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Abstract: Revisiting the fast fermion damping rate calculation in a thermalized QED and/or
QCD plasma in thermal equilibrium at four-loop order, focus is put on a peculiar perturbative
structure which has no equivalent at zero-temperature. Not surprisingly, and in agreement with
previous C?-algebraic analyses, this structure renders the use of thermal perturbation theory more
than questionable.
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1. Introduction

As quoted long ago by Pisarski [1], “It’s really surprising how difficult it is to calculate damping
rates in hot gauge field theories”.

Even though a so-called Resummation Program of Hard Thermal Loops (that are leading
order thermal fluctuations at high temperature, hereafter denoted by RP) has been devised to
obtain gauge-invariant complete results to damping rates (and has succeeded to some extent [2–4]),
serious difficulties have constantly bounced back and forth within the infrared sector of hot gauge
field theories.

Literature testifies of two major obstructions to the Resummation Program that have become
textbook material [5]. The first one was discovered about the same time as the Resummation Program
itself [6], while using the latter in the situation to be described in the next section. The second
obstruction was discovered a few years later, while using the Resummation Program to evaluate the
soft photon emission rate out of a Quark–Gluon Plasma in thermal equilibrium [7]. In both situations,
the hot gauge theories infrared sector was recognized to be at the origin of two singular results.

In the latter case, the singular result reads (D = 4 + 2ε),

Cst

ε

∫ d4P
(2π)4 δ(Q̂·P) (1− 2nF(p0, T)) ∑

s=±1,V=P,P′
π(1− s

v0

v
)βs(V) , (1)

where βs(V) is the space-like part of the fermionic spectral densities, and V = P, P′ with P′ = P +

Q, [5]. The explicit Lorentz invariance breaking appears in the statistical factor nF(p0, T) due to its
dependence on T, which associates with a preferred rest frame. In effect, in the context of quantum
field theories, temperature at thermodynamical equilibrium can be implemented in a covariant way by
means of a Lorentz 4-vector, β, of squared norm β2 = (1/T)2. (We work in units where kB, Boltzmann’s
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constant, is set equal to unity.) Only in the reference frame, where the plasma is at rest and in thermal
equlibrium such that u = (1,~0) (u the 4-velocity of the plasma) does the invariant (u · β)−1 = T allow
for the interpretation of a temperature. The singularity in Equation (1) is due to the following double
entwined angular integrals. With K̂, K̂′, the two light-like 4-vectors (1, k̂) and (1, k̂′),

W(P, P′) = ∑
s,s′=±

∫ dK̂
4π

∫ dK̂′

4π
K̂·K̂′ K̂·P̂s K̂′ ·P̂′s′ + K̂·P̂′s′ K̂′ ·P̂s − K̂·K̂′ P̂s ·P̂′s′

(K̂·P + iε)(K̂·P′ + iε)(K̂′ ·P + iε)(K̂′ ·P′ + iε)
,

which, to our knowledge, computers cannot evaluate. An estimated singular behaviour of W(P, P′) was
accordingly retained, giving rise to the singular result above, whereas a full, exact and cross-checked
calculation of W(P, P′) displays a series of mass singularities of strengths ε−1 and ε−2, which exactly
cancel out among themselves, leaving a regular result [8–10].

In the former case, the current revisitation of the problem will conclude that its singular result has
been induly derived as well.

As will be stated in the conclusion of this analysis, it turns out that the issue of infrared
singularities has long masked a more fundamental difficulty, which appears to be inherent to the
perturbative approach and has been loosely identified within the context of C?-algebraic analyses [11].
Elaborating on this fundamental difficulty is the objective of the current paper, organized as follows.

Section 2 is a quick reminder of the historical fast fermion damping rate calculation in
a thermalized quantum electrodynamics (QED) or quantum chromodynamics (QCD) plasmas.
The notations to be used throughout the article, as well as the process basic diagram are given.

Section 3 accounts for the photon polarization tensor at two-loop order, or equivalently, fast muon
damping rate at three loops. The leading order contributions are retained in the limit of kµ/T � 1
where kµ is a component of the internal photonic line, K. This is essentially technical, with some overall
detailed balance examples of infrared (mass) singularity compensations displayed. The important
point is comprised within the simple Equation (55), which expresses the leading form of the photon
polarization tensor at two-loop order.

Section 4 announces the point of the current paper, the peculiarity of the thermal case,
by contrasting it to the customary T = 0 situation, as an independent resummation of leading
fluctuations occurring at momentum scale e2T is shown to be necessary.

While it is believed that the ultrasoft scale is terminal, receiving contributions from higher number
of loop diagrams, a three-loop evaluation of the photon polarization tensor appears to display an
interplay of thermal and vacuum fluctuations leading to contributions of dominant order and calling
for another independent resummation along the internal photonic line. Revealed by a high enough
number of loop calculation, these leading mixed fluctuations of the photonic internal line take place at
momentum scale e3T, are gauge invariant and contribute to the fast muon damping rate being on the
same footing as the two first ones, at soft (eT) and ultrasoft (e2T) momentum scales. This is what is
dealt with in Section 5.

Since only the contributions attached to the longitudinal degree of freedom of the internal photonic
line were considered in the previous sections, the contributions of transverse degrees are examined
in Section 6 so as to make sure that there is not a full annihilation of the contributions due to the
longitudinal leading order mixed fluctuations.

Section 7 is a discussion of our results in the light of previous C?-algebraic analysis. The relevance
of a perturbative approach bare or effective is questioned while possible non-perturbative alternative
approaches are mentioned. Bare perturbation theory admits the same diagrammatic expansions
as customary T = 0 quantum field theories, but now subject to the T 6= 0-free field propagators
and vertices [5].
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2. A Reminder of the Fast Muon Damping Rate Issue

The energy loss of a heavy fermion, a muon for example, propagating through a QED plasma
is considered. It is assumed that the heavy muon has mass M much larger than the temperature T,
and that, travelling through the plasma, it retains momenta p� T and thus is not thermalised. In the
plasma, electrons (positrons) are assumed to be massless, and, for the muon, energy loss is induced by
Compton scattering off photons and Coulomb scattering off electrons and positrons of the plasma.

In the framework of real-time thermal perturbation theory of QED, at temperature T, the damping
rate is related to the fermionic self energy Σ(P) by the relation [5,12],

γ(E,~p, T) = − 1
4E

Tr ((/P + M) Im Σ(p0,~p, T))|p0=E
. (2)

The notation K = (k0,~k) will be used throughout. In order to get rid of inessential complications,
it has been customary and convenient to assume the following ordering relations,

E, p = |~p| � M� T � eT . (3)

In view of p/
√

p2 + M2 ' 1, in effect, Equation (3) allows one to take the high velocity limit
v = p/E = 1 in coincidence with the fermion mass shell limit, as in the massless case. We assume zero
chemical potential and a high temperature, which is much bigger than the electron, positron or quark
masses. One gets

γ(E,~p, T) = − 1
4E

∫ d4K
(2π)3 δ+

(
P′2 −M2

)
D+

µν(k0,~k, T)Tr
(
(/P + M)γµ(/P′ + M)γν

)
, (4)

where P′ = P + K, as depicted on Figure 1. In Equation (4), the δ+ distribution is the muon cut
propagator taken at T = 0, since, as stated above, this real particle is not at thermal equilibrium with the
QED plasma. The function D+

µν instead is the thermalized cut photon propagator in Coulomb gauge.
Whenever the RP is used, quantities are denoted with a symbol ?, and one has

?D+
µν(k0,~k, T) = (1 + nB(k0, T))

(
P L

µν(K)
?ρL(k0,~k, T) + PT

µν(K)
?ρT(k0,~k, T)

)
. (5)

(E,p) (E,p)

Q+K

Q KK

p+K

Figure 1. A two-loop contribution to γ(E,~p). The polarization tensor Π(1)(k0, k) is the Hard Thermal
Loop (HTL) one from Equation (12).

