

ANALYSIS OF THE EFFECTS OF AN HOV LANE ON A GERMAN FREEWAY – A SIMULATION STUDY WITH PTV VISSIM

Claude Marie Weyland¹

Tel: +49 721 608-47774, Fax: +49 721 608-46777, Email: claude.weyland@kit.edu

<https://orcid.org/0000-0002-2936-1067>

H. Sebastian Buck

Tel: +49 721 608-43465, Fax: +49 721 608-46777, Email: sebastian.buck@kit.edu

<https://orcid.org/0000-0001-6381-005X>

Peter Vortisch

Tel: +49 721 608-42255, Fax: +49 721 608-46777, Email: peter.vortisch@kit.edu

<https://orcid.org/0000-0003-1647-2435>

Verena Zeidler

Tel: +49 721 608-42254, Fax: +49 721 608-46777, Email: verena.zeidler@kit.edu

<https://orcid.org/0000-0001-6854-7908>

Address

Karlsruhe Institute of Technology

Institute for Transport Studies

Kaiserstrasse 12, D-76131 Karlsruhe, Germany

Word Count: 6799 words + 1 table(s) = 7049 words

Submission Date: August 1, 2018

¹Corresponding Author

1 ABSTRACT

2 The objective of our research is to assess the effects of a high occupancy vehicle (HOV) lane
3 on a German federal freeway. The research findings provide guidance for practitioners for the
4 development of a microscopic traffic flow model containing temporary hard shoulder running and
5 an HOV lane in PTV Vissim.

6 We developed a microscopic traffic flow model of a section of a German freeway. The
7 driving behavior was calibrated with measured traffic data of the existing dynamic line control
8 system. We used this model to simulate 16 scenarios of an HOV lane (four HOV lane designs
9 combined with four vehicle occupancies).

10 The results showed the desired effects of an HOV lane can only be achieved to a small
11 extent. The reduction of general purpose lane capacity is too high when introducing an HOV lane.
12 Furthermore, the introduction of an HOV lane results in additional lane changes in the upstream
13 area from the HOV lane in the simulation. The reduced capacity in combination with increased
14 lane changes leads to congestion, both for HOVs and SOVs. Only on the section of the HOV lane
15 itself, HOVs are faster than SOVs. Downstream the traffic situation remains the same as in the
16 baseline scenario. Therefore, the potential for travel time savings for HOVs compared to SOVs is
17 low.

18 One of four HOV lane designs offers 4 minutes travel time savings for HOVs over SOVs. It
19 is questionable whether a minor time gain is enough to change people's mobility behavior towards
20 carpooling.

1 INTRODUCTION

2 Traffic problems caused by congested roads are generally solved by increasing the capacity of
3 the existing infrastructure. However, an expansion of the transport infrastructure will induce new
4 traffic, and the problems are recurring over time. In terms of a sustainable transport policy, the
5 existing infrastructure should be used more efficiently instead of building new infrastructure. (1)

6 An increase in vehicle occupancy could help in this case. High occupancy vehicle lanes
7 (HOV lanes) are an approach used in many countries, especially in the United States, to promote
8 carpooling, thus reducing traffic and relieving the traffic network. HOV lanes can exclusively be
9 used by vehicles with a minimum number of occupants. Incentives for the formation of carpools
10 are above all travel time savings (2). By restricting a general purpose lane to an HOV lane, traffic
11 congestion on the remaining general purpose lanes will become worse as long as the utilization of
12 the HOV lane is low. Only when the benefits of using the HOV lane motivates the formation of
13 additional carpools, the overall traffic volume will be reduced, and the situation of all road users
14 will improve (3).

15 In Germany, the HOV facilities have not been used so far, and there is little research in
16 this area. So the question arises whether there is a potential for HOV lanes on German federal
17 freeways. Our study was motivated by the transport department of the federal state of Baden-
18 Württemberg asking the following questions: How could HOV lanes be integrated in the design
19 of German freeways and what effects will they have on traffic flow? Which vehicle occupancy is
20 required to generate travel time savings for all drivers?

21 Our approach to answer these questions is using microscopic traffic flow simulation. In our
22 paper, we describe the modeling process for a German freeway including a dynamic line control
23 system and temporary hard shoulder running as well as the modeling HOV lanes and their usage.

24 The basis for the study is a microscopic traffic model of a section of freeway no. 8 in
25 the area of the city Stuttgart. Among other things, this section offers good preconditions for the
26 introduction of an HOV lane due to the equipment with temporary hard shoulder running and the
27 existence of a four-lane section, what is the exception in Germany. The study does not look at the
28 effects of offering HOV lanes on the formation of carpools but is limited on the traffic engineering
29 related aspects.

30 In the following, a literature review will provide insight into the experiences made with
31 HOV lanes with a focus on European implementations. Furthermore, existing research on the
32 simulation of HOV lanes is reviewed. The traffic data used and the development of the microscopic
33 traffic flow model will be described subsequently.

34 In the next step, the modeling of 16 scenarios (four HOV lane designs with four different
35 vehicle occupancies) in PTV Vissim is described. Finally, the speeds and the travel times with and
36 without an HOV lane are evaluated for each scenario. We assume in the following descriptions that
37 the reader is familiar with the handling of Vissim. The simulations were carried out with Vissim
38 version 10.00-09.

39 LITERATURE REVIEW

40 HOV facilities have their origin in the United States and are still a central element of traffic demand
41 management in North American cities (4–6). In the US, the total length of HOV lanes in operation
42 has doubled from 1500 miles to more than 3000 miles between 1995 and 2005 (7). The Federal
43 Highway Administration released the last inventory of HOV lanes in 2008. At this time, there
44 were 301 HOV facilities in operation. (8) The travel time savings due to HOV lanes varied widely

1 depending on the location and were between 0.4 and 37 minutes (9). Literature does not contain
2 any information on the relation between the length of the respective HOV lanes and travel time
3 savings.

4 In Europe, HOV lanes are currently used in only a few locations. The reason is that in most
5 European cities public transport is well developed, and there are much fewer high-performance
6 urban freeways than in the US (10). However, some European cities have introduced HOV lanes
7 on freeways or main urban roads in the 1990s and early 2000s.

8 In Great Britain, one HOV lane was opened in Leeds (11) and one in Bristol (12). In Leeds,
9 the average occupancy of vehicles increased from 1.35 to 1.41 passengers per vehicle in the first
10 two years, the travel time savings for HOVs were about 3.5 minutes for a five-kilometer journey
11 (13). In Bristol, the share of HOVs climbed from 20% to 27% (12). In the Netherlands, a barrier-
12 separated HOV lane was opened on a freeway near Amsterdam (6, 14). For legal reasons, it had
13 to be released for general traffic one year later (15). In Norway, one HOV lane was introduced in
14 Trondheim and one in Kristiansand (16). In Trondheim, vehicle occupancy climbed from 1.33 to
15 1.37 passengers per vehicle, the average travel time saving was 35 seconds for an HOV (16). In
16 Kristiansand, vehicle occupancy increased from 1.20 to 1.27 passengers per vehicle in the morning
17 peak period after one year (16). In Austria, an existing bus lane was opened for HOVs in Linz
18 (6, 14). There were no changes in vehicle occupancy observed, although the maximum travel
19 time saving for HOVs was 24 minutes during rush hour (17). In Spain, a barrier-separated HOV
20 lane opened on a freeway in Madrid. Public transport lines also use this HOV lane. Maximum
21 travel time savings for HOVs were 15 minutes and the vehicle occupancy increased from 1.75
22 to 2.03 passengers per vehicle between 1991 and 2001 (including busses) (1, 6, 14). All major
23 investigations were carried out shortly after the introduction of the HOV lanes. Since there are no
24 recent publications on these HOV lanes, the long-term effects and benefits cannot be assessed.

25 In most mentioned cities, the average occupancy of vehicles could only be increased margin-
26 ally and the travel time did not decrease significantly. Since the early 2000s, no HOV lanes have
27 been introduced in European cities.

