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ON THE GLOBAL WELL-POSEDNESS OF THE QUADRATIC

NLS ON L2(R) +H1(T)

L. CHAICHENETS, D. HUNDERTMARK, P. KUNSTMANN, AND N. PATTAKOS

Abstract. We study the one dimensional nonlinear Schrödinger equation
with power nonlinearity |u|α−1 u for α ∈ [2, 5] and initial data u0 ∈ L2(R) +

H1(T). We show via Strichartz estimates that the Cauchy problem is locally

well-posed. In the case of the quadratic nonlinearity (α = 2) we obtain uncon-
ditional global well-posedness in the space C(R, L2(R)+H1(T)) via Gronwall’s

inequality.

1. Introduction and main results

We are interested in the Cauchy problem for the nonlinear Schrödinger equation
(NLS) with power nonlinearity on the space L2(R) +H1(T), i.e.

(1)

{
iut(x, t) + ∂2xu(x, t)± |u|α−1 u = 0 (x, t) ∈ R× R,

u(·, 0) = u0,

where u0 = v0 + w0 ∈ L2(R) + H1(T) and α ∈ [2, 5]. By T we denote the one-
dimensional torus, i.e. T = R/2πZ, where we consider functions on T to be 2π-
periodic functions on R. Before we state our main results, let us mention that
the NLS (1) is globally well-posed in L2(R) via Strichartz estimates and mass
conservation (see [Tsu87]) and it is globally well-posed in L2(T) via the Fourier
restriction norm method and mass conservation (see [Bou93a]). Motivation for the
investigation of hybrid initial values u0 ∈ L2(R) + H1(T) comes from high–speed
optical fiber communications, where in a certain approximation the behavior of
pulses in glass–fiber cables is described by a NLS equation. The NLS (1) with
initial data in Hs(R) +Hs(T) was referred to in [CHKP18] as the tooth problem.
A tooth, is, for example, w0 restricted to one period. We think of the addition
of v0 to w0 as eliminating finitely many of these teeth in the underlying periodic
signal. A periodic signal is the simplest type of a non-decaying signal, encoding, for
example, an infinite string of ones if there is exactly one tooth per period. However,
such a purely periodic signal carries no information. One would like to be able to
change it, at least locally. This leads necessarily to a hybrid formulation of the NLS
where the signal is the sum of a periodic and a localized part. The localized part
being able to remove one or more of the teeth in the underlying periodic signal.
This way one can model, for example, a signal consisting of two infinite blocks of
ones which are separated by a single zero, or even far more complicated patterns.
In the optics literature the phenomenon of ghost pulses (see [MM99] and [ZM99])
occurs which in our terminology corresponds to the regrowth of missing teeth of
the solution to the NLS (1).

The case of the cubic nonlinearity (α = 3) and the initial data u0 ∈ Hs(R) +
Hs(T), where s ≥ 0, was studied by the authors in [CHKP18], where the existence
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of weak solutions in the extended sense was established. Moreover, under some
further assumptions, unconditional uniqueness was obtained. In this paper, due to
the non-algebraic structure of the nonlinearity in (1) (for α 6= 3) we have to use
different methods. For the relation between the solutions of [CHKP18] and the
solutions of Theorem 2 we refer to Remark 3.

To state the main results of this paper we need some preparation. Let u =
v + w ∈ C([0, T ], L2(R) + H1(T)) where w satisfies the periodic NLS on the torus
with initial data w0. The following is known about w.

Theorem 1. (Cf. [LRS88, Theorem 2.1]). The Cauchy problem for the periodic
NLS

(2)

{
iwt(x, t) + ∂2xw(x, t)± |w|α−1 w = 0 (x, t) ∈ T× R,

w(·, 0) = w0.

is locally well-posed in H1(T) for α ≥ 2. That means that for any w0 ∈ H1(T) there
is a unique w ∈ C([0, T ], H1(T)) satisfying (2) in the mild sense. The guaranteed
time of existence T depends only on ‖w‖H1(T).

Then the local part v has to be a solution of the Cauchy problem for the modified
NLS

(3)

{
ivt(x, t) + ∂2xv(x, t)±Gα(w, v) = 0 (x, t) ∈ R× R,

v(·, 0) = v0,

where

(4) Gα(w, v) := |v + w|α−1 (v + w)− |w|α−1 w.

The main results of the paper are the following two theorems.

Theorem 2 (Local well-posedness of the NLS (1)). For α ∈ [2, 5] the Cauchy

problem (3) is locally well-posed in C([0, T ], L2(R)) ∩ L
4(α+1)
α−1 ([0, T ], Lα+1(R)) for

any v0 ∈ L2(R).
Hence, the original Cauchy problem (1) is locally well-posed.
In the case α ∈ [2, 5), the guaranteed time of existence T depends only on ‖v0‖2

and ‖w0‖H1(T), whereas, for α = 5, T depends on the profile of v0 and ‖w0‖H1(T).

In the case α = 2, the intersection above is not needed, i.e. one has unconditional
uniqueness.

The method we employ for the proof of the Theorem 2 cannot be used to cover
the range α ∈ (1, 2). A more precise explanation is given in Remark 10.

Remark 3. Notice that the weak solution in the extended sense ũ constructed
in [CHKP18] and the solution u from Theorem 2 coincide. This can be seen as
follows: u is a weak solution in the extended sense, which follows by the definition,
Plancherel’s theorem and the dominated convergence theorem. Moreover, in the
aforementioned paper it was observed that ũ is unique among those solutions, which
can be approximated by smooth solutions. This is true for u and hence ũ = u follows.

For α = 2, we need the Cauchy problem for the periodic NLS (2) to be globally
well-posed in H1(T). Although this is claimed to be well-known in the community,
we could not find a suitable reference. Several people refer to [Bou93a] for this,
however in [Bou93a, Propsition 5.73] he requires α ≥ 3 (in our notation). Moreover,
in part ii) of the remark on page 152 in [Bou93a], Bourgain mentions that one could
get existence of a solution for the quadratic nonlinearity using Schauder’s fixed
point theorem, but one would loose uniqueness. Hence, we provide a proof in the
Appendix (Theorem 29). This global existence and uniqueness result on the torus,
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together with a close inspection of the mass
∫
|v|2 dx are essential ingredients in

our proof of global well-posedness of (1) on the “tooth space” L2(R) +H1(T).

Theorem 4 (Global well-posedness of the quadratic NLS). For α = 2 and v0 ∈
L2(R) the unique solution v of (3) from Theorem 2 extends globally and obeys the
bound

(5) ‖v(·, t)‖2 ≤ ‖v0‖2 exp
[
‖w‖L∞t L∞x t

]
∀t ∈ [0,∞).

Hence, the original Cauchy problem (1) for α = 2 is globally well-posed.

Although the local well-posedness result from Theorem 2 covers the whole range
α ∈ [2, 5], the methods of the proof of Theorem 4 only work for α = 2. A more
precise explanation is given in Remark 15.

Of course, one can consider hybrid problems for other dispersive equations. Here
we confine ourselves to a remark on the KdV.

Remark 5. Observe that the tooth problem for the KdV reduces to a known setting.
More precisely, consider real solutions of

(6)

{
ut(x, t) + uxxx(x, t) + uxu = 0 (x, t) ∈ R× R,

u(·, 0) = u0 = v0 + w0 ∈ Hs1(R) +Hs2(T).

Let u = v + w ∈ C([0, T ], Hs1(R) + Hs2(T)), where s2 ∈ N and w is a global
solution of the periodic KdV for the initial data w0 (see [Bou93b, Theorem 5]).
Then v solves

vt + vxxx + vxv + (wv)x = 0

with the initial data v0, which is the KdV with the potential w. This problem has
been studied in e.g. [ET16, Section 3.1] using parabolic regularization. There it has
been shown that v satisfies an exponential bound similar to (5). Combining both
results we obtain:

For s1, s2 ∈ N satisfying s1 ≥ 2 and s2 ≥ s1 + 1 the KdV tooth
problem, i.e., the Cauchy problem (6), is globally well-posed in
Hs1(R) +Hs2(T).

The paper is organized as follows: In Section 2 we state the required prerequisites
for the proofs of the main theorems. In Section 3 we present the proof of Theorem
2 and in Section 4 we present the proof of Theorem 4. Finally, in the Appendix we
justify why the quadratic periodic NLS (2) is globally well-posed in H1(T).

2. Prerequisites

Let us fix the notation and state some results necessary for the proof of our
main theorems. For the purpose of smoothing we will use the heat kernel (φε)ε≥0.
Recall, that φε = δ0, if ε = 0, and

φε(x) =
1

2
√
πε

e−
|x|2
4ε ∀x ∈ R,

if ε > 0. We shall denote the convolution (in the space variable x) by e.g. u ∗ φε.
For s ∈ R and Ω ∈ {R,T} we shall denote by Hs(Ω) the Sobolev spaces on Ω.

Also, we set H∞(Ω) := ∩s∈RHs(Ω).
A pair of exponents (r, q) ∈ [2,∞]2 is called admissible (in one dimension), if

(7)
2

q
+

1

r
=

1

2
.
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Let us denote by qa(r) the solution of (7) for any r ∈ [2,∞]. Another pair of
exponents (ρ, γ) ∈ [1, 2] shall be called dually admissible, if (ρ′, γ′) ∈ [2,∞] is
admissible, i.e. if

(8)
2

γ
+

1

ρ
=

5

2
.