The operators P L,T
µν are the 4D- longitudinal and transverse projectors [5], and ?ρT,L the transverse

and longitudinal spectral densities of the effective propagator. Eventually, nB(k0, T) is the ordinary
Bose–Einstein statistical factor, but in the R/A- real-time formalism being used [5], without absolute
value prescription, for example, nB(p0, T) = 1

ep0/T−1
.
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Summing Equation (4) over the angles by taking advantage of the distribution δ+ one gets,
with x = k0/k and k = |~k|,

?γ(E, p, T) =
e2

2πv

∫
k2dk

∫ +v

−v

dx
2π

(1 + nB(kx, T))
{
?ρL(kx, k, T) + (v2 − x2)?ρT(kx, k, T)

}
. (6)

Next, since momentum K is soft, on the order of eT, one expands the statistical factor and writes,

?γ(E, p, T) =
e2

2πv

∫
k2dk

∫ +v

−v

dx
2π

(
T
kx

+
1
2
+O( kx

T
)

){
?ρL(kx, k, T) + (v2 − x2)?ρT(kx, k, T)

}
. (7)

The most infrared dangerous piece of the Bose–Einstein factor expansion is the term T/kx which
is hereafter retained. Appealing to the energy sum rule,

∫ +1

−1

dx
2π

?ρT(kx, k)
x

' 1
k2 −

3
2m2 , (8)

where m is defined below, Equation (14), one obtains, out of the transverse part, the well known mass
shell singular result,

?γ(E, p, T)|v=1
=

e2T
2π

∫ kM

km

dk
k

+ regular, km =
|E−

√
p2 + M2|
2v

' E|1− v|
2v

, (9)

where the logarithmic diverging behaviour by the fermion mass shell is manifest. The upper bound,
kM, is some conveniently choosen intermediate scale between the soft, O(eT), and hard O(T) scales,
usually the scale of order

√
eT. The ?ρL contribution, instead, is regular, the relevant sum rule being,

∫ +1

−1

dx
2π

?ρL(kx, k, T)
x

' 2
5m2 . (10)

All of the proposed solutions rely on one or another use of the Resummation Program, that is
a one-loop resummation of leading order thermal fluctuations. In Refs. [13,14], for example,
a resummation of multi-loop exchanges is performed à la Bloch–Nordsieck, within the one-loop effective
theory provided by the Resummation Program. This approach, adequate in view of the ordering
relation (3), yields a finite, regular damping rate, both in QED and QCD. Calculations, though,
clearly differentiate the abelian QED, from the non-abelian case of QCD, whereas both situations are
formally identical at this order. At Hard Thermal Loop order in effect, the QCD effective Lagrangian
density ‘abelianises’ in that it only differs from the QED effective lagrangian density, by the relevant
Lie-algebra valuation of the gauge fields, Aµ(x) in QED versus ∑a Aa

µ(x)Ta in QCD, generators Ta

being taken in the appropriate representation [15].
The current article aims at taking advantage of this long standing issue in order to point out a

structural peculiarity of perturbative treatments when applied to the high temperature quantum field
theory context. This is done by means of an up to four-loop analysis of the fast muon damping rate,
where the number of loops refers not to the effective perturbation theory, i.e., to the RP, but to bare
perturbation theory and thus to the number of loops appearing in the basic diagram of Figure 1.

3. Damping Rate at 3 Loop Order

Loop orders are hereafter referred to bare real-time perturbation theory endowed with Advanced
and Retarded free field propagators. For example, four-loop order refers to that of diagram of Figure 1,
as the photon polarization tensor Πµν

RR(K) is itself evaluated at three-loop order, as discussed in
Section 5.
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Within the Resummation Program, one has

?ρT R/A(k0, k, T) = 2 Im lim
η→0+

1
K2 −ΠT(k0 ± iη, k, T)

, (11)

?ρLR/A(k0, k, T) = 2 Im lim
η→0+

K2

k2
1

K2 −ΠL(k0 ± iη, k, T)
, (12)

with the one-loop expressions of

ΠL → Π(1)
L = −2m2 K2

k2 + m2 K2

k2
k0

k
ln(

k0 + k
k0 − k

), and Π(1)
T = m2 −Π(1)

L /2 (13)

and the thermal masses are [16],

m2
QED =

e2T2

6
, m2

QCD =
g2T2

9
(Nc + N f /2) , (14)

for QCD with Nc colors and N f flavors of quark fields.
As displayed in Equation (6), transverse and longitudinal degrees of freedom add up separately

to the total damping rate (6), and the latter will be considered now. One has [5],

Π(2)
L (k0,~k, T) = K2

k0kz

[(
Π(SE)

)
0z
(k0,~k, T) +

(
Π(VE)

)
0z
(k0,~k, T)

]
≡ ΠL

(SE)(k0,~k, T) + ΠL
(VE)(k0,~k, T) , (15)

where Π(SE) and Π(VE) correspond to the two-loop pieces of Figures 2 and 3, respectively (Retarded/
Advanced indices, R/A, omitted for short).

K K

Q

ΣT=0 +ΣHTL(Q+K)

Figure 2. A two-loop contribution to the polarization tensor Π(2)(k0, k).

K K

Q
Γµ
HTL(Q+K,Q)

Figure 3. Another two-loop contribution to the polarization tensor Π(2)(k0, k).

One finds (with ε(x) = Θ(x)−Θ(−x) = sign(x)),

ΠL
(SE)(k0,~k, T) = −8e2m2 K2

k0kz

∫ d4Q
(2π)3 (1− 2nF(q0, T))ε(q0)

δ′(Q2)

Q′R
2 (2q0qz + q0kz + qzk0)

+ 4ie2K2

k0kz

∫ d4Q
(2π)4 (1− 2nF(q0))

1
Q′R

2 discq0
1

QR
2 (−q′0Σz − q′zΣ0) ,

(16)
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and
ΠL

(VE)(k0,~k, T) = + 4ie2K2

k0kz

∫ d4Q
(2π)4 (1− 2nF(q0, T)) 1

Q′R
2

×discq0
1

QR
2

[
−m2Q·Q′

∫ dL̂
4π

L̂0 L̂z
(L̂·Q+iε)(L̂·Q′+iε)

+ q′zΣ′0 + qzΣ0
]
,

(17)

where L̂ = (1, l̂) is a light-like four-vector, and where as in Equation (5), the usual Fermi–Dirac
distribution nF(x) is deprived of any absolute value prescription. In (15) and (16), the mass squared
term m2 stands for either of the two QED and QCD possibilities of (13), and the shorthand notation of
Σµ ≡ Σµ(Q) , Σ′µ ≡ Σµ(Q′) is used, as well as Q2

R for (q0 + iη)2 −~q2. The HTL-fermionic self-energy
components are

Σµ
R(Q) ≡ m2

∫ dL̂
4π

L̂µ

L̂·Q + iε
, (18)

with the results,

Σ0
α(Q) =

m2

q
Q0(

q0

q
) , Σi

α(Q) = (
~qi

q
≡ q̂i)

m2

q
Q1(

q0

q
) α = R, A , (19)

Q0 and Q1 being the Legendre functions,

Q1(x) = xQ0(x)− 1 , Q0(x) =
1
2

ln
x + 1
x− 1

. (20)

In this way, the R/A prescriptions of Equation (19) are encoded in the logarithmic determinations
of the Legendre functions. For completeness, the HTL vertex reads as

ΓHTL
µ (Q, Q′) = m2

∫ dL̂
4π

L̂µ /̂L

(L̂·Q + iε)(L̂·Q′ + iε)
. (21)

It is convenient to choose the z-axis along the vector~k, so that kz = k and qz = qx, with x = (k̂·q̂).
Out of Equations (16) and (17), several integrals come about,

I1 = −8e2m2 K2

k0k

∫ d4Q
(2π)3 (1− 2nF(q0, T))ε(q0)

δ′(Q2)

Q′R
2 (2q0qx) , (22)

I2 = −8e2m2 K2

k0

∫ d4Q
(2π)3 (1− 2nF(q0, T))ε(q0)

δ′(Q2)

Q′R
2 (q0) , (23)

I3 = −8e2m2 K2

k

∫ d4Q
(2π)3 (1− 2nF(q0, T))ε(q0)

δ′(Q2)

Q′R
2 (qx) , (24)

I4 = 4ie2 K2

k0k

∫ d4Q
(2π)4 (1− 2nF(q0, T))

q′zΣ′0
Q′R

2 disc
1

Q2
R

, (25)

I5 = −4ie2 K2

k0k

∫ d4Q
(2π)4 (1− 2nF(q0, T))

q′0
Q′R

2 disc
Σz

Q2
R

, (26)

I6 = −4ie2 K2

k0

∫ d4Q
(2π)4 (1− 2nF(q0, T))

1

Q′R
2 disc

Σ0

Q2
R

, (27)

I7 = −4ie2m2 K2

k0k

∫ d4Q
(2π)4 (1− 2nF(q0, T))

Q·Q′
Q′R

2 disc
1

QR
2

∫ dL̂
4π

L̂0 L̂z

(L̂·Q + iε)(L̂·Q′ + iε)
, (28)

and the leading order contributions to any of the seven above integrals will be retained in the limit
of k/T � 1. Note that, at this stage, the definite order of magnitude of k/T is not yet (and needs not
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being) determined. As it will turn out shortly, the specific order of magnitude of k/T is selected by the
two-loop order fluctuations themselves.

The first three integrals correspond to the HTL self energy insertion depicted in Figure 2 and yield

I1 + I2 + I3 = −K2

k2
e2m2

π2 Q1(
k0
k )
(∫ ∞

0
dx
x

d
dx x tanh x

2

)ren.

+K2

k2
e2m2

4π2 (2 k0
k − k

k0
)
∫ ∞

0
dx
x

d
dx x tanh x

2 ln K2
+−x2

K2
−−x2

+K2

k2
e2m2

2π2
T
k

∫ ∞
0

dx
x

d
dx x2 tanh x

2 ln K++x
K−+x

K−−x
K+−x

+(K2

k2 )
2 e2m2

8π2
k
T
∫ ∞

0
dx
x

d
dx tanh x

2 ln K++x
K−+x

K−−x
K+−x .