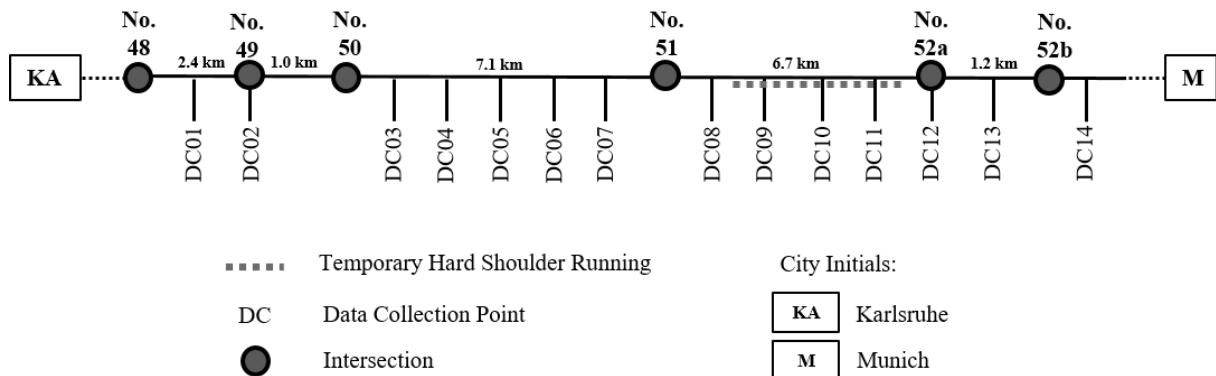
28 Due to increasing traffic volumes and growing bottlenecks in the transport network, the
29 idea of favoring carpools to reduce traffic is becoming popular again. On the Belgian freeway
30 E411, the hard shoulder will be opened for carpools with at least three passengers per vehicle by
31 the end of 2018 in order to cope with commuter flows in the border region between Belgium and
32 Luxembourg (18, 19). This project has been made public in the Belgian and Luxembourgish press,
33 but so far there is no information about scientific monitoring.

34 Before implementing an HOV lane, the expected effects are often analyzed using microsim-
35 ulation. Gomes et al. (20) describe the construction and calibration process of a traffic flow model
36 in Vissim for a Californian freeway containing an HOV lane. Dynamic traffic assignment is used
37 as a modeling approach. Separate link costs are assigned to HOVs and single occupancy vehicles
38 (SOVs) making the HOV lane favorable for HOVs. As SOVs are not allowed to use the HOV
39 lane, it is blocked for SOVs. The routing decision in this model consists of HOVs choosing to
40 enter the HOV lane or to stay on the general purpose lanes. A single iteration of the dynamic
41 traffic assignment is sufficient, as only the link costs and not the travel times are considered for the
42 assignment.

43 Fontes et al. (21) investigated the effects of an HOV lane in a medium-sized European city
44 using Vissim. Their baseline scenario assumes an average vehicle occupancy of 1.37 passengers
45 per vehicle, in further scenarios an increase to 1.50 and 1.70 passengers per vehicle is defined. The

1 results show that travel time savings of 2.4% can be achieved with a vehicle occupancy of 1.70
 2 passengers per vehicle. For the baseline scenario, the introduction of an HOV lane results in an
 3 increase of the travel times. The approach for modeling an HOV lane is not described.

4 Sajjadi and Kondyli (22) perform a calibration of two high occupancy toll (HOT) segments
 5 in South Florida using Vissim. In this study only managed lanes are modeled in Vissim, general
 6 purpose lanes are not replicated. The approach for modeling a HOT lane is not described.


7 DATA AND TRAFFIC MODEL

8 Examined Freeway Section

9 The basis for the study is a traffic model of a section of freeway no. 8 near Stuttgart. Freeway no. 8
 10 is an important east-west connection in southern Germany and connects Karlsruhe to Munich via
 11 Stuttgart. The modeled section is located near the city of Stuttgart, a significant economic hub in
 12 Germany and Europe. Accordingly, traffic volumes are very high on this section and congestions
 13 occur regularly on the freeway, especially during peak hours.

14 The model represents traffic conditions in the morning peak period between the intersec-
 15 tions *Leonberg-West* (no. 48) and *Stuttgart-Degerloch* (no. 52b). To capture effects from upstream
 16 metering or downstream congestion, the model was extended in the direction of travel Munich
 17 along six intersections. Figure 1 shows the section with all its characteristics. The freeway main-
 18 line of this section is composed of three lanes (per direction of travel). Between intersections no. 50
 19 and no. 51 the mainline is extended to four lanes.

20 The roadway geometry is replicated in Vissim based on aerial images of the section. The
 21 general purpose lanes, hard shoulder, and ramps in the intersections are modeled.

FIGURE 1 : Investigated Freeway Section

22 Average Vehicle Occupancy and Investigation Period

23 In Germany, the average occupancy for commuting is 1.2 passengers per vehicle, the lowest for all
 24 trip purposes. The average occupancy of vehicles for all trip purposes is 1.5 passengers per vehicle.
 25 An analysis of the departure times depending on trip purpose has shown that trips in the morning
 26 involve almost exclusively commuting. In the afternoon, there are more leisure and shopping trips
 27 besides commuting. (23) As the potential for a change in mobility behavior is highest during the
 28 morning peak period, this period is chosen for the study. For the current situation, traffic statistics
 29 (23) report a share of 86,7% single occupancy vehicles (SOV) and 13,3% high occupancy vehicles
 30 with two or more occupants (HOV).

1 For the investigation, the morning peak period in traffic is defined between 6:00 and 11:00
2 am. The simulation requires an additional warm-up period. Therefore, all traffic data is processed
3 from 5:00 to 11:00 am and fed into the traffic model.

4 Traffic data of a two-week period is analyzed with regard to traffic flow and speed as well
5 as weather conditions. The analysis revealed a typical day that reflects well the traffic problems
6 of the investigated section well and therefore offers good preconditions for the modeling of the
7 network.

8 **Traffic Data**

9 The investigated freeway section presented in figure 1 is equipped with a dynamic line control
10 system, which includes 14 data collection points provided with traffic detectors and variable traffic
11 sign gantries.

12 Temporary hard shoulder running is installed over a length of 4.3 kilometers between in-
13 tersections no. 51 and 52a. If traffic sensors report a capacity bottleneck, the hard shoulder will be
14 released for traffic for a limited period of time to improve the traffic flow.

15 The collected traffic data of the examined section is required both for determining the
16 vehicle inputs in Vissim and for calibration. Radar detectors provide traffic volume and average
17 speed separately for cars and trucks for each data collection point. Traffic data is aggregated to
18 one-minute intervals. In addition, the vehicle input to the freeway is available for the intersections
19 and includes traffic volume and average speed separately for cars and trucks.

20 **Vehicle Compositions and Routes**

21 The vehicle composition is split into cars and trucks. Cars are composed of SOVs (vehicles with
22 only one occupant) and HOVs (vehicles with several occupants). In Vissim, the three vehicle types
23 *HOV*, *SOV*, and *truck* are created and assigned to the corresponding vehicle classes. The provided
24 traffic data contains information about truck and car shares. HOV and SOV shares are derived from
25 assumptions about the average occupancy of vehicles in Germany as explained above.

26 For each on-ramp two vehicle inputs are created, one for car input and one for truck input.
27 The corresponding vehicle compositions are assigned to the car and truck inputs. According to the
28 assumptions for the vehicle occupancy in the morning peak period, the vehicle composition of the
29 car input consists of 86.7% SOVs and 13.3% HOVs in the baseline scenario. The HOV and SOV
30 shares vary in the following scenarios depending on the average vehicle occupancy. Traffic inputs
31 are calculated in five-minute intervals between 5:00 and 11:00 am based on the real traffic data.