We denote by γa(ρ) the solution of (8) for any ρ ∈ [1, 2].

Proposition 6 (Strichartz estimates). (Cf. [KT98, Theorem 1.2]) Let (r, qa(r))
be admissible and (ρ, γa(ρ)) be dually admissible. Then there is a constant C =
C(r, ρ) > 0 such that for any T > 0, any v0 ∈ L2(R) and any F ∈ Lγa(ρ)([0, T ], Lρ(R))
the homogeneous and inhomogeneous Strichartz estimate∥∥∥eit∂2

xv0

∥∥∥
Lqa(r)([0,T ],Lr(R))

≤ C ‖v0‖L2(R) ,(9) ∥∥∥∥∫ t

0

ei(t−τ)∂
2
xF (·, τ)

∥∥∥∥
Lqa(r)([0,T ],Lr(R))

≤ C ‖F‖Lγa(ρ)([0,T ],Lρ(R)) .(10)

hold.

Lemma 7 (Gronwall, integral form). (See [Tao06, Theorem 1.10].) Let A, T ≥ 0
and u,B ∈ C([0, T ],R+

0 ) be such that

u(t) ≤ A+

∫ t

0

B(s)u(s)ds ∀t ∈ [0, T ].

Then

u(t) ≤ A exp

(∫ t

0

B(s)ds

)
∀t ∈ [0, T ].

Lemma 8 (Gronwall, differential form). (See [Tao06, Theorem 1.12].) Let T > 0,
u : [0, T ]→ R+

0 be absolutely continuous and B ∈ C([0, T ],R+
0 ) such that

u′(t) ≤ B(t)u(t) for almost every t ∈ [0, T ].

Then

u(t) ≤ u(0) exp

(∫ t

0

B(s)ds

)
∀t ∈ [0, T ].

Lemma 9. (See [CHKP18, Equation 18]). Let s ≥ 0. Then there is a constant
C = C(s) > 0 such that for any v ∈ Hs(R) and any w ∈ Hs+1(T) one has
v · w ∈ Hs(R) and

‖vw‖Hs(R) ≤ C ‖v‖Hs(R) ‖w‖Hs+1(T) .

The above estimate is not optimal w.r.t. the assumed regularity. However, we
do not need a stronger version and the proof is straight forward.

3. Proof of Theorem 2

Consider first the case α ∈ [2, 5). Let us define the space

X := C([0, T ], L2(R)) ∩ Lqa(α+1)([0, T ], Lα+1(R))

equipped with the norm

‖v‖X := ‖v‖L∞t L2
x

+ ‖v‖
L
qa(α+1)
t Lα+1 ∀v ∈ X,

where T will be fixed later in the proof. The integral formulation of (3) reads as

(11) v = eit∂
2
xv0 ± i

∫ t

0

ei(t−τ)∂
2
xGα(w, v)dτ =: T (v).
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By Banach’s fixed-point theorem, it suffices to show that there are R, T > 0 such
that T is a contractive self-mapping of

M(R, T ) :=
{
v ∈ X

∣∣∣ ‖v‖X ≤ R} .
Consider first the self-mapping property. For r ∈ {2, α+ 1} we have

‖T v‖
L
qa(r)
t Lrx

≤
∥∥∥eit∂2

xv0

∥∥∥
L
qa(r)
t Lrx

+

∥∥∥∥∫ t

0

ei(t−τ)∂
2
xGα(w, v)dτ

∥∥∥∥
L
qa(r)
t Lrx

.

By the homogeneous Strichartz estimate (9), we have∥∥∥eit∂2
xv0

∥∥∥
L
qa(r)
t Lrx

. ‖v0‖2

for the first summand. This suggests the choice R ≈ ‖v0‖2. For the second sum-
mand, whose norm also needs to be comparable with R, we will split the integral
term. We proceed with the estimates for the contraction property of T , because
the self-mapping property follows from them by setting v = v1 and v2 = 0. To that
end, let us define Gα(w, v1, v2) := Gα(w, v1)−Gα(w, v2). Observe

Gα(w, v1, v2) = |w + v1|α−1 (w + v1)− |w + v2|α−1 (w + v2)

=
(
|v1 + w|α−1 − |v2 + w|α−1

)
v1

+
(
|v2 + w|α−1 − |w|α−1

)
(v1 − v2)

+
(
|v1 + w|α−1 − |v2 + w|α−1

)
w + |w|α−1 (v1 − v2).(12)

Furthermore, one has

(13)
∣∣∣|x|α−1 − |y|α−1∣∣∣ ≤ (α− 1) max

{
1, 2α−2

}(
|x|α−2 + |y|α−2

)
|x− y|

for any x, y ∈ C. By the inhomogeneous Strichartz estimate, the above splitting of
Gα and the size estimate (13), one obtains∥∥∥∥∫ t

0

ei(t−τ)∂
2
xGα(w, v1, v2)dτ

∥∥∥∥
L
qa(r)
t Lrx

.
∥∥∥|v1 − v2|α−1 v1∥∥∥

Lγa(ρ1)(Lρ1 )
+
∥∥∥|v2|α−1 (v1 − v2)

∥∥∥
Lγa(ρ1)(Lρ1 )

+
∥∥∥|v1 − v2|α−1 w∥∥∥

Lγa(ρ2)(Lρ2 )
+
∥∥∥|w|α−1 (v1 − v2)

∥∥∥
Lγa(ρ3)(Lρ3 )

.
∥∥∥(|v1|α−2 + |v2|α−2) |v1 − v2| v1

∥∥∥
Lγa(ρ1)(Lρ1 )

+
∥∥∥|v2|α−1 (v1 − v2)

∥∥∥
Lγa(ρ1)(Lρ1 )

+
∥∥∥(|v1|α−2 + |v2|α−2) |v1 − v2|w

∥∥∥
Lγa(ρ2)(Lρ2 )

+
∥∥∥|w|α−1 (v1 − v2)

∥∥∥
Lγa(ρ3)(Lρ3 )

,(14)

where the pairs (ρi, γa(ρi)) are dually admissible and are equal to the dual exponent
of one plus the effective power of v of the corresponding term. Hence, ρ1 = α+1

α ,
ρ2 = α

α−1 and ρ3 = 2. For the first summand, observe that∥∥∥(|v1|α−2 + |v2|α−2) |v1 − v2| v1
∥∥∥
Lγa(ρ1)(Lρ1 )

≤ T
5−α
4 ‖v1‖Lqa(α+1)(Lα+1) (‖v1‖α−2Lqa(α+1)(Lα+1) + ‖v2‖α−2Lqa(α+1)(Lα+1))

· ‖v1 − v2‖Lqa(α+1)(Lα+1)

≤ T
5−α
4 Rα−1 ‖v1 − v2‖X .
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The second summand is estimated in the same way. For the third summand we
have ∥∥∥(|v1|α−2 + |v2|α−2) |v1 − v2|w

∥∥∥
Lγa(ρ2)(Lρ2 )

. ‖w‖L∞([0,T ],H1(T)) T
6−α
4

(
‖v1‖α−2Lqa(α)([0,T ],Lα) + ‖v2‖α−2Lqa(α)([0,T ],Lα)

)
· ‖v1 − v2‖Lqa(α)([0,T ],Lα)

. T
6−α
4 ‖w‖L∞([0,T ],H1(T))R

α−2 ‖v1 − v2‖X .

The last term is estimated by∥∥∥|w|α−1 (v1 − v2)
∥∥∥
Lγa(ρ3)(Lρ3 )

. ‖w‖α−1L∞([0,T ],H1(T)) T ‖v1 − v2‖X .

Choosing T small enough shows the contraction property of T and the proof, in
the case α ∈ [2, 5), concludes.

For the remaining critical case α = 5, consider the complete metric space

M(R, T ) :=

{
v ∈ X

∣∣∣ ∥∥∥v − eit∂2
xv0

∥∥∥
L∞t L

2
x

+ ‖v‖L6
tL

6
x
≤ R

}
.

It is again to show that T is a contractive self-mapping of M(R, T ) for some R, T >
0. Candidates for R and T are determined from the first term of (12), corresponding

to the effective power |v|5, exactly as in the treatment of the usual mass critical NLS
(see e.g. [LP15, Theorem 5.3]). Subsequently, the remaining terms corresponding

to the effective powers |v|4 and |v|1 are treated via the Strichartz estimates as in
the case α ∈ [2, 5) enforcing a possibly smaller choice of T . We omit the details. �

Remark 10. Observe, that for α ∈ (1, 2), the proof would proceed unchanged up to
the inequality (14). However, the term with the norm index ρ2 needs to be controlled
by a space-time norm with the space index in the interval [2,∞]. This is not possible
under the above assumption, as (α− 1)ρ2 ∈ (1, 2).

