

ASSESSING THE IMPACTS OF OFFICE RELOCATION ON TRAVEL BEHAVIOR AND THE ORGANIZATION OF ACTIVITIES WITHIN HOUSEHOLDS

Sascha von Behren

Institute for Transport Studies, Karlsruhe Institute of Technology (KIT)
Kaiserstrasse 12, 76131 Karlsruhe, Germany
Tel: +49 721 6084 7737
Email: Sascha.vonBehren@kit.edu

Maike Puhe

Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology (KIT)
Postfach 3640, 76021 Karlsruhe, Germany
Tel: +49 721 6082 6487
Email: Maike.Puhe@kit.edu

Bastian Chlond

Institute for Transport Studies, Karlsruhe Institute of Technology (KIT)
Kaiserstrasse 12, 76131 Karlsruhe, Germany
Tel: +49 721 6084 2257
Email: Bastian.Chlond@kit.edu

Paper prepared for presentation and publication at the
96th Annual Meeting of the Transportation Research Board
5,155 words
3 figures, 4 tables (7 * 250 words = 1,750 words)
Total: 6,905 words (including abstract, text, cover page, tables, figures and references)
Submission date: August 1, 2016

1 **ABSTRACT**

2 The aim of this paper is to study the effects of office relocation on travel behavior and household
3 organization of employees and their household members. In general, office relocation can have
4 various short and long term impacts and may influence decisions relating to mode choice and task
5 sharing within the household. Most of these impacts usually happen over time during an adaptation
6 process. Against this background a new methodological approach was designed to capture these
7 impacts of the relocation. This approach proposes two survey waves to analyze the entire
8 adaptation process, whereby the first wave also contains a retrospective section to capture travel
9 behavior and household organization before the relocation. Thus altogether three successive time
10 periods can be recorded by means of only two survey waves.

11 A case study from Karlsruhe, Germany using this approach shows a significant change in
12 travel behavior when an institution is relocated from a suburban site to the inner city. The
13 relocation results in a modal shift in travel behavior from the car to bicycle and public
14 transportation caused by poor parking facilities and shorter commuting trips in average. The
15 findings illustrate significant adaptations within two years after the move. Employees change their
16 mode of choice on the commuting trips and are able to further support the household members,
17 e.g. by making smaller purchases during their commuting trips. Based on the results it is
18 recommendable to analyze relocations not only in terms of employees' behavior but considering
19 impacts on household organization and household member during the entire adaptation process as
20 well.

1 INTRODUCTION

2 Office relocation in Germany is a common instrument used to optimize processes and reduce costs.
3 Companies of various sizes are affected by office relocations and their reasons for relocating
4 workplaces vary. In Germany, relocations to countries abroad are less common than relocations
5 within the country – nearly 72% of all office relocations take place on the national territory (1). In
6 case the new location is close to the old company site, most of the employees remain with the
7 company. As a consequence, an important destination in the employees' daily life changes. This
8 affects different areas of life – such as travel behavior on commuting trips, as well as leisure and
9 shopping activities. It is likely that changing the workplace location affects the employees' mode
10 choice for the commuting trips. Beyond this, the office relocation may have impacts on the
11 household organization and may influence the travel behavior of the other members of a multi-
12 person household. Household members have to make arrangements, e.g. who can use the car and
13 when shared activities take place.

14 Office relocations also affect employees' travel routines. Especially for commuting to
15 work, employees develop routines (2) in order to simplify the complexity of daily life. They refer
16 to well-known decisions and habits in the event of daily trips such as commuting. Verplanken and
17 Wood (3) show that when it comes to their routines, people have a biased perception of information
18 on alternative means of transportation. This means that they do search and process new information
19 and options, but to a lesser extent. This results in unreflected decisions and a stable behavior which
20 lacks an assessment of alternatives (e.g. using the car on the commuting trip, even if an
21 ecologically and economically sensible alternative exists). Workplace relocations can be a chance
22 to break those routines as they make it necessary to consider alternatives. Indeed Verplanken and
23 Wood (3) report an adaptation in modal choice in the case of a discontinuity in daily life. As
24 individuals have to adapt to a new situation and choose an alternative, the chance to make a
25 reflected and conscious decision emerges, also with regards to their travel behavior.

26 In consequence, office relocations start a process of adaptations which include many
27 different processes nearly at the same time. In order to analyze these adaption processes we
28 analyzed an office relocation in Karlsruhe, Germany. This paper is focused on the methodology as
29 well as on the findings of this office relocation in Karlsruhe and is organized as follows.

30 In the following section, we conduct a literature overview and analyze existing research
31 about office relocation. Subsequently, we show the methodology and introduce the case study, of
32 which we then present the results. Finally, we evaluate our methodology and point out
33 recommendations for future research in regards to office relocations.