32 As there is no measured data on vehicle routes for the investigated section, PTV Validate, a
33 traffic demand model for Germany, was used to derive origin-destination-flows. Validate includes
34 car and truck volumes as well as a traffic assignment, calculated in PTV VISUM, which provides
35 the drivers' route choices. (24)

36 Validate contains traffic demand separately for cars and trucks in one-hour intervals for a
37 typical working day (Tuesday, Wednesday or Thursday). A traffic assignment provides the route
38 choices for the entire German major highway network.

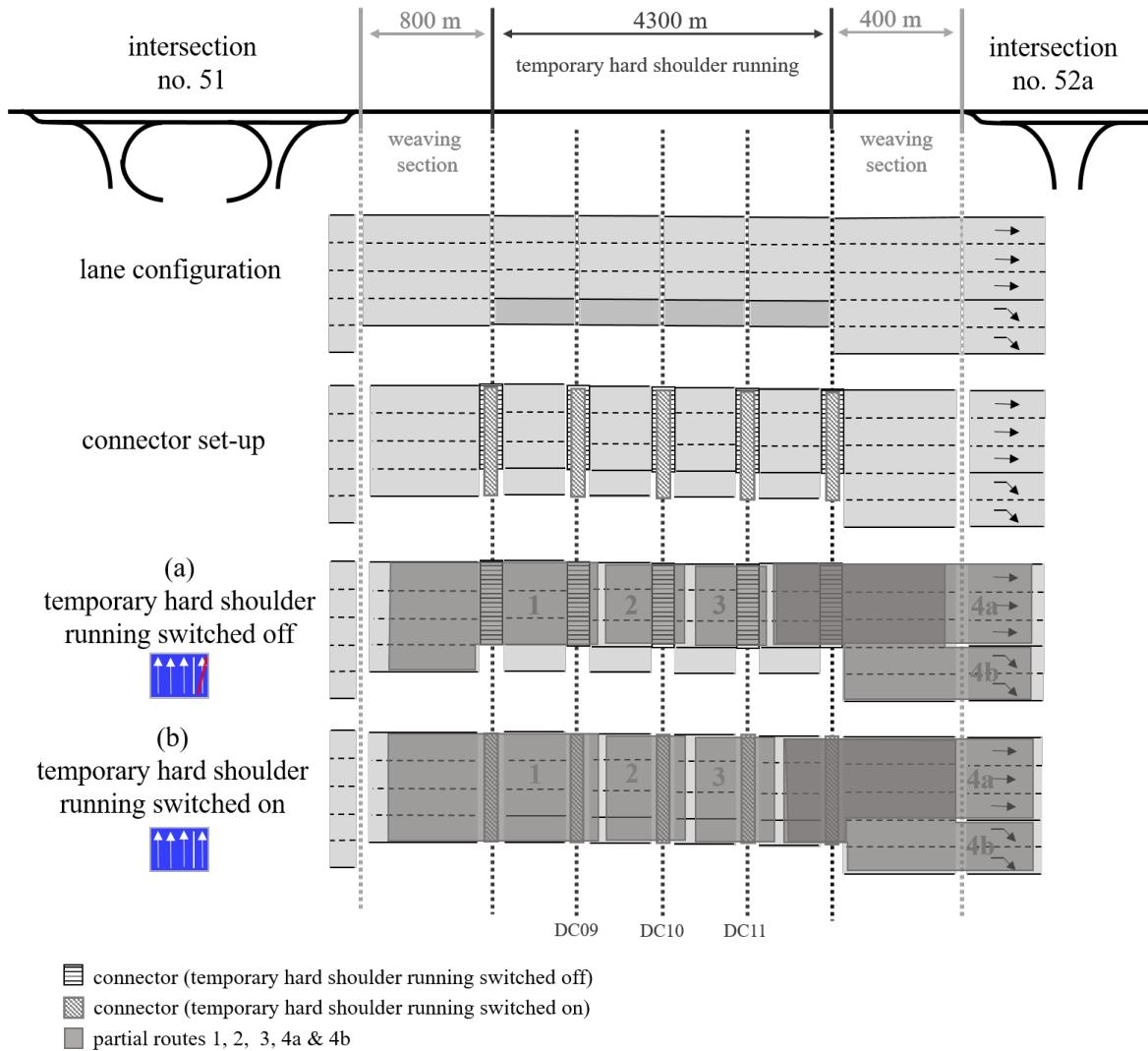
39 The resulting OD-matrices for cars and trucks are implemented into Vissim. For this pur-
40 pose, two static vehicle routing decisions are created for each on-ramp, one for cars (SOVs and
41 HOVs) and one for trucks. For each routing decision, static vehicle routes to all subsequent off-
42 ramps are created.

1 Line Control System Modeling

2 Each data collection point on the investigated section (see figure 1) is provided with a dynamic
3 traffic sign gantry, which displays traffic signs to the drivers based on the traffic situation. To
4 ensure comparability between the actual state and the scenarios with HOV lane, the line control
5 system is modeled statically. The variable speed limits, overtaking prohibition for trucks and hard
6 shoulder opening and closing are time-dependent in the model and not traffic-actuated as in reality.

7 The speed limits prescribed by the dynamic line control system are modeled in Vissim by
8 applying desired speed decisions on each data collection point. When in reality the variable traffic
9 signs display a change of speed limit, the desired speed decision is adjusted in Vissim. These
10 desired speed decisions contain different speed distributions for different vehicle classes.

