

 Karlsruhe Reports in Informatics 2019,3
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

On the Usefulness of SQL-Query-Similarity
Measures to Find User Interests

Natalia Arzamasova, Klemens Böhm, Bertrand
Goldman, Christian Saaler and Martin Schäler

 2019

KIT – University of the State of Baden-Wuerttemberg and National

Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/4.0/de.

 1

On the Usefulness of SQL-Query-Similarity
Measures to Find User Interests

Natalia Arzamasova, Klemens Böhm, Bertrand Goldman, Christian Saaler and Martin Schäler

Abstract— In the sciences and elsewhere, the use of relational databases has become ubiquitous. An important challenge is

finding hot spots of user interests. In principle, one can discover user interests by clustering the queries in the query log. Such a

clustering requires a notion of query similarity. This, in turn, raises the question of what features of SQL queries are meaningful.

We have studied the query representations proposed in the literature and corresponding similarity functions and have identified

shortcomings of all of them. To overcome these limitations, we propose new similarity functions for SQL queries. They rely on

the so-called access area of a query and, more specifically, on the overlap and the closeness of the access areas. We have

carried out experiments systematically to compare the various similarity functions described in this article. The first series of

experiments measures the quality of clustering and compares it to a ground truth. In the second series, we focus on the query

log from the well-known SkyServer database. Here, a domain expert has interpreted various clusters by hand. We conclude that

clusters obtained with our new measures of similarity seem to be good indicators of user interests.

Index Terms— SQL log analysis, SQL query representations, similarity measures

—————————— ——————————

 INTRODUCTION1

ATA with a specific structure is often stored in rela-

tional databases. This is the case both within companies

as well as in more open settings such as sciences. In any

case, such databases provide generic interfaces so that

basically any information need can be formulated – and

this is what ind ividuals typically do. These information

needs are manifold and depend on the user interests
1
 and

the background knowledge of users. For any organization

or anybody providing database content, the question of

what users find interesting is extremely important. In a

scientific domain, a user interest may represent a research

trend. In business, it may point to popular data slices,

which one might want to refactor for better accessibility.

A promising way to find user interests is query-log

analysis. An SQL query log provides an appropriate level

of abstraction as well as precise information regarding the

interests of users. Due to their declarative nature, SQL

queries are relatively easy to interpret. To find areas of

high interest in the data space, it is reasonable to cluster

the SQL requests of a query log. This idea, however,

comes with the following problems:

1. To cluster SQL queries, one needs a notion of query

similarity. This leads to the question what meaningful

features of SQL queries are, and how to extract them.

Among others, we currently are aware of the follow-

ing query representations:

1. The feature-based (FB) representation
2
 [1] focuses

on the query structure.

2. The witness-based (WB) representation [2] relies

on the result of a query to a database.

3. The access area-based (AAB) representation [3]

1
 As defined in [Zeng et al., 2010], a user interest is the subject a user or

a group of users wants to get to know. In this article, ‘user interest’ is an
interest of many users.

2
 The name of the approach is one we have come up with, as with the

approaches that follow.

captures the area of a data space that a user is in-

terested in.

 Think of a query log consisting of the queries Example 1.

listed in Table 1. All three queries access table ‘Employ-

ees’. One might find the first and the second query sim i-

lar. This is because they have the same structure, asking

for employees in a particular department. Indeed, ac-

cording to the FB approach, these two queries are iden-

tical. However, one can also d isagree with this conclu-

sion. In line with the WB representation, these two qu e-

ries do not have any common tuples in their results sets.

When it comes to AAB, the first and the second query

refer to d ifferent parts of the data space and hence are

not similar. Regarding the similarity of the first and the

third query one cannot really say much. Even though

there could be employees from the sales or the store d e-

partment who started to work after 01/ 12/ 2015 (simi-

larity in WB), this does not lead to meaningful insights.

A user might have had d ifferent intentions when form u-

lating these queries.

So far, to our knowledge, there is no comparative

study on the usefulness of d ifferent query representations

for clustering with the aim of finding user interest .

2. Having a query representation is not sufficient to

cluster SQL queries. Based on this representation, it

D

 TABLE 1
Queries in a log

Statements Result

1 SELECT * FROM Employees E

WHERE E.department = ‘sales’

12 employees from sales

department

2 SELECT * FROM Employees E

WHERE E.department = ‘store’

8 employees from store

department

3 SELECT * FROM Employees E

WHERE E.startdate >

’01/12/2015’

10 employees who

started working in a

company after the date

2

is necessary to have a query-similarity function,

quantifying for any two queries to what extent they

are alike. The FB and WB representations lend them-

selves to straightforward overlap measures. The

similarity function for AAB in turn proposed in [3] is

complex compared to FB or WB. It also has some re-

dundancies, and several definitions behind it are ad

hoc, as we will explain. Generally speaking, we also

wonder whether there are more answers to the ques-

tion when two queries are similar.

3. Another challenge when clustering SQL queries is

that we are not aware of any suitable publicly avail-

able data set including a ground tru th. ‘Suitable’

means that it must include (1) a labeled SQL query

log and (2) the database these queries have been

submitted to. It also (3) must be publicly available.
3

So one cannot objectively compare similarity func-

tions and the corresponding query representations.

This current paper stud ies the similarity of SQL que-

ries through clustering of SQL query logs with the aim of

identifying user interests within a data space. According

to [4], a good clustering result must be precise and inter-

pretable. These two criteria have guided us in our design

considerations and the experiments. Our steps and the

core insights are as follows:

1. We provide an extensive d iscussion of existing

measures for query similarity and their advantages

and d isadvantages.

2. Based on this d iscussion, we propose a new kind of

query similarity. It relies on the overlap and on the

closeness of the access areas of the two queries. The

existing notion of similarity based on access areas

only takes the overlap into account. It also has some

shortcomings, so we come up with a new access-

area-based similarity. We also propose a new defini-

tion of overlap and will argue that it is more natural

than the existing one.

3. We perform systematic experiments with the design

alternatives. In particular, we study the impact of

the various similarity functions and query represen-

tations on clustering quality.

4. To quantify the precision of clustering, data with a

ground tru th is needed . Having such data in our

current domain is an issue that existing approaches

apparently have d ifficulties with. We in turn come

up with conditions where one knows in advance

which cluster a qu ery belongs to. Then we collect

these queries together with this ground tru th. We

make this data publicly available.

5. To measure interpretability we conduct a study with

an astronomer. He interprets various clustering re-

sults obtained from the SkyServer query log and as-

sesses how well they align w ith user interests.

6. We find that our proposed similarity measures are

better than the existing ones regarding both preci-

sion and interpretability and provide explanations

for this. We have learned that the new measures are

3
 We have considered two possible data sets: IIT Bombay [20] and the UB

dataset[15]. The first data set however is not open access. The second one does
not include the database. See Section 6.2.1.

indeed helpful to arrive at 'query clusters' that are

meaningful, i.e., represent user interests.

Paper outline: Section 2 introduces underlying notions.

Section 3 reviews existing approaches to query log analy-

sis, Section 4 features existing query representations and

similarity functions. Section 5 covers our new similarity

metrics, Section 6 experiments. Section 7 concludes.

 PRELIMINARIES 2

We now introduce some underlying notions.

Definition 1. A relational database 𝐷𝐵 is a database

consisting of 𝑁 relations 𝑅1, … , 𝑅𝑁.

Definition 2. The universal relation 𝑈 of a query 𝑞 is

the Cartesian product of all relations occurring in the

query 𝑞: 𝑈 = 𝑅1 × … × 𝑅𝑁.

To avoid clu tter in the presentation, we assume that a

relation occurs in a query at most once. Otherwise, the

previous definition would need to be more complex.

Definition 3. A database schema 𝑆 is a logical archi-

tecture of the database 𝐷𝐵, i.e., a set of definitions of re-

lations 𝑅1, … 𝑅𝑁 of 𝐷𝐵 and constraints put on them.

Definition 4. A database state 𝑇 of the database 𝐷𝐵 is

data in the database 𝐷𝐵 allowed by the database schema

𝑆 at any particular time.

Definition 5. A predicate 𝑃 is a Boolean expression of

all constrains put on 𝑈 by a query 𝑞.

(𝑈; 𝑇) stands for the set of tuples of 𝑈 at state 𝑇 of 𝐷𝐵.

Definition 6. Let a relational database 𝐷𝐵 be given. A

query 𝑞 is a Select-Project-Join (SPJ) request together

with an optional aggregate computation .

In this paper, we only consider queries that fu lfill Def-

inition 6. We leave aside DML and DDL statements since

they do not represent information needs.

Definition 7. A representation scheme 𝑄𝑅𝑆 of a Query

𝑞 is a function which returns certain feature values rep-

resenting a query.

A query representation 𝑄𝑅(𝑞) of a query 𝑞 is a set of

feature values which are the result of 𝑄𝑅𝑆 applied to 𝑞.

 Think of a 𝑄𝑅𝑆 which extracts the tables listed Example 2.

in the FROM clause, but nothing else. For the queries

from Example 1,

 𝑄𝑅(𝑞1) = 𝑄𝑅(𝑞2) = 𝑄𝑅(𝑞3) = {𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠}.
In contrast, if the QRS also extracts the attributes listed

in the WHERE clause,

𝑄𝑅(𝑞1) = 𝑄𝑅(𝑞2) = {𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠, 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠. 𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡}

𝑄𝑅(𝑞3) = {𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠, 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠. 𝑠𝑡𝑎𝑟𝑡𝑑𝑎𝑡𝑒}.

Definition 8. A distance function 𝐷(𝑞1, 𝑞2) of Queries

𝑞1 and 𝑞2 is a function returning a nonnegative value.

Certain clustering algorithms impose conditions re-

garding the d istance function used . So called semi-metric

d istances work with a broad variety of clustering algo-

rithms. According to [5], such a d istance 𝐷(𝑥𝑖 , 𝑥𝑗) must

satisfy the following conditions on a data set 𝑋:

1. Symmetry. 𝐷(𝑥𝑖 , 𝑥𝑗)= 𝐷(𝑥𝑗 , 𝑥𝑖);

2. Positivity. 𝐷(𝑥𝑖 , 𝑥𝑗) ≥ 0 for all 𝑥𝑖 and 𝑥𝑗 in 𝑋;

ARZAMASOVA ET AL.: ON THE USEFULNESS OF SQL-QUERY-SIMILARITY MEASURES TO FIND USER INTERESTS 3

3. Reflexivity. 𝐷(𝑥𝑖 , 𝑥𝑗) = 0 iff 𝑥𝑖 = 𝑥𝑗 ;

We will check these conditions when introducing que-

ry-distance measures in Section 5.

Definition 9. The similarity 𝑆(𝑞1, 𝑞2) of two queries is

a function returning a value in [0; 1] .

𝑆(𝑞1, 𝑞2) = {
1 𝑖𝑓 𝑞1 = 𝑞2

[0; 1) otherwise

It holds that 𝑆(𝑞1, 𝑞2) = 1 − 𝐷(𝑞1, 𝑞2).
4

 RELATED WORK 3

Though we are about to study clustering of SQL query

logs, the design of new clustering algorithms is not the

focus of this article, and we do not provide a review of

them here. This section also is relatively short since we

defer the d iscussion of certain related work to the next

section. There we will focus on the extraction of meaning -

fu l features out of SQL statements. A query presented as a

set of features can relatively easily be compared to other

ones, i.e., one can compute pairwise similarity values.

Such similarities then are the input for clustering.

SQL query-log analysis allows solving specific issues

with regard to database usage. One use case is the de-

tection of performance problems. For instance, [6] scans

query logs with the aim of finding patterns and antipat-

terns. It also claims that such antipatterns heavily influ -

ence subsequent analysis, like clustering or association -

ru le mining. The article provides some evidence, but does

not feature a comprehensive evaluation. Related to the

detection of antipatterns is [7], where researchers work

with a log of update statements and a set of known data

errors to find and fix mistakes in a dataset. But analyzing

DML statements, as is done there, is not our current focus.

Another research thread applies association-ru le min-

ing to a query log [2] describes an approach that generates

SQL query recommendations online. It compares user ses-

sions and recommends a query to a user based on queries

from similar sessions. The authors present the idea that

similar user behavior manifests itself in similar data these

users access. A different approach to similarity of SQL

user sessions is presented in [8]. The paper focuses on

OLAP sessions and introduces an order-sensitive model

to compare them. This means that the order of queries

within a session influences the similarity of sessions. The

proposed method considers filtering conditions of queries

in a limited way: Only equality predicates are allowed .

Other related work [1] aims at au tocompletion of a query,

suggesting tables, views, UDFs, columns and predicates.

It ad justs its recommendation to the context: The more of

the query the user has typed in, the more accurate is the

suggestion provided. [9] recommends join queries based

on log analysis. They first extract chains of joins with

corresponding predicates from the training set. The algo-

rithm then creates queries from a test set with only tables

present in these queries as an input.

A third research area, clustering SQL queries to ident i-

4
 In general there is no restriction on 𝐷, i.e., 𝐷 ∈ [0; ∞). This require-

ment is there exclusively for our query-distance function. We have intro-
duced it in order to be able to set a meaningful threshold for the
DBSCAN algorithm, to give an example.

fy hot spots of users’ interests, is studied in [3]. It propos-

es a query-similarity metric based on the notion of so-

called access areas. We discuss this notion in detail wh en

reviewing query representations and similarity measures

in the next section. [10] uses query clustering to help users

locate interesting results. It generates clusters over the

data. Each cluster corresponds to one type of user prefer-

ence. In order to perform clustering, the authors compare

queries based on the results they return. As an outcome,

they present a navigational tree over clusters generated in

the first step to the user. He can now select the subset of

clusters matching his needs.

 AN OVERVIEW OF SIMILARITY FUNCTIONS AND 4
QUERY REPRESENTATIONS

In this section, we address the question how to define

the similarity of queries. Since an SQL query may have a

complex structure, this is not trivial. First one has to de-

cide what to compare, i.e., which query-representation

scheme (𝑄𝑅𝑆) to use. We provide an overview of ap -

proaches we have encountered in the scientific literature.

The Appendix summarizes the query representations

reviewed so far and the corresponding similarity/ d i-

stance functions. The last two rows refer to the new AAB

similarity functions we are about to propose.

 Query as a String 4.1
Arguably, the most straightforward way to represent

an SQL query statement is as a string. To calculate query

similarity, one could use string-similarity measures [11].

However, this hardly captures any specific features of

SQL. We now elaborate on its drawbacks.

 Consider the following queries: Example 3.

𝑞1: SELECT * FROM Employees WHERE birthyear < 1980

𝑞
2
: SELECT * FROM Employers WHERE birthyear < 1980

On the level of string similarities, these two queries

have a very small d ifference – only one character. How-

ever, they access entirely d ifferent tables and therefore

probably should have a very small similarity.

