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Abstract 

The main advantages of DCDC-specimens are their completely stable 

crack extension properties and very high path stability due to the 

strongly negative T-stress term.  

Unfortunately, problems of DCDC tests can be identified by comparing ex-

perimental results that show for different materials (silicon nitride, glass) 

deviations from the results to be expected by 2-dimensional FE modelling 

as usual done in literature.  

Experimental calibrations on silicon nitrides and mixtures of silicon nitride 

and silicon carbide resulted in modified relations deviating from FE-results 

in literature.  

As a possible source for the differences of measurements and 2-D-FE 

results, we identified the influence of Poisson’s number. This parameter 
obviously causes deviations between straight-crack assumption in FE-

modelling and observable curved crack fronts in the experiments. 

In order to avoid specimen buckling we also used short specimens of 

roughly half length. This may slightly affect the stress intensity factors.  
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1. Introduction  

The “double cleavage drilled compression” (DCDC) specimen is a rectangular bar 
with a circular hole in its centre that is loaded by compressive stresses p at the end 

faces (Fig. 1). The main advantages of DCDC-specimens, responsible for increasing 

popularity, are the completely stable crack extension after spontaneous crack initiation 

due to the decreasing stress intensity factor with increasing crack length and a very 

high path stability due to the strongly negative T-stress term. This specimen, predomi-

nantly applied to glasses and polymers can for instance be used for high-strength 

materials as silicon nitrides and should allow R-curve measurements KR(a) over large 

crack extensions a.  

The most popular 2D stress intensity factor was determined by He et al. [1] via FE 

with the result of  
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valid for aH (see also [2, 3]).  

Extensive 2D-FE-computations were carried out by Pallares et al. [4] expressed similar 

to eq.(1a) with quadratic terms in H/R included 
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with the coefficients: c0 =0.3156, c1 =0.7350, c2 =0.0346, c3 = -0.4093, c4 =0.3794, 

c5= -0.0257. This relation is limited by H/R<a/R<L/R-2H/R. In the following consid-

erations we will use eq.(1b) as the actually best FE-solution. 

 

Fig. 1 The DCDC specimen (geometric data). 

There are several problems in using the standard solution, eq.(1): 

 Stress intensity factor solutions for the DCDC specimen are available in literature 

for the case of straight crack fronts, i.e. for 2dimensional problems. Real crack 

fronts are of course never straight apart from the hypothetic case of a material with 

Poisson ratio of =0.  

 Finite Element programs are usually applied to linear problems, where the result is 

proportional to the applied loads. In the DCDC-specimen this linearity is violated 

especially for long cracks as has been stated by Plaisted et al. [5] and Nielsen et al. 
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[6]. These authors observed large COD at the crack mouth; therefore, they didn’t 
use the solution by He et al. [1]. The stress intensity factor was obtained by per-

forming FE computations directly for the experimentally observed loads.  

 Moreover, with the high forces for silicon nitrides and the usual slender samples, 

there is a high risk of buckling. Therefore, we decided to use shorter samples for 

very high loading and to perform experimental calibrations on them that include the 

effect of crack-front curvature automatically.  

2. Experimental calibration 

2.1 Tested materials 

The materials tested were a hot isostatically-pressed silicon nitride with 8.5 wt% 

Lu2O3 and 1.93 wt% MgO (denoted as MgLu), a silicon nitride ceramic with 2 wt% 

MgO and 5 wt% Y2O3 (material MgY), and commercial silicon nitrides with Y2O3 and 

Al2O3 content ((1) SL200 BG from CeramTec, Plochingen, Germany, (2) from Sumi-

tomo, Japan). These materials were chosen since they showed constant crack resis-

tance KR already after 250 µm crack extension as can be concluded from R-curves in 

[7,8]. Figure 2 represents the R-curves obtained by measurements on edge-notched 

bending bars. The plateau values of these R-curves KR,max have to be interpreted as the 

fracture toughness KIc for toughness tests with the SEVNB-specimen (Single Edge 

Vee-Notched Beam). These values are compiled in Table 1.  

In addition we carried out DCDC-measurements on SN-ceramics containing different 

portions of SiC (0, 10, 20, 30, 40, and 100 vol%).  

