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Abstract. Current leads used to supply electrical energy from a room-temperature power
supply to a superconducting application represent a major thermal load and therefore largely
determine the operating cost. This paper presents a concept to minimize the thermal load at the
cold end by integrating the recuperative heat exchanger of a cryogenic mixed-refrigerant cycle
(CMRC). A mixture of non-flammable components is used to absorb the distributed thermal
load continuously over the entire temperature range. The paper describes the numerical model
that consists of an electric model coupled with a thermal modelling framework, allowing the
optimization of the mixture composition and the temperature profiles. Simulations yield a
reduction of the thermal load at the cold end by 45 % compared to conventional conduction-
cooled current leads.

1. Introduction

Current leads transport electrical energy from room-temperature to a superconducting
application at the cryogenic temperature and represent a major thermal load into the cryostat.
The main contributions to the heat load are the ohmic heating Qe due to internal dissipation
in the current lead and the heat conduction Q from the warm terminal to the cold end. Both
contributions have to be balanced by the selection of an appropriate geometry. In an optimized
current lead, heat input from the warm terminal must be close to zero, yielding an adiabatic
boundary condition [1]. This optimization minimizes the overall heat load Q. into the cold end,
and the main contribution to the thermal load is reduced to ohmic heating.

Depending on the cooling method, the current lead can be classified into conduction-cooled
or gas-cooled. Conduction-cooled current leads [1] are used in cryogen-free cryostat systems
working with one cold stage, yielding the highest heat leak compared to other cooling options.
The heat leak can be reduced by the application of several cooling stages [2-5] at intermediate
temperatures (multi-stage cooled current lead). Gas-cooled current leads [6-9] require forced
vapour flow for additional convective cooling, where the coolant is heated up in counter-flow to
room-temperature. Combinations of the cooling methods [10], the use of Peltier elements [11]
and the integration of high temperature superconductors [12] are further possibilities to reduce
the heat leak.

In this paper, the calculation model of a cooling method is described, where the recuperative
heat exchanger of a closed Joule-Thomson cycle is combined with a 10 kA current lead. The
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use of a mixed (rather than a pure) refrigerant has been identified [13,14] as an advantageous
cooling method for current leads due to the thermodynamic benefit of absorbing heat over a
broad temperature range [13-19]. In addition, the system is working at low operating pressures
and minimal temperature differences in the recuperative heat exchanger due to two-phase heat
transfer. The mixture consists of four non-flammable refrigerants (R14, R23, R218, R740),
whereby R218 is the highest-boiling and R740 the lowest-boiling component. The fluid properties
are calculated in Aspen Plus [20] with the Peng-Robinson equation of state [21] and binary
interaction parameters from [22] down to a temperature of 120 K. Properties of non-flammable
mixtures below 120 K are not yet available but will be investigated in the future [23]. As an
intermediate solution, an additional cooling stage at 77 K is used in the model.

2. Current lead design

A cryogenic mixed-refrigerant cooled current lead (CMRC-CL) is shown in figure 1. The cold end
is cooled by a cryocooler or liquid nitrogen to 77 K. In addition, the counter-flow heat exchanger
(CFHX) of a Joule-Thomson cycle is part of the current lead, where the high pressure (HP) and
low pressure (LP) streams are circulating. The LP stream cools the HP stream and the current
lead continuously over the temperature range from 300 to 120 K. The first part of the current
lead, that is connected with the CFHX, is L1 = 1.0 m long. The length of the second part, from
120 K to 77 K, is Lo = 0.28 m. A shorter connection to the cold stage at 77 K would lead to a
temperature decrease of the mixture and imply a risk of freeze-out.

The CMRC-CL geometry is presented in figure 2, showing a segment of the current lead at the
warm end. It is made of a cylindrical cooper rod with a residual resistance ratio of RRR = 50,
with a milled rectangular helical groove for the heat exchanger. A quadratic Cu-profile with
circular hole is brazed into the groove as cooling channel for the LP stream. The channel contains
four stainless steel capillaries for the HP stream. The diameter D; of the recess in the middle
of the current lead can be adapted depending on the design amperage. For currents lower than
10 kA, the diameter has to be larger and vice versa.
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3. Numerical model
The calculation of the temperature profile of the current lead Ty, (x) is performed based on the
one-dimensional differential heat equation of second order:

9 oTcr, 2 pcou(Ter)
— [ Acu (T A - I = U - (Ter, — T =0, 1
5 <C(CL) o >+ 1 arp-U - (Tcy, —Tip) =0 (1)

where Acy, is the copper heat conductivity, A the cross-section area, I the amperage, pcy the
electrical resistivity, app the heat transfer coefficient between the current lead and the LP stream
and U the wetted perimeter. Fixed temperatures at the warm end T¢r, x—0 = 300 K and the
cold end Ty, x=1,1 = 120 K are used as boundary conditions.