In addition, SQL keywords (SELECT, FROM, WHERE,

etc.) overstate the similarity since they occur in every SPJ

request. A possible solu tion is to exclude such words from

consideration. However, this does not do away with ef-

fects like the one from Example 3 – even without key-

words these two strings d iffer by only one symbol.

 Query as a Set of Features 4.2
To overcome some of the obstacles described in Sec-

tion 4.1 and to give more attention to the structure of an

SQL request, [1] proposes a query representation as fol-

lows. There, a query is a set of features, and features are:

1. tables, views, UDFs in the FROM clause

2. attributes in the SELECT clause

3. predicates (without values) in the WHERE clause

4. attributes in the GROUP BY clause.

We refer to this query representation as the feature-

based approach (FB). [1] is about autocompletion for SQL,

not about clustering, and the authors d o not explicitly

4

present any notion of query similarity. However, based on

the fact that a certain characteristic can only be present in

a query or not, a feature can be seen as a binary attribute.

Hence, one can use measures for binary attributes, such as

the Jaccard coefficient, Sokal and Sneath, Gower and Le-

gendre measures to arrive at similarity values for a pair of

queries. For instance, using the Jaccard coefficient, the

similarity of two queries 𝑞1 and 𝑞2 is:

S(𝑞1, 𝑞2) =
|𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑞1) ∩ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑞2)|

|𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑞1) ∪ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑞2)|
 (1)

There are a few variants of FB: [12] aims at detecting
anomalous access patterns in relational databases. It in-
troduces three FB representations, which differ in details.
[13] works with the SkyServer log and applies text mining
techniques to parse, clean and tokenize statements into a
weighted numerical representation, which can then be fed
into regular machine learning. [14] represents an SQL
query as an abstract syntax tree (AST) of its template. Any
concrete values of such an AST are replaced by place-
holders. To compare queries, the AST is then transformed
to a vector of features. [15] focuses on how the feature-
selection strategy affects clustering quality. It is confined
to a feature-based query representation.

The FB approach captures the structure of the query

and does not have the d isadvantages of the method de-

scribed first (Section 4.1). The main weakness of such a

query representation is that it does not consider the va l-

ues in a filtering condition.

 Query as a Set of Result Tuples 4.3

Another query representation scheme [2], [16] intro-

duces the notion of witnesses and is called witness based

(WB) approach. A witness is a tuple in the result set of a

query. A query representation is the set of its witnesses.

The authors propose to measure the similarity of user ses-

sions. A user session is a sequence of queries issued by

one user. When generating query recommendations, they

are interested in session -wise similarity, not query-wise.

The similarity of two user sessions 𝑈𝑆1 and 𝑈𝑆2 is defined

as cosine similarity. However, any metric for sets could be

applied . For example, here is for the Jaccard coefficient:

S(𝑈𝑆1, 𝑈𝑆2) =
|𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠(𝑈𝑆1) ∩ 𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠(𝑈𝑆2)|

|𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠(𝑈𝑆1) ∪ 𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠(𝑈𝑆2)|

where 𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠(𝑈𝑆𝑖) is the set of witnesses which be-

long to user session 𝑈𝑆𝑖. Since a user session consists of

queries, one can define query similarity in the same spirit:

S(𝑞1, 𝑞2) =
|𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠(𝑞1) ∩ 𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠(𝑞2)|

|𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠(𝑞1) ∪ 𝑤𝑖𝑡𝑛𝑒𝑠𝑠𝑒𝑠(𝑞2)|
 (2)

While this notion is very clear, we see several issues

with this approach, as follows:

1. Necessity to re-query the database. To identify all wit-

nesses, one must run the queries another time, lead-

ing to a huge load on the database. Next, even if this

was not an issue, it spoils subsequent query -log

analysis. This is because re-run queries are stored in

the query log. Finally, due to possible updates of the

database in the meantime, there is no guarantee that

a query will have the same result as the first time.

2. Result set can be empty. Two queries which do not

return any data cannot be compared even though

they may be identical.

3. Possible insignificance of witness sets. Due to the de-

clarative nature of SQL in particular, the same data

can be obtained in many d ifferent ways. Consider

again Example 1. It is possible for Queries 𝑞1 and 𝑞3

to have similar result sets. However, the intentions

behind the two queries obviously are d ifferent.

Summing up, the WB approach overcomes the d isad -

vantages of FB. It is clear and easy to implement. Howev-

er, it may not be exactly practical in particular when the

number of queries is very large.

 Query as an Access Area 4.4

A way to overcome the d isadvantages of the witness-

based approach is proposed in [3]. The authors represent

a query using the notion of so-called access areas. From

now on, AAB is short for ‘access area based query repre-

sentation’. The access area of a query captures the area of

the data space that the user is interested in.

Definition 10. A tuple 𝑡 𝜖 𝑈 is said to influence the re-

sult set (𝑈, 𝑇)𝑃 of a query 𝑞 iff (𝑈\{𝑡}, 𝑇)𝑃 ≠ (𝑈, 𝑇)𝑃. If 𝑡 is

removed from 𝑈, the result set of 𝑞 at state 𝑇 will

change.

Definition 11. The access area of a query 𝑞 is the set of

all tuples 𝑡 contained in the universal relation 𝑈 that in-

fluence the result set of 𝑞 in some database state 𝑇 al-

lowed by the database schema which satisfy Predicate 𝑃

of conditions put on a query 𝑞:

{𝑡 ∈ 𝑈 ∶ ∃𝛵 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑏𝑦 𝐷𝐵 𝑠. 𝑡. 𝑡 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑠 (𝑈, 𝑇)𝑃} (3)

In contrast to WB, the access area of a query does not

rely on the current database state. In many cases, we can

describe these tuples as an expression in the relational

algebra. Coming back to 𝑞1 from Example 1, the access

area of Query 𝑞1 is 𝜎𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 = ‘𝑠𝑎𝑙𝑒𝑠’(𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠). The

notion leaves aside the SELECT clause of the query. It

considers predicates and the FROM clause. These simila-

rities do not consider attribu tes in a SELECT clause either.

[1] describes how to compute access areas for simple que-

ries as well as for join, aggregate and nested queries.

Moreover, it proposes a query d istance measure, based on

the overlap of the access areas of the two queries:

𝐷(𝑞1, 𝑞2) = 𝑑𝑡𝑎𝑏𝑙𝑒𝑠(𝑞1. 𝐹𝑅𝑂𝑀, 𝑞2. 𝐹𝑅𝑂𝑀)
+ 𝑑𝑐𝑜𝑛𝑗(𝑞1. 𝑊𝐻𝐸𝑅𝐸, 𝑞2. 𝑊𝐻𝐸𝑅𝐸) (4)

𝑑𝑡𝑎𝑏𝑙𝑒𝑠(𝑞1. 𝐹𝑅𝑂𝑀, 𝑞2. 𝐹𝑅𝑂𝑀) = 1 −
|𝑞1. 𝐹𝑅𝑂𝑀 ∩ 𝑞2. 𝐹𝑅𝑂𝑀|

|𝑞1. 𝐹𝑅𝑂𝑀 ∪ 𝑞2. 𝐹𝑅𝑂𝑀|
 (5)

The predicate 𝑃 is in conjunctive normal form (CNF),

i.e., it is a conjunction of clauses, where each clause is a

d isjunction of literals. Hence, 𝑑𝑐𝑜𝑛𝑗(𝑏1; 𝑏2) in Formu la (4)

means d istance of conjunctions. It is calculated as:

𝑑𝑐𝑜𝑛𝑗(𝑏1; 𝑏2) =
∑ min

𝑜2∊𝑏2

𝑑𝑑𝑖𝑠𝑗(𝑜1; 𝑜2)𝑜1∊𝑏1
+ ∑ min

𝑜1∊𝑏1

𝑑𝑑𝑖𝑠𝑗(𝑜1; 𝑜2)𝑜2∊𝑏2

|𝑏1| + |𝑏2|

where each 𝑜𝑖 ∊ 𝑏𝑖 is a d isjunction of Boolean ex-

pression(s), and |𝑏𝑖| is the number of d isjunctions of 𝑏𝑖 in

Query 𝑞𝑖. 𝑑𝑑𝑖𝑠𝑗(𝑜1; 𝑜2) is the d istance of the d isjunctions of

ARZAMASOVA ET AL.: ON THE USEFULNESS OF SQL-QUERY-SIMILARITY MEASURES TO FIND USER INTERESTS 5

𝑜1 and 𝑜2. It is as follows:

𝑑𝑑𝑖𝑠𝑗(𝑜1; 𝑜2) =
∑ min

𝑝2∊𝑜2

𝑑𝑝𝑟𝑒𝑑(𝑝1; 𝑝2)𝑝1∊𝑜1
+ ∑ min

𝑝1∊𝑜1

𝑑𝑝𝑟𝑒𝑑(𝑝1; 𝑝2)𝑝2∊𝑜2

|𝑜1| + |𝑜2|

where 𝑝1 ∊ 𝑜1 is an atomic predicate, and |𝑜1| is the num-

ber of atomic predicates of 𝑜1.

The d istances between predicates are:

 𝑑𝑝𝑟𝑒𝑑(𝑃1, 𝑃2) = 1 −
𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑎)

𝑤𝑖𝑑𝑡ℎ(𝑎)
 if both predicates 𝑃1

and 𝑃2 refer to the same attribute 𝑎;

 𝑑𝑝𝑟𝑒𝑑(𝑃1, 𝑃2) = 1 −
𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑎1)

𝑤𝑖𝑑𝑡ℎ(𝑎1)
×

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑎2)

𝑤𝑖𝑑𝑡ℎ(𝑎2)
 if both

predicates 𝑃1 and 𝑃2 refer to d ifferent attributes 𝑎1 and 𝑎2.

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙(𝑎) is the width of the interval in which Pred i-

cate 𝑃 is true. The Appendix contains an example illu s-

trating the notions which we have just defined. While the

notion of access area itself has proven its worth, the d is-

tance function has several shortcomings:

1. The distance function is redundant, as follows: For-

mula (4) sums up the d istance of the access tables,

calculated using the Jaccard coefficient, as well as

the d istance of the conjunctions in the filtering con-

ditions. If two queries have the same attributes in

the filtering conditions, they have common tables in

the FROM clause as well. Taking the d istance of the

tables accessed when one already calculates a d is-

tance of the filtering conditions is redundant. The

following example illustrates this.

 Think of a query log containing the queries: Example 4.

𝑞1: SELECT * FROM Cities C WHERE C.latitude BETWEEN 30

and 50

𝑞
2
: SELECT * FROM Cities C, Countries Cs WHERE

C.latitude BETWEEN 40 and 60 AND C.countryId = Cs.id

The access areas of these queries are:

𝑞1: 𝜎𝐶𝑖𝑡𝑖𝑒𝑠.𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 ≥30 Ʌ 𝐶𝑖𝑡𝑖𝑒𝑠.𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 ≤ 50(𝐶𝑖𝑡𝑖𝑒𝑠);

 𝑞2: 𝜎𝐶𝑖𝑡𝑖𝑒𝑠.𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 ≥40 Ʌ 𝐶𝑖𝑡𝑖𝑒𝑠.𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 ≤ 60(𝐶𝑖𝑡𝑖𝑒𝑠 × 𝐶𝑜𝑢𝑛𝑡𝑟𝑖𝑒𝑠).

The first addend of the d istance measure is as follows:

𝑑𝑡𝑎𝑏𝑙𝑒𝑠(𝑞1. 𝐹𝑅𝑂𝑀, 𝑞2. 𝐹𝑅𝑂𝑀) = 1 −
|{𝐶𝑖𝑡𝑖𝑒𝑠}|

|{𝐶𝑖𝑡𝑖𝑒𝑠,𝐶𝑜𝑢𝑛𝑡𝑟𝑖𝑒𝑠}|
=

1

2
 .

To calculate 𝑑𝑐𝑜𝑛𝑗(𝑞1. 𝑊𝐻𝐸𝑅𝐸, 𝑞2. 𝑊𝐻𝐸𝑅𝐸), the authors

rely on the domain of a column. For attribute 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 in

Example 4, 𝑑𝑜𝑚(𝐶𝑖𝑡𝑖𝑒𝑠. 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) = [−90; 90]. Hence the

width of this attribute is:

 𝑤𝑖𝑑𝑡ℎ(𝐶𝑖𝑡𝑖𝑒𝑠. 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) = |90 − (−90)| = 180.

With predicates in the two queries referring to the same

single column,

𝑑𝑐𝑜𝑛𝑗(𝑞1. 𝑊𝐻𝐸𝑅𝐸, 𝑞2. 𝑊𝐻𝐸𝑅𝐸)=1 − (𝑜𝑣𝑒𝑟𝑙𝑎𝑝 (𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒))/

𝑤𝑖𝑑𝑡ℎ(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) = 1 − 10/180 = 17/18.

Thus, the overall d istance in this example is even more

than 1: 𝐷(𝑞1, 𝑞2) = 1/2 + 17/18 = 13/9.

Because two distances are summed up, the result

may be an overall d istance greater than 1, while this

ought to be the value indicating maximally d issimi-

lar queries. Summing up values with d ifferent

meanings/ with d ifferent units of measure does not

yield results with a clear meaning. One might argue

that addends show the degree of d issimilarity – this

is their common unit. Then this degree should have

at least the same range. However, as Example 4 has

shown, this is not true: 𝑑𝑡𝑎𝑏𝑙𝑒𝑠 𝜖 [0; 1], 𝑑𝑐𝑜𝑛𝑗𝜖[0; ∞].

2. The distance of two queries depends on the width of

the attributes, see Example 4. Hence one cannot

come up with a maximum distance in advance. This

renders the choice of threshold values for clustering

algorithms like DBSCAN difficult.

3. The similarity function presented in the paper is not

a semi-metric. To show this, we calculate the d is-

tance of two identical queries from Example 4:
𝑑𝑡𝑎𝑏𝑙𝑒𝑠(𝑞1. 𝐹𝑅𝑂𝑀, 𝑞1. 𝐹𝑅𝑂𝑀) = 0.
𝑑𝑐𝑜𝑛𝑗(𝑞1. 𝑊𝐻𝐸𝑅𝐸, 𝑞1. 𝑊𝐻𝐸𝑅𝐸) = 1 − 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒)/

𝑤𝑖𝑑𝑡ℎ(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) = 1 − 20/180 = 8/9.

𝐷(𝑞1, 𝑞2) = 0 + 8/9 = 8/9, while the reflexivity con-

dition requires that 𝐷(𝑞1, 𝑞1) = 0.

4. The distance calculates the overlap of the access are-

as even if the two queries have d ifferent attributes in

the filtering conditions. The following example illu s-

trates that this may be problematic.

 Think of a query log containing the queries: Example 5.