 

  

Fig. 2 R-curves for three silicon nitrides measured with edge-notched bending bars [7,8]. Results for 
silicon nitrides containing MgO+Lu2O3, MgO+Y2O3, and two Y2O3+Al2O3 ceramics (1: CeramTec, 

Plochingen, 2: Sumimoto, Japan). 
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Material KIc 

MgY-SN 7.7 MPam 

MgLu-SN 7.0 MPam 

AlY (1) 5.7 MPam 

AlY (2) 6.7 MPam 

Table 1 Toughness data from bending tests. 

Measurements on glass were performed on a soda-borosilicate glass by Cai et al. [9] 

and on fused silica by Michalske et al. [10], both of “standard size” W/H=10. Since the 

applied loads were not reported by Cai et al. [9], we dealt predominantly with the data 

by Michalske et al. [10].  

2.2 Curved crack contour and effective crack length 

In-situ measurements on non-transparent materials as for instance silicon nitride 

provide the actual location where the crack terminates the surface. A crack surface is 

shown in Fig. 3a including an additional crack front marked by cyclic loading at a 

reduced upper stress level. Since the crack front is curved (see Fig. 3a), the 

measurement at the surface is not necessarily equivalent to the length of the straight 

crack, needed in eq.(1). This crack length denoted as a1 is indicated in Fig. 3b. 

Figure 3c shows markings on a fractured surface of soda-lime glass obtained by partial 

unloading in subcritical crack growth tests. In measurements on glass and PMMA, the 

crack length is identified with the length a2 as is present in the specimen centre. Using 

energy release rate considerations, the length of the related 2-dimensional crack would 

be that for a straight crack showing the same area as the curved one. The distance h is 

shown in Fig. 3d as a function of Poisson’s ratio . 

For the crack front described by a part of circle, the area S results from elementary 

geometry as 
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Consequently, the related crack length is  

 hBSaaaa
3
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with h0.35 mm for the crack in the SN-ceramic, Fig. 3a. Curve fitting of the data in 

Fig. 3d gives under the assumption of self-similar crack fronts  

 2548.0155.0  
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Fig. 3 a) Curved crack fronts in SN, first front marked by cyclic unloading, b) curved crack front 
replaced by a straight effective crack (dashed red line), c) crack fronts in soda-lime glass obtained in 

subcritical crack growth tests by partial unloading, d) length h of Fig. 3b versus Poisson’s ratio .  

2.3 Experimental results 

The relevant specimen data are compiled in Table 2. The Young's modulus was deter-

mined by measuring the resonance frequency. Poisson’s ratio for the SN-SiC materials 

was computed by application of the linear mixing rule with =0.28 for the SN and 

=0.16 for SiC. 

The results from [10], directly compiled in form of a Table, are shown in Fig. 4c as the 

product of end-face pressures p=|| and R. Linear fitting of the linear parts of the de-

pendency in the range of 3<a/R<10 by  
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results in the parameters A1 and A2 of Table 3. 

Material B/(2H) R (mm) H/R E (GPa)  

Silica 0.867 1 3.75 69 0.16 

Borosilicate glass 0.587 0.795 3.75 62.8 0.20 

MgY-SN 0.816 0.522 3.21 320 0.28 

MgLu-SN 0.705 0.530 3.81 320 0.28 

AlY (2) 0.852 0.540 3.23 320 0.28 

SN+0% SiC 0.953 0.485 4.11 303 0.28 

SN+10% SiC 0.992 0.527 3.78 308 0.272 

SN+20% SiC 0.992 0.520 3.80 319 0.264 

SN+30% SiC 0.981 0.537 3.72 331 0.256 

SN+40% SiC 0.979 0.521 3.81 327 0.248 

SiC 0.830 0.538 3.70 411 0.16 

Table 2 Data for DCDC-specimens. 