(29)

With K± = (k0 ± k)/2T, and accordingly K±(−k0, k) = −K∓(k0, k), the parity properties of the
Retarded determination of Π(2)

L (k0, k) are met as they should.
For I5, one finds

I5 =
e2m2

π2
K2

k2
T
k

Q0(
k0

k
)
∫ ∞

0
dx (1− 2nF(x)) . (30)

An apparet leading behaviour shows up with the factor T/k, but the whole contribution is ruled
out by the odd k0-parity of the Legendre function Q0.

For I6, one finds

Re I6 =
e2m2

2π2
K2

k0k

∫
dq
∫ +q

−q

dq0

q2
0 − q2

[ϕ(q)− ϕ(q0)] . (31)

with
ϕ(q) = tanh(

q0

2T
) ln

k0q0 + kq
k0q0 − kq

(32)

for the real part, and

Im I6 = − e2m2

4π

K2

k0k

∫ ∞

0

dx
x

tanh
x
2

ln
K+ + x
K− + x

K− − x
K+ − x

(33)

for the imaginary part. Intermediate mass singularities develop at q0 = ±q, and cancel each other out
in the end as further examples will display below.

For I4, contributions are found to cancel out, due to x- and k0-odd parities.
For I7, the calculations of [8–10] can be used (in particular Equation (3.15) in [9]) to yield

discq0

∫ dL̂
4π

L̂0 L̂z

(L̂·Q + iε)(L̂·Q′ + iε)
= iπ

q0

q
ε(q0)

Θ(−Q2)

K·Q + iεk0
. (34)

On the basis of the leading order expansion,

Q·Q′
Q′R

2 = 1− K·Q′
QR

2 +O
(
(

K·Q′
QR

2 )2
)

. (35)

it is immediate to check that the contributions attached to Equation (34) are cancelled by the odd parity
character of the integration on q0.

Then, following [10], to take the discontinuity of Q−2
R , one has first to dispose of the result,∫ dL̂

4π
L̂0 L̂z

(L̂·Q+iε)(L̂·Q′+iε)
= − 1

2qq′ ln( q′0+q′

q′0−q′ )

− 1
2
√

(K·Q)2−K2Q2
ln
(

Q·Q′+
√

(K·Q)2−K2Q2

Q·Q′−
√

(K·Q)2−K2Q2

)
,

(36)



Universe 2019, 5, 81 8 of 25

so as to proceed with the evaluation of I7,

+4ie2m2 K2

k0k

∫ qdq
(2π)3

∫ +1
−1 dx

∫
dq0 tanh ( q0

2T ) (−2iπ) ε(q0) (δ(q0 − q) + δ(q0 + q))

×
{

1
2qq′ ln( q′0+q′

q′0−q′ ) +
1

2K·Q ln (2Q·K)2

K2Q2

}
.

(37)

Considering the second term of the second line in curly brackets of (36), the sum on q0 yields

− tanh(
q

2T
)

1
2q(k0 − kx)

ln
k0 − kx
−δ

, (38)

where δ→ 0 stands for |q0 − q| when letting q0 → 0. At q0 = −q, one obtains

tanh(
q

2T
)

1
2q(k0 + kx)

ln
−k0 − kx

δ
. (39)

Integrating on x, the mass singularities, at δ = 0, are, therefore,

ln(−δ) tanh (
q

2T
)

1
2qk

ln
k0 + k
k0 − k

, (40)

plus

− ln(δ) tanh (
q

2T
)

1
2qk

ln
k0 + k
k0 − k

. (41)

The sum of the two previous expressions cancels out the ln(δ) singular terms which are plaguing
the real part of (34), while the imaginary part is finite and reads

± iπ tanh (
q

2T
)

1
2qk

ln
k0 + k
k0 − k

. (42)

With the overall multiplicative factor of K2/k0k, this produces an irrelevant imaginary part
(even in k0).

The regular (real) contributions that are left read

1
2q

tanh (
q

2T
)

{
−
∫ +1

−1

dx
k0 − kx

ln
k0 − kx

q
+
∫ +1

−1

dx
k0 + kx

ln
−k0 − kx

q

}
, (43)

and add up to a null result,

tanh (
q

2T
)

1
2qk

{
ln

k0 − k
k0 + k

ln
K2

q2 + ln
k0 + k
k0 − k

ln
K2

q2

}
= 0 . (44)

For the first term in the second line of (36), one has at leading order k/q � 1, after having
integrated over q0,

iπ
q2 tanh (

q
2T

)
∫ +1

−1
dx ln

(
2q + k0 + kx

k0 − kx
k0 + kx

k0 − kx− 2q

)
. (45)

Integration on x gives no real part,

k0

k
ln

k0 − k
k0 + k

− ln
K2

4q2 +
k0

k
ln

k0 + k
k0 − k

+ ln
K2

4q2 = 0 (46)
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and a non-zero imaginary one,

± i
e2m2

2π

K2

k2
k
k0

(∫ ∞

0

dx
x

tanh
x
2

)ren.
(47)

On the whole, at leading order, the evaluation of (36) yields no contribution to I7 other than
Equation (47) whose imaginary character comes from the only condition kµ/qµ � 1 and therefore is
kinematically compatible with the overall constraint of Equation (6), which is −k ≤ k0 ≤ k.

Comments are in order. In Equation (27), the fourth contribution is by a factor k/T- subleading
and can be ignored. In the third line, a contribution of order (K2/k2) (e2m2/2π2) (T/k) seems to
dominate all the other contributions by a factor of T/k. One has in effect

e2m2 K2

k2 (
T
k
)C(k0, k) =

K2

6

(
e2T

k

)2 T
k

C(k0/T, k/T) , (48)

where the QED value of m2 = e2T2/6 has been used for the sake of illustration, and where C(k0/T, k/T)
denotes the function

C(k0/T, k/T) =
∫ ∞

0 dx tanh( x
2 ) ln K2/T2−4x(x+k/T)

K2/T2−4x(x−k/T)

=
∫ ∞

0 dx tanh( x
2 ) ln [x+K+ ][x−K− ]

[x−K+ ][x+K− ]
,

(49)

with K± such as defined after (28). The function C(k0/T, k/T) is infrared regular, but ultraviolet
singular. At large x(= q/T), it exhibits the ultraviolet logarithmic divergence. It arises from the
T = 0-part of the self-energy diagram of Figure 2 and due to the factor 1 in 1− 2nF(x) = tanh(x/2).
One has, indeed,

C(k0/T, k/T) ∼ k
T

∫ ∞

0

dx
x

=⇒ Π(2) ∼ K2

6
e4T2

k2

∫ ∞

0

dx
x

. (50)

One-loop renormalized at T = 0, this ultraviolet logarithmic divergence is thus replaced by a
(renormalization scheme dependent) constant Cst, and the corresponding contribution to Π(2)

L therefore
is Cst (K2/6) (e4T2/k2). This also is the case of the non-zero T-part of C(k0/T, k/T). One finds [17],

CT(k0/T, k/T) ≡ −2
∫ ∞

0 dx nF(x) , ln K2/T2−4x(x+k/T)
K2/T2−4x(x−k/T) ' −ek/TEi(−k/T)

+e−k/T(γ + ln k/T)− iπ(1− e−k/T) + e−k/T ∫ 1
0 dx ekx/T−1

x ,
(51)

where the approximate equality refers to the substitution of e−x for nF(x) and to the neglect of K2/T2

in the logarithm, and where Ei is the exponential integral function. Note that this is consistent in view
of Equation (6), which indicates that k0 is on the same order of magnitude as k, and thus K2/T2 � k/T.
By preserving that term, however, the same result is reached.

Now, since Ei(−k/T) = γ + ln k/T +O(k/T), with γ the Euler’s constant, the two first terms
of Equation (51) yield −2

[
γ + ln(k/T)

]
sinh(k/T) and are of order k/T, as are also the two remaining

terms in the second line of Equation (51). As displayed in Figure 4, a numerical evaluation of the
full, non-approximate CT(k0, k) function of (48) confirms this conclusion, which can be summarised
as follows:

O
(

T
k

CT(k0/T, k/T)
)
= O

(
T
k

Cren.(k0/T, k/T)
)
= O(1) . (52)



Universe 2019, 5, 81 10 of 25

0.02 0.04 0.06 0.08

0.1

0.2

0.3

0.4

0.5

k/T

−
R
e[
C

T
(0
,k
/T

)]

0.02 0.04 0.06 0.08

0.05

0.1

0.15

0.2

0.25

k/T

−
Im

[C
T
(0
,k
/T

)]

Figure 4. A plot of the (negatives of the) real and imaginary parts of Equation (51) as functions of k/T
for K2/T2 = 0.

To summarise, at two-loop order of bare perturbation theory and in the small k/T-limit, inspection
of expressions (22)–(28) reveals that there are no leading order contribution to Π(2)

L other than those of

form K2 (e4T2/k2) δF (2;ren.)
L , where δF (2;ren.)