𝑞1: SELECT * FROM T WHERE a = 1

𝑞2: SELECT * FROM T WHERE b = 2

In this case, the au thors propose to set

𝑑𝑐𝑜𝑛𝑗(𝑞1. 𝑊𝐻𝐸𝑅𝐸, 𝑞2. 𝑊𝐻𝐸𝑅𝐸) to the share of the joint

space of the columns involved occupied by 𝑞1. 𝑊𝐻𝐸𝑅𝐸

and 𝑞2. 𝑊𝐻𝐸𝑅𝐸. So these two queries might end up in

the same cluster. The clusters then might become too big

and consist of d isjoint areas of the data space.

In our opinion, these shortcomings impact the identifi-

cation of user interests based on clusters severely. Namely,

when a cluster represents several user interests, one can-

not d istinguish between them.

 Summary 4.5

Table 2 shows the FB, WB and AAB representations of

Query 𝑞1 from Example 1. FB is structure oriented , WB is

data-oriented , AAB is somewhere in between, introducing

access areas. Since an AAB representation is not a feature

vector, one cannot use standard similarity measures, but

an AAB similarity function is needed. To get the FB repre-

sentation, one only needs the query. For WB in turn, the

query and access to the data is needed. AAB does not

need the entire data, only some statistical properties, like

extreme values of an attribute.

 OUR AAB SIMILARITY FUNCTION 5

We now face the necessity to come up with an AAB

similarity measure which does not have these adverse

characteristics. Representing a query as its access area

seems promising. It captures key details of an SQL re-

quest and does not consider the current state of a data-

base, in contrast to the WB approach. However, as we

have pointed out in Section 4.4, a d ifferent query-

similarity function is necessary. We now propose a new

function which is still based on the notion of access areas

but does not suffer from the shortcomings d iscussed in

the previous section. To come up with it, we ask:
1. Which queries are similar?

2. How to quantify similarity of two queries in the

following cases?

a. There are several occurrences of an attribute in

the filtering conditions in both queries.

6

b. There are d ifferent attributes in the filtering con-

ditions, while the queries have at least on e com-

mon attribute.

c. At least one query contains joins.

While this list does not cover SQL in fu ll, it does cover

a superset of SPJ queries with possibly aggregation,

cf. Section 2. – From the study of the SkyServer query log,

the only one freely available, it turns out that there are

two types of queries that require further d iscussion :

 Queries with arithmetic operations in predicates.

Queries with arithmetic operations in predicates are d iffi-

cult in general, for instance for DBMS query optimizers.

The current version of our AAB approach does not cover

these queries. However, to include queries with arithme-

tic operations into the consideration, one could resort to

the WB approach. This is the case particularly since one of

our similarity functions, which calculates overlap of ac-

cess areas (dubbed AABovl in the following), and WB

yield similar results, as we will show in Section 6.

 Queries without a filtering condition . This kind of

query is useful in combination with a TOP-n clause. These

queries often are the first queries a user might issue, with

the aim of testing the database. In this case, they have re-

latively little to do with user interests. These queries also

blur the aggregated access area of a cluster they belong to.

In our case study with SkyServer, only 2.7 % of the que-

ries are of this kind . So we have consciously decided to

leave them aside in this current study.

This means that, w hen it comes to a real-world query

log, the three cases (2.a, 2.b, 2.c) cover most of the queries

actually occurring. We now present a new formulation of

query similarity. A dissimilarity or d istance function must

meet the conditions from Definition 8. We will prove that

our d istance/ similarity function has these characteristics.

Before doing so, we introduce some underlying notions.

Definition 12. The similarity measure 𝑆(𝑞1, 𝑞2). 𝑎 of an

attribute 𝑎 of two queries 𝑞1, 𝑞2 is a similarity measure

of queries 𝑞1 and 𝑞2 which is defined if the queries both

have at least one filtering condition with Attribute 𝑎 and

is undefined otherwise.

For a query pair 𝑞1 and 𝑞2, there can be one or several

conditions on Attribute 𝑎.

𝐷(𝑞1, 𝑞2). 𝑎 is the corresponding d istance and is calcu-

lated as follows: 𝐷(𝑞1, 𝑞2). 𝑎 = 1 − 𝑆(𝑞1, 𝑞2). 𝑎.

Definition 13. An ordinal attribute (OA) is one whose

values have a natural order.

The values of such an attribute may or may not be

from a domain that is continuous.

Definition 14. A nominal attribute (NA) is one whose

values do not have a natural order.

Definition 15. The interest 𝐼𝑛𝑡𝑠(𝑞) of a query 𝑞 is the set

of attributes occurring in filtering condition s of q.

 Back to Example 1, 𝐼𝑛𝑡𝑠(𝑞1) = 𝐼𝑛𝑡𝑠(𝑞2) =Example 6.

 {𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠. 𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡}.

Definition 16. The common interest 𝑐𝑜𝑚𝐼𝑛𝑡𝑠(𝑞1, 𝑞2) =

𝐼𝑛𝑡𝑠(𝑞1) ∩ 𝐼𝑛𝑡𝑠(𝑞2) of two queries 𝑞1, 𝑞2 is the set of inter-

ests which occur in both queries 𝑞1 and 𝑞2.

Definition 17. The exclusive interest 𝑒𝑥𝑐𝑙𝐼𝑛𝑡𝑠(𝑞1, 𝑞2) =
{𝐼𝑛𝑡𝑠(𝑞1) ∪ 𝐼𝑛𝑡𝑠(𝑞2)} \𝑐𝑜𝑚𝐼𝑛𝑡𝑠(𝑞1, 𝑞2) of two queries 𝑞1,
𝑞2 is the set of interests which occur in only one query.

In what follows, we use the notation 𝑃𝑖
𝑎 for a predicate

occurring within Query 𝑞𝑖 and referring to Attribute 𝑎. In

general, several terms may represent the same predicate:

For instance, if a predicate referring to Attribute 𝑎 occurs

in both Query 𝑞𝑖 and 𝑞𝑗, then both 𝑃𝑖
𝑎 and 𝑃𝑗

𝑎 are in order.

Likewise, if the predicate refers to Attributes 𝑎1 and 𝑎2,

both 𝑃𝑖
𝑎1 and 𝑃𝑖

𝑎2 may stand for the predicate.

Definition 18. A set of intervals 𝐴𝑖
𝑂𝐴 = {𝑎𝑖.1

𝑂𝐴, … , 𝑎𝑖.𝑘
𝑂𝐴} of a

query 𝑞𝑖 is one formed by pred icate 𝑃 with OA 𝑎.

 Consider Queries 𝑞1and 𝑞2: Example 7.

𝑞1: SELECT * FROM Cities C WHERE C.latitude BETWEEN 10

and 20 OR C.latitude BETWEEN 40 and 50

𝑞2: SELECT * FROM Cities C WHERE C.latitude BETWEEN 10

and 20 OR C.latitude NOT BETWEEN 40 and 50

Query 𝑞1 has the following set of intervals for ord inal

attribute 𝐶𝑖𝑡𝑖𝑒𝑠. 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒: 𝐶𝑖𝑡𝑖𝑒𝑠. 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒1
𝑂𝐴 =

{[10; 20], [40; 50]}.For Query 𝑞2, 𝐶𝑖𝑡𝑖𝑒𝑠. 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒2
𝑂𝐴 = {[−90; 40],

[50; 90]}, because 𝑑𝑜𝑚(𝐶𝑖𝑡𝑖𝑒𝑠. 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒) = [−90; 90].

We now define how to extract intervals out of a query.

Definition 19. The set of intervals 𝐴𝑖
𝑂𝐴 = {𝑎𝑖.1

𝑂𝐴, … , 𝑎𝑖.𝑘
𝑂𝐴} of a

Predicate 𝑃𝑖
𝑎 associated with an ordinal Attribute 𝑎 is as

follows. If 𝑃𝑖
𝑎 is:

1. Atomic clause: 𝐴𝑖
𝑂𝐴 is a singleton set containing ex-

actly the clause;

2. Conjunction clause (𝐶1 Ʌ 𝐶2):𝐴𝑖
𝑂𝐴 = 𝐶1 ∩ 𝐶2; it is the

intersection of the intervals in 𝐶1 and 𝐶2;

3. Disjunction clause (𝐶1 ∨ 𝐶2): 𝐴𝑖
𝑂𝐴 = 𝐶1 ∪ 𝐶2; it is the

union of intervals in 𝐶1 and 𝐶2;

4. Negative clause (𝑁𝑂𝑇 𝐶): 𝐴𝑖
𝑂𝐴 = ⎺𝐶; it is the inverse

interval of 𝐶.

Definition 20. The width w𝑖𝑑𝑡ℎ(𝑎𝑖.𝑘) of interval 𝑎𝑖.𝑘
𝑂𝐴 is

defined as w𝑖𝑑𝑡ℎ(𝑎𝑖.𝑘) = 𝑎𝑖.𝑘
𝑚𝑎𝑥 − 𝑎𝑖.𝑘

𝑚𝑖𝑛.

For instance, the queries from Example 5 have the fol-

lowing widths of intervals:

w𝑖𝑑𝑡ℎ(𝑎1.1) = 20 − 10 = 10; w𝑖𝑑𝑡ℎ(𝑎1.2) = 50 − 40 = 10;

w𝑖𝑑𝑡ℎ(𝑎2.1) = 40 + 90 = 130; w𝑖𝑑𝑡ℎ(𝑎2.2) = 90 − 50 = 40;

Definition 21. A set of values 𝐴𝑖
𝑁𝐴 = {𝑎𝑖.1

𝑁𝐴, … , 𝑎𝑖.𝑘
𝑁𝐴} valid

with regard to a Predicate 𝑃𝑖
𝑎 over a nominal attribute 𝑎

is a set of values of 𝑎 where each value satisfies the con-

ditions put on 𝑎 by the predicate 𝑃𝑖
𝑎.

As for intervals, we introduce an extraction procedure:

Definition 22. The set of valid values of a Predicate𝑃𝑖
𝑎

associated with a nominal Attribute 𝑎 𝐴𝑖
𝑁𝐴 = {𝑎𝑖.1

𝑁𝐴, … , 𝑎𝑖.𝑘
𝑁𝐴}

is as follows. If 𝑃𝑖
𝑎 is:

1. Atomic clause: 𝐴𝑖
𝑁𝐴 is a singleton set containing ex-

actly the clause;

 TABLE 2
Query representations of 𝑞1 from Example 1

Method Query representation

FB [1] {*, Employees, Department}

WB [2] {(4352, John, Doe), (4322, Mary, Smith), (4152, Ivan, Green),

(4357, Sarah, Bing), (8352, Eva, Dallas), (4052, Stephen, Li),…,

(4356, Boris, Johnson), (4322, David, Black)}

AAB [3] 𝜎𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 = ‘𝑠𝑎𝑙𝑒𝑠’(𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠)

ARZAMASOVA ET AL.: ON THE USEFULNESS OF SQL-QUERY-SIMILARITY MEASURES TO FIND USER INTERESTS 7

2. Conjunction clause (𝐶1 Ʌ 𝐶2): 𝐴𝑖
𝑁𝐴 is the intersection

of valid values in 𝐶1 and 𝐶2;

3. Disjunction clause (𝐶1 ∨ 𝐶2): 𝐴𝑖
𝑁𝐴 is the union of valid

values in 𝐶1 and 𝐶2;

4. Negative clause (𝑁𝑂𝑇 𝐶): 𝐴𝑖
𝑁𝐴 is all the values from

domain not presented in 𝐶.

 Which Queries are Similar? 5.1
To come up with a measure of query similarity, we first

study the simplest case, when two queries have one oc-

currence of the same attribute in the filtering condition

and nothing else. It seems plausible that similar queries

are those whose access areas overlap. However, this

might be too strict in certain cases.

 Think of a query log containing the queries: Example 8.

𝑞1: SELECT * FROM Cities C WHERE C.latitude >= 45 AND

C.latitude < 90

𝑞2: SELECT * FROM Cities C WHERE C.latitude >= 30 AND

C.latitude < 45

𝑞3: SELECT * FROM Cities C WHERE C.latitude >= -75 AND

C.latitude < -30

𝑞4: SELECT * FROM Cities C WHERE C.name = ‘New York’

𝑞5: SELECT * FROM Cities C WHERE C.name = ‘Paris’

Attribute latitude of table Cities has a continuous type,

𝐶𝑖𝑡𝑖𝑒𝑠. 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 ∈ [−90; 90]. This attribute is ord inal

(OA), while 𝐶𝑖𝑡𝑖𝑒𝑠. 𝑛𝑎𝑚𝑒 is nominal (NA). Now look at

the first three queries in the log. Fig. 1 plots the access

areas of Queries 𝑞1, 𝑞2 and 𝑞3. They are as follows:

𝑞1: 𝜎𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 ≥45 Ʌ 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 ≤ 90(𝐶𝑖𝑡𝑖𝑒𝑠);

𝑞2: 𝜎𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 ≥30 Ʌ 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 ≤ 45(𝐶𝑖𝑡𝑖𝑒𝑠);

𝑞3: 𝜎𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 ≥−75 Ʌ 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 ≤ −30(𝐶𝑖𝑡𝑖𝑒𝑠).

No two queries overlap. But 𝑞1 and 𝑞2 appear to be clo-

ser to each other: Their access areas even are ad jacent.

So we need to take in closeness as a criterion as well.

Observe that all already existing measures which rely on

the data, like WB or AAB, currently do not feature this

either. In other words, the phenomenon that closeness is

neglected is not specific to access-area-based approaches.

 Closeness Similarity for Ordinal Attributes 5.1.1
We want to quantify the closeness of the access areas of

two queries. Lack of overlap of access areas does not

mean ‘zero similarity’. Put d ifferently, queries which re-

quest data in neighboring parts of the data space should

have the chance to end up in the same cluster.

Definition 23. The similarity of two queries with the

same filtering ordinal attribute (OA) 𝑆𝑐𝑙(𝑞1, 𝑞2). 𝑎 is the

proximity (closeness, cl) of their access areas:

𝑆𝑐𝑙(𝑞1, 𝑞2). 𝑎 = 𝑆𝑐𝑙(𝑎1.1
𝑂𝐴 , 𝑎2.1

𝑂𝐴) =
1

2
∙

(𝑎1.1
𝑚𝑎𝑥 − 𝑎1.1

𝑚𝑖𝑛) + (𝑎2.1
𝑚𝑎𝑥 − 𝑎2.1

𝑚𝑖𝑛)

max(𝑎1.1
𝑚𝑎𝑥 , 𝑎2.1

𝑚𝑎𝑥) − min(𝑎1.1
𝑚𝑖𝑛, 𝑎2.1

𝑚𝑖𝑛)
 (6)

𝑎𝑖.1
𝑚𝑖𝑛/ 𝑎𝑖.1

𝑚𝑎𝑥 are the minimum/ maximum of Interval 𝑎𝑖.1
𝑂𝐴.