 

Material A1=(||R)a0 

(MPam) 

Slope A2 

(MPam) 

KIc,meaured 

(MPam) 

KIc eq.(6a) 

(MPam) 

KIc eq.(6b) 

(MPam) 

Silica 1.62 0.246 0.74 0.766 0.807 

MgY-SN 12.47 1.451 7.7 6.89 7.29 

MgLu-SN 14.42 1.634 7.0 6.71 7.06 

AlY (2) 11.7 1.253 6.7 6.42 6.80 

SN 11.59 1.319 - 5.00 5.24 

SN+10% SiC 10.23 1.191 - 4.80 5.05 

SN+20% SiC 11.30 1.274 - 5.27 5.55 

SN+30% SiC 11.23 1.14 - 5.35 5.64 

SN+40% SiC 9.95 1.165 - 4.63 4.87 

SiC 4.93 0.675 - 2.36 2.49 

Table 3 Results from Figs. 4a-4c and fracture toughness from eq.(6a) and eq.(6b). 

For the Si3N4 materials, we used specimens with the dimensions 2W=40 mm, H=2 mm, 

B=4 mm and R0.5 mm. For high loads we used short specimens with dimensions 

2W=25 mm, H=1.6-2 mm, R0.5 mm, and B3 mm in order to avoid any possible 

buckling effect. During load application the crack length was measured at the side 

surface using an optical microscope with large focal length. From these data, the 

effective length was determined via eq.(3). Results are plotted in Fig. 4b. Figure 4c 

represents results for the SN-SiC-ceramics. For a first comparison, the result obtained 

on short DCDC-specimens of MgLu-SN at a comparable value of H/R=3.8, is plotted 

in Fig. 5a as the red circles. Although these data differ strongly in slope, the straight 

parts of the data show the same extrapolated value at the origin, a=0. 
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Fig. 4 Applied end-face pressure times R vs normalized crack length. 

2.4 Normalized stress intensity factor and toughness 

In literature the geometric function is sometimes determined experimentally, e.g. [9] 

and [10] for glasses, with known fracture toughness KIc by using the so-called nor-

malized toughness Knorm 
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linear plots. The dash-dotted line in Fig. 5a represents eq.(1a) and the solid line eq.(1b) 

both plotted for H/R=3.75. The ordinate of Figs. 5a, 5b and 5c is given in terms of the 

reciprocal “normalized toughness” 1/Knorm. The values of Knorm at a/R=0 agree very 

well with 1/(F) from eq.(1b), as shown by the squares. Sufficient agreement is also 

visible for the eq.(1a) as indicated by the triangles. The dependencies 1/Knorm (a/R) are 

sufficiently linear only for a/R10. 

 

         

 

Fig. 5 a) Reciprocal normalized toughness vs. normalized crack length a/R from DCDC-tests for 
H/R3.75; Glasses from literature (blue and black), SN (red); b) results on SN-materials with different 

ratios of H/R, c) SN-ceramics with varying SiC content, d) fracture toughness KIc from eq.(6b) 
compared with measurements from bending tests. 
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For longer cracks the measured data deviate from the initial linear behaviour. This can 

be seen for the glasses and the MgY-SN that already deviates for a/R>8. From the 

conclusions by Plaisted et al. [5] and Nielsen et al. [6] the deviations of real K-values 

from FE-results should disappear for small crack extensions. Therefore, the values 

extrapolated to a/R0 should match the FE-solution. 

Similar to eq.(4a), we can express the straight lines in Figs. 5a-5d by 

 
R

a
BB

K

R

Ic

21 


 (4b) 

with the toughness from Column 5 in Table 3. 

The fracture toughness KIc may be obtained from eq.(1a) as 
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Results of both equations are given in Table 3.  

A comparison with measured toughness data is shown in Fig. 5d. In this plot the 

toughness computed from the DCDC-data is plotted versus the results from Fig. 2 and 

data from [10]. The dashed-dotted line suggests KIc,DCDC=KIc,bend.  

 
Material Slope B2 

(experimental) 

Slope B2 

Eq.(1b) 

Slope ratio  C 

Column 
2/Column 3 

MgY-SN 0.199 0.307 0.648 

MgLu-SN 0.231 0.374 0.618 

AlY (2) 0.184 0.309 0.595 

SN 0.255 0.404 0.631 

SN+10% SiC 0.243 0.371 0.655 

SN+20% SiC 0.228 0.373 0.611 

SN+30% SiC 0.202 0.365 0.554 

SN+40% SiC 0.242 0.374 0.647 

SiC 0.271 0.363 0.748 

Table 4 Slopes of the reciprocal normalized toughness for a/R8, KIc from eq.(6b).  