34 LITERATURE REVIEW

35 This section gives a short overview of research on office relocation, showing some significant
36 findings and summarizing the survey methods of these studies. Only a few publications are

1 available dealing with office relocation and their impacts on travel behavior. The existing literature
2 mainly describes impacts on travel behavior of employees (1; 4–6; 8; 7; 12; 9–11). The majority
3 of studies deal with workplace relocations from the inner city to suburban areas. These studies
4 report an increase in car usage – also benefiting from a good parking situation and poor access to
5 public transportation at the suburban site (4–6; 10). Consequently, travel time of employees
6 increases. Bell (4) observes a lower increase in car use for commuting if the new site has sufficient
7 access to public transport or when a considerable part of employees already lives closer to the new
8 location. Only two studies from Singapore state that office relocation to suburban areas did not
9 cause any significant increase in car usage (8; 7); these outcomes should however be considered
10 in the light of the restrictive policies against privately owned cars in Singapore. Overall, office
11 relocations from inner city to suburbs, with the exception of Singapore, induced an increase in the
12 share of car use of the modal split. An opposite effect is caused by relocation within the suburban
13 area from a location with poor access to public transportation to a location with a good supply of
14 public transportation. In this case a substantial decrease in car usage is observed (11). Office
15 relocation from the suburbs to the inner city has not yet been studied to a large extent. In the context
16 of a study in Trondheim, Norway Meland (12) describes a shift from car use to public
17 transportation. The changes were mainly due to poor parking facilities at the new location.

18 The methods of the above mentioned studies differ. Most of the studies analyze only the
19 travel behavior of employees concerning mode choice, travel time and travel distance by using a
20 self-completion questionnaire (13; 9; 10). Other surveys also observe activities (e.g. shopping or
21 sports) using a travel diary for one day (4; 6). Overall, surveys usually only investigate effects on
22 employees. Effects on travel behavior of other household members or on the household
23 organization in multi-person households were not considered.

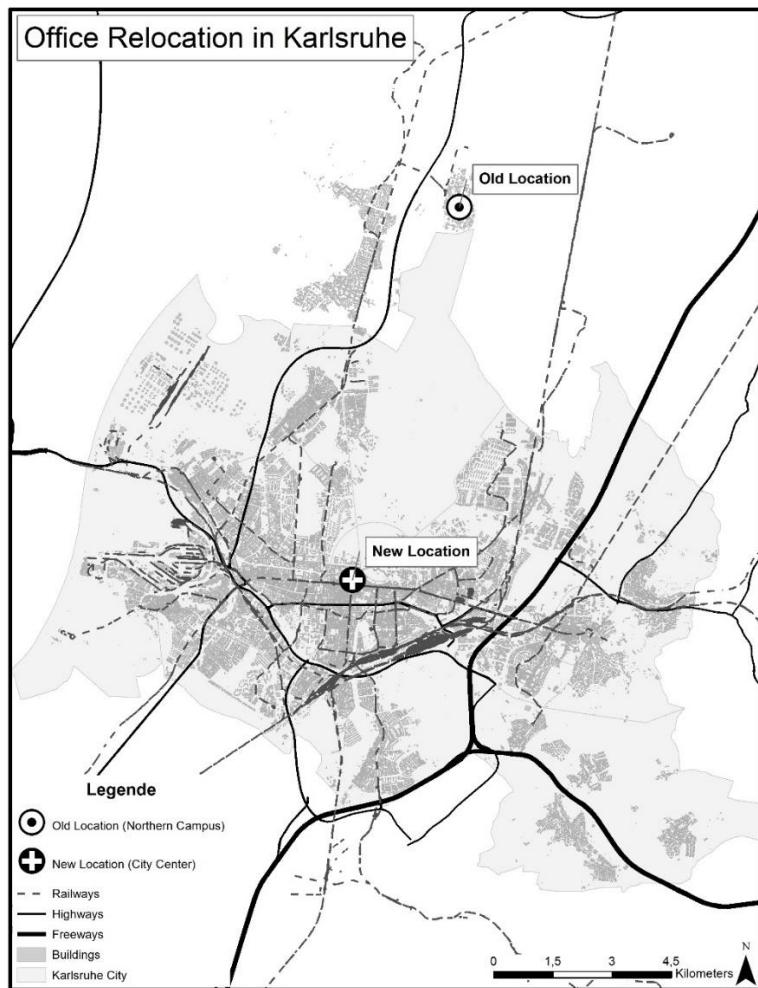
24 We also analyzed the studies as to the timing of the surveys and if they capture the
25 adaptation processes caused by the workplace relocation. Only few studies investigate the
26 relocation ‘before’ and ‘after’ (4; 6; 11). Walker (11) has conducted two waves after the relocation.
27 One wave has been carried out after the move and another one four weeks later. This allows for an
28 observation of short term processes of adaptation. Vale (10) has chosen an efficient survey method
29 after the move. The ‘after’ survey included a retrospective section, in which employees report their
30 travel behavior on the old location. As the former routinized behavior is mostly well remembered,
31 such a retrospective approach can be regarded as appropriate.

32 However, there are no research studies which investigate the process of adaptation as a
33 whole, because the last survey wave was generally conducted four weeks after the relocation at
34 the latest. Lally et al. (14) mentions that adaptation of behavior takes between 18 and 254 days –
35 depending on the individual. This emphasizes the need for another survey wave after a longer time
36 period at the new location in order to capture the adaptations. In conclusion, two survey waves are
37 required to observe the entire process: one survey wave immediately after the relocation and a
38 second survey approximately two years later.