4. Proof of Theorem 4

The proof of Theorem 4 will be done by looking at the mass 1
2 ‖v(t)‖22 of the

solution. In order to make this rigorous we have to work with solutions which are
differentiable in time. We will get time regularity from regularity in space. Hence
we replace G2 in (3) by its smooth version Gε. We obtain

(15)

{
ivt(x, t) + ∂2xv(x, t)±Gε(w, v) = 0 (x, t) ∈ R× R,

v(·, 0) = v0,

where

(16) Gε(w, v) := [|v + w| ∗ φε](v + w)− [|w| ∗ φε]w.

Theorem 11 (Local well-posedness of the smoothened modified NLS). Let ε ≥ 0.
Then there is a constant C > 0 such that for any v0 ∈ L2 and any w ∈ C(R, L∞x )
the Cauchy problem (15) has a unique solution in C([0, T ], L2(R)), provided

(17) T ≤ C min
{
‖v0‖

− 4
3

2 , ‖w‖−1L∞t ,L∞x
}
.

Observe, that the time T above does not depend on ε.

Proof. Consider the integral formulation of (15), i.e.

(18) v = eit∂
2
xv0 ± i

∫ t

0

ei(t−τ)∂
2
xGε(w, v)dτ =: T ε(v)
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and notice that

Gε(w, v) = ([|v + w| − |w|] ∗ φε) v︸ ︷︷ ︸
=:Gε1(w,v)

+ ([|v + w| − |w|] ∗ φε)w + [|w| ∗ φε]v︸ ︷︷ ︸
=:Gε2(w,v)

.

By Banach’s fixed-point theorem, it suffices to show that there are R, T > 0 such
that T ε is a contractive self-mapping of

M(R, T ) :=
{
v ∈ C([0, T ], L2(R))

∣∣∣ ‖v‖ ≤ R} .
Consider first the self-mapping property. We have

‖T εv‖L∞t L2
x
≤
∥∥∥eit∂2

xv0

∥∥∥
L∞t L

2
x

+

∥∥∥∥∫ t

0

ei(t−τ)∂
2
xGε(w, v)dτ

∥∥∥∥
L∞t L

2
x

.

Since the operator eit∂
2
x is an isometry on L2 we have∥∥∥eit∂2

xv0

∥∥∥
L∞t L

2
x

= ‖v0‖2

for the first summand. This suggests the choice R ≈ ‖v0‖2. For the second sum-
mand, whose norm needs to also be comparable with R, we split the integral term
and obtain∥∥∥∥∥

∫ T

0

ei(t−τ)∂
2
xGε(w, v)dτ

∥∥∥∥∥
L∞t L

2
x

≤

∥∥∥∥∥
∫ T

0

ei(t−τ)∂
2
xGε1(w, v)dτ

∥∥∥∥∥
L∞t L

2
x

+

∥∥∥∥∥
∫ T

0

ei(t−τ)∂
2
xGε2(w, v)dτ

∥∥∥∥∥
L∞t L

2
x

.

Now, both summands are treated via the inhomogeneous Strichartz estimate as in
the proof of Theorem 2. More precisely, one has∥∥∥∥∥

∫ T

0

ei(t−τ)∂
2
xGε1(w, v)dτ

∥∥∥∥∥
L∞t L

2
x

. ‖([|v + w| − |w|] ∗ φε)v)‖Lγ(Lρ)

≤
∥∥∥‖[|v + w| − |w|] ∗ φε‖L2ρ

x
‖v‖L2ρ

x

∥∥∥
Lγt

≤
∥∥∥‖v‖2L2ρ

x

∥∥∥
Lγt

= ‖v‖2L2γ(L2ρ) .

Above, we used the Cauchy-Schwartz inequality to arrive at the second line and
Young’s inequality (if ε 6= 0) and a size estimate to pass to the last line (all in the
space variable).

As we want to arrive at the norm in C([0, T ], L2(R)), we put 2ρ = 2, i.e. ρ = 1.
Then, from the admissibility condition (7) for (ρ′, γ′), one obtains γ = 4

3 . As

2γ = 8
3 <∞ = qa(2), one can raise the time exponent to ∞ by Hölder’s inequality

for the time variable, i.e.

(19) ‖v‖2L2γ(L2ρ) ≤ T
3
4 ‖v‖2L∞(L2) ≤ T

3
4R2

!

. R.

This inequality holds under the condition

T .1 ‖v0‖
− 4

3
2 ,

which is satisfied by (17).
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For Gε2 we similarly obtain∥∥∥∥∥
∫ T

0

ei(t−τ)∂
2
xGε2(w, v)dτ

∥∥∥∥∥
L∞t L

2
x

. ‖([|v + w| − |w|] ∗ φε])w‖Lγ̃(Lρ̃) + ‖[|w| ∗ φε]v‖Lγ̃(Lρ̃)

≤ ‖w‖L∞(L∞) ‖[|v + w| − |w|] ∗ φε]‖Lγ̃(Lρ̃)
+ ‖[|w| ∗ φε]‖L∞(L∞) ‖v‖Lγ̃(Lρ̃)

. ‖w‖L∞(L∞) ‖v‖Lγ̃(Lρ̃) ,

where we employed Young’s inequality and a size estimate to obtain the last line. In
contrast to the G1-case, we choose ρ̃ = 2 to arrive at the norm in C([0, T ], L2(R)).
Then, by the admissibility condition (7), γ̃ = 1 <∞ = qa(2). Hence, by exploiting
again the Hölder’s inequality for the time variable, we get

‖w‖L∞(L∞) ‖v‖Lγ̃(Lρ̃) = ‖w‖L∞(L∞) ‖v‖L1(L2)

≤ ‖w‖L∞(L∞) T ‖v‖L∞(L2)

≤ ‖w‖L∞(L∞)RT

!

.1 R.

From this we obtain the additional condition

T . ‖w‖−1L∞(L∞) ,

which is also satisfied by (17).
For the contraction property, consider the splitting

Gε(w, v1, v2) := Gε(w, v1)−Gε(w, v2)

= [|v1 + w| ∗ φε](v1 + w)− [|v2 + w| ∗ φε](v2 + w)

= ([|v1 + w| − |w|] ∗ φε)(v1 − v2) + ([|v1 + w| − |v2 + w|] ∗ φε)v2︸ ︷︷ ︸
=:Gε1(w,v1,v2)

+ ([|v1 + w| − |v2 + w|] ∗ φε)w + [|w| ∗ φε](v1 − v2)︸ ︷︷ ︸
=:Gε2(w,v1,v2)

.

Arguments similar to those used in the proof of the self-mapping property shown
above yield the contraction property of T ε, possibly requiring an even smaller
implicit constant in (17). �

Lemma 12 (Convergence of the solutions for vanishing smoothing). Fix v0 ∈ L2

and w ∈ C(R, C(T)), and denote by vε ∈ C([0, T ], L2(R)) for all ε ≥ 0 the unique
solution of the Cauchy problem (15) from Theorem 11. Then,∥∥vε − v0∥∥

L∞t L
2
x

ε→0+−−−−→ 0.

Proof. Recall, that by construction vε and v0 are fixed points of T ε and T 0 respec-
tively and hence∥∥vε − v0∥∥

L∞t L
2
x
≤

∥∥∥∥∫ t

0

ei(t−τ)∂
2
x
(
Gε(w, vε)−G0(w, v0)

)
dτ

∥∥∥∥
L∞t L

2
x

≤
∥∥∥∥∫ t

0

ei(t−τ)∂
2
x
(
Gε(w, vε)−Gε(w, v0)

)
dτ

∥∥∥∥
L∞t L

2
x

+

∥∥∥∥∫ t

0

ei(t−τ)∂
2
x
(
Gε(w, v0)−G0(w, v0)

)
dτ

∥∥∥∥
L∞t L

2
x

.
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Due to the fact that T ε is contractive, the first summand is controlled by∥∥∥∥∫ t

0

ei(t−τ)∂
2
x
(
Gε(w, vε)−Gε(w, v0)

)
dτ

∥∥∥∥
L∞t L

2
x

≤ C
∥∥v0 − vε∥∥

L∞t L
2
x
,

where C < 1 is the contraction constant. Thus, it suffices to show that the second
summand converges to zero. To that end we first gather terms with the same
effective powers of v0 and w, i.e.∫ t

0

ei(t−τ)∂
2
x
(
Gε(w, v0)−G0(w, v0)

)
dτ

=

∫ t

0

ei(t−τ)∂
2
x
([∣∣w + v0

∣∣ ∗ φε] (v0 + w)− [|w| ∗ φε]w

−
∣∣w + v0

∣∣ (v0 + w) + |w|w
)

dτ

=

∫ t

0

ei(t−τ)∂
2
x
([(∣∣w + v0

∣∣− |w|) ∗ φε − (∣∣w + v0
∣∣− |w|)] v0) dτ(20)

+

∫ t

0

ei(t−τ)∂
2
x
([(∣∣w + v0

∣∣− |w|) ∗ φε − (∣∣w + v0
∣∣− |w|)]w(21)

+ (|w| ∗ φε − |w|) v0
)

dτ.