L denotes some dimensionless function of k0/T and k/T.
In replacing m2 of QED by the one of QCD, the same conclusion applies. Two remarks are in order:

(i) The notation used above, δF (2;ren.)
L , instead of a would-be more natural notation like F(2;ren)

L
for example, is to mean that as well known [18,19], not all of the leading order terms in the limit of
k/T � 1 are accounted for by δF (2;ren.)

L . This is explained below, after Equation (58).
(ii) For reasons that are made explicit in Section 6, Equation (104), in the present as well as in the

following section, the contributions of transverse modes are not considered.

4. Perturbative Peculiarity of the Thermal Case

The diagrams of Figures 2 and 3 involve the gauge invariant HTL self energy (16) and vertex (17).
By changing the gauge, only the (external) K-line propagator is changed, which doesn’t impact the
damping rate γ(E, p, T) [20]. One is therefore tempted to conclude that by construction these two
contributions to the photonic polarisation tensor, Π(2;SE)

µν and Π(2;VE)
µν , are separately gauge invariant.

This, however, needs to be checked. Calculations are long but straightforward and one finds effectively,

KµΠ(2;SE)
µν = 0 , KµΠ(2;VE)

µν = 0 . (53)

Moreover. these relations hold at leading k/T-order, exemplifying that the principle of local
gauge invariance is so deeply rooted in the theories that it is verified at any consistently determined
momentum scale.

Taking advantage of the last results, Equation (12) could now be improved by writing

(2)ρL(k0, k, T) = 2 Im
K2

k2
1

K2 −Π(1)
L (k0, k, T)−Π(2;ren.)

L (k0, k, T) + iε
, (54)

and used to calculate the longitudinal contribution to the moving fermion damping rate at this order of
approximation. According to the previous section, one has (QED case chosen for the sake of illustration)

Π(2;ren.)
L (k0, k, T) = K2 [ e2T

k
]2

δF (2;ren.)
L (k0, k, T) , (55)

where δF (2;ren.)
L (k0, k, T) collects the various leading order contributions of (22)–(28) in the small

k/T-limit, into some complex-valued function of k0 and k. Like the Legendre function Q1(k0/k) of
the one-loop order, (13) and (19), δF (2;ren.)

L (k0, k, T) is assumed to preserve the K2(e4T2/k2)- leading
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order of magnitude of two-loop contributions to Π(2)
L (k0, k). Still, the rather academic content of this

assumption will be discussed in Section 7. Re-writing Equation (54),

ρ
(2)
L (k0, k, T) = 2 Im

K2

k2
1

K2
(

1 + 2 m2

k2

[
Q1(k0/k) + e2

2 δF (2;ren.)
L (k0, k, T)

]
+ iε

) , (56)

it is made clear that, like in the T = 0 usual perturbative context, the two-loop contribution
Π(2;ren.)

L (k0, k, T) represents but an order e2-correction to Π(1)
L (k0, k) ≡ ΠHTL(k0, k, T), the Hard

Thermal Loop counterpart, and doesn’t bring the fermion damping rate anything else than a correction
on the same e2-order of magnitude, that is, using Equation (56) instead of ?ρL(k0, k), one would
get basically,

γ(E,~p, T) =
e2T
2π

[
Cst +O(e2)

]
. (57)

On the other hand, considering Π(2;ren.)
L (k0, k) in Equation (55), it is clear that, over momenta of

order of e2T, one has O
(

Π(2;ren.)
L (k0, k)

)
= O

(
K2), so that any number of Π(2;ren.)

L (k0, k)-insertions
along the K-line will contribute a similar amount to the longitudinal degree of the internal K-line and
must be resummed. For momenta of order e2T exclusively, this separated resummation leads to a
spectral density of form,

(2)ρL(k0, k, T) = 2 Im
K2

k2
1

K2 −Π(2;ren.)
L (k0, k, T) + iε

, (58)

and, as displayed in next Section 5, the matter with Equation (58), and further with Equation (84), is
that it contributes the fermionic damping rate γ(E, p) on the same order of magnitude as the Hard
Thermal Loop spectral density itself, ?ρL(k0, k, T) ≡ (1)ρL(k0, k, T), that is on the leading order of e2T.

This situation has no equivalent in the perturbative context of T = 0 theories and appears to be
peculiar to the non-zero T-case. In QCD, the necessity of resumming ‘ultra-soft’ order g2T-fluctuations
into another effective perturbation theory was recognized years ago on the basis of an equivalent
semi-classical approach [19] to high-T quantum field theories, and the new effective theory was shown
to enjoy the same symmetry properties as those of the HTL-resummation program:

(1) For external momenta k0 ≤ k ≤ g2T, ultra-soft amplitudes are as large as the corresponding
HTL and tree-level ones, (2) they are gauge fixing independent (covariant and Coulomb-like
gauges . . . ), and (3) ultrasoft amplitudes satisfy simple Ward identities. (4) Unlike the soft amplitudes
controlled by the resummation program, though, ultra-soft amplitudes receive contributions from an
infinite series of multi-loop diagrams (‘ladder diagrams’, to be specific).

It is therefore natural to speculate that a higher number of loop contributions could
generate similar conclusions, with gauge invariant fluctuations at smaller momentum scales
(orders e3T, e4T, etc.), generating for the cut photonic propagator D+

µν(K) of Equation (4) contributions
all on the same order of magnitude as the tree-level ones.

The entire perturbative structure would therefore have to be considered along with layers of
momentum scales, each of them controlled by a specific effective theory. Point (4), however, seems to
cast some doubts on this expectation. In effect, the ultra-soft effective perturbation theory is taken to
be terminal, as the ultra-soft denomination itself is intended to mean. In the next section, though, it is
ventured that this could not be true, due to a specific interplay of T = 0-renormalized with T 6= 0 Hard
Thermal Loop vertices.

Though contributing equally to the net fermion damping rate (see Equation (6)), transverse
contributions have not been considered for reasons to be given explicitly in Section 6.
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5. Damping Rate at Four-Loop Order

In this section, three-loop contributions to D+
µν(K) are considered such as pictured in Figure 5,

contributing γ(E, p, T) at four-loop order. One can start with two self energy insertions ΣR(Q) and
ΣR(Q′), which at one-loop order and in real-time formalisms come about additive in their T = 0
and T 6= 0 parts, ΣT=0 and ΣHTL, Equations (18) and (19). Various terms contribute to Π(3;ren.)

L (k0, k),
whose leading terms in the small kµ/T-limit admit the generic form,

δΠ(3;ren.)
L (k0, k, T) ∼ K2 [

e2T
k

]3 δF(3;ren.)
L (k0, k, T) , (59)

with some dimensionless associated functions δF(3;ren.)
L , possibly one- and/or two-loop renormalized

at T = 0. Clearly, in line with the expectations of the semi-classical analyses [19], these contributions
are to be considered as part of the ultra-soft amplitudes for O(kµ) ∼ e2T and do not define any new
momentum scale of invariant fluctuations. Examples are as follows.

K K

Q

ΣT=0 +ΣHTL

ΣT=0 +ΣHTL

Figure 5. A three-loop contribution to the polarization tensor Π(3)(k0, k, T).

As bare power counting suggests, one may replace one of the two self energy insertions by its
T = 0-renormalized part only, Σren.

T=0(Q). At T = 0, though, the fermionic self energy is not gauge
invariant. In the Coulomb gauge being chosen, one has [21],

Σren.(Q) =
α

4π
Cren./Q +

α

4π

[19
6
~γ ·~q− 1

2
γ0q0 + . . .

]
, (60)

so that one could expect contributions to Π(3;ren.)
L (k0, k), on the order of e2αm2 = O(e6T2), to be a good

candidate for a new relevant momentum scale at order e3T. Now, besides a lack of gauge invariance,
explicit calculations of the various terms stick to the behaviour (59) and hence, at best, would only be a
part of the ultra-soft momentum scale fluctuations.

The same applies as well to two T = 0 self energy insertions Σren.(Q) and Σren.(Q′). For example,
among other contributions, one has with the first term of Equation (60) (in the small kµ/T � 1
limit always),

δΠ(3)
L (k0, k, T) ' −i K2

k0kz
(−ie)2(αCren.)2

∫ q2dq
(2π)3

∫ +1
−1 dx

∫
dq0 tanh( q0

2T )
1

2Q·K
−iπ

q ε(q0)[δ(q0 − q) + δ(q0 + q)]
[
2q0qx + k0qx + q0k

]
.

(61)

Explicit calculations give δF(3;ren.)
L (k0, k, T) = 0 for the leading term 2q0qx in the second line

of Equation (61), while, for the second (sub-leading term) k0qx, one finds

K2

2
(

Cren.