1 **METHODOLOGICAL APPROACH**

2 The aim of this paper is to study the process of adaptation of employees and their partners in multi-
3 person households in the case of an office relocation from the suburban site to 'downtown'. In
4 order to analyze those processes, we designed a new survey approach, which embraces a total
5 period of three years including the behavior 'before' and 'after' the relocation within the adaptation
6 process. The approach consists of two survey waves with a self-completion questionnaire and a
7 personal interview. The self-completion questionnaire contains information about basic socio-
8 demographic criteria (age, gender, household size, approximate location of home and mobility
9 tools). The personal interview records the travel behavior of employees as well as the travel
10 behavior of partners in multi-person households since a dependency between the household
11 members has to be presumed. We designed the interview to investigate the 'typical' travel behavior
12 of employees and their partners (i.e. most frequently used modes for commuting trips) to reduce
13 overall variance of the findings. This leads to only the interpersonal variance being in the focus.
14 Furthermore, the interview consists of questions about the level of satisfaction concerning travel
15 behavior, especially commuting behavior.

16 Both waves are carried out 'after' the relocation to the new site took place, whereby the
17 first wave takes place immediately after the relocation. Within the first survey the personal
18 interview is split into two survey parts examining two different time periods. One part is a
19 retrospective query of travel behavior and household organization regarding the situation before
20 the relocation. The other part of the interview is about their current situation. This approach enables
21 a direct comparison of the travel behavior 'before' and 'after' relocation within the first interview.
22 With this approach, short term changes in the travel behavior can be discussed with the
23 interviewees.


24 The second survey wave is conducted approximately two years after the relocation (i.e. the
25 process of adaptation is almost completed) and has a similar structure as the first survey. However,
26 findings of the first survey and interview experiences were used to optimize the second wave's
27 contents. The second survey focuses on the analysis of adaptation to the new location. With this
28 approach we are able to analyze both short term adaptation and long term effects. The approach
29 also ensures efficiency, because the test persons have to participate only twice to cover three
30 different periods of time.

31 **CASE STUDY**

32 In order to test our new methodology, we analyzed the effects of a workplace relocation of a
33 research institute based in Karlsruhe, Germany. In March 2012, the Institute for Technology
34 Assessment and Systems Analysis (ITAS) of the Karlsruhe Institute of Technology (KIT) moved
35 from a peripheral location in the north of Karlsruhe to the inner city (FIGURE 1). The old location
36 had 'unlimited' and free of costs parking facilities as well as fair bus services (service
37 approximately every twenty minutes) connecting with the rail services of surrounding railway
38 stations. At the new location (approximately 10 kilometers away) there is an easy access to the

1 entire public transport system (mainly by rail), with radial routes serving the city and the
2 surrounding suburban areas of Karlsruhe. On the other hand neither sufficient nor free of charge
3 parking space exists. The relocation has thus resulted in significant differences in travel options
4 and parking possibilities.

5 In the first survey wave n=53 employees participated, representing about 48% of the
6 institute's staff. The first survey wave was completed between July and November 2012. Between
7 January and March 2015 the survey was repeated at the new location. In the repeated survey n=39
8 employees participated. For those persons who participated in both survey waves – conducted in
9 the form of a panel approach – it is possible to observe short and long term adaptation processes.
10 Participants of only the first survey can be monitored regarding short term changes in the travel
11 behavior directly after the relocation.

12

13 **FIGURE 1 Office Relocation from the suburb to the inner city in Karlsruhe.**

1 **RESULTS**

2 We split our analyses into two parts according to the two waves. First, we show results of short
3 term adaptions derived from the first survey. This is followed by results of people who participated
4 in both surveys.

5 **Short term adaptations as a result of a workplace relocation**

6 In the first wave of the survey, 22 female and 31 male employees participated. The first sample
7 consists of 9 one-person households, 21 two-person households and 23 households with more than
8 two household members. The geographical dispersion of the employees' home locations is also an
9 important aspect: before the relocation more than 50% of the participants lived in the inner city of
10 Karlsruhe. Another approximately 25% of the participants had their residential location in the
11 north of Karlsruhe i.e. nearby the former location.

12 Average travel time before the relocation was 39 minutes, dropping to 36 minutes after the
13 relocation. Average distance decreased from 29.82 kilometers to 26.93 kilometers. TABLE 2
14 shows the short term changes in travel time and distance after the office relocation.

15 TABLE 1 shows that the majority of the employees have a shorter travel time after the
16 institute moved to the inner city. About half (47.2%) of the participants are positively affected
17 concerning their commuting time whereas 37.7% of the employees had to accept an increased
18 commuting time. Of these, only four persons have an increase of their travel time of more than 30
19 minutes.

20 **TABLE 1 Short term shifts in the commuting time of employees**

		Travel time after the relocation					Total
		0 - 10 min	11 - 20 min	21 - 30 min	31 - 40 min	> 40 min	
Travel time before the relocation	0 - 10 min	1	0	1	0	1	3
	11 - 20 min	0	1	4	1	3	9
	21 - 30 min	3	4	2	3	2	14
	31 - 40 min	6	3	2	0	5	16
	> 40 min	2	2	1	2	4	11
	Total	12	10	10	6	15	53

*Numbers given in the table are the quantity of employees

21
22 For this methodological approach we asked only the 'typical' travel behavior of employees and
23 partners (i.e. most frequently used modes on commuting trips or shopping trips in 'typical' weeks)
24 to reduce overall variance of the results.