Since we are considering the simplest case, there is on-

ly one interval of one attribute for each query. Because of

this, the similarity of attribute conditions is the similarity

of the first occurrence of Attribute 𝑎 in both queries:

𝑆𝑐𝑙(𝑞1, 𝑞2). 𝑎 = 𝑆𝑐𝑙(𝑎1.1
𝑂𝐴, 𝑎2.1

𝑂𝐴). The coefficient 0.5 normalizes the

measure. The formula is the share of the space accessed

over the width of the space between the queries. 𝑆𝑐𝑙 > 0.5

indicates overlap of access areas.

LEMMA 5.1. 𝐷𝑐𝑙(𝑞1, 𝑞2). 𝑎 is semi-metric.

All proofs are in the Append ix.

 Overlap Similarity for Nominal Attributes 5.1.2
The closeness measure 𝑆𝑐𝑙(𝑞1, 𝑞2). 𝑎 in Equation (6) does

not work with nominal attributes (NA). See Queries 𝑞4

and 𝑞5 from Example 8. The values of Attribute 𝑛𝑎𝑚𝑒 of

Table 𝐶𝑖𝑡𝑖𝑒𝑠 do not have a natu ral order. To illu strate,

‘Paris’ is not close to ‘Prague’ just because they both start

with ‘P’
5
. Having said this, for nominal attributes we pro-

pose to take the overlap (ovl) as the similarity. We use the

Jaccard coefficient to this end :

𝑆𝑜𝑣𝑙(𝑞1, 𝑞2). 𝑎 =
|𝐴1

𝑁𝐴 ∩ 𝐴2
𝑁𝐴|

|𝐴1
𝑁𝐴 ∪ 𝐴2

𝑁𝐴|
 (7)

In our case,

𝑆𝑜𝑣𝑙(𝑞4, 𝑞5). 𝐶𝑖𝑡𝑖𝑒𝑠. 𝑛𝑎𝑚𝑒 =
|{'New York'}∩{'Paris'}|

|{'New York'}∪{'Paris'}|
= 0.

LEMMA 5.2. 𝐷𝑜𝑣𝑙(𝑞1, 𝑞2). 𝑎, where 𝑎 is a nominal attribute,

is semi-metric.

 Overlap Similarity for Ordinal Attributes (OA). 5.1.3
With the definitions so far, we would rely on d ifferent

paradigms, i.e., closeness and overlap , when calculating

the similarity for ord inal and nominal attributes. When

different types of attributes are treated d ifferently, it is

unclear how this will affect analysis results, e.g., cluster-

ing. Therefore, to have an alternative which we can use as

a reference point later, we now propose a purely overlap -

based similarity measure for ord inal attributes:

𝑆𝑜𝑣𝑙(𝑞1, 𝑞2). 𝑎 = 𝑆𝑜𝑣𝑙(𝑎1.1
𝑂𝐴, 𝑎2.1

𝑂𝐴) =
𝑐𝑜𝑚𝑊𝑖𝑑𝑡ℎ(𝑎1.1

𝑂𝐴, 𝑎2.1
𝑂𝐴)

𝑎𝑙𝑙𝑊𝑖𝑑𝑡ℎ(𝑎1.1
𝑂𝐴, 𝑎2.1

𝑂𝐴)
 (8)

In each query, one interval 𝑎1.𝑖
𝑂𝐴 represents Attribute 𝑎.

𝑐𝑜𝑚𝑊𝑖d𝑡ℎ(𝑎1.1
𝑂𝐴, 𝑎2.1

𝑂𝐴) in Formula (8) is the overlap of Queries

𝑞1 and 𝑞2 for Attribute 𝑎 in absolu te terms:

𝑐𝑜𝑚𝑊𝑖𝑑𝑡ℎ(𝑎1.1
𝑂𝐴, 𝑎2.1

𝑂𝐴) = max(0, (min(𝑎1.1
𝑚𝑎𝑥, 𝑎2.1

𝑚𝑎𝑥)

− max(𝑎1.1
𝑚𝑖𝑛 , 𝑎2.1

𝑚𝑖𝑛)) (9)

𝑎𝑙𝑙𝑊𝑖𝑑𝑡ℎ(𝑎1.1
𝑂𝐴, 𝑎2.1

𝑂𝐴) is the d ifference between the highest

maximal bound and the lowest minimal bound :

𝑎𝑙𝑙𝑊𝑖𝑑𝑡ℎ(𝑎1.1
𝑂𝐴, 𝑎2.1

𝑂𝐴) = max(𝑎1.1
𝑚𝑎𝑥, 𝑎2.1

𝑚𝑎𝑥) − min(𝑎1.1
𝑚𝑖𝑛, 𝑎2.1

𝑚𝑖𝑛) (10)

For instance, the similarity for Attribute 𝐶𝑖𝑡𝑖𝑒𝑠. 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒

from Example 4 is:

𝑆𝑜𝑣𝑙(𝑞1, 𝑞2). 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 =
min(50,60)−max (30,40)

max(50,60)−min(30,40)
=

50−40

60−30
=

1

3
.

Fig. 2 graphs the corresponding access areas.

 Access areas of attribute Cities.latitude for queries 𝑞1, 𝑞2 Fig. 1.

and 𝑞3 from Example 8.

5
 In principle, one can use domain-specific ontologies and respective

distance measures. To continue the example, Paris and Prague might be
similar because they both are capitals of European countries with a rich
history. However, taking such additional information into account is
beyond the scope of this paper.

8

LEMMA 5.3. 𝐷𝑜𝑣𝑙(𝑞1, 𝑞2). 𝑎, where 𝑎 is an ordinal at-

tribute, is semi-metric.

 Summary 5.1.4
We have identified two paradigms of AAB query simi-

larity: closeness (AABcl) and overlap (AABovl). We use

these acronyms from now on. We also have proposed

query-similarity measures for ord inal attributes (Formu la

(6) for AABcl and (8) for AABovl) and nominal ones

(Formula (7)). Which method to apply (closeness or over-

lap) when it comes to ordinal attributes depends on the

objective. Our hypotheses, which our experimental evalu-

ation will address, are as follows: If an analyst is inter-

ested in exact access areas many users have looked for, he

might want to use the “strict” overlap formula (8). In

contrast, if he is more interested in the bigger picture, i.e.,

approximate, rather big areas users have looked at, the

less strict closeness form ula (6) might be better. Fig. 3

shows the clustering results with the two approaches. Our

experiments in Section 6 will provide more details.

So far, we have d iscussed similarity measures for the

simplest case, two queries having the same attribute in

the filtering conditions, and this attribute occurs only

once. Now we turn to more complex cases.

 Multiple Occurrences of an Attribute in Filter-5.2
ing Conditions

The first complication when calculating query similar i-

ty, described in the beginning of Section 5, occurs when

one uses the same attribute several times in the same

query. This may happen when a query consists of OR

predicates (for ord inal and nominal attributes) or IN

predicates (for nominal attributes).

 Overlap Similarity 5.2.1

 Consider the following queries: Example 9.

𝑞1: SELECT * FROM Cities WHERE (population BETWEEN 0 and

20) OR (population BETWEEN 40 and 60)

OR (population BETWEEN 90 and 100)

𝑞2: SELECT * FROM Cities WHERE (population BETWEEN 10

and 30) OR (population BETWEEN 50 and 60)

OR (population BETWEEN 80 and 90)

The access areas of the queries look like in Fig. 4. Both

Queries 𝑞1 and 𝑞2 have not one, but several occurrences

of Attribute 𝐶𝑖𝑡𝑖𝑒𝑠. 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛. Some of the areas do in-

tersect: for instance, (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐵𝐸𝑇𝑊𝐸𝐸𝑁 0 𝑎𝑛𝑑 20) of 𝑞1

and (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐵𝐸𝑇𝑊𝐸𝐸𝑁 10 𝑎𝑛𝑑 30) of 𝑞2. Some how-

ever, like (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 BETWEEN 40 and 60) of 𝑞1 and

(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐵𝐸𝑇𝑊𝐸𝐸𝑁 80 𝑎𝑛𝑑 90) of 𝑞2, do not.

With an overlap approach for ord inal attributes, we de-

fine the similarity measure as the ratio of the width of the

overall overlap of the intervals to the width of the union

of the intervals. Formally,

𝑆𝑜𝑣𝑙(𝑞1, 𝑞2). 𝑎 =
𝑜𝑣𝑙𝐶𝑜𝑚𝑊𝑖𝑑𝑡ℎ(𝑎1, 𝑎2)

𝑜𝑣𝑙𝐴𝑙𝑙𝑊𝑖𝑑𝑡ℎ(𝑎1, 𝑎2)
 (11)

The terms in the numerator and in the denominator are

as follows:

𝑜𝑣𝑙𝐶𝑜𝑚𝑊𝑖𝑑𝑡ℎ(𝑎1, 𝑎2) = ∑ 𝑐𝑜𝑚𝑊𝑖𝑑𝑡ℎ(𝑎1.𝑖
𝑂𝐴, 𝑎2.𝑗

𝑂𝐴)
𝑖=𝑙1,𝑗=𝑙2

𝑖=1,𝑗=1

o𝑣𝑙𝐴𝑙𝑙𝑊𝑖𝑑𝑡ℎ(𝑎1, 𝑎2) = ∑ 𝑤𝑖𝑑𝑡ℎ(𝑎1.𝑖
𝑂𝐴)

𝑖=𝑙1

𝑖=1

+ ∑ 𝑤𝑖𝑑𝑡ℎ(𝑎2.𝑗
𝑂𝐴) −

𝑗=𝑙2

𝑗=1
𝑜𝑣𝑙𝐶𝑜𝑚𝑊𝑖𝑑𝑡ℎ(𝑎1, 𝑎2)

where 𝑙1 and 𝑙2 are the numbers of intervals over Attrib-

u te 𝑎 occurring in Queries 𝑞1 and 𝑞2 respectively. The

width of an interval is calculated as in Definition 20.

 Think of the queries from Example 9. Here, Example 10.
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛1.1 = [0; 20], 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛1.2 = [40; 60],
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛1.3 = [90; 100]; 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛2.1 = [10; 30],
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛2.2 = [50; 60], 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛2.3 = [80; 90].

𝑆𝑜𝑣𝑙(𝑞1, 𝑞2). p𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =
20

50+40−20
=

2

7
.

For nominal attributes, the formula remains exactly the

same as in Section 5.1.2 (Formula (7)). This is because it

already covers several occurrences of an attribute.

LEMMA 5.4. 𝐷𝑜𝑣𝑙(𝑞1, 𝑞2). 𝑎, where 𝑎 is an ordinal at-

tribute which occurs several times in queries 𝑞1 and 𝑞2, is

semi-metric.

 Closeness Similarity 5.2.2
With the closeness similarity that we have considered

so far, queries without overlap can be similar. Thus, For-

mula (11) is not applicable in this case. Hence, we pro-

pose to calculate overall closeness similarity for ord inal

attributes (OA) as follows:

𝑆𝑐𝑙(𝑞1, 𝑞2). 𝑎 = max
𝑖=1,…,𝑙1;𝑗=1,…,𝑙2

𝑆𝑐𝑙(𝑎1.𝑖
𝑂𝐴, 𝑎2.𝑗

𝑂𝐴) (12)

The formula takes the maximum of pairwise simila-

rities. So the closest intervals of two queries determine the

similarity. max also has some desirable properties:

 It returns a normalized value in the [0;1] range of

values. This is d ifferent from aggregation with, say, 𝑠𝑢𝑚.

 It does not underestimate the similarity of two

queries with the closeness paradigm. 𝑚𝑖𝑛 or ∏ in turn

do.

LEMMA 5.5. D(𝑞1, 𝑞2). 𝑎 is semi-metric.

 Several Distinct Attributes in Filtering Condi-5.3
tions

So far, we have discussed the cases when both que-

ries filter with the same single attribute: 𝐼𝑛𝑡𝑠(𝑞1) =

 𝐼𝑛𝑡𝑠(𝑞2); |𝐼𝑛𝑡𝑠(𝑞1)| = |𝐼𝑛𝑡𝑠(𝑞2)| = 1. The following ex-

ample illustrates the case of different attributes in

the filtering conditions of two queries.

 A query log contains the following queries: Example 11.

𝑞1: SELECT * FROM Cities C WHERE C.latitude BETWEEN 52

and 80 AND C.longitude BETWEEN 30 and 45 AND

C.population BETWEEN 30 and 500

𝑞2: SELECT * FROM Cities C WHERE C.latitude BETWEEN 40

and 52 AND C.longitude BETWEEN 30 and 45 AND C.country

=‘France’

Queries 𝑞1 and 𝑞2 have two common interests:

 Access areas of attribute Cities.latitude from Example 4 Fig. 2.

ARZAMASOVA ET AL.: ON THE USEFULNESS OF SQL-QUERY-SIMILARITY MEASURES TO FIND USER INTERESTS 9

 Clustering result for closeness or overlap approach Fig. 3.

 Access areas of queries with multiple occurrence of an Fig. 4.
attribute from Example 9

𝑐𝑜𝑚𝐼𝑛𝑡𝑠(𝑞1, 𝑞2) = {𝐶. 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒, 𝐶. 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒}.

They also have exclusive interests: 𝑒𝑥𝑐𝑙𝐼𝑛𝑡𝑠(𝑞1, 𝑞2) =

{𝐶. 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝐶. 𝑐𝑜𝑢𝑛𝑡𝑟𝑦}.

We propose to calculate the similarity measure

𝑆𝑎t𝑡𝑟𝐹𝑢𝑙𝑙(𝑞1, 𝑞2) where both 𝑐𝑜𝑚𝐼𝑛𝑡𝑠(𝑞1, 𝑞2) and

𝑒𝑥𝑐𝑙𝐼𝑛𝑡𝑠(𝑞1, 𝑞2) are considered with similarities

𝑆𝑎𝑡𝑡𝑟𝐶𝑜𝑚(𝑞1, 𝑞2) and 𝑆𝑎𝑡𝑡𝑟𝐸𝑥𝑐𝑙(𝑞1, 𝑞2). Section 5.3.3 will fea-

ture the concrete formula.