The temperature of the LP stream Tip is found by modelling the heat exchanger with the
numerical solution algorithm from [24]. This versatile model is capable of calculating the two-
phase heat transfer and pressure drop of the HP and LP streams under consideration of axial
conduction in the wall and in the fluid, parasitic heat loads and fluid property variation. The
heat transfer coefficient aqp shown in figure 3 is taken from [25], where existing correlations for
boiling and condensation are modified, yielding an improved prediction of available experimental
data.

The modelling of the heat exchanger/current lead is done in Mathematica [26]. The explicit
Runge-Kutta method is used for the calculation of the temperature change and pressure drop
of the HP and LP streams. Equation 1 is solved using the Finite-Difference-Method (FDM)
with the Control-Volume approach and the Gauss-Seidel iteration [27]. Both methods are
implemented in the iterative calculation loop explained in [24].

The preliminary extension of the current lead from L; with the length Lo is modelled with
the analytical expression in equation 2 for a conduction-cooled current lead with the boundary
temperatures 120 K and 77 K and the heat load @)1 flowing from the upper part at * = Lq:

120K

O = \/Q12 +2. 12/ pca(T) - Acw(T)dT. (2)

77K

With equation 2 and Fourier’s Law, it is possible to calculate the optimal geometry of the current
lead and its temperature profile, which is shown in the next chapter.
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4. Results

The temperature profiles in the heat exchanger/current lead as a function of the current lead
length are shown in figure 4. The upper part of the current lead with the length L includes the
recuperative CFHX with the temperatures of the HP stream, the LP stream and the intermediate
wall temperature. Temperature differences between the two streams varying along the length
but are mainly around 8 K, only reaching 25 K in the warm region at the length coordinate 0.35
m. Between the current lead and the LP stream, the temperature difference is about 1 K and has
two pinch points near the cold end. The pressure drop of the HP stream is relatively high with
Appp = 10.5 bar; the LP stream pressure drop is Aprp = 2.2 bar. Further design improvements
in order to minimize the overall entropy production may further improve the performance.

Figure 5 compares the temperature profile of the cryogenic mixed-refrigerant cooled current
lead CMRC-CL (3) with an optimized conduction-cooled current lead CC-CL (1) and a profile
(2) corresponding to the absolute minimum heat load at the cold end of QQ(Q) = 8.5 W/kA
under the theoretical assumption of an infinite number of Carnot stages along the length [28].
The goal of a current lead optimization is to lower the temperature gradient at the warm end
close to zero, and to minimize the heat conduction Qy, and therefore the heat load Q.. The warm
end goal is achieved in the temperature profiles (1) and (2), but not in the CMRC-CL profile.
However, the CMRC-CL curve is showing characteristics similar to the theoretical curve (2) and
could be further influenced by the mixture composition, and/or modification of the geometry
at the warm end. Nevertheless, the heat load at the cold end of Q3 = 23.8 W/kA yields
a reduction of the thermal load by 45 % compared to conventional conduction-cooled current
leads (1). This can be directly deduced from the temperature gradients at the cold end.

It is found that in order to minimize the heat load @., the heat transfer area (U - Lcrpx)
must be large and the current lead becomes relatively long. Therefore, another optimization
goal should be the design of more compact current leads. This result gives a strong motivation
for the development of micro-structured CFHX [29] and their integration in a current lead.
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5. Summary and conclusion
The results of numeric coupling of an electric model with a thermal modelling framework for
the integrated optimization of a cryogenic mixed-refrigerant cooled current lead are presented
in this work, using the design example of a 10 kA current lead for superconducting applications.
This cooling method represents an efficient alternative to state-of-the-art solutions that require
multiple stages, yielding a reduction of the thermal load at the cold end by 45 % compared
to conventional single-stage conduction-cooled current leads. Verification of the model is
performed by the adherence of the residuals of temperature convergence in the heat exchanger
rescrax < 107° and in the current lead rescr, < 1077, Further, the consistency of the model is
verified with regard to energy conservation, yielding a numerical error as low as 1.5 %.

The results show that a large heat transfer area is required to minimize the thermal load,
yielding relatively long current leads. Therefore, the tubes-in-tube design should be reconsidered
in favour of the development of micro-structured counter-flow heat exchangers [29].
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