The first summand corresponding to
∣∣v0∣∣2 is treated in the same way as the Gε1-term

in the proof of Theorem 11, i.e. via a Strichartz estimate and Hölder’s inequality.
We arrive at∥∥∥∥∫ t

0

ei(t−τ)∂
2
x
([(∣∣w + v0

∣∣− |w|) ∗ φε − (∣∣w + v0
∣∣− |w|)] v0) dτ

∥∥∥∥
L∞t L

2
x

≤
∥∥(∣∣w + v0

∣∣− |w|) ∗ φε − (∣∣w + v0
∣∣− |w|)∥∥

L
4
3
t L

2
x

·
∥∥v0∥∥

L∞t L
2
x
.

It suffices to show that the fist factor above goes to zero, as ε goes to zero. For
almost every t ∈ [0, T ] we have that

(∣∣w + v0
∣∣− |w|) ∈ L2, which implies, due to

the fact that (φε)ε>0 is an approximation to the identity, that∥∥(∣∣w + v0
∣∣− |w|) ∗ φε − (∣∣w + v0

∣∣− |w|)∥∥
L2
x

ε→0+−−−−→ 0.

Furthermore, by Young’s inequality,∥∥(∣∣w + v0
∣∣− |w|) ∗ φε − (∣∣w + v0

∣∣− |w|)∥∥ 4
3

L2
x
.
∥∥v0∥∥ 4

3

L2
x

for every ε > 0 and almost every t ∈ [0, T ]. Also,∫ T

0

∥∥v0(·, τ)
∥∥ 4

3

L2
x

dτ =
∥∥v0∥∥ 4

3

L
4
3
t L

2
x

.T
∥∥v0∥∥ 4

3

L∞t L
2
x

and hence the claim follows by the dominated convergence theorem.
The second summand (Equation (21)), corresponding to

∣∣v0w∣∣, is treated like
the Gε2-term and we arrive at∥∥∥∥∫ t

0

ei(t−τ)∂
2
x
([(∣∣w + v0

∣∣− |w|) ∗ φε − (∣∣w + v0
∣∣− |w|)]w + (|w| ∗ φε − |w|) v0

)
dτ

∥∥∥∥
L∞t L

2
x

≤
∥∥(∣∣w + v0

∣∣− |w|) ∗ φε − (∣∣w + v0
∣∣− |w|)∥∥

L1
tL

2
x
· ‖w‖L∞t L∞x +

∥∥v0∥∥
L∞t L

2
x
‖|w| ∗ φε − |w|‖L1

tL
∞
x
.

Observe, that |w| is uniformly continuous in the x-variable on the whole of R.
Hence, as for (20), the fact that (φε)ε>0 is an approximation to the identity implies
the convergence to zero of (21). �
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Lemma 13 (Smooth solutions for smooth initial data). (Cf. [Tao06, Proposition
3.11].) Let ε > 0, w ∈ C([0, T ], H∞(T)) and v0 ∈ S and let v denote the unique
solution of (15). Then v ∈ C1([0, T ], H∞(R)) and for any s > 1

2 one has

(22) ‖v‖L∞t Hsx ≤ C ‖v0‖Hs exp
(
‖v‖L1

tL
∞
x

+ T ‖w‖C(Hs+1(T))

)
for some C = C(ε, s) > 0.

Proof. We begin by showing that v ∈ C([0, T ], Hs(R)) for any s ∈ N. To that end,
we will show that the operator T ε from Theorem 11 is a contractive mapping in
M(R, T ′) ⊆ Hs, for a possibly smaller T ′ ≤ T . We only show the self-mapping
property. To that end, observe that

‖T εv‖Hs ≤
∥∥∥eit∂2

xv0

∥∥∥
Hs

+

∥∥∥∥∫ t

0

ei(t−τ)∂
2
xGε(w, v)dτ

∥∥∥∥
Hs

≤ ‖v0‖Hs +

∫ t

0

‖Gε(w, v)‖Hs dτ.

The first summand fixes R ≈ ‖v0‖Hs . For the integrand in the second summand
we have (the variable τ is omitted in the notation)

‖Gε(w, v)‖Hs(23)

≤ ‖([|w + v| − |w|] ∗ φε) v‖Hs︸ ︷︷ ︸
=:I

+ ‖(|w| ∗ φε) v‖Hs︸ ︷︷ ︸
=:II

+ ‖([|w + v| − |w|] ∗ φε)w‖Hs︸ ︷︷ ︸
=:III

.

As Hs(R) is an algebra with respect to the point-wise multiplication, the first
summand is estimated against

‖([|w + v| − |w|] ∗ φε) v‖Hs . ‖[|w + v| − |w|] ∗ φε‖Hs ‖v‖Hs .
The first product above is further estimated via the characterization of the Hs

norm in terms of derivatives and Young’s inequality as

‖[|w + v| − |w|] ∗ φε‖Hs ≈
∑
|α|≤s

‖([|w + v| − |w|]) ∗ [Dαφε]‖2(24)

≤

∑
|α|≤s

‖Dαφε‖1

 ‖v‖2 .
Further estimating ‖v‖2 ≤ ‖v‖Hs ≤ R and recalling the integral concludes the
discussion of this term. The second summand (II) is treated via Lemma 9

‖(|w| ∗ φε) v‖Hs .s ‖|w| ∗ φε‖Hs+1(T) ‖v‖Hs .

We again estimate ‖v‖Hs ≤ R and observe for the other factor that

‖|w| ∗ φε‖Hs+1(T) ≈
∑

|α|≤(s+1)

‖|w| ∗ [Dαφε]‖L2(T)

≤ ‖w‖∞
∑

|α|≤(s+1)

‖Dαφε‖L1(R)

.ε,s ‖w‖Hs+1(T) .

The last summand (III) is estimated via

‖([|w + v| − |w|] ∗ φε)w‖Hs .ε,s ‖v‖Hs ‖w‖Hs+1(T) .

The proof of the above requires no new techniques and is omitted. All in all this
shows the local well-posedness of (15) in C([0, T ′], Hs), where the guaranteed time
of existence is

T ′ ≈ε,s
{
‖w‖−1Hs+1(T) , ‖v0‖

−1
Hs(R)

}
.
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To prove the estimate (22), we will employ Lemma 7 (Gronwall’s inequality).
To that end, let T ′ be now the maximal time of existence of the solution v ∈
C([0, T ′), Hs). Observe that

‖v(·, t)‖Hs = ‖(T εv)(·, t)‖Hs ≤ ‖v0‖Hs +

∫ t

0

‖Gε(w, v)(·, τ)‖Hs dτ ∀t ∈ [0, T ′).

The integrand above is estimated as in inequality (23). The first term (I), however,
needs retreatment, as it is quadratic in ‖v‖Hs . The algebra property of Hs(R) ∩
L∞(R) implies

I ≤ ‖([|w + v| − |w|] ∗ φε)‖Hs ‖v‖∞ + ‖([|w + v| − |w|] ∗ φε)‖∞ ‖v‖Hs .

We estimate the first factor in the first summand by (24). For the first factor of
the second summand we have

‖([|w + v| − |w|] ∗ φε)‖∞ ≤ ‖[|w + v| − |w|]‖∞ ‖φε‖1 ≤ ‖v‖∞

by Young’s inequality. Reinserting the estimates for the terms (II) and (III) yields

‖v(·, t)‖Hs .s,ε ‖v0‖Hs +

∫ t

0

(
‖v(·, τ)‖∞ + ‖w(·, τ)‖Hs+1(T)

)
‖v(·, τ)‖Hs dτ.

Gronwall’s inequality now implies

‖v(·, t)‖Hs .ε,s ‖v0‖Hs exp

(∫ t

0

(
‖v(·, τ)‖∞ + ‖w(·, τ)‖Hs+1(T)

)
dτ

)
≤ ‖v0‖Hs exp

(
‖v‖L1

tL
∞
x

+ T ′ ‖w‖C(Hs+1(T))

)
∀t ∈ [0, T ′).

Thus we see that a blowup cannot occur for any T ′ < T and so T ′ = T .
This indeed shows that v ∈ C([0, T ], Hs). As v0 ∈ S and w ∈ C([0, T ], H∞(T))

are smooth, a classical result from the semi-group theory (see [Paz92, Theorem
4.2.4]) implies that v ∈ C1([0, T ], Hs). Because s ∈ N was arbitrary, the proof is
complete. �

Proposition 14. The unique solution v of (15) from Theorem 11 satisfies

(25) ‖v(·, t)‖2 ≤ ‖v0‖2 exp
[
‖w‖L∞t L∞x t

]
∀t ∈ [0, T ].