1 **TABLE 2 Statistical analysis of the changes of travel time, travel distance and modal split**

	before relocation	after relocation	after two years
<i>travel time in minutes</i>			
n=53			
Average	39	36	-
Median	32	30	-
Standard deviation	35	33	-
n=39			
Average	41	37	41
Median	33	30	33
Standard deviation	38	33	33
<i>travel distance in kilometers</i>			
n=53			
Average	29.82	26.93	-
Median	14.80	8.80	-
Standard deviation	53.28	57.09	-
n=39			
Average	28.46	24.90	27.29
Median	14.80	8.30	12.20
Standard deviation	45.10	49.05	48.92
<i>modal split - most frequently used mode (in %)</i>			
n=53			
Car	39.62	9.43	-
Bicycle	39.62	50.94	-
Public Transportation	33.96	35.85	-
Walk	1.89	3.77	-
n=39			
Car	48.72	7.69	7.69
Bicycle	28.21	51.28	41.03
Public Transportation	20.51	35.90	46.15
Walk	2.56	5.13	5.13
<i>weighted modal split (in %)</i>			
n=53			
Car	48.23	5.16	-
Bicycle	46.61	84.11	-
Public Transportation	5.02	10.16	-
Walk	0.13	0.58	-
n=39			
Car	71.81	3.47	4.63
Bicycle	22.90	85.34	73.52
Public Transportation	5.07	10.24	20.36
Walk	0.23	0.95	1.49

1 The relocation led to considerable changes in mode choice. TABLE 2 shows the
2 commuting travel mode choice of the participants before and after the relocation as well as for the
3 situation after the long term adaptation period. With a focus on the weighted mode choice car
4 usage dropped from 48% to 5% at the new location. In this case 'weighted' means that the
5 employees were asked which modes are used for their commuting trips. The participants also
6 reported on alternative modes and how frequently they use them (intrapersonal variation). This
7 results in a 'weighted' modal split which includes the variation. The use of bicycle was already
8 high at the old location considering that the location was outside of Karlsruhe. However, bicycle
9 use increased further from 47% to 84% in the short term adaptation period.

10 An adaptation of behavior in multi-person households can also be noted. In seven
11 households the partners of the employees started using a different mode for their commuting trips
12 after the relocation. In two cases participants reported a direct dependency regarding their
13 commuting trips and the use of cars, because these households possess only one car which the
14 household members alternately used 'before' and which becomes available for the partner more
15 frequently 'after' the relocation.

16 Changes in mode choice on the individual level are shown in TABLE 3. Since the institute
17 moved to the inner city only a few employees continue to use the car for commuting. Overall, 17%
18 of the participants switched from car to bicycle and 13.2% from car to public transportation as
19 most frequently used mode. 28.3% of the participants have not changed their bicycle usage after
20 the relocation. The reasons for the shift in mode choice are the poorer parking conditions and the
21 better accessibility with other means (i.e. bicycle and public transportation).

22 At the same time, the employees' contentedness concerning their travel behavior improved
23 after the relocation. The proportion of the participants claiming to be generally satisfied with the
24 travel behavior increased from 60.4% to 84.9%. More than 75% of the participants who changed
25 from car to bicycle evaluate the change positively.

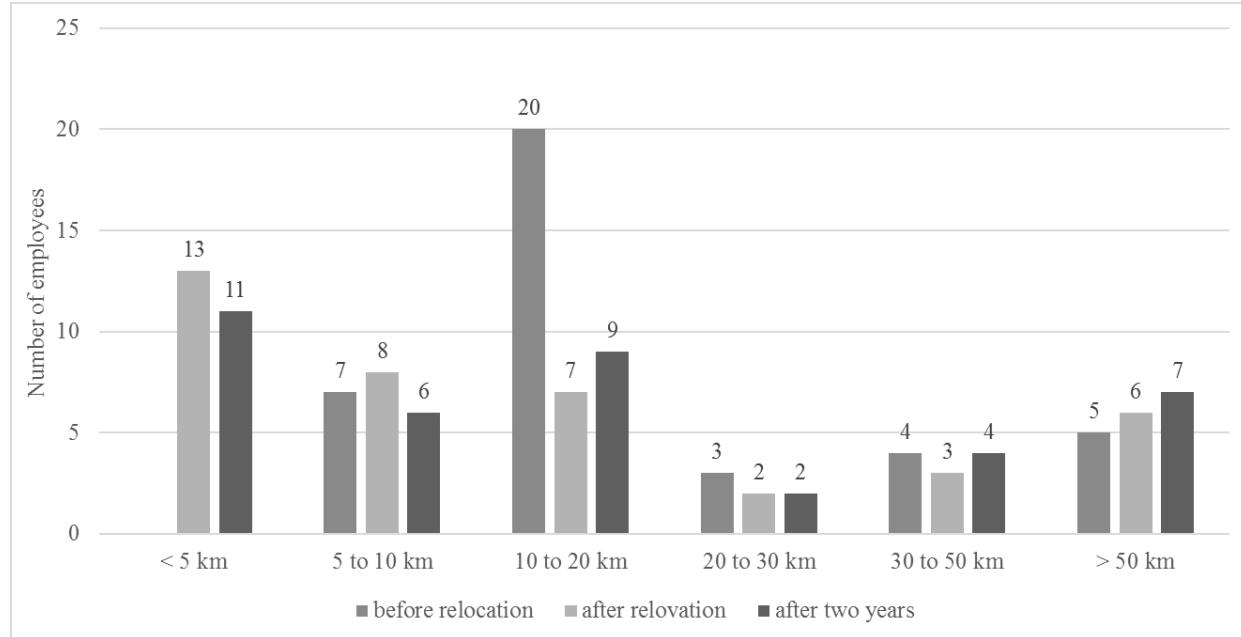
26 **TABLE 3 Short term shift in mode choice on the commuting trips**