 Similarity for Common Interests 5.3.1
So far, we have defined the attribute-wise similarity for

queries 𝑆(𝑞1, 𝑞2). 𝑎. If queries however have more than one

common interest, as in Example 8, we need a definition

which takes the attribute-wise similarities for all common

attributes 𝑆(𝑞1, 𝑞2). 𝑎, 𝑎 𝜖 𝑐𝑜𝑚𝐼𝑛𝑡𝑠(𝑞1, 𝑞2), as input. Since a

query may contain ordinal and nominal attributes, we

сannot separate closeness and overlap approaches. In-

stead , a general, unifying approach to arrive at meanin g-

fu l overall similarities is necessary. Coming back to Ex-

ample Example 11,

𝑆𝑐𝑙(𝑞1, 𝑞2). 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 = 0.5; 𝑆𝑜𝑣𝑙(𝑞1, 𝑞2). 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 = 0

𝑆𝑐𝑙(𝑞1, 𝑞2). 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 = 1; 𝑆𝑜𝑣𝑙(𝑞1, 𝑞2). 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 = 1

The overlap approach assumes that, if there is no over-

lap, then there is no similarity. Any non-overlapping con-

dition should lead to zero similarity. For our example,

𝑆𝑜𝑣𝑙(𝑞1, 𝑞2) = 0 since 𝑆𝑜𝑣𝑙(𝑞1, 𝑞2). 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 = 0. In general,

𝑆𝑎𝑡𝑡𝑟𝐶𝑜𝑚(𝑞1, 𝑞2) = min
𝑖=1,…,|𝑐𝑜𝑚𝐼𝑛𝑡𝑠(𝑞1,𝑞2)|

𝑆(𝑞1, 𝑞2). 𝑎𝑖 (13)

where 𝑎𝑖 is an attribute contained in 𝑐𝑜𝑚𝐼𝑛𝑡𝑠(𝑞1, 𝑞2). 𝑚𝑖𝑛

does not overestimate the similarity. Hence, one might

expect relatively small clusters with clear user interest s.

Since we do not see any alternative how the overlap ap-

proach could be generalized , we use Formula (13) for the

closeness approach as well.

LEMMA 5.6. 𝐷𝑎𝑡𝑡𝑟𝐶𝑜𝑚(𝑞1, 𝑞2) is semi-metric.

 Similarity for Exclusive Interests 5.3.2
If two queries have at least one shared interest, but also

have exclusive ones, the similarity measure should reflect

this. For each attribute in 𝑒𝑥𝑐𝑙𝐼𝑛𝑡𝑠(𝑞1, 𝑞2), we calculate an

overlap similarity value. We assume that an empty filter-

ing condition in 𝑞1 or 𝑞2 means that one is interested in

the entire domain of that attribute.

𝑆𝑎𝑡𝑡𝑟𝐸𝑥𝑐𝑙(𝑞1, 𝑞2) = min
𝑖=1,…,|𝑒𝑥𝑐𝑙𝐼𝑛𝑡𝑠(𝑞1,𝑞2)|

𝑆𝑜𝑣𝑙(𝑞1, 𝑞2). 𝑎𝑖 (14)

Here, 𝑎𝑖 is an attribute contained in 𝑒𝑥𝑐𝑙𝐼𝑛𝑡𝑠(𝑞1, 𝑞2). In

fact, 𝑆𝑎𝑡𝑡𝑟𝐸𝑥𝑐𝑙(𝑞1, 𝑞2) just calculates overlap similarity

among attributes that do not occur in both queries.

 Let us now calculate 𝑆𝑎𝑡𝑡𝑟𝐸𝑥𝑐𝑙(𝑞1, 𝑞2) for que-Example 12.

ries from Example 11. Suppose that 𝐶. 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 has 250

d istinct values, and that 𝐶. 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ∈ [0; 20000].

𝑒𝑥𝑐𝑙𝐼𝑛𝑡𝑠 = {𝐶. 𝑐𝑜𝑢𝑛𝑡𝑟𝑦, 𝐶. 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛};

𝑆𝑜𝑣𝑙(𝑞1, 𝑞2). 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 =
|{𝐹𝑟𝑎𝑛𝑐𝑒}|

|{𝐴𝑓𝑔ℎ𝑎𝑛𝑖𝑠𝑡𝑎𝑛 ,… ,𝑍𝑖𝑚𝑏𝑎𝑏𝑤𝑒}|
= 0.004;

𝑆𝑜𝑣𝑙(𝑞1, 𝑞2). 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =
500−30

20000
=

47

2000
= 0.0235;

𝑆𝑎𝑡𝑡𝑟𝐸𝑥𝑐𝑙(𝑞1, 𝑞2) = min(0.004,0.0235) = 0.004.

There are two reasons for using overlap -based similari-

ty for 𝑆𝑎𝑡𝑡𝑟𝐸𝑥𝑐𝑙:

 A non-shared filtering attribute can be nominal.

We do not see any reason why non-shared ordinal and

nominal attributes should be treated d ifferently.

 We believe that d issimilar interests stand for d if-

ferent user intentions. The similarity values should be

low. The closeness approach for ord inal attributes might

yield clusters of queries without similar interests.

LEMMA 5.7. 𝐷𝑎𝑡𝑡𝑟𝐸𝑥𝑐𝑙(𝑞1, 𝑞2) is semi-metric.

 Overall Attribute Similarity. 5.3.3
Finally, the minimum of 𝑆𝑎𝑡𝑡𝑟𝐸𝑥𝑐𝑙 and 𝑆𝑎𝑡𝑡𝑟𝐶𝑜𝑚(𝑞1, 𝑞2) is

the overall similarity of attributes:

𝑆𝑎t𝑡𝑟𝐹𝑢𝑙𝑙(𝑞1, 𝑞2) = min(𝑆𝑎𝑡𝑡𝑟𝐸𝑥𝑐𝑙(𝑞1, 𝑞2), 𝑆𝑎𝑡𝑡𝑟𝐶𝑜𝑚(𝑞1, 𝑞2)) (15)

LEMMA 5.8. 𝐷𝑎𝑡𝑡𝑟𝐹𝑢𝑙𝑙(𝑞1, 𝑞2) is semi-metric.

All predicates including join predicates are processed

when we compute attribute similarities (Formula (15)).

While we mostly use one- or two-dimensional examples,

the principle is independent from th is number.

 Similarity in the Presence of Joins 5.4
The last remaining d ifficulty regarding our AAB simi-

larity function is what needs to be done in the presence of

joins.

 Consider the following query log: Example 13.

𝑞1: SELECT * FROM Cities C INNER JOIN Objects O ON

C.objId = O.objId WHERE O.latitude BETWEEN 52 and 80

AND O.longitude BETWEEN 30 and 45

𝑞2: SELECT * FROM PowerStations PS INNER JOIN Objects O

ON PS.objId = O.objId WHERE O.latitude BETWEEN 52 and 80

AND O.longitude BETWEEN 30 and 45

𝑞3: SELECT O.id FROM Objects O WHERE O.latitude BETWEEN

52 and 80 AND O.longitude BETWEEN 30 and 45

𝑞4: SELECT O.id, T.typeName FROM Objects O INNER JOIN

Types T ON O.type = T.id WHERE O.latitude BETWEEN 52 and

80 AND O.longitude BETWEEN 30 and 45

Queries 𝑞1 and 𝑞2 look for d ifferent objects, i.e., entities

from different relations, but in the same part of the data

space. One must take this d istinction into account. But

our metric so far only relies on the filtering conditions.

An intu itive solu tion is to multiply the overall attrib-

u te-similarity values 𝑆𝑎t𝑡𝑟𝐹𝑢𝑙𝑙(𝑞1, 𝑞2) with a value quantify-

10

ing the overlap of the sets of tables accessed , e.g., the

Jaccard coefficient:

𝑆𝑓𝑖𝑛𝑎𝑙(𝑞1, 𝑞2) =
|𝑞1. 𝐹𝑅𝑂𝑀 ∩ 𝑞2. 𝐹𝑅𝑂𝑀|

|𝑞1. 𝐹𝑅𝑂𝑀 ∪ 𝑞2. 𝐹𝑅𝑂𝑀|
· 𝑆𝑎t𝑡𝑟𝐹𝑢𝑙𝑙(𝑞1, 𝑞2) (16)

where 𝑞𝑖 . 𝐹𝑅𝑂𝑀 is the set of tables accessed by Query 𝑞𝑖.

This approach, while being simple, has a problem.

Consider Queries 𝑞3 and 𝑞4. They search all objects within

identical coordinate boundaries, i.e., intervals. 𝑞4 has as

additional output the type of an object which comes from

the join with Table Types. According to Formula (16), the

JOIN in Query 𝑞4 decreases the similarity of 𝑞3 and 𝑞4

twice, from 1 to 0.5. Adding more joins to 𝑞4, just to ou t-

put more information, reduces similarity even more,

compared to the query without joins. Hence, we argue

that a more adequate reduction coefficient should consid -

er the size of tables accessed , in rows:

𝑆𝑓𝑖𝑛𝑎𝑙(𝑞1, 𝑞2) = 𝑟𝑒𝑑𝑢𝑐𝑡𝐶𝑜𝑒𝑓𝑓𝑡𝑎𝑏𝑙𝑒 · 𝑆𝑎t𝑡𝑟𝐹𝑢𝑙𝑙(𝑞1, 𝑞2)

𝑟𝑒𝑑𝑢𝑐𝑡𝐶𝑜𝑒𝑓𝑓𝑡𝑎𝑏𝑙𝑒 =
∑ 𝑇𝑐𝑜𝑚 𝑖 . 𝑠𝑖𝑧𝑒

𝑖=|𝑇𝑐𝑜𝑚|

𝑖=1

∑ 𝑇𝑎𝑙𝑙 𝑗 . 𝑠𝑖𝑧𝑒
𝑗=|𝑇𝑎𝑙𝑙|

𝑗=1

 (17)

Here, 𝑇𝑐𝑜𝑚 is the set of common tables of Queries 𝑞1

and 𝑞2, 𝑇𝑐𝑜𝑚 = 𝑞1. 𝐹𝑅𝑂𝑀 ∩ 𝑞2. 𝐹𝑅𝑂𝑀. Accordingly, 𝑇𝑎𝑙𝑙 is

the set of all tables accessed in Queries 𝑞1 and 𝑞2, 𝑇𝑎𝑙𝑙 =

𝑞1. 𝐹𝑅𝑂𝑀 ∪ 𝑞2. 𝐹𝑅𝑂𝑀.

 Let us suppose that 𝑇𝑦𝑝𝑒𝑠. 𝑠𝑖𝑧𝑒 = 20, Example 14.

𝑂𝑏𝑗𝑒𝑐𝑡𝑠. 𝑠𝑖𝑧𝑒 = 980. The reduction coefficient

𝑟𝑒𝑑𝑢𝑐𝑡𝐶𝑜𝑒𝑓𝑓𝑡𝑎𝑏𝑙𝑒 for 𝑞3 and 𝑞4 is:
𝑇𝑐𝑜𝑚 = 𝑞3. 𝐹𝑅𝑂𝑀 ∩ 𝑞4. 𝐹𝑅𝑂𝑀 = {𝑂𝑏𝑗𝑒𝑐𝑡𝑠};
𝑇𝑎𝑙𝑙 = 𝑞3. 𝐹𝑅𝑂𝑀 ∪ 𝑞4. 𝐹𝑅𝑂𝑀 = {𝑇𝑦𝑝𝑒𝑠, 𝑂𝑏𝑗𝑒𝑐𝑡𝑠}.

𝑟𝑒𝑑𝑢𝑐𝑡𝐶𝑜𝑒𝑓𝑓𝑡𝑎𝑏𝑙𝑒 =
𝑂𝑏𝑗𝑒𝑐𝑡𝑠.𝑠𝑖𝑧𝑒

𝐶𝑖𝑡𝑖𝑒𝑠.𝑠𝑖𝑧𝑒+𝑂𝑏𝑗𝑒𝑐𝑡𝑠.𝑠𝑖𝑧𝑒
=

980

20+980
=

49

50
.

𝑟𝑒𝑑𝑢𝑐𝑡𝐶𝑜𝑒𝑓𝑓𝑡𝑎𝑏𝑙𝑒 has a specific value for each query

pair. One should apply it once after having calculated the

overall attribute similarity 𝑆𝑎t𝑡𝑟𝐹𝑢𝑙𝑙(𝑞1, 𝑞2).

LEMMA 5.9. 𝐷𝑓𝑖𝑛𝑎𝑙(𝑞1, 𝑞2) is semi-metric.

Recall that the semi-metric characteristic is useful: It al-

lows us to use our similarity/ d istance function in many

clustering algorithms withou t any further validation .

 The Overall AAB Similarity Function 5.5
Summarizing what we have said so far, the overall

AAB similarity function is as follows:

𝑆(𝑞1, 𝑞2) = 𝑟𝑒𝑑𝑢𝑐𝑡𝐶𝑜𝑒𝑓𝑓𝑡𝑎𝑏𝑙𝑒 · 𝑆𝑎t𝑡𝑟𝐹𝑢𝑙𝑙(𝑞1, 𝑞2) (18)

To calculate the similarity 𝑆(𝑞1, 𝑞2). 𝑎 for an attribute

which exists in both queries, one can use Formulas (11) or

(12), depending on the approach, i.e., AABovl or AABcl.

Consequently, Formulas (11) and (12)(12) refer to the sim-

ple case of Formulas (6), (7) and (8).

 Discussion 5.6

In a nutshell, the AAB query representation captures

parts of the data space where the user has an interest in.

The WB query representation has the same objective, by

identifying the relevant data explicitly. Hence, we expect

to get similar results from clustering. However, as we

have already pointed out, WB lacks scalability. AAB in

turn does not have this limitation since it operates with

access areas, not the data itself.

 EXPERIMENTAL EVALUATION 6

This section evaluates various algorithms, query repre-

sentations and similarity functions for query-log cluster-

ing. Our objectives are:

 Investigate the precision of the various QRSs (FB,

WB, AAB) experimentally, on data where a ground tru th

is available. A QRS is precise if it leads to a clustering with

a big overlap with the ground tru th;

 Generate clustering results with real-world data,

including the SkyServer query log in our case, inspect it

and try to arrive at general insights;

 Study the influence of sampling on the clustering

result.

 Experiment Settings 6.1
The quality of any clustering is hard to evaluate with-

out a ground tru th. One can ask domain experts to pro-

vide an interpretation of the results. However, in our

current context, a domain expert may not be able to say

whether a result is good or even perfect – there often does

not exist any expectation how an ideal result should look

like. To cope with this problem to some extent, we pro-

pose two experiments. The first one is clustering queries

which hundreds of individuals have formulated to solve a

specific task. In our case, these individuals are university

students participating in a database course. They have

solved this task as part of an exercise where the infor-

mation need was given in natural language. We have

anonymized the data before our analysis so that it d id not

contain any personal information. This experiment ‘only’

serves to study the precision of the various query repre-

sentations, by comparing clustering results to a ground

tru th. This is because the data set available is relatively

small, and it has turned out that some query representa-

tions are more sensitive to it than another. Ideally, all

queries that the students have formulated to solve a par-

ticular task should end up in one cluster.

The second experiment is a case study with a real-

world SQL log. We use the SkyServer query log, a large

log of queries on scientific data available to the public. To

our knowledge it is the only query log publicly available.