Proof. Let wn ∈ C([0, T ], H∞(T)) be functions with the property

‖wn − w‖C([0,T ],H1(T))
n→∞−−−−→ 0

and let vn
n→∞−−−−→ v0 in the L2-norm where vn ∈ S for all n ∈ N. Moreover, let

vε,n ∈ C1([0, T ], L2)) be the solution of (15) with initial data vn and nonlinearity
Gε(wn, vε,n) (the smoothness of vε,n follows from Lemma 13). We have

1

2

d

dt
‖vε,n(·, t)‖22 = Re 〈v̇ε,n(·, t), vε,n(·, t)〉 = Re

〈
i∂2xv

ε,n ± iGε(wn, vε,n), vε,n
〉

= −Re i 〈∇vε,n,∇vε,n〉︸ ︷︷ ︸
=0

±Re i 〈(|vε,n + wn| ∗ φε)(vε,n + wn)− (|wn| ∗ φε)wn, vε,n〉
= ±Re i 〈(|vε,n + wn| ∗ φε)vε,n, vε,n〉︸ ︷︷ ︸

=0

±Re i 〈([|vε,n + wn| − |wn|] ∗ φε)wn, vε,n〉(26)
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and hence

1

2

d

dt
‖vε,n(·, t)‖22 ≤ |〈[|vε,n + wn| − |wn|] ∗ φε)wn, vε,n〉|

≤ ‖[|vε,n + wn| − |wn|] ∗ φε)wn‖L2
x
‖vε,n‖L2

x

≤ ‖wn‖L∞t L∞x ‖v
ε,n‖2L2

x
(27)

for all t ∈ [0, T ]. Above, we obtained the first estimate by the Cauchy-Schwartz
inequality and the second one by Hölder’s inequality, Young’s inequality and the
size estimate. By the differential form of the Gronwall’s inequality from Lemma 8,
we obtain

‖vε,n(·, t)‖2 ≤ ‖vn‖2 exp
[
‖wn‖L∞t L∞x t

]
∀t ∈ [0, T ].

In the limit n → ∞, the right-hand side above converges to the right-hand side of
(25). It remains to show

(28) ‖vε,n − vε‖L∞L2

n→∞−−−−→ 0,

because then the left-hand side converges to ‖vε‖L∞t L2
x

in the limit n → ∞. But

by Lemma 12,

‖vε‖L∞t L2
x

ε→0−−−→
∥∥v0∥∥

L∞t L
2
x
.

To prove (28), observe that the linear evolution poses no problems and hence it
suffices to control the integral term∥∥∥∥∫ t

0

ei(t−τ)∂
2
x [Gε(w, vε)−Gε(wn, vε,n)] dτ

∥∥∥∥
L∞L2

.

To that end, we will split the difference of the nonlinear terms according to their
effective power up to one exception. We begin by observing that

Gε(w, vε)−Gε(wn, vε,n)

= (|w + vε| ∗ φε)vε − (|wn + vε,n| ∗ φε)vε,n

+([|w + vε| − |w|] ∗ φε)w − ([|wn + vε,n| − |wn|] ∗ φε)wn

and gather the first and the second summand, as well as the third and the last
summand. In the first sum we have

(|w + vε| ∗ φε)vε − (|wn + vε,n| ∗ φε)vε,n

= (|w + vε| ∗ φε)vε − (|w + vε| ∗ φε)vε,n︸ ︷︷ ︸
=:I

+ (|w + vε| ∗ φε)vε,n − (|wn + vε,n| ∗ φε)vε,n︸ ︷︷ ︸
=:II

,

whereas for the second sum

([|w + vε| − |w|] ∗ φε)w − ([|wn + vε,n| − |wn|] ∗ φε)wn

= ([|wn + vε| − |wn|] ∗ φε)wn − ([|wn + vε,n| − |wn|] ∗ φε)wn︸ ︷︷ ︸
=:III

+ ([|w + vε| − |w|] ∗ φε)w − ([|wn + vε| − |wn|] ∗ φε)wn︸ ︷︷ ︸
=:IV
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holds. We now complete the splitting of Gε(w, vε,n) − Gε(wn, vε,n) into terms of
the same effective powers. We have

I = (|w + vε| ∗ φε)(vε − vε,n)

= ([|w + vε| − |w|] ∗ φε)(vε − vε,n) + (|w| ∗ φε)(vε − vε,n),

II = ([|w + vε| − |wn + vε,n|] ∗ φε)vε,n

= ([|w + vε| − |w + vε,n|] ∗ φε)vε,n + ([|w + vε,n| − |wn + vε,n|] ∗ φε)vε,n,
III = ([|wn + vε| − |wn + vε,n|] ∗ φε)wn and

IV = ([|w + vε| − |w|] ∗ φε)w − ([|w + vε| − |w|] ∗ φε)wn

−([|wn + vε| − |wn|] ∗ φε)wn + ([|w + vε| − |w|] ∗ φε)wn

= ([|w + vε| − |w|] ∗ φε)(w − wn)

+([|w + vε| − |w| − |wn + vε|+ |wn|] ∗ φε)wn,
from which the effective powers are obvious, and put

G̃ε1(w,wn, vε, vε,n) := ([|w + vε| − |w|] ∗ φε)(vε − vε,n)

+([|w + vε| − |w + vε,n|] ∗ φε)vε,n,
G̃ε2(w,wn, vε, vε,n) := (|w| ∗ φε)(vε − vε,n) + ([|wn + vε| − |wn + vε,n|] ∗ φε)wn

+([|w + vε,n| − |wn + vε,n|] ∗ φε)vε,n

+([|w + vε| − |w|] ∗ φε)(w − wn)

+([|w + vε| − |w| − |wn + vε|+ |wn|] ∗ φε)wn.
Now, by the triangle inequality and the inhomogeneous Strichartz estimate, one
has ∥∥∥∥∫ t

0

ei(t−τ)∂
2
x [Gε(w, vε,n)−Gε(wn, vε,n)] dτ

∥∥∥∥
L∞L2

≤
∥∥∥∥∫ t

0

ei(t−τ)∂
2
xG̃ε1(w,wn, vε, vε,n)dτ

∥∥∥∥
L∞L2

+

∥∥∥∥∫ t

0

ei(t−τ)∂
2
xG̃ε2(w,wn, vε, vε,n)dτ

∥∥∥∥
L∞L2

.
∥∥∥G̃ε1(w,wn, vε, vε,n)

∥∥∥
L

4
3
t L

1
x

+
∥∥∥G̃ε2(w,wn, vε, vε,n)

∥∥∥
L1
tL

2
x

.

We begin by estimating the first summand above. In fact, we have

‖([|w + vε| − |w|] ∗ φε)(vε − vε,n)‖
L

4
3
t L

1
x

≤
∥∥∥t 7→ ‖[|w + vε| − |w|] ∗ φε‖L2

x
‖vε − vε,n‖L2

x

∥∥∥
4
3

≤
∥∥∥t 7→ ‖vε‖L2

x
‖vε − vε,n‖L2

x

∥∥∥
4
3

≤ T
3
4 ‖vε‖L∞t L2

x
‖vε − vε,n‖L∞t L2

x
.

by the Cauchy-Schwarz, Young’s and the inverse triangle inequalities for the space
variable and Hölder’s inequality for the time variable. Choosing T sufficiently small
shows that

‖([|w + vε| − |w|] ∗ φε)(vε − vε,n)‖
L

4
3
t L

1
x

≤ 1

5
‖vε − vε,n‖L∞t L2

x
.

For the second term in the definition of G̃ε1 the same techniques are applied to yield
the bound

‖([|w + vε| − |w + vε,n|] ∗ φε)vε,n‖
L

4
3
t L

1
x

≤ T 3
4 ‖vε,n‖L∞t L2

x
‖vε − vε,n‖L∞t L2

x
.
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By the proof of Theorem 11, one has

(29) ‖vε,n‖L∞t L2
x
. ‖vn‖2 ≈ ‖v0‖2

and thus choosing T sufficiently small, again yields

‖([|w + vε| − |w + vε,n|] ∗ φε)vε,n‖
L

4
3
t L

1
x

≤ 1

5
‖vε − vε,n‖L∞t L2

x
.

The first term in the definition of G̃ε2 is treated similarly to the above. The same
is true for the second term, where we additionally observe that

(30) sup
n∈N
‖wn‖C([0,T ],H1(T)) <∞.

For the third term, we have

‖([|w + vε,n| − |wn + vε,n|] ∗ φε)vε,n‖L1
tL

2
x

≤ ‖[|w + vε,n| − |wn + vε,n|] ∗ φε‖L∞t L∞x ‖v
ε,n‖L∞t L2

x

≤ ‖w − wn‖L∞t L∞x ‖v
ε,n‖L∞t L2

x

. ‖w − wn‖L∞t H1
x(T)

n→∞−−−−→ 0,

where the Cauchy-Schwarz inequality was used for the first estimate, the embedding
L∞t ↪→ L1

t , Young’s inequality and the inverse triangle inequality for the second
estimate and the embedding C([0, T ], H1(T)) ↪→ L∞t L

∞
x together with (29) for the

last estimate. By the same techniques, one obtains the convergence of the fourth
term to zero.

Finally, for the last term in the definition of G̃ε2, one has

‖([|w + vε| − |w| − |wn + vε|+ |wn|] ∗ φε)wn‖L1
tL

2
x

≤ ‖|w + vε| − |w| − |wn + vε|+ |wn|‖L1
tL

2
x
‖wn‖L∞H1

x(T)

. ‖|w + vε| − |w| − |wn + vε|+ |wn|‖L1
tL

2
x
,

where Hölder’s inequality, the embedding C([0, T ], H1(T)) ↪→ L∞t L
∞
x and Young’s

inequality were used for the first estimate and (30) for the second estimate. Observe
that by the inverse triangle inequality, the bound

||w + vε| − |w| − |wn + vε|+ |wn|| ≤ 2 min {|w − wn| , |vε|} ≤ 2 |vε|
holds pointwise (in t and x). This implies that

|w + vε| − |w| − |wn + vε|+ |wn| n→∞−−−−→ 0

and hence, by the theorem of dominated convergence for the space variable,

gn(t) := ‖|w + vε| − |w| − |wn + vε|+ |wn|‖L2
x

n→∞−−−−→ 0 ∀t ∈ [0, T ].