		Main transport mean after the relocation				
		Car	Bicycle	Public Transport	By foot	Total
Main transport mean before the relocation	Car	5	9	7	0	21
	Bicycle	2	15	4	0	21
	Public Transportation	0	1	7	2	10
	Walk	0	1	0	0	1
Total		7	26	18	2	53

*Numbers given in the table are the quantity of employees

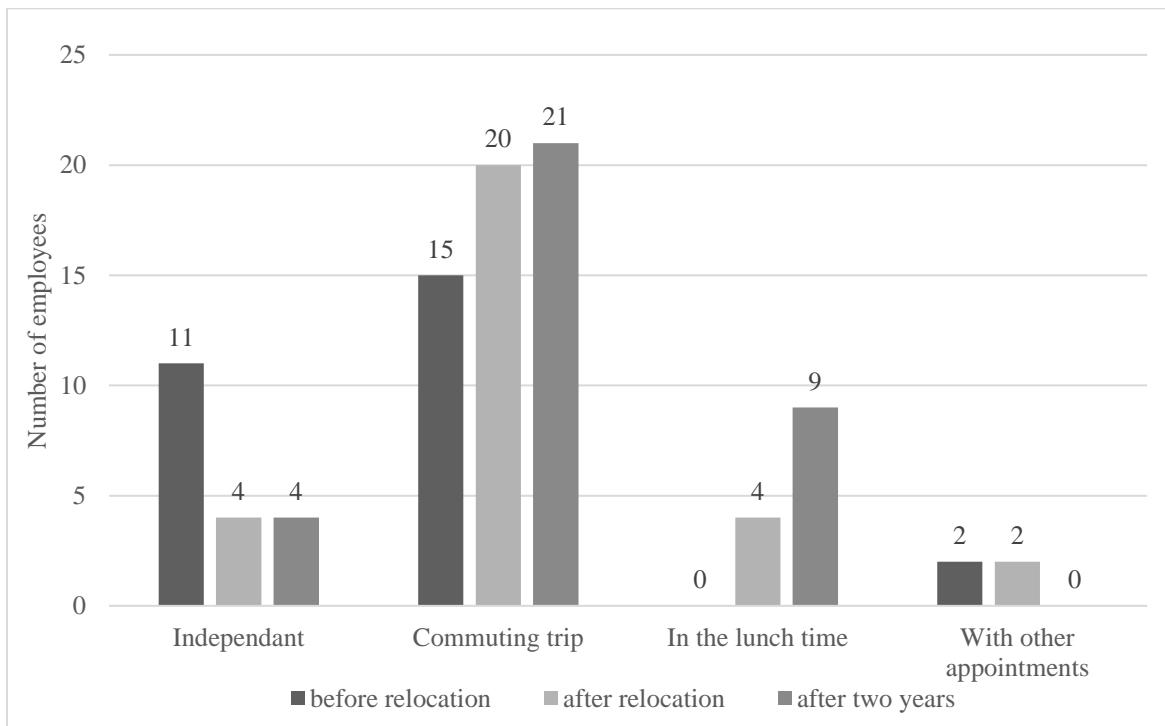
1 **Long term adaptations of the workplace relocation**

2 A further aspect of our analyses focuses on the second survey and the investigation of long
3 term adaptations due to the relocation. This survey was carried out two years after relocation with
4 n=39 participants who also participated in the first survey.

