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On the Usefulness of SQL-Query-Similarity 
Measures to Find User Interests 

Natalia Arzamasova, Klemens Böhm, Bertrand Goldman, Christian Saaler and Martin Schäler  

Abstract— In the sciences and elsewhere, the use of relational databases has become ubiquitous. An important challenge is 

finding hot spots of user interests. In principle, one can discover user interests by clustering the queries in the query log. Such a 

clustering requires a notion of query similarity. This, in turn, raises the question of what features of SQL queries are meaningful. 

We have studied the query representations proposed in the literature and corresponding similarity functions and have identified 

shortcomings of all of them. To overcome these limitations, we propose new similarity functions for SQL queries. They rely on 

the so-called access area of a query and, more specifically, on the overlap and the closeness of the access areas. We have 

carried out experiments systematically to compare the various similarity functions described in this article. The first series of 

experiments measures the quality of clustering and compares it to a ground truth. In the second series, we focus on the query 

log from the well-known SkyServer database. Here, a domain expert has interpreted various clusters by hand. We conclude that 

clusters obtained with our new measures of similarity seem to be good indicators of user interests. 

Index Terms— SQL log analysis, SQL query representations, similarity measures  

——————————      —————————— 

 INTRODUCTION1

 

ATA with a specific structure is often stored  in rela-

tional databases. This is the case both within companies 

as well as in more open settings such as sciences. In any 

case, such databases provide generic interfaces so that 

basically any information need can  be formulated  – and  

this is what ind ividuals typically do. These information 

needs are manifold  and depend on the user interests
1
 and  

the background knowledge of users. For any organization 

or anybody providing database content, the question of 

what users find  interesting is extremely important. In a 

scientific domain, a user interest may represent a research 

trend. In business, it may point to popular data slices, 

which one might want to refactor for better accessibility. 

A promising way to find  user interests is query-log 

analysis. An SQL query log provides an appropriate level 

of abstraction as well as precise information regarding the 

interests of users. Due to their declarative nature, SQL 

queries are relatively easy to interpret. To find  areas of 

high interest in the data space, it is reasonable to cluster 

the SQL requests of a query log. This idea, however, 

comes with the following problems: 

1. To cluster SQL queries, one needs a notion of query 

similarity. This leads to the question what meaningful 

features of SQL queries are, and how to extract them. 

Among others, we currently are aware of the follow-

ing query representations: 

1. The feature-based  (FB) representation
2
 [1] focuses 

on the query structure.  

2. The witness-based (WB) representation [2] relies 

on the result of a query to a database. 

3. The access area-based (AAB) representation  [3] 
 

1
 As defined in [Zeng et al., 2010], a user interest is the subject a user or 

a group of users wants to get to know. In this article, ‘user interest’ is an 
interest of many users. 

2
 The name of the approach is one we have come up with, as with the 

approaches that follow. 

captures the area of a data space that a user is in-

terested  in. 

 Think of a query log consisting of the queries Example 1.

listed  in Table 1. All three queries access table ‘Employ-

ees’. One might find  the first and the second query sim i-

lar. This is because they have the same structure, asking 

for employees in a particular department. Indeed, ac-

cording to the FB approach, these two queries are iden-

tical. However, one can also d isagree with this conclu-

sion. In line with the WB representation, these two qu e-

ries do not have any common tuples in their results sets. 

When it comes to AAB, the first and the second query 

refer to d ifferent parts of the data space and hence are 

not similar. Regarding the similarity of the first and the 

third  query one cannot really say much. Even though 

there could  be employees from the sales or the store d e-

partment who started  to work after 01/ 12/ 2015 (simi-

larity in WB), this does not lead  to meaningful insights. 

A user might have had d ifferent intentions when form u-

lating these queries. 

So far, to our knowledge, there is no comparative 

study on the usefulness of d ifferent query representations 

for clustering with the aim of finding user interest . 

2. Having a query representation is not sufficient to 

cluster SQL queries. Based  on this representation, it 

D 

  TABLE 1
Queries in a log 

# Statements Result 

1 SELECT * FROM Employees E  

WHERE E.department = ‘sales’ 

12 employees from sales 

department 

2 SELECT * FROM Employees E  

WHERE E.department = ‘store’ 

8 employees from store 

department 

3 SELECT * FROM Employees E  

WHERE E.startdate >  

’01/12/2015’ 

10 employees who 

started  working in a 

company after the date  

 



2  

 

 

is necessary to have a query-similarity function, 

quantifying for any two queries to what extent they 

are alike. The FB and WB representations lend them-

selves to straightforward  overlap measures. The 

similarity function for AAB in turn proposed in [3] is 

complex compared to FB or WB. It also has some re-

dundancies, and several definitions behind  it are ad  

hoc, as we will explain. Generally speaking, we also 

wonder whether there are more answers to the ques-

tion when two queries are similar. 

3. Another challenge when clustering SQL queries is 

that we are not aware of any suitable publicly avail-

able data set including a ground tru th. ‘Suitable’ 

means that it must include (1) a labeled  SQL query 

log and (2) the database these queries have been 

submitted  to. It also (3) must be publicly available.
3
 

So one cannot objectively compare similarity func-

tions and the corresponding query representations.  

This current paper stud ies the similarity of SQL que-

ries through clustering of SQL query logs with the aim of 

identifying user interests within a data space. According 

to [4], a good clustering result must be precise and  inter-

pretable. These two criteria have guided us in our design 

considerations and the experiments. Our steps and the 

core insights are as follows: 

1. We provide an extensive d iscussion of existing 

measures for query similarity and their advantages 

and d isadvantages. 

2. Based on this d iscussion, we propose a new kind of 

query similarity. It relies on the overlap and on the 

closeness of the access areas of the two queries. The 

existing notion of similarity based  on access areas 

only takes the overlap into account. It also has some 

shortcomings, so we come up with  a new access-

area-based similarity. We also propose a new defini-

tion of overlap and  will argue that it is more natural 

than the existing one. 

3. We perform systematic experiments with the design 

alternatives. In particular, we study the impact of 

the various similarity functions and query represen-

tations on clustering quality. 

4. To quantify the precision of clustering, data with a 

ground tru th is needed . Having such data in our 

current domain is an issue that existing approaches 

apparently have d ifficulties with. We in turn come 

up with conditions where one knows in advance 

which cluster a qu ery belongs to. Then we collect 

these queries together with this ground tru th. We 

make this data publicly available.   

5. To measure interpretability we conduct a study with 

an astronomer. He interprets various clustering re-

sults obtained from the SkyServer query log and as-

sesses how well they align w ith  user interests.   

6. We find  that our proposed similarity measures are 

better than the existing ones regarding both preci-

sion and interpretability and provide explanations 

for this. We have learned that the new measures are 
 

3
 We have considered two possible data sets: IIT Bombay [20] and the UB 

dataset[15]. The first data set however is not open access. The second one does 
not include the database. See Section 6.2.1. 

indeed helpful to arrive at 'query clusters' that are 

meaningful, i.e., represent user interests.  

Paper outline: Section 2 introduces underlying notions. 

Section 3 reviews existing approaches to query log analy-

sis, Section 4 features existing query representations and 

similarity functions. Section 5 covers our new similarity 

metrics, Section 6 experiments. Section 7 concludes. 

  PRELIMINARIES 2

We now introduce some underlying notions. 

Definition 1. A relational database 𝐷𝐵 is a database 

consisting of 𝑁 relations 𝑅1, … , 𝑅𝑁. 

Definition 2. The universal relation 𝑈 of a query 𝑞 is 

the Cartesian product of all relations occurring in the 

query 𝑞: 𝑈 =  𝑅1 × … × 𝑅𝑁. 

To avoid  clu tter in the presentation, we assume that a 

relation occurs in a query at most once. Otherwise, the 

previous definition would  need to be more complex. 

Definition 3. A database schema 𝑆 is a logical archi-

tecture of the database 𝐷𝐵, i.e., a set of definitions of re-

lations 𝑅1, … 𝑅𝑁 of 𝐷𝐵 and  constraints put on them.  

Definition 4. A database state 𝑇 of the database 𝐷𝐵 is 

data in the database 𝐷𝐵 allowed by the database schema 

𝑆 at any particular time. 

Definition 5. A predicate 𝑃 is a Boolean expression of 

all constrains put on 𝑈 by a query 𝑞. 

(𝑈;  𝑇) stands for the set of tuples of 𝑈 at state 𝑇 of 𝐷𝐵. 

Definition 6. Let a relational database 𝐷𝐵 be given. A 

query 𝑞 is a Select-Project-Join (SPJ) request together 

with an optional aggregate computation .  

In this paper, we only consider queries that fu lfill Def-

inition 6. We leave aside DML and DDL statements since 

they do not represent information needs.  

Definition 7. A representation scheme 𝑄𝑅𝑆 of a Query 

𝑞 is a function which returns certain feature values rep-

resenting a query.   

A query representation 𝑄𝑅(𝑞) of a query 𝑞 is a set of 

feature values which are the result of 𝑄𝑅𝑆 applied  to 𝑞. 

 Think of a 𝑄𝑅𝑆 which extracts the tables listed  Example 2.

in the FROM clause, but nothing else. For the queries 

from Example 1, 

 𝑄𝑅(𝑞1) =  𝑄𝑅(𝑞2) = 𝑄𝑅(𝑞3) = {𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠}.  
In contrast, if the QRS also extracts the attributes listed  

in the WHERE clause,  

𝑄𝑅(𝑞1) = 𝑄𝑅(𝑞2) = {𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠, 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠. 𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡} 

𝑄𝑅(𝑞3) =  {𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠, 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠. 𝑠𝑡𝑎𝑟𝑡𝑑𝑎𝑡𝑒}. 

Definition 8. A distance function 𝐷(𝑞1, 𝑞2) of Queries 

𝑞1 and  𝑞2 is a function returning a nonnegative value.  

Certain clustering algorithms impose conditions re-

garding the d istance function  used . So called  semi-metric 

d istances work with a broad variety of clustering algo-

rithms. According to [5], such a d istance 𝐷(𝑥𝑖 , 𝑥𝑗) must 

satisfy the following conditions on a data set 𝑋: 

1. Symmetry. 𝐷(𝑥𝑖 , 𝑥𝑗)= 𝐷(𝑥𝑗 , 𝑥𝑖);  

2. Positivity. 𝐷(𝑥𝑖 , 𝑥𝑗) ≥  0 for all 𝑥𝑖 and  𝑥𝑗 in 𝑋; 
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3. Reflexivity. 𝐷(𝑥𝑖 , 𝑥𝑗) = 0  iff 𝑥𝑖 = 𝑥𝑗 ; 

We will check these conditions when  introducing que-

ry-distance measures in Section 5. 

Definition 9. The similarity 𝑆(𝑞1, 𝑞2) of two queries is 

a function returning a value in [0; 1] .  

𝑆(𝑞1, 𝑞2) = {
1    𝑖𝑓   𝑞1 = 𝑞2

[0; 1)  otherwise 
 

It holds that 𝑆(𝑞1, 𝑞2) = 1 −  𝐷(𝑞1, 𝑞2).
4
 

 RELATED WORK 3

Though we are about to study clustering of SQL query 

logs, the design of new clustering algorithms is not the 

focus of this article, and  we do not provide a review of 

them here. This section also is relatively short since we 

defer the d iscussion of certain related  work to the next 

section. There we will focus on the extraction of meaning -

fu l features out of SQL statements. A query presented  as a 

set of features can relatively easily be compared to other 

ones, i.e., one can compute pairwise similarity values. 

Such similarities then are the input for clustering.  

SQL query-log analysis allows solving specific issues 

with regard  to database usage. One use case is the de-

tection of performance problems. For instance, [6] scans 

query logs with the aim of finding patterns and antipat-

terns. It also claims that such antipatterns heavily influ -

ence subsequent analysis, like clustering or association -

ru le mining. The article provides some evidence, but does 

not feature a comprehensive evaluation. Related  to the 

detection of antipatterns is [7], where researchers work 

with a log of update statements and a set of known data 

errors to find  and fix mistakes in a dataset. But analyzing 

DML statements, as is done there, is not our current focus. 

Another research thread  applies association-ru le min-

ing to a query log [2] describes an approach that generates 

SQL query recommendations online. It compares user ses-

sions and recommends a query to a user based  on queries 

from similar sessions. The authors present the idea that 

similar user behavior manifests itself in similar data these 

users access. A different approach to similarity of SQL 

user sessions is presented  in  [8]. The paper focuses on 

OLAP sessions and introduces an order-sensitive model 

to compare them. This means that the order of queries 

within a session influences the similarity of sessions. The 

proposed method considers filtering conditions of queries 

in a limited  way: Only equality predicates are allowed . 

Other related  work [1] aims at au tocompletion of a query, 

suggesting tables, views, UDFs, columns and predicates. 

It ad justs its recommendation to the context: The more of 

the query the user has typed in, the more accurate is the 

suggestion provided. [9] recommends join queries based  

on log analysis. They first extract chains of joins with 

corresponding predicates from the training set. The algo-

rithm then creates queries from a test set with only tables 

present in these queries as an input. 

A third  research area, clustering SQL queries to ident i-
 

4
 In general there is no restriction on 𝐷, i.e., 𝐷 ∈ [0; ∞). This require-

ment is there exclusively for our query-distance function. We have intro-
duced it in order to be able to set a meaningful threshold for the 
DBSCAN algorithm, to give an example. 

fy hot spots of users’ interests, is studied  in [3]. It propos-

es a query-similarity metric based  on the notion of so-

called  access areas. We discuss this notion in detail wh en 

reviewing query representations and similarity measures 

in the next section. [10] uses query clustering to help users 

locate interesting results. It generates clusters over  the 

data. Each cluster corresponds to one type of user prefer-

ence. In order to perform clustering, the authors compare 

queries based  on the results they return. As an outcome, 

they present a navigational tree over clusters generated  in 

the first step to the user. He can now select the subset of 

clusters matching his needs. 

 AN OVERVIEW OF SIMILARITY FUNCTIONS AND 4
QUERY REPRESENTATIONS 

In this section, we address the question how to define 

the similarity of queries. Since an SQL query may have a 

complex structure, this is not trivial. First one has to de-

cide what to compare, i.e., which query-representation 

scheme (𝑄𝑅𝑆) to use. We provide an overview of ap -

proaches we have encountered  in the scientific literature. 