More specifically, we use the SkyServer log for 2016. It

consists of 12.9 million queries from about 4,000 users.

For each data we first calculate pairw ise d istances, i.e.,

build a proximity matrix. There are well-established types

of clustering methods which can work with a proximity

matrix: hierarchical clustering, partitioning-based me-

thods and density-based approaches. To make our study

comprehensive, we select well-known instances from the

d ifferent categories of clustering methods. We choose the

hierarchical algorithm CLINK [17], k-medoids [18] from

the class of partitioning-based methods and DBSCAN [19]

as a density-based approach.

 The Data Sets 6.2
In this section, we describe the data sets for our exper-

iments – the small one from the student exercise and the

big one from the SkyServer project.

ARZAMASOVA ET AL.: ON THE USEFULNESS OF SQL-QUERY-SIMILARITY MEASURES TO FIND USER INTERESTS 11

 Data Set from the Student Exercise 6.2.1
We have collected 1062 SQL requests formulated by

274 participants of the database course at our institu tion

in the summer semester 2016. To facilitate repeatability,

we make these queries and the test database publicly

available
6
. We have asked the participants to produce

solu tions to four information needs. Thus, our ground

tru th is that all solu tions to one information need form a

cluster. Hence, we expect 4 clusters. Of course, not all

answers have been complete and syntactically correct.

Table 2 of the Appendix is a summary of GtDbCourseLog,

the log with these queries from the database course.

We have considered u sing other labeled query logs.

[20] however is not publicly available. [15] is the log of a

database exam. First, it has only two tasks, i.e., one may

expect two clusters. It is smaller than in our log. Second ,

the log is smaller in terms of the number of queries as

well (178 against 1062). Moreover, [15] does not include

the test database, which the WB query representation

requires. So we have decided to use only one query log

with a ground tru th, GtDbCourseLog.

 SkyServer Query Log 6.2.2
The original SkyServer query log for 2016 consists of

12.9 million queries. The clustering procedure considers

only queries which have both an AAB and an FB query

representation. Having the same input data for a com -

parison of d ifferent query-representation schem es is a

prerequisite for meaningful results. As mentioned in Sec-

tion 4, the current version of AAB does not process qu e-

ries with arithmetic operations in the WHERE clause, and

we also exclude queries without a predicate in the fil-

tering condition. Table 3 summarizes the queries included

in the comparison and contains explanations for queries

which we have not processed .

With query clustering, one wants to obtain meaningful

results, i.e., finding user interests in our case. So we also

exclude queries with the following characteristics from

further consideration:

 Queries issued by robots performing a sliding window

search (SWS). To identify this behavior, we have per-

formed a procedure similar to the one described in [6].

The Appendix contains a description . As defined earlier,

an SWS is a sequence of queries of identical structure,

performing a range search. Here, identical structure

means that only parameter values are d ifferent, and the

ranges are contiguous.

How SWS queries – if included –affect clustering, de-

pends on the similarity function used , AABovl or AABcl.

In case of AABovl, SWS queries do not form a cluster,

because SWS imply d isjoint filtering conditions (no over-

lap). Hence, for AABovl it counts as noise – more queries

are processed , which increase the runtime. With AABcl,

SWS queries could form a cluster, because “neighbour”

queries will get non-zero similarities. In our opinion, this

is not a result one needs to get since SWS represent the

information need only of one user, not the common inter-

est of many people.

6
 https:/ / www.ipd.kit.edu/ arzamaso/ qlc/ readme.html

The procedure of excluding SWS requires a threshold

value as parameter which specifies the strictness when

looking for SWS. Here, we fix the value to 100, i.e., 100

contiguous range queries from one user in a row are an

SWS. This kind of queries occupies 62% of the SkyServer

query log. See Table 3. We for our part leave aside such

queries since they represent interests of very few users or

of even only one, and it even is unclear what the true

interest behind an SWS actually is.

 Queries issued by many users when they open the

SkyServer web interface for the first time. To illustrate,

SELECT … FROM fGetNearbyObjEq(258.25,64.05,3) n,

PhotoPrimary p WHERE n.objID=p.objID

has been issued 647907 times. It is available at the radial

search web page of SkyServer
7
, with exactly these default

values. Thus, the fu ll log after cleaning, named FullLog,

consists of 1.37 million queries.

Obtaining WB query representations even for a log of

1.3 million queries is d ifficult to impossible. As men-

tioned, one would need to evaluate all queries to this end.

The overall runtime for all queries from the fu ll cleaned

log, the FullLog, are around 220 days according to Sky-

Server metadata, the sum of the numbers of rows in all

results is about 7.7 billion. Thus, for the WB query repre-

sentation we have sampled FullLog, obtaining SampledLog.

For this sampling, we have chosen one tenth of the

cleaned log. Table 3 of the Appendix is a description of

the WB sampled dataset. From now on, we will use the

names for the d ifferent query logs as in the Appendix,

Table 4.

 Evaluation Techniques 6.3
According to [21], valid ity measures for clustering fall

into two groups:

 External measures are used when a ground tru th

is available. The id ea behind these measures is to compare

the clustering result with the ground tru th. An example of

such a measure is the Jaccard index [22]. The set of all

pairs of objects from two clustering results 𝐶 and 𝐶′ is the

7
 skyserver.sdss.org/ dr12/ en/ tools/ search/ radial.aspx

 TABLE 3

Description of the SkyServer Log data

Property Value Share
Size of original query log 12,917,940

Preprocessed queries (FB, AAB),

SkSLog

10,289,990 79.7 %

Non-preprocessed queries (FB, AAB) 2,627,950 20.3 %

Among non-processed

 Arithmetic operation in WHERE clause 1,158,375 9.0 %

 JSQL Parser limitations 784,798 6.1 %

 Queries to meta-tables 364,505 2.8 %

 Queries without WHERE clause 344,552 2.7 %

 Errors in SkyServer logging 17,956 0.1 %

 Queries to non-existing tables 2,444 0.02 %

Cleaned queries, FullLog 1,368,232 10.6 %

Queries excluded 8,921,758 69.1 %

Among excluded

 Requests made by robots performing

SWS

8,001,943 62 %

 Requests which refer to SkyServer web

pages with default values

919,815 7.1 %

12

d isjoint union of the following sets:

𝑆11 = {pairs that are in the same cluster under 𝐶 and 𝐶′}

𝑆00 = {pairs that are in d ifferent clusters under 𝐶 and 𝐶′}

𝑆10 = {pairs that are in the same cluster under 𝐶 but in

different ones under 𝐶′}

𝑆01 = {pairs that are in d ifferent clusters under 𝐶 but in the

same under 𝐶′}

The values 𝑛11, 𝑛00, 𝑛10 and 𝑛01 are the cardinalities of

these sets. The Jaccard index now quantifies the similarity

of two clustering results as follows:

𝐽(𝐶, 𝐶′) =
𝑛11

𝑛11 + 𝑛10 + 𝑛01

 (19)

The index takes values from 0 to 1. The bigger it is, the

higher is the similarity.

 Internal measures do not require a ground tru th.

They rely on criteria derived from the data itself, e.g., in -

tracluster and intercluster d istances. In our internal eva -

luation, we use the BetaCV measure [23], the ratio of the

mean intercluster d istance over the mean intracluster d is-

tance. A small value indicates higher clustering quality. To

validate the consistency within clusters, we have used the

Silhouette coefficient 𝑠(𝑖) [24], which indicates how well

each object 𝑖 lies within its cluster. 𝑠(𝑖) takes values from

-1 to 1. The bigger 𝑠(𝑖), the better 𝑖 matches its cluster.

 Implementation 6.4
To get the query representations, we first parse the queries.

We use the JSQL Parser
8
 written in Java. Query representations

are then stored in the database. All similarity functions are

implemented in SQL. To evaluate the results (i.e., to calculate

the BetaCV coefficient etc.), we have again used Java.

 Experiments with Supervision 6.5
Regarding the student exercise, since the students were

asked to perform 4 tasks, we expect to get 4 clusters in the

results. Hence, it may make sense to use the k-medoids

clustering algorithm with 𝑘 = 4 for each similarity func-

tion and corresponding query representation. Table 4 con-

tains the results. As sim ilarity measures, the Jaccard index

and the BetaCV coefficient have been used.

The Jaccard indexes for the WB and the FB query re-

presentation, which indicate the closeness of the clusters

to the ground tru th, do not show good results relative to

the other approaches. We see three reasons for this:

The database schema consists of only three tables. The

tasks have been constructed to have more than one table

in an answer SQL statement. There also are only a few

attributes in each relation , namely 3, 7 and 3. Hence, the

probability of having the same tables and filtering attrib-

u tes for d ifferent tasks is high. This causes a problem with

the FB approach. The value of 0.454 of BetaCV for the FB

query representation indicates this.

The database has been very small as well – it has 28

rows from 3 tables. This leads to a high probability that

queries from different tasks share the same tuples. This in

turn affects WB clustering.

The students have made mistakes when formulating

8
 http://jsqlparser.sourceforge.net/

queries. If all answers were precise, we would have ob-

tained zero BetaCV for each query representation: While

the text of two correct answers might d iffer, all query

representations for one task would be identical. For in-

stance, when looking at the WB representation, a correct

query should return only certain tuples. The same holds

for FB and AAB. This would have lead to zero intercluster

d istances. However, the actual average intercluster d is-

tances are above zero. See Table 4.

Since the AAB query representation does not rely very

much either on metadata (database schema) or on actual

data (witnesses), the respective clustering corresponds to

the ground tru th very well. We have obtained identical

results for both AABovl and AABcl because of the high

specificity of the tasks: Everybody has been asked to do

the same, and mistakes by formulating wrong filtering

conditions are unlikely. However, the AAB query repre-

sentation (as well as FB and WB) cannot cope with the

third problem (errors in the student answers). This is in

line with our expectations.

To sum up, this experiment show s that all query repre-

sentations lead to meaningful clustering in theory. How -

ever, there are certain obstacles which have turned out to

be spoilers: These are the small database schema for FB

and the very small database for WB. On the other hand ,

the results are in line with the limitations we have already

d iscussed when introducing the query representations.

 Experiments with SkyServer 6.6
With SkyServer, we have generated the three query re-

presentations described before for the randomly sampled

log, dubbed SampledLog. We first d iscuss the results gen-

erated from these. We also have results with FullLog, for

the FB and AAB representations, and we describe them as

well. Next, by comparing the results from the sampled log

to the ones from the regular log, we evaluate how samp-

ling affects the clustering results. Finally, we conduct a

study with a domain expert to interpret our results. All

these experiments yield d ifferent insights regarding the

usefulness of the query representations and the appropr i-

ateness of the various clustering algorithms when applied

to a real-world SQL query log.

 Clustering Results 6.6.1
Table 5 of the Appendix lists the parameter values for

DBCSAN, k-medoids and CLINK. To set them, we rely on

the expectation that the size of clusters should be in line

with the size of input data. Thus we have set the value of

parameter 𝑚𝑖𝑛𝑃𝑡𝑠 of DBSCAN to 0.05% of the number of

objects in a dataset. The size of a dataset is the number of

d istinct objects which have at least one non-zero similari-

ty value in the corresponding proximity matrix. This is

because only these objects have a chance to be contained

in a cluster. If the data is noisy, and there are many objects

without similar ones, no group of similar objects is big

enough to form a cluster. For the experiments with fu ll

data, FullLog, we set 𝑚𝑖𝑛𝑃𝑡𝑠=100. This is because we

want to compare both the AABcl and the AABovl ap-

proach with the same non-strict parameters, i.e. when

 𝑚𝑖𝑛𝑃𝑡𝑠 = 100 < 0.05% of the number of objects in both

http://jsqlparser.sourceforge.net/

ARZAMASOVA ET AL.: ON THE USEFULNESS OF SQL-QUERY-SIMILARITY MEASURES TO FIND USER INTERESTS 13

cases. We set 𝑒𝑝𝑠= 0.7 for DBSCAN, since it captures su f-

ficient overlap for the AABovl and the WB ap proach and

allows to catch queries close to each other with AABcl.

The number of clusters DBSCAN returns will be the value

of our parameter k when running k-medoids. While the

actual number of clusters is typically not available in most

real settings, we u se it here nevertheless. This is because

we are interested in how good the results can actually be.

For the hierarchical CLINK algorithm, the cut-off thresh-

old is equal to 𝑒𝑝𝑠 of DBSCAN. For the FB approach how -

ever, we follow another strategy. Since FB yields patterns

of user behavior, it does not make sense to mix several

patterns. Therefore we have chosen the parameters so that

only very similar patterns (eps = 0.1) go to the same clu s-

ter. Our clustering results consist of almost 1000 clusters:

508 for AABovlFull, 82 for AABovlSampled, 182 for

AABclFull, 88 for AABclSampled and 125 for WB.

Table 5 lists the values of the BetaCV coefficient. They

are relatively large. This is because we have considered

only large clusters for their calculation; the size of a clus-

ter must be no less than 0.05% of the size of a query log.

Within such big clusters, a lot of queries have zero simila -

rity with each other. This means that a Query 𝑞 has an

overlap with only a few queries {𝑞′1 … 𝑞′
𝑛

}. They are similar

to other ones {𝑞′′
1

… 𝑞′′
𝑚

}, though 𝑞 is not similar to them.

Put d ifferently, the clu sters are not dense. Indeed, they

cannot be since the corresponding proximity matrices are

sparse. See Fig. 2 of the Appendix with the similarity

d istributions. Table 6 of the Appendix reports on average

Silhouette coefficients.

Nevertheless, for AABovl and WB, clustering yields

areas of interests which are small compared to the whole

data space. Tables 6 and 7 list aggregated query represen-

tations of the biggest clu sters (in terms of number of qu e-

ries) of DBSCAN, with SampledLog and FullLog. The rep-

resentation is the minimum bounding rectangle (MBR) of

all queries in the clu ster. To present the results of WB

clustering, one cannot u tilize the corresponding query

representations – they contain huge numbers of tuples.

Instead , we use the more compact and intu itively under-

standable AAB representation as well. For AAB there also

is an area-coverage value available. It is the ratio of the

volume of the aggregated access area over the volume of

the tables the queries from the cluster are applicable to :

𝑎𝑟𝑒𝑎𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑉𝑎𝑐𝑐𝑒𝑠𝑠

𝑉𝑐𝑜𝑛𝑡𝑒𝑛𝑡

 (20)

To obtain 𝑉𝑎𝑐𝑐𝑒𝑠𝑠, we take bounds of each attribute occu r-

ing in a filtering condition of the cluster. So 𝑉𝑐𝑜𝑛𝑡𝑒𝑛𝑡 is calcu-

lated taking the domains of each such attribute.

 Discussion of Query Representations and Clus-6.6.2
tering Algorithms

We discuss the usefulness of the various query repre-

sentations when clustering a real-world query log based

on the experiments with SkyServer.