11 The overtaking prohibition for trucks is modeled by blocking the passing lanes for the
12 vehicle class *truck*.

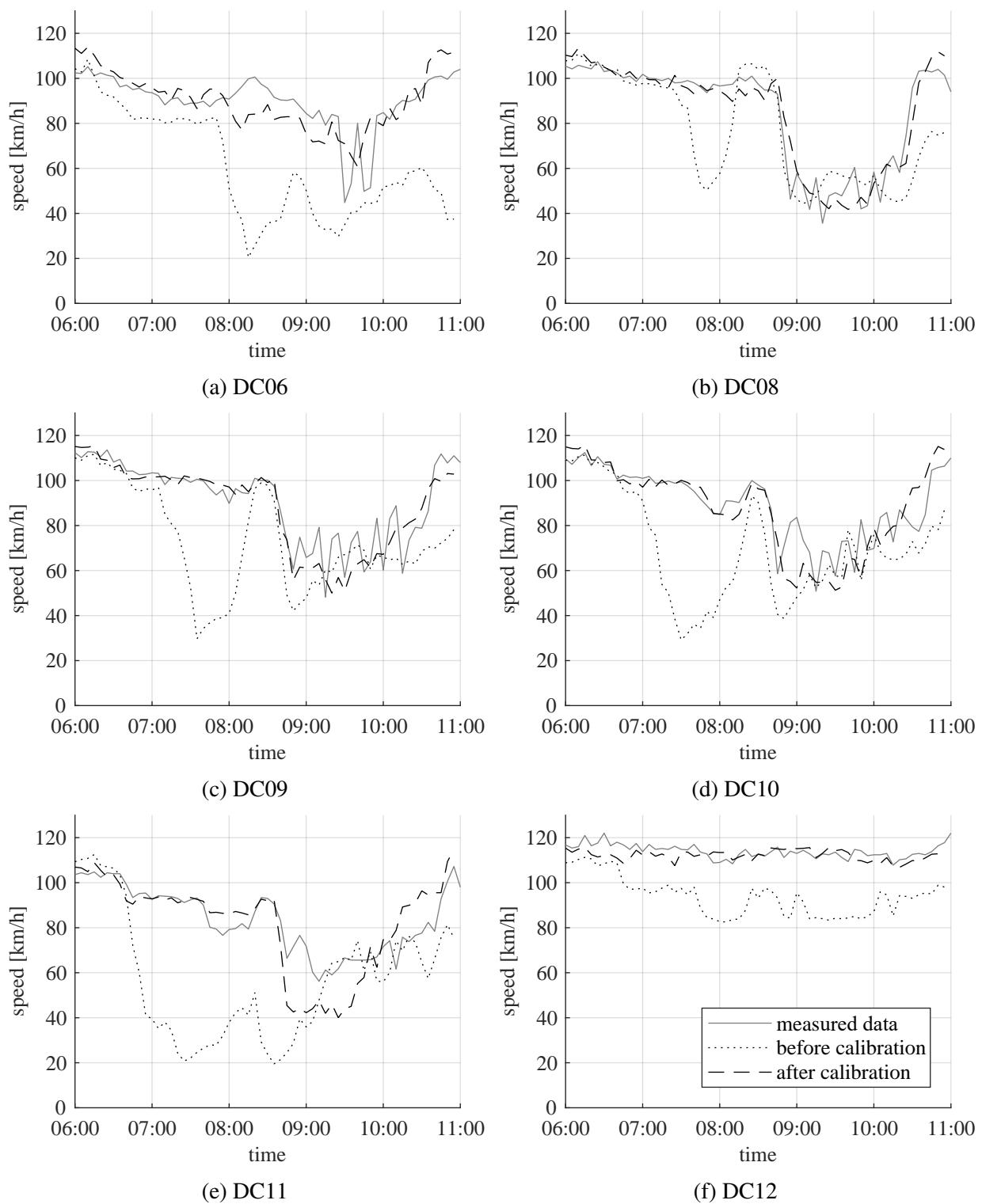

13 The temporary hard shoulder running is installed over a length of 4.3 kilometers between
14 intersections no. 51 and 52a. The number of lanes decreases from five to four and then to three
15 general purpose lanes downstream from intersection no. 51. If the hard shoulder is released for
16 traffic, vehicles can drive on four lanes in the usually three-lane section. Upstream from intersec-
17 tion no. 52a the three general purpose lanes are extended to five lanes in the intersection area (see
18 figure 2 - lane configuration).

19 To model the temporary hard shoulder running in Vissim, the link between intersections
20 no. 51 and 52a is split at the three data collection points of the line control system (DC09 – DC11)
21 as well as at the beginning and end of the hard shoulder. Two connectors are inserted in each
22 splitting point. One connector joins the three general purpose lanes; the second connector joins all
23 four lanes (three general purpose lanes plus hard shoulder). Figure 2 shows the approach to model
24 temporary hard shoulder running in Vissim used for the study.

25 For every section between two splitting points (sections 1, 2, 3, 4a and 4b), a *partial routing*
26 *decision* is created, which includes one *partial route* (a) across the connector that joins the three
27 general purpose lanes and one *partial route* (b) across the connector that joins all four lanes. The
28 relative traffic load of the two partial routes is changed depending on whether the temporary hard
29 shoulder running is switched on or off. If the temporary hard shoulder running is switched off,
30 the relative traffic load on the partial route (a) is set to 100%. 0% of the vehicles choose the other
31 partial route (b). If the temporary hard shoulder running is switched on, vehicles can use the hard
32 shoulder in addition to the general purpose lanes. Traffic data analysis shows that not all the car
33 drivers accept the hard shoulder as a general purpose lane. Therefore, only 80% of the cars are
34 willing to use the hard shoulder in the model, whereas trucks accept this measure 100%. The
35 partial routing decisions are therefore created separately for trucks and cars (*HOV* and *SOV*). For
36 trucks, the hard shoulder is released by setting the relative traffic load on the partial route (b) to
37 100%. 0% of the trucks choose the partial route (a) that excludes the hard shoulder. For cars, the
38 relative traffic load on the partial route (b) is set to 80%, and 20% of the cars choose the partial
39 route (a).

40 To prevent vehicles from using the hard shoulder when the temporary hard shoulder running
41 is switched off, the distance at which a vehicle initiates necessary lane changes to reach a connector
42 is set higher than the length of the section itself. As soon as the vehicles follow the partial route (a),
43 they change to one of the three general purpose lanes connected to the connector they have to pass
44 in order to follow their partial route (a). Therefore, they do not drive on the hard shoulder.

45 In the investigated period, the temporary hard shoulder running is switched on between 6:44


FIGURE 2 : Modeling Temporary Hard Shoulder Running in Vissim

1 and 8:40 am. The activation and deactivation of the temporary hard shoulder running in Vissim
 2 are executed via traffic-actuated programming (VAP), Vissim's built-in programming language for
 3 traffic-actuated control.

4 Calibration

5 Calibration is carried out manually based on the simulation model described above for the current
 6 situation without an HOV lane. During the calibration, 89 different parameter value modifications
 7 in the simulation are evaluated, each consisting of several simulation runs. The calibration is based
 8 on the actual traffic flow and speed at the data collection points.

9 Each modification in the simulation model is followed by several simulation runs to guar-
 10 antee the reliability of the results. Traffic flows and speeds of the simulation runs are averaged
 11 for the evaluation. The goodness of fit is measured by the root mean square percentage errors
 12 (RMSPE).

FIGURE 3 : Calibration Process - Speeds at 6 Data Collection Points

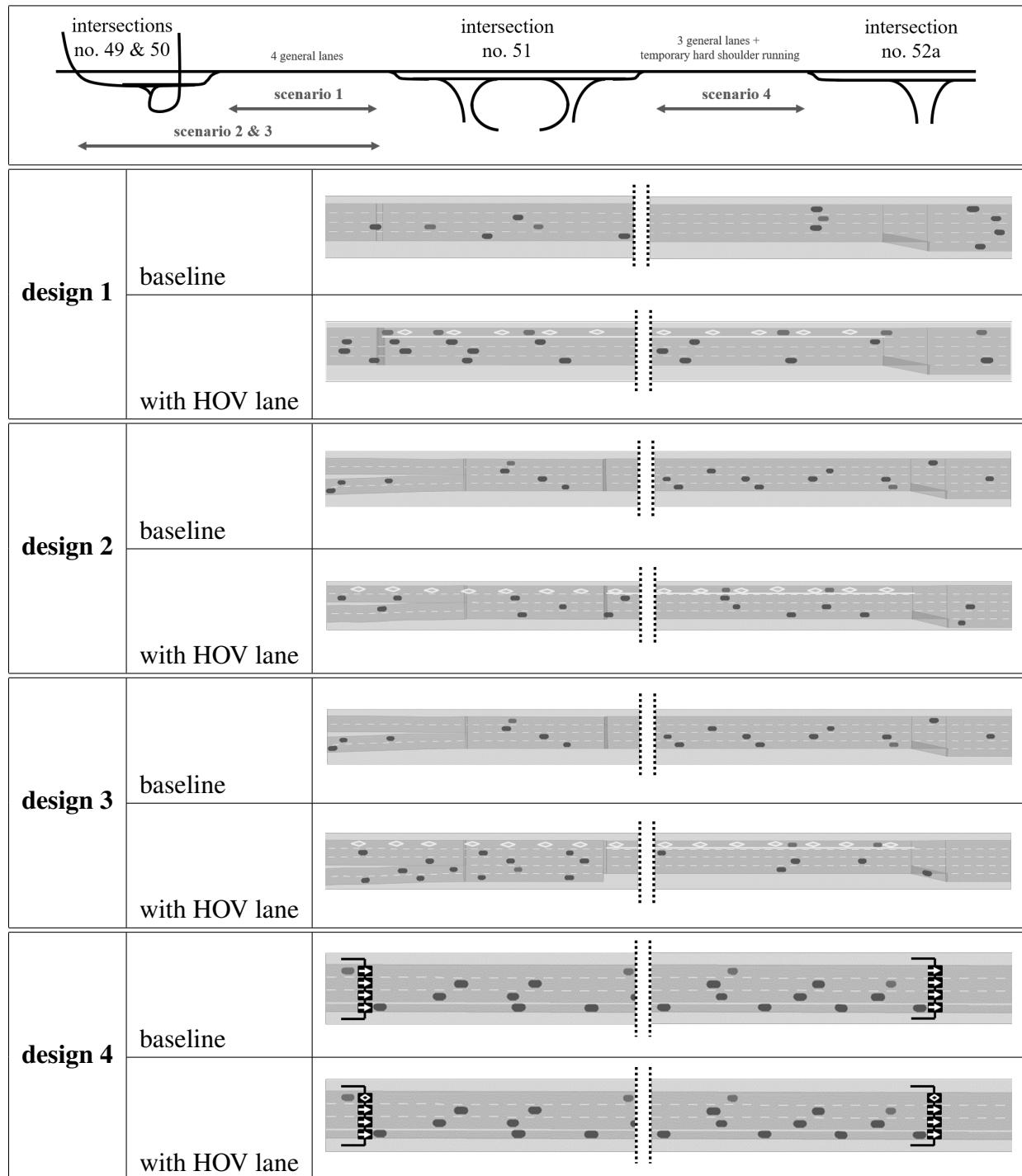
1 Figure 3 shows the results of the calibration process at six data collection points. DC06
2 and DC08 are located upstream from the section containing the temporary hard shoulder running,
3 DC09 to DC11 are situated on that section and D12 is located downstream from it (see figure 1).
4 The charts show real speeds compared to the speeds in the simulation before and after calibration.