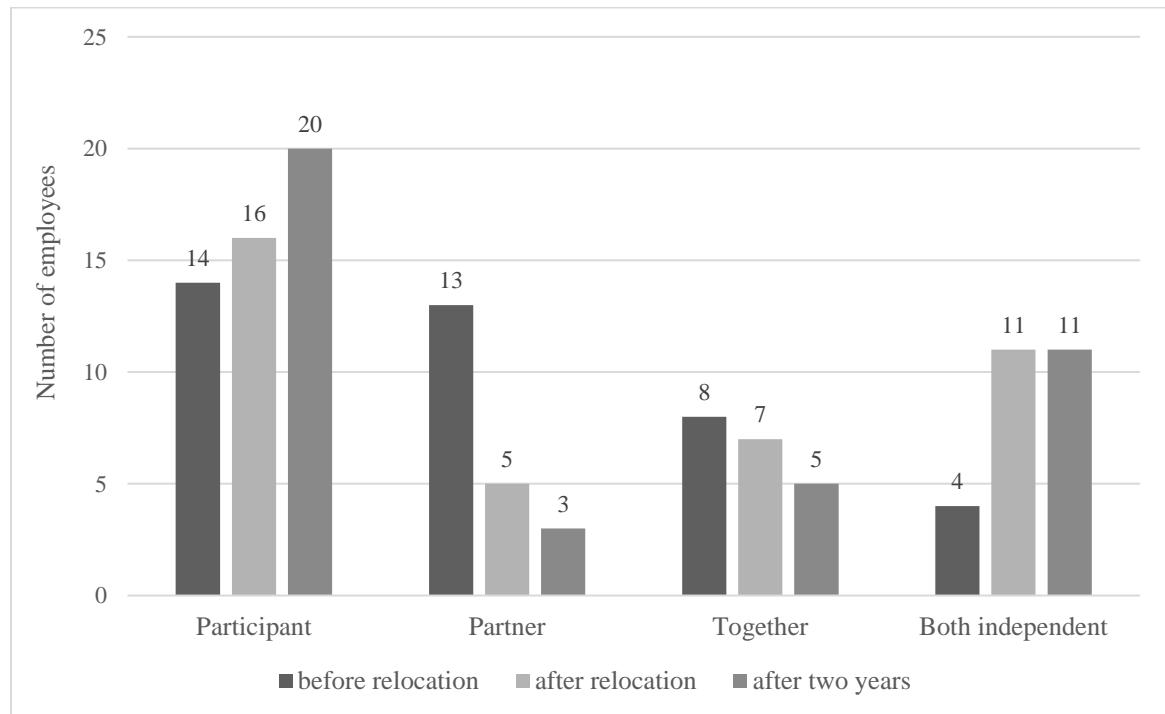

5 It is necessary to mention that two employees from the first survey changed their job since
6 they could not handle the change in their commute. The workplace relocation had a strong negative
7 effect on their household organization. Already in the first interview both employees had indicated
8 that they were likely to change their jobs due to negative impacts in their commute. Both
9 employees belonged to the group who lived near the old location and had arranged their whole life
10 (house, friends, kind and places of leisure activities) around the location of their workplace.

11 In the following, only the sample of those persons participating in both surveys is
12 considered, in order to observe the process of adaptation. The time period between the first and
13 the second survey wave is long enough to give a robust assessment of the process of adaptation.
14 Lally et al. (14) found that individuals need a duration of no longer than 254 days to strengthen
15 their behavior. The duration of this process depends on the individual. Using both surveys long
16 term adaptations can be investigated such as car ownership, travel behavior or household
17 organization. In his study – a relocation from the inner city to the suburb – Bell (4) reported an
18 increase in the car ownership of employees. In our study an opposite development would seem an
19 obvious assumption. Nevertheless, the findings also show an increase in car ownership, even
20 though car usage dropped after the relocation.

21 As we examined only the sample of persons who participated in both survey waves, it is
22 also possible to identify shifts in the modal use after long term adaptation processes. After two
23 years the bicycle usage drops from 51% to 41% (TABLE 2). Altogether this means that the
24 employees have gone through a kind of learning process e.g. in terms of mode choice, various
25 routes and different weather conditions and seasons and successively adapted their travel behavior.
26 This results in a well-tested, successively adjusted and optimized modal behavior.


27 Furthermore, travel distance changes between the three periods. Within the sample of 39
28 participants, travel distance increased from 24.9 to 27.29 kilometers within the two years after
29 relocation to the inner city. Adaptations in travel distance are shown in FIGURE 2. Before the
30 relocation none of the employees lived within a five kilometer radius from the old site. The main
31 part lived within a range of 10 – 20 kilometers from the old location (i.e. they lived in the city of
32 Karlsruhe). At the new location the number of employees living within a radius of less than 5
33 kilometers increased to over ten persons (i.e. approximately 25 %). After two years the number of
34 employees living in this radius decreased slightly. The employees were asked whether or not the
35 change of their residential location was linked to the workplace relocation, which all employees
36 denied. However, the geographical dispersion shows an indirect relation between workplace and
37 home location. Before the relocation most of the employees lived in the inner city or in the north
38 of Karlsruhe. The number of employees with residencies in the south of Karlsruhe was low. Due
39 to the workplace relocation to the inner city residential locations in the south became more

1 interesting for employees than in the past. An advantage of city center locations of a workplace is
 2 that more urban (or even suburban) districts are suitable for the employees due to reasonable travel
 3 distances and options to their workplace: Considerably more radial routes and options with nearly
 4 the same travel distance exist at a location in the center of a city. In addition, the more centrally
 5 located workplace also offered a considerable increase of available housing options. These factors,
 6 in the case of our study, led to an increased propensity to live in the south.