The Appendix summarizes the query representations 

reviewed so far and the corresponding similarity/ d i-

stance functions. The last two rows refer to the new AAB 

similarity functions we are about to propose. 

 Query as a String 4.1
Arguably, the most straightforward  way to represent 

an SQL query statement is as a string. To calculate query 

similarity, one could  use string-similarity measures [11]. 

However, this hardly captures any specific features of 

SQL. We now elaborate on its drawbacks. 

 Consider the following queries: Example 3.

𝑞1: SELECT * FROM Employees WHERE birthyear < 1980 

𝑞
2
: SELECT * FROM Employers WHERE birthyear < 1980 

On the level of string similarities, these two queries 

have a very small d ifference – only one character. How-

ever, they access entirely d ifferent tables and therefore 

probably should  have a very small similarity.  

In addition, SQL keywords (SELECT, FROM, WHERE, 

etc.) overstate the similarity since they occur in every SPJ 

request. A possible solu tion is to exclude such words from 

consideration. However, this does not do away with ef-

fects like the one from Example 3 – even without key-

words these two strings d iffer by only one symbol.  

 Query as a Set of Features 4.2
To overcome some of the obstacles described in Sec-

tion 4.1 and to give more attention to the structure of an 

SQL request, [1] proposes a query representation as fol-

lows. There, a query is a set of features, and features are: 

1. tables, views, UDFs in the FROM clause 

2. attributes in the SELECT clause 

3. predicates (without values) in the WHERE clause 

4. attributes in the GROUP BY clause. 

We refer to this query representation as the feature-

based approach (FB). [1] is about autocompletion for SQL, 

not about clustering, and  the authors d o not explicitly 
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present any notion of query similarity. However, based  on 

the fact that a certain characteristic can only be present in 

a query or not, a feature can be seen as a binary attribute. 

Hence, one can use measures for binary attributes, such as 

the Jaccard  coefficient, Sokal and Sneath, Gower and Le-

gendre measures to arrive at similarity values for a pair  of 

queries. For instance, using the Jaccard  coefficient, the 

similarity of two queries 𝑞1 and  𝑞2 is: 

S(𝑞1, 𝑞2) =
|𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑞1) ∩ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑞2)|

|𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑞1) ∪ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑞2)|
 (1)  

There are a few variants of FB: [12] aims at detecting 
anomalous access patterns in relational databases. It in-
troduces three FB representations, which differ in details. 
[13] works with the SkyServer log and applies text mining 
techniques to parse, clean and tokenize statements into a 
weighted numerical representation, which can then be fed 
into regular machine learning. [14] represents an SQL 
query as an abstract syntax tree (AST) of its template. Any 
concrete values of such an AST are replaced by place-
holders. To compare queries, the AST is then transformed 
to a vector of features. [15] focuses on how the feature-
selection strategy affects clustering quality. It is confined 
to a feature-based query representation. 

The FB approach captures the structure of the query 

and does not have the d isadvantages of the method de-

scribed first (Section 4.1). The main weakness of such a 

query representation is that it does not consider the va l-

ues in a filtering condition.  

 Query as a Set of Result Tuples 4.3

Another query representation scheme [2], [16] intro-

duces the notion of witnesses and is called  witness based  

(WB) approach. A witness is a tuple in the result set of a 

query. A query representation is the set of its witnesses. 

The authors propose to measure the similarity of user ses-

sions. A user session is a sequence of queries issued by 

one user. When generating query recommendations, they 

are interested  in session -wise similarity, not query-wise.  

The similarity of two user sessions 𝑈𝑆1 and  𝑈𝑆2 is defined  

as cosine similarity. However, any metric for sets could  be 

applied . For example, here is for the Jaccard  coefficient: 

S(𝑈𝑆1, 𝑈𝑆2) =
|𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠(𝑈𝑆1) ∩ 𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠(𝑈𝑆2)|

|𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠(𝑈𝑆1) ∪ 𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠(𝑈𝑆2)|
 

where 𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠(𝑈𝑆𝑖) is the set of witnesses which be-

long to user session  𝑈𝑆𝑖. Since a user session consists of 

queries, one can define query similarity in the same spirit: 

S(𝑞1, 𝑞2) =
|𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠(𝑞1) ∩ 𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠(𝑞2)|

|𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠(𝑞1) ∪ 𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠(𝑞2)|
 (2)  

While this notion is very clear, we see several issues 

with this approach, as follows: 

1. Necessity to re-query the database. To identify all wit-

nesses, one must run the queries another time, lead-

ing to a huge load  on the database. Next, even if this 

was not an issue, it spoils subsequent query -log 

analysis. This is because re-run queries are stored  in 

the query log. Finally, due to possible updates of the 

database in the meantime, there is no guarantee that 

a query will have the same result as the first time. 

2. Result set can be empty. Two queries which do not 

return any data cannot be compared even though 

they may be identical.  

3. Possible insignificance of witness sets. Due to the de-

clarative nature of SQL in particular, the same data 

can be obtained in many d ifferent ways. Consider 

again Example 1. It is possible for Queries 𝑞1 and  𝑞3 

to have similar result sets. However, the intentions 

behind  the two queries obviously are d ifferent.  

Summing up, the WB approach overcomes the d isad -

vantages of FB. It is clear and easy to implement. Howev-

er, it may not be exactly practical in particular when the 

number of queries is very large. 

 Query as an Access Area 4.4

A way to overcome the d isadvantages of the witness-

based approach is proposed  in [3]. The authors represent 

a query using the notion of so-called  access areas. From 

now on, AAB is short for ‘access area based query repre-

sentation’. The access area of a query captures the area of 

the data space that the user is interested  in.  

Definition 10. A tuple 𝑡 𝜖 𝑈 is said  to influence the re-

sult set (𝑈, 𝑇)𝑃 of a query 𝑞 iff (𝑈\{𝑡}, 𝑇)𝑃 ≠ (𝑈, 𝑇)𝑃. If 𝑡 is 

removed from 𝑈, the result set of 𝑞 at state 𝑇 will 

change. 

Definition 11. The access area of a query 𝑞 is the set of 

all tuples 𝑡 contained in the universal relation 𝑈 that in-

fluence the result set of 𝑞 in some database state 𝑇 al-

lowed by the database schema which satisfy Predicate 𝑃 

of conditions put on a query 𝑞: 

{𝑡 ∈ 𝑈 ∶ ∃𝛵 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑏𝑦 𝐷𝐵 𝑠. 𝑡. 𝑡 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑠 (𝑈, 𝑇)𝑃} (3)  

In contrast to WB, the access area of a query does not 

rely on the current database state. In many cases, we can 

describe these tuples as an expression in the relational 

algebra. Coming back to 𝑞1 from Example 1, the access 

area of Query 𝑞1 is 𝜎𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 = ‘𝑠𝑎𝑙𝑒𝑠’(𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠). The 

notion leaves aside the SELECT clause of the query. It 

considers predicates and the FROM clause. These simila-

rities do not consider attribu tes in a SELECT clause either. 

[1] describes how to compute access areas for simple que-

ries as well as for join, aggregate and nested  queries. 

Moreover, it proposes a query d istance measure, based  on 

the overlap of the access areas of the two queries:  

𝐷(𝑞1, 𝑞2) =  𝑑𝑡𝑎𝑏𝑙𝑒𝑠(𝑞1. 𝐹𝑅𝑂𝑀, 𝑞2. 𝐹𝑅𝑂𝑀)
+ 𝑑𝑐𝑜𝑛𝑗(𝑞1. 𝑊𝐻𝐸𝑅𝐸, 𝑞2. 𝑊𝐻𝐸𝑅𝐸) (4)  

𝑑𝑡𝑎𝑏𝑙𝑒𝑠(𝑞1. 𝐹𝑅𝑂𝑀, 𝑞2. 𝐹𝑅𝑂𝑀) = 1 −
|𝑞1. 𝐹𝑅𝑂𝑀 ∩ 𝑞2. 𝐹𝑅𝑂𝑀|

|𝑞1. 𝐹𝑅𝑂𝑀 ∪ 𝑞2. 𝐹𝑅𝑂𝑀|
 (5)  

The predicate 𝑃 is in conjunctive normal form (CNF), 

i.e., it is a conjunction of clauses, where each clause is a 

d isjunction of literals. Hence, 𝑑𝑐𝑜𝑛𝑗(𝑏1;  𝑏2) in Formu la (4) 

means d istance of conjunctions. It is calculated  as: 

𝑑𝑐𝑜𝑛𝑗(𝑏1; 𝑏2) =
∑ min

𝑜2∊𝑏2

𝑑𝑑𝑖𝑠𝑗(𝑜1; 𝑜2)𝑜1∊𝑏1
+ ∑ min

𝑜1∊𝑏1

𝑑𝑑𝑖𝑠𝑗(𝑜1; 𝑜2)𝑜2∊𝑏2

|𝑏1|  + |𝑏2|
 

where each 𝑜𝑖 ∊ 𝑏𝑖 is a d isjunction of Boolean ex-

pression(s), and |𝑏𝑖|  is the number of d isjunctions of 𝑏𝑖 in 

Query 𝑞𝑖. 𝑑𝑑𝑖𝑠𝑗(𝑜1; 𝑜2) is the d istance of the d isjunctions of 
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𝑜1 and  𝑜2. It is as follows: 

𝑑𝑑𝑖𝑠𝑗(𝑜1; 𝑜2) =
∑ min

𝑝2∊𝑜2

𝑑𝑝𝑟𝑒𝑑(𝑝1; 𝑝2)𝑝1∊𝑜1
+ ∑ min

𝑝1∊𝑜1

𝑑𝑝𝑟𝑒𝑑(𝑝1; 𝑝2)𝑝2∊𝑜2

|𝑜1| +  |𝑜2|
 

where 𝑝1 ∊ 𝑜1 is an atomic predicate, and |𝑜1| is the num-

ber of atomic predicates of 𝑜1. 

The d istances between predicates are: 

 𝑑𝑝𝑟𝑒𝑑(𝑃1, 𝑃2) =  1 −
𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑎)

𝑤𝑖𝑑𝑡ℎ(𝑎)
 if both predicates 𝑃1 

and  𝑃2 refer to the same attribute 𝑎; 

 𝑑𝑝𝑟𝑒𝑑(𝑃1, 𝑃2) =  1 −
𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑎1)

𝑤𝑖𝑑𝑡ℎ(𝑎1)
×

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑎2)

𝑤𝑖𝑑𝑡ℎ(𝑎2)
 if both 

predicates 𝑃1 and  𝑃2 refer to d ifferent attributes 𝑎1 and  𝑎2. 

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑎) is the width of the interval in which Pred i-

cate 𝑃 is true. The Appendix contains an example illu s-

trating the notions which we have just defined. While the 

notion of access area itself has proven its worth, the d is-

tance function has several shortcomings:  

1. The distance function is redundant, as follows: For-

mula (4) sums up the d istance of the access tables, 

calculated  using the Jaccard  coefficient, as well as 

the d istance of the conjunctions in the filtering con-

ditions. If two queries have the same attributes in 

the filtering conditions, they have common tables in 

the FROM clause as well. Taking the d istance of the 

tables accessed  when one already calculates a d is-

tance of the filtering conditions is redundant. The 

following example illustrates this. 

 Think of a query log containing the queries: Example 4.

𝑞1: SELECT * FROM Cities C WHERE C.latitude BETWEEN 30 

and 50 

𝑞
2
: SELECT * FROM Cities C, Countries Cs WHERE 

C.latitude BETWEEN 40 and 60 AND C.countryId = Cs.id 

The access areas of these queries are: 

𝑞1: 𝜎𝐶𝑖𝑡𝑖𝑒𝑠.𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 ≥30 Ʌ 𝐶𝑖𝑡𝑖𝑒𝑠.𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 ≤ 50(𝐶𝑖𝑡𝑖𝑒𝑠); 

 𝑞2: 𝜎𝐶𝑖𝑡𝑖𝑒𝑠.𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 ≥40 Ʌ 𝐶𝑖𝑡𝑖𝑒𝑠.𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 ≤ 60(𝐶𝑖𝑡𝑖𝑒𝑠 × 𝐶𝑜𝑢𝑛𝑡𝑟𝑖𝑒𝑠).  

The first addend of the d istance measure is as follows: 

𝑑𝑡𝑎𝑏𝑙𝑒𝑠(𝑞1. 𝐹𝑅𝑂𝑀, 𝑞2. 𝐹𝑅𝑂𝑀) = 1 −
|{𝐶𝑖𝑡𝑖𝑒𝑠}|

|{𝐶𝑖𝑡𝑖𝑒𝑠,𝐶𝑜𝑢𝑛𝑡𝑟𝑖𝑒𝑠}|
=

1

2
 . 

To calculate 𝑑𝑐𝑜𝑛𝑗(𝑞1. 𝑊𝐻𝐸𝑅𝐸, 𝑞2. 𝑊𝐻𝐸𝑅𝐸), the authors 

rely on the domain of a column. For attribute 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 in 

Example 4, 𝑑𝑜𝑚(𝐶𝑖𝑡𝑖𝑒𝑠. 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) = [−90; 90]. Hence the 

width of this attribute is: 

 𝑤𝑖𝑑𝑡ℎ(𝐶𝑖𝑡𝑖𝑒𝑠. 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) = |90 − (−90)| = 180.  

With predicates in the two queries referring to the same 

single column, 

𝑑𝑐𝑜𝑛𝑗(𝑞1. 𝑊𝐻𝐸𝑅𝐸, 𝑞2. 𝑊𝐻𝐸𝑅𝐸)=1 − (𝑜𝑣𝑒𝑟𝑙𝑎𝑝 (𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒))/

𝑤𝑖𝑑𝑡ℎ(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒)  = 1 − 10/180 =   17/18. 

Thus, the overall d istance in this example is even more 

than 1: 𝐷(𝑞1, 𝑞2) =  1/2 + 17/18 =   13/9. 