Moreover, for all t ∈ [0, T ], we have gn(t) ≤ 2 ‖vε(·, t)‖2 and ‖vε‖L1
tL

2
x
. ‖vε‖L∞t L2

x
<

∞. Hence, reapplying the theorem of dominated convergence for the time variable
yields

‖([|w + vε| − |w| − |wn + vε|+ |wn|] ∗ φε)wn‖L1
tL

2
x

n→∞−−−−→ 0

as claimed. �

Notice that (25) together with the local well-posedness of v from Theorem 11
imply that v is globally well-posed, i.e. Theorem 4 is proved.

Remark 15. Observe, that in the case α > 2, the proof would proceed roughly
unchanged up to Equation (26). However, the differential inequality (27) would
then be replaced by

1

2

d

dt
‖vε,n(·, t)‖22 . ‖w

n‖α−1L∞t L
∞
x
‖vε,n‖2L2

x
+ ‖wn‖L∞t L∞x ‖v

ε,n‖αLαx
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and this bound does not suffice to exclude a blow-up of the L2-norm.

Appendix A. Quadratic NLS on the torus

To prove global existence of solutions to the Cauchy problem of the quadratic
nonlinear Schrödinger equation on T (that is (2) with α = 2), we will employ the
mass and energy conservation laws. The justification of conservation laws requires
solutions which are differentiable in time. This time regularity will be obtained
from the regularity in space. To that end we will smoothen out the rough quadratic
nonlinearity, in such a way that the solutions of the resulting equation still admit
suitable conservation laws. The regularization is slightly different from the one
used in the proof of Theorem 4. Let us mention that the ideas presented here
are borrowed from [GV79] where the same problem was studied on Rd, using a
contraction argument and conservation laws. Since our setting is based on the
torus, we have to work with Bourgain spaces. For the convenience of the reader,
we present some of the arguments in detail.

Observe, that if w is a sufficiently nice 2π-periodic function and ε > 0, then

(w ∗ φε)(x) =

∫ ∞
−∞

w(y)φε(x− y)dy =
∑
n∈Z

∫ (2n+1)π

(2n−1)π
w(y)φε(x− y)dy

=

∫ π

−π
w(y)

∑
n∈Z

φε(x− y − 2nπ)dy.

Hence, the convolution of w with φε on R corresponds to the convolution of w with
the periodization of φε on T. For the rest of the paper we will slightly abuse the
notation and denote this periodization also by φε. In the same spirit we will use
from now on ∗ to denote the convolution on T.

The smooth version of (2) for α = 2 reads as

(31)

{
iwt(x, t) + ∂2xw(x, t)± (|w ∗ φε| (w ∗ φε)) ∗ φε = 0 (x, t) ∈ T× R,

w(·, 0) = w0 ∗ φε
and the corresponding Duhamel’s formula is (cf. [GV79, Equations (2.14), (2.13),
(2.11) and (1.15)])

(32) w(·, t) = eit∂
2
x(w0 ∗ φε)± i

∫ t

0

ei(t−τ)∂
2
x [(|w ∗ φε| (w ∗ φε)) ∗ φε(·, τ)] dτ.

We denote the Fourier transform by F and the inverse Fourier transform by F (−1),
where we use the symmetric choice of constants and write also

f̂(ξ) := (Ff)(ξ) =
1√
2π

∫ π

−π
e−iξ·xf(x)dx,

ǧ(x) :=
(
F (−1)g

)
(x) =

1√
2π

∑
ξ∈Z

eiξ·xg(ξ).

One has F(f ∗ g) =
√

2πf̂ ĝ. Furthermore, let 〈ξ〉 :=

√
1 + |ξ|2 for any ξ ∈ R and

Jsw := F (−1)〈·〉sFw for any w ∈ (C∞(T))′.

A.1. Prerequisites. In this section, we present some technical results from the
literature, needed for treatment of the quadratic nonlinearity.

Lemma 16. Let p ∈ [1,∞] and ε ≥ 0. Then for any w ∈ Lp(T) one has

‖w ∗ φε‖Lp(T) ≤ ‖w‖Lp(T) .
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Lemma 17. Let s ∈ R and w ∈ Hs(T). Then

‖w ∗ φε‖Hs(T) ≤ ‖w‖Hs(T) and ‖w ∗ φε‖Ḣs(T) ≤ ‖w‖Ḣs(T) ∀ε ≥ 0.

Furthermore, if ε > 0, then

‖w ∗ φε‖Hs(T) .ε,s ‖w‖L2(T) .

Lemma 18 (à la Banach-Alaoglu). (Cf. [Bre11, Theorem 3.16].) Let wn
n→∞−−−−→ w

in L2(T) and supn∈N ‖wn‖H1(T) <∞. Then w ∈ H1(T),

(33) ‖w‖H1(T) ≤ lim inf
n→∞

‖wn‖H1(T) , ‖w‖Ḣ1(T) ≤ lim inf
n→∞

‖wn‖Ḣ1(T) ,

and wn ⇀ w in H1(T), i.e. for any u ∈ H1(T) one has

(34) lim
n→∞

〈wn, u〉H1(T) = lim
n→∞

∑
k∈Z
〈k〉2ŵnk ûk = 〈w, u〉H1(T) .

If additionally ‖wn‖H1

n→∞−−−−→ ‖w‖H1 , then wn
n→∞−−−−→ w in H1(T).

In the following we are going to use the Xs,b spaces on the torus where s, b ∈ R.
They are defined via the norm (see equation (3.49) in [ET16])

(35) ‖w‖Xs,b = ‖〈k〉s〈τ + k2〉bŵ(τ, k)‖L2
τ l

2
k
.

Lemma 19 (X0, 38 ↪→ L4(T× R)). (See [Tao06, Proposition 2.13].) We have

‖w‖L4(T×R) . ‖w‖X0, 3
8

for any w ∈ S(R, C∞(T)).

Lemma 20 (Xs,b
δ ↪→ C(Hs)). (Cf. [ET16, Lemma 3.9].) Let b > 1

2 and s ∈ R.
Then

‖w‖C([0,δ],Hs(T)) . ‖w‖Xs,bδ .

Lemma 21 (Linear Schrödinger evolution in Xs,b
δ ). (Cf. [ET16, Lemma 3.10].)

Let b, s ∈ R, δ ∈ (0, 1] and η a smooth cut-off in time. Then∥∥∥η(t)eit∂
2
xw0

∥∥∥
Xs,bδ

. ‖w0‖Hs(T) ∀w0 ∈ Hs(T).

Lemma 22 (Treating the integral term in Xs,b
δ ). (Cf. [ET16, Lemma 3.12].) Let

b ∈
(
1
2 , 1
]
, s ∈ R and δ ≤ 1. Set b′ := b− 1. Then∥∥∥∥∫ t

0

ei(t−τ)∂
2
xF (τ)dτ

∥∥∥∥
Xs,bδ

.b ‖F‖Xs,b′δ

∀F ∈ Xs,b′

δ .

Lemma 23 (Changing b in Xs,b
δ ). (Cf. [ET16, Lemma 3.11].) Let b, b′ ∈

(
− 1

2 ,
1
2

)
with b′ < b, s ∈ R and δ ∈ (0, 1]. Then

‖w‖
Xs,b

′
δ

. δb−b
′
‖w‖Xs,bδ ∀w.

The next proposition appears in [ET16] for the case of the cubic nonlinearity and
ε = 0. Since we need the corresponding result for the quadratic nonlinearity, which
is more complicated than the cubic nonlinearity, which has an algebraic structure,
we present the proof, too.

Proposition 24 (Control of the nonlinearity in Xs,b
δ ). (Cf. [ET16, Proposition

3.26].) Let s ≥ 0 and ε > 0 or ε = s = 0. Then, for all w1, w2 we have

‖(|w1 ∗ φε| (w1 ∗ φε)) ∗ φε − (|w2 ∗ φε| (w2 ∗ φε)) ∗ φε‖
X
s,− 3

8
δ

.ε,s

(
‖w1‖

X
0, 3

8
δ

+ ‖w2‖
X

0, 3
8

δ

)(
‖w1 − w2‖

X
0, 3

8
δ

)
.
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Proof. Fix w1, w2. Then, by Plancherel theorem and duality in L2(R×T), one has

‖(|w1 ∗ φε| (w1 ∗ φε)) ∗ φε − (|w2 ∗ φε| (w2 ∗ φε)) ∗ φε‖
X
s,− 3

8
δ

= sup
‖w‖

X
−s, 3

8
δ

=1

∣∣∣〈(|w1 ∗ φε| (w1 ∗ φε)− |w2 ∗ φε| (w2 ∗ φε)) ∗ φε, w〉L2(R×T)

∣∣∣ .
Fix any w ∈ X−s,−

3
8

δ with ‖w‖
X
−s,− 3

8
δ

= 1. Then∣∣∣〈(|w1 ∗ φε| (w1 ∗ φε)− |w2 ∗ φε| (w2 ∗ φε)) ∗ φε, w〉L2(R×T)