8π
)2 [ e2T

k
]3

δF(3;ren.)
L (k0, k, T) (62)
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with

δF(3;ren.)
L (k0, k, T) =

k
T

[
ln | k

2
0 + k2

k2
0 − k2

| − iπΘ(−K2)

] (∫ ∞

0
dxx tanh

x
2

)ren.
, (63)

that is, besides an irrelevant k0-even imaginary part, an order k/T subleading real contribution.
The last term in the second line of Equation (61), q0k, yields another contribution corresponding to a
new function,

δF(3;ren.)
L (k0, k, T) =

k
T

[
k
k0

ln | k0 + k
k0 − k

| − iπ
k
k0

Θ(−K2)

] (∫ ∞

0
dxx tanh

x
2

)ren.
, (64)

with correct parities but an order k/T sub-leading as well.
All in all, inspection of the various terms shows that the contributions to Π(3)

L (k0, k, T) due to the

fluctuations depicted in Figure 5 can be written in the form (59) with related O(1) functions δF(3;ren.)
L

for the leading order ones. More precisely, within the topology of Figure 5, contributions of order
(e3T/k)2 are effectively met, but, compared to (e2T/k)3-ones, they are sub-leading by a factor of k/T.
Accordingly, the contributions attached to the topology of Figure 4 (some of them retaining further
dependences on the Coulomb gauge, what is more) could at best complete the contributions attached
to fluctuations at ultra-soft momentum scale, but can in no way define any new gauge invariant
fluctuation of the internal photonic line at a softer momentum scale, such as e3T.

It is with the diagram of Figure 6 that things start to appear to be different. This is because the
zero temperature one-loop renormalized vertex reads (QED)

ΓR
µ (Q

′, Q) = γµF1(K2) +
i

2m
σµνkνF2(K2) , (65)

with Fi(K2), i = {1, 2} representing the electric and magnetic form factors. Using this form of the
vertex will be discussed below. The trace over Dirac indices, which are involved in this diagram, are

F1(K2)Tr
[

γµ i/Q
Q2

R

/ΣHTL(Q)

i
i/Q
Q2

R
γν i/Q′

Q′2R

]
, (66)

as the form factor F2(K2) will not contribute at this number of loops because of an odd number of
Dirac matrices. Evaluating Equation (66) at µ = 0, ν = 3 in order to get Π(3)

L , the result is

( K2

k0k )×−F1(K2) ( 1
Q2

R
)2 1

Q′2R

[
8m2(2q0qx + k0qx + q0k)

−4Q2 m2

q

{
−x(q0 + k0) + [k + x q2+q2

0+q0k0
q ] Q0(

q0
q )

}]
.

(67)

K K

Q
Γµ
T=0(Q+K,Q)

ΣHTL(Q+K)

Figure 6. Another three-loop contribution to the polarization tensor Π(3)(k0, k, T).
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Integrated over Q, Equation (67) exhibits mass singularities whose cancellations can be seen
as follows.

The first line of Equation (67) is easily evaluated to give

− 1
π

K2 e2m2F1(K2)

k2

[ k0

k
Q0(

k0

k
) + Q1(

ko

k
)
] (∫ ∞

0

dx
x

d
dx

x tanh
x
2

)ren.
. (68)

Within the integration range of (5), a non-trivial imaginary part develops, which is essential to a
non vanishing spectral density (3)ρL(k0, k, T),

iΘ(−K2)K2 e2m2F1(K2)

k2

[ k0

k
] (∫ ∞

0

dx
x

d
dx

x tanh
x
2

)ren.
. (69)

This evaluation of the imaginary part is exactly what is obtained by putting the two fermionic
lines on mass shell in agreement with the use of Equation (65) for the T = 0 part of the one-loop
renormalized vertex correction.

Turning to the second line of Equation (67), the first term in curly brackets (not proportional to
Q0(q0/q)) contributes a term,

K2 e2m2F1(K2)

k2
1

4π2

[
Q1(

k0

k
)
] (∫ ∞

0

dx
x

tanh
x
2

)ren.
. (70)

with an associated imaginary part of

− i Θ(−K2)K2 e2m2F1(K2)

k2
1

8π

[ k0

k
] (∫ ∞

0

dx
x

tanh
x
2

)ren.
. (71)

For the second term in curly brackets in the second line of Equation (67) (proportional to Q0(k0/k)),
two non-vanishing q0-discontinuities can be taken.

Taking the discontinuity of Q−2
R , the first one gets

−K2 e2m2F1(K2)

k2
1

8π2

[ k
k0

Q0(
k0

k
)
] [∫ ∞

0

dx
x

tanh
x
2
]

ln(
2q
−δ

) ,

− K2 e2m2F1(K2)

k2
1

8π2

[
Q1(

k0

k
)
] [∫ ∞

0

dx
x

tanh
x
2
]

ln(
2q
−δ

) , (72)

where as before, δ = (q− |q0|)→ 0, regularises mass singularities at q0 = ±q.
Then, taking the discontinuity of Q0(q0/q) (i.e., −iπΘ(−Q2)), one obtains

− K2

k0k
e2m2F1(K2)

16π2

∫
dq

∫ +q

−q

dq0

2q0
tanh

q0

2T
(

1
q0 − q

+
1

q0 + q
)Φ(q0, q; k0, k) , (73)

with Φ(q0, q; k0.k) the function,

Φ(q0, q; k0, k) = ln
k0q0 + kq
k0q0 − kq

− 2
q2 + q2

0 + q0k0

qk

(
1− k0q0

qk
ln

k0q0 + kq
k0q0 − kq

)
. (74)

This function is a regular function of q0 at q0 = ±q, which allows for an isolation of singular
behaviours in Equation (73). At q0 = q− δ, one obtains

−K2 e2m2F1(K2)

16π2k2

[ k
k0

Q0(
k0

k
)
] [∫ ∞

0

dx
x

tanh
x
2
]ren. ln(

δ

−2q
) ,
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−K2 e2m2F1(K2)

16π2k2

[
Q1(

k0

k
)
] [∫ ∞

0

dx
x

tanh
x
2
]ren. ln(

δ

−2q
) ,

− K2 e2m2F1(K2)

8π2k2

[
Q1(

k0

k
)
] [∫ ∞

0

dx
x

tanh
x
2
]ren. ln(

δ

−2q
) . (75)

On the other hand, at q0 = −q + δ, one has

+K2 e2m2F1(K2)

16π2k2

[ k
k0

Q0(
k0

k
)
] [∫ ∞

0

dx
x

tanh
x
2
]ren. ln(

2q
δ
) ,

− K2 e2m2F1(K2)

16π2k2

[
Q1(

k0

k
)
] [∫ ∞

0

dx
x

tanh
x
2
]ren. ln(

2q
δ
) . (76)

Now, the first line of Equation (75) and the first line of Equation (76) compensate exactly the first
line of Equation (72), while the second lines of Equations (75) and (76) cancel each other out. In the
end, the second line of Equation (72) and the third line of Equation (75) cancel each other out exactly.

The regular contribution of the second group of terms in the second line line of Equation (67)
thus is

−K2 e2m2F1(K2)
16π2k2

[ k
k0
]
∫

dx
∫ +x
−x dx0

(
1

x0−x + 1
x0+x

)
[ tanh(x0/2)

x0
Φ(Tx0, Tx; K)− tanh(x/2)

x Φ(Tx, Tx; K)
]

,
(77)

and, due to k0-improper parities, inducing cancellations in the integration over k0, gets eventually
reduced to

− K2 e2m2F1(K2)

8π2k2

[ k
k0

∫ ∞

0
dx
∫ x

0

dx0

x0 − x
[
tanh x0

2
x0

ln
k0x0 + kx
k0x0 − kx

− tanh x
2

x
ln

k0 + k
k0 − k

]
]
. (78)

For the regular part of δΠ(3;ren.)
L , however, only those terms for which the Q and Q′ internal lines

can be considered on mass shell (i.e., Q2 = 0), or approximately (Q′2 ' 0), should be retained so as to
be consistent with the use of Equation (65) in lieu of the most general form of the e.m. vertex (as will be
argued later, 3rd and 6th items below, this limitation does not hamper the point of the current paper).

All in all, the contributions (68) and (70) only are retained for δΠ(3;ren.)
L (k0, k, T) and stand for a

part of the leading order contributions generated by the quantum fluctuation depicted in Figure 5
(remark (ii) below):

δΠ(3;ren.)
L (k0, k, T)leading = −K2 [ e2m2F1(K2)

k2

]
δF (3;ren.)

L (k0, k, T) , (79)

with the function

δF (3;ren.)
L = 1

π

[ k0
k Q0(

k0
k ) + Q1(

ko
k )
]
×
(∫ ∞

0
dx
x

d
dx x tanh x

2

)ren.
− 1

4π2 Q1(
ko
k )
(∫ ∞

0
dx
x tanh x

)ren.
. (80)

At spacelike K-momenta, Equation (80) develops a non-zero imaginary part that is essential to a
non vanishing spectral density (3)ρL(k0, k, T).

