of critical behavior. Such combinations are especially suited to study
materials which are in the vicinity of multiple quantum critical points.
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and Γσc in various constant magnetic fields. . . . . . . . . . . . . . . . 67

6.1 Frustration parameter fS = TS/TN in dependence of hydrostatic and
chemical pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 Comparison of the temperature dependence of αa,c/T for all samples in
zero field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



LIST OF FIGURES 87

6.3 Comparison of the temperature dependence of αV /T for all samples in
zero field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4 Comparison of the change in the criticality for increasing x at zero field 75
6.5 Evolution of λa,c with increasing Ni content . . . . . . . . . . . . . . . 77
6.6 Comparison of the field dependence of αc/T for x = 0, 0.05 0.10 A and

0.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.7 Comparison of the change in the criticality for increasing x at the re-

spective critical field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81





89

Bibliography

[1] F.M. Grosche, S.R. Julian, N.D. Mathur, G.G. Lonzarich, Magnetic and supercon-
ducting phases of CePd2Si2, Physica B (Amsterdam, NL) 223-224, 50 (1996).
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