Because two distances are summed up, the result 

may be an overall d istance greater than 1, while this 

ought to be the value indicating maximally d issimi-

lar queries. Summing up values with d ifferent 

meanings/ with d ifferent units of measure does not 

yield  results with a clear meaning. One might argue 

that addends show the degree of d issimilarity – this 

is their common unit. Then this degree should  have 

at least the same range. However, as Example 4 has 

shown, this is not true: 𝑑𝑡𝑎𝑏𝑙𝑒𝑠 𝜖 [0; 1], 𝑑𝑐𝑜𝑛𝑗𝜖[0; ∞].  

2. The distance of two queries depends on the width of 

the attributes, see Example 4. Hence one cannot 

come up with a maximum distance in advance. This 

renders the choice of threshold  values for clustering 

algorithms like DBSCAN difficult.  

3. The similarity function presented  in the paper is not 

a semi-metric. To show this, we calculate the d is-

tance of two identical queries from Example 4:  
𝑑𝑡𝑎𝑏𝑙𝑒𝑠(𝑞1. 𝐹𝑅𝑂𝑀, 𝑞1. 𝐹𝑅𝑂𝑀) = 0. 
𝑑𝑐𝑜𝑛𝑗(𝑞1. 𝑊𝐻𝐸𝑅𝐸, 𝑞1. 𝑊𝐻𝐸𝑅𝐸) = 1 − 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒)/

𝑤𝑖𝑑𝑡ℎ(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒)  = 1 − 20/180 =   8/9. 

𝐷(𝑞1, 𝑞2) =  0 + 8/9 =   8/9, while the reflexivity con-

dition requires that 𝐷(𝑞1, 𝑞1) =  0. 

4. The distance calculates the overlap of the access are-

as even if the two queries have d ifferent attributes in 

the filtering conditions. The following example illu s-

trates that this may be problematic. 

 Think of a query log containing the queries: Example 5.

𝑞1: SELECT * FROM T WHERE a = 1 

𝑞2: SELECT * FROM T WHERE b = 2 

In this case, the au thors propose to set   

𝑑𝑐𝑜𝑛𝑗(𝑞1. 𝑊𝐻𝐸𝑅𝐸, 𝑞2. 𝑊𝐻𝐸𝑅𝐸) to the share of the joint 

space of the columns involved occupied  by 𝑞1. 𝑊𝐻𝐸𝑅𝐸 

and  𝑞2. 𝑊𝐻𝐸𝑅𝐸. So these two queries might end up in 

the same cluster. The clusters then might become too big 

and consist of d isjoint areas of the data space.  

In our opinion, these shortcomings impact the identifi-

cation of user interests based  on clusters severely. Namely, 

when a cluster represents several user interests, one can-

not d istinguish between them. 

 Summary 4.5

Table 2 shows the FB, WB and AAB representations of 

Query 𝑞1 from Example 1. FB is structure oriented , WB is 

data-oriented , AAB is somewhere in between, introducing 

access areas. Since an AAB representation is not a feature 

vector, one cannot use standard  similarity measures, but 

an AAB similarity function is needed. To get  the FB repre-

sentation, one only needs the query. For WB in turn, the 

query and access to the data is needed. AAB does not 

need the entire data, only some statistical properties, like 

extreme values of an attribute.  

 OUR AAB SIMILARITY FUNCTION 5

We now face the necessity to come up with an AAB 

similarity measure which does not have these adverse 

characteristics. Representing a query as its access area 

seems promising. It captures key details of an SQL re-

quest and does not consider the current state of a data-

base, in contrast to the WB approach. However, as we 

have pointed  out in Section 4.4, a d ifferent query-

similarity function is necessary. We now propose a new 

function which is still based  on the notion of access areas  

but does not suffer from the shortcomings d iscussed  in 

the previous section. To come up with it, we ask: 
1. Which queries are similar? 

2. How to quantify similarity of two queries in the 

following cases? 

a. There are several occurrences of an attribute in 

the filtering conditions in both queries. 
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b. There are d ifferent attributes in the filtering con-

ditions, while the queries have at least on e com-

mon attribute. 

c. At least one query contains joins. 

While this list does not cover SQL in fu ll, it does cover 

a superset of SPJ queries with possibly aggregation, 

cf. Section 2. – From the study of the SkyServer query log, 

the only one freely available, it turns out that there are 

two types of queries that require further d iscussion : 

 Queries with arithmetic operations in predicates. 

Queries with arithmetic operations in predicates are d iffi-

cult in general, for instance for DBMS query optimizers. 

The current version of our AAB approach does not cover 

these queries. However, to include queries with arithme-

tic operations into the consideration, one could  resort to 

the WB approach. This is the case particularly since one of 

our similarity functions, which calculates overlap of ac-

cess areas (dubbed AABovl in the following), and WB 

yield  similar results, as we will show in Section 6. 

 Queries without a filtering condition . This kind  of 

query is useful in combination with a TOP-n clause. These 

queries often are the first queries a user might issue, with 

the aim of testing the database. In this case, they have re-

latively little to do with user interests. These queries also 

blur the aggregated  access area of a cluster they belong to. 

In our case study with SkyServer, only 2.7 % of the que-

ries are of this kind . So we have consciously decided to 

leave them aside in this current study. 

This means that, w hen it comes to a real-world  query 

log, the three cases (2.a, 2.b, 2.c) cover most of the queries 

actually occurring. We now present a new formulation of 

query similarity. A dissimilarity or d istance function must 

meet the conditions from Definition 8. We will prove that 

our d istance/ similarity function has these characteristics. 

Before doing so, we introduce some underlying notions. 

Definition 12. The similarity measure 𝑆(𝑞1, 𝑞2). 𝑎 of an 

attribute 𝑎 of two queries 𝑞1, 𝑞2 is a similarity measure 

of queries 𝑞1 and  𝑞2 which is defined if the queries both 

have at least one filtering condition with Attribute 𝑎 and  

is undefined otherwise.  

For a query pair 𝑞1 and  𝑞2, there can be one or several 

conditions on Attribute 𝑎. 

𝐷(𝑞1, 𝑞2). 𝑎 is the corresponding d istance and is calcu-

lated  as follows: 𝐷(𝑞1, 𝑞2). 𝑎 = 1 − 𝑆(𝑞1, 𝑞2). 𝑎. 

Definition 13. An ordinal attribute (OA ) is one whose 

values have a natural order. 

The values of such an attribute may or may not be 

from a domain that is continuous. 

Definition 14. A nominal attribute (NA ) is one whose 

values do not have a natural order. 

Definition 15. The interest 𝐼𝑛𝑡𝑠(𝑞) of a query 𝑞 is the set 

of attributes occurring in filtering condition s of q. 

 Back to Example 1, 𝐼𝑛𝑡𝑠(𝑞1) =  𝐼𝑛𝑡𝑠(𝑞2) =Example 6.

 {𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠. 𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡}. 

Definition 16. The common interest 𝑐𝑜𝑚𝐼𝑛𝑡𝑠(𝑞1, 𝑞2) =

𝐼𝑛𝑡𝑠(𝑞1) ∩ 𝐼𝑛𝑡𝑠(𝑞2) of two queries 𝑞1, 𝑞2 is the set of inter-

ests which occur in both queries 𝑞1 and  𝑞2. 

Definition 17. The exclusive interest 𝑒𝑥𝑐𝑙𝐼𝑛𝑡𝑠(𝑞1, 𝑞2) =
{𝐼𝑛𝑡𝑠(𝑞1) ∪ 𝐼𝑛𝑡𝑠(𝑞2)} \𝑐𝑜𝑚𝐼𝑛𝑡𝑠(𝑞1, 𝑞2) of two queries 𝑞1,  
𝑞2 is the set of interests which occur in only one query. 

In what follows, we use the notation 𝑃𝑖
𝑎 for a predicate 

occurring within Query 𝑞𝑖 and  referring to Attribute 𝑎. In 

general, several terms may represent the same predicate: 

For instance, if a predicate referring to Attribute 𝑎 occurs 

in both Query 𝑞𝑖 and 𝑞𝑗, then both 𝑃𝑖
𝑎  and  𝑃𝑗

𝑎 are in order. 

Likewise, if the predicate refers to Attributes 𝑎1 and  𝑎2, 

both 𝑃𝑖
𝑎1   and  𝑃𝑖

𝑎2   may stand for the predicate. 

Definition 18. A set of intervals 𝐴𝑖
𝑂𝐴 = {𝑎𝑖.1

𝑂𝐴, … , 𝑎𝑖.𝑘
𝑂𝐴} of a 

query 𝑞𝑖 is one formed by pred icate 𝑃 with OA 𝑎. 

  Consider Queries 𝑞1and 𝑞2: Example 7.

𝑞1: SELECT * FROM Cities C WHERE C.latitude BETWEEN 10 

and 20 OR C.latitude BETWEEN 40 and 50 

𝑞2: SELECT * FROM Cities C WHERE C.latitude BETWEEN 10 

and 20 OR C.latitude NOT BETWEEN 40 and 50 

Query 𝑞1 has the following set of intervals for ord inal 

attribute 𝐶𝑖𝑡𝑖𝑒𝑠. 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒: 𝐶𝑖𝑡𝑖𝑒𝑠. 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒1
𝑂𝐴 =

{[10; 20], [40; 50]}.For Query 𝑞2,  𝐶𝑖𝑡𝑖𝑒𝑠. 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒2
𝑂𝐴 = {[−90; 40],

[50; 90]}, because 𝑑𝑜𝑚(𝐶𝑖𝑡𝑖𝑒𝑠. 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) = [−90; 90]. 

We now define how to extract intervals out of a query. 

Definition 19. The set of intervals 𝐴𝑖
𝑂𝐴 = {𝑎𝑖.1

𝑂𝐴, … , 𝑎𝑖.𝑘
𝑂𝐴} of a 

Predicate 𝑃𝑖
𝑎 associated  with an ordinal Attribute 𝑎 is as 

follows. If 𝑃𝑖
𝑎  is: 

1. Atomic clause: 𝐴𝑖
𝑂𝐴 is a singleton set containing ex-

actly the clause; 

2. Conjunction clause (𝐶1 Ʌ 𝐶2):𝐴𝑖
𝑂𝐴   =  𝐶1 ∩ 𝐶2; it is the 

intersection of the intervals in 𝐶1 and  𝐶2; 

3. Disjunction clause (𝐶1 ∨ 𝐶2): 𝐴𝑖
𝑂𝐴   =  𝐶1 ∪ 𝐶2; it is the 

union of intervals in 𝐶1  and  𝐶2; 

4. Negative clause (𝑁𝑂𝑇 𝐶): 𝐴𝑖
𝑂𝐴 =  ⎺𝐶; it is the inverse 

interval of 𝐶. 

Definition 20. The width w𝑖𝑑𝑡ℎ(𝑎𝑖.𝑘) of interval 𝑎𝑖.𝑘
𝑂𝐴 is 

defined as w𝑖𝑑𝑡ℎ(𝑎𝑖.𝑘) =  𝑎𝑖.𝑘
𝑚𝑎𝑥 − 𝑎𝑖.𝑘

𝑚𝑖𝑛. 

For instance, the queries from Example 5 have the fol-

lowing widths of intervals:  

w𝑖𝑑𝑡ℎ(𝑎1.1) = 20 − 10 = 10;  w𝑖𝑑𝑡ℎ(𝑎1.2) = 50 − 40 = 10; 

w𝑖𝑑𝑡ℎ(𝑎2.1) = 40 + 90 = 130;  w𝑖𝑑𝑡ℎ(𝑎2.2) = 90 − 50 = 40;  

Definition 21. A set of values 𝐴𝑖
𝑁𝐴 = {𝑎𝑖.1

𝑁𝐴, … , 𝑎𝑖.𝑘
𝑁𝐴}  valid  

with regard  to a Predicate 𝑃𝑖
𝑎  over a nominal attribute 𝑎 

is a set of values of 𝑎 where each value satisfies the con-

ditions put on 𝑎 by the predicate 𝑃𝑖
𝑎. 

As for intervals, we introduce an extraction procedure: 

Definition 22. The set of valid  values of a Predicate𝑃𝑖
𝑎 

associated  with a nominal Attribute 𝑎 𝐴𝑖
𝑁𝐴 = {𝑎𝑖.1

𝑁𝐴, … , 𝑎𝑖.𝑘
𝑁𝐴} 

is as follows. If 𝑃𝑖
𝑎  is: 

1. Atomic clause: 𝐴𝑖
𝑁𝐴 is a singleton set containing ex-

actly the clause; 

  TABLE 2
Query representations of 𝑞1 from Example 1 

Method  Query representation  

FB [1] {*, Employees, Department} 

WB [2] {(4352, John, Doe), (4322, Mary, Smith), (4152, Ivan, Green), 

(4357, Sarah, Bing), (8352, Eva, Dallas), (4052, Stephen, Li),…, 

(4356, Boris, Johnson), (4322, David, Black)} 

AAB [3] 𝜎𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 = ‘𝑠𝑎𝑙𝑒𝑠’(𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠) 
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2. Conjunction clause (𝐶1 Ʌ 𝐶2): 𝐴𝑖
𝑁𝐴 is the intersection 

of valid  values in 𝐶1 and  𝐶2; 

3. Disjunction clause (𝐶1 ∨ 𝐶2): 𝐴𝑖
𝑁𝐴 is the union of valid  

values in 𝐶1  and  𝐶2; 

4. Negative clause (𝑁𝑂𝑇 𝐶): 𝐴𝑖
𝑁𝐴 is all the values from 

domain not presented  in  𝐶. 

 Which Queries are Similar? 5.1
To come up with a measure of query similarity, we first 

study the simplest case, when two queries have one oc-

currence of the same attribute in the filtering condition 

and nothing else. It seems plausible that similar queries 

are those whose access areas overlap. However, this 

might be too strict in certain cases. 

 Think of a query log containing the queries: Example 8.