5 The most important variables for calibration are the parameters of the driving behavior.
6 For the traffic model of a freeway, both car following behavior and lane changing behavior are
7 important. The car-following-model "Wiedemann 99" is chosen in Vissim. Wiedemann describes
8 nine parameters, which can be adjusted to modify the car following behavior. The default param-
9 eters in Vissim do not result in realistic driving behavior for German freeways, so we used the
10 parameter values developed by Geistefeldt et al. (25) and Leyn et al. (26) as the starting point
11 for the calibration. To reproduce the specific conditions of our study area, further refinement was
12 necessary.

13 Data collection point DC11 shows a highly congested traffic state. Due to the short weaving
14 section upstream from intersection no. 52a, some vehicles do not manage to change lanes in time
15 to reach their exit, and the consequence is the formation of traffic congestion. To realistically map
16 the driving behavior, it is important to adjust the distance at which a vehicle first tries to initiate
17 necessary lane changes correctly. On the modeled section, in the morning peak period, most drivers
18 are commuters who are familiar with the freeway section and intersections. They know their route
19 and make lane changes in time what can be reflected in Vissim by setting the parameters describing
20 lane selection due to following a route. After calibration measured and simulated speeds at data
21 collection point DC11 correspond well.

22 Before calibration, congestion starting at DC11 propagates to the upstream data collec-
23 tion points DC10 to DC06 in the simulation. After calibration, the simulated speeds correspond
24 approximately to the measured speeds. It turns out that the speed level drops at about 8:40 am
25 between data collection points DC08 and DC11, at this time the temporary hard shoulder running
26 is closed.

27 Data collection point D12 shows that the vehicles are too slow in the simulation for free
28 flow traffic conditions. Therefore, the default desired speed distributions were adjusted. There
29 is no congestion propagating from DC12 to the temporary hard shoulder running section. Data
30 collection points D13 and D14 show approximately the same speed profiles.


31 Furthermore, it proved helpful to use different values for the driving behavior parameters
32 of cars and trucks, while in Vissim's default parameter sets these are the same.

33 In our study, the baseline scenario is the calibrated traffic flow model representing the
34 current traffic situation on the modeled freeway section. This situation, without an HOV lane and
35 with an average occupancy of vehicles of 1.2 passengers per vehicle, will be compared to the
36 scenarios with an HOV lane.

37 SCENARIO DESCRIPTION AND MODELING

38 We investigated different designs of HOV lanes in combination with different vehicle occupancies
39 and their effects on traffic flow and travel times with 16 scenarios. Figure 4 shows a simplified rep-
40 resentation (not to scale) of the four designs of an HOV lane examined. All designs are conceived
41 in such a way that no additional lanes have to be built.

42 For design 1, the effect of an HOV lane between intersections no. 50 and 51 is examined.
43 This section is composed of four general purpose lanes while the left-most lane is converted to an
44 HOV lane. For design 2, the HOV lane already starts in the intersection area of intersections no. 49

FIGURE 4 : Designs for the Introduction of an HOV Lane (Simplified Representation)

1 and 50, where the left one of the two general purpose lanes is turned into an HOV lane. Hence,
 2 within the intersection area, 50 % of the capacity of the mainline is restricted to HOVs. The HOV
 3 lane continues on the four-lane section, as it does in design 1 and ends in the weaving section of
 4 intersection no. 51. Design 3 corresponds to design 2, but additionally, the hard shoulder is released
 5 for general traffic within the intersection area to provide more capacity. Design 4 corresponds to
 6 a dynamic link between an HOV lane and the existing temporary hard shoulder running between
 7 intersections no. 51 and 52a. If the traffic volume reaches a certain threshold, the temporary hard
 8 shoulder running is opened, and the hard shoulder can be used in addition to the general purpose
 9 lanes. At the same time, the use of the left-most lane is restricted to carpools. Carpools are provided
 10 with the advantages of travel time savings, thus promoting carpooling and without giving single
 11 travelers the impression that capacity of the general purpose lanes is reduced. In peak periods,
 12 additional capacity is released for HOVs.

13 The aim of an HOV lane is to change people's mobility behavior. The idea is to create
 14 carpooling through the incentive of travel time savings. To supplement the scenarios we made
 15 assumptions about the change in vehicle occupancy. Initially, the different designs are examined
 16 with the current vehicle occupancy of 1.20 passengers per vehicle. Furthermore, the effect of an
 17 HOV lane is examined under the assumptions that the vehicle occupancy increases to 1.25, 1.30
 18 and 1.35 passengers per vehicle. Additionally, it is assumed that the total number of passengers
 19 does not change. Therefore, an increase in the average occupancy leads to a reduction of the
 20 number of vehicles. Table 1 shows the modifications of vehicle compositions and traffic volumes
 21 depending on the vehicle occupancy.

22 The combination of the four HOV lane designs (1 - 4) with four average vehicle occupan-
 23 cies (a - d) leads to 16 investigation scenarios (1a - 4d).

TABLE 1 : Vehicle Composition Depending on Vehicle Occupancy

Vehicle Occupancy [Passengers/Vehicle]		Vehicle Composition		Traffic Volume [%]
		SOV [%]	HOV [%]	
a	1,20	86,7	13,3	100 (reference value)
b	1,25	82,1	17,9	96,0
c	1,30	78,6	21,4	92,3
d	1,35	75,0	25,0	89,0

24 Acceptance of the measure and infringement rates are important aspects that significantly
 25 influence the success of an HOV lane. In our study, we assumed that the acceptance is encouraged
 26 with great care and violations are prevented. It is therefore expected that only 5 % of the HOVs
 27 refuse to use the HOV lane and 5 % of the SOVs use the HOV lane unauthorized.

28 The approach for modeling temporary hard shoulder running is applied to the modeling
 29 of an HOV lane (see figure 2). In Vissim, the section containing the HOV lane is equipped with
 30 different connectors, joining either the general purpose lanes or the HOV lane. *Partial routing*