Due to the form factor F1(K2), a non-trivial effect comes into play between the invariant
T = 0-renormalized vertex (65) and HTL- self energy Σµ

R(Q). When renormalized, in effect, F1(K2) is
gauge-invariant to all orders in perturbation theory [22]. Since ΣHTL

R (Q) is also gauge-invariant,
the fluctuation of Figure 5 brings to the cut photon propagator, D+

µν(K), a correction which is
gauge-invariant by construction; or, more precisely, which doesn’t retain more gauge dependence
than the original one-loop HTL expression ?D+

µν(K) (as noticed before Equation (53), this remaining
gauge-dependence is not problematic). This gauge invariance, by construction, can be checked also by
explicit calculation and is here a mere consequence of Equation (53).
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So far, as displayed for example in the ordering relation (3), fermionic bare/renormalized masses
have been ignored in front of the energy scales involved in the case considered. In the literature though,
the one-loop form factor F1 is always given at non zero fermionic masses and reads [22],

F1(K2) = − α

π

[
(1 + ln

µ

me
)(1− θ coth θ) + 2 coth θ

∫ θ/2

0
dϕ ϕ tanh ϕ +

θ

4
tanh

θ

2

]
, (81)

where sinh2(θ/2) = −K2/4m2
e , and where µ2 is a small photon mass introduced so as to regularise

intermediate infrared singular behaviours (mass singularities indeed). For reasons to be explained
shortly, in line with the use of Equation (65), this logarithmic term can be consistently ignored. However,
the K2-dependence of F1 remains fairly involved. A small −K2/4m2

e limit of F1 exists, and when such
a regime becomes relevant to the high temperature context of either QED or QCD, Equation (81)
simplifies to (QED case and ignoring the logarithmic term) [22],

F1(K2) ' − α

8π

K2

m2
e

. (82)

This form will be used to illustrate the main point of the current paper. Note that, in the case
of QED, at T = 100 MeV and me = 0.51 MeV, one obtains, at α = 1/137, a value of θ, 0 ≤ θ/2 ≤
arcsinh 0.12, which renders admissible the use of Equation (82) for K-momenta on the order of e3T.
The following remarks are in order:

(i) Using Equation (65) for the e.m. vertex amounts to reduce Π(3;ren.)
µν in Figure 6 to the contribution

where the internal lines Q and Q′ are on mass shell, as illustrated in Figure 7, whereas the full imaginary
part of Π(3;ren.)

µν entails also the cut diagram of Figure 8.

K

Q′

K

Q
ΓµT=0(Q,Q′)

ΣHTL(Q′)

Figure 7. A contribution to the imaginary part of the polarization tensor Π(3). Cut lines Q and Q′ are
on mass shell.

K

Q′

K

Q
ΓµT=0(Q,Q′)

ΣHTL(Q′)

Figure 8. Another cut of the same diagram, contributing to the imaginary part of the polarization
tensor Π(3).

Both contributions involve the mass singularity of Equation (81), that is, the logarithmic term
ln µ2/m2

e , in such a way that these intermediate mass singularities cancel out in the sum, in agreement
with standard T = 0 situation (theorem KLN [23]). As intermediate terms, which are absent of the
final result for Im Π(3;ren.)

µν , the logarithmic term ln µ2/m2
e can therefore be dropped out of Equation (81)

without prejudice. As has been known for a long time, it is only when one is interested in a physical
process such as the one depicted in Figure 8 that the intermediate logarithmic singularity of ln µ2/m2

e
is retained in a first step, and then consistently replaced by a regular term of ln El/m2

e , where El stands
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for a parameter relevant to the case considered, such as an energy resolution, El , in a measure of the
real (cut) photon of Figure 8 [24].

(ii) In the literature unfortunately, the general zero-temperature expression of Γren.
µ (Q, Q′) does

not seem to exist in closed form [25], and Equation (65) is used instead. Accordingly, the polarisation
tensor δΠ(3;ren.)

µν of Equation (79) is not the full one, but a part of it.
The situation can therefore be summarised as follows:

• At soft momenta, k ∼ eT, the cut photon propagator D+
µν of Equation (4) receives one-loop HTL

contributions, (1)D+
µν ≡ ?D+

µν , on the same order of magnitude as the cut bare one, evaluated at
the same soft scale.

• At ultra-soft momenta, k ∼ e2T, the same applies also to (2)D+
µν, or equivalently to the spectral

density (58) in the case of our illustration. To be complete, however, the ultra-soft scale would
require the consideration of an infinite number of loop diagrams. In this diagrammatic analysis,
this is displayed by Equation (59) which corresponds to the three-loop topology of Figure 4,
while many more diagrams are known to contribute at this order as well, with contributions
of form,

δΠ(n;ren.)
L ∼ K2 [ e2T

k
]n

δF (n;ren.)
L (k0, k) , n ≥ 3 . (83)

Such a case is not easily dealt with diagrammatically, but, hopefully, the semi-classical
approaches [19] may offer a sufficiently controlled alternative.

• This is no longer possible at the hyper-soft momentum scale k ∼ e3T, where the topology of
Figure 6 is able to generate a (3)D+

µν, equivalently a (3)ρL spectral density,

(3)ρL(k0, k, T) = 2 Im
1

k2 + m2
3 F̄1(K2/m2

e )
[
(k0/k) Q0(k0/k)

]
+ iε

, (84)

which, over this hyper-soft momentum scale, again is on the same order of magnitude as is the bare
one evaluated on the same hyper-soft momentum scale. In deriving Equation (84), Equation (80)
is used to identify the constant m2

3 as

m2
3 = C(3) (e3T)2, C(3) =

Cnorm.

12π2

[
(1− 1

8π
)(
∫ ∞

0

dx
x

tanh x)ren. +
∫ ∞

0

dx
cosh2 x

]
, (85)

and F̄1(K2) stands for the expression,

F̄1(K2/m2
e ) = 1− θ coth θ + 2 coth θ

∫ θ/2

0
dϕ ϕ tanh ϕ +

θ

4
tanh

θ

2
, (86)

where it is reminded that θ parametrizes the ratio K2/m2
e , according to the relation

sinh2(θ/2) = − K2/4m2
e . A plot of F̄1(K2/m2

e ) is found in Figure 9.
• In this last case, incompleteness comes from the use of Equation (65) instead of the full Γren.

µ (Q, Q′),
as stated in remark (i) above. Unless explicitly demonstrated, it is not excluded either that higher
loop diagrams contribute at the same hyper-soft scale. Completeness in this diagrammatic analysis
is again extremely difficult to control [26].

• The point is therefore that the so far controlled situations of soft and ulta-soft scales doesn’t seem
to exhaust all of the invariant photonic fluctuations contributing the leading order damping rate
calculation, and that the contribution completeness to γ(E, p, T) of the hyper-soft scale is not
under full control; not to speak of other even softer invariant fluctuations, such as those arising at
momentum scale e4T, not dealt with in the present paper.
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Figure 9. Variations of F̄1(θ), at T = 100 MeV, me = 0.51 MeV, for K- momenta of order e3T.

• Now, there is more to it. Due to the final k-momentum integration process, normally taken to
be the range 0 ≤ k ≤ k?, [5,13,14], there remains the issue of partitioning the integration range
into layers of every decreasing momenta, which contribute to the damping rate γ(E, p, T) by
comparable amounts.
Each invariant fluctuation, occurring at momentum scale enT, is assigned an effective range (a
layer thickness, say) of,

e[n+
1
2 ]T ≤ |k0| ≤ k ≤ e[n−

1
2 ]T , (87)

in agreement with a common, still somewhat arbitrary usage. We know of no theoretical basis
which could help with defining the layers in Equation (87) with accuracy [5]. As sketched in
Appendix A, a dramatic consequence of this is that even if, at any momentum scale enT, each of
the contributing invariant fluctuations yielded a perfectly controlled, complete (n)D+

µν pieces
(equivalently, a related (n)ρL spectral densities), their leading order respective contributions to the
damping rate, δnγL(E, p, T) say, would read typically as,

δn γL(E, p, T) =
e2T
2π
On (1) , n = 1, 2, 3, . . . , (88)

where the flexibility in the way Equation (87) can be decided plagues the various values the
constants On (1) take.

This situation looks suggestive of two major points. First, several gauge-invariant quantum
fluctuations of the internal photonic line, taking place at different momentum scales, may contribute at
zeroth order to the fermionic damping rate, keeping aside the issue of sub-leading order corrections.
Second, completeness of the leading order fermionic damping rate is out of reach in a (perturbative)
diagrammatic approach.

A by-product of this result is that the famous infrared divergence, plaguing the rapid fermion
damping rate by its mass shell, (9), is an artefact of extending the k-integration naively down to zero,

?γ(E, p) ' lim
v=1

e2T
2π

∫ k?

E|1−v|/2

dk
k

, k? = e[1−
1
2 ]T . (89)

Namely, because of the existence of softer invariant fluctuations contributing at the same order
of magnitude (see Appendix A), the HTL effective perturbation theory cannot be extended down to
k = 0, but only to some lower limit, such as kmin = e[1+

1
2 ]T, to comply with Equation (87). Again,

no real infrared singularity problem, but definitely something else to be discussed in Section 7.
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6. Transverse Degrees

So far, contributions from transverse degrees have been ignored. As displayed in Equation (7)
though, the contributions attached to δΠ(3;ren.)