𝑞1: SELECT * FROM Cities C WHERE C.latitude >= 45 AND 

C.latitude < 90 

𝑞2: SELECT * FROM Cities C WHERE C.latitude >= 30 AND 

C.latitude < 45 

𝑞3: SELECT * FROM Cities C WHERE C.latitude >= -75 AND 

C.latitude < -30 

𝑞4: SELECT * FROM Cities C WHERE C.name = ‘New York’ 

𝑞5: SELECT * FROM Cities C WHERE C.name = ‘Paris’ 

Attribute latitude of table Cities has a continuous type, 

𝐶𝑖𝑡𝑖𝑒𝑠. 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 ∈ [−90; 90]. This attribute is ord inal 

(OA), while 𝐶𝑖𝑡𝑖𝑒𝑠. 𝑛𝑎𝑚𝑒 is nominal (NA). Now look at 

the first three queries in the log. Fig. 1 plots the access 

areas of Queries 𝑞1, 𝑞2 and 𝑞3. They are as follows:  

𝑞1: 𝜎𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 ≥45 Ʌ 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 ≤ 90(𝐶𝑖𝑡𝑖𝑒𝑠); 

𝑞2: 𝜎𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 ≥30 Ʌ 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 ≤ 45(𝐶𝑖𝑡𝑖𝑒𝑠); 

𝑞3: 𝜎𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 ≥−75 Ʌ 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 ≤ −30(𝐶𝑖𝑡𝑖𝑒𝑠). 

No two queries overlap. But 𝑞1 and  𝑞2 appear to be clo-

ser to each other: Their access areas even are ad jacent. 

So we need to take in closeness as a criterion as well. 

Observe that all already existing measures which rely on 

the data, like WB or AAB, currently do not feature this 

either. In other words, the phenomenon that closeness is 

neglected  is not specific to access-area-based approaches. 

 Closeness Similarity for Ordinal Attributes 5.1.1
We want to quantify the closeness of the access areas of 

two queries. Lack of overlap of access areas does not 

mean ‘zero similarity’. Put d ifferently, queries which re-

quest data in neighboring parts of the data space should  

have the chance to end up in the same cluster.  

Definition 23. The similarity of two queries with the 

same filtering ordinal attribute (OA) 𝑆𝑐𝑙(𝑞1, 𝑞2). 𝑎  is the 

proximity (closeness, cl) of their access areas: 

𝑆𝑐𝑙(𝑞1, 𝑞2). 𝑎 = 𝑆𝑐𝑙(𝑎1.1
𝑂𝐴 , 𝑎2.1

𝑂𝐴) =  
1

2
∙

(𝑎1.1
𝑚𝑎𝑥  − 𝑎1.1

𝑚𝑖𝑛) + (𝑎2.1
𝑚𝑎𝑥  − 𝑎2.1

𝑚𝑖𝑛)

max(𝑎1.1
𝑚𝑎𝑥 , 𝑎2.1

𝑚𝑎𝑥) − min(𝑎1.1
𝑚𝑖𝑛, 𝑎2.1

𝑚𝑖𝑛)
 (6)  

𝑎𝑖.1
𝑚𝑖𝑛/ 𝑎𝑖.1

𝑚𝑎𝑥 are the minimum/ maximum of Interval 𝑎𝑖.1
𝑂𝐴.  

Since we are considering the simplest case, there is on-

ly one interval of one attribute for each query. Because of 

this, the similarity of attribute conditions is the similarity 

of the first occurrence of Attribute 𝑎 in both queries: 

𝑆𝑐𝑙(𝑞1, 𝑞2). 𝑎 = 𝑆𝑐𝑙(𝑎1.1
𝑂𝐴, 𝑎2.1

𝑂𝐴). The coefficient 0.5 normalizes the 

measure. The formula is the share of the space accessed  

over the width of the space between the queries. 𝑆𝑐𝑙 > 0.5 

indicates overlap of access areas. 

LEMMA 5.1.  𝐷𝑐𝑙(𝑞1, 𝑞2). 𝑎 is semi-metric. 

All proofs are in the Append ix.  

 Overlap Similarity for Nominal Attributes  5.1.2
The closeness measure 𝑆𝑐𝑙(𝑞1, 𝑞2). 𝑎 in Equation (6) does 

not work with nominal attributes (NA). See Queries 𝑞4 

and  𝑞5 from Example 8. The values of Attribute 𝑛𝑎𝑚𝑒 of 

Table 𝐶𝑖𝑡𝑖𝑒𝑠 do not have a natu ral order. To illu strate, 

‘Paris’ is not close to ‘Prague’ just because they both start 

with ‘P’
5
. Having said  this, for nominal attributes we pro-

pose to take the overlap (ovl) as the similarity. We use the 

Jaccard  coefficient to this end : 

𝑆𝑜𝑣𝑙(𝑞1, 𝑞2). 𝑎 =
|𝐴1

𝑁𝐴 ∩ 𝐴2
𝑁𝐴|

|𝐴1
𝑁𝐴 ∪ 𝐴2

𝑁𝐴|
 (7)  

In our case,  

𝑆𝑜𝑣𝑙(𝑞4, 𝑞5). 𝐶𝑖𝑡𝑖𝑒𝑠. 𝑛𝑎𝑚𝑒 =  
|{'New York'}∩{'Paris'}|

|{'New York'}∪{'Paris'}|
= 0.  

LEMMA 5.2.  𝐷𝑜𝑣𝑙(𝑞1, 𝑞2). 𝑎, where 𝑎 is a nominal attribute, 

is semi-metric. 

 Overlap Similarity for Ordinal Attributes (OA). 5.1.3
With the definitions so far, we would  rely on d ifferent 

paradigms, i.e., closeness and overlap , when calculating 

the similarity for ord inal and nominal attributes. When 

different types of attributes are treated  d ifferently, it is 

unclear how this will affect analysis results, e.g., cluster-

ing. Therefore, to have an alternative which we can use as 

a reference point later, we now propose a purely overlap -

based similarity measure for ord inal attributes: 

𝑆𝑜𝑣𝑙(𝑞1, 𝑞2). 𝑎 = 𝑆𝑜𝑣𝑙(𝑎1.1
𝑂𝐴, 𝑎2.1

𝑂𝐴) =
𝑐𝑜𝑚𝑊𝑖𝑑𝑡ℎ(𝑎1.1

𝑂𝐴, 𝑎2.1
𝑂𝐴)

𝑎𝑙𝑙𝑊𝑖𝑑𝑡ℎ(𝑎1.1
𝑂𝐴, 𝑎2.1

𝑂𝐴)
 (8)  

In each query, one interval 𝑎1.𝑖
𝑂𝐴 represents Attribute 𝑎. 

𝑐𝑜𝑚𝑊𝑖d𝑡ℎ(𝑎1.1
𝑂𝐴, 𝑎2.1

𝑂𝐴) in Formula (8) is the overlap of Queries 

𝑞1 and  𝑞2 for Attribute 𝑎 in absolu te terms: 

𝑐𝑜𝑚𝑊𝑖𝑑𝑡ℎ(𝑎1.1
𝑂𝐴, 𝑎2.1

𝑂𝐴) = max(0, (min(𝑎1.1
𝑚𝑎𝑥, 𝑎2.1

𝑚𝑎𝑥)

− max(𝑎1.1
𝑚𝑖𝑛 , 𝑎2.1

𝑚𝑖𝑛)) (9)  

𝑎𝑙𝑙𝑊𝑖𝑑𝑡ℎ(𝑎1.1
𝑂𝐴, 𝑎2.1

𝑂𝐴) is the d ifference between the highest 

maximal bound and the lowest minimal bound :  

𝑎𝑙𝑙𝑊𝑖𝑑𝑡ℎ(𝑎1.1
𝑂𝐴, 𝑎2.1

𝑂𝐴) = max(𝑎1.1
𝑚𝑎𝑥, 𝑎2.1

𝑚𝑎𝑥) − min(𝑎1.1
𝑚𝑖𝑛, 𝑎2.1

𝑚𝑖𝑛) (10)  

For instance, the similarity for Attribute 𝐶𝑖𝑡𝑖𝑒𝑠. 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 

from Example 4 is:  

𝑆𝑜𝑣𝑙(𝑞1, 𝑞2). 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 =  
min(50,60)−max (30,40)

max(50,60)−min(30,40)
=

50−40

60−30
=

1

3
. 

Fig. 2 graphs the corresponding access areas. 

 

 Access areas of attribute Cities.latitude for queries 𝑞1, 𝑞2 Fig. 1.

and 𝑞3 from Example 8. 
 

5
 In principle, one can use domain-specific ontologies and respective 

distance measures. To continue the example, Paris and Prague might be 
similar because they both are capitals of European countries with a rich 
history. However, taking such additional information into account is 
beyond the scope of this paper. 
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LEMMA 5.3.  𝐷𝑜𝑣𝑙(𝑞1, 𝑞2). 𝑎, where 𝑎 is an ordinal at-

tribute, is semi-metric. 

 Summary  5.1.4
We have identified  two paradigms of AAB query simi-

larity: closeness (AABcl) and overlap (AABovl). We use 

these acronyms from now on. We also have proposed 

query-similarity measures for ord inal attributes (Formu la 

(6) for AABcl and (8) for AABovl) and nominal ones 

(Formula (7)). Which method to apply (closeness or over-

lap) when it comes to ordinal attributes depends on the 

objective. Our hypotheses, which our experimental evalu-

ation will address, are as follows: If an analyst is inter-

ested  in exact access areas many users have looked for, he 

might want to use the “strict” overlap formula (8). In 

contrast, if he is more interested  in the bigger picture, i.e., 

approximate, rather big areas users have looked at, the 

less strict closeness form ula (6) might be better. Fig. 3 

shows the clustering results with the two approaches. Our 

experiments in Section 6 will provide more details. 

So far, we have d iscussed  similarity measures for the 

simplest case, two queries having the same attribute in 

the filtering conditions, and this attribute occurs only 

once. Now we turn to more complex cases. 

 Multiple Occurrences of an Attribute in Filter-5.2
ing Conditions 

The first complication when calculating query similar i-

ty, described  in the beginning of Section 5, occurs when 

one uses the same attribute several times in the same 

query. This may happen when a query consists of OR 

predicates (for ord inal and  nominal attributes) or IN 

predicates (for nominal attributes). 

 Overlap Similarity 5.2.1

  Consider the following queries: Example 9.

𝑞1: SELECT * FROM Cities WHERE (population BETWEEN 0 and 

20) OR (population BETWEEN 40 and 60)  

OR (population BETWEEN 90 and 100) 

𝑞2: SELECT * FROM Cities WHERE (population BETWEEN 10 

and 30) OR (population BETWEEN 50 and 60)  

OR (population BETWEEN 80 and 90) 

The access areas of the queries look like in  Fig. 4. Both 

Queries 𝑞1 and  𝑞2 have not one, but several occurrences 

of Attribute 𝐶𝑖𝑡𝑖𝑒𝑠. 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛. Some of the areas do in-

tersect: for instance,  (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐵𝐸𝑇𝑊𝐸𝐸𝑁 0 𝑎𝑛𝑑 20) of 𝑞1 

and (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  𝐵𝐸𝑇𝑊𝐸𝐸𝑁 10 𝑎𝑛𝑑 30) of 𝑞2. Some how-

ever, like (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 BETWEEN 40 and 60)  of 𝑞1 and  

(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐵𝐸𝑇𝑊𝐸𝐸𝑁 80 𝑎𝑛𝑑 90) of 𝑞2, do not.  

With an overlap approach for ord inal attributes, we de-

fine the similarity measure as the ratio of the width of the 

overall overlap of the intervals to the width of the union 

of the intervals. Formally, 

𝑆𝑜𝑣𝑙(𝑞1, 𝑞2). 𝑎 =  
𝑜𝑣𝑙𝐶𝑜𝑚𝑊𝑖𝑑𝑡ℎ(𝑎1, 𝑎2)

𝑜𝑣𝑙𝐴𝑙𝑙𝑊𝑖𝑑𝑡ℎ(𝑎1, 𝑎2)
 (11)  

The terms in the numerator and in the denominator are 

as follows: 

𝑜𝑣𝑙𝐶𝑜𝑚𝑊𝑖𝑑𝑡ℎ(𝑎1, 𝑎2) =  ∑ 𝑐𝑜𝑚𝑊𝑖𝑑𝑡ℎ(𝑎1.𝑖
𝑂𝐴, 𝑎2.𝑗

𝑂𝐴)
𝑖=𝑙1,𝑗=𝑙2

𝑖=1,𝑗=1
 

o𝑣𝑙𝐴𝑙𝑙𝑊𝑖𝑑𝑡ℎ(𝑎1, 𝑎2) =  ∑ 𝑤𝑖𝑑𝑡ℎ(𝑎1.𝑖
𝑂𝐴)

𝑖=𝑙1

𝑖=1

+ ∑ 𝑤𝑖𝑑𝑡ℎ(𝑎2.𝑗
𝑂𝐴) −

𝑗=𝑙2

𝑗=1
𝑜𝑣𝑙𝐶𝑜𝑚𝑊𝑖𝑑𝑡ℎ(𝑎1, 𝑎2) 

where 𝑙1 and  𝑙2 are the numbers of intervals over Attrib-

u te 𝑎 occurring in Queries 𝑞1 and  𝑞2 respectively. The 

width of an interval is calculated  as in Definition 20. 

 Think of the queries from Example 9. Here,  Example 10.
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛1.1 = [0; 20], 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛1.2 = [40; 60],  
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛1.3 = [90; 100]; 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛2.1 = [10; 30], 
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛2.2 = [50; 60], 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛2.3 = [80; 90]. 

𝑆𝑜𝑣𝑙(𝑞1, 𝑞2). p𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =  
20

50+40−20
=

2

7
. 

For nominal attributes, the formula remains exactly the 

same as in Section 5.1.2 (Formula (7)). This is because it 

already covers several occurrences of an attribute.  

LEMMA 5.4.  𝐷𝑜𝑣𝑙(𝑞1, 𝑞2). 𝑎, where 𝑎 is an ordinal at-

tribute which occurs several times in queries 𝑞1 and  𝑞2, is 

semi-metric. 

 Closeness Similarity  5.2.2
With the closeness similarity that we have considered  

so far, queries without overlap can be similar. Thus, For-

mula  (11) is not applicable in this case. Hence, we pro-

pose to calculate overall closeness similarity for ord inal 

attributes (OA) as follows: 

𝑆𝑐𝑙(𝑞1, 𝑞2). 𝑎 =  max
𝑖=1,…,𝑙1;𝑗=1,…,𝑙2

𝑆𝑐𝑙(𝑎1.𝑖
𝑂𝐴, 𝑎2.𝑗

𝑂𝐴) (12)  

The formula takes the maximum of pairwise simila-

rities. So the closest intervals of two queries determine the 

similarity. max also has some desirable properties: 

 It returns a normalized  value in  the [0;1] range of 

values. This is d ifferent from  aggregation with, say, 𝑠𝑢𝑚. 