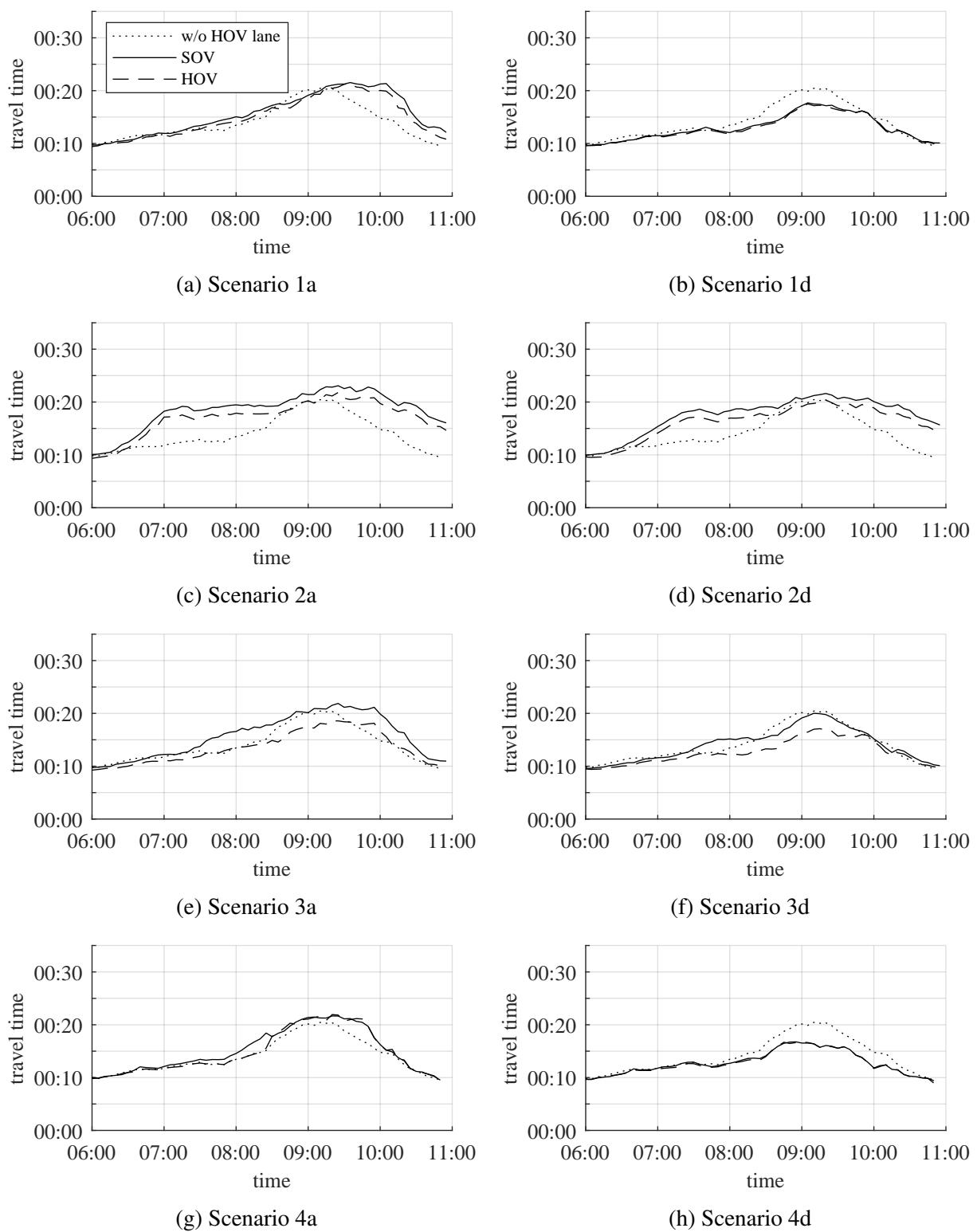
1 decisions are created, comprising different *partial routes* that are assigned to the vehicle classes
2 HOV, SOV and truck. One partial route leads across the general purpose lanes. Single travelers
3 and trucks are assigned to this partial route. A second partial route leads across the HOV lane and
4 is assigned to HOVs (and unauthorized SOVs).

5 The distance at which a vehicle initiates necessary lane changes to reach a connector is set
6 higher than the length of the HOV lane itself. Therefore, HOVs do not leave the HOV lane, and
7 SOVs do not move to the HOV lane between the connectors.

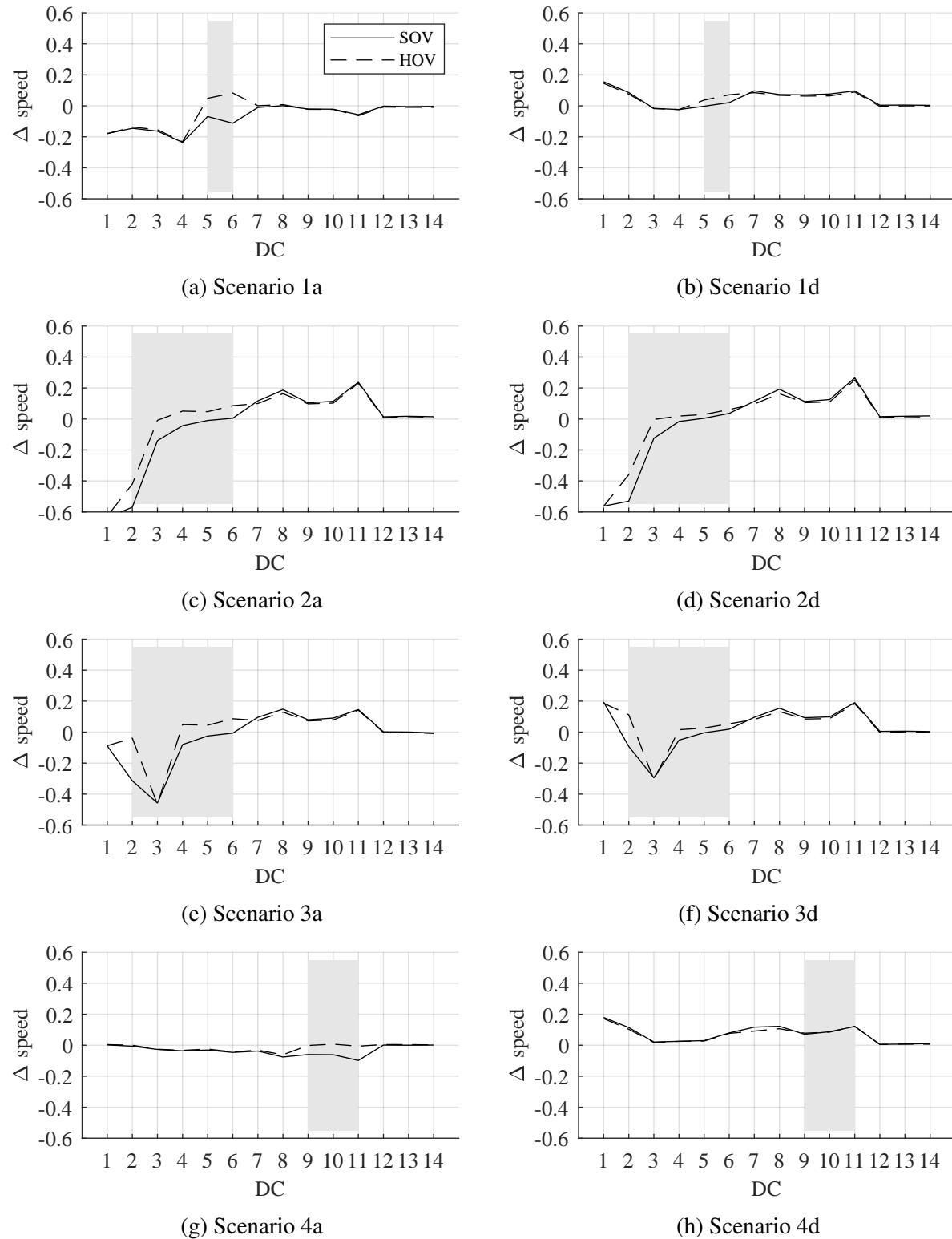
8 SOVs have to leave the left-most lane upstream from the HOV lane. As HOVs have to
9 perform up to three lane changes to reach the HOV lane, they do not have to access the HOV lane
10 right at the starting point. However, HOVs try to enter the HOV lane as quickly as possible. Once
11 the HOVs are on the HOV lane, they will only leave at the end of the HOV section.

12 There is no information on how the presence of an HOV lane affects the driving behavior.
13 Therefore, we used the same driving behavior as in the baseline scenario.

14 RESULTS


15 Figure 5 shows the travel times for a 19.5-kilometer journey between data collection points DC01
16 and DC14 separately for HOVs and SOVs. The travel times in the baseline scenario without HOV
17 lane are compared to the scenarios with vehicle occupancies a and d (1.20 and 1.35 passengers per
18 vehicle) for the four HOV lane designs. The travel times in the scenarios with vehicle occupancies
19 b and c (1.25 and 1.30 passengers per vehicle) lie between the values for vehicle occupancies a
20 and d and are not shown. For each scenario, we averaged and analyzed eight simulation runs. The
21 different simulation runs have not produced any considerable variances in the results.