T (k0, k, T) ≡ Π(3;ren.)
xx (k0, k, T), [5], should be considered

as well, in the same limit of kµ/q � 1 and same topology (Figure 6). Several cases are possible.
The transverse contributions are ultra-soft ones, scaling like in Equation (55) and nothing is changed
of the previous sections, but for the fact that new contributions to the ultra-soft scale are identified.
The transverse contributions are sub-leading with respect to the longitudinal ones (79), so that they
can be ignored. Transverse contributions annihilate the longitudinal ones and the matter of previous
Section 5 fades away. This is accordingly the point to be analysed.

As calculations display, however, δΠ(3)
T (k0, k, T) supplants δΠ(3)

L (k0, k, T) by a large factor of
(T/k)2, doesn’t call for resummation and does not annihilate longitudinal contributions to the rapid
fermion damping rate γ(E, p, T). This is seen as follows.

Getting back to the diagram of Figure 6, two Traces are to be considered, which are (see
Equation (66)),

2m2F1(K2)Tr(γx/Qγx/Q′)− F1(K2) Q2Tr(γx/ΣHTL(Q)γx/Q′) . (90)

Calculations are a bit lengthy but straightforward. Up to a sub-leading contribution of,

− e2m2F1

8π2

[ K2

4T2

] (∫ ∞

0

dx
x

d
dx

1
x

tanh
x
2

)ren.
, (91)

which can obviously be discarded, the first trace of Equation (90) yields

− e2m2F1

2π2

∫ ∞

0

dx
cosh2 x

+
e2m2F1

2π2
K2

k2

[ k0

k
Q0(

k0

k
) + Q1(

k0

k
)
] (∫ ∞

0

dx
x

d
dx
[
x tanh

x
2
])ren.

. (92)

The second trace of Equation (90) yields

e2m2F1

2π2

(∫ ∞

0

dx
x

tanh x
)ren.

+
e2m2F1

4π2

[
1
2

ln
2
δ
− 1
]

K2

k2

[ k0

k
Q0(

k0

k
) + Q1(

k0

k
)
] (∫ ∞

0

dx
x

tanh x
)ren.

, (93)

where again, δ = (q− q0)/q regulates the mass singularities which appear at the boundaries of the
integration range −q ≤ q0 ≤ q. As usual, these singularities are exactly compensated for by those
coming from taking the q0-discontinuity of the HTL-self energy (19),

discq0 Σx(Q) = − sin θ cos ϕ
m2

q
q0

2q
iπΘ(−Q2) . (94)

In effect, integrating out the angular dependences, one obtains

− e2m2F1
4π2

∫ ∞
0 qdq

∫ +q
−q dq0 tanh q0

2T

(
1

q0−q +
1

q0+q

)
{

Q2+K2+2k0q0
2k2q2 − 1

2kq

(
1−

[
Q2+K2+2k0q0

2kq

]2
)

ln Q2+K2+2k0q0−2kq
Q2+K2+2k0q0+2kq

}
.

(95)

The first term in the second line of Equation (95) is made out of three contributions, attached to
Q2, K2 and 2k0q0, and only the two first ones contribute thanks to the according k0-parities. The term
Q2 gives a real valued contribution,

− e2m2F1

2π2

[T
k
]2 (∫ ∞

0

dx
x

∫ x

0
dy y tanh

y
2

)ren.
. (96)
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The term K2 is responsible for a mass singularity,

− e2m2F1

4π2
K2

k2

[
ln

δ

2

] (∫ ∞

0

dx
x

tanh x
)ren.

, (97)

and a regular null expression,

− e2m2F1

8π2
K2

k2 ×
∫ ∞

0

dx
x

∫ +1

−1

dy
y− 1

[
y tanh

xy
2
− tanh

x
2
]
+

dy
y + 1

[
y tanh

xy
2
− tanh

x
2
]
= 0 . (98)

Note that, for the second term of Equation (93), the piece coming from the constant
term of Q1(x) = xQ0(x) − 1 (i.e., the term −1) is exactly cancelled by Equation (97).
Since xQ0(x) + Q1(x) = 2xQ0(x)− 1, the mass singularities attached to the −1 already cancelled
out as just stated, it remains to prove that the mass singularities of the second term of Equation (93)
are compensated by those of Equation (95). Now, out of the squared bracket in the second line of
Equation (95), one has the crossed term

− 1
2kq
× −K2 k0q0

k2q2 =
1
2

K2

k2
k0

k
q0

q3 , (99)

and the following integration must be performed,

− e2m2F1
4π2

1
2

K2

k2
k0
k

∫ ∞
0

dq
q2 ×

∫ +q
−q q0dq0 tanh q0

2T

(
1

q0−q +
1

q0+q

)
ln Q2+K2+2k0q0−2kq

Q2+K2+2k0q0+2kq . (100)

By the boundaries at q0 = ±q, it is then immediate to check that the mass singularities of
Equation (100) read as

+
e2m2F1

4π2
K2

k2
k0

k
Q0(

k0

k
)

[
ln

δ

2

] (∫ ∞

0

dx
x

tanh x
)ren.

, (101)

and exactly cancel out the remaining mass singularities of Equation (93).
What remains are contributions of types,

− e2m2F1

2π2

∫ ∞

0

dx
cosh2 x

, − e2m2F1

2π2
K2

k2 δF (3)
T (k0, k) , (102)

which, for the second type, are similar to those of the longitudinal case (80) up to different overall
multiplicative constants. The ensuing transverse spectral density would accordingly read as

(3)ρT(k0, k, T) '

2 Im

{
1

K2

[
1 +

e2m2F1

2π2k2

(
T2

K2

(∫ ∞

0

dx
x

∫ x

0
dy y tanh

y
2

)ren.
+ δF (3)

T (k0, k)
)]−1}

, (103)

with, like δF (3)
L (k0, k, T), δF (3)

T (k0, k, T) developing an imaginary part at space-like momenta K.
Now, whatever F1, the situation here differs from that of (3)ρL(k0, k, T) in Equation (84) because
the real-valued contribution (96) outweighs any other contribution to δΠ(3)

T (k0, k, T) by a large factor
of (T/k)2. This leads to a serious suppression of the transverse spectral density in comparison to the
longitudinal one.

Over momenta of order e3T in effect, orders of magnitude are found to be in the relation,

O
(
(3)ρT(k0, k, T)

)
= O

(
(

k2

T2 )
2)×O ((3)ρL(k0, k, T)

)
, k ∼ e3T . (104)
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Contrary to longitudinal contributions, the three-loop transverse contributions of Figure 6 require
no further resummation and preserve the peculiarity of the longitudinal ones, as it was necessary to
check. Since Equation (90) only differs from the two-loop case in the overall multiplicative form factor
F1(K2), the same relation as (104) applies to the case of Figure 2 as well, with a milder depletion factor
since in this case, one has k ∼ e2T. This is why the transverse contributions were not considered in
Sections 3 and 4.

7. Discussion

In real-time formalisms, it has long been suspected, though poorly examined, that higher number
of loop calculations could reveal some peculiarities. This was mainly expected of the so-called
singularity mixing problem, that is, of some products of T = 0 ultraviolet and T 6= 0-infrared
singularities (which are leading over the T = 0 ones in the large-T limit [27]).

However intricate such a singularity mixing may be, there seems to be nothing really fundamental
about it. Decades of efforts devoted to the matter in a large enough variety of cases have always
proven that, when properly dealt with, all singularities cancel out in the end. As compared to the
zero-temperature case, where theorems can be invoked, at non-zero temperature, patterns of singularity
cancellations are only rendered more difficult to encompass into some T = 0-like general statements.

At the origin of this fate, two main reasons can be invoked. First, this is because of
the explicit breaking of Lorentz invariance brought about by the thermodynamical equilibrium.
Singularity cancellation patterns are not so constrained as they are in the T = 0 Lorentz symmetric
case. In a second place, as is done throughout the current paper, one keeps analyzing T 6= 0 situations
in terms of Feynman diagrams while, ...in contrast to vacuum observables, thermal observables are
not themselves primitive blocks of Feynman diagrams [11]. According to the observables under
consideration, case-by-case treatments are therefore required, which render difficult attempts at
generalizations (note that a somewhat related facet of this state of affairs is the one put forth in [28]).

Now, as advertised above and supported by a large number of calculations,
singularity cancellations should rather be regarded a technical matter rather than a real issue.
This is why the current paper, already technical enough, doesn’t pay more attention to the (ultraviolet
diverging) constants of Equation (85) or Equation (A5), which a relevant and canonical renormalization
procedure will turn into finite numbers.

Rather, it is here posited that the singularity problem (infrared sector in particular) of non-zero
temperature quantum field theories may not be that main issue we’ve long thought it is [5]; and that
it has long masked a more fundamental difficulty, as soon as one tries to enforce a perturbative
treatment of these theories. The alluded more fundamental difficulty surfaces already at the level of
the historical infrared singularity problem of Equation (9) which, as it should be clear now, is artificial
and arises from a too liberal continuation of the k-integration in Equation (9) down to zero within the
HTL-resummation program.