7 **FIGURE 2 Distribution of travel distances.**

8 We also analyzed the adaptations in multi-person households, an aspect which was neglected in
 9 previous studies. An important issue with regards to a households' task sharing are shopping
 10 activities. We distinguished between small and bulk purchases. For bulk purchases – which are
 11 however comparably rare – people usually use their car. In contrast, smaller shopping activities
 12 (e.g. bakery, newspaper kiosk, drugstore) happen more frequently, but need to be coordinated
 13 within the household as well. Before relocation, more employees organized these 'small' purchase
 14 activities with an extra trip from home, as such kind of shops were not available neither around
 15 the old location, nor on the commute route back home. Moreover, it was also impossible to make
 16 such smaller purchases during the lunch break. After the relocation more employees do their
 17 shopping on commuting trips or during lunch time (FIGURE 3a). Altogether this means a relief of
 18 other household members in terms of the need to carry out trips for smaller purchases. FIGURE
 19 3a also shows an adaptation process since the number of employees, who do their shopping on
 20 commuting trips or during lunch time, increased within the period between both surveys. This
 21 means employees have learned to make use of the amenities and characteristics of the new location
 22 with its many options in terms of shopping or even leisure activities.

a) Combination of shopping trips with other trips.

b) Responsibility for smaller purchases in multi-person households.

1 **FIGURE 3 Changes in the behavior for shopping activities (smaller purchases) after the**
2 **relocation.**

The possibility of increased shopping opportunities at the new location goes hand in hand with a shift in the responsibility for smaller purchases from the partners to the employees. Before the relocation, only 14 employees were responsible for smaller purchases in the households. After the relocation the number increases from 16 to 20 persons over the period of the adaptation process. At the same time the number of responsible partners dropped from 13 to 3. FIGURE 3b illustrates this adaptation. Another effect is that less couples do their smaller purchases together. In the case of bulk purchases an opposite effect is visible. Since more people use alternative modes than cars for commuting, a connection of these trips with bulk purchases is no longer possible due to limited transport capacities. This results in a growing number of independent trips for shopping.

An adaptation in the mode choice for purchases can also be observed within the survey. Especially for smaller purchases the share of the mode 'walk' increased during the process of adaptation. Before the relocation only 16 participants made their small purchases by foot (TABLE 4). At the new location the number increased to 28 people. The usage of car dropped to 3 persons. The share of bicycle usage regarding smaller purchases aligned to its previous level before the relocation. A reason might be that the use of a bicycle already allowed for flexibility to integrate small shopping activities in the 'before' situation.

TABLE 4 Changes in the mode choice for the shopping activities

	before relocation	after relocation	after two years
<i>Means of transport (in number of employees)</i>			
smaller purchases			
Car	9	3	3
Bicycle	26	29	26
Public Transportation	3	4	2
Walk	16	23	28
bulk purchases			
Car	26	24	23
Bicycle	8	7	7
Public Transportation	0	0	0
Walk	5	6	7

To evaluate the success of a workplace relocation regarding travel behavior it is important to ask participants about their level of contentedness. The first survey also included a retrospective question about participants' contentedness concerning travel behavior to the old location. Directly after the move 22 participants claimed to be more satisfied than before while 8 were less satisfied. After the process of adaptation there was a little shift. 7 participants were less satisfied than immediately after the relocation. This decline may be caused by the shift in the residential relocation of some of the employees between both survey waves. Last but not least, for two employees the changes in daily life caused by the relocation were too difficult to handle. Their dissatisfaction with the new commute caused them to change their workplace. Overall, most of the participants were rather satisfied with their commuting situation after the relocation. This leads to

1 the conclusion that the new location offers employees more options to organize their commuting
2 trips and make them more independent from the car.

3 **CONCLUSION**

4 We have shown that office relocations affect travel behavior and household organization of
5 employees and their household members as well. The methodological approach with two survey
6 waves within a time period of two years after relocation illustrates changes not only immediately
7 after the relocation but also the adaptations in behavior and the learning process. The instrument
8 records short term and long term changes caused by relocations. In contrast to existing studies on
9 office relocations we ask employees a second time two years after the move in order to capture the
10 entire adaptation process. Furthermore, the approach uses only two survey waves which cover
11 three time periods, by introducing retrospective elements into the survey. We survey only the
12 'typical' behavior in order to reduce the intrapersonal variance of travel behavior and to omit
13 randomness. Most existing studies use trip diaries to report the travel of one day, which however
14 results in large intrapersonal variance. Our approach results in a reduced overall variance, which
15 is more suitable for the analysis of smaller samples.

16 Our methodological approach was tested in a case study monitoring the relocation of ITAS.
17 Firstly, the study shows significant changes in mode choice, travel time and travel distance for
18 employees. The relocation from a suburban location to the inner city results in a shift from car to
19 bicycle and public transportation. These changes are caused by the central position of the new
20 location with good accessibility to different modes but poor parking facilities. In addition, a
21 significant number of employees already lived in Karlsruhe before the relocation. The relocation
22 thus gives them an advantage for their travel distance. The study also shows adaptations of the
23 travel behavior of employees' partners. The relocation led to a decrease in average travel time and
24 distance for employees. The study also shows a subsequent adaptation within two years after
25 relocation. For example, bicycle usage declined by approximately 10% after two years. Moreover,
26 average travel time and distance increased slightly. Secondly, the relocation resulted in changes in
27 the contentedness of employees with their commuting trips. After the relocation participants were
28 more satisfied with their commuting situation than before. The findings suggest a positive impact
29 on the subjective perceptions regarding travel behavior. Nevertheless, this does not apply for each
30 single person. Due to changes in their daily life caused by the relocation, two employees decided
31 to change their jobs. Finally, we demonstrate impacts on the household organization of the
32 employees. Adaptations in the organization of smaller purchases relieves partners in multi-person
33 households since employees have good access to different shopping facilities in the inner city and
34 can combine the smaller purchases with commuting. After relocation we also observed a process
35 of adaptation with regards to the responsibility for purchases. The number of employees who are
36 responsible for that kind of purchases increased over time. This caused a shift in the modal split
37 from car to bicycle or walking on the shopping trips for smaller purchases.