22 Figure 6 shows the mean speed difference in the scenarios compared to the baseline sce-
23 nario at 14 data collection points separately for HOVs and SOVs.


24 With HOV lane design 1 we analyzed the effects of an HOV lane on a four-lane section.
25 With the current vehicle occupancy of 1.20 passengers per vehicle (scenario 1a), travel times in-
26 crease towards the end of the investigation period, both for HOVs and SOVs. HOVs have hardly
27 any advantage over SOVs. The mean speed differences show higher speeds for HOVs on the HOV
28 lane compared to SOVs and the baseline scenario. Upstream from the HOV lane, both HOVs and
29 SOVs are slower than before the implementation of an HOV lane. Downstream there are almost
30 no differences between HOVs and SOVs. An increase in vehicle occupancy results in travel time
31 savings for all road users, without differences between HOVs and SOVs.

32 In the simulation, the HOV lane entails more lane changes. Without lane restrictions, the
33 drivers' lane choices depend on their route, their desired speed and traffic conditions. By restricting
34 a lane to HOVs, lane changes onto the HOV lane (by HOVs) and lane changes from the HOV lane
35 to a general purpose lane (by SOVs) occur besides the regular lane changes. In the simulation, this
36 leads to lower capacity, especially in the area upstream from the HOV lane and in peak periods,
37 congestion occurs. Both, HOVs and SOVs, are slower than in the baseline scenario so that HOVs
38 do not have travel time savings compared to SOVs. Only on the section of the HOV lane itself,
39 HOVs are faster than SOVs. Downstream from the HOV lane, the traffic situation remains the
40 same.

41 It is conceivable that the difference between European and American transport infrastruc-
42 tures is the reason for the problem of merging. In contrast to the US, driven speeds on German
43 freeways are not homogeneous. In Germany, freeway speeds vary from slow on the right lane to
44 fast on the left lane. The introduction of an HOV lane leads to a mixing of slow and fast vehicles,

FIGURE 5 : Travel Times from DC01 to DC14 (19.5 km) in the Scenarios

FIGURE 6 : Mean Relative Speed Difference between Baseline and Scenarios at 14 Data Collection Points (DC on HOV Lane Highlighted in Gray)

1 which could lead to the problems described. Further research on these effects of lane changing
2 would be useful.

3 The simulation indicates that HOV lane design 1 offers no incentives for carpooling as
4 HOVs do not have lower travel times than SOVs. An increase in vehicle occupancy and thus an
5 improved situation for all road users is not to be expected under these circumstances.

6 With HOV lane design 2 we evaluated whether a spatial shift of additional lane changes
7 into the area upstream from the intersection area leads to less congestion. Scenarios 2a to 2d
8 show increased travel times for all the road users compared to the baseline scenario. In the four
9 scenarios, HOVs are about 2 minutes faster than SOVs. An increase in vehicle occupancy does not
10 improve the overall situation. However, the advantage of HOVs over SOVs remains. The mean
11 speed differences show a significant speed drop in the intersection area (DC01 - DC04). In the
12 two-lane intersection area, 50% of the capacity is restricted to HOVs. The remaining lane cannot
13 cope with the number of SOVs and congestion occurs. Both HOVs and SOVs are affected, even
14 though HOVs need less time to pass the congestion because of the HOV lane. HOV lane design 2
15 offers small advantages for HOVs over SOVs. However, the overall situation of all road gets worse
16 for all scenarios 2a to 2d so that design 2 is no advisable solution.

17 With HOV lane design 3 we analyzed whether the release of the hard shoulder in the inter-
18 section area can prevent the capacity problem from design 2. The capacity of the general purpose
19 lanes remains the same, and additional capacity is provided for HOVs. With the current vehicle
20 occupancy of 1.20 passengers per vehicle (scenario 3a), travel times increase slightly for SOVs
21 compared to the baseline scenario. HOVs have travel time savings of about 4 minutes compared to
22 SOVs. An increase in vehicle occupancy improves the situation for all road users. The advantage
23 of HOVs over SOVs remains but diminishes to about 3 minutes. The mean speed differences show
24 a significant speed drop at DC03. As illustrated in figure 4, there is a lane drop downstream from
25 the intersection for design 3. This decrease from five to four lanes involves merging traffic, which
26 causes congestion measured by data collection point DC03. HOV lane design 3 offers advantages
27 for HOVs over SOVs. However, it is questionable whether travel time savings of about 4 minutes
28 are enough to promote carpooling.

29 With HOV lane design 4 we analyzed the effects of a dynamic link between an HOV lane
30 and the existing temporary hard shoulder running. In scenario 4a, travel times increase slightly
31 compared to the baseline scenario, both for HOVs and SOVs. The mean speed differences show
32 slightly lower speeds than in the baseline scenario. On the HOV lane, HOVs are faster than SOVs.
33 An increase in vehicle occupancies (scenarios 4b - 4d) leads to lower travel times for all road
34 users, but there are no advantages for HOVs over SOVs. HOV lane design 4 offers no incentives
35 for the formation of carpools and an increase in vehicle occupancy is not to be expected under
36 these circumstances.

37 One reason for the limited success of an HOV lane on a German freeway is the total number
38 of lanes. In contrast to US freeways with six or more lanes in one direction, Germany's busiest
39 freeways have usually three, in rare cases four lanes per direction. The conversion of a general
40 purpose lane into an HOV lane therefore means a reduction of general purpose lane capacity of
41 25% to 33%.

1 CONCLUSIONS

2 We developed a microscopic traffic flow model of a section of a German federal freeway in Vissim.
3 The driving behavior was calibrated with measured traffic data. We used this model to simulate 16
4 scenarios of an HOV lane (four HOV lane designs combined with four vehicle occupancies). Travel
5 times and speeds in the scenarios with HOV lane were analyzed and compared to the baseline
6 scenario without HOV lane.

7 The survey showed that the desired effects of an HOV lane can only be achieved to a small
8 extent. By restricting a general purpose lane to an HOV lane, traffic congestion on the remaining
9 general purpose lanes should initially become worse, while traffic flows on the HOV lane. This
10 leads to travel time savings as well as higher driven speeds for HOVs. These benefits for HOVs
11 over SOVs should motivate the formation of additional carpools so that the overall traffic volume
12 decreases, and the situation of all road users improves.

13 For all four HOV lane designs, HOVs are able to drive faster on the HOV lane than SOVs
14 on the general purpose lanes. With increasing vehicle occupancy, the speeds of HOVs and SOVs
15 converge since the number of vehicle increases on the HOV lane. For two HOV lane designs,
16 the achievable travel time savings for HOVs are negligible. An increase in vehicle occupancy is
17 therefore not to be expected. For the other two designs, HOVs can save up to 4 minutes travel time
18 compared to SOVs. But for both designs there is a significant speed drop upstream from the HOV
19 lane in the simulation. For one design, this results in much higher travel times for all the road users
20 compared to the baseline scenario, regardless of vehicle occupancy.

21 We conclude that the reduction of general purpose lane capacity is too high when introducing
22 an HOV lane. Furthermore, in the simulation an HOV lane results in additional lane changes
23 in the upstream area from the HOV lane. The reduced capacity in combination with increased lane
24 changes leads to congestion, both for HOVs and SOVs. Only on the section of the HOV lane itself,
25 HOVs are faster than SOVs. Downstream the traffic situation remains the same as in the baseline
26 scenario. Therefore, the potential for travel time savings for HOVs compared to SOVs is low.

27 With the current vehicle occupancy, only one HOV lane design leads to travel time savings
28 for HOVs compared to the baseline scenario, while the travel times for SOV increases. If the
29 benefit of the HOV lane changes people's mobility behavior towards carpooling, we showed that
30 travel time reductions are possible for all road users, while the advantage for HOVs over SOVs
31 remains. However, it is questionable whether a minor time gain is enough to change people's
32 mobility behavior towards carpooling.