WB clustering. We observe that WB clusters are precise.

This is because all queries in the WB clusters ask for the

same attributes, the spatial attributes 𝑑𝑒𝑐 and 𝑟𝑎. This

means that there have not been any "accidental" simila ri-

ties, i.e., queries which refer to d ifferent attributes shar ing

witnesses by chance. With these identical attributes, que-

ries whose filtering conditions overlap are similar.

ABovl clustering. We find it remarkable that the aggre-

gated access areas for AABovl and WB similarity are very

much alike. Three of the four biggest clusters with these

approaches point to the same parts of the sky. We con-

clude that the AAB query representation and AABovl

similarity function also are valid and precise. With AAB

being scalable, we for our part conclude that it may be

preferable to WB.
A difference we have observed in the AABovl and WB

clustering results (with SampledLog) is that there are clu s-

ters in AABovl which do not exist in WB. The queries

inside these clusters have empty results. Of course, WB

cannot detect them. For example, the fifth biggest cluster

of AABovl has the following aggregated access area:

photoprimary.dec ≥ -7.073 Ʌ photoprimary.dec ≤ -7.026 Ʌ

photoprimary.ra ≥ 78.1498 Ʌ photoprimary.ra ≤ 78.195

Indeed, there is no data object in this area. However,

this has not prevented a significant number of AAB query

representations from forming a cluster.

One might wonder why clusters with an overlap (like

2 and 3 of AABovl FullLog, see Fig. 5) are not one single

cluster. We had a closer look at this phenomenon and

have observed that queries from one cluster (2) indeed are

similar to queries from the other cluster (3). However,

these are points that are density-reachable, not core points

 TABLE 4

The results of the experiments with ground truth, dataset
GtDbCourseLog, clustering algorithm k-medoids, k = 4

 WB FB AABovl AABcl
Jaccard index (com-

pared with ground

truth) 0.7518 0.4339 0.9451 0.9451

Experiment

BetaCV 0.257 0.454 0.1402 0.1402

Average intercluster

d istance 0.194 0.317 0.1402 0.1402

Average intracluster

d istance 0.753 0.698 1 1

Average Silhoette

coefficient 0.885 0.409 0.87 0.85

Ground truth

BetaCV 0.171 0.194 0.231 0.231

Average intercluster

d istance 0.132 0.167 0.231 0.231

Average intracluster

d istance 0.773 0.857 1 1

Average Silhoette

coefficient 0.74 0.754 0.689 0.689

 TABLE 5

Values of BetaCV coefficient

Dataset Algorithm WB AABovl AABcl
SampledLog DBSCAN 0.933 0.925 0.993

 K-medoids 0.9995 0.9997 0.9998

 CLINK 0.998 0.997 0.999

FullLog DBSCAN - 0.913 0.981

14

in DBSCAN terminology. To conclude, density reachabil-

ity is a characteristic that is not sufficient to end up in the

same cluster in general.

AABcl clustering. We have obtained big clusters which

cover significant parts of the data space when clustering

with the AABcl similarity function. This is plausible: As

Fig. 5 shows, the third biggest cluster of AABcl in the

sampled log (the one with Rank 3) has a big rectangular

part from to 41.269 to 84.973 in the dec column. This part

is due to several queries with broad d iapasons: These

queries request data based on attributes 𝑟𝑎 and 𝑑𝑒𝑐 with

broad ranges. Different users have issued these queries,

so they are not SWS. They act like “supermassive” objects

and have a “gravity effect” on queries with smaller ranges

in the neighborhood. In contrast to AABovl, w here su-

permassive objects do not have sufficient overlap with

small objects to fall into a cluster, AABcl is sensitive to

queries with broad ranges. It is also sensitive to slid ing

window search. However, because we had filtered them

out beforehand, we d id not observe the influence of SWS

on AABcl clustering. Summing up, whether AABcl is

successfu l strongly depends on specifics the query log: It

needs to be free from massive download ing, i.e., slid ing

window search (SWS), and there should not be any very

broad range queries. Put d ifferently, this also indicates

that cleaning the query log before analysis might yield

better, more meaningful results.

FB clustering. Clustering in line with the FB paradigm

reveals patterns of SkyServer database usage, i.e., which

tables, views, UDFs and filtering attributes individuals

tend to use. However, as mentioned before, this query re-

presentation does not reveal areas of the data space users

are interested in. This also is why the column “Area cov-

erage” is empty for FB clustering.

Clustering algorithms. Different clustering algorithms

have performed differently on the SkyServer log as well.

The data for the AAB and WB approaches contains noise

– queries which do not have sufficiently many similar

objects. Different algorithms have d ifferent sensitivity to

this kind of noise. DBSCAN is able to work with this

noisy data [19]. k-medoids suffers from it a lot since it

partitions the data, and all objects end up in some cluster.

CLINK is sensitive to noise as well, but ignoring small

clusters can solve the problem here: If the data to be clus-

tered contains a lot of outliers, many small or even single-

ton clusters occur. The algorithm does not merge them to

bigger clusters since they are too d istant from each other.

So we have classified clusters with a size less than a sp e-

cific value as noise. This is why the clustering result with

CLINK does look structurally similar to the one with

DBSCAN, containing an extra "cluster" for noise.

Summing up, we would give preference to a density-

based clustering algorithm when it comes to query logs,

for the following reasons:

1. Data might be noisy.

2. One cannot predict the number of clusters in ad-

vance, as required by k-means-based algorithms.

Consequently we have clustered the big log file,

FullLog, only with DBSCAN.

 Influence of Random Sampling on the Cluster-6.6.3
ing Results

Clustering large query logs with the procedure used in

this article is time-consuming since one has to (1) extract

the query representations, (2) build a proximity matrix,

and (3) perform the actual clustering. Hence, it might be a

good idea to cluster a sample of the data. However, so far

it is not clear whether and how samp ling influences the

result. In particular, it is unclear (1) how the aggregated

access areas of clusters using fu ll and sampled data d iffer,

and (2) which clustering results a domain expert finds

better. The first answer will be given right away, while th e

second question is d iscussed in Section 6.6.4.

AABovl clustering. As Fig. 5 shows, clustering on a

sample of the data and on the fu ll data yields similar

results with AABovl. The d ifferences mainly have to do

with cluster ranks, i.e., the position when sorting clusters

by their numbers of objects. This is why not all clusters

occur with both the sampled and the fu ll log: They exist,

but not in the top 10.

AABcl clustering. The results with AABcl d iffer more.

Fig. 5 shows how certain queries “move” from one cluster

to another one. It is safe to say that the closeness approach

is less robust when it comes to sampling than the overlap

approach. Again, the query which has formed a long

vertical rectangle and has gone to the second biggest clus-

ter in the sampled data has not d isappeared; it ju st has

gone to a less popular cluster not in the top 10.

FB clustering. As Tables 6 and 7 indicate, sampling

does not change the order of the most popular patterns

with FB clustering. We have checked the first 50 popu lar

patterns with sampled and fu ll data and have found only

one d ifference. The ranks change only slightly, by 2 posi-

tions at most, and they usually remain the same.

Overall, sampling is useful when clustering an SQL

query log. If a query log is huge and requires a lot of time

to process, sampling can give way to quick insights.

However, AABcl is less robust in this respect.

 Feedback from a Domain Expert: Clustering 6.6.4
Interpretation

As mentioned, a good clustering must be interpretable.

Here, this means that each cluster should relate to a parti-

cular user interest. In astronomy, this means that a cluster

may contain several astronomical objects, but they all

must form a single astronomic category, like "North galac-

tic pole" or "Lockman hole", i.e., represent one research

trend. To investigate how successfu l our clustering has

been, and whether it reflects user interests, we have asked

a domain expert to inspect our results. He is an astrono-

mer from the Max Planck Institu te for Astronomy in Hei-

delberg, Germany. At the same time, to ease the process of

cluster interpretation and ensure a complete represent-

tation of the interests of the astronomical community, we

have made use of another important astronomical data

source, the Simbad astronomical database
9
. We use it as a

reference point. Simbad provides information on astrono-

mical objects which have been studied in scientific publi-

9
 http :/ / simbad.u -strasbg.fr/ simbad/

ARZAMASOVA ET AL.: ON THE USEFULNESS OF SQL-QUERY-SIMILARITY MEASURES TO FIND USER INTERESTS 15

cations in astronomy. It has 12 tables and contains 9.3 mil-

lion astronomical objects outside of our solar system and

340 thousand bibliographic references. There are some

characteristics common for each astronomical object:

 Basic data: object types, coordinates and other astro-

nomical features; General bibliography for the object,

including references to all published papers from the

journals scanned regularly, currently about 80 titles.

 Naturally, two astronomical databases, SkyServer

and Simbad , are expected to have a big overlap of the

objects they contain. This also holds for attributes like

special coordinates, object types etc. However, they are

constructed very d ifferently and partly based on d ifferent

data, so they are quite independent at the same time. With

the help of the domain expert, we have mapped our clu s-

tering result to the Simbad database. Almost every cluster

from our results filters spatial coordinates right ascension

𝑟𝑎 and declination 𝑑𝑒𝑐. We have plotted the clusters on

the 𝑟𝑎-𝑑𝑒𝑐 plane and have mapped them to the 𝑟𝑎-𝑑𝑒𝑐

density map of astronomical publication s.
10

Of course, one cannot expect a perfect overlap. Not eve-

ry astronomer looks at the data from SkyServer when

writing an article. And vice versa – some data from Sky-

Server may have been queried for by laymen or high

school students, without the publication of a paper. How-

ever, both our clusters and Simbad data should reflect hot

spots in astronomy. Thus, a relatively high correlation is

10
 A related idea would be to not only look at the actual Simbad data,

but also at its query log. However, we have not been able to obtain this
data because of privacy concerns of scientists responsible for Simbad.

 TABLE 6

Top clusters of DBSCAN, dataset SampledLog

Relative

size

Area

coverage Aggregated query representation
AABovl

1 0.78% 0.25% photoprimary.dec ≥ 1.2 Ʌ photoprimary.dec ≤ 7.3 Ʌ photoprimary.ra ≥ 10.3 Ʌ photoprimary.ra ≤ 18.8

2 0.08% 0.02% photoprimary.dec ≥ 54.8 Ʌ photoprimary.dec ≤ 56.8 Ʌ photoprimary.ra ≥ 241.4 Ʌ photoprimary.ra ≤ 245

3 0.07% 0.002% photoprimary.dec ≥ -9.1 Ʌ photoprimary.dec ≤ -9.05 Ʌ photoprimary.ra ≥ 120 Ʌ photoprimary.ra ≤ 120.05

4 0.06% 3.7• 10−8% photoprimary.dec ≥ 14.839 Ʌ photoprimary.dec ≤ 14.84 Ʌ photoprimary.ra ≥ 2.023Ʌ photoprimary.ra ≤ 2.024

AABcl

1 7.97% 81% photoobj.dec ≥ -42.147 Ʌ photoobj.dec ≤ 76.686 Ʌ photoobj.ra ≥ 0 Ʌ photoobj.ra ≤ 359.821

2 3.53% 18.4% photoprimary.dec ≥ -2.7 Ʌ photoprimary.dec ≤ 59.6 Ʌ photoprimary.ra ≥ 0 Ʌ photoprimary.ra ≤ 73

3 3.06% 54.3% photoprimary.dec ≥-4.94 Ʌ photoprimary.dec ≤ 91 Ʌ photoprimary.ra ≥ 0 Ʌ photoprimary.ra ≤ 360

4 2.97% 93.35% photoobjall.dec ≥-60.572 Ʌ photoobjall.dec ≤ 84.98 Ʌ photoobjall.ra ≥ 0 Ʌ photoobjall.ra ≤ 360

WB

1 0.6% 0.1% photoprimary.dec ≥ 1 Ʌ photoprimary.dec ≤ 7.8 Ʌ photoprimary.ra ≥ 9.6 Ʌ photoprimary.ra ≤ 19.4

2 0.08% 0.03% photoprimary.dec ≥ -1.5 Ʌ photoprimary.dec ≤ 1.2 Ʌ photoprimary.ra ≥ 350.8 Ʌ photoprimary.ra ≤ 353.1

3 0.06% 0.01% photoprimary.dec ≥ 54.4 Ʌ photoprimary.dec ≤ 56.7 Ʌ photoprimary.ra ≥ 240.9 Ʌ photoprimary.ra ≤ 245

4 0.05% 5.1• 10−6% photoprimary.dec ≥ -9.105 Ʌ photoprimary.dec ≤ -9.057 Ʌ photoprimary.ra ≥ 120.009 Ʌ photoprimary.ra ≤

120.054

FB

1 27.77% {specobj;specobj.bestobjid}

2 17.15% {photoz; galspecline; specobj; photoz.objid}

3 10.13% {photoobj; photoobj.dec; photoobj.ra}

4 10.11% {phototag; fgetobjfromrecteq; phototag.objid}

 TABLE 7

Top clusters of DBSCAN, Dataset FullLog

Relative

size

Area

coverage Aggregated query representation
AABovl

1 1.37% 0.19% photoprimary.dec ≥ 9.3 Ʌ photoprimary.dec ≤ 16.8 Ʌ photoprimary.ra ≥ 17.8 Ʌ photoprimary.ra ≤ 29

2 0.89% 0.18% photoprimary.dec ≥ 0.6 Ʌ photoprimary.dec ≤ 8.2 Ʌ photoprimary.ra ≥ 9.6 Ʌ photoprimary.ra ≤ 19.8

3 0.38% 0.03% photoprimary.dec ≥-6.2 Ʌ photoprimary.dec ≤ -3.2 Ʌ photoprimary.ra ≥ 32.8 Ʌ photoprimary.ra ≤ 38.1

4 0.27% 0.1% photoobjall.dec ≥ 1.8 Ʌ photoobjall.dec ≤ 8.4 Ʌ photoobjall.ra ≥ 4 Ʌ photoobjall.ra ≤ 10.8

AABcl

1 4.35% 11.27% photoprimary.dec ≥ -11.5 Ʌ photoprimary.dec ≤ 59.6 Ʌ photoprimary.ra ≥ 0 Ʌ photoprimary.ra ≤ 76.4

2 3.06% 93.7% photoobjall.dec ≥ -61.551 Ʌ photoobjall.dec ≤ 84.98 Ʌ photoobjall.ra ≥ 0 Ʌ photoobjall.ra ≤ 360

3 1.26% 15.76% photoprimary.dec ≥-24.323 Ʌ photoprimary.dec ≤ 84.973 Ʌ photoprimary.ra ≥ 279.4 Ʌ photoprimary.ra ≤ 360

4 1.16% 99.72% apogeestar.dec ≥ -90 Ʌ apogeestar.dec ≤ 87.581 Ʌ apogeestar.ra ≥ 0.833 Ʌ apogeestar.ra ≤ 360

FB

1 27.85% { specobj.bestobjid ; specobj }

2 17% { photoz; galspecline; specobj; photoz.objid }

3 10.12% { phototag; fgetobjfromrecteq; phototag.objid }

4 10.07% { photoobj; photoobj.dec; photoobj.ra }

16

better as an experiment result, according to our percep-

tion. As we have pointed out earlier, our clustering results

consist of around 1000 clusters. Identifying user interest

in each of them is a daunting task for any domain expert.