From Table 4 it can be seen that the slopes of the reciprocal normalized stress intensity 

factors, Fig. 5, deviate from the FE results for large cracks. At low loads as appear for 

the tests on glasses, the experimental slopes deviate by about 15% from the theoretical 

results. The deviations are clearly larger at high loads, namely  
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(Standard Deviation SD in parentheses). Based on the results in Table 4, we suggest 

use of the geometric function 
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with the coefficients of eq.(1b). If the solution by He et al. [1] is preferred because of 

its popularity and simpler expression, we suggest 
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The crack resistance curves for the silicon nitrides, computed via eqs.(8) and (9) are 

shown in Fig. 6 as the circles. The deviation from the horizontal indicate the effect of 

the curved results in Fig. 4b. The dash-dotted lines represent the toughness computed 

from eq.(6a) and (6b). 

 

 

Fig. 6 Crack resistance curves for silicon nitrides (circles) and KIc from Table 3 (dash-dotted lines), a) 
evaluation via eq.(8), b) evaluation via eq.(9). 
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front is curved for a 3-dimensional problem yielding deviating stress intensity factors. 

In the general case, 0, the crack terminating angle  (insert in Fig. 7) is [11] 

   8.3890  (10) 

Only for a hypothetical material with a Poisson number =0 the crack front would be 

straight even in the 3-dimensional case.  

Therefore we plotted in Fig. 7 the slope ratio C in Table 4 versus the Poisson number . 

The correlation may be described by the linear expression 

 37.11C  (11) 

 

    

Fig. 7 Slope ratio C as a function of Poisson’s number; straight line fit by eq.(11), insert: crack 
terminating angle. 
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The problem is schematically illustrated in Fig. 8. The mechanical problem of the 

estimation of the bending moment Mb, caused by the pressure force F in the internally 
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of length a with rigidly clamped ends. Figure 8b shows the left part of the specimen 

with length a. In Fig. 8c the pressure distribution is replaced by a single force in the 

distance b from the line in which the force at the ends is acting 
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where x stands for the distance from the line in which the end forces act. A first 

approximation of the bending moment in the bar, )1(
bM , is simply given by 

 bFMb )1(  (13) 

This bending moment Mb must result in a deflection with the maximum displacement 

 in the notch region that is proportional to the moment and inversely proportional to 

Young’s modulus E. Due to this displacement an additional moment Mb is generated, 

Fig. 8d. 

 

 

 
Fig. 8 Bending moment in a half of a DCDC-specimen that contributes to the stress intensity factor, a) 
full specimen with stress distribution, b) left half of the specimen with reduced length of a and rigidly 

clamped ends, c) compressive stresses replaced by the resultant acting parallel to the length axis in 
distance b, d) increased moment due to the displacement . 

The displacement  is available from FE-computations by He et al. [1]. Figure 9 shows 

results of COD at the crack mouth. The curves in Fig. 9 can be approximated for 

a/R>4 by straight lines that we fitted by the relation 
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appropriate for 2.5H/R. Consequently, the bending moment, Mb, and the stress 

intensity factor, KMb, are 

 )()(   bbFMK b  (15) 

with a numerical coefficient  replacing the proportionality of eq.(14). Equation (15) 

makes clear that K is no longer linear for large values of /E, i.e. for large a/R. This 

effect is visible in some of the curves in Fig. 5 at about a/R>8. 

   
 Fig. 9 COD at the crack origin as a function of crack length. 

 

Conclusions:  

 The 2-dimensional K-solutions from literature, obtained on the basis of 2-

dimensional FE computations, do not sufficiently describe the real 3D-problem. 

 The slopes of the normalized reciprocal stress intensity factor, Fig. 5, depend 

obviously on the Poisson’s ratio . 

 For the computation of stress intensity factors for DCDC-tests, the effect of 

deviating slopes in the load vs. crack length curves should be included. 

 Since nonlinearities for large cracks occur, the evaluation including only a 

linear dependency of a/R should be limited by a/R<8. 
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