33 In the context of further investigations, an extension of this scenario should be examined
34 to determine whether long-term advantages for HOVs are achievable. It is also recommended to
35 investigate the people's behavioral change with regard to carpooling. Based on the findings on additional
36 lane changings, the differences between European and American transport infrastructures
37 should be examined more closely. The question arises as to what influence speed differences between
38 different lanes have on the capacity of a section equipped with an HOV lane. Furthermore,
39 the potential for travel time savings due to an HOV lane should be extended from the morning peak
40 period to an entire day.

41 ACKNOWLEDGMENT

42 All traffic data required for the traffic model development was provided by the Regional Council
43 Tübingen, division for traffic control and traffic engineering.

1 AUTHOR CONTRIBUTION

2 The authors confirm contribution to the paper as follows (in alphabetical order): study conception
3 and design: H.S. Buck, P. Vortisch, C.M. Weyland; modeling and simulation: C.M. Weyland;
4 analysis and interpretation of results: H.S. Buck, C.M. Weyland, V. Zeidler; draft manuscript
5 preparation: H.S. Buck, P. Vortisch, C.M. Weyland, V. Zeidler. All authors reviewed the results
6 and approved the final version of the manuscript.

7 REFERENCES

- 8 1. Aparicio, Á., M. Mateos, and A. Monzón, *Modelling Hov Lanes Contribution to Sustainable*
9 *Mobility*, 2004.
- 10 2. Federal Highway Administration, *Federal-Aid Highway Program Guidance on High Occupancy Vehicle (HOV) Lanes*, 2016.
- 12 3. Geistefeldt, J. and J. Lohoff, *Stausituation auf den Autobahnen in Nordrhein-Westfalen: Studie im Auftrag des Ministeriums für Wirtschaft, Energie, Bauen, Wohnen und Verkehr des Landes Nordrhein-Westfalen*, 2011.
- 15 4. Leman, C. K., P. L. Schiller, and K. Pauly, *Re-thinking HOV: High Occupancy Vehicle Facilities and the Public Interest*. Chesapeake Bay Foundation, 1994.
- 17 5. Massachusetts Institute of Technology, *Selective History of Ridesharing: MIT "Real-Time" Rideshare Research*, 2009,
18 [http://ridesharechoices.scripts.mit.edu/home/2009/02/
history-of-ridesharing/](http://ridesharechoices.scripts.mit.edu/home/2009/02/history-of-ridesharing/) (Accessed: 29.06.2018).
- 21 6. Schijns, S. and P. Eng, High occupancy vehicle lanes — worldwide lessons for European
22 practitioners. In *Urban Transport XII: Urban Transport and the Environment in the 21st Century* (C. A. Brebbia and V. Dolezel, eds.), WIT Press, Southampton, UK, 2006, pp. 181–193,
24 <http://dx.doi.org/10.2495/UT060191>.
- 25 7. Benjamin G. Perez, Charles Fuhs, Colleen Gants, Reno Giordano, *Priced Managed Lane Guide*, 2012.
- 27 8. Federal Highway Administration, *Frequently Asked HOV Questions*, 2017,
28 <https://ops.fhwa.dot.gov/freewaymgmt/faq.htm> (Accessed: 06/29/2017).
- 29 9. Federal Highway Administration, *A Review of HOV Lane Performance and Policy Options in the United States, Final Report*, 2008.
- 31 10. Quinn, D. J., D. R. Gilson, and M. T. Dixon, Britain's First High Occupancy Vehicle Lane - the A647, Leeds, 1998.
- 33 11. Institute for Transport Studies, University of Leeds, *High Occupancy Vehicle (HOV) Lanes: evidence on performance*, 2009.
- 35 12. Department for Transport, *High Occupancy Vehicle Lanes*, 2006,
36 <http://www.ukroads.org/webfiles/TAL%203-06%20High%20occupancy%20Vehicle%20Lanes.pdf> (Accessed: 29.06.2018).
- 38 13. Dixon, T., *Urban High Occupancy Vehicle (HOV) Lanes: the Leeds Experience*, 1999.
- 39 14. Monzón, A., *Integrated Policies for Improving Modal Split in Urban Areas*. In *Proceedings 16th ECMT Symposium*, 2005.
- 41 15. Geerken, T., *Madrid's high-occupancy vehicle lanes*. In *System Innovation for Sustainability*

1 2: *Case Studies in Sustainable Consumption*, Greenleaf Publishing Limited, 2009, pp. 54–63,
2 http://dx.doi.org/10.9774/GLEAF.978-1-907643-16-3_6.

3 16. Haugen, T., Evaluation of Hov-lanes in Norway, 2004.

4 17. Berger, W. J., THE AUSTRIAN HOV-LANE—EXPERIENCES IN IMPLEMENTATION
5 AND OPERATION. *Journal of Civil Engineering and Management*, Vol. 8, No. 4, 2002, pp.
6 255–262, <http://dx.doi.org/10.1080/13923730.2002.10531285>.

7 18. *Deux zones pour tester une bande réservée au covoiturage sur la E411*, 2017,
8 https://www.rtbf.be/info/regions/brabant-wallon/detail_deux-zones-pour-tester-une-bande-reservee-au-covoiturage-sur-la-e411?id=9699499 (Accessed: 25.07.2018).

11 19. *Autoroute E411: Une bande de covoiturage va voir le jour vers le Luxembourg*, 2017,
12 <https://www.wort.lu/fr/luxembourg/autoroute-e411-une-bande-de-covoiturage-va-voir-le-jour-vers-le-luxembourg-59aebfaf56202b51b13c2bed>
14 (Accessed: 25.07.2018).

15 20. Gomes, G., A. May, and R. Horowitz, Congested Freeway Microsimulation Model Using
16 VISSIM. *Transportation Research Record: Journal of the Transportation Research Board*,
17 Vol. 1876, , 2004, pp. 71–81, <http://dx.doi.org/10.3141/1876-08>.

18 21. Fontes, T., P. Fernandes, H. Rodrigues, J. M. Bandeira, S. R. Pereira, A. J. Khattak, and M. C.
19 Coelho, Are HOV/eco-lanes a sustainable option to reducing emissions in a medium-sized
20 European city? *Transportation Research Part A: Policy and Practice*, Vol. 63, , 2014, pp.
21 93–106, <http://dx.doi.org/10.1016/j.tra.2014.03.002>.

22 22. Sajjadi, S. and A. Kondyli, Macroscopic and microscopic analyses of managed lanes on free-
23 way facilities in South Florida. *Journal of Traffic and Transportation Engineering (English
24 Edition)*, Vol. 4, No. 1, 2017, pp. 61–70, <http://dx.doi.org/10.1016/j.jtte.2016.12.002>.

25 23. Infas and DLR, *Mobilität in Deutschland (MiD) 2008: Ergebnisbericht Struktur - Aufkommen
- Emissionen - Trends*. Bonn and Berlin, 2010.

27 24. PTV AG, *Validate: Verkehrsmodell und Verkehrsdatenlieferant für Deutschland*, 2013,
28 http://vision-traffic.ptvgroup.com/fileadmin/files_ptvvision/Downloads_N/0_General/2_Products/7_Data/DE_Validate_Factsheet.pdf (Accessed:
30 29.06.2018).

31 25. Geistefeldt, J., S. Giuliani, P. Vortisch, U. Leyn, R. Trapp, F. Busch, A. Rascher, and N. Ce-
32 likkaya, Assessment of Level of Service on Freeways by Microscopic Traffic Simulation.
33 *Transportation Research Record: Journal of the Transportation Research Board*, No. 2461,
34 2014, pp. 41–49, <http://dx.doi.org/10.3141/2461-06>.

35 26. Leyn, U. and P. Vortisch, Calibrating VISSIM for the German Highway Capacity Manual.
36 *Transportation Research Record: Journal of the Transportation Research Board*, No. 2483,
37 2015, pp. 74–79, <http://dx.doi.org/10.3141/2483-09>.