∣∣∣
=

∣∣∣〈Js [(|w1 ∗ φε| (w1 ∗ φε)− |w2 ∗ φε| (w2 ∗ φε)) ∗ φε] , J−sw
〉
L2(R×T)

∣∣∣
≤ ‖(|w1 ∗ φε| (w1 ∗ φε)− |w2 ∗ φε| (w2 ∗ φε)) ∗ (Jsφε)‖

L
4
3 (R×T)

∥∥J−sw∥∥
L4(R×T)

.ε,s ‖|w1 ∗ φε| (w1 ∗ φε)− |w2 ∗ φε| (w2 ∗ φε)‖
L

4
3 (R×T)

∥∥J−sw∥∥
X

0, 3
8

δ︸ ︷︷ ︸
=‖w‖

X
−s,− 3

8
δ

=1

≤ ‖|w1 ∗ φε| (w1 ∗ φε)− |w2 ∗ φε| (w2 ∗ φε)‖
L

4
3 (R×T)

≤ ‖|w1 ∗ φε| ((w1 − w2) ∗ φε)‖
L

4
3 (R×T)

+ ‖(|w1 ∗ φε| − |w2 ∗ φε|)(w2 ∗ φε)‖
L

4
3 (R×T)

,

where, for the first estimate, we used Hölder’s inequality and Young’s inequality and
Lemma 19 for the second. For the sake of brevity, we will only show the estimate
for the second summand above. The first one is treated with the same techniques
and is less difficult to handle. By the Hölder’s and Young’s inequalities, one has

‖(|w1 ∗ φε| − |w2 ∗ φε|)(w2 ∗ φε)‖
L

4
3 (R×T)

≤ ‖|w1 ∗ φε| − |w2 ∗ φε|‖L4(R×T) ‖w2 ∗ φε‖L2(R×T)

≤ ‖w1 − w2‖L4(R×T) ‖w2‖L2(R×T)

≤ ‖w1 − w2‖
X

0, 3
8

δ

‖w2‖
X

0, 3
8

δ

,

where we used Lemma 19 in the last step. This finishes the proof. �

A.2. Results. First, we consider local wellposedness:

Theorem 25. (Cf. [ET16, Theorem 3.27] for the cubic NLS.) Let ε > 0 and s ≥ 0
or ε = s = 0. Then the (smoothened) quadratic NLS (31) is locally well-posed in
Hs(T).

Proof. It suffices to show that the right-hand side of (32) defines a contractive
self-mapping T : M(R, δ)→M(R, δ) for some R, δ > 0, where

M(R, δ) :=
{
w ∈ Y

∣∣ ‖w‖Y ≤ R}
and Y is a suitable subspace of C([0, δ], Hs(T)).

We consider the case s ≥ 1 first. Put Y = C([0, δ], Hs(T)). Due to eit∂
2
x being

an isometry on Hs(T) and Lemma 17 for any t ∈ R, we have

‖T w‖Y ≤
∥∥∥eit∂2

x(w0 ∗ φε)
∥∥∥
Hs(T)

+

∥∥∥∥∫ t

0

ei(t−τ)∂
2
x [(|w ∗ φε| (w ∗ φε)) ∗ φε] dτ

∥∥∥∥
Y

≤ ‖w0‖Hs(T) + δ ‖(|w ∗ φε| (w ∗ φε)) ∗ φε‖Y .



18 L. CHAICHENETS, D. HUNDERTMARK, P. KUNSTMANN, AND N. PATTAKOS

This suggests the choice R ≈ ‖w0‖Hs . Fix any τ ∈ [0, δ]. Then, due to Lemma 17
and the embedding Hs(T) ↪→ L∞(T), we have that

‖((|w ∗ φε| (w ∗ φε)) ∗ φε)(·, τ)‖Hs(T)
.ε,s ‖(|w ∗ φε| (w ∗ φε))(·, τ)‖L2(T)

≤ ‖(w ∗ φε)(·, τ)‖L∞(T) ‖(w ∗ φε)(·, τ)‖L2(T)

. R2.

By the above, the condition ‖T w‖Y ≤ R is satisfied, if δ .ε,s 1
R . The contrac-

tion property of T is shown in the same way, possibly requiring a smaller implicit
constant in the last inequality.

In the case s ∈ [0, 1) and ε > 0, consider any b ∈
(
1
2 ,

5
8

)
and put Y = Xs,b

δ (by
Lemma 20 one indeed has Y ↪→ C([0, δ], Hs(T)). Then, by the triangle inequality
and Lemmata 21 and 22 we have

‖T w‖Xs,bδ

≤
∥∥∥eit∂2

x(w0 ∗ φε)
∥∥∥
Xs,bδ

+

∥∥∥∥∫ t

0

ei(t−τ)∂
2
x [(|w ∗ φε| (w ∗ φε)) ∗ φε] dτ

∥∥∥∥
Xs,bδ

. ‖w0‖Hs(T) + ‖(|w ∗ φε| (w ∗ φε)) ∗ φε‖Xs,b−1
δ

.

This estimate suggests R ≈ ‖w0‖Hs(T). For the second summand, apply Lemma 23

and Proposition 24 (with w = 0) to obtain the upper bound

‖(|w ∗ φε| (w ∗ φε)) ∗ φε‖Xs,b−1
δ

. δ1−b−
3
8 ‖(|w ∗ φε| (w ∗ φε)) ∗ φε‖

X
s,− 3

8
δ

. δ1−b−
3
8 ‖w‖

X
0, 3

8
δ

‖w‖
X
s, 3

8
δ

(36)

≤ δ1−b−
3
8 ‖w‖2

X
s, 3

8
δ

≤ δ1−b− 3
8R2.

As the exponent of δ is positive, we can choose δ small enough to make T a self-
mapping of M(R, δ). The fact that T is contractive is proven similarly, possibly
requiring a smaller δ.

The remaining case ε = s = 0 is treated exactly as the last case. �

In order to prove the conservation laws, we need to be able to approximate by
smooth solutions. As in the case of the modified NLS (15) (Lemma 13) one proves
the following

Lemma 26 (Smooth solutions for smooth initial data). (Cf. [Tao06, Proposition
3.11].) Let ε > 0, and w0 ∈ L2(T) and let w denote the unique solution of (32).
Then w ∈ C([0, δ], H∞(R)) and for any s > 1

2 one has

(37) ‖w‖L∞t Hsx ≤ C ‖w0‖Hs e
C‖w‖

L1
tL
∞
x

for some C = C(ε, s) > 0.

Theorem 27. Let ε > 0 and s ∈ [1,∞). Then the smoothened NLS (31) is globally
well-posed in Hs(T).

Proof. Local well-posedness has already been shown in Theorem 25 and it remains
to show that the solution w exists globally. By the blow-up alternative, it suffices
to see that ‖w(·, t)‖Hs(T) cannot explode. Moreover, by Lemma 26 and the fact

that for any s′ > 1
2 one has

(38) ‖w‖L1
tL
∞
x
.δ,s′ ‖w‖C([0,δ],Hs′ (T)) ,
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it suffices to consider s = 1. By the same Lemma, one has that w ∈ C([0, δ], H∞(T))
and in particular, w ∈ C1([0, δ], H1(T)). Hence, the energy conservation (cf.
[GV79, Equations (3.14) and (1.18)])

(39) Eε(w(·, t)) :=

∫
T

1

2
|∇w(x, t)|2 ∓ 1

3
|(w ∗ φε)(x, t)|3 dx = Eε(w0 ∗ φε)

is applicable to w. But

(40) ‖w(·, t)‖2H1(T) = ‖w0‖22 + 2Eε(w0 ∗ φε)±
2

3
‖w(·, t)‖33

and so ‖w(·, t)‖Ḣ1(T) is controlled by Eε(w0 ∗ φε) in the defocusing case. In the

focusing case we can assume w.l.o.g. that ‖w(·, t)‖2Ḣ1(T) is an unbounded function

of t, (otherwise, there is nothing to show) and say that ‖w(·, t)‖2Ḣ1(T) is large. Then,

by the Gagliardo-Nirenberg inequality from [Bre11, Equation (42)], we have

(41) ‖w(·, t)‖33 . ‖w(·, t)‖
5
2
2 ‖w(·, t)‖2−

3
2

H1(T) ≤
1

2
‖w(·, t)‖2H1(T) ,

where above we additionally used the mass conservation

‖w(·, t)‖L2(T) = ‖w(·, 0)‖L2(T) .

Hence, inserting (41) into (40) and rearranging the inequality shows that ‖w(·, t)‖2H1(T)
is bounded, in contradiction to the assumption. This completes the proof. �

Theorem 28. (Cf. [ET16, Theorem 3.28] for the cubic NLS.) The Cauchy problem
for the quadratic periodic NLS ( (2) with α = 2) is globally well-posed in L2(T) and
the solution u enjoys mass conservation ‖u(·, t)‖L2(T) = ‖u0‖L2(T).