 It does not underestimate the similarity of two 

queries with the closeness paradigm.  𝑚𝑖𝑛 or ∏ in turn 

do. 

LEMMA 5.5.  D(𝑞1, 𝑞2). 𝑎 is semi-metric. 

 Several Distinct Attributes in Filtering Condi-5.3
tions 

So far, we have discussed the cases when both que-

ries filter with the same single attribute: 𝐼𝑛𝑡𝑠(𝑞1) =

 𝐼𝑛𝑡𝑠(𝑞2); |𝐼𝑛𝑡𝑠(𝑞1)| = |𝐼𝑛𝑡𝑠(𝑞2)| =  1. The following ex-

ample illustrates the case of different attributes in 

the filtering conditions of two queries. 

 A query log contains the following queries: Example 11.

𝑞1: SELECT * FROM Cities C WHERE C.latitude BETWEEN 52 

and 80 AND C.longitude BETWEEN 30 and 45 AND 

C.population BETWEEN 30 and 500 

𝑞2: SELECT * FROM Cities C WHERE C.latitude BETWEEN 40 

and 52 AND C.longitude BETWEEN 30 and 45 AND C.country 

=‘France’ 

Queries 𝑞1 and  𝑞2 have two common interests:  

 

 

 Access areas of attribute Cities.latitude from Example 4 Fig. 2.
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 Clustering result for closeness or overlap approach Fig. 3.

 

 Access areas of queries with multiple occurrence of an Fig. 4.
attribute from Example 9 

 

𝑐𝑜𝑚𝐼𝑛𝑡𝑠(𝑞1, 𝑞2) = {𝐶. 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒, 𝐶. 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒}.  

They also have exclusive interests: 𝑒𝑥𝑐𝑙𝐼𝑛𝑡𝑠(𝑞1, 𝑞2) =

{𝐶. 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝐶. 𝑐𝑜𝑢𝑛𝑡𝑟𝑦}. 

We propose to calculate the similarity measure 

𝑆𝑎t𝑡𝑟𝐹𝑢𝑙𝑙(𝑞1, 𝑞2) where both 𝑐𝑜𝑚𝐼𝑛𝑡𝑠(𝑞1, 𝑞2) and  

𝑒𝑥𝑐𝑙𝐼𝑛𝑡𝑠(𝑞1, 𝑞2) are considered  with similarities 

𝑆𝑎𝑡𝑡𝑟𝐶𝑜𝑚(𝑞1, 𝑞2) and  𝑆𝑎𝑡𝑡𝑟𝐸𝑥𝑐𝑙(𝑞1, 𝑞2). Section 5.3.3 will fea-

ture the concrete formula. 

 Similarity for Common Interests 5.3.1
So far, we have defined the attribute-wise similarity for 

queries 𝑆(𝑞1, 𝑞2). 𝑎. If queries however have more than one 

common interest, as in  Example 8, we need a definition 

which takes the attribute-wise similarities for all common 

attributes 𝑆(𝑞1, 𝑞2). 𝑎, 𝑎 𝜖 𝑐𝑜𝑚𝐼𝑛𝑡𝑠(𝑞1, 𝑞2), as input. Since a 

query may contain ordinal and nominal attributes, we 

сannot separate closeness and overlap  approaches. In-

stead , a general, unifying approach to arrive at meanin g-

fu l overall similarities is necessary. Coming back to Ex-

ample Example 11, 

𝑆𝑐𝑙(𝑞1, 𝑞2). 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 = 0.5; 𝑆𝑜𝑣𝑙(𝑞1, 𝑞2). 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 =  0 

𝑆𝑐𝑙(𝑞1, 𝑞2). 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 = 1; 𝑆𝑜𝑣𝑙(𝑞1, 𝑞2). 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 =  1 

The overlap approach assumes that, if there is no over-

lap, then there is no similarity. Any non-overlapping con-

dition should  lead  to zero similarity. For our example, 

𝑆𝑜𝑣𝑙(𝑞1, 𝑞2) =  0 since  𝑆𝑜𝑣𝑙(𝑞1, 𝑞2). 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 =  0. In general, 

𝑆𝑎𝑡𝑡𝑟𝐶𝑜𝑚(𝑞1, 𝑞2) =  min
𝑖=1,…,|𝑐𝑜𝑚𝐼𝑛𝑡𝑠(𝑞1,𝑞2)| 

𝑆(𝑞1, 𝑞2). 𝑎𝑖 (13)  

where 𝑎𝑖 is an attribute contained in 𝑐𝑜𝑚𝐼𝑛𝑡𝑠(𝑞1, 𝑞2). 𝑚𝑖𝑛 

does not overestimate the similarity. Hence, one might 

expect relatively small clusters with clear user interest s. 

Since we do not see any alternative how the overlap ap-

proach could  be generalized , we use Formula (13) for the 

closeness approach as well. 

LEMMA 5.6.  𝐷𝑎𝑡𝑡𝑟𝐶𝑜𝑚(𝑞1, 𝑞2) is semi-metric. 

 Similarity for Exclusive Interests  5.3.2
If two queries have at least one shared  interest, but also 

have exclusive ones, the similarity measure should  reflect 

this. For each attribute in 𝑒𝑥𝑐𝑙𝐼𝑛𝑡𝑠(𝑞1, 𝑞2), we calculate an 

overlap similarity value. We assume that an empty filter-

ing condition in 𝑞1 or 𝑞2 means that one is interested  in 

the entire domain of that attribute. 

𝑆𝑎𝑡𝑡𝑟𝐸𝑥𝑐𝑙(𝑞1, 𝑞2) =  min
𝑖=1,…,|𝑒𝑥𝑐𝑙𝐼𝑛𝑡𝑠(𝑞1,𝑞2)| 

𝑆𝑜𝑣𝑙(𝑞1, 𝑞2). 𝑎𝑖 (14)  

Here, 𝑎𝑖  is an attribute contained in 𝑒𝑥𝑐𝑙𝐼𝑛𝑡𝑠(𝑞1, 𝑞2). In 

fact, 𝑆𝑎𝑡𝑡𝑟𝐸𝑥𝑐𝑙(𝑞1, 𝑞2) just calculates overlap similarity 

among attributes that do not occur in both queries.  

 Let us now calculate 𝑆𝑎𝑡𝑡𝑟𝐸𝑥𝑐𝑙(𝑞1, 𝑞2) for que-Example 12.

ries from Example 11. Suppose that  𝐶. 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 has 250 

d istinct values, and  that 𝐶. 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ∈ [0; 20000]. 

𝑒𝑥𝑐𝑙𝐼𝑛𝑡𝑠 = {𝐶. 𝑐𝑜𝑢𝑛𝑡𝑟𝑦, 𝐶. 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛}; 

𝑆𝑜𝑣𝑙(𝑞1, 𝑞2). 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 =  
|{𝐹𝑟𝑎𝑛𝑐𝑒}|

|{𝐴𝑓𝑔ℎ𝑎𝑛𝑖𝑠𝑡𝑎𝑛 ,… ,𝑍𝑖𝑚𝑏𝑎𝑏𝑤𝑒}|
=  0.004;  

𝑆𝑜𝑣𝑙(𝑞1, 𝑞2). 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =  
500−30

20000
=  

47

2000
= 0.0235;  

𝑆𝑎𝑡𝑡𝑟𝐸𝑥𝑐𝑙(𝑞1, 𝑞2)  = min(0.004,0.0235) = 0.004. 

There are two reasons for using overlap -based similari-

ty for 𝑆𝑎𝑡𝑡𝑟𝐸𝑥𝑐𝑙: 

 A non-shared  filtering attribute can be nominal. 

We do not see any reason why non-shared  ordinal and 

nominal attributes should  be treated  d ifferently. 

 We believe that d issimilar interests stand for d if-

ferent user intentions. The similarity values should  be 

low. The closeness approach for ord inal attributes might 

yield  clusters of queries without similar interests. 

LEMMA 5.7.  𝐷𝑎𝑡𝑡𝑟𝐸𝑥𝑐𝑙(𝑞1, 𝑞2) is semi-metric. 

 Overall Attribute Similarity.  5.3.3
Finally, the minimum of 𝑆𝑎𝑡𝑡𝑟𝐸𝑥𝑐𝑙 and  𝑆𝑎𝑡𝑡𝑟𝐶𝑜𝑚(𝑞1, 𝑞2) is 

the overall similarity of attributes: 

𝑆𝑎t𝑡𝑟𝐹𝑢𝑙𝑙(𝑞1, 𝑞2) =  min(𝑆𝑎𝑡𝑡𝑟𝐸𝑥𝑐𝑙(𝑞1, 𝑞2), 𝑆𝑎𝑡𝑡𝑟𝐶𝑜𝑚(𝑞1, 𝑞2)) (15)  

LEMMA 5.8.  𝐷𝑎𝑡𝑡𝑟𝐹𝑢𝑙𝑙(𝑞1, 𝑞2) is semi-metric. 

All predicates including join predicates are processed  

when we compute attribute similarities (Formula (15)). 

While we mostly use one- or two-dimensional examples, 

the principle is independent from th is number. 

 Similarity in the Presence of Joins 5.4
The last remaining d ifficulty regarding our AAB simi-

larity function is what needs to be done in the presence of 

joins.  

  Consider the following query log: Example 13.

𝑞1: SELECT * FROM Cities C INNER JOIN Objects O ON 

C.objId = O.objId WHERE O.latitude BETWEEN 52 and 80  

AND O.longitude BETWEEN 30 and 45 

𝑞2: SELECT * FROM PowerStations PS INNER JOIN Objects O 

ON PS.objId = O.objId WHERE O.latitude BETWEEN 52 and 80 

AND O.longitude BETWEEN 30 and 45 

𝑞3: SELECT O.id FROM Objects O WHERE O.latitude BETWEEN 

52 and 80 AND O.longitude BETWEEN 30 and 45 

𝑞4: SELECT O.id, T.typeName FROM Objects O INNER JOIN 

Types T ON O.type = T.id WHERE O.latitude BETWEEN 52 and 

80 AND O.longitude BETWEEN 30 and 45 

Queries 𝑞1 and  𝑞2 look for d ifferent objects, i.e., entities 

from different relations, but in the same part of the data 

space. One must take this d istinction into account. But 

our metric so far only relies on the filtering conditions.  

An intu itive solu tion is to multiply the overall attrib-

u te-similarity values 𝑆𝑎t𝑡𝑟𝐹𝑢𝑙𝑙(𝑞1, 𝑞2) with a value quantify-
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ing the overlap of the sets of tables accessed , e.g., the 

Jaccard  coefficient: 

𝑆𝑓𝑖𝑛𝑎𝑙(𝑞1, 𝑞2) =  
|𝑞1. 𝐹𝑅𝑂𝑀 ∩ 𝑞2. 𝐹𝑅𝑂𝑀|

|𝑞1. 𝐹𝑅𝑂𝑀 ∪ 𝑞2. 𝐹𝑅𝑂𝑀|
· 𝑆𝑎t𝑡𝑟𝐹𝑢𝑙𝑙(𝑞1, 𝑞2) (16)  

where 𝑞𝑖 . 𝐹𝑅𝑂𝑀 is the set of tables accessed  by Query 𝑞𝑖. 

This approach, while being simple, has a problem. 

Consider Queries 𝑞3 and  𝑞4. They search all objects within 

identical coordinate boundaries, i.e., intervals. 𝑞4 has as 

additional output the type of an object which comes from 

the join with Table Types. According to Formula (16), the 

JOIN in Query 𝑞4 decreases the similarity of 𝑞3 and  𝑞4 

twice, from 1 to 0.5. Adding more joins to 𝑞4, just to ou t-

put more information, reduces similarity even more, 

compared to the query without joins. Hence, we argue 

that a more adequate reduction coefficient should  consid -

er the size of tables accessed , in rows: 

𝑆𝑓𝑖𝑛𝑎𝑙(𝑞1, 𝑞2) =  𝑟𝑒𝑑𝑢𝑐𝑡𝐶𝑜𝑒𝑓𝑓𝑡𝑎𝑏𝑙𝑒 · 𝑆𝑎t𝑡𝑟𝐹𝑢𝑙𝑙(𝑞1, 𝑞2) 

𝑟𝑒𝑑𝑢𝑐𝑡𝐶𝑜𝑒𝑓𝑓𝑡𝑎𝑏𝑙𝑒 =
∑ 𝑇𝑐𝑜𝑚 𝑖 . 𝑠𝑖𝑧𝑒 

𝑖=|𝑇𝑐𝑜𝑚|

𝑖=1

∑ 𝑇𝑎𝑙𝑙 𝑗 . 𝑠𝑖𝑧𝑒 
𝑗=|𝑇𝑎𝑙𝑙|

𝑗=1

 (17)  

Here, 𝑇𝑐𝑜𝑚 is the set of common tables of Queries 𝑞1 

and  𝑞2,  𝑇𝑐𝑜𝑚  = 𝑞1. 𝐹𝑅𝑂𝑀 ∩ 𝑞2. 𝐹𝑅𝑂𝑀. Accordingly, 𝑇𝑎𝑙𝑙 is 

the set of all tables accessed  in Queries 𝑞1 and  𝑞2,  𝑇𝑎𝑙𝑙  =

𝑞1. 𝐹𝑅𝑂𝑀 ∪ 𝑞2. 𝐹𝑅𝑂𝑀. 

 Let us suppose that 𝑇𝑦𝑝𝑒𝑠. 𝑠𝑖𝑧𝑒 = 20, Example 14.