Such an identification takes our expert 10 minutes on

average per cluster, mainly depending on the number of

astronomical objects in the cluster. To make manual in-

spection feasible, we have selected the top 15 clusters

from each approach (AABovlFull, AABovlSampled, AABcl-

Full, AABclSampled and WB) which have the most overlap

with Simbad data, i.e., clusters which ‘repeat’ the high

density areas of Simbad. We assume that these clusters

are the most interesting ones for domain experts: There is

a high number of publications on the astronomical objects

from these particular parts of the sky. Fig. 6 graphs them

together with Simbad data. We have mapped the queries

in the various clusters to Simbad data of published papers

in the ra-dec plane. A query in the figure is a rectangle

which includes admissible ra-dec values. Note that the

number near a cluster indicates its’ rank : the biggest clu s-

ter (in terms of number of queries) has Rank 1. The sixth

figure is the pure density map of publications (Simbad).

Dark grey areas stand for a high amount of publications;

for light grey, the p icture is d ifferent. One can see that

queries from the clusters indeed repeat the d istribution of

Simbad data: The clusters are located in the grey areas of

the Simbad map.

For each cluster, we plot the overlap of the individual

query areas on the map with all the Simbad entries. This

allows the domain expert to estimate whether the cluster

contains one or several astronomic categories of well-

studied objects. Having inspected the clusters obtained

with DBSCAN, our domain expert has concluded that

they are quite d ifferent. From his point of view, there are:

 Large clusters
11

, each of which covers more than

3% of the sky or several hundreds or thousands of square

degrees.
12

 According to our expert, none of them can be

associated with a specific scientific goal or type, i.e., there

is no corresponding single user interest. In what follows,

we refer to these clusters as LwoUI clusters (Large clusters

WithOut User Interest). Other large clusters consist of

several very small areas each of which contains a single

Simbad entry. For these clusters, our expert has identified

a specific user interest. We call these clusters LwUI clus-

ters (Large clusters With User Interest).

 Intermediate clusters, each of which covers less

than 3% of the sky. As before, we call them IwUI (Inter-

mediate clusters With User Interest) if they contain user

interests and IwoUI (Intermediate clusters WithOut User

Interest) otherwise. The domain expert has observed that

these clusters have a size so that they likely correspond to

a specific scientific goal or type.

11

 Though there is a notion of a galaxy cluster in the domain of astron-
omy, here and in what follows we always mean a cluster of SQL queries
when using the word ‘cluster’. An exception is the Column “Extended
objects” of Table 7 in the Appendix.

12
 The whole celestial sphere covers 41253 square degrees. Analogously

to one degree being equal to 𝜋/ 180 radians, a square degree is equal to
(𝜋/180)2, or about 1/3283 = 3.0462 × 10−4 steradians (0.30462 msr). To
calculate the area of a query cluster in square degrees, one needs to apply
the 𝑐𝑜𝑠(𝑑𝑒𝑔) factor, i.e., 𝑆 = 𝑟𝑎 × 𝑐𝑜𝑠(𝑑𝑒𝑔).

 Extremely small clusters, which typically consist of

several queries referring to the same individual object and

cover around 0.01% of the sky. We consequently dub

these clusters ESwoUI and ESwUI.

Table 7 in the Appendix reveals how many clusters of

each category the five approaches (AABovlFull, AABovl-

Sampled, AABclFull, AABclSampled and WB) identify. The

table also lists the astronomical objects from the various

clusters.

For each scheme, the domain expert has ranked each

cluster among the 15 most populated ones according to

the probability that it properly covers a region of the sky

of particular interest. We have then averaged the grades

to rank the five schemes. They take values from one to

ten, with ten being the highest interest. AABovlFull has

the highest average score, followed by AABclFull, AAB-

ovlSampled and AABclSampled. WB is last, see Table 7 in

the Appendix.

One can observe that sampling worsens the clustering

results for AABovl. Some clusters d isappear, not having

enough objects as neighbors. Decreasing minPts value

will not always help; the following example shows this:

 Consider the three queries 𝑞1, 𝑞2 and 𝑞3 Example 15.

with 𝐷(𝑞1, 𝑞2) = 0.5, 𝐷(𝑞1, 𝑞2) = 0.8, and 𝐷(𝑞1, 𝑞3) =

 1. 𝑒𝑝𝑠 = 0.9, 𝑚𝑖𝑛𝑃𝑡𝑠 = 2. All three queries end up in

the same cluster. We now sample the log and exclude 𝑞2.

Setting 𝑚𝑖𝑛𝑃𝑡𝑠 to 1 does not yield a cluster of queries 𝑞1

and 𝑞3 because they do not overlap. Setting 𝑒𝑝𝑠 to 1

does not make any sense because then all queries go to

the same cluster.

Based on this, we hypothesize that WB, which also is

overlap-based, would have given better results if it had

taken place on the fu ll data. We conclude that an analyti-

cal calculation of overlap , i.e., AABovl, is u seful. It pro-

vides sufficient accuracy and is scalable. In consequence,

one does not have to do sampling, which bogs down the

clustering results.

On the other hand , sampling has helped to obtain bet-

ter results with the closeness approach, AABcl: Clusters

have become smaller and , hence, more focused. Thus,

sampling allows to better identify user interests than

clustering on the original data.

 CONCLUSIONS 7

Knowing user interests in a data space is important for

database owners and for domain experts. Clustering the

query log can yield interesting insights to this end . In this

paper we have studied the clustering of SQL query logs.

In particular, w e have established the design space, i.e.,

which query representations, which algorithms, which

d istance measures. Next, we have looked at possible in-

stantiations from the literature systematically and have

d iscussed our expectations for each alternative. We also

have proposed new alternatives as well, since the existing

proposals have not been fu lly satisfying. Our new ap-

proaches, which we had proposed to do away with the

weaknesses of existing approaches, have turned out to be

better in most respects. Finally, we have carried out sever-

al stud ies, one with a domain expert in order to arrive at a

ARZAMASOVA ET AL.: ON THE USEFULNESS OF SQL-QUERY-SIMILARITY MEASURES TO FIND USER INTERESTS 17

ground tru th, a feature which we have not observed in

any previous work on analyses of database-query logs.

The study with the domain expert in particular has re-

vealed the usefulness of clustering when user interests

need to be identified .

Our new approach captures query similarity on the d a-

ta level. Unlike other approaches, “witness based” in

particular, it scales relatively well with the size of the log.

Our fu ture work w ill focus on SQL query recommend a-

tion. We plan to leverage our new insights regarding qu e-

ry similarity to find similar user sessions from which

query suggestions can be generated . While SQL query

recommendation has already been investigated earlier

[25], [26], [27], revisiting the topic based on this current

study might reveal new insights.

 Clustering results, DBSCAN algorithm Fig. 5.

 Mapping clustering results to Simbad data Fig. 6.

18

REFERENCES
[1] N. Khoussainova and Y. Kwon, “Snipsuggest: Context -

aware autocompletion for sql,” Proc. VLDB Endow., vol. 4,

no. 1, pp. 22–33, 2010.

[2] J. Akbarnejad et al., “SQL QueRIE recommendations,” Proc.

VLDB Endow., vol. 3, no. 1–2, pp. 1597–1600, 2010.

[3] H. V. Nguyen, B. Goldman, K. Böhm, G. Hinkel, F. Becker,

and E. Müller, “Identifying User Interests within the Data

Space – a Case Study with SkyServer,” Int. Conf. Extending

Database Technol., pp. 641–652, 2015.

[4] M. Halkid i, “On Clustering Validation Techniques,” J. Intell.

Inf. Syst., vol. 173, no. 2, pp. 107–145, 2001.

[5] R. Xu, “Survey of clustering algorithms for MANET,” IEEE

Trans. Neural Networks, vol. 16, no. 3, pp. 645–678, 2005.

[6] N. Arzamasova, M. Schäler, and K. Böhm, “Cleaning

Antipatterns in an SQL Query Log,” IEEE Trans. Knowl.

Data Eng., vol. XX, no. XX, pp. 1–14, 2017.

[7] X. Wang, A. Meliou, and E. Wu, “QFix: Diagnosing errors

through query histories,” in Proc. 2017 ACM SIGMOD Int.

Conf. Manag. data - SIGMOD ’17, 2017, pp. 1369–1384.

[8] J. Aligon, M. Golfarelli, P. Marcel, S. Rizzi, and E. Turricchia,

“Similarity measures for OLAP sessions,” Knowl. Inf. Syst.,

vol. 39, no. 2, pp. 463–489, 2014.

[9] X. Yang, C. M. Procopiuc, and D. Srivastava,

“Recommending join queries via query log analysis,” Proc. -

Int. Conf. Data Eng., pp. 964–975, 2009.

[10] Z. Chen and T. Li, “Addressing diverse user preferences in

SQL-query-result navigation,” Proc. 2007 ACM SIGMOD

Int. Conf. Manag. data - SIGMOD ’07, p . 641, 2007.

[11] A. Islam and D. Inkpen, “Semantic text similarity using

corpus-based word similarity and string similarity,” ACM

Trans. Knowl. Discov. Data, vol. 2, no. 2, pp. 1–25, 2008.

[12] A. Kamra, E. Terzi, and E. Bertino, “Detecting anomalous

access patterns in relational databases,” VLDB J., vol. 17, no.

5, pp. 1063–1077, 2008.

[13] V. H. Makiyama, M. J. Raddick, and R. D. C. Santos, “Text

mining applied to SQL queries: A case study for the SDSS

SkyServer,” CEUR Workshop Proc., vol. 1478, pp. 66–72,

2015.

[14] G. Kul, D. Luong, T. Xie, P. Coonan, V. Chandola, and ...,

“Ettu: Analyzing query intents in corporate databases,”

Proc. 25th … , 2016.

[15] G. Kul, G. S. Member, D. Thanh, A. Luong, T. Xie, and V.

Chandola, “Similarity Metrics for SQL Query Clustering.”

[16] C. Science, “A Data-Centric Approach to Insider Attack,”

pp. 382–401, 2010.

[17] Defays, “An efficient algorithm for a complete link

method ,” Comput. J., no. January, pp. 364–366, 1977.

[18] H. S. Park and C. H. Jun, “A simple and fast algorithm for

K-medoids clustering,” Expert Syst. Appl., vol. 36, no. 2

PART 2, pp. 3336–3341, 2009.

[19] M. Ester, H .-P. Kriegel, J. Sander, and X. Xu, “A Density-

based Algorithm for Discovering Clusters a Density-based

Algorithm for Discovering Clusters in Large Spatial

Databases with Noise,” in Proceedings of the Second

International Conference on Knowledge Discovery and Data

Mining, 1996, pp. 226–231.

[20] B. Chandra, B. Chawda, B. Kar, K. V. M. Reddy, S. Shah, and

S. Sudarshan, “Data generation for testing and grad ing SQL

queries,” VLDB J., vol. 24, no. 6, pp. 731–755, 2015.

[21] M. Halkid i, Y. Batistakis, and M. Vazirgiannis, “Cluster

valid ity methods,” ACM SIGMOD Rec., vol. 31, no. 2, p. 40,

2002.

[22] S. Wagner and D. Wagner, “Comparing Clusterings - An

Overview,” Analysis, vol. 4769, no. 1907, pp. 1–19, 2007.

[23] W. M. J. Mohammed J. Zaki, Data Mining and Analysis:

Fundamental concepts and Algorithms. 2014.

[24] J. G. Pearce, Z. Shaar, and R. E. Crosbie, “Silhouettes: a

graphical aid to the interpretation and validation of cluster

analysis,” J. Comput. Appl. Math., vol. 20, pp. 53–65, 1986.

[25] M. Eirinaki, S. Abraham, N. Polyzotis, and N. Shaikh,

“QueRIE: Collaborative database exploration,” IEEE Trans.

Knowl. Data Eng., vol. 26, no. 7, pp. 1778–1790, 2014.

[26] J. Aligon, E. Gallinucci, M. Golfarelli, P. Marcel, and S. Rizzi,

“A collaborative filtering approach for recommending

OLAP sessions,” Decis. Support Syst., vol. 69, pp. 20–30,

2015.

[27] M. Eirinaki and S. Patel, “QueRIE reloaded: Using matrix

factorization to improve database query

recommendations,” Proc. - 2015 IEEE Int. Conf. Big Data,

IEEE Big Data 2015, pp. 1500–1508, 2015.

Natalia Arzamasova has received her di-

ploma degree from Chuvash State University
(Russia), worked as a software engineer in
Vocord Software Company, creating automat-
ic enterprise databases, services and user
interface. Currently she is working in Karls-
ruhe Institute of Technology (KIT), Germany,
on her Ph.D. Her research interests include
query log analysis.

Klemens Böhm is full professor at Karls-
ruhe Institute of Technology (KIT), Germany,
since 2004. Prior to that, he has been affiliat-
ed with University of Magdeburg, Germany,
ETH Zurich, Switzerland, and GMD – For-
schungszentrum Informationstechnik GmbH,
Darmstadt, Germany. Current research topics
at his chair are knowledge discovery and data
mining in big data, data privacy and workflow
management.

Bertrand Goldman Bertrand Goldman is a
staff member of the Max-Planck-Institut for
Astronomie in Heidelberg, Germany, since
2004. Prior to that, he has studied at the
Centre d'Études Atomiques in the Particle
physics department, before joining New Mexi-
co State University and NASA Ames Research
Centre as a postdoc researcher. He has stud-
ied the properties of low-mass stars and the
content of the Solar neighbourhood using
large catalogues and data mining technics.

Christian Saaler Christian Saaler recently
received his Bachelor’s degree from the Karls-
ruhe Institute of Technology (KIT). His thesis
discussed different possible clustering tech-
niques for analyzing query logs. Currently he
is working in the field of software engineering
with a deep interest in data analytics.

Martin Schäler received his Master degree
from Otto-von-Guericke University Magde-
burg, Germany, in 2010. Afterwards he was
employed as a research assistant and scien-
tific coordinator at the same university, receiv-
ing his Ph.D. degree in 2014. Since August
2015 he is a post-doctoral researcher at
Karlsruhe Institute of Technology (KIT), Ger-
many. His research interests include multi-
dimensional access methods, hardware-
sensitive database tuning and provenance.

	2019,3_Titelbl.pdf
	Clustering_TechnicalReport.pdf