Proof. Local well-posedness has already been shown in Theorem 25. Let w denote
this local solution. By the blow-up alternative, it suffices to show mass conservation.
To that end, let us denote by wε the global solution of (31) for ε > 0 from Theorem
27. Observe that for any b ∈

(
1
2 ,

5
8

)
one has

‖wε − w‖X0,b
δ

(42)

≤
∥∥∥eit∂2

x(w0 ∗ φε − w0)
∥∥∥
X0,b
δ

+

∥∥∥∥∫ t

0

ei(t−τ)∂
2
x [(|wε ∗ φε| (wε ∗ φε)) ∗ φε − |w|w] dτ

∥∥∥∥
X0,b
δ

(43)

. ‖w0 ∗ φε − w0‖L2(T) + ‖(|wε ∗ φε| (wε ∗ φε)) ∗ φε − |w|w‖X0,b−1
δ

. ‖w0 ∗ φε − w0‖L2(T) + δ1−b ‖(|wε ∗ φε| (wε ∗ φε)) ∗ φε − |w|w‖X0,0
δ
,

where we used the fact that w and wε solve the corresponding fixed-point equations
and Lemmata 21, 22 and 23.

For the first summand, observe that

‖w0 ∗ φε − w0‖L2(T) =
∥∥∥(〈k〉sŵ0(k)(

√
2πφ̂ε(k)− 1)

)
k

∥∥∥
l2(Z)

and the right-hand side above converges to 0 as ε→ 0+ by the dominated conver-
gence theorem and the definition of φε.

For the second summand, note that X0,0
δ = L2([0, δ]× T) and hence

‖(|wε ∗ φε| (wε ∗ φε)) ∗ φε − |w|w‖L2([0,δ]×T)

≤ ‖(|w|w) ∗ φε − |w|w‖L2([0,δ]×T)

+ ‖(|wε ∗ φε| (wε ∗ φε)− |w|w) ∗ φε‖L2([0,δ]×T) .
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The first summand above goes to zero due to (φε)ε being an approximation to the
identity on L2(Z). The other summand is further estimated by

‖(|wε ∗ φε| (wε ∗ φε)− |w|w) ∗ φε‖L2([0,δ]×T)

≤ ‖|wε ∗ φε| (wε ∗ φε)− |w|w‖L2([0,δ]×T)

≤ ‖|wε ∗ φε| (wε ∗ φε − w)‖L2([0,δ]×T) + ‖(|wε ∗ φε| − |w|)w‖L2([0,δ]×T)

≤ ‖|wε ∗ φε| (w ∗ φε − w)‖L2([0,δ]×T) + ‖|wε ∗ φε| ((wε − w) ∗ φε)‖L2([0,δ]×T)

+ ‖(|wε ∗ φε| − |w ∗ φε|)w‖L2([0,δ]×T) + ‖(|w ∗ φε| − |w|)w‖L2([0,δ]×T)

and we now need to treat the four summands above. For the first one we have

‖|wε ∗ φε| (w ∗ φε − w)‖L2([0,δ]×T) ≤ ‖w
ε ∗ φε‖L4([0,δ]×T) ‖w ∗ φε − w‖L4([0,δ]×T)

and the first factor above is bounded by

‖wε ∗ φε‖L4([0,δ]×T) . ‖w
ε‖
X

0, 3
8

δ

. ‖w0 ∗ φε‖L2(T) ≤ ‖w0‖L2

by Lemma 19 and the construction of wε. The second factor goes to zero due to
(φε)ε being an approximation to identity.

For the third summand, observe that

‖(|wε ∗ φε| − |w ∗ φε|)w‖L2([0,δ]×T)

≤ ‖|wε ∗ φε| − |w ∗ φε|‖L4([0,δ]×T) ‖w‖L4([0,δ]×T)

≤ ‖(wε − w) ∗ φε‖L4([0,δ]×T) ‖w‖L4([0,δ]×T)

. ‖wε − w‖X0,b
δ
‖w‖X0,b

δ
.

Recall that in front of this term is δ1−b � 1 and hence we can just move it to
the left-hand side of (42). The remaining two terms are treated with the same
techniques.

The estimates above and Lemma 20 show that

‖w‖C([0,T ],L2(T)) ≤ lim sup
ε→0+

[
‖wε − w‖X0,b

δ
+ ‖wε‖C([0,T ],L2(T))

]
≤ lim sup

ε→0+

[
‖w0 ∗ φε‖L2(T)

]
= ‖w0‖L2(T)

and hence the solution w indeed enjoys mass conservation. This finishes the proof.
�

In addition to mass conservation, we also have conservation of the energy.

Theorem 29. (Cf. [GV79, Theorem 3.1] and [LRS88, Theorem 2.1].) The Cauchy
problem for the quadratic periodic NLS ( (2) with α = 2) is globally well-posed in
H1(T) and the solution u enjoys energy conservation E(u(·, t)) = E(u0).

Remark 30. In [LRS88] it is claimed that the quadratic NLS is globally well-posed
on the torus. They refer to [GV79], where it is done on the real line. While our
proof of Theorem 29 borrows some ideas from [GV79], we believe that in order to be
able to do the torus case, one needs the result of Bourgain [Bou93a], in particular,
the Bourgain spaces, which appeared 5 years after [LRS88].

Proof. Let w0 ∈ H1(T) ⊆ L2(T). By Theorem 28, the quadratic periodic NLS
has the unique global solution w ∈ Cb(R, L2(T)). It remains to show that w ∈
Cb(R, H1(T)). To show that for any t ∈ R one has w(·, t) ∈ H1(T) we first prove
that

(44) sup
ε>0
‖wε‖C(R,H1(T)) <∞.
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By the calculations similar to those in the proof of Theorem 28, it suffices to prove
the corresponding bound for the energy Eε(w

ε(·, t)).
To that end let wε be the unique global solution of the modified NLS (31) for

ε > 0 from Theorem 27. The energy conservation from Equation (39) implies

Eε(w
ε(·, t)) = Eε(w0 ∗ φε) =

1

2
‖w0 ∗ φε‖2Ḣ1(T) ∓

1

3
‖w0 ∗ φε‖3L3(T) .

Observe that by Lemma 17 the first summand above satisfies

‖w0 ∗ φε‖2Ḣ1(T) ≤ ‖w0‖2Ḣ1(T) .

If the sign of the second summand is negative (focusing case), there is nothing left
to do. If the sign is positive (defocusing case), one has

‖w0 ∗ φε‖33 ≤ ‖w0‖33 ≤ ‖w0‖L∞(T) ‖w0‖2L2(T) ≤ ‖w0‖3H1(T)

by Lemma 16. Therefore, the bound (44) holds.
Assume for now that t ∈ [0, δ], where δ is the guaranteed time of existence of w

in L2(T). From the proof of Theorem 28, one has that

(45) lim
ε→0+

‖wε − w‖C([0,T ],L2(T)) = 0.

Hence, from Equations (44) and (45) and Lemma 18 it follows that

‖w(·, t)‖H1(T) ≤ lim inf
ε→0+

‖wε(·, t)‖H1(T) <∞.

Observe, that by the above we have

‖wε(·, t) ∗ φε − w‖3L3(T)

. ‖(wε(·, t)− w(·, t)) ∗ φε‖3L3(T) + ‖(w(·, t) ∗ φε − w(·, t)‖3L3(T)

≤ (‖wε(·, t)‖L∞ + ‖w(·, t)‖L∞) ‖wε(·, t)− w(·, t)‖2L2(T)

+ ‖(w(·, t) ∗ φε − w(·, t)‖3L3(T)
ε→0+−−−−→ 0

and hence

E0(w(·, t)) ≤ lim inf
ε→0+

Eε(w
ε(·, t)) ≤ E0(w0).

Interchanging 0 and t shows the reverse inequality and proves the energy conserva-
tion E0(w0) = E0(w(·, t)).

Reiterating the argument proves that w ∈ L∞(R, H1(T)). It remains to show
that w ∈ C(R, H1(T)). To that end, observe that t 7→ w(·, t) is weakly continuous
in L2(T). But, by the above, supt∈R ‖w(·, t)‖H1(T) < ∞ and hence t 7→ w(·, t) is

weakly continuous in H1(T). By the observation

‖w(·, t)− w(·, s)‖2H1(T) = ‖w(·, t)‖2H1(T)+‖w(·, s)‖2H1(T)−2 Re 〈w(·, t), w(·, s)〉H1(T) ,

it is enough to show that t 7→ ‖w(·, t)‖H1(T) is continuous. (See [Bre11, Proposition

3.32] for this result in a more general setting.)
To that end, observe that by the mass and energy conservation we have

‖w(·, t)‖2H1(T) = 2E(w(·, t))± 2

3
‖w(·, t)‖3L3(T) + ‖w(·, t)‖2L2(T)

= 2E0(w0)± 2

3
‖w(·, t)‖3L3(T) + ‖w0‖2L2(T) .
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Moreover, for any t, s ∈ R we have∣∣∣‖w(·, t)‖3L3(T) − ‖w(·, s)‖3L3(T)

∣∣∣
≤

∫
T
|w(x, t)− w(x, s)|

(
|w(x, t)|2 + |w(x, t)| |w(x, s)|+ |w(x, s)|2

)
dx

. 3 ‖w‖2L∞(R,H1(T)) ‖w(·, t)− w(·, s)‖L2(T) .

The fact that w ∈ Cb(R, L2(T)) concludes the argument. �
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