1 In general, the study illustrates the importance of a survey with three survey and analysis
2 periods for the case of relocations. This approach enables the observation of the whole process of
3 adaptation as well as impacts on employees and their households caused by a relocation. Based on
4 the findings of our study it is also recommendable to observe effects on households in future
5 studies. Our study shows that impacts of relocations affect not only employees, but also household
6 members. A further adjustment of the method is pursued. The questionnaire needs to be adapted
7 and sharpened. Furthermore, it is advisable to include questions about attitudes to different modes
8 or to environmental issues. If major reorganizations take place in the event of the relocation, we
9 recommend employers to assist employees in the process by providing information and other
10 amenities. Options may be the use of an in-house mobility management or making refrigerators
11 available for the staff so that employees may benefit from the amenities of the central location
12 with its different shopping opportunities.

13 **ACKNOWLEDGEMENT**

14 We thank Sebastian Schweiger and Thilo Fröhlich for their valuable assistance in designing and
15 implementing the two survey waves. Our thanks for partial funding of our research goes to the
16 'Program-oriented Funding' of the Helmholtz Association of German Research Centers.

17 **REFERENCES**

- 18 1. Ahlers, E., F. Oez, and A. Ziegler. *Company relocation: the consequences for employees. An*
19 *analysis of the WSI works council survey*. Wirtschafts- und Sozialwiss. Inst, Düsseldorf,
20 Mar. 2007.
- 21 2. Holz-Rau, C., and J. Scheiner. Mobilitätsbiografien und Mobilitätssozialisation: Neue
22 Zugänge zu einem alten Thema. In *Räumliche Mobilität und Lebenslauf*, pp. 3–22.
- 23 3. Verplanken, B., and W. Wood. Interventions to Break and Create Consumer Habits. *Journal*
24 *of Public Policy & Marketing*, Vol. 25, No. 1, 2006, pp. 90–103.
- 25 4. Bell, D. A. Travel impacts arising from office relocation from city to suburbs.
26 *Transportation*, No. 18, 1991, pp. 239–259.
- 27 5. Cervero, R., and J. D. Landis. Suburbanization of jobs and the journey to work. A submarket
28 analysis of commuting in the San Francisco Bay Area. *Journal of Advanced Transportation*,
29 No. 26, 1992, pp. 275–297.
- 30 6. Hanssen, J. U. Transportation impacts of office relocation. A case study from Oslo. *Journal*
31 *of Transport Geography*, No. 3, 1995, pp. 247–256.
- 32 7. Malone-Lee, L.-C., L. L. Sim, and L. Chin. Planning for a more balanced home-work
33 relationship: The case study of Singapore. *Cities*, Vol. 18, No. 1, 2001, pp. 51–55.

- 1 8. Malone-Lee, L.-C., L. L. Sim, and L. Chin. Integrating land use and transport planning to
- 2 reduce work-related travel: a case study of Tampines Regional Centre in Singapore. *Habitat*
- 3 *International*, Vol. 25, No. 3, 2001, pp. 399–414.
- 4 9. Steinbach, L. *Mobilitätsverhalten an der Wirtschaftsuniversität Wien. Vergleich zwischen*
- 5 *Studierenden und Mitarbeitern unter Berücksichtigung des Standortwechsels*, Wien, 2008.
- 6 10. Vale, D. S. Does commuting time tolerance impede sustainable urban mobility? Analysing
- 7 the impacts on commuting behaviour as a result of workplace relocation to a mixed-use
- 8 centre in Lisbon. *Journal of Transport Geography*, Vol. 32, 2013, pp. 38–48.
- 9 11. Walker, I., G. O. Thomas, and B. Verplanken. Old Habits Die Hard. Travel Habit Formation
- 10 and Decay During an Office Relocation. *Environment and Behavior*, Vol. 47, No. 10, 2015,
- 11 pp. 1089–1106.
- 12 12. Meland, S. *Offices Moving Down Town - Effects on Travel behavior*. Association for
- 13 European Transport (AET), Trondheim, 2001.
- 14 13. Sprumont, F., F. Viti, G. Caruso, and A. König. Workplace Relocation and Mobility
- 15 Changes in a Transnational Metropolitan Area. The Case of the University of Luxembourg.
- 16 *Transportation Research Procedia*, Vol. 4, 2014, pp. 286–299.
- 17 14. Lally, P., C. H. van Jaarsfeld, H. W. Potts, and J. Wardle. How are habits formed: Modelling
- 18 habit formation in the real world. *European Journal of Social Psychology*, Vol. 40, No. 6,
- 19 2010, pp. 998–1009.