𝑂𝑏𝑗𝑒𝑐𝑡𝑠. 𝑠𝑖𝑧𝑒 = 980. The reduction coefficient 

𝑟𝑒𝑑𝑢𝑐𝑡𝐶𝑜𝑒𝑓𝑓𝑡𝑎𝑏𝑙𝑒 for 𝑞3 and  𝑞4 is: 
𝑇𝑐𝑜𝑚  = 𝑞3. 𝐹𝑅𝑂𝑀 ∩ 𝑞4. 𝐹𝑅𝑂𝑀 = {𝑂𝑏𝑗𝑒𝑐𝑡𝑠};  
𝑇𝑎𝑙𝑙  = 𝑞3. 𝐹𝑅𝑂𝑀 ∪ 𝑞4. 𝐹𝑅𝑂𝑀 = {𝑇𝑦𝑝𝑒𝑠, 𝑂𝑏𝑗𝑒𝑐𝑡𝑠}. 

𝑟𝑒𝑑𝑢𝑐𝑡𝐶𝑜𝑒𝑓𝑓𝑡𝑎𝑏𝑙𝑒 =
𝑂𝑏𝑗𝑒𝑐𝑡𝑠.𝑠𝑖𝑧𝑒

𝐶𝑖𝑡𝑖𝑒𝑠.𝑠𝑖𝑧𝑒+𝑂𝑏𝑗𝑒𝑐𝑡𝑠.𝑠𝑖𝑧𝑒
=  

980

20+980
=  

49

50
.  

𝑟𝑒𝑑𝑢𝑐𝑡𝐶𝑜𝑒𝑓𝑓𝑡𝑎𝑏𝑙𝑒  has a specific value for each query 

pair. One should  apply it once after having calculated  the 

overall attribute similarity 𝑆𝑎t𝑡𝑟𝐹𝑢𝑙𝑙(𝑞1, 𝑞2).  

LEMMA 5.9.  𝐷𝑓𝑖𝑛𝑎𝑙(𝑞1, 𝑞2) is semi-metric. 

Recall that the semi-metric characteristic is useful: It al-

lows us to use our similarity/ d istance function in many 

clustering algorithms withou t any further validation .  

 The Overall AAB Similarity Function 5.5
Summarizing what we have said  so far, the overall 

AAB similarity function is as follows: 

𝑆(𝑞1, 𝑞2) = 𝑟𝑒𝑑𝑢𝑐𝑡𝐶𝑜𝑒𝑓𝑓𝑡𝑎𝑏𝑙𝑒 · 𝑆𝑎t𝑡𝑟𝐹𝑢𝑙𝑙(𝑞1, 𝑞2) (18)  

To calculate the similarity 𝑆(𝑞1, 𝑞2). 𝑎 for an attribute 

which exists in both queries, one can use Formulas (11) or 

(12), depending on the approach, i.e., AABovl or AABcl. 

Consequently, Formulas (11) and (12)(12) refer to the sim-

ple case of Formulas (6), (7) and (8). 

 Discussion 5.6

In a nutshell, the AAB query representation captures 

parts of the data space where the user has an interest in. 

The WB query representation has the same objective, by 

identifying the relevant data explicitly. Hence, we expect 

to get similar results from clustering. However, as we 

have already pointed  out, WB lacks scalability. AAB in 

turn does not have this limitation since it operates with 

access areas, not the data itself. 

 EXPERIMENTAL EVALUATION 6

This section evaluates various algorithms, query repre-

sentations and similarity functions for query-log cluster-

ing. Our objectives are: 

 Investigate the precision of the various QRSs (FB, 

WB, AAB) experimentally, on data where a ground tru th 

is available. A QRS is precise if it leads to a clustering with 

a big overlap with the ground tru th; 

 Generate clustering results with real-world  data, 

including the SkyServer query log in our case, inspect it 

and try to arrive at general insights; 

 Study the influence of sampling on the clustering 

result. 

 Experiment Settings 6.1
The quality of any clustering is hard  to evaluate with-

out a ground tru th. One can ask domain experts to pro-

vide an interpretation  of the results. However, in our 

current context, a domain expert may not be able to say 

whether a result is good or even perfect – there often does 

not exist any expectation  how an ideal result should  look 

like. To cope with this problem to some extent, we pro-

pose two experiments. The first one is clustering queries 

which hundreds of individuals have formulated  to solve a 

specific task. In our case, these individuals are university 

students participating in a database course. They have 

solved this task as part of an exercise where the infor-

mation need was given in natural language. We have 

anonymized the data before our analysis so that  it d id  not 

contain any personal information. This experiment ‘only’ 

serves to study the precision of the various query repre-

sentations, by comparing clustering results to a ground 

tru th. This is because the data set available is relatively 

small, and it has turned out that some query representa-

tions are more sensitive to it than another. Ideally, all 

queries that the students have formulated  to solve a par-

ticular task should  end up in one cluster.  

The second experiment is a case study with a real-

world  SQL log. We use the SkyServer query log, a large 

log of queries on scientific data available to the public. To 

our knowledge it is the only query log publicly available. 

More specifically, we use the SkyServer log for 2016. It 

consists of 12.9 million queries from about 4,000 users. 

For each data we first calculate pairw ise d istances, i.e., 

build  a proximity matrix. There are well-established types 

of clustering methods which can work with a proximity 

matrix: hierarchical clustering, partitioning-based  me-

thods and density-based approaches. To make our study 

comprehensive, we select well-known instances from the 

d ifferent categories of clustering methods. We choose the 

hierarchical algorithm CLINK [17], k-medoids [18] from 

the class of partitioning-based methods and DBSCAN  [19] 

as a density-based approach. 

 The Data Sets  6.2
In this section, we describe the data sets for our exper-

iments – the small one from the student exercise and the 

big one from the SkyServer project. 
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 Data Set from the Student Exercise 6.2.1
We have collected  1062 SQL requests formulated  by 

274 participants of the database course at our institu tion 

in the summer semester 2016. To facilitate repeatability, 

we make these queries and the test database publicly 

available
6
. We have asked the participants to produce 

solu tions to four information needs. Thus, our ground  

tru th is that all solu tions to one information need  form a 

cluster. Hence, we expect 4 clusters. Of course, not all 

answers have been complete and syntactically correct. 

Table 2 of the Appendix is a summary of GtDbCourseLog, 

the log with these queries from the database course.  

We have considered  u sing other labeled  query logs. 

[20] however is not publicly available. [15] is the log of a 

database exam. First, it has only two tasks, i.e., one may 

expect two clusters. It is smaller than in our log. Second , 

the log is smaller in terms of the number of queries as 

well (178 against 1062). Moreover, [15] does not include 

the test database, which the WB query representation 

requires. So we have decided to use only one query log 

with a ground tru th, GtDbCourseLog. 

 SkyServer Query Log 6.2.2
The original SkyServer query log for 2016 consists of 

12.9 million queries. The clustering procedure considers 

only queries which have both an AAB and an FB query 

representation. Having the same input data for a com -

parison of d ifferent query-representation schem es is a 

prerequisite for meaningful results. As mentioned in Sec-

tion 4, the current version of AAB does not process qu e-

ries with arithmetic operations in the WHERE clause, and 

we also exclude queries without a predicate in the fil-

tering condition. Table 3 summarizes the queries included 

in the comparison and contains explanations for queries 

which we have not processed .  

With query clustering, one wants to obtain meaningful 

results, i.e., finding user interests in our case.  So we also 

exclude queries with the following characteristics from 

further consideration: 

 Queries issued by robots performing a sliding window 

search (SWS). To identify this behavior, we have per-

formed a procedure similar to the one described in  [6]. 

The Appendix contains a description . As defined earlier, 

an SWS is a sequence of queries of identical structure, 

performing a range search. Here, identical structure 

means that only parameter values are d ifferent, and the 

ranges are contiguous.  

How SWS queries – if included  –affect clustering, de-

pends on the similarity function used , AABovl or AABcl. 

In case of AABovl, SWS queries do not form a cluster, 

because SWS imply d isjoint filtering conditions (no over-

lap). Hence, for AABovl it counts as noise – more queries 

are processed , which increase the runtime. With AABcl, 

SWS queries could  form a cluster, because “neighbour” 

queries will get non-zero similarities. In our opinion, this 

is not a result one needs to get since SWS represent the 

information need only of one user, not the common inter-

est of many people. 

 
6
 https:/ / www.ipd.kit.edu/ arzamaso/ qlc/ readme.html 

The procedure of excluding SWS requires a threshold  

value as parameter which specifies the strictness when 

looking for SWS. Here, we fix the value to 100, i.e., 100 

contiguous range queries from one user in a row are an 

SWS. This kind  of queries occupies 62% of the SkyServer 

query log. See Table 3. We for our part leave aside such 

queries since they represent interests of very few users or 

of even only one, and it even is unclear what the true 

interest behind an SWS actually is.  

 Queries issued by many users when they open the 

SkyServer web interface for the first time. To illustrate,  

SELECT … FROM fGetNearbyObjEq(258.25,64.05,3) n,  

PhotoPrimary p WHERE n.objID=p.objID  

has been issued 647907 times. It is available at the radial 

search web page of SkyServer
7
, with exactly these default 

values. Thus, the fu ll log after cleaning, named FullLog, 

consists of 1.37 million queries. 

Obtaining WB query representations even for a log of 

1.3 million queries is d ifficult to impossible. As men-

tioned, one would  need to evaluate all queries to this end. 

The overall runtime for all queries from the fu ll cleaned 

log, the FullLog, are around 220 days according to Sky-

Server metadata, the sum of the numbers of rows in all 

results is about 7.7 billion. Thus, for the WB query repre-

sentation we have sampled FullLog, obtaining SampledLog. 

For this sampling, we have chosen one tenth of the 

cleaned log. Table 3 of the Appendix is a description of 

the WB sampled  dataset. From now on, we will use the 

names for the d ifferent query logs as in the Appendix, 

Table 4. 

 Evaluation Techniques 6.3
According to [21], valid ity measures for clustering fall 

into two groups: 

 External measures are used  when a ground tru th 

is available. The id ea behind  these measures is to compare 

the clustering result with the ground tru th. An example of 

such a measure is the Jaccard  index [22].  The set of all 

pairs of objects from two clustering results 𝐶 and 𝐶′ is the 

 
7
 skyserver.sdss.org/ dr12/ en/ tools/ search/ radial.aspx 

  TABLE 3

Description of the SkyServer Log data 

Property Value Share 
Size of original query log 12,917,940  

Preprocessed queries (FB, AAB), 

SkSLog 

10,289,990 79.7 % 

Non-preprocessed  queries (FB, AAB)  2,627,950 20.3 % 

Among non-processed  

   Arithmetic operation in WHERE clause 1,158,375 9.0 % 

   JSQL Parser limitations 784,798 6.1 % 

   Queries to meta-tables  364,505 2.8 % 

   Queries without WHERE clause 344,552 2.7 % 

   Errors in SkyServer logging  17,956 0.1 % 

   Queries to non-existing tables 2,444 0.02 % 

Cleaned queries, FullLog 1,368,232 10.6 % 

Queries excluded   8,921,758 69.1 % 

Among excluded  

   Requests made by robots performing 

SWS 

8,001,943 62 % 

   Requests which refer to SkyServer web 

pages with default values   

919,815 7.1 % 
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d isjoint union of the following sets: 

𝑆11 = {pairs that are in the same cluster under 𝐶 and 𝐶′} 

𝑆00 = {pairs that are in d ifferent clusters under 𝐶 and 𝐶′} 

𝑆10 = {pairs that are in the same cluster under 𝐶 but in 

different ones under 𝐶′} 

𝑆01 = {pairs that are in d ifferent clusters under 𝐶 but in the 

same under 𝐶′} 

The values 𝑛11, 𝑛00, 𝑛10 and  𝑛01 are the cardinalities of 

these sets. The Jaccard  index now quantifies the similarity 

of two clustering results as follows: 

𝐽(𝐶, 𝐶′) =  
𝑛11

𝑛11 + 𝑛10 + 𝑛01

 (19)  

The index takes values from 0 to 1. The bigger it is, the 

higher is the similarity. 

 Internal measures do not require a ground tru th. 

They rely on criteria derived  from the data itself, e.g., in -

tracluster and intercluster d istances. In our internal eva -

luation, we use the BetaCV measure [23], the ratio of the 

mean intercluster d istance over the mean intracluster d is-

tance. A small value indicates higher clustering quality. To 

validate the consistency within clusters, we have used  the 

Silhouette coefficient 𝑠(𝑖) [24], which indicates how well 

each object 𝑖  lies within its cluster. 𝑠(𝑖) takes values from 

-1 to 1. The bigger 𝑠(𝑖), the better  𝑖 matches its cluster. 

 Implementation 6.4
To get the query representations, we first parse the queries. 

We use the JSQL Parser
8
 written in Java. Query representations 

are then stored in the database. All similarity functions are 

implemented in SQL. To evaluate the results (i.e., to calculate 

the BetaCV coefficient etc.), we have again used Java. 

 Experiments with Supervision 6.5
Regarding the student exercise, since the students were 

asked to perform 4 tasks, we expect to get 4 clusters in the 

results. Hence, it may make sense to use the k-medoids 

clustering algorithm with 𝑘 = 4 for each similarity func-

tion and corresponding query representation. Table 4 con-

tains the results. As sim ilarity measures, the Jaccard  index 

and the BetaCV coefficient have been used. 

The Jaccard  indexes for the WB and the FB query re-

presentation, which indicate the closeness of the clusters 

to the ground tru th, do not show good results relative to 

the other approaches. We see three reasons for this: 

The database schema consists of only three tables. The 

tasks have been constructed  to have more than one table 

in an answer SQL statement. There also are only a few 

attributes in each relation , namely 3, 7 and 3. Hence, the 

probability of having the same tables and filtering attrib-

u tes for d ifferent tasks is high. This causes a problem with 

the FB approach. The value of 0.454 of BetaCV for the FB 

query representation indicates this. 

The database has been very small as well – it has 28 

rows from 3 tables. This leads to a high probability that 

queries from different tasks share the same tuples. This in 

turn affects WB clustering. 

The students have made mistakes when formulating 

 
8
 http://jsqlparser.sourceforge.net/ 

queries. If all answers were precise, we would  have ob-

tained zero BetaCV for each query representation: While 

the text of two correct answers might d iffer, all query 

representations for one task would  be identical. For in-

stance, when looking at the WB representation, a correct 

query should  return only certain tuples. The same holds 

for FB and AAB. This would  have lead  to zero intercluster 

d istances. However, the actual average intercluster d is-

tances are above zero. See Table 4. 

Since the AAB query representation does not rely very 

much either on metadata (database schema) or on actual 

data (witnesses), the respective clustering corresponds to 

the ground tru th very well. We have obtained identical 

results for both AABovl and  AABcl because of the high 

specificity of the tasks: Everybody has been asked to do 

the same, and mistakes by formulating wrong filtering 

conditions are unlikely. However, the AAB query repre-

sentation (as well as FB and WB) cannot cope with the 

third  problem (errors in the student answers). This is in 

line with our expectations. 

To sum up, this experiment show s that all query repre-

sentations lead  to meaningful clustering in theory. How -

ever, there are certain obstacles which have turned out to 

be spoilers: These are the small database schema for FB 

and the very small database for WB. On the other hand , 

the results are in line with the limitations we have already 

d iscussed  when introducing the query representations. 

 Experiments with SkyServer 6.6
With SkyServer, we have generated  the three query re-

presentations described before for the randomly sampled 

log, dubbed  SampledLog. We first d iscuss the results gen-

erated  from these. We also have results with FullLog, for 

the FB and AAB representations, and we describe them as 

well. Next, by comparing the results from the sampled log 

to the ones from the regular log, we evaluate how samp-

ling affects the clustering results. Finally, we conduct a 

study with a domain expert to interpret our results. All 

these experiments yield  d ifferent insights regarding the 

usefulness of the query representations and the appropr i-

ateness of the various clustering algorithms when applied  

to a real-world  SQL query log. 

 Clustering Results 6.6.1
Table 5 of the Appendix lists the parameter values for  

DBCSAN, k-medoids and CLINK. To set them, we rely on 

the expectation that the size of clusters should  be in line 

with the size of input data. Thus we have set the value of 

parameter 𝑚𝑖𝑛𝑃𝑡𝑠 of DBSCAN to 0.05% of the number of 

objects in a dataset. The size of a dataset is the number of 

d istinct objects which have at least one non-zero similari-

ty value in the corresponding proximity matrix. This is 

because only these objects have a chance to be contained  

in a cluster. If the data is noisy, and there are many objects 

without similar ones, no group of similar objects is big 

enough to form a cluster. For the experiments with fu ll 

data, FullLog, we set 𝑚𝑖𝑛𝑃𝑡𝑠=100. This is because we 

want to compare both the AABcl and the AABovl ap-

proach with the same non-strict parameters, i.e. when 

 𝑚𝑖𝑛𝑃𝑡𝑠 = 100 <  0.05% of the number of objects in both 

http://jsqlparser.sourceforge.net/
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cases. We set 𝑒𝑝𝑠= 0.7 for DBSCAN, since it captures su f-

ficient overlap for the AABovl and the WB ap proach and 

allows to catch queries close to each other with AABcl. 

The number of clusters DBSCAN returns will be the value 

of our parameter k when running k-medoids. While the 

actual number of clusters is typically not available in most 

real settings, we u se it here nevertheless. This is because 

we are interested  in how good the results can actually be. 

For the hierarchical CLINK algorithm, the cut-off thresh-

old  is equal to 𝑒𝑝𝑠 of DBSCAN. For the FB approach how -

ever, we follow another strategy. Since FB yields patterns 

of user behavior, it does not make sense to mix several 

patterns. Therefore we have chosen the parameters so that 

only very similar patterns (eps = 0.1) go to the same clu s-

ter.  Our clustering results consist of almost 1000 clusters: 

508 for AABovlFull, 82 for AABovlSampled, 182 for 

AABclFull, 88 for AABclSampled and 125 for WB. 

Table 5 lists the values of the BetaCV coefficient. They 

are relatively large. This is because we have considered  

only large clusters for their calculation; the size of a clus-

ter must be no less than 0.05% of the size of a query log. 

Within such big clusters, a lot of queries have zero simila -

rity with each other. This means that a Query 𝑞 has an 

overlap with only a few queries {𝑞′1 … 𝑞′
𝑛

}. They are similar 

to other ones {𝑞′′
1

… 𝑞′′
𝑚

}, though 𝑞 is not similar to them. 

Put d ifferently, the clu sters are not dense. Indeed, they 

cannot be since the corresponding proximity matrices are 

sparse. See Fig. 2 of the Appendix with the similarity 

d istributions. Table 6 of the Appendix reports on average 

Silhouette coefficients. 

Nevertheless, for AABovl and WB, clustering yields 

areas of interests which are small compared to the whole 

data space. Tables 6 and  7 list aggregated  query represen-

tations of the biggest clu sters (in terms of number of qu e-

ries) of DBSCAN, with SampledLog and  FullLog. The rep-

resentation is the minimum bounding rectangle (MBR) of 

all queries in the clu ster. To present the results of WB 

clustering, one cannot u tilize the corresponding query 

representations – they contain huge numbers of tuples. 

Instead , we use the more compact and intu itively under-

standable AAB representation as well. For AAB there also 

is an area-coverage value available. It is the ratio of the 

volume of the aggregated  access area over the volume of 

the tables the queries from the cluster are applicable to : 

𝑎𝑟𝑒𝑎𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  
𝑉𝑎𝑐𝑐𝑒𝑠𝑠

𝑉𝑐𝑜𝑛𝑡𝑒𝑛𝑡

 (20)  

To obtain 𝑉𝑎𝑐𝑐𝑒𝑠𝑠, we take bounds of each attribute occu r-

ing in a filtering condition of the cluster. So 𝑉𝑐𝑜𝑛𝑡𝑒𝑛𝑡 is calcu-

lated  taking the domains of each such attribute. 

 Discussion of Query Representations and Clus-6.6.2
tering Algorithms 

We discuss the usefulness of the various query repre-

sentations when clustering a real-world  query log based 

on the experiments with SkyServer. 

WB clustering. We observe that WB clusters are precise. 

This is because all queries in the WB clusters ask for the 

same attributes, the spatial attributes 𝑑𝑒𝑐 and  𝑟𝑎. This 

means that there have not been any "accidental" simila ri-

ties, i.e., queries which refer to d ifferent attributes shar ing 

witnesses by chance. With these identical attributes, que-

ries whose filtering conditions overlap are similar. 

ABovl clustering. We find  it remarkable that the aggre-

gated  access areas for AABovl and WB similarity are very 

much alike. Three of the four biggest clusters with these 

approaches point to the same parts of the sky. We con-

clude that the AAB query representation and AABovl 

similarity function also are valid  and precise. With AAB 

being scalable, we for our part conclude that it may be 

preferable to WB.  
A difference we have observed in the AABovl and WB 

clustering results (with SampledLog) is that there are clu s-

ters in AABovl which do not exist in WB. The queries 

inside these clusters have empty results. Of course, WB 

cannot detect them. For example, the fifth biggest cluster 

of AABovl has the following aggregated  access area: 

photoprimary.dec ≥ -7.073 Ʌ photoprimary.dec ≤ -7.026 Ʌ  

photoprimary.ra ≥ 78.1498 Ʌ photoprimary.ra ≤ 78.195 

Indeed, there is no data object in this area. However, 

this has not prevented  a significant number of AAB query 

representations from forming a cluster. 

One might wonder why clusters with an overlap (like 

2 and 3 of AABovl FullLog, see Fig. 5) are not one single 

cluster.  We had a closer look at this phenomenon and  

have observed  that queries from one cluster (2) indeed are 

similar to queries from the other cluster (3). However, 

these are points that are density-reachable, not core points 

  TABLE 4

The results of the experiments with ground truth, dataset 
GtDbCourseLog, clustering algorithm k-medoids, k = 4 

 WB FB AABovl AABcl 
Jaccard  index (com-

pared  with ground 

truth) 0.7518 0.4339 0.9451 0.9451 

Experiment     

BetaCV  0.257 0.454 0.1402 0.1402 

Average intercluster 

d istance  0.194 0.317 0.1402 0.1402 

Average intracluster 

d istance  0.753 0.698 1 1 

Average Silhoette 

coefficient 0.885 0.409 0.87 0.85 

Ground truth     

BetaCV  0.171 0.194 0.231 0.231 

Average intercluster 

d istance  0.132 0.167 0.231 0.231 

Average intracluster 

d istance  0.773 0.857 1 1 

Average Silhoette 

coefficient 0.74 0.754 0.689 0.689 

 

  TABLE 5

Values of BetaCV coefficient 

Dataset Algorithm  WB AABovl AABcl 
SampledLog DBSCAN 0.933 0.925 0.993 

 K-medoids 0.9995 0.9997 0.9998 

 CLINK 0.998 0.997 0.999 

FullLog DBSCAN - 0.913 0.981 
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in DBSCAN terminology. To conclude, density reachabil-

ity is a characteristic that is not sufficient to end up in the 

same cluster in general. 

AABcl clustering. We have obtained  big clusters which 

cover significant parts of the data space when clustering 

with the AABcl similarity function. This is plausible: As 

Fig. 5 shows, the third  biggest cluster of AABcl in the 

sampled log (the one with Rank 3) has a big rectangular 

part from to 41.269 to 84.973 in the dec column. This part 

is due to several queries with broad d iapasons: These 

queries request data based  on attributes 𝑟𝑎 and  𝑑𝑒𝑐 with 

broad ranges. Different users have issued these queries, 

so they are not SWS. They act like “supermassive” objects 

and have a “gravity effect” on queries with smaller ranges 

in the neighborhood. In contrast to AABovl, w here su-

permassive objects do not have sufficient overlap with 

small objects to fall into a cluster, AABcl is sensitive to 

queries with broad ranges. It is also sensitive to slid ing 

window search. However, because we had filtered  them 

out beforehand, we d id  not observe the influence of SWS 

on AABcl clustering. Summing up, whether AABcl is 

successfu l strongly depends on specifics the query log: It 

needs to be free from massive download ing, i.e., slid ing 

window search (SWS), and there should  not be any very 

broad range queries. Put d ifferently, this also indicates 

that cleaning the query log before analysis might yield  

better, more meaningful results. 

FB clustering. Clustering in line with the FB paradigm 

reveals patterns of SkyServer database usage, i.e., which 

tables, views, UDFs and  filtering attributes individuals 

tend to use. However, as mentioned before, this query re-

presentation does not reveal areas of the data space users 

are interested  in. This also is why the column “Area cov-

erage” is empty for FB clustering. 

Clustering algorithms. Different clustering algorithms 

have performed differently on the SkyServer log as well. 

The data for the AAB and WB approaches contains noise 

– queries which do not have sufficiently many similar 

objects. Different algorithms have d ifferent sensitivity to 

this kind  of noise. DBSCAN is able to work with this 

noisy data [19]. k-medoids suffers from it a lot since it 

partitions the data, and all objects end up in some cluster. 

CLINK is sensitive to noise as well, but ignoring small 

clusters can solve the problem here: If the data to be clus-

tered  contains a lot of outliers, many small or even single-

ton clusters occur. The algorithm does not merge them to 

bigger clusters since they are too d istant from each other. 

So we have classified  clusters with a size less than a sp e-

cific value as noise. This is why the clustering result with 

CLINK does look structurally similar to the one with 

DBSCAN, containing an extra "cluster" for noise. 

Summing up, we would  give preference to a density-

based clustering algorithm when it comes to query logs, 

for the following reasons: 

1. Data might be noisy. 

2. One cannot predict the number of clusters in ad-

vance, as required  by k-means-based algorithms. 

Consequently we have clustered  the big log file, 

FullLog, only with DBSCAN.  

 Influence of Random Sampling on the Cluster-6.6.3
ing Results 

Clustering large query logs with the procedure used  in 

this article is time-consuming since one has to (1) extract 

the query representations, (2) build  a proximity matrix, 

and (3) perform the actual clustering. Hence, it might be a 

good idea to cluster a sample of the data. However, so far 

it is not clear whether and how samp ling influences the 

result. In particular, it is unclear (1) how the aggregated  

access areas of clusters using fu ll and sampled data d iffer, 

and (2) which clustering results a domain expert finds 

better. The first answer will be given right away, while th e 

second question is d iscussed  in Section  6.6.4. 

AABovl clustering. As Fig. 5 shows, clustering on a 

sample of the data and on the fu ll data yields similar 

results with AABovl. The d ifferences mainly have to do 

with cluster ranks, i.e., the position when sorting clusters 

by their numbers of objects. This is why not all clusters 

occur with both the sampled and the fu ll log: They exist, 

but not in the top 10. 

AABcl clustering. The results with AABcl d iffer more. 

Fig. 5 shows how certain queries “move” from one cluster 

to another one. It is safe to say that the closeness approach 

is less robust when it comes to sampling than the overlap 

approach. Again, the query which has formed a long 

vertical rectangle and has gone to the second biggest clus-

ter in the sampled data has not d isappeared; it ju st has 

gone to a less popular cluster not in the top 10. 

FB clustering. As Tables 6 and  7 indicate, sampling 

does not change the order of the most popular patterns 

with FB clustering. We have checked the first 50 popu lar 

patterns with sampled and fu ll data and have found only 

one d ifference. The ranks change only slightly, by 2 posi-

tions at most, and they usually remain the same. 

Overall, sampling is useful when clustering an SQL 

query log. If a query log is huge and requires a lot of time 

to process, sampling can give way to quick insights. 

However, AABcl is less robust in this respect. 

 Feedback from a Domain Expert: Clustering 6.6.4
Interpretation 

As mentioned, a good clustering must be interpretable. 

Here, this means that each cluster should  relate to a parti-

cular user interest. In astronomy, this means that a cluster 

may contain several astronomical objects, but they all 

must form a single astronomic category, like "North galac-

tic pole" or "Lockman hole", i.e., represent one research 

trend. To investigate how successfu l our clustering has 

been, and whether it reflects user interests, we have asked  

a domain expert to inspect our results. He is an astrono-

mer from the Max Planck Institu te for Astronomy in Hei-

delberg, Germany. At the same time, to ease the process of 

cluster interpretation and ensure a complete represent-

tation of the interests of the astronomical community, we 

have made use of another important astronomical data 

source, the Simbad astronomical database
9
. We use it as a 

reference point. Simbad provides information on astrono-

mical objects which have been studied  in scientific publi-

 
9
 http :/ / simbad.u -strasbg.fr/ simbad/  
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cations in astronomy. It has 12 tables and  contains 9.3 mil-

lion astronomical objects outside of our solar system and 

340 thousand bibliographic references. There are some 

characteristics common for each astronomical object: 

 Basic data: object types, coordinates and other astro-

nomical features;  General bibliography for the object, 

including references to all published papers from the 

journals scanned regularly, currently about 80 titles.  

 Naturally, two astronomical databases, SkyServer 

and Simbad , are expected  to have a big overlap of the 

objects they contain. This also holds for attributes like 

special coordinates, object types etc. However, they are 

constructed  very d ifferently and partly based  on d ifferent 

data, so they are quite independent at the same time. With 

the help of the domain expert, we have mapped our clu s-

tering result to the Simbad database. Almost every cluster 

from our results filters spatial coordinates right ascension 

𝑟𝑎 and  declination 𝑑𝑒𝑐. We have plotted  the clusters on  

the 𝑟𝑎-𝑑𝑒𝑐 plane and have mapped  them to the 𝑟𝑎-𝑑𝑒𝑐 

density map of astronomical publication s.
10

 

Of course, one cannot expect a perfect overlap. Not eve-

ry astronomer looks at the data from SkyServer when 

writing an article. And vice versa – some data from Sky-

Server may have been queried  for by laymen or high 

school students, without the publication of a paper. How-

ever, both our clusters and Simbad data should  reflect hot 

spots in astronomy. Thus, a relatively high correlation is 
 

10
 A related idea would be to not only look at the actual Simbad data, 

but also at its query log. However, we have not been able to obtain this 
data because of privacy concerns of scientists responsible for Simbad. 

  TABLE 6

Top clusters of DBSCAN, dataset SampledLog 

# 

Relative 

size 

Area 

coverage Aggregated  query representation  
AABovl 

1 0.78% 0.25% photoprimary.dec ≥ 1.2 Ʌ photoprimary.dec ≤ 7.3 Ʌ photoprimary.ra ≥ 10.3 Ʌ photoprimary.ra ≤ 18.8 

2 0.08% 0.02% photoprimary.dec ≥ 54.8 Ʌ photoprimary.dec ≤ 56.8 Ʌ photoprimary.ra ≥ 241.4 Ʌ photoprimary.ra ≤ 245 

3 0.07% 0.002% photoprimary.dec ≥ -9.1 Ʌ photoprimary.dec ≤ -9.05 Ʌ photoprimary.ra ≥ 120 Ʌ photoprimary.ra ≤ 120.05 

4 0.06% 3.7• 10−8% photoprimary.dec ≥ 14.839 Ʌ photoprimary.dec ≤  14.84 Ʌ photoprimary.ra ≥ 2.023Ʌ photoprimary.ra ≤ 2.024 

AABcl 

1 7.97% 81% photoobj.dec ≥ -42.147 Ʌ photoobj.dec ≤ 76.686 Ʌ photoobj.ra ≥ 0 Ʌ photoobj.ra ≤ 359.821 

2 3.53% 18.4% photoprimary.dec ≥ -2.7 Ʌ photoprimary.dec ≤ 59.6 Ʌ photoprimary.ra ≥ 0 Ʌ photoprimary.ra ≤ 73 

3 3.06% 54.3% photoprimary.dec ≥-4.94 Ʌ photoprimary.dec ≤ 91 Ʌ photoprimary.ra ≥ 0 Ʌ photoprimary.ra ≤ 360 

4 2.97% 93.35% photoobjall.dec ≥-60.572 Ʌ photoobjall.dec ≤ 84.98 Ʌ photoobjall.ra ≥ 0 Ʌ photoobjall.ra ≤ 360 

WB 

1 0.6% 0.1% photoprimary.dec ≥ 1 Ʌ photoprimary.dec ≤ 7.8 Ʌ photoprimary.ra ≥ 9.6 Ʌ photoprimary.ra ≤ 19.4 

2 0.08% 0.03% photoprimary.dec ≥ -1.5 Ʌ photoprimary.dec ≤ 1.2 Ʌ photoprimary.ra ≥ 350.8 Ʌ photoprimary.ra ≤ 353.1 

3 0.06% 0.01% photoprimary.dec ≥ 54.4 Ʌ photoprimary.dec ≤ 56.7 Ʌ photoprimary.ra ≥ 240.9 Ʌ photoprimary.ra ≤ 245 

4 0.05% 5.1• 10−6% photoprimary.dec ≥ -9.105 Ʌ photoprimary.dec ≤ -9.057 Ʌ photoprimary.ra ≥ 120.009 Ʌ photoprimary.ra ≤ 

120.054 

FB 

1 27.77%  {specobj;specobj.bestobjid} 

2 17.15%  {photoz; galspecline; specobj; photoz.objid} 

3 10.13%  {photoobj; photoobj.dec; photoobj.ra} 

4 10.11%  {phototag; fgetobjfromrecteq; phototag.objid} 

  TABLE 7

Top clusters of DBSCAN, Dataset FullLog 

# 

Relative 

size 

Area 

coverage Aggregated  query representation  
AABovl 

1 1.37% 0.19% photoprimary.dec ≥ 9.3 Ʌ photoprimary.dec ≤ 16.8 Ʌ photoprimary.ra ≥ 17.8 Ʌ photoprimary.ra ≤ 29 

2 0.89% 0.18% photoprimary.dec ≥ 0.6 Ʌ photoprimary.dec ≤ 8.2 Ʌ photoprimary.ra ≥ 9.6 Ʌ photoprimary.ra ≤ 19.8 

3 0.38% 0.03% photoprimary.dec ≥-6.2 Ʌ photoprimary.dec ≤ -3.2 Ʌ photoprimary.ra ≥ 32.8 Ʌ photoprimary.ra ≤ 38.1 

4 0.27% 0.1% photoobjall.dec ≥ 1.8 Ʌ photoobjall.dec ≤ 8.4 Ʌ photoobjall.ra ≥ 4 Ʌ photoobjall.ra ≤ 10.8 

AABcl 

1 4.35% 11.27% photoprimary.dec ≥ -11.5 Ʌ photoprimary.dec ≤ 59.6 Ʌ photoprimary.ra ≥ 0 Ʌ photoprimary.ra ≤ 76.4 

2 3.06% 93.7% photoobjall.dec ≥ -61.551 Ʌ photoobjall.dec ≤ 84.98 Ʌ photoobjall.ra ≥ 0 Ʌ photoobjall.ra ≤ 360 

3 1.26% 15.76% photoprimary.dec ≥-24.323 Ʌ photoprimary.dec ≤ 84.973 Ʌ photoprimary.ra ≥ 279.4 Ʌ photoprimary.ra ≤ 360 

4 1.16% 99.72% apogeestar.dec ≥ -90 Ʌ apogeestar.dec ≤ 87.581 Ʌ apogeestar.ra ≥ 0.833 Ʌ apogeestar.ra ≤ 360 

FB 

1 27.85%  { specobj.bestobjid ; specobj } 

2 17%  { photoz; galspecline; specobj; photoz.objid  } 

3 10.12%  { phototag; fgetobjfromrecteq; phototag.objid  } 

4 10.07%  { photoobj; photoobj.dec; photoobj.ra } 
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better as an experiment result, according to our percep-

tion. As we have pointed  out earlier, our clustering results 

consist of around 1000 clusters. Identifying user interest 

in each of them is a daunting task for any domain expert. 

Such an identification takes our expert 10 minutes on 

average per cluster, mainly depending on the number of 

astronomical objects in the cluster. To make manual in-

spection feasible, we have selected  the top 15 clusters 

from each approach (AABovlFull, AABovlSampled, AABcl-

Full, AABclSampled and  WB) which have the most overlap  

with Simbad data, i.e., clusters which ‘repeat’ the high 

density areas of Simbad. We assume that these clusters 

are the most interesting ones for domain experts: There is 

a high number of publications on the astronomical objects 

from these particular parts of the sky. Fig. 6 graphs them 

together with Simbad data. We have mapped  the queries 

in the various clusters to Simbad data of published papers 

in the ra-dec plane. A query in the figure is a rectangle 

which includes admissible ra-dec values. Note that the 

number near a cluster indicates its’ rank : the biggest clu s-

ter (in terms of number of queries) has Rank 1. The sixth 

figure is the pure density map of publications (Simbad). 

Dark grey areas stand for a high amount of publications; 

for light grey, the p icture is d ifferent. One can see that 

queries from the clusters indeed repeat the d istribution of 

Simbad  data: The clusters are located  in the grey areas of 

the Simbad map. 

For each cluster, we plot the overlap of the individual 

query areas on the map with all the Simbad entries. This 

allows the domain expert to estimate whether the cluster 

contains one or several astronomic categories of well-

studied  objects. Having inspected  the clusters obtained 

with DBSCAN, our domain expert has concluded that 

they are quite d ifferent. From his point of view, there are: 

 Large clusters
11

, each of which covers more than 

3% of the sky or several hundreds or thousands of square 

degrees.
12

 According to our expert, none of them can  be 

associated  with a specific scientific goal or type, i.e., there 

is no corresponding single user interest. In what follows, 

we refer to these clusters as LwoUI clusters (Large clusters 

WithOut User Interest). Other large clusters consist of 

several very small areas each of which contains a single 

Simbad entry. For these clusters, our expert has identified  

a specific user interest. We call these clusters LwUI clus-

ters (Large clusters With User Interest). 

 Intermediate clusters, each of which covers less 

than 3% of the sky. As before, we call them IwUI (Inter-

mediate clusters With User Interest) if they contain user 

interests and IwoUI (Intermediate clusters WithOut User 

Interest) otherwise. The domain expert has observed that 

these clusters have a size so that they likely correspond to 

a specific scientific goal or type. 

 
11

 Though there is a notion of a galaxy cluster in the domain of astron-
omy, here and in what follows we always mean a cluster of SQL queries 
when using the word ‘cluster’. An exception is the Column “Extended 
objects” of Table 7 in the Appendix. 

12
 The whole celestial sphere covers 41253 square degrees. Analogously 

to one degree being equal to 𝜋/ 180 radians, a square degree is equal to 
(𝜋/180)2, or about 1/3283 =  3.0462 × 10−4 steradians (0.30462 msr). To 
calculate the area of a query cluster in square degrees, one needs to apply 
the 𝑐𝑜𝑠(𝑑𝑒𝑔) factor, i.e., 𝑆 = 𝑟𝑎 × 𝑐𝑜𝑠(𝑑𝑒𝑔). 

 Extremely small clusters, which typically consist of 

several queries referring to the same individual object and 

cover around 0.01% of the sky. We consequently dub 

these clusters ESwoUI and  ESwUI.  

Table 7 in the Appendix reveals how many clusters of 

each category the five approaches (AABovlFull, AABovl-

Sampled, AABclFull, AABclSampled and  WB) identify. The 

table also lists the astronomical objects from the various 

clusters. 

For each scheme, the domain expert has ranked each 

cluster among the 15 most populated  ones according to 

the probability that it properly covers a region of the sky 

of particular interest. We have then averaged the grades 

to rank the five schemes. They take values from one to 

ten, with ten being the highest interest. AABovlFull has 

the highest average score, followed by AABclFull, AAB-

ovlSampled and  AABclSampled. WB is last, see Table 7 in 

the Appendix. 

One can observe that sampling worsens the clustering 

results for AABovl. Some clusters d isappear, not having 

enough objects as neighbors. Decreasing minPts value 

will not always help; the following example shows this: 

 Consider the three queries 𝑞1, 𝑞2 and  𝑞3 Example 15.

with 𝐷(𝑞1, 𝑞2) =  0.5, 𝐷(𝑞1, 𝑞2)  =  0.8, and  𝐷(𝑞1, 𝑞3)  =

 1. 𝑒𝑝𝑠 =  0.9, 𝑚𝑖𝑛𝑃𝑡𝑠 =  2. All three queries end up in 

the same cluster. We now sample the log and  exclude 𝑞2. 

Setting 𝑚𝑖𝑛𝑃𝑡𝑠 to 1 does not yield  a cluster of queries 𝑞1 

and  𝑞3 because they do not overlap. Setting 𝑒𝑝𝑠 to 1 

does not make any sense because then all queries go to 

the same cluster.  

Based on this, we hypothesize that WB, which also is 

overlap-based, would  have given better results if it had  

taken place on the fu ll data. We conclude that an analyti-

cal calculation of overlap , i.e., AABovl, is u seful. It pro-

vides sufficient accuracy and is scalable. In consequence, 

one does not have to do sampling, which bogs down the 

clustering results. 

On the other hand , sampling has helped to obtain bet-

ter results with the closeness approach, AABcl: Clusters 

have become smaller and , hence, more focused. Thus, 

sampling allows to better identify user interests than 

clustering on the original data. 

 CONCLUSIONS 7

Knowing user interests in  a data space is important for 

database owners and for domain experts. Clustering the 

query log can yield  interesting insights to this end . In this 

paper we have studied  the clustering of SQL query logs. 

In particular, w e have established the design space, i.e., 

which query representations, which algorithms, which 

d istance measures. Next, we have looked at possible in-

stantiations from the literature systematically and have 

d iscussed  our expectations for each alternative. We also 

have proposed new alternatives as well, since the existing 

proposals have not been fu lly satisfying. Our new ap-

proaches, which we had proposed to do away with the 

weaknesses of existing approaches, have turned out to be 

better in most respects. Finally, we have carried  out sever-

al stud ies, one with a domain expert in order to arrive at a 
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ground tru th, a feature which we have not observed in 

any previous work on analyses of database-query logs.  

The study with the domain expert in particular has re-

vealed  the usefulness of clustering when user interests 

need to be identified . 

Our new approach captures query similarity on the d a-

ta level. Unlike other approaches, “witness based” in 

particular, it scales relatively well with the size of the log. 

Our fu ture work w ill focus on SQL query recommend a-

tion. We plan to leverage our new insights regarding qu e-

ry similarity to find  similar user sessions from which 

query suggestions can be generated . While SQL query 

recommendation has already been investigated  earlier 

[25], [26], [27], revisiting the topic based  on this current 

study might reveal new insights. 

 

 

   

  

 

 Clustering results, DBSCAN algorithm Fig. 5.

   

   

 Mapping clustering results to Simbad data Fig. 6.
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