The fundamental difficulty could be, instead, that any bare and/or effective perturbative treatment
be simply unable to reach a complete answer. The example considered in this paper may be regarded
as rather suggestive. The damping rate of a fast moving muon is calculated at leading order, as it
travels through a QED (or QCD) plasma in thermal equilibrium. Not only the soft, order eT,
but ultra-soft, order e2T, and hyper-soft, order e3T gauge-invariant quantum fluctuations of the
emitted and re-absorbed photon contribute the zeroth order muon damping rate, each. In this latter
e3T instance, one observes that the gauge invariant character of the associated fluctuations results
from an interplay of a T 6= 0 HTL-self energy insertion with, at T = 0, the gauge invariance of the
one-loop renormalized vertex; that is, results from a peculiarity of a calculation performed at a high
enough number of loops (of course, such a mixing of T 6= 0 with T = 0 parts wouldn’t come about in a
Matsubara imaginary time formalism, but while this formalism is more fitted to the calculations of
static quantities, it is not deprived of analogous difficulties either [29]).
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Now, aside from another quite obvious case at momentum scale e4T, not addressed in the present
paper, possible softer and softer gauge invariant fluctuations could contribute also on the same order.
More precisely, on the basis of diagrammatics, it may be extremely difficult, if even doable, to control
the possible number of similar gauge invariant fluctuations. By gauge invariant, what is understood
is that no gauge dependence other than that of the original bare photonic line is retained within the
higher number of loop fluctuations of this line.

As a result, even the zeroth order estimate of a physical quantity could be out of reach of
Perturbation Theory bare and/or effective, not even speaking of further sub-leading corrections.
More than the issue of singularity cancellations, which is of a technical nature, this difficulty
could constitute a serious obstruction of principle to the application of Perturbation Theory in
finite-temperature gauge-field theory.

It is instructive to compare this point of view to the ones suggested in the C?-algebraic analysis
of [11]. In [11], in effect, the so-called GNS-construction is used to build the thermal representation
space of states Hω, and no state vector can be found in it out of which to devise a T = 0-like
Perturbation Theory. A perturbativization of the situation is therefore proposed, based on eigen-states
ofHω which may be thought of in analogy to T = 0 unstable particle states. To some extent, these states
may be viewed as corresponding to the quasi-particle excitations of the plasma, as long identified
within the HTL-resummation program at scale eT, and later on within the ultra-soft effective theory
at scale e2T. In itself, using unstable/quasi-particle states instead of stable asymptotic ones doesn’t
preclude a perturbative approach, in agreement with the perturbativization procedure evoked above,
or the example explicitly worked out in [30].

Now, it must also be realized that the point of view advocated in the current paper goes one
step farther. Though possibly defined in a gauge invariant way, at least when explicitly constructed,
there is no systematic control of the quantum fluctuations which may contribute to a given thermal
observable at a given order of approximation; and thus there is no possibility to claim at a complete
answer at any order of approximation. In the context of non-zero temperature quantum field theories,
perturbative attempts could very well be doomed to failure because of this difficulty in which case
the whole idea of diagrammatic perturbation theory at finite temperature may have to be abandoned,
as quoted in [11]. This is not too surprising in the end if one considers that Feynman diagrams are
essentially tied to particle representations, while thermal representations of interacting relativistic field
theories have long been known to possess no particle structure [11,31].

There is more on this: for the sake of illustration, the example of QED was used in the current
paper and the case of QCD claimed to be the same up to constant redefinitions, like Equation (14).
Now, the point is that the α ' 1/137 expansion parameter of QED has no equivalent in QCD. That is,
if the QED coupling may be considered small enough to devise clear-cut separated momentum scales,
such as eT, e2T, e3T, etc.., it is not so in QCD where a clear-cut separation of momentum scales T,
g(T)T, g2(T)T, g3(T)T, etc. is deprived of any physical realisation even at very high T, as checked up
to 1025−30 Tc in the pure Yang–Mills case [32]. A consequence is that, as noticed by J.P. Blaizot in 1999,
a condition necessary for a consistent implementation of the renormalisation group à la Wilson fails to
be met. The assumption on which one can rely in the case of QED doesn’t extend to the case of QCD
where, at best, it defines an academic game.

At the very least, it appears that high-temperature quantum field theories call for non-perturbative
methods [33]. A new T 6= 0 formalism was born very recently [34], which, by construction,
implementing temperature by compactifying a spatial rather than the time direction, could perhaps
disentangle the infrared sector from the high temperature limit of covariant (not invariant!) quantum
field theories and avoid, in this way, the infrared enhancement mechanism, (i.e., the enhancement of
infrared contributions remaining after infrared singularities cancellations have been taken into account:
In our examples, the integration measures dk/k appearing in Equations (89) and (A3) are responsible
for this enhancement. They are induced by the high-temperature expansion of Equation (7)). To our
knowledge, however, the new formalism has not yet been explored in this respect.
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Here may be the place where to recall another approach, functional and non-perturbative,
concerning a similar calculation [35,36], that of the full fermionic 2- point function S′F(E, z0) under
conditions identical to those considered in this paper. The initial energy of the fermion is E,
and z0 = x0 − y0 measures the travelling duration of the energetic fermion of mass m entering
at time x0 the QED plasma thermalized at temperature T. A Bloch–Nordsieck estimate of S′F(E, z0)

reads as

S′(E, z0) = i
2m
E

{
1
2

e−iEz0− A2

4E2 z2
0

−e−
E
T− A2

4E2 (z
2
0− 1

T2 ) cos
([

E− 2T(
A

2ET
)2
]

z0

)}
,

where

A2 =
4α

3π
(~p 2)2

(
1 + (

2πT
p

)2
)
− 4α2

3π
(~p 2)2 ln

(
~p 2

m2

)
.

With ~p = ~p(z0) = ~p(0) e−Γz0 , and λc the fermionic Compton wavelength, the momentum
damping rate is

Γ =
2√
3π

αc
λc

(
kBT
mc2

)2
.

It is worth observing the large variety of different regimes and behaviours comprised within
this non-perturbative Bloch–Nordsieck estimate of S′F(E, z0), according to the relative values of the
involved parameters, and as time goes by. A richness that, at least, the perturbative attempts will have
lead one to suspect.

It is worth mentioning also that another alternative to the perturbative loop expansion can
be found within the approach developed in [37], starting out with an explicit construction of
the thermal ground state in terms of certain (anti) self-dual Yang–Mills configurations known as
Harrington–Shepard (anti) calorons.
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Appendix A

In QED, the non-vanishing spectral density of Equation (84),

(3)ρL(k0, k, T) = 2 Im
1

k2 + m2
3 F̄1(K2/m2

e )
k0
k Q0(

k0
k ) + iε

, (A1)

where m2
3 is defined in Equation (85), can be integrated out by using the small θ limit of Equation (82),

that is F̄1 ' K2/8m2
e , giving for the longitudinal fermionic damping rate an amount,

δ3γL(E,~p, T) =
e2T
2π

∫ e5/2T

e7/2T
kdk

∫ +k

−k

dk0

k0
disck0

1

k2 + m2
3

k2
0−k2

8m2
e

k0
k Q0(

k0
k ) + iε

, (A2)
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where Equation (87) is used. Integration on k0 is easily carried out by using an energy sum rule [5] and
the result is

δ3γL(E,~p, T) =
e2T
2π

∫ e5/2T

e7/2T

dk
k

=
e2T
2π

ln
1
e

, (A3)

a result which is worth comparing to the one-loop HTL result,

δ1γL(E,~p, T) =
e2T
2π

(
1
2

ln
1
e
− 1

2
ln 3 +O(

√
α)

)
, (A4)

where Equation (14) has been used, which is m2
QED = e2T2/6 . The same result can also be shown

to apply to the two-loop case of Section 3, when integrated over its relevant momentum range,
e5/2T ≤ k ≤ e3/2T. Gathering all contributions to δΠ(2)

L (k0, k, T), one finds a result of form (A4) with,
instead of ln 3 the term

ln
1

72π2

(∫ ∞

0

dx
x

d
dx
[
x tanh

x
2
])ren.

. (A5)

As claimed in Section 5, Equation (88), these invariant fluctuations, at n = 1, 2 and 3,
generate contributions on the same order of magnitude, but, for the reasons advertised in the main
text, none of the constants On (1) does enjoy an unequivocal determination even though one would
benefit from a complete knowledge of the δF (n;ren.)

L (k0, k, T) at each momentum scale enT.
In the case of QCD, the smallness of the ratio −K2/4m2

q is more questionable for light quarks,
and Equation (82) may be no longer appropriate. In this situation, however, it is possible to rely on the
bounded, monotonic and constant sign variations of F̄1, Equation (86), such as displayed below, and a
mean value theorem in order to reach exactly the same conclusions for